Science.gov

Sample records for radiative mhd simulations

  1. Understanding Accretion Disks through Three Dimensional Radiation MHD Simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei

    I study the structures and thermal properties of black hole accretion disks in the radiation pressure dominated regime. Angular momentum transfer in the disk is provided by the turbulence generated by the magneto-rotational instability (MRI), which is calculated self-consistently with a recently developed 3D radiation magneto-hydrodynamics (MHD) code based on Athena. This code, developed by my collaborators and myself, couples both the radiation momentum and energy source terms with the ideal MHD equations by modifying the standard Godunov method to handle the stiff radiation source terms. We solve the two momentum equations of the radiation transfer equations with a variable Eddington tensor (VET), which is calculated with a time independent short characteristic module. This code is well tested and accurate in both optically thin and optically thick regimes. It is also accurate for both radiation pressure and gas pressure dominated flows. With this code, I find that when photon viscosity becomes significant, the ratio between Maxwell stress and Reynolds stress from the MRI turbulence can increase significantly with radiation pressure. The thermal instability of the radiation pressure dominated disk is then studied with vertically stratified shearing box simulations. Unlike the previous results claiming that the radiation pressure dominated disk with MRI turbulence can reach a steady state without showing any unstable behavior, I find that the radiation pressure dominated disks always either collapse or expand until we have to stop the simulations. During the thermal runaway, the heating and cooling rates from the simulations are consistent with the general criterion of thermal instability. However, details of the thermal runaway are different from the predictions of the standard alpha disk model, as many assumptions in that model are not satisfied in the simulations. We also identify the key reasons why previous simulations do not find the instability. The thermal

  2. Simulating solar MHD

    NASA Astrophysics Data System (ADS)

    Schüssler, M.

    1999-05-01

    Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse') are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.

  3. Simulating solar MHD

    NASA Astrophysics Data System (ADS)

    Schüssler, M.

    1999-05-01

    Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse') are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies).

  4. Coronal extension of the MURaM radiative MHD code: From quiet sun to flare simulations

    NASA Astrophysics Data System (ADS)

    Rempel, Matthias D.; Cheung, Mark

    2016-05-01

    We present a new version of the MURaM radiative MHD code, which includes a treatment of the solar corona in terms of MHD, optically thin radiative loss and field-aligned heat conduction. In order to relax the severe time-step constraints imposed by large Alfven velocities and heat conduction we use a combination of semi-relativistic MHD with reduced speed of light ("Boris correction") and a hyperbolic formulation of heat conduction. We apply the numerical setup to 4 different setups including a mixed polarity quiet sun, an open flux region, an arcade solution and an active region setup and find all cases an amount of coronal heating sufficient to maintain a corona with temperatures from 1 MK (quiet sun) to 2 MK (active region, arcade). In all our setups the Poynting flux is self-consistently created by photospheric and sub-photospheric magneto-convection in the lower part of our simulation domain. Varying the maximum allowed Alfven velocity ("reduced speed of light") leads to only minor changes in the coronal structure as long as the limited Alfven velocity remains larger than the speed of sound and about 1.5-3 times larger than the peak advection velocity. We also found that varying details of the numerical diffusivities that govern the resistive and viscous energy dissipation do not strongly affect the overall coronal heating, but the ratio of resistive and viscous energy dependence is strongly dependent on the effective numerical magnetic Prandtl number. We use our active region setup in order to simulate a flare triggered by the emergence of a twisted flux rope into a pre-existing bipolar active region. Our simulation yields a series of flares, with the strongest one reaching GOES M1 class. The simulation reproduces many observed properties of eruptions such as flare ribbons, post flare loops and a sunquake.

  5. The PLX- α project: Radiation-MHD Simulations of Imploding Plasma Liners Using USim

    NASA Astrophysics Data System (ADS)

    Beckwith, Kristian; Stoltz, Peter; Kundrapu, Madhusudhan; Hsu, Scott; PLX-α Team

    2015-11-01

    USim is a tool for modeling high energy density plasmas using multi-fluid models coupled to electromagnetics using fully-implicit iterative solvers, combined with finite volume discretizations on unstructured meshes. Prior work has demonstrated application of USim models and algorithms to simulation of supersonic plasma jets relevant to the Plasma Liner Experiment (PLX) and compared synthetic interferometry to that gathered from the experiment. Here, we give an overview of the models and algorithms included in USim; review results from prior modeling campaigns for the PLX; and describe plans for radiation magnetohydrodynamic (MHD) simulation efforts focusing on integrated plasma-liner implosion and target compression in a fusion-relevant regime using USim for the PLX- α project. Supported by ARPA-E's ALPHA program. Original PLX construction supported by OFES. USim development supported in part by Air Force Office of Scientific Research.

  6. Radiative Models of Sagittarius A* and M87 from Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Dexter, J.; Agol, E.; Fragile, P. C.; McKinney, J. C.

    2012-07-01

    Ongoing millimeter VLBI observations with the Event Horizon Telescope allow unprecedented study of the innermost portion of black hole accretion flows. Interpreting the observations requires relativistic, time-dependent physical modeling. We discuss the comparison of radiative transfer calculations from general relativistic MHD simulations of Sagittarius A* and M87 with current and future mm-VLBI observations. This comparison allows estimates of the viewing geometry and physical conditions of the Sgr A* accretion flow. The viewing geometry for M87 is already constrained from observations of its large-scale jet, but, unlike Sgr A*, there is no consensus for its millimeter emission geometry or electron population. Despite this uncertainty, as long as the emission region is compact, robust predictions for the size of its jet launching region can be made. For both sources, the black hole shadow may be detected with future observations including ALMA and/or the LMT, which would constitute the first direct evidence for a black hole event horizon.

  7. Radiative 3D MHD simulations of the spontaneous small-scale eruptions in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Kitiashvili, Irina N.

    2015-08-01

    Studying non-linear turbulent dynamics of the solar atmosphere is important for understanding mechanism of the solar and stellar brightness variations. High-resolution observations of the quiet Sun reveal ubiquitous distributions of high-speed jets, which are transport mass and energy into the solar corona and feeding the solar wind. However, the origin of these eruption events is still unknown. Using 3D realistic MHD numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push the surrounding material up, generating shocks. Our simulations reveal complicated high-speed flow patterns and thermodynamic and magnetic structure in the erupting vortex tubes and shows that the eruptions are initiated in the subsurface layers and are driven by high-pressure gradients in the subphotosphere and photosphere and by the Lorentz force in the higher atmosphere layers. I will discuss about properties of these eruptions, their effects on brightness and spectral variations and comparison with observations.

  8. WADM and radiation MHD simulations of compact multi-planar and cylindrical wire arrays at 1 MA currents

    NASA Astrophysics Data System (ADS)

    Esaulov, A. A.; Kantsyrev, V. L.; Safronova, A. S.; Williamson, K. M.; Shrestha, I.; Osborne, G. C.; Yilmaz, M. F.; Ouart, N. D.; Weller, M. E.

    2009-09-01

    The radiative performance of Z-pinches created by the imploding wire array loads is defined by the ablation and implosion dynamics of these loads. Both these processes can be effectively modeled by the Wire Ablation Dynamics Model (WADM), which extends the formalism exploited earlier for the cylindrical wire arrays to the loads of arbitrary geometries. The WADM calculates the ablation rates for each array wire and provides the important dynamic parameters, such as the specific mass and velocity of the imploding plasma, which can be used to estimate the shapes of the x-ray pre-pulse and, partially, the main x-ray burst. The applications of the WADM also extend to combined material wire array loads. The ablation and implosion dynamics of novel Prism Planar Wire Array (PPWA) and combined material (Mo/Al/Mo) Triple Planar Wire Array (TPWA) loads are discussed in detail. The combined WADM and radiation MHD simulation is applied to model the radiative performance of the precursor plasma column, created by the imploding stainless steel compact cylindrical wire array. As the radiation effects intensify with the mass accumulation at the array center, the simulation reveals the transformation of quasi-uniform precursor column into a heterogeneous plasma structure with strong density and temperature gradients. We find that radiative performance of the precursor plasma is greatly affected by the load geometry as well as by the wire material.

  9. Magnetic flux emergence in granular convection: radiative MHD simulations and observational signatures

    NASA Astrophysics Data System (ADS)

    Cheung, M. C. M.; Schüssler, M.; Moreno-Insertis, F.

    2007-05-01

    Aims:We study the emergence of magnetic flux from the near-surface layers of the solar convection zone into the photosphere. Methods: To model magnetic flux emergence, we carried out a set of numerical radiative magnetohydrodynamics simulations. Our simulations take into account the effects of compressibility, energy exchange via radiative transfer, and partial ionization in the equation of state. All these physical ingredients are essential for a proper treatment of the problem. Furthermore, the inclusion of radiative transfer allows us to directly compare the simulation results with actual observations of emerging flux. Results: We find that the interaction between the magnetic flux tube and the external flow field has an important influence on the emergent morphology of the magnetic field. Depending on the initial properties of the flux tube (e.g. field strength, twist, entropy etc.), the emergence process can also modify the local granulation pattern. The emergence of magnetic flux tubes with a flux of 1019 Mx disturbs the granulation and leads to the transient appearance of a dark lane, which is coincident with upflowing material. These results are consistent with observed properties of emerging magnetic flux. Movies are only available in electronic form at http://www.aanda.org

  10. Predictive radiation-MHD simulations with FLASH: Magnetic field generation and turbulent amplification experiments with the Omega EP laser

    NASA Astrophysics Data System (ADS)

    Tzeferacos, Petros; Daley, Christopher; Fatenejad, Milad; Flocke, Norbert; Graziani, Carlo; Lamb, Donald Q.; Lee, Dongwook; Scopatz, Anthony; Weide, Klaus; Doyle, Hugo; Gregori, Gianluca; Meinecke, Jena; Reville, Brian; Miniati, Francesco

    2013-10-01

    The process of generation and amplification of Biermann battery magnetic fields is closely linked to the development of turbulence. In an astrophysical environment, a small seed field can be formed in asymmetric supernova remnant blast waves due to misaligned pressure and density gradients. Inhomogeneities in the density distribution can cause the flow to become turbulent and the B-field can be amplified via dynamo action. In this context, the COSMOLAB team will perform experiments using the Omega EP laser at LLE, that represent a scaled-down model of the astrophysical process in a controlled environment. The experiments involve the illumination of a slab-like target, which produces a plasma flow and a Biermann battery field. The flow then propagates through a grid that creates turbulence and amplifies the field. In this study we describe 2D and 3D radiative MHD simulations of the experimental setup, carried out using the FLASH code on Mira (BG/Q) at ALCF. The objective of these simulations is to explore the morphology and strength of the B-fields generated by ablation of target material by the laser, and their amplification due to the grid. This work was supported by DOE NNSA ASC.

  11. Impact of the Partial Ionization in the solar atmosphere using 2.5D Radiative MHD Simulations

    NASA Astrophysics Data System (ADS)

    Martinez-Sykora, Juan; De Pontieu, Bart; Hansteen, Viggo; Carlsson, Mats

    The chromosphere/transition region constitute the interface between the solar surface and the corona and modulate the flow of mass and energy into the upper atmosphere. IRIS was launched in 2013 to study the chromosphere and transition region. The complexity of the chromosphere is due to various regime changes that take place across it, like: Hydrogen goes from predominantly neutral to predominantly ionized; the plasma behavior changes from collisional to collision-less; it goes from gas-pressure dominated to magnetically driven, etc. Consequently, the interpretation of chromospheric observations in general and those from IRIS, in particular, is a challenging task. It is thus crucial to combine IRIS observations with advanced radiative-MHD numerical modeling. Because the photosphere, chromosphere and transition region are partially ionized, the interaction between ionized and neutral particles has important consequences on the magneto-thermodynamics of these regions. We implemented the effects of partial ionization using generalized Ohm's law in the Bifrost code (Gudiksen et al. 2011) which includes full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along magnetic field lines. I will describe the importance and impact of taking into account partial ionization effects in the modeled radiative-MHD atmosphere, such as chromospheric heating, photospheric magnetic field diffused into the upper-chromosphere which expands into the upper atmosphere filling the corona with mass, magnetic flux, energy and current, etc.

  12. Extended MHD Simulations of Spheromaks

    NASA Astrophysics Data System (ADS)

    Howell, E. C.; Sovinec, C. R.

    2012-10-01

    Nonlinear extended MHD simulations of a spheromak in a cylindrical flux conserver are performed using the NIMROD code (JCP 195, 2004). An idealized series of simulations starting from a Grad-Shafranov equilibrium and small non-axisymmetric perturbations are performed to model the sustained decay phase. The resulting confinement leads to steep resistivity gradients. Strong current gradients develop, driving tearing modes that dominate the evolution of the spheromak. Absent in these simulations are the remains of n=1 fluctuations created during the formation process. A second series of simulations start from vacuum fields and model the full spheromak evolution, including the formation process where the n=1 fluctuations dominate. To understand the role of pressure driven instabilities in the evolution of the spheromak, a numerical diagnostic is developed to calculate the Mercier stability criterion from the axisymmetric fields.

  13. Cusp geometry in MHD simulations

    NASA Astrophysics Data System (ADS)

    Siscoe, George; Crooker, Nancy; Siebert, Keith; Maynard, Nelson; Weimer, Daniel; White, Willard

    2005-01-01

    The MHD simulations described here show that the latitude of the high-altitude cusp decreases as the IMF swings from North to South, that there is a pronounced dawn dusk asymmetry at high-altitude associated with a dawn dusk component of the IMF, and that at the same time there is also a pronounced dawn dusk asymmetry at low-altitude. The simulations generate a feature that represents what has been called the cleft. It appears as a tail (when the IMF has a By component) attached to the cusp, extending either toward the dawn flank or the dusk flank depending on the dawn dusk orientation of the IMF. This one-sided cleft connects the cusp to the magnetospheric sash. We compare cusp geometry predicted by MHD simulations against published observations based on Hawkeye and DMSP data. Regarding the high-altitude predictions, the comparisons are not definitive, mainly because the observations are incomplete or mutually inconsistent. Regarding the low-altitude prediction of a strong dawn dusk asymmetry, the observations are unambiguous and are in good qualitative agreement with the prediction.

  14. Radiation-MHD Simulations of Pillars and Globules in HII Regions

    NASA Astrophysics Data System (ADS)

    Mackey, J.

    2012-07-01

    Implicit and explicit raytracing-photoionisation algorithms have been implemented in the author's radiation-magnetohydrodynamics code. The algorithms are described briefly and their efficiency and parallel scaling are investigated. The implicit algorithm is more efficient for calculations where ionisation fronts have very supersonic velocities, and the explicit algorithm is favoured in the opposite limit because of its better parallel scaling. The implicit method is used to investigate the effects of initially uniform magnetic fields on the formation and evolution of dense pillars and cometary globules at the boundaries of HII regions. It is shown that for weak and medium field strengths an initially perpendicular field is swept into alignment with the pillar during its dynamical evolution, matching magnetic field observations of the ‘Pillars of Creation’ in M16. A strong perpendicular magnetic field remains in its initial configuration and also confines the photoevaporation flow into a bar-shaped, dense, ionised ribbon which partially shields the ionisation front.

  15. 3D MHD Simulations of Tokamak Disruptions

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Stuber, James

    2014-10-01

    Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.

  16. General Relativistic Radiative Transfer and GeneralRelativistic MHD Simulations of Accretion and Outflows of Black Holes

    SciTech Connect

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah; /Mullard Space Sci. Lab.

    2007-01-05

    We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  17. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    SciTech Connect

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.

    1996-12-31

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-{beta} disruption studies in reversed shear plasmas using the MHD level MH3D code, {omega}{sub *i} stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D{sup ++} code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data.

  18. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  19. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikaw, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W=4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. We also simulate jets with the more realistic initial conditions for injecting jets for helical mangetic field, perturbed density, velocity, and internal energy, which are supposed to be caused in the process of jet generation. Three possible explanations for the observed variability are (i) tidal disruption of a star falling into the black hole, (ii) instabilities in the relativistic accretion disk, and (iii) jet-related PRocesses. New results will be reported at the meeting.

  20. A New Godunov Algorithm for Radiation MHD in Athena

    NASA Astrophysics Data System (ADS)

    Jiang, Y.-F.; Stone, J. M.; Davis, S. W.

    2012-07-01

    Here we describe the implementation and tests of a new multi-dimension Godunov algorithm for radiation magnetohydrodynamics (MHD) simulations based on Athena. There are several new features of this algorithm. First, this is a Godunov method with stiff source terms from radiation field. Second, we use a variable Eddington tensor to close the radiation momentum equations. Thus we do not need to assume any diffusion like approximation. This also makes the code be suitable for both optical thin and optical thick regimes. Third, we only need to solve a set of linear equations for the radiation subsystem, instead of a non-linear equation people usually encounter with flux-limited diffusion approximation. We have also developed a suite of tests, which cover a wide range of parameter space in terms of optical depth and the ratio between radiation pressure and gas pressure, to show that the algorithm is working accurately.

  1. MHD simulations of supernova driven ISM turbulence

    NASA Astrophysics Data System (ADS)

    Gressel, Oliver; Ziegler, Udo

    The dynamic evolution of the (stratified) turbulent interstellar medium (ISM) is simulated utilizing a three-dimensional MHD model including various physical effects. The computational domain covers a box of 0.5x0.5x2.0 kpc at a resolution of typically 128x128x1024 grid cells. The model includes (constant kinematic) viscosity and magnetic diffusivity. The adiabatic equation of state is supplemented by a parameterized heating- and cooling-function allowing for thermal instability (TI). The update due to heating and cooling is implemented implicitly using a Patankar-type discretization. Turbulence is driven by supernova explosions which are modelled as local injections of thermal energy, smeared over three standard-deviations of a Gaussian support with FWHM of 20pc. Supernova rates are adopted for typical cited values. Within our model we make a distinction between Type I and Type II SNe. Latter are statistically clustered by the (artificial) constraint that the density at the explosion site be above average (with respect to a horizontal slab) - former are spatially uncorrelated. The dual-energy feature of the conservative NIRVANA-code is used to tackle the extreme ratio of kinetic to internal energy that arises from the violent energy input. We stress the importance of using a conservative scheme to properly transfer the injected energy to kinetic motion. The model also includes a differentially rotating background (with shearing boundary conditions in radial direction) as well as vertical stratification. The initial density and pressure profiles are in hydrostatic equilibrium with respect to the equation of state given by the radiative equilibrium. Including z-dependent heating rates this leads to a considerable deviation from usual isothermal initial models. The primary focus of this work is on the galactic dynamo and the generation of large-scale magnetic fields. As a secondary target we are also interested in general properties of the ISM that are of importance

  2. MHD simulation of the Bastille day event

    NASA Astrophysics Data System (ADS)

    Linker, Jon; Torok, Tibor; Downs, Cooper; Lionello, Roberto; Titov, Viacheslav; Caplan, Ronald M.; Mikić, Zoran; Riley, Pete

    2016-03-01

    We describe a time-dependent, thermodynamic, three-dimensional MHD simulation of the July 14, 2000 coronal mass ejection (CME) and flare. The simulation starts with a background corona developed using an MDI-derived magnetic map for the boundary condition. Flux ropes using the modified Titov-Demoulin (TDm) model are used to energize the pre-event active region, which is then destabilized by photospheric flows that cancel flux near the polarity inversion line. More than 1033 ergs are impulsively released in the simulated eruption, driving a CME at 1500 km/s, close to the observed speed of 1700km/s. The post-flare emission in the simulation is morphologically similar to the observed post-flare loops. The resulting flux rope that propagates to 1 AU is similar in character to the flux rope observed at 1 AU, but the simulated ICME center passes 15° north of Earth.

  3. Shocked Magnetotail: ARTEMIS Observations and MHD Simulations

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoyan

    2015-04-01

    Interplanetary shocks can cause magnetospheric disturbances on various scales including kinetic and MHD processes. In this paper we study a shock event using ARTEMIS in situ observations and OpenGGCM MHD simulations, which shows how significant effect of interplanetary shocks could be on the magnetotail. The two ARTEMIS spacecraft were located near the tail current sheet and lobe center at (-60, 1, -5Re_GSM) when the shock arrived and recorded an abrupt tail compression leading to significant enhancements in the plasma density, temperature, magnetic field strength, and cross-tail current density, as well as to tailward flows and current sheet crossings. About 10 min later, the spacecraft entered the sheath solar wind unexpectedly. Two hypotheses are considered: either the tail was cut off by the high solar wind ram pressure (~25-30 nPa), or the compressed tail was pushed aside by the appreciable dawnward solar wind flow imposed by the shock. OpenGGMC simulation results confirmed the second hypothesis and revealed that during this 10 min interval, the lobe center moved dawnward by ~12 Re and the tail width in Y was reduced from ~40 to 26 Re, which eventually exposed ARTEMIS to the sheath solar wind. Comparisons of plasma and magnetic parameters between ARTEMIS in situ observations and simulations showed a satisfied consistence.

  4. MHD Simulation Heliospheric Magnetic Fields and Turbulence

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron

    2005-01-01

    This talk will present a summary of our results on simulations of heliospheric structure and dynamics. We use a three-dimensional MHD code in spherical coordinates to produce a solar wind containing a rotating, tilted heliospheric current sheet, fast-slow stream and microstream shear layers, waves, 2-D turbulence, and pressure balanced structures that are input to the inner (superAlfvenic) boundary. The evolution of various combinations of these has led to a deeper understanding of sector structure, magnetic holes, fluctuation anisotropies, and general turbulent evolution. We show how the sectors are likely to be connected, how spiral fields can arise, and how field line diffusion can be caused by waves with transverse structure and microstream shears.

  5. Reducing radiative losses in aluminum-hydrogen MHD generators

    NASA Astrophysics Data System (ADS)

    Bityurin, V. A.; Galaktionov, A. V.; Kolpakov, A. V.

    2010-11-01

    Rigorous estimations are obtained for the integral thermal radiation flux from a working substance to walls of a high-temperature setup. These estimations are convenient for engineering calculations and can be used in solving problems related to radiative losses in promising aluminum-hydrogen MHD generators.

  6. Global MHD simulations of plasmaspheric plumes

    NASA Astrophysics Data System (ADS)

    Lyon, J.; Ouellette, J.; Merkin, V. G.

    2015-12-01

    The plasmasphere represents a separate population from the rest of themagnetosphere, generally high density but cold. When the solar windturns strongly southward this plasma is convected toward the daysidemagnetopause and affects the interaction of the solar wind with themagnetosphere. We have used multi-fluid simulations using the LFMglobal MHD code to model this interaction. The plasmasphere isinitialized as a cold (~1eV) hydrogen plasma in a quiet northward IMFstate with a density distribution appropriate for K_p = 1. Thecorotation potential from the ionosphere spins up the plasmasphereinto rough corotation. After a initialization period of hours, asouthward IMF is introduced and the enhanced convection initiates asurge of plasmaspheric density to the dayside. We discuss two aspectsof this interaction, the effects on dayside reconnection and on theKelvin-Helmholtz instability (KHI). We find that the mass loading ofmagnetospheric flux tubes slows local reconnection rates, though notas much as predicted by Borovsky et al. [2013]. We findthat the total reconnection rate is reduced, although not as much aswould be predicted by just the sub-solar reconnection rate. The KHIis somewhat reduced by the plasmaspheric loading of density in the lowlatitude boundary layer. It has been suggested that the presence ofthe plasmasphere may lead to enhanced ULF wave power in the interiorof the magnetosphere from the KHI waves. We find only a minimal effect during northward IMF. For southward IMF, the situation is complicated by the interaction of KHI with non-steady reconnection.

  7. Identification of standing MHD modes in MHD simulations of planetary magnetospheres. Application to Mercury.

    NASA Astrophysics Data System (ADS)

    Griton, Léa; Pantellini, Filippo; Moncuquet, Michel

    2016-04-01

    We present 3D simulations of the interaction of the solar wind with Mercury's magnetosphere using the magnetohydrodynamic code AMRVAC. A procedure for the identification of standing MHD modes has been applied to these simulations showing that large scale standing slow mode structures may exist in Mercury's magnetosheath. The identification is mostly based on relatively simple approximate analytical solutions to the old problem of determining the family of all standing linear plane MHD waves in a flowing plasma. The question of the identification of standing slow mode structures using in situ measurements such as the future BepiColombo MMO mission to Mercury will be discussed as well.

  8. Three Dimensional Simulations of Compressible Hall MHD Plasmas

    SciTech Connect

    Shaikh, Dastgeer; Shukla, P. K.

    2008-10-15

    We have developed three dimensional, time dependent, compressible, non-adiabatic, driven and massively parallelized Hall magnetohydrodynamic (MHD) simulations to investigate turbulent spectral cascades in a regime where characteristic lengthscales associated with plasma fluctuations are smaller than ion gyro radii. Such regime is ubiquitously present in solar wind and many other collisionless space plasmas. Particularly in the solar wind, the high time resolution databases identify a spectral break at the end of MHD inertial range spectrum that corresponds to a high frequency regime. In the regime, turbulent cascades cannot be explained by the usual MHD models. With the help of our 3D Hall MHD code, we find that characteristic turbulent interactions in the high frequency regime evolve typically on kinetic Alfven time scales. The turbulent fluctuation associated with kinetic Alfven interactions are compressive and anisotropic and possess equipartition of kinetic and magnetic energies.

  9. Kinetic MHD simulation of large 'circ; tearing mode

    NASA Astrophysics Data System (ADS)

    Cheng, Jianhua; Chen, Yang; Parker, Scott; Uzdensky, Dmitri

    2012-03-01

    We have developed a second-order accurate semi-implicit δ method for kinetic MHD simulation with Lorentz force ions and fluid electrons. The model has been used to study the resistive tearing mode instability, which involves multiple spatial scales. In small 'circ; cases, the linear growth rate and eigenmode structure are consistent with resistive MHD analysis. The Rutherford stage and saturation are demonstrated, but the simulation exhibits different saturation island widths compared with previous MHD simulations. In large 'circ; cases, nonlinear simulations show multiple islands forming, followed by the islands coalescing at later times. The competition between these two processes strongly influences the reconnection rates and eventually leads to a steady state reconnection. We will present various parameter studies and show that our hybrid results agree with fluid analysis in certain limits (e.g., relatively large resisitivities).

  10. MHD-Epic: Embedded Particle-in-Cell Simulations of Reconnection in Global 3D Extended MHD Simulations

    NASA Astrophysics Data System (ADS)

    Daldorff, L. K. S.; Toth, G.; Borovikov, D.; Gombosi, T. I.; Lapenta, G.

    2014-12-01

    With the new modeling capability in the Space Weather Modeling Framework (SWMF) of embedding an implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US magnetohydrodynamics model (Daldorff et al. 2014, JCP, 268, 236) we are ready to locally handle the full physics of the reconnection and its implications on the full system where globally, away from the reconnection region, a magnetohydrodynamic description is satisfactory. As magnetic reconnection is one of the main drivers in magnetospheric and heliospheric plasma dynamics, the self-consistent description of the electron dynamics in the coupled MHD-EPIC model is well suited for investigating the nature of these systems. We will compare the new embedded MHD-EPIC model with pure MHD and Hall MHD simulations of the Earth's magnetosphere.

  11. Global and Kinetic MHD Simulation by the Gpic-MHD Code

    NASA Astrophysics Data System (ADS)

    Hiroshi, Naitou; Yusuke, Yamada; Kenji, Kajiwara; Wei-li, Lee; Shinji, Tokuda; Masatoshi, Yagi

    2011-10-01

    In order to implement large-scale and high-beta tokamak simulation, a new algorithm of the electromagnetic gyrokinetic PIC (particle-in-cell) code was proposed and installed on the Gpic-MHD code [Gyrokinetic PIC code for magnetohydrodynamic (MHD) simulation]. In the new algorithm, the vorticity equation and the generalized Ohm's law along the magnetic field are derived from the basic equations of the gyrokinetic Vlasov, Poisson, and Ampere system and are used to describe the spatio-temporal evolution of the field quantities of the electrostatic potential varphi and the longitudinal component of the vector potential Az. The basic algorithm is equivalent to solving the reduced-MHD-type equations with kinetic corrections, in which MHD physics related to Alfven modes are well described. The estimation of perturbed electron pressure from particle dynamics is dominant, while the effects of other moments are negligible. Another advantage of the algorithm is that the longitudinal induced electric field, ETz = -∂Az/∂t, is explicitly estimated by the generalized Ohm's law and used in the equations of motion. Furthermore, the particle velocities along the magnetic field are used (vz-formulation) instead of generalized momentums (pz-formulation), hence there is no problem of ‘cancellation', which would otherwise appear when Az is estimated from the Ampere's law in the pz-formulation. The successful simulation of the collisionless internal kink mode by the new Gpic-MHD with realistic values of the large-scale and high-beta tokamaks revealed the usefulness of the new algorithm.

  12. MHD simulations on an unstructured mesh

    SciTech Connect

    Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Longcope, D.W.; Sugiyama, L.E.

    1998-12-31

    Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.

  13. MHD Simulations of Thermal Plasma Jets in Coaxial Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vivek; Raja, Laxminarayan

    2015-09-01

    The development of a magneto-hydrodynamics (MHD) numerical tool to study high energy density thermal plasma in coaxial plasma accelerators is presented. The coaxial plasma accelerator is a device used simulate the conditions created at the confining wall of a thermonuclear fusion reactor during an edge localized mode (ELM) disruption event. This is achieved by creating magnetized thermal plasma in a coaxial volume which is then accelerated by the Lorentz force to form a high velocity plasma jet. The simulation tool developed solves the resistive MHD equation using a finite volume method (FVM) framework. The acceleration and subsequent demagnetization of the plasma as it travels down the length of the accelerator is simulated and shows good agreement with experiments. Additionally, a model to study the thermalization of the plasma at the inlet is being developed in order to give self-consistent initial conditions to the MHD solver.

  14. Hall MHD Simulations of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M. R.; Rubin, M.; Hansen, K. C.; Toth, G.; Gombosi, T. I.

    2012-12-01

    Comets have highly eccentric orbits and a wide range of gas production rates and thus they are ideal subjects to study the interaction between the solar wind and nonmagnetized bodies. Hansen et al. (2007, Space Sci. Rev. 128, 133) used a fluid-based MHD model and a semi-kinetic hybrid particle model to study the plasma environment of comet 67P/Churyumov-Gerasimenko (CG), the Rosetta mission target comet, at different heliocentric distances. They showed that for such a weak comet at a large heliocentric distance, the length scales of the cometosheath and the bow shock are comparable to or smaller than the ion gyroradius, which violates the underlying assumption for a valid fluid description of the plasma. As a result, the classical ideal MHD model is not able to always give physical results, while the hybrid model, which accounts for the kinetic effects of ions with both cometary and solar wind origin, is more reliable. However, hybrid models are computationally expensive and the results can be noisy. A compromise approach is Hall MHD [Toth et al., 2008], which includes the Hall term in the MHD equations and allows for the decoupling of the ion and electron fluids. We use a single ion species Hall MHD model to simulate the plasma environment of comet 67P/CG and compare the results with the two models mentioned above. We find that the Hall effect is capable of reproducing some features of the hybrid model and thus extends the applicability of MHD. In addition, this study helps to identify the conditions and regions in the cometary plasma where the Hall effect is not negligible. This work is supported by NSF Planetary Astronomy grant AST0707283 and JPL subcontract 1266313 under NASA grant NMO710889.

  15. The flare position obtained from MHD simulation and comparison with X-ray observations

    NASA Astrophysics Data System (ADS)

    Podgorny, Alexander; Podgorny, Igor

    It was for the first time shown that the position of the current sheet, obtained by numerical MHD simulation, coincides with the position of the thermal X-ray source. In our 3D MHD simulation we do not use any hypotheses about the flare mechanism. Several mechanisms of solar flare production are considered by different authors. Usually the initial conditions at numerical simulation are artificially set such a way that it is required for development of the proposed mechanism. In this approach, the unstable configuration of the magnetic field is set as the initial conditions, and the possibility of forming such an unstable system at the real evolution of the active region before the flare is not considered. Here the flare mechanism is obtained from the numerical MHD simulations in which all the conditions are taken from observations in the active region. It is shown that flare energy accumulation occurs in the current sheet magnetic field created by disturbances focusing in the vicinity of an X-type singular line. According to the developed solar flare electrodynamical model the thermal X-ray emission source appears in a current sheet, where plasma is heated due to magnetic field dissipation. Using 3D MHD numerical simulation the position of source of thermal X-ray emission are found for the flare occurred May 27, 2003 at 02:53. To find positions of sources of thermal X-ray radiation in the corona from MHD simulation results the graphical system is developed. The comparison with RHESSI X-ray observations show the coincidence of current sheet and observed the thermal X-ray emission source.

  16. Evidence of Active MHD Instability in EULAG-MHD Simulations of Solar Convection

    NASA Astrophysics Data System (ADS)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul

    2015-11-01

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos & Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.

  17. The Contribution of Jets to Coronal and Solar Wind Energetics: MHD Simulations

    NASA Astrophysics Data System (ADS)

    Lionello, Roberto; Torok, Tibor; Titov, Viacheslav; Linker, Jon A.; Mikic, Zoran; Leake, James E.; Linton, Mark

    2016-05-01

    Transient collimated plasma eruptions in the corona, commonly known as coronal jets, are among the most interesting manifestations of solar activity.We use the 3D MHD model with thermodynamics developed at PSI to investigate the origin, dynamics, and plasma properties of coronal jets.Our model is coupled with 3D MHD flux emergence simulations, i.e, we use boundary conditions provided by such simulations to drive a time-dependent coronal evolution. It includes parametric coronal heating, radiative losses, and thermal conduction in the energy equations.This enables us to simulate the energy transfer in coronal jets in a more realistic manner than done so far and to study the amount of energy and mass transported by these phenomena into the higher corona and inner heliosphere. We discuss our results and compare them with previous estimations obtained from observations.

  18. Coupling MHD Simulations of CMEs to SEP Models

    NASA Astrophysics Data System (ADS)

    Torok, T.; Gorby, M.; Linker, J.; Schwadron, N.

    2015-12-01

    Large Solar Energetic Particle events (SEPs) are a main space weather hazard and extremely dangerous to astronauts and electronic equipmentin space. They are typically associated with fast Coronal Mass Ejections (CMEs). Recent results indicate that SEPs can be generated already inthe early phase of CME expansion low in the corona, but the underlyingphysical mechanisms are not yet well understood. State-of-the-artmagnetohydrodynamic (MHD) simulations of CME initiation and evolution,combined with numerical models of particle acceleration and propagation,provide a powerful tool to investigate these mechanisms. In this talk, we present recent developments in the coupling of CORHEL/MAS thermodynamicMHD simulations of fast CMEs to the EPREM particle code, and we discuss the insights that can be gained from such a combined modeling approach.

  19. Quick Time-dependent Ionization Calculations Depending on MHD Simulations

    NASA Astrophysics Data System (ADS)

    Shen, Chengcai; Raymond, John C.; Murphy, Nicholas Arnold

    2014-06-01

    Time-dependent ionization is important in astrophysical environments where the thermodynamic time scale is shorter than ionization time scale. In this work, we report a FORTRAN program that performs fast non-equilibrium ionization calculations based on parallel computing. Using MHD simulation results, we trace the movements of plasma in a Lagrangian framework, and obtain evolutionary history of temperature and electron density. Then the time-dependent ionization equations are solved using the eigenvalue method. For any complex temperature and density histories, we introduce a advanced time-step strategy to improve the computational efficiency. Our tests show that this program has advantages of high numerical stability and high accuracy. In addition, it is also easy to integrate this solver with the other MHD routines.

  20. Spectral Methods in General Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Garrison, David

    2012-03-01

    In this talk I discuss the use of spectral methods in improving the accuracy of a General Relativistic Magnetohydrodynamic (GRMHD) computer code. I introduce SpecCosmo, a GRMHD code developed as a Cactus arrangement at UHCL, and show simulation results using both Fourier spectral methods and finite differencing. This work demonstrates the use of spectral methods with the FFTW 3.3 Fast Fourier Transform package integrated with the Cactus Framework to perform spectral differencing using MPI.

  1. Numerical simulation of the operation of a MHD generator in transient regimes in MHD power stations

    SciTech Connect

    Bityurin, V.A.; Ivanov, P.P.; Koryagina, G.M.; Lyubimov, G.A.; Medin, S.A.; Morozov, G.N.; Prokop, A.S.

    1982-09-01

    Transient regimes of a MHD generator operating in combination with equipment in a MHD power station are analzyed with the help of a numerical model. The MHD generator, whose flow-through part consists of a nozzle, a channel, and a diffuser, is regulated by changing the flow rate and the load. Three types of MHD channels are studied: Faraday supersonic and subsonic, and diagonal supersonic. Their characteristics are presented and the efficiency of the MHD power station under nonrated regimes is determined. It is established that a MHD generator and the MHD power station as a whole admit quite efficient and deep regulation of the change in the flow rate of the working body.

  2. 3D MHD Simulations of Spheromak Compression

    NASA Astrophysics Data System (ADS)

    Stuber, James E.; Woodruff, Simon; O'Bryan, John; Romero-Talamas, Carlos A.; Darpa Spheromak Team

    2015-11-01

    The adiabatic compression of compact tori could lead to a compact and hence low cost fusion energy system. The critical scientific issues in spheromak compression relate both to confinement properties and to the stability of the configuration undergoing compression. We present results from the NIMROD code modified with the addition of magnetic field coils that allow us to examine the role of rotation on the stability and confinement of the spheromak (extending prior work for the FRC). We present results from a scan in initial rotation, from 0 to 100km/s. We show that strong rotational shear (10km/s over 1cm) occurs. We compare the simulation results with analytic scaling relations for adiabatic compression. Work performed under DARPA grant N66001-14-1-4044.

  3. MHD Simulations of Plasma Dynamics with Non-Axisymmetric Boundaries

    NASA Astrophysics Data System (ADS)

    Hansen, Chris; Levesque, Jeffrey; Morgan, Kyle; Jarboe, Thomas

    2015-11-01

    The arbitrary geometry, 3D extended MHD code PSI-TET is applied to linear and non-linear simulations of MCF plasmas with non-axisymmetric boundaries. Progress and results from simulations on two experiments will be presented: 1) Detailed validation studies of the HIT-SI experiment with self-consistent modeling of plasma dynamics in the helicity injectors. Results will be compared to experimental data and NIMROD simulations that model the effect of the helicity injectors through boundary conditions on an axisymmetric domain. 2) Linear studies of HBT-EP with different wall configurations focusing on toroidal asymmetries in the adjustable conducting wall. HBT-EP studies the effect of active/passive stabilization with an adjustable ferritic wall. Results from linear verification and benchmark studies of ideal mode growth with and without toroidal asymmetries will be presented and compared to DCON predictions. Simulations of detailed experimental geometries are enabled by use of the PSI-TET code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-TET will also be presented including work to support resistive wall regions within extended MHD simulations. Work supported by DoE.

  4. Relativistic MHD simulations of extragalactic jets

    NASA Astrophysics Data System (ADS)

    Leismann, T.; Antón, L.; Aloy, M. A.; Müller, E.; Martí, J. M.; Miralles, J. A.; Ibáñez, J. M.

    2005-06-01

    We have performed a comprehensive parameter study of the morphology and dynamics of axisymmetric, magnetized, relativistic jets by means of numerical simulations. The simulations have been performed with an upgraded version of the GENESIS code which is based on a second-order accurate finite volume method involving an approximate Riemann solver suitable for relativistic ideal magnetohydrodynamic flows, and a method of lines. Starting from pure hydrodynamic models we consider the effect of a magnetic field of increasing strength (up to β ≡ |b|2/2p ≈ 3.3 times the equipartition value) and different topology (purely toroidal or poloidal). We computed several series of models investigating the dependence of the dynamics on the magnetic field in jets of different beam Lorentz factor and adiabatic index. We find that the inclusion of the magnetic field leads to diverse effects which contrary to Newtonian magnetohydrodynamics models do not always scale linearly with the (relative) strength of the magnetic field. The relativistic models show, however, some clear trends. Axisymmetric jets with toroidal magnetic fields produce a cavity which consists of two parts: an inner one surrounding the beam which is compressed by magnetic forces, and an adjacent outer part which is inflated due to the action of the magnetic field. The outer border of the outer part of the cavity is given by the bow-shock where its interaction with the external medium takes place. Toroidal magnetic fields well below equipartition (β = 0.05) combined with a value of the adiabatic index of 4/3 yield extremely smooth jet cavities and stable beams. Prominent nose cones form when jets are confined by toroidal fields and carry a high Poynting flux (σ≡ |b|2/ρ>0.01 and β≥ 1). In contrast, none of our models possessing a poloidal field develops such a nose cone. The size of the nose cone is correlated with the propagation speed of the Mach disc (the smaller the speed the larger is the size). If two

  5. Analysis and gyrokinetic simulation of MHD Alfven wave interactions

    NASA Astrophysics Data System (ADS)

    Nielson, Kevin Derek

    The study of low-frequency turbulence in magnetized plasmas is a difficult problem due to both the enormous range of scales involved and the variety of physics encompassed over this range. Much of the progress that has been made in turbulence theory is based upon a result from incompressible magnetohydrodynamics (MHD), in which energy is only transferred from large scales to small via the collision of Alfven waves propagating oppositely along the mean magnetic field. Improvements in laboratory devices and satellite measurements have demonstrated that, while theories based on this premise are useful over inertial ranges, describing turbulence at scales that approach particle gyroscales requires new theory. In this thesis, we examine the limits of incompressible MHD theory in describing collisions between pairs of Alfven waves. This interaction represents the fundamental unit of plasma turbulence. To study this interaction, we develop an analytic theory describing the nonlinear evolution of interacting Alfven waves and compare this theory to simulations performed using the gyrokinetic code AstroGK. Gyrokinetics captures a much richer set of physics than that described by incompressible MHD, and is well-suited to describing Alfvenic turbulence around the ion gyroscale. We demonstrate that AstroGK is well suited to the study of physical Alfven waves by reproducing laboratory Alfven dispersion data collected using the LAPD. Additionally, we have developed an initialization alogrithm for use with AstroGK that allows exact Alfven eigenmodes to be initialized with user specified amplitudes and phases. We demonstrate that our analytic theory based upon incompressible MHD gives excellent agreement with gyrokinetic simulations for weakly turbulent collisions in the limit that k⊥rho i << 1. In this limit, agreement is observed in the time evolution of nonlinear products, and in the strength of nonlinear interaction with respect to polarization and scale. We also examine the

  6. MHD simulations of large conducting bodies moving through a planetary magnetosphere

    NASA Astrophysics Data System (ADS)

    Kopp, A.; Schröer, A.

    1998-01-01

    The interaction between a large body with finite conductivity moving relatively to a planetary magnetic field and the magnetospheric plasma is studied by means of numerical simulations in the framework of resistive MHD. Applications discussed are spacecrafts (tethered satellites) in the Earth's ionosphere and the interaction of Jupiter with its satellite Io. The interaction excites MHD waves in which consequence an electrical current flow through the conductor is generated which extends into the surrounding plasma and propagates along the Alfvén characteristics. Thus, kinetic energy is converted into electrical energy which may be utilized for satellite projects or explain Jupiter's decametric radiation. The linear and nonlinear evolution of the plasma environment and the current system is investigated with special care taken of the principal phenomena occuring in the vicinity of the conducting body.

  7. MHD simulation studies of z-pinch shear flow stabilization

    NASA Astrophysics Data System (ADS)

    Paraschiv, I.; Bauer, B. S.; Sotnikov, V. I.; Makhin, V.; Siemon, R. E.

    2003-10-01

    The development of the m=0 instability in a z-pinch in the presence of sheared plasma flows is investigated with the aid of a two-dimensional magnetohydrodynamic (MHD) simulation code (MHRDR). The linear growth rates are compared to the results obtained by solving the ideal MHD linearized equations [1] and to the results obtained using a 3D hybrid simulation code [2]. The instability development is followed into the nonlinear regime where its growth and saturation are examined. [1] V.I. Sotnikov, I. Paraschiv, V. Makhin, B.S. Bauer, J.-N. Leboeuf, and J.M. Dawson, "Linear analysis of sheared flow stabilization of global magnetohydrodynamic instabilities based on the Hall fluid mode", Phys. Plasmas 9, 913 (2002). [2] V.I. Sotnikov, V. Makhin, B.S. Bauer, P. Hellinger, P. Travnicek, V. Fiala, J.-N. Leboeuf, "Hybrid Simulations of Current-Carrying Instabilities in Z-pinch Plasmas with Sheared Axial Flow", AIP Conference Proceedings, Volume 651, Dense Z-Pinches: 5th International Conference on Dense Z-Pinches, edited by J. Davis et al., page 396, June 2002.

  8. Relativistic MHD simulations of stellar core collapse and magnetars

    NASA Astrophysics Data System (ADS)

    Font, José A.; Cerdá-Durán, Pablo; Gabler, Michael; Müller, Ewald; Stergioulas, Nikolaos

    2011-02-01

    We present results from simulations of magneto-rotational stellar core collapse along with Alfvén oscillations in magnetars. These simulations are performed with the CoCoA/CoCoNuT code, which is able to handle ideal MHD flows in dynamical spacetimes in general relativity. Our core collapse simulations highlight the importance of genuine magnetic effects, like the magneto-rotational instability, for the dynamics of the flow. For the modelling of magnetars we use the anelastic approximation to general relativistic MHD, which allows for an effective suppression of fluid modes and an accurate description of Alfvén waves. We further compute Alfvén oscillation frequencies along individual magnetic field lines with a semi-analytic approach. Our work confirms previous results based on perturbative approaches regarding the existence of two families of quasi-periodic oscillations (QPOs), with harmonics at integer multiples of the fundamental frequency. Additional material is presented in the accompanying contribution by Gabler et al (2010b) in these proceedings.

  9. Magnetotail dynamics: MHD simulations of driven and spontaneous dynamic changes

    SciTech Connect

    Birn, J.; Schindler, K.; Hesse, M.

    1994-05-01

    The dynamic evolution of the magnetotail during growth phase and expansion phase of a substorm is studied through threedimensional time-dependent MHD simulations. To model growth phase effects, an external electric field with an equatorward inflow is applied at the boundaries over a finite time period. This leads to the formation of a thin current sheet with greatly enhanced current density in the near tail, embedded in the wider plasma/current sheet, which becomes diminished in strength. A faster, spontaneous current sheet formation occurs when entropy conservation is released in an isobaric model, while the ideal MHD constraint persists. This may be a suitable model for the late, explosive part of the growth phase. The transition to the substorm expansive phase is modeled by an increase in anomalous resistivity, using either uniform resistivity or a current density dependent resistivity which is turned on when the current density exceeds a certain threshold. In both cases the violation of ideal MHD leads to resistive instability and the formation of a near-Earth neutral line, fast flow, and plasmoid ejection, together with the dipolarization and current reduction in the region further earthward. The spontaneous increase in total region 1 type field-aligned currents associated with the disruptions of the thin current sheets is less significant than that found in earlier simulations of the disruption of a wider current sheet, whereas the driven increase in the region 1 type current is substantial. The results demonstrate that the same dynamic process which appears spontaneous in the behavior of some quantities might be interpreted as entirely driven from the observation of others.

  10. Global MHD Simulation of Mesoscale Structures at the Magnetospheric Boundary

    NASA Technical Reports Server (NTRS)

    Berchem, Jean

    1998-01-01

    The research carried out for this protocol was focused on the study of mesoscales structures at the magnetospheric boundary. We investigated three areas: (1) the structure of the magnetospheric boundary for steady solar wind conditions; (2) the dynamics of the dayside magnetospheric boundary and (3) the dynamics of the distant tail magnetospheric boundary. Our approach was to use high resolution three-dimensional global magnetohydrodynamic (MHD) simulations of the interaction of the solar wind with the Earth's magnetosphere. We first considered simple variations of the interplanetary conditions to obtain generic cases that helped us in establishing the basic cause and effect relationships for steady solar wind conditions. Subsequently, we used actual solar wind plasma and magnetic field parameters measured by an upstream spacecraft as input to the simulations and compared the simulation results with sequences of events observed by another or several other spacecraft located downstream the bow shock. In particular we compared results with observations made when spacecraft crossed the magnetospheric boundary.

  11. MHD Simulations of Core Collapse Supernovae with Cosmos++

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Salmonson, Jay

    2010-10-01

    We performed 2D, axisymmetric, MHD simulations with Cosmos++ in order to examine the growth of the magnetorotational instability (MRI) in core-collapse supernovae. We have initialized a non-rotating 15 Msolar progenitor, infused with differential rotation and poloidal magnetic fields. The collapse of the iron core is simulated with the Shen EOS, and the parametric Ye and entropy evolution. The wavelength of the unstable mode in the post-collapse environment is expected to be only ~200 m. In order to achieve the fine spatial resolution requirement, we employed remapping technique after the iron core has collapsed and bounced. The MRI unstable region appears near the equator and angular momentum and entropy are transported outward. Higher resolution remap run display more vigorous overturns and stronger transport of angular momentum and entropy. Our results are in agreement with the earlier work by Akiyama et al. [1] and Obergaulinger et al. [2].

  12. MHD simulations of ram pressure stripping of a disk galaxy

    NASA Astrophysics Data System (ADS)

    Ramos, Mariana; Gomez, Gilberto

    2015-08-01

    The removal of the ISM of disk galaxies through ram pressure stripping (RPS) has been extensively studied in numerous simulations. These models show that this process has a significant impact on galaxy evolution (the truncation of the ISM will lead to a decrease in the star formation and the galaxy will become redder).Nevertheless, the role of the magnetic fields (MFs) on the dynamics of the gas in this process has been hardly studied, although the influence of magnetic fields on the large scale disk structure is well established. The presence of MFs produce a less compressible gas, thus increasing the scale height of the gas in the galaxy, that is, gas can be found farther away from the galactic potential well, which may lead to an easier removal of gas. We test this idea by performing a 3D MHD simulation of a disk galaxy that experiences RPS under the wind-tunnel approximation.

  13. The ideal tearing mode: theory and resistive MHD simulations

    NASA Astrophysics Data System (ADS)

    Del Zanna, L.; Landi, S.; Papini, E.; Pucci, F.; Velli, M.

    2016-05-01

    Classical MHD reconnection theories, both the stationary Sweet-Parker model and the tearing instability, are known to provide rates which are too slow to explain the observations. However, a recent analysis has shown that there exists a critical threshold on current sheet's thickness, namely a/L ∼ S -1/3, beyond which the tearing modes evolve on fast macroscopic Alfvénic timescales, provided the Lunquist number S is high enough, as invariably found in solar and astrophysical plasmas. Therefore, the classical Sweet-Parker scenario, for which the diffusive region scales as a/L ∼ S -1/2 and thus can be up to ∼ 100 times thinner than the critical value, is likely to be never realized in nature, as the current sheet itself disrupts in the elongation process. We present here two-dimensional, compressible, resistive MHD simulations, with S ranging from 105 to 107, that fully confirm the linear analysis. Moreover, we show that a secondary plasmoid instability always occurs when the same critical scaling is reached on the local, smaller scale, leading to a cascading explosive process, reminiscent of the flaring activity.

  14. Final Report: "Large-Eddy Simulation of Anisotropic MHD Turbulence"

    SciTech Connect

    Zikanov, Oleg

    2008-06-23

    To acquire better understanding of turbulence in flows of liquid metals and other electrically conducting fluids in the presence of steady magnetic fields and to develop an accurate and physically adequate LES (large-eddy simulation) model for such flows. The scientific objectives formulated in the project proposal have been fully completed. Several new directions were initiated and advanced in the course of work. Particular achievements include a detailed study of transformation of turbulence caused by the imposed magnetic field, development of an LES model that accurately reproduces this transformation, and solution of several fundamental questions of the interaction between the magnetic field and fluid flows. Eight papers have been published in respected peer-reviewed journals, with two more papers currently undergoing review, and one in preparation for submission. A post-doctoral researcher and a graduate student have been trained in the areas of MHD, turbulence research, and computational methods. Close collaboration ties have been established with the MHD research centers in Germany and Belgium.

  15. Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere

    NASA Astrophysics Data System (ADS)

    Claudepierre, S. G.; Toffoletto, F. R.; Wiltberger, M.

    2016-01-01

    We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.

  16. MHD Simulation of the Inverse Pinch Plasma Discharge

    SciTech Connect

    Esaulov, A; Bauer, B; Lindemuth, I; Makhin, V; Presura, R; Ryutov, D

    2004-07-01

    A wall confined plasma in an inverse pinch configuration holds potential as a plasma target for Magnetized Target Fusion (MTF) as well as the simple geometry to study wall-confined plasma. An experiment is planned to study the inverse pinch configuration using the Nevada Terawatt Facility (NTF) at the University of Nevada, Reno (UNR). The dynamics of the discharge formation have been analyzed using analytic models and numerical methods. Strong heating occurs by thermalization of directed energy when an outward moving current sheet (the inverse pinch effect) collides with the outer wall of the experimental chamber. Two dimensional MHD simulations show Rayleigh-Taylor and Richtmyer-Meshkov -like modes of instability, as expected because of the shock acceleration during plasma formation phase. The instabilities are not disruptive, but give rise to a mild level of turbulence. The conclusion from this work is that an interesting experiment relevant to wall confinement for MTF could be done using existing equipment at UNR.

  17. Relative timing of substorm features in MHD simulations

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    1992-01-01

    An investigation of the temporal sequence of substorm phenomena based on three dimensional MHD (magnetohydrodynamic) simulations of magnetic reconnection and plasmoid formation is presented. The investigation utilizes a spatially localized resistivity model which leads to a significantly faster evolution than found in previous investigations. The analysis of the results concentrates on substorm features that have received considerable attention in the past. The formation of magnetic neutral lines, the occurrence of fast flows directed both earthward and tailward, and the magnetic field changes leading to the formation of the substorm current wedge, and to the depolarization of the magnetic field earthward of the reconnection region and its dependence on the spatial distribution of resistivity, are discussed. These phenomena are seen as an integral part of the nonlinear evolution of the three dimensional tearing instability.

  18. Comparison of inversion codes for polarized line formation in MHD simulations. I. Milne-Eddington codes

    NASA Astrophysics Data System (ADS)

    Borrero, J. M.; Lites, B. W.; Lagg, A.; Rezaei, R.; Rempel, M.

    2014-12-01

    Milne-Eddington (M-E) inversion codes for the radiative transfer equation are the most widely used tools to infer the magnetic field from observations of the polarization signals in photospheric and chromospheric spectral lines. Unfortunately, a comprehensive comparison between the different M-E codes available to the solar physics community is still missing, and so is a physical interpretation of their inferences. In this contribution we offer a comparison between three of those codes (VFISV, ASP/HAO, and HeLIx+). These codes are used to invert synthetic Stokes profiles that were previously obtained from realistic non-grey three-dimensional magnetohydrodynamical (3D MHD) simulations. The results of the inversion are compared with each other and with those from the MHD simulations. In the first case, the M-E codes retrieve values for the magnetic field strength, inclination and line-of-sight velocity that agree with each other within σB ≤ 35 (Gauss), σγ ≤ 1.2°, and σv ≤ 10 m s-1, respectively. Additionally, M-E inversion codes agree with the numerical simulations, when compared at a fixed optical depth, within σB ≤ 130 (Gauss), σγ ≤ 5°, and σv ≤ 320 m s-1. Finally, we show that employing generalized response functions to determine the height at which M-E codes measure physical parameters is more meaningful than comparing at a fixed geometrical height or optical depth. In this case the differences between M-E inferences and the 3D MHD simulations decrease to σB ≤ 90 (Gauss), σγ ≤ 3°, and σv ≤ 90 m s-1.

  19. Kelvin-Helmholtz Unstable Magnetotail Flow Channels: Deceleration and Radiation of MHD Waves

    NASA Astrophysics Data System (ADS)

    Turkakin, H.; Mann, I. R.; Rankin, R.

    2014-12-01

    The Kelvin-Helmholtz instability (KHI) of magnetotail flow channels associated with burstybulk flows (BBFs) is investigated. MHD oscillations of the channel in both kink and sausage modes areinvestigated for KHI, and both the primary and secondary KHIs are found that drive MHD waves. Theseinstabilities are likely to be important for flow channel braking where the KHI removes energy from the flow.At flow speeds above the peak growth rate, the MHD modes excited by KHI develop from surface modesinto propagating modes leading to the radiation of MHD waves from the flow channel. The coupling ofBBF-driven shear flow instabilities to MHD waves presented here represents a new paradigm to explain BBFexcitation of tail flapping. Our model can also explain, for the first time, the generation mechanism for theobservations of waves propagating toward both flanks and emitted from BBF channels in the magnetotail.

  20. Kelvin-Helmholtz unstable magnetotail flow channels: Deceleration and radiation of MHD waves

    NASA Astrophysics Data System (ADS)

    Turkakin, H.; Mann, I. R.; Rankin, R.

    2014-06-01

    The Kelvin-Helmholtz instability (KHI) of magnetotail flow channels associated with bursty bulk flows (BBFs) is investigated. MHD oscillations of the channel in both kink and sausage modes are investigated for KHI, and both the primary and secondary KHIs are found that drive MHD waves. These instabilities are likely to be important for flow channel braking where the KHI removes energy from the flow. At flow speeds above the peak growth rate, the MHD modes excited by KHI develop from surface modes into propagating modes leading to the radiation of MHD waves from the flow channel. The coupling of BBF-driven shear flow instabilities to MHD waves presented here represents a new paradigm to explain BBF excitation of tail flapping. Our model can also explain, for the first time, the generation mechanism for the observations of waves propagating toward both flanks and emitted from BBF channels in the magnetotail.

  1. MHD Simulations of the Initiation of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Fan, Yuhong; Chatterjee, Piyali

    Using three-dimensional MHD simulations, we model the quasi-static evolution and the onset of eruption of twisted magnetic flux ropes in the solar corona. We present simulations where the eruption is triggered by either the onset of the torus instability or the helical kink instability of the line-tied coronal flux rope. The simulations show that S (or inverse S) shaped current sheets develop along topological structures identified as Quasi Separatrix Layers (QSLs), during the quasi-static phase before the eruption. Reconnections in the current sheets effectively add twisted flux to the flux rope and thus allow it to rise quasi-statically to the critical height for the onset of the torus instability. We examine the thermal features produced by the current sheet formation and the associated reconnections and found that they can explain some of the observed features in coronal prominence cavities as well as in pre-eruption active regions. We also present simulations of the development of a homologous sequence of CMEs caused by the repeated formation and partial eruption of kink unstable flux ropes as a result of continued flux emergence. It is found that such homologous CMEs tend to be cannibalistic, leading to the formation of more energetic, highly twisted ejecta.

  2. MHD Simulations of the Plasma Flow in the Magnetic Nozzle

    NASA Technical Reports Server (NTRS)

    Smith, T. E. R.; Keidar, M.; Sankaran, K.; olzin, K. A.

    2013-01-01

    The magnetohydrodynamic (MHD) flow of plasma through a magnetic nozzle is simulated by solving the governing equations for the plasma flow in the presence of an static magnetic field representing the applied nozzle. This work will numerically investigate the flow and behavior of the plasma as the inlet plasma conditions and magnetic nozzle field strength are varied. The MHD simulations are useful for addressing issues such as plasma detachment and to can be used to gain insight into the physical processes present in plasma flows found in thrusters that use magnetic nozzles. In the model, the MHD equations for a plasma, with separate temperatures calculated for the electrons and ions, are integrated over a finite cell volume with flux through each face computed for each of the conserved variables (mass, momentum, magnetic flux, energy) [1]. Stokes theorem is used to convert the area integrals over the faces of each cell into line integrals around the boundaries of each face. The state of the plasma is described using models of the ionization level, ratio of specific heats, thermal conductivity, and plasma resistivity. Anisotropies in current conduction due to Hall effect are included, and the system is closed using a real-gas equation of state to describe the relationship between the plasma density, temperature, and pressure.A separate magnetostatic solver is used to calculate the applied magnetic field, which is assumed constant for these calculations. The total magnetic field is obtained through superposition of the solution for the applied magnetic field and the self-consistently computed induced magnetic fields that arise as the flowing plasma reacts to the presence of the applied field. A solution for the applied magnetic field is represented in Fig. 1 (from Ref. [2]), exhibiting the classic converging-diverging field pattern. Previous research was able to demonstrate effects such as back-emf at a super-Alfvenic flow, which significantly alters the shape of the

  3. High Resolution Simulations of Relativistic Hydrodynamic and MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Zrake, Jonathan; MacFadyen, A.

    2013-01-01

    We present a program of simulations designed to investigate the basic properties of relativistic hydrodynamic and magnetohydrodynamic (MHD) turbulence. We employ a well-tested 5th-order accurate numerical scheme at resolutions of up to 2048^3 zones for hydrodynamic turbulence, and a minimally diffusive 2nd-order scheme at resolutions of up to 1024^3 in the case of relativistic MHD. For the hydrodynamic case, we simulate a relativistically hot gas in a cubic periodic domain continuously driven at large scales with Lorentz factor of about 3. We find that relativistic turbulent velocity fluctuations with Γ β > 1 persist from the driving scale down to scales an order of magnitude smaller, demonstrating the existence of a sustained relativistic turbulent cascade. The power spectrum of the fluid 4-velocity is broadly Kolmogorov-like, roughly obeying a power law with 5/3 index between scales 1/10 and 1/100 of the domain. Departures from 5/3 scaling are larger for the power spectrum of 3-velocity. We find that throughout the inertial interval, 25% of power is in dilatational modes, which obey strict power law scaling between 1/2 and 1/100 of the domain with an index of 1.88. Our program also explores turbulent amplification of magnetic fields in the conditions of merging neutron stars, using a realistic equation of state for dense nuclear matter (ρ ˜ 10^13 g/cm^3). We find that very robustly, seed fields are amplified to magnetar strength (≥ 4 * 10^16 Gauss) within ˜1 micro-second for fluid volumes near the size of the NS crust thickness <10 meters. We present power spectra of the kinetic and magnetic energy taken long into the fully stationary evolution of the highest resolution models, finding the magnetic energy to be in super-equipartition (4 times larger) with the kinetic energy through the inertial range. We believe that current global simulations of merging NS binaries are insufficiently resolved for studying field amplification via turbulent processes

  4. Implicit Predictor-Corrector finite difference scheme for the ideal MHD simulations

    NASA Astrophysics Data System (ADS)

    Tsai, T.; Yu, H.; Lai, S.

    2012-12-01

    A innovative simulation code for ideal magnetohydrodynamics (MHD) is developed. We present a multiple-dimensional MHD code based on high-order implicit predictor-corrector finite difference scheme (high-order IPCFD scheme). High-order IPCFD scheme adopts high-order predictor-corrector scheme for the time integration and high-order central difference method as the spatial derivative solver. We use Elimination-of-the-Runoff-Errors (ERE) technology to avoid the numerical oscillations and numerical instability in the simulation results. In one-dimensional MHD problem, our simulation results show good agreement with the Brio & Wu MHD shock tube problem. The divergent B constraint remains fully satisfied, that is the divergent B equals to zero throughout the simulation. When solving the two-dimensional (2D) linear wave in MHD plasma, we clearly obtain the group-velocity Friedrichs diagrams of the MHD waves. Here we demonstrate 2D simulation results of rotor problem, Orszag-Tang vortex system, vortex type K-H instability, and kink type K-H instability by using our IPCFD MHD code and discuss the advantage of our simulation code.

  5. Preliminary analysis of the dynamic heliosphere by MHD simulations

    SciTech Connect

    Washimi, H.; Zank, G. P.; Tanaka, T.

    2006-09-26

    A preliminary analysis of the dynamic heliosphere to estimate the termination shock (TS) distance from the sun around the time when Voyager 1 passed the termination shock at December 16, 2004 is performed by using MHD simulations. For input to this simulation, we use the Voyager 2 solar-wind data. We first find a stationary solution of the 3-D outer heliosphere by assigning a set of LISM parameters as our outer boundary conditions and then the dynamical analysis is performed. The model TS crossing is within 6 months of the observed date. The TS is pushed outward every time a high ram-pressure solar wind pulse arrives. After the end of the high ram-pressure wind, the TS shock shrinks inward. When the last Halloween event passed through the TS at DOY 250, 2004, the TS began to shrink inward very quickly and the TS crossed V1. The highest inward speed of the TS is over 400 km/s. The high ram-pressure solar wind transmitted through the TS becomes a high thermal-pressure plasma in the heliosheath, acting to push the TS inward. This suggests that the position of the TS is determined not only by the steady-state pressure balance condition between the solar wind ram-pressure and the LISM pressure, but by the dynamical ram pressure too. The period when the high ram-pressure solar wind arrives at the TS shock seems to correspond to the period of the TS particle event (Stone et al, 2005, Decker et al., 2005). The TS crossing date will be revised in future simulations using a more appropriate set of parameters for the LISM. This will enable us to undertake a detailed comparison of the simulation results with the TS particle events.

  6. 3-D Relativistic MHD Simulations of Extragalactic Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Koide, S.; Sakai, J.-I.; Frank, J.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1997-12-01

    We present the numerical simulations of relativistic jets propagating initially oblique to the field lines of a magnetized ambient medium. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (a) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (b) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head, but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies with a 2-D slab model. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. Applied to relativistic extragalactic jets from blazars, the new results are encouraging since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized---but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.

  7. Observations and MHD Simulations for a Shocked Magnetotail

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Zhou, X. Z.; Angelopoulos, V.; Raeder, J.; Oliveira, D.; Shi, Q.

    2014-12-01

    Recent studies disclosed that interplanetary shocks not only raise global auroral activity, but also cause significant tail disturbances, ranging from ULF wave excitation to abrupt cross-tail current sheet thinning and current density increase, generation of burst bulk flows and dipolarization fronts, and to magnetic reconnection enhancement. In addition, shocks can also cause significant deformation of the magnetotail at ~60 Re and beyond. In this paper we study a shock event using ARTEMIS in situ observations and OpenGGCM MHD simulations. The two ARTEMIS spacecraft were located near the tail current sheet and lobe center at (-60, 1, -5Re_GSM) when the shock arrived and recorded an abrupt tail compression leading to significant enhancements in the plasma density, temperature, magnetic field strength, and cross-tail current density, as well as to tailward flows. However, ~10 min later, the spacecraft entered the sheath solar wind unexpectedly. Two hypotheses are considered: either the tail was cut off by the high solar wind ram pressure (~25-30 nPa), or the compressed tail was pushed aside by the appreciable Vy solar wind flow component imposed by the shock. OpenGGMC simulation results confirmed the second hypothesis and disclosed that for this event the magnetic pressure played a dominant role at X=-60 Re for the compression. In addition to the shock normal direction and shock compression, the anisotropic (transverse) magnetic pressure also contributed to the significant reduction of the lobe Y dimension. Therefore, during this 10 min interval, the lobe center moved dawnward by ~12 Re and the tail width in Y was reduced from 40 to 26 Re, which eventually exposed ARTEMIS to the sheath solar wind. Comparisons of plasma and magnetic parameters between ARTEMIS in situ observations and simulations showed a satisfied consistence.

  8. MHD simulation of RF current drive in MST

    SciTech Connect

    Hendries, E. R.; Anderson, J. K.; Forest, C. B.; Reusch, J. A.; Seltzman, A. H.; Sovinec, C. R.; Diem, S.; Harvey, R. W.

    2014-02-12

    Auxiliary heating and current drive using RF waves such as the electron Bernstein wave (EBW) promises to advance the performance of the reversed field pinch (RFP). In previous computational work [1], a hypothetical edge-localized current drive is shown to suppress the tearing activity which governs the macroscopic transport properties of the RFP. The ideal conditions for tearing stabilization include a reduced toroidal induction, and precise width and radial position of the Gaussian-shaped external current drive. In support of the EBW experiment on the Madison Symmetric Torus, an integrated modeling scheme now incorporates ray tracing and Fokker-Plank predictions of auxiliary current into single fluid MHD. Simulations at low Lundquist number (S ∼ 10{sup 4}) generally agree with the previous work; significantly more burdensome simulations at MST-like Lundquist number (S ∼ 3×10{sup 6}) show unexpected results. The effect on nonlinearly saturated current profile by a particular RF-driven external force decreases in magnitude and widens considerably as the Lundquist number increases toward experimental values. Simulations reproduce the periodic current profile relaxation events observed in experiment (sawteeth) in the absence of current profile control. Reduction of the tearing mode amplitudes is still observable; however, reduction is limited to periods between the large bursts of magnetic activity at each sawtooth. The sawtoothing pattern persists with up to 10 MW of externally applied RF power. Periods with prolonged low tearing amplitude are predicted with a combination of external current drive and a reduced toroidal loop voltage, consistent with previous conclusions. Finally, the resistivity profile is observed to have a strong effect on the optimal externally driven current profile for mode stabilization.

  9. On the propagation of blobs in the magnetotail: MHD simulations

    NASA Astrophysics Data System (ADS)

    Birn, J.; Nakamura, R.; Hesse, M.

    2013-09-01

    Using three-dimensional magnetohydrodynamic (MHD) simulations of the magnetotail, we investigate the fate of entropy-enhanced localized magnetic flux tubes ("blobs"). Such flux tubes may be the result of a slippage process that also generates entropy-depleted flux tubes ("bubbles") or of a rapid localized energy increase, for instance, from wave absorption. We confirm the expectation that the entropy enhancement leads to a tailward motion and that the speed and distance traveled into the tail increase with the entropy enhancement, even though the blobs tend to break up into pieces. The vorticity on the outside of the blobs twists the magnetic field and generates field-aligned currents predominantly of region-2 sense (earthward on the dusk side and tailward on the dawn side), which might provide a possibility for remote identification from the ground. The breakup, however, leads to more turbulent flow patterns, associated with opposite vorticity and the generation of region-1 sense field-aligned currents of lower intensity but approximately equal integrated magnitude.

  10. 3D Radiative MHD Modeling of Quiet-Sun Magnetic Activity

    NASA Astrophysics Data System (ADS)

    Kitiashvili, Irina

    2016-05-01

    Quiet-Sun regions that cover most of the solar surface represent a background state that plays an extremely important role in the dynamics and energetics of the solar atmosphere. A clear understanding of these regions is required for accurate interpretation of solar activity events such as emergence of magnetic flux, sunspot formation, and eruptive dynamics. Modern high-resolution observations from ground and space telescopes have revealed a complicated dynamics of turbulent magnetoconvection and its effects in the solar atmosphere and corona, showing intense interactions across different temporal and spatial scales. Interpretation of the observed complex phenomena and understanding of their origins is impossible without advanced numerical models. I will present new results of realistic-type 3D radiative MHD simulations of the upper turbulent convective layer and atmosphere of the Sun. The results reveal the mechanism of formation and properties of the Sun’s “magnetic carpet” controlled by subsurface small-scale dynamo processes, and demonstrate interaction between the subsurface layers and the atmosphere via spontaneous small-scale eruptions and wave phenomena. To link the simulations to solar data the spectro-polarimetric radiative transfer code SPINOR is used to convert the simulated data into the Stokes profiles of various spectral lines, including the SDO and Hinode observables. The results provide a detailed physical understanding of the quiet-Sun dynamics, and show potential for future observations with the DKIST and other large solar telescopes.

  11. Particle Acceleration in the Low Corona Over Broad Longitudes: Coupling MHD and 3D Particle Simulations

    NASA Astrophysics Data System (ADS)

    Gorby, M.; Schwadron, N.; Torok, T.; Downs, C.; Lionello, R.; Linker, J.; Titov, V. S.; Mikic, Z.; Riley, P.; Desai, M. I.; Dayeh, M. A.

    2014-12-01

    Recent work on the coupling between the Energetic Particle Radiation Environment Module (EPREM, a 3D energetic particle model) and Magnetohydrodynamics Around a Sphere (MAS, an MHD code developed at Predictive Science, Inc.) has demonstrated the efficacy of compression regions around fast coronal mass ejections (CMEs) for particle acceleration low in the corona (˜ 3 - 6 solar radii). These couplings show rapid particle acceleration over a broad longitudinal extent (˜ 80 degrees) resulting from the pile-up of magnetic flux in the compression regions and their subsequent expansion. The challenge for forming large SEP events in such compression-acceleration scenarios is to have enhanced scattering within the acceleration region while also allowing for efficient escape of accelerated particles downstream (away from the Sun) from the compression region. We present here the most recent simulation results including energetic particle and CME plasma profiles, the subsequent flux and dosages at 1AU, and an analysis of the compressional regions as efficient accelerators.

  12. Relativistic MHD Simulations of Poynting Flux-driven Jets

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoyue; Li, Hui; Li, Shengtai

    2014-01-01

    Relativistic, magnetized jets are observed to propagate to very large distances in many active galactic nuclei (AGNs). We use three-dimensional relativistic MHD simulations to study the propagation of Poynting flux-driven jets in AGNs. These jets are already assumed to be being launched from the vicinity (~103 gravitational radii) of supermassive black holes. Jet injections are characterized by a model described in Li et al., and we follow the propagation of these jets to ~parsec scales. We find that these current-carrying jets are always collimated and mildly relativistic. When α, the ratio of toroidal-to-poloidal magnetic flux injection, is large the jet is subject to nonaxisymmetric current-driven instabilities (CDI) which lead to substantial dissipation and reduced jet speed. However, even with the presence of instabilities, the jet is not disrupted and will continue to propagate to large distances. We suggest that the relatively weak impact by the instability is due to the nature of the instability being convective and the fact that the jet magnetic fields are rapidly evolving on Alfvénic time scales. We present the detailed jet properties and show that far from the jet launching region, a substantial amount of magnetic energy has been transformed into kinetic energy and thermal energy, producing a jet magnetization number σ < 1. In addition, we have also studied the effects of a gas pressure supported "disk" surrounding the injection region, and qualitatively similar global jet behaviors were observed. We stress that jet collimation, CDIs, and the subsequent energy transitions are intrinsic features of current-carrying jets.

  13. Energy storage and dissipation in the magnetotail during substorms 2. MHD simulations

    NASA Astrophysics Data System (ADS)

    Steinolfson, R. S.; Winglee, R. M.

    1993-05-01

    The effects of temporal and spatial variations in the plasma resistivity on the evolution of the magnetosphere during substorms are examined with numerical solutions of the two-dimensional magnetohydrodynamic (MHD) equations. The global MHD simulations self-consistently consider the interaction of the solar wind with the dayside magnetosphere as well as the evolution of the tail region. These solutions are used to study how various solar wind states generate conditions in the tail, such as pressure gradients and cross-tail currents, that have the potential of leading to a substorm. Although the MHD formalism does provide information on the large-scale evolution, the essential mechanism for substorm development may involve microscopic or particle processes not present in an MHD approach. As a result, this MHD study is carried out in association with particle simulations (Winglee and Steinolfson, this issue). Since one connection between the MHD and particle approaches is through the resistivity, the effects of various resistivity distributions on the global MHD configuration are examined. The resistivity distributions considered here are (1) a temporally constant and spatially uniform resistivity, (2) a resistivity proportional to the square of the local current density, and (3) a resistivity proportional to the square of the local magnetic field strength. The latter distribution is suggested by the above particle simulations and represents effects produced by the increased magnetization of particles and the differential motion between electrons and ions. For all three cases a plasmoid is formed and ejected tailward. However, when the resistivity depends on the field strength, considerably more energy is stored in the tail prior to plasmoid formation, and plasmoid formation is delayed relative to the results for the other two resistivity distributions. Furthermore, when the plasmoid is eventually ejected, it moves down the tail with a higher speed. The MHD results

  14. Comparison of Iridium Determined Field-Aligned Current Patterns with MHD Simulations

    NASA Astrophysics Data System (ADS)

    Korth, H.; Anderson, B. J.; Goodrich, C. C.; Waters, C. L.; Merkine, V. G.

    2002-05-01

    The engineering magnetometers aboard the 70+ Iridium satellites arranged in six equally spaced polar orbital planes provide a unique database for determination of global field-aligned currents [Waters et al., 2001]. In this study we compare these field-aligned currents with MHD simulation results to quantitatively evaluate the MHD results in a global way. We report analysis for three events of steady interplanetary magnetic field (IMF) orientation, stable to within 25o of the average direction. The start times of these intervals are August~11, 1999 (22:36), November~23, 1999 (07:15), and August~10, 2000 (22:11), and the events extend between eight and ten hours in duration. The IMF clock angles for the events are -124o, 125o, and 160o, respectively, and the IMF cone angles for all three intervals are within 25o of 90o. The solar wind flow speeds for the events averages 430, 453, and 386~km/s, and the mean solar wind densities are 3.7, 3.6, and 12.0 {cm}-3, respectively. The field aligned current densities in the MHD simulations are evaluated at the inner simulation boundary (2~Re) and mapped on dipole field lines to ionospheric altitudes. Preliminary results show a reasonably good agreement in the morphology of the Region-1 currents, although the field-aligned currents of the MHD simulations are displaced somewhat poleward with respect to the Iridium patterns. DMSP particle source identifications are used to compare source regions of Region 1 in the observed FAC maps with those in the MHD simulations. The Region-2 currents show expectedly larger differences since ring current drift physics necessary to drive these currents in the magnetosphere is not implemented in the MHD evaluations. The ratio between Region~1 and Region~2 is used to measure the relative deficit of Region-2 currents in the MHD simulation results.

  15. MHD-EPIC: Extended Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Ganymede's Magnetosphere.

    NASA Astrophysics Data System (ADS)

    Toth, G.; Daldorff, L. K. S.; Jia, X.; Gombosi, T. I.; Lapenta, G.

    2014-12-01

    We have recently developed a new modeling capability to embed theimplicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-USmagnetohydrodynamic model. The PIC domain can cover the regions wherekinetic effects are most important, such as reconnection sites. TheBATS-R-US code, on the other hand, can efficiently handle the rest ofthe computational domain where the MHD or Hall MHD description issufficient. As one of the very first applications of the MHD-EPICalgorithm (Daldorff et al. 2014, JCP, 268, 236) we simulate theinteraction between Jupiter's magnetospheric plasma with Ganymede'smagnetosphere, where the separation of kinetic and global scalesappears less severe than for the Earth's magnetosphere. Because theexternal Jovian magnetic field remains in an anti-parallel orientationwith respect to Ganymede's intrinsic magnetic field, magneticreconnection is believed to be the major process that couples the twomagnetospheres. As the PIC model is able to describe self-consistentlythe electron behavior, our coupled MHD-EPIC model is well suited forinvestigating the nature of magnetic reconnection in thisreconnection-driven mini-magnetosphere. We will compare the MHD-EPICsimulations with pure Hall MHD simulations and compare both modelresults with Galileo plasma and magnetic field measurements to assess therelative importance of ion and electron kinetics in controlling theconfiguration and dynamics of Ganymede's magnetosphere.

  16. HYBRID AND HALL-MHD SIMULATIONS OF COLLISIONLESS RECONNECTION: EFFECTS OF PLASMA PRESSURE TENSOR

    SciTech Connect

    L. YIN; D. WINSKE; ET AL

    2001-05-01

    In this study we performed two-dimensional hybrid (particle ions, massless fluid electrons) and Hall-MHD simulations of collisionless reconnection in a thin current sheet. Both calculations include the full electron pressure tensor (instead of a localized resistivity) in the generalized Ohm's law to initiate reconnection, and in both an initial perturbation to the Harris equilibrium is applied. First, electron dynamics from the two calculations are compared, and we find overall agreement between the two calculations in both the reconnection rate and the global configuration. To address the issue of how kinetic treatment for the ions affects the reconnection dynamics, we compared the fluid-ion dynamics from the Hall-MHD calculation to the particle-ion dynamics obtained from the hybrid simulation. The comparison demonstrates that off-diagonal elements of the ion pressure tensor are important in correctly modeling the ion out-of-plane momentum transport from the X point. It is that these effects can be modeled efficiently using a particle Hall-MHD simulation method in which particle ions used in a predictor/corrector to implement the ion gyro-radius corrections. We also investigate the micro- macro-scale coupling in the magnetotail dynamics by using a new integrated approach in which particle Hall-MHD calculations are embedded inside a MHD simulation. Initial results of the simulation concerning current sheet thinning and reconnection dynamics are discussed.

  17. Viscous dissipation and thermal radiation effects on the magnetohydrodynamic (MHD) flow and heat transfer over a stretching slender cylinder

    NASA Astrophysics Data System (ADS)

    Kalteh, M.; Ghorbani, S.; Khademinejad, T.

    2016-05-01

    An axisymmetric magnetohydrodynamic (MHD) boundary layer flow and heat transfer of a fluid over a slender cylinder are investigated numerically. The effects of viscous dissipation, thermal radiation, and surface transverse curvature are taken into account in the simulations. For this purpose, the governing partial differential equations are transformed to ordinary differential equations by using appropriate similarity transformations. The resultant ordinary differential equations along with appropriate boundary conditions are solved by the fourth-order Runge-Kutta method combined with the shooting technique. The effects of various parameters on the velocity and temperature profiles, local skin friction coefficient, and Nusselt number are analyzed.

  18. Daily Coronal MHD Simulation Using HMI Near-Real-Time Magnetograms

    NASA Astrophysics Data System (ADS)

    Hayashi, Keiji; HMI Team

    2012-05-01

    SDO/HMI is making full-disk line-of-sight magnetogram measurements with a cadence of 45 seconds. The HMI analysis pipeline regularly generates two types of synoptic map of the solar surface magnetic field. Definitive calibrated data maps are created every Carrington Rotation, about every 27 days and a preliminary synoptic map is updated on a near-real-time basis. As an application of the near-real-time data, we have been running a daily MHD simulation of the global solar corona using the photospheric map as the boundary condition ( http://hmi.stanford.edu/MHD ). The daily MHD model assumes a polytropic gas with the specific heat ratio of 1.05, and the simulation is conducted in a 4-pi spherical grid system with latitudinal and longitudinal grid sizes of pi/64. The output available at hmi.stanford.edu/MHD includes the three-dimensional volume data, the shape of the open-field regions corresponding to the coronal holes, and the LoS-integration of the coronal density mimicking coronagraph observations. For validation, we compare the results of the low-resolution daily MHD simulation and the high-resolution PFSS calculation with SDO/AIA and SOHO/C2 and C3 image data. In the future the simulation region will be extended to 1 AU, and models of coronal heating and acceleration will be applied to allow a timely prediction of solar wind at the Earth for space weather purposes.

  19. Accuracy of MHD simulations: Effects of simulation initialization in GUMICS-4

    NASA Astrophysics Data System (ADS)

    Lakka, Antti; Pulkkinen, Tuija; Dimmock, Andrew; Osmane, Adnane; Palmroth, Minna; Honkonen, Ilja

    2016-04-01

    We conducted a study aimed at revealing how different global magnetohydrodynamic (MHD) simulation initialization methods affect the dynamics in different parts of the Earth's magnetosphere-ionosphere system. While such magnetosphere-ionosphere coupling codes have been used for more than two decades, their testing still requires significant work to identify the optimal numerical representation of the physical processes. We used the Grand Unified Magnetosphere-Ionosphere Coupling Simulation (GUMICS-4), the only European global MHD simulation being developed by the Finnish Meteorological Institute. GUMICS-4 was put to a test that included two stages: 1) a 10 day Omni data interval was simulated and the results were validated by comparing both the bow shock and the magnetopause spatial positions predicted by the simulation to actual measurements and 2) the validated 10 day simulation run was used as a reference in a comparison of five 3 + 12 hour (3 hour synthetic initialisation + 12 hour actual simulation) simulation runs. The 12 hour input was not only identical in each simulation case but it also represented a subset of the 10 day input thus enabling quantifying the effects of different synthetic initialisations on the magnetosphere-ionosphere system. The used synthetic initialisation data sets were created using stepwise, linear and sinusoidal functions. Switching the used input from the synthetic to real Omni data was immediate. The results show that the magnetosphere forms in each case within an hour after the switch to real data. However, local dissimilarities are found in the magnetospheric dynamics after formation depending on the used initialisation method. This is evident especially in the inner parts of the lobe.

  20. Multidimensional MHD Simulations Of DSA Using AstroBEAR

    NASA Astrophysics Data System (ADS)

    Edmon, Paul; Jones, T.; Mitran, S.; Cunningham, A.; Frank, A.

    2009-05-01

    We present a modification to the AstroBEAR (Astronomical Boundary Embedded Adaptive Refinement) MHD code (Cunningham et. al. 2007) that allows it to treat time dependent Diffusive Shock Acceleration (DSA) of cosmic rays in multiple dimensions including dynamical feedback from the cosmic rays. Utilizing the power of Adaptive Mesh Refinement (AMR) in tandem with efficient methods for cosmic ray diffusion and advection, this allows us for the first time to explore the evolution of modified MHD shocks in more than one spatial dimension. Among the early applications of the code will be investigations of colliding and clumpy stellar winds, type II supernova remnants and cosmic ray driven instabilities. This work is supported at the University of Minnesota by NSF, NASA and the Minnesota Supercomputing Institute.

  1. MHD simulations for investigating interaction processes between a CME and ambient solar wind

    NASA Astrophysics Data System (ADS)

    An, Junmo; Magara, Tetsuya

    2016-05-01

    The interaction between coronal mass ejections (CMEs) and ambient solar winds is one of the important issues of space weather because it affects the trajectory of a flying CME, which determines whether the CME hits the Earth and produces geomagnetic disturbances or not. In this study, two-step 3D magnetohydrodynamic (MHD) simulations including a spheromak-type CME and an ambient solar wind are performed to investigate their interaction processes such as deflection and rotation of a CME. We perform the 1st-step MHD simulation using averaged surface magnetic field data to construct a steady state with an ambient solar wind. A spheromak-type CME is then injected through the solar surface, and subsequent evolution is reproduced by performing the 2nd-step MHD simulation. We discuss key parameters that characterize interaction processes between a CME and ambient solar wind.

  2. ON THE ORIGIN OF THE TYPE II SPICULES: DYNAMIC THREE-DIMENSIONAL MHD SIMULATIONS

    SciTech Connect

    MartInez-Sykora, Juan; Hansteen, Viggo; Moreno-Insertis, Fernando E-mail: viggo.hansteen@astro.uio.no

    2011-07-20

    Recent high temporal and spatial resolution observations of the chromosphere have forced the definition of a new type of spicule, 'type II's', that are characterized by rising rapidly, having short lives, and by fading away at the end of their lifetimes. Here, we report on features found in realistic three-dimensional simulations of the outer solar atmosphere that resemble the observed type II spicules. These features evolve naturally from the simulations as a consequence of the magnetohydrodynamical evolution of the model atmosphere. The simulations span from the upper layer of the convection zone to the lower corona and include the emergence of a horizontal magnetic flux. The state-of-art Oslo Staggered Code is used to solve the full MHD equations with non-gray and non-LTE radiative transfer and thermal conduction along the magnetic field lines. We describe in detail the physics involved in a process which we consider a possible candidate for the driver mechanism that produces type II spicules. The modeled spicule is composed of material rapidly ejected from the chromosphere that rises into the corona while being heated. Its source lies in a region with large field gradients and intense electric currents, which lead to a strong Lorentz force that squeezes the chromospheric material, resulting in a vertical pressure gradient that propels the spicule along the magnetic field, as well as Joule heating, which heats the jet material, forcing it to fade.

  3. Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, Michael

    2014-01-01

    Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.

  4. The effect of line-tying on the radiative MHD stability of coronal plasmas with radial pressure profile

    NASA Technical Reports Server (NTRS)

    An, C.-H.

    1984-01-01

    The role of photospheric line-tying, i.e., solar coronal loop structures, was investigated in terms of the effect on radiative modes and the influence that different radial pressure profiles exert on the effects of line-tying on radiative MHD stability. Energy is assumed dissipated by heat conduction and radiation and zero- and first-order solutions are obtained for the radiative time scales. Line-tying is a magnetic tension in the zero-order MHD mode and produces stability. Heat conduction occurs along bent field lines in first-order MHD modes when plasmas cross the field lines. Irradiated cool-core loops can experience MHD instabilities in the cylinder center, while line-tying can stabilize the plasma in the surrounding hot medium. Line-tying also adds stability to magnetosonic and condensation modes.

  5. MHD simulations of protostellar jets: formation and stability of shock diamonds

    NASA Astrophysics Data System (ADS)

    Ustamujic, Sabina

    2016-07-01

    The early stages of a star birth are characterised by a variety of mass ejection phenomena, including outflows and collimated jets, that are strongly related with the accretion process developed in the context of the star-disc interaction. After been ejected, jets move through the ambient medium, interacting and producing shocks and complex structures that are observed at different wavelength bands. In particular, X-ray observations show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary and have been interpreted as shock diamonds. We aim at investigating the physical properties of the shocked plasma and the role of the magnetic field on the collimation performing 2.5D MHD simulations, including the effects of the thermal conduction and the radiative losses. We modelled the propagation of a jet ramming with a supersonic speed into an initially isothermal and homogeneous magnetized medium. We studied the physics that guides the formation of a stationary shock (for instance a shock diamond) and compared the results with observations, via the emission measure distribution vs. temperature and the luminosity synthesised from the simulations.

  6. Phase transition-like behavior of magnetospheric substorms: Global MHD simulation results

    NASA Astrophysics Data System (ADS)

    Shao, X.; Sitnov, M. I.; Sharma, S. A.; Papadopoulos, K.; Goodrich, C. C.; Guzdar, P. N.; Milikh, G. M.; Wiltberger, M. J.; Lyon, J. G.

    2003-01-01

    Using nonlinear dynamical techniques, we statistically investigate whether the simulated substorms from global magnetohydrodynamic (MHD) models have a combination of global and multiscale features, revealed in substorm dynamics by [2000] and featured the phase transition-like behavior. We simulate seven intervals of total duration of 280 hours from the data set used in the above works [, 1985]. We analyze the input-output (vBs-pseudo AL index) system obtained from the global MHD model and compare the results to those inferred from the original set (vBs-observed AL index). The analysis of the coupled vBs-pseudo AL index system shows the first-order phase transition map, which is consistent with the map obtained for the vBs-observed AL index system. Although the comparison between observations and global MHD simulations for individual events may vary, the overall global transition pattern during the substorm cycle revealed by singular spectrum analysis (SSA) is statistically consistent between simulations and observations. The coupled vBs-pseudo AL index system also shows multiscale behavior (scale-invariant power law dependence) in SSA power spectrum. Besides, we find the critical exponent of the nonequilibrium transitions in the magnetosphere, which reflects the multiscale aspect of the substorm activity, different from power law frequency of autonomous systems. The exponent relates input and output parameters of the magnetosphere. We also discuss the limitations of the global MHD model in reproducing the multiscale behavior when compared to the real system.

  7. On Computations for Thermal Radiation in MHD Channel Flow with Heat and Mass Transfer

    PubMed Central

    Hayat, T.; Awais, M.; Alsaedi, A.; Safdar, Ambreen

    2014-01-01

    This study examines the simultaneous effects of heat and mass transfer on the three-dimensional boundary layer flow of viscous fluid between two infinite parallel plates. Magnetohydrodynamic (MHD) and thermal radiation effects are present. The governing problems are first modeled and then solved by homotopy analysis method (HAM). Influence of several embedded parameters on the velocity, concentration and temperature fields are described. PMID:24497968

  8. Numerical Simulation of MHD Effect in Liquid Metal Blankets with Flow Channel Insert

    NASA Astrophysics Data System (ADS)

    Mao, J.; Pan, H. C.

    2011-09-01

    The magnetohydrodynamic effect in liquid metal blankets with flow channel insert and pressure equalization slot for fusion liquid metal blanket is studied by numerical simulation based on two dimensional fully developed flow model. The code is verified by comparing analytical solution and numerical solution of Hunt Case II. The velocity field and MHD pressure drop varying with electric conductivity of the FCI is analyzed. The result shows that the average velocity in central area of the cross section decreases with the increase of the electric conductivity of FCI. While the average velocity in gap zone is reverse. Comparing with MHD duct flow without FCI, MHD pressure drop is reduced significantly when the FCI material is electrically insulating.

  9. Shear-induced instability and arch filament eruption - A magnetohydrodynamic (MHD) numerical simulation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Song, M. T.; Martens, P. C. H.; Dryer, M.

    1991-01-01

    A situation wherein a bipolar magnetic field embedded in a stratified solar atmosphere undergoes symmetrical shear motion at the footpoints is investigated via a 2D (nonplanar) MHD simulation. It was found that the vertical plasma flow velocities grow exponentially, leading to a new type of global MHD instability. The growth rate increases almost linearly until it reaches the same order of magnitude as the Alfven speed. Then a nonlinear MHD instability occurs beyond this point. It was found that the central loops are pinched by opposing Lorentz forces, and the outer closed loops stretch upward with the vertically-rising mass flow. The nonlinear dynamical shearing instability is illustrated by a numerical example that is given for three different values of the plasma beta that span several orders of magnitude.

  10. Phase Transition-like Behavior of Magnetospheric Substorms: Global MHD Simulation Results

    NASA Astrophysics Data System (ADS)

    Shao, X.; Sitnov, M.; Sharma, A. S.; Papadopoulos, K.; Guzdar, P. N.; Goodrich, C. C.; Milikh, G. M.; Wiltberger, M. J.; Lyon, J. G.

    2001-12-01

    Because of their relevance to massive global energy loading and unloading, lots of observations and studies have been made for magnetic substorm events. Using nonlinear dynamical techniques, we investigate whether the simulated substorms from global MHD models have the non-equilibrium phase transition-like features revealed by \\markcite{Sitnov et al. [2000]}. We simulated 6 intervals of total duration of 240 hours from the same data set used in Sitnov et al. [2000]. We analyzed the input-output (vBs--pseudo-AL index) system obtained from the global MHD model and compared the results to those in \\markcite{Sitnov et al. [2000, 2001]}. The analysis of the coupled vBs--pseudo-AL index system shows the first-order phase transition map, which is consistent with the map obtained for the vBs--observed-AL index system from Sitnov et al. [2000]. The explanation lies in the cusp catastrophe model proposed by Lewis [1991]. Although, the comparison between observation and individual global MHD simulations may vary, the overall global transition pattern during the substorm cycle revealed by Singular Spectrum Analysis (SSA) is consistent between simulations and observations. This is an important validation of the global MHD simulations of the magnetosphere. The coupled vBs--pseudo-AL index system shows multi-scale behavior (scale-invarianet power-law dependence) in singular power spectrum. We found critical exponents of the non-equilibrium transitions in the magnetosphere, which reflect the multi-scale aspect of the substorm activity, different from power-law frequency of autonomous systems. The exponents relate input and output parameters of the magnetosphere and distinguish the second order phase transition model from the self-organized criticality model. We also discuss the limitations of the global MHD model in reproducing the multi-scale behavior when compared to the real system.

  11. Oblique MHD cosmic-ray modified shocks: Two-fluid numerical simulations

    NASA Technical Reports Server (NTRS)

    Frank, Adam; Jones, T. W.; Ryu, Dongsu

    1991-01-01

    We present the first results of time dependent, two-fluid, cosmic-ray (CR) modified, MHD shock simulations. The calculations were carried out with a new numerical code for 1-D ideal MHD. By coupling this code with the CR energy transport equation we can simulate the time-dependent evolution of MHD shocks including the acceleration of the CR and their feedback on the shock structures. We report tests of the combined numerical method including comparisons with analytical steady state results published earlier by Webb, as well as internal consistency checks for more general MHD CR shock structures after they appear to have converged to dynamical steady states. We also present results from an initial time dependent simulation which extend the parameter space domain of previous analytical models. These new results support Webb's suggestion that equilibrium oblique shocks are less effective than parallel shocks in the acceleration of CR. However, for realistic models of anisotropic CR diffusion, oblique shocks may achieve dynamical equilibrium on shorter timescale than parallel shocks.

  12. Comparison of empirical magnetic field models and global MHD simulations: The near-tail currents

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Walker, R. J.; Raeder, J.; Ashour-Abdalla, M.

    1995-01-01

    The tail currents predicted by empirical magnetic field models and global MHD simulations are compared. It is shown that the near-Earth currents obtained from the MHD simulations are much weaker than the currents predicted by the Tsyganenko models, primarily because the ring current is not properly represented in the simulations. On the other hand, in the mid-tail and distant tail the lobe field strength predicted by the simulations is comparable to what is observed at about 50 R(sub E) distance, significantly larger than the very low lobe field values predicted by the Tsyganenko models at that distance. Ways to improve these complementary approaches to model the actual magnetospheric configuration are discussed.

  13. Comparison of empirical magnetic field models and global MHD simulations: The near-tail currents

    SciTech Connect

    Pulkkinen, T.I.; Baker, D.N.; Walker, R.J.

    1995-03-15

    The tail currents predicted by empirical magnetic field models and global MHD simulations are compared. It is shown that the near-Earth currents obtained from the MHD simulations are much weaker than the currents predicted by the Tsyganenko models, primarily because the ring current is not properly represented in the simulations. On the other hand, in the mid-tail and distant tail the lobe field strength predicted by the simulations is comparable to what is observed at about 50R{sub E} distance, significantly larger than the very low lobe field values predicted by the Tsyganenko models at that distance. Ways to improve these complementary approaches to model the actual magnetospheric configuration are discussed. 11 refs., 3 figs.

  14. Multifluid MHD Simulations of the Plasma Environment of Comet Churyumov-Gerasimenko at Different Heliocentric Distances

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Jia, X.; Rubin, M.; Fougere, N.; Gombosi, T. I.; Tenishev, V.; Combi, M. R.; Bieler, A. M.; Toth, G.; Hansen, K. C.; Shou, Y.

    2014-12-01

    We study the plasma environment of the comet Churyumov-Gerasimenko, which is the target of the Rosetta mission, by performing large scale numerical simulations. Our model is based on BATS-R-US within the Space Weather Modeling Framework that solves the governing multifluid MHD equations, which describe the behavior of the cometary heavy ions, the solar wind protons, and electrons. The model includes various mass loading processes, including ionization, charge exchange, dissociative ion-electron recombination, as well as collisional interactions between different fluids. The neutral background used in our MHD simulations is provided by a kinetic Direct Simulation Monte Carlo (DSMC) model. We will simulate how the cometary plasma environment changes at different heliocentric distances.

  15. Global Hall-MHD simulations of magnetorotational instability in a plasma Couette flow experiment

    SciTech Connect

    Ebrahimi, F.; Lefebvre, B.; Bhattacharjee, A.; Forest, C. B.

    2011-06-15

    Global MHD and Hall-MHD numerical simulations relevant to the Madison plasma Couette flow experiment (MPCX) have been performed using the extended MHD code NIMROD. The MPCX has been constructed to study the magnetorotational instability (MRI) in a plasma. The two-fluid Hall effect, which is relevant to some astrophysical situations such as protostellar disks, is also expected to be important in the MPCX. Here, we first derive the local Hall dispersion relation including viscosity, extending earlier work by Balbus and Terquem [Astrophys. J. 552, 235 (2001)]. The predictions of the local analysis are then compared with nonlocal calculations of linear stability of the MRI for a parameter range relevant to the MPCX. It is found that the MHD stability limit and mode structure are altered by the Hall term, and nonlocal analysis is necessary to obtain quantitatively reliable predictions for MPCX. Two-fluid physics also significantly changes the nonlinear evolution and saturation of the axisymmetric MRI. Both the Reynolds and Maxwell stresses contribute significantly to momentum transport. In the Hall regime, when the magnetic field is parallel to the rotation axis, the Maxwell stress is larger than the Reynolds stress (similar to the MHD regime). However, when the magnetic field is antiparallel to the rotation axis in the Hall regime, the Reynolds stress is much larger than the Maxwell stress. To further study the role of non-axisymmetric modes, we have also carried out fully nonlinear MHD computations. Non-axisymmetric modes play an increasingly important role as the magnetic Reynolds number increases and grow to large amplitudes in a saturated turbulent state.

  16. Radiation detector spectrum simulator

    DOEpatents

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  17. Radiation detector spectrum simulator

    DOEpatents

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  18. Modeling anisotropic MHD turbulence in simulations of liquid metal flows

    NASA Astrophysics Data System (ADS)

    Widlund, O.

    2001-06-01

    The dynamical properties of the MHD turbulence model proposed by Widlund etal. are examined for the case of homogeneous decaying turbulence. The model is a Reynolds stress closure, extended with a transport equation for a dimensional anisotropy variable, α, which carries information about length scale anisotropy. The analysis suggests that the model term originally proposed for the nonlinear energy transfer in the α equation should be modified. A unique set of model coefficients could be determined, which makes the model consistent with theory and experiments for interaction parameters N ranging from zero to infinity. The model coincides with the standard K-eps model when there is no magnetic field. In the linear regime of large N, it produces the K˜ t^{-1/2} energy decay predicted by linear theory. When nonlinear effects are important, the model predicts K˜ t^{-1.7} and L_∥ ˜ t^{0.65}, in agreement with the classical experiments by Alemany etal. Figs 5, Refs 11.

  19. Numerical Simulation of Molten Metal Flow Produced by Induction MHD Pump Using Rotating Twisted Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ando, Tsutomu; Ueno, Kazuyuki; Sawada, Keisuke

    Numerical simulation at the same condition as an experiment is carried out under the magnetic Stokes approximation for small shielding parameter. Results of the simulation compensate for the information of molten metal flow that we could not directly obtain in the experiment. In this paper, we study the molten metal flow at a starting condition and quasi-steady state. Besides, the energy conversion in the MHD pump is discussed. The simulation result shows that the proposed MHD pump causes the spiral induced current in a molten gallium and produces an axial flow with swirl. At quasi-steady state, it is confirmed that the centrifugal force by the excessive swirl flow produces high pressure at a duct wall and low pressure around the central axis. Since the excessive swirl flow results in large viscous dissipation, the mechanical power output of the pump uses only about 1% of the mechanical energy production in the molten gallium.

  20. MHD simulation of the solar wind interaction with the magnetosphere of Mercury

    NASA Astrophysics Data System (ADS)

    Varela, Jacobo; Pantellini, Filippo; Moncuquet, Michel

    2014-05-01

    We show MHD simulations of the solar wind interaction with the magnetosphere of Mercury. We use the open source codes Pluto and MPI-AMRVAC in 3 dimensional spherical geometry. In order to appreciate the limits of the MHD approach in the context of Mercury's environment we do first compare our simulations with hybrid simulation (e.g. Trávníček et al, Icarus, 209, pp 11-22, 2010). We do also compare magnetic field profiles from the magnetometer on Messenger with profiles sampled along the corresponding spacecraft trajectory in the simulations. These comparisons show that despite the lack of kinetic effects, MHD simulation provide a more than fair description of the interaction of the solar wind with Mercury at low computational cost making it a useful tool to help decrypt data from current and future exploratory missions in the hermean magnetosphere (e.g. Bepi Colombo-MMO). The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement SHOCK (project number 284515).

  1. Test-particle Orbit Simulations in Fields from a Realistic 3D MHD Simulation

    NASA Astrophysics Data System (ADS)

    Decker, R. B.; Opher, M.; Hill, M. E.

    2007-05-01

    Models designed to explore the global structure of the heliosphere have become increasing sophisticated. Incentives to increase and to further explore the predictive capabilities of such models include the entry of the Voyager spacecraft into the foreshock region of the termination shock (TS), Voyager 1 in mid-2002 and Voyager 2 in late 2004, and the crossing of the TS and passage into the heliosheath (HSH) of Voyager 1 in 2004 day 351. Using the electric and magnetic fields generated by a MHD model of a 3D, asymmetric heliosphere [Opher et al., Ap. J. L., 640, 2006], we have developed full-particle and adiabatic-orbit codes to simulate the motion of test particles in the solar wind, TS, and HSH environments. The full-particle orbits are necessary to investigate energetic ion (e.g., anomalous and galactic cosmic ray) motion at the TS and within the heliospheric current sheet that is included in the MHD model. Adiabatic orbits are used to study particle motion in the much larger volume of the HSH where the non-homogeneous model fields produce complex guiding center motions, including mirroring in local field compressions. We will present results from these orbit computations, which are intended to provide an initial, albeit simplified, look at the propagation of high-energy charged particles, in the scatter-free limit, in the best model of the TS/HSH field configurations currently available. We will also display drift paths of high-energy ions in the HSH fields using the guiding center drift equations that are applicable in the limit of diffusive propagation.

  2. Effects of the driving mechanism in MHD simulations of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Linker, J. A.; van Hoven, G.; Schnack, D. D.

    Results of time-dependent MHD simulations of mass ejections in the solar coronal are presented. Previous authors have shown that results from simulations using a thermal driving mechanism are consistent with the observations only if an elaborate model of the initial corona is used. The first simulation effort, using a simple model of a plasmoid as the driving mechanism and a simple model of the initial corona, produces results that are also consistent with many observational features, suggesting that the nature of the driving mechanism plays an important role in determining the subsequent evolution of mass ejections. First simulations are based on the assumption that mass ejections are driven by magnetic forces.

  3. Effects of the driving mechanism in MHD simulations of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Linker, J. A.; Van Hoven, G.; Schnack, D. D.

    1990-01-01

    Results of time-dependent MHD simulations of mass ejections in the solar coronal are presented. Previous authors have shown that results from simulations using a thermal driving mechanism are consistent with the observations only if an elaborate model of the initial corona is used. The first simulation effort, using a simple model of a plasmoid as the driving mechanism and a simple model of the initial corona, produces results that are also consistent with many observational features, suggesting that the nature of the driving mechanism plays an important role in determining the subsequent evolution of mass ejections. First simulations are based on the assumption that mass ejections are driven by magnetic forces.

  4. Numerical Simulation of 3-D Supersonic Viscous Flow in an Experimental MHD Channel

    NASA Technical Reports Server (NTRS)

    Kato, Hiromasa; Tannehill, John C.; Gupta, Sumeet; Mehta, Unmeel B.

    2004-01-01

    The 3-D supersonic viscous flow in an experimental MHD channel has been numerically simulated. The experimental MHD channel is currently in operation at NASA Ames Research Center. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed using a new 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime. The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very e5uent manner. To account for upstream (elliptic) effects, the flowfield can be computed using multiple streamwise sweeps with an iterated PNS algorithm. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the flow. The computed results are in good agreement with the available experimental data.

  5. PREDICTION OF TYPE II SOLAR RADIO BURSTS BY THREE-DIMENSIONAL MHD CORONAL MASS EJECTION AND KINETIC RADIO EMISSION SIMULATIONS

    SciTech Connect

    Schmidt, J. M.; Cairns, Iver H.; Hillan, D. S.

    2013-08-20

    Type II solar radio bursts are the primary radio emissions generated by shocks and they are linked with impending space weather events at Earth. We simulate type II bursts by combining elaborate three-dimensional MHD simulations of realistic coronal mass ejections (CMEs) at the Sun with an analytic kinetic radiation theory developed recently. The modeling includes initialization with solar magnetic and active region fields reconstructed from magnetograms of the Sun, a flux rope of the initial CME dimensioned with STEREO spacecraft observations, and a solar wind driven with averaged empirical data. We demonstrate impressive accuracy in time, frequency, and intensity for the CME and type II burst observed on 2011 February 15. This implies real understanding of the physical processes involved regarding the radio emission excitation by shocks and supports the near-term development of a capability to predict and track these events for space weather prediction.

  6. Constrained-transport Hall-MHD simulations using CWENO reconstruction with libMRC

    NASA Astrophysics Data System (ADS)

    Lin, Liwei; Germaschewski, Kai; Abbott, Stephen; Maynard, Kris; Raeder, Jimmy

    2013-10-01

    We present a new CWENO (Centrally-Weighted Essentially Non-Oscillatory) reconstruction based extended MHD (XMHD) solver that has been built for libMRC. libMRC is a library for creating efficient parallel PDE solvers on structured grids, which is used in the MRC (Magnetic Reconnection Code), OpenGGCM (Open Global Geospace Circulation Model) and PSC (Plasma Simulation Code) codes. The use of libMRC gives us access to its core functionality of providing an automated code generation framework which takes a user provided PDE right hand side in symbolic form to generate an efficient, computer-architecture specific, parallel code. libMRC also supports block-structured adaptive mesh refinement, and implicit-time stepping through integration with the PETSc library. We demonstrate validation of the new CWENO MHD solver against existing solvers both in standard test problems as well as in 3D global magnetosphere simulations.

  7. Direct simulation of multi-phase MHD flows on an unstructured Cartesian adaptive system

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Ni, Ming-Jiu

    2014-08-01

    An approach for direct simulation of the multi-phase magnetohydrodynamics (MHD) flows has been developed in the present study on an unstructured Cartesian adaptive system. The approach is based on the volume-of-fluid (VOF) method for capturing the interface with the adaptive mesh refinement (AMR) technique used to well resolve the interface and the boundary layer. The Lorentz force is calculated using the consistent and conservative scheme, which is specially designed on a Cartesian adaptive mesh to conserve the physical conservation laws. The continuous-surface-tension (CSF) formulation is adopted for surface tension calculation. Moreover, the interfacial flows driven by thermal Marangoni effects at multifluid interfaces are also studied with a special numerical treatment presented. The method is able to simulate bubble motion in liquid metal under magnetic field irrespective of high density ratio and electric conductivity ratio. The proposed scheme for multi-phase MHD flows is validated by experimental results as well as analytical solutions.

  8. Substorm effects in MHD and test particle simulations of magnetotail dynamics

    SciTech Connect

    Birn, J.; Hesse, M.

    1998-12-31

    Recent magnetohydrodynamic simulations demonstrate that a global tail instability, initiated by localized breakdown of MHD, can cause plasmoid formation and ejection as well as dipolarization and the current diversion of the substorm current wedge. The connection between the reconnection process and the current wedge signatures is provided by earthward flow from the reconnection site. Its braking and diversion in the inner magnetosphere causes dipolarization and the magnetic field distortions of the current wedge. The authors demonstrate the characteristic properties of this process and the current systems involved. The strong localized electric field associated with the flow burst and the dipolarization is also the cause of particle acceleration and energetic particle injections. Test particle simulations of orbits in the MHD fields yield results that are quite consistent with observed injection signatures.

  9. 3D simulations of fluctuation spectra in the hall-MHD plasma.

    PubMed

    Shaikh, Dastgeer; Shukla, P K

    2009-01-30

    Turbulent spectral cascades are investigated by means of fully three-dimensional (3D) simulations of a compressible Hall-magnetohydrodynamic (H-MHD) plasma in order to understand the observed spectral break in the solar wind turbulence spectra in the regime where the characteristic length scales associated with electromagnetic fluctuations are smaller than the ion gyroradius. In this regime, the results of our 3D simulations exhibit that turbulent spectral cascades in the presence of a mean magnetic field follow an omnidirectional anisotropic inertial-range spectrum close to k(-7/3). The latter is associated with the Hall current arising from nonequal electron and ion fluid velocities in our 3D H-MHD plasma model. PMID:19257431

  10. Solar Wind Turbulence from MHD to Sub-ion Scales: High-resolution Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Franci, Luca; Verdini, Andrea; Matteini, Lorenzo; Landi, Simone; Hellinger, Petr

    2015-05-01

    We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.

  11. Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model

    NASA Technical Reports Server (NTRS)

    Kazeminezhad, F.; Anghaie, S.

    2008-01-01

    Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.

  12. Radiation in Particle Simulations

    SciTech Connect

    More, R; Graziani, F; Glosli, J; Surh, M

    2010-11-19

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (planewaves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle simulations of

  13. Thermodynamic MHD Simulation of the 2000 July 14 "Bastille Day" Eruption

    NASA Astrophysics Data System (ADS)

    Torok, Tibor; Downs, Cooper; Lionello, Roberto; Linker, Jon A.; Titov, Viacheslav S.; Mikic, Zoran; Riley, Pete

    2015-04-01

    The "Bastille Day" event that occurred on 2000 July 14 is one of the most extensively studied solar eruptions. It originated in a complex active region close to disk center and produced an X5.7 flare, a fast halo CME, and an intense geomagnetic storm. Accurate numerical simulations of such events, in particular the matching of parameters relevant for space weather such as the CME velocity and magnetic orientation, require a realistic model of the large-scale magnetic field and plasma environment into which the eruption propagates and interacts, as well as a modeling of the pre-eruptive configuration and eruption initiation that are as realistic as possible. Here we present an MHD simulation of the Bastille Day event that complies with these requirements. We first produce a steady-state MHD solution of the background corona that incorporates realistic energy transport ("thermodynamic MHD"), photospheric magnetic field measurements, and the solar wind. In order to model the pre-eruptive magnetic field, we then insert a stable, elongated flux rope that resides above the highly curved polarity inversion line of the active region. Finally, we produce the eruption by imposing photospheric flows that slowly converge towards the polarity inversion line. In this presentation we describe our method, compare the simulation results with the observations, and discuss the challenges and limitations involved in modeling such complex and powerful eruptions.

  14. A three-dimensional MHD simulation analysis of the origin of the slow solar wind

    NASA Astrophysics Data System (ADS)

    Washimi, H.; Zank, G. P.; Hu, Q.; Nakamizo, A.; Tanaka, T.; Kojima, M.; Kubo, Y.

    2012-12-01

    We have developed a 3D MHD simulation model for the study of the solar-wind acceleration mechanism and for reproducing a realistic configuration of solar wind plasma by using observed photospheric magnetic field at each Carrington rotation cycle. Using an unstructured mesh coordinate system on spherical surface with fine spacing in radial direction, we aim to reproduce a wide range of solar-wind plasma configuration from the photosphere to 1AU. We have incorporated external source terms into the momentum and energy equations in our MHD simulation. The energy source term consists of two volumetric heating functions: one is a new term, as a new development from our original model (Nakamizo et al. JGR 114, A07109, 2009), for the heating in a very narrow region around the transition region. The other one is an additional heating source which probably comes from some nonlinear wave phenomena which are effective over a radial distance of an order of the solar radius in the corona. The Spitzer-type thermal conduction term is also taken into account. The momentum source term is given in a form similar to that of the nonlinear wave heating function noted above. Using this MHD simulation system, we will study the origin of the slow solar wind from nearby regions of some isolated active regions during CR1900-CR1913 in some details.

  15. Heat transfer including radiation and slag particles evolution in MHD channel-I

    SciTech Connect

    Im, K.H.; Ahluwalia, R.K.

    1980-01-01

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.

  16. Broadband Electron Precipitation in Global MHD Simulation and its Effect on the Ionosphere

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Lotko, W.; Brambles, O. J.; Wiltberger, M. J.

    2010-12-01

    A broadband electron (BBE) precipitation model is implemented and analyzed in the MI coupling module of the Lyon-Fedder-Mobarry MHD simulation. Both number flux and energy flux of precipitating BBEs are regulated by MHD variables calculated near the low-altitude boundary of the LFM simulation. An empirical relation deduced from results of Keiling et al. (2003) is used to relate the AC Poynting flux to the energy flux precipitating BBEs in the simulation. We are investigating two different ways of regulating the number flux of BBE precipitation, one using an empirical relation between AC Poynting flux and number flux (Strangeway, unpublished) and another by constraining the intensity and cut-off energy of a fixed-pitch angle distribution of BBEs in terms of MHD simulation variables. The contributions to ionospheric conductance from BBE precipitation are evaluated using empirical relations derived by Robinson et al. (1987). The BBE-induced-conductance is added to the “standard” auroral contribution to conductance derived from monoenergetic and diffuse electron precipitation in the existing LFM precipitation model. The simulation is driven by ideal SW/IMF conditions with Vsw=400 km/s, Nsw=5/cc and Bz=-5 nT. The simulated time-average AC Poynting flux pattern resembles statistical patterns from Polar data (Keiling et al. 2003), and the simulated statistical pattern of BBE number flux resembles the statistical maps derived from DMSP data (Newell et al. 2009) on the nightside with a similar dawn-dusk asymmetry. The ionospheric Pedersen and Hall conductances are enhanced about 20% by the BBE precipitation. The number flux produced by BBEs is the same order of magnitude as that of monoenergetic and diffuse electrons. We thus expect BBE precipitation to have a moderate effect on the E-region ionosphere and a more significant influence on the density distribution of the F-region ionosphere.

  17. MHD-PIC interlocked simulation model in space plasma

    NASA Astrophysics Data System (ADS)

    Sugiyama, T.; Kuasano, K.

    2008-12-01

    We have developed a new type of simulation technique by directly interlocking a traditional Ion-Particle Hybrid simulation model (Hybrid) and an Energetic-Particle Hybrid simulation (EP-HYB) model. In the traditional Hybrid model, all ions are kinetically treated as particles. In the EP-HYB model, non-thermal energetic ions are kinetically treated, and the thermal component is calculated as a fluid. The interlocked model is applied to a two-dimensional collisionless shock problem. The domain for the Hybrid model is embedded in a part of the system, and the bounded data are exchanged to each other to keep the consistency between both models. It can handle the full ion kinetics to investigate the injection problem at the shock transition region, as well as the wave-particle interactions in even far upstream region. We have carried out the long-term simulation of the shock acceleration process using this interlocked model, and successfully reproduced the power-law distribution function, which is consistent with the diffusive acceleration theory. Since the calculation cost of the EP-HYB model is much smaller than that of the Hybrid model, we can considerably reduce the computational demand.

  18. Three-dimensional numerical simulation of MHD waves observed by the Extreme Ultraviolet Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Zheng, Huinan; Wang, S.; Thompson, B. J.; Plunkett, S. P.; Zhao, X. P.; Dryer, M.

    2001-11-01

    We investigate the global large amplitude waves propagating across the solar disk as observed by the SOHO/Extreme Ultraviolet Imaging Telescope (EIT). These waves appear to be similar to those observed in Hα in the chromosphere and which are known as ``Moreton waves,'' associated with large solar flares [Moreton, 1960, 1964]. Uchida [1968] interpreted these Moreton waves as the propagation of a hydromagnetics disturbance in the corona with its wavefront intersecting the chromosphere to produce the Moreton wave as observed in movie sequences of Hα images. To search for an understanding of the physical characteristics of these newly observed EIT waves, we constructed a three-dimensional, time-dependent, numerical magnetohydrodynamic (MHD) model. Measured global magnetic fields, obtained from the Wilcox Solar Observatory (WSO) at Stanford University, are used as the initial magnetic field to investigate hydromagnetics wave propagation in a three-dimensional spherical geometry. Using magnetohydrodynamic wave theory together with simulation, we are able to identify these observed EIT waves as fast mode MHD waves dominated by the acoustic mode, called magnetosonic waves. The results to be presented include the following: (1) comparison of observed and simulated morphology projected on the disk and the distance-time curves on the solar disk; (2) three-dimensional evolution of the disturbed magnetic field lines at various viewing angles; (3) evolution of the plasma density profile at a specific location as a function of latitude; and (4) computed Friedrich's diagrams to identify the MHD wave characteristics.

  19. Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal

    SciTech Connect

    Guazzotto, L.; Betti, R.

    2011-09-15

    Poloidal rotation is routinely observed in present-day tokamak experiments, in particular near the plasma edge and in the high-confinement mode of operation. According to the magnetohydrodynamic (MHD) equilibrium theory [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)], radial discontinuities form when the poloidal velocity exceeds the poloidal sound speed (or rather, more correctly, the poloidal magneto-slow speed). Two-dimensional compressible magnetohydrodynamic simulations show that the transonic discontinuities develop on a time scale of a plasma poloidal revolution to form an edge density pedestal and a localized velocity shear layer at the pedestal location. While such an MHD pedestal surrounds the entire core, the outboard side of the pedestal is driven by the transonic discontinuity while the inboard side is caused by a poloidal redistribution of the mass. The MHD simulations use a smooth momentum source to drive the poloidal flow. Soon after the flow exceeds the poloidal sound speed, the density pedestal and the velocity shear layer form and persist into a quasi steady state. These results may be relevant to the L-H transition, the early stages of the pedestal and edge transport barrier formation.

  20. PROPERTIES OF UMBRAL DOTS AS MEASURED FROM THE NEW SOLAR TELESCOPE DATA AND MHD SIMULATIONS

    SciTech Connect

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Cao, W.; Rempel, M.; Kitai, R.; Watanabe, H.

    2012-02-01

    We studied bright umbral dots (UDs) detected in a moderate size sunspot and compared their statistical properties to recent MHD models. The study is based on high-resolution data recorded by the New Solar Telescope at the Big Bear Solar Observatory and three-dimensional (3D) MHD simulations of sunspots. Observed UDs, living longer than 150 s, were detected and tracked in a 46 minute long data set, using an automatic detection code. A total of 1553 (620) UDs were detected in the photospheric (low chromospheric) data. Our main findings are (1) none of the analyzed UDs is precisely circular, (2) the diameter-intensity relationship only holds in bright umbral areas, and (3) UD velocities are inversely related to their lifetime. While nearly all photospheric UDs can be identified in the low chromospheric images, some small closely spaced UDs appear in the low chromosphere as a single cluster. Slow-moving and long-living UDs seem to exist in both the low chromosphere and photosphere, while fast-moving and short-living UDs are mainly detected in the photospheric images. Comparison to the 3D MHD simulations showed that both types of UDs display, on average, very similar statistical characteristics. However, (1) the average number of observed UDs per unit area is smaller than that of the model UDs, and (2) on average, the diameter of model UDs is slightly larger than that of observed ones.

  1. Neoclassical viscous stress tensor for non-linear MHD simulations with XTOR-2F

    NASA Astrophysics Data System (ADS)

    Mellet, N.; Maget, P.; Lütjens, H.; Meshcheriakov, D.; the Tore Supra Team

    2013-04-01

    The neoclassical viscous stress tensor is implemented in the non-linear MHD code XTOR-2F (Lütjens and Luciani 2010 J. Comput. Phys. 229 8130-43), allowing consistent bi-fluid simulations of MHD modes, including the metastable branch of neoclassical tearing modes (NTMs) (Carrera et al 1986 Phys. Fluids 29 899-902). Equilibrium flows and bootstrap current from the neoclassical theory are formally recovered in this Chew-Goldberger-Low formulation. The non-linear behaviour of the new model is verified on a test case coming from a Tore Supra non-inductive discharge. A NTM threshold that is larger than with the previous model is obtained. This is due to the fact that the velocity is now part of the bootstrap current and that it differs from the theoretical neoclassical value.

  2. Explosive Turbulent Magnetic Reconnection: A New Approach of MHD-Turbulent Simulation

    NASA Astrophysics Data System (ADS)

    Hoshino, Masahiro; Yokoi, Nobumitsu; Higashimori, Katsuaki

    2013-04-01

    Turbulent flows are often observed in association with magnetic reconnection in space and astrophysical plasmas, and it is often hypothesized that the turbulence can contribute to the fast magnetic reconnection through the enhancement of magnetic dissipation. In this presentation, we demonstrate that an explosive turbulent reconnection can happen by using a new turbulent MHD simulation, in which the evolution of the turbulent transport coefficients are self-consistently solved together with the standard MHD equations. In our model, the turbulent electromotive force defined by the correlation of turbulent fluctuations between v and B is added to the Ohm's law. We discuss that the level of turbulent can control the topology of reconnection, namely the transition from the Sweet-Parker reconnection to the Petscheck reconnection occurs when the level of fluctuations becomes of order of the ambient physical quantities, and show that the growth of the turbulent Petscheck reconnection becomes much faster than the conventional one.

  3. Atmospheric Outflows from Hot Jupiters: 2D MHD Simulations

    NASA Astrophysics Data System (ADS)

    Uribe, A.; Matsakos, T.; Konigl, A.

    2015-01-01

    Recent observations of stellar hydrogen Ly-α line absorption during transits of some hot Jupiter exoplanets suggest the presence of a dense, fast wind that is blowing from planetary atmosphere tep{2003Natur.422..143V,2007ApJ...671L..61B}. Modeling efforts include 1D hydrodynamic models tep{2009ApJ...693...23M,2004Icar..170..167Y,2007P&SS...55.1426G} and 2D isothermal magnetized wind models tep{2014arXiv1404.5817T}, among others. In this work, we model the 2D structure of the irradiated upper atmosphere of a hot Jupiter planet and its interaction with the planetary magnetic field. We calculate self consistently the heating by stellar UV radiation and the cooling of the atmosphere by Ly-α emission. We solve for the ionization structure assuming a 100% hydrogen atmosphere, accounting for the radiative ionization, recombination and advection of the gas. We show the effect of stellar tides and planetary magnetic field on the planet outflow and calculate the Ly-α transmission spectra of the resulting atmosphere.

  4. Using Two-Ribbon Flare Observations and MHD Simulations to Constrain Flare Properties

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria D.; Lynch, Benjamin J.; Welsch, Brian

    2016-05-01

    Flare ribbons are emission structures that are frequently observed during flares in transition-region and chromospheric radiation. These typically straddle a polarity inversion line (PIL) of the radial magnetic field at the photosphere, and move apart as the flare progresses. The ribbon flux - the amount of unsigned photospheric magnetic flux swept out by flare ribbons - is thought to be related to the amount coronal magnetic reconnection, and hence provides a key diagnostic tool for understanding the physical processes at work in flares and CMEs. Previous measurements of the magnetic flux swept out by flare ribbons required time-consuming co-alignment between magnetograph and intensity data from different instruments, explaining why those studies only analyzed, at most, a few events. The launch of the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA), both aboard the Solar Dynamics Observatory (SDO), presented a rare opportunity to compile a much larger sample of flare-ribbon events than could readily be assembled before. We created a dataset of 363 events of both flare ribbon positions and fluxes, as a function of time, for all C9.-class and greater flares within 45 degrees of disk center observed by SDO from June 2010 till April 2015. For this purpose, we used vector magnetograms (2D magnetic field maps) from HMI and UV images from AIA. A critical problem with using unprocessed AIA data is the existence of spurious intensities in AIA data associated with strong flare emission, most notably "blooming" (spurious smearing of saturated signal into neighboring pixels, often in streaks). To overcome this difficulty, we have developed an algorithmic procedure that effectively excludes artifacts like blooming. We present our database and compare statistical properties of flare ribbons, e.g. evolutions of ribbon reconnection fluxes, reconnection flux rates and vertical currents with the properties from MHD simulations.

  5. Radiation in Particle Simulations

    SciTech Connect

    More, R M; Graziani, F R; Glosli, J; Surh, M

    2009-06-15

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known (section 3). The second method expands the electromagnetic field in normal modes (plane-waves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion (section 4). The third method is a hybrid MD/MC (molecular dynamics/Monte Carlo) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions (section 5). The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc.(section 6). This approach is inspired by the Virial expansion method of equilibrium statistical mechanics.

  6. MHD simulations of coronal mass ejections - Importance of the driving mechanism

    NASA Astrophysics Data System (ADS)

    Linker, J. A.; van Hoven, G.; Schnack, D. D.

    1990-04-01

    The importance of the form of the driving mechanism in MHD simulations of coronal mass ejections is investigated. A model simulation problem is devised, and it is found that the use of a simple form for the initial corona, with an upward moving parcel of cold, dense plasma as the driving mechanism, can produce results that are consistent with many of the features observed by coronagraphs. The results imply that the nature of the driving mechanism may play an important role in determining the dynamical evolution of mass ejections.

  7. Initial simulation of MHD instabilites in a high speed plasma accelerator

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Hughes, Tom; Thio, Francis

    2005-10-01

    High density, high Mach number plasma jets are under development for a variety of critical fusion applications. These applications include fueling, rotation driving, and disruption mitigation in magnetic fusion devices. They also include a range of innovative approaches to high energy density plasmas. FAR-TECH, Inc. has begun 3D MHD simulations using the LSP code [1] to examine such high speed plasma jets. An initial study to benchmark the code is currently underway. The blow-by instability will be simulated in a coaxial plasma accelerator using the 3D LSP code and compared with the 2D MACH2 code results. [1] LSP-Manual-MRC-ABQ-R-1942.pdf

  8. 3D MHD simulations of planet migration in turbulent stratified disks

    NASA Astrophysics Data System (ADS)

    Uribe, Ana; Klahr, Hubert; Flock, Mario; Henning, Thomas

    2011-11-01

    We performed 3D MHD numerical simulations of planet migration in stratified disks using the Godunov code PLUTO (Mignone et al. 2007). The disk is invaded by turbulence generated by the magnetorotational instability (MRI). We study the migration for planets with different mass to primary mass ratio. The migration of the low-mass planet (q=Mp/Ms=10-5) is dominated by random fluctuations in the torque and there is no defined direction of migration on timescales of 100 orbits. The intermediate-mass planet (q=Mp/Ms=10-4) can experience systematic outwards migration that was sustained for the times we were able to simulate.

  9. THE SUBMILLIMETER BUMP IN Sgr A* FROM RELATIVISTIC MHD SIMULATIONS

    SciTech Connect

    Dexter, Jason; Agol, Eric; Fragile, P. Chris; McKinney, Jonathan C.

    2010-07-10

    Recent high resolution observations of the Galactic center black hole allow for direct comparison with accretion disk simulations. We compare two-temperature synchrotron emission models from three-dimensional, general relativistic magnetohydrodynamic simulations to millimeter observations of Sgr A*. Fits to very long baseline interferometry and spectral index measurements disfavor the monochromatic face-on black hole shadow models from our previous work. Inclination angles {<=}20{sup 0} are ruled out to 3{sigma}. We estimate the inclination and position angles of the black hole, as well as the electron temperature of the accretion flow and the accretion rate, to be i=50{sup o+35o}{sub -15}{sup o}, {xi}=-23{sup o+97o}{sub -22}{sup o}, T{sub e} = (5.4 {+-} 3.0) x 10{sup 10} K, and M-dot =5{sup +15}{sub -2}x10{sup -9} M{sub sun} yr{sup -1}, respectively, with 90% confidence. The black hole shadow is unobscured in all best-fit models, and may be detected by observations on baselines between Chile and California, Arizona, or Mexico at 1.3 mm or .87 mm either through direct sampling of the visibility amplitude or using closure phase information. Millimeter flaring behavior consistent with the observations is present in all viable models and is caused by magnetic turbulence in the inner radii of the accretion flow. The variability at optically thin frequencies is strongly correlated with that in the accretion rate. The simulations provide a universal picture of the 1.3 mm emission region as a small region near the midplane in the inner radii of the accretion flow, which is roughly isothermal and has {nu}/{nu} {sub c} {approx} 1-20, where {nu} {sub c} is the critical frequency for thermal synchrotron emission.

  10. The Submillimeter Bump in Sgr A* from Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; Agol, Eric; Fragile, P. Chris; McKinney, Jonathan C.

    2010-07-01

    Recent high resolution observations of the Galactic center black hole allow for direct comparison with accretion disk simulations. We compare two-temperature synchrotron emission models from three-dimensional, general relativistic magnetohydrodynamic simulations to millimeter observations of Sgr A*. Fits to very long baseline interferometry and spectral index measurements disfavor the monochromatic face-on black hole shadow models from our previous work. Inclination angles <=20° are ruled out to 3σ. We estimate the inclination and position angles of the black hole, as well as the electron temperature of the accretion flow and the accretion rate, to be i={50°}^{+35°}_{-15°}, ξ ={-23°}^{+97°}_{-22°}, Te = (5.4 ± 3.0) × 1010 K, and \\dot{M}=5^{+15}_{-2}× 10^{-9} M_⊙ yr^{-1}, respectively, with 90% confidence. The black hole shadow is unobscured in all best-fit models, and may be detected by observations on baselines between Chile and California, Arizona, or Mexico at 1.3 mm or .87 mm either through direct sampling of the visibility amplitude or using closure phase information. Millimeter flaring behavior consistent with the observations is present in all viable models and is caused by magnetic turbulence in the inner radii of the accretion flow. The variability at optically thin frequencies is strongly correlated with that in the accretion rate. The simulations provide a universal picture of the 1.3 mm emission region as a small region near the midplane in the inner radii of the accretion flow, which is roughly isothermal and has ν/ν c ~ 1-20, where ν c is the critical frequency for thermal synchrotron emission.

  11. Level-by-level artificial viscosity and visualization for MHD simulation with adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Hatori, Tomoharu; Ito, Atsushi M.; Nunami, Masanori; Usui, Hideyuki; Miura, Hideaki

    2016-08-01

    We propose a numerical method to determine the artificial viscosity in magnetohydrodynamics (MHD) simulations with adaptive mesh refinement (AMR) method, where the artificial viscosity is adaptively changed due to the resolution level of the AMR hierarchy. Although the suitable value of the artificial viscosity depends on the governing equations and the model of target problem, it can be determined by von Neumann stability analysis. By means of the new method, "level-by-level artificial viscosity method," MHD simulations of Rayleigh-Taylor instability (RTI) are carried out with the AMR method. The validity of the level-by-level artificial viscosity method is confirmed by the comparison of the linear growth rates of RTI between the AMR simulations and the simple simulations with uniform grid and uniform artificial viscosity whose resolution is the same as that in the highest level of the AMR simulation. Moreover, in the nonlinear phase of RTI, the secondary instability is clearly observed where the hierarchical data structure of AMR calculation is visualized as high resolution region floats up like terraced fields. In the applications of the method to general fluid simulations, the growth of small structures can be sufficiently reproduced, while the divergence of numerical solutions can be suppressed.

  12. 3D MHD simulation of polarized emission in SN 1006

    NASA Astrophysics Data System (ADS)

    Schneiter, E. M.; Velázquez, P. F.; Reynoso, E. M.; Esquivel, A.; De Colle, F.

    2015-05-01

    We use three-dimensional magnetohydrodynamic simulations to model the supernova remnant SN 1006. From our numerical results, we have carried out a polarization study, obtaining synthetic maps of the polarized intensity, the Stokes parameter Q, and the polar-referenced angle, which can be compared with observational results. Synthetic maps were computed considering two possible particle acceleration mechanisms: quasi-parallel and quasi-perpendicular. The comparison of synthetic maps of the Stokes parameter Q maps with observations proves to be a valuable tool to discern unambiguously which mechanism is taking place in the remnant of SN 1006, giving strong support to the quasi-parallel model.

  13. MHD simulations of homologous and cannibalistic coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Fan, Yuhong; Chatterjee, Piyali

    2014-06-01

    We present magneto-hydrodynamic simulations of the development of a homologous sequence of coronal mass ejections (CMEs) and demonstrate their so-called cannibalistic behavior. These CMEs originate from the repeated formations and partial eruptions of kink unstable flux ropes as a result of the continued emergence of a twisted flux rope across the lower boundary into a pre-existing coronal potential arcade field. The simulations show that a CME erupting into the open magnetic field created by a preceding CME has a higher speed, and therefore tends to be cannibalistic, catching up and merging with the preceding one into a single fast CME. All the CMEs attained speeds of about 1000 km/s as they exit the domain. The reformation of a twisted flux rope after each CME eruption during the sustained flux emergence can naturally explain the X-ray observations of repeated reformations of sigmoids and “sigmoid-under-cusp” configurations at a low-coronal source of homologous CMEs.

  14. Constrained Transport vs. Divergence Cleanser Options in Astrophysical MHD Simulations

    NASA Astrophysics Data System (ADS)

    Lindner, Christopher C.; Fragile, P.

    2009-01-01

    In previous work, we presented results from global numerical simulations of the evolution of black hole accretion disks using the Cosmos++ GRMHD code. In those simulations we solved the magnetic induction equation using an advection-split form, which is known not to satisfy the divergence-free constraint. To minimize the build-up of divergence error, we used a hyperbolic cleanser function that simultaneously damped the error and propagated it off the grid. We have since found that this method produces qualitatively and quantitatively different behavior in high magnetic field regions than results published by other research groups, particularly in the evacuated funnels of black-hole accretion disks where Poynting-flux jets are reported to form. The main difference between our earlier work and that of our competitors is their use of constrained-transport schemes to preserve a divergence-free magnetic field. Therefore, to study these differences directly, we have implemented a constrained transport scheme into Cosmos++. Because Cosmos++ uses a zone-centered, finite-volume method, we can not use the traditional staggered-mesh constrained transport scheme of Evans & Hawley. Instead we must implement a more general scheme; we chose the Flux-CT scheme as described by Toth. Here we present comparisons of results using the divergence-cleanser and constrained transport options in Cosmos++.

  15. Phase Transition like Behavior of Magnetospheric Substorms: Global and Multiscale Features from MHD Simulations

    NASA Astrophysics Data System (ADS)

    Shao, X.; Sitnov, M. I.; Sharma, A. S.; Papadopoulos, K.; Goodrich, C. C.; Guzdar, P. N.; Milikh, G. M.; Wiltberger, M. J.; Lyon, J. G.

    2002-05-01

    Studies of the magnetosphere during substorms based on the observational data of the solar wind and the geomagnetic indices have shown clear features of phase transition-like behavior [Sitnov et al., 2000]. The global MHD simulations of the events in the Bargatze et al. [1985] database are used to study the non-equilibrium phase transition-like features of substorms. We simulated 7 intervals of total duration of 280 hours from the same data set used in Sitnov et al. [2000]. From the simulations the AL index is computed from the maximum of the westward Hall current and is referred to as the pseudo-AL index. We analyzed the input-output (vBs-pseudo-AL index) system obtained from the global MHD model and compare the results to those in Sitnov et al. [2000, 2001]. The analysis of the coupled vBs-pseudo-AL index system shows the first-order phase transition characterizing global beahavior, similar to the case of vBs-observed-AL index [Sitnov et al., 2000]. Although, the comparison between observations and global MHD simulations for individual events may vary, the overall global transition pattern during the substorm cycle revealed by singular spectrum snalysis is statistically consistent between simulations and observations. The coupled vBs-pseudo-AL index system shows multi-scale behavior (scale-invariant power-law dependence) in singular power spectrum. We find critical exponents of the non-equilibrium transitions in the magnetosphere, which reflect the multi-scale aspect of the substorm activity, different from power-law frequency of autonomous systems. The exponents relate input and output parameters of the magnetosphere.

  16. RADIATION MAGNETOHYDRODYNAMIC SIMULATIONS OF PROTOSTELLAR COLLAPSE: PROTOSTELLAR CORE FORMATION

    SciTech Connect

    Tomida, Kengo; Tomisaka, Kohji; Matsumoto, Tomoaki; Hori, Yasunori; Saigo, Kazuya; Okuzumi, Satoshi; Machida, Masahiro N. E-mail: tomisaka@th.nao.ac.jp E-mail: saigo.kazuya@nao.ac.jp E-mail: okuzumi@nagoya-u.jp

    2013-01-20

    We report the first three-dimensional radiation magnetohydrodynamic (RMHD) simulations of protostellar collapse with and without Ohmic dissipation. We take into account many physical processes required to study star formation processes, including a realistic equation of state. We follow the evolution from molecular cloud cores until protostellar cores are formed with sufficiently high resolutions without introducing a sink particle. The physical processes involved in the simulations and adopted numerical methods are described in detail. We can calculate only about one year after the formation of the protostellar cores with our direct three-dimensional RMHD simulations because of the extremely short timescale in the deep interior of the formed protostellar cores, but successfully describe the early phase of star formation processes. The thermal evolution and the structure of the first and second (protostellar) cores are consistent with previous one-dimensional simulations using full radiation transfer, but differ considerably from preceding multi-dimensional studies with the barotropic approximation. The protostellar cores evolve virtually spherically symmetric in the ideal MHD models because of efficient angular momentum transport by magnetic fields, but Ohmic dissipation enables the formation of the circumstellar disks in the vicinity of the protostellar cores as in previous MHD studies with the barotropic approximation. The formed disks are still small (less than 0.35 AU) because we simulate only the earliest evolution. We also confirm that two different types of outflows are naturally launched by magnetic fields from the first cores and protostellar cores in the resistive MHD models.

  17. Energy storage and dissipation in the magnetotail during substorms. 2. MHD simulations

    SciTech Connect

    Steinolfson, R.S. ); Winglee, R.M. )

    1993-05-01

    The authors present a global MHD simulation of the magnetotail in an effort to study magnetic storm development. They address the question of energy storage in the current sheet in the early phases of storm growth, which previous simulations have not shown. They address this problem by dealing with the variation of the resistivity throughout the magnetosphere. They argue that MHD theory should provide a suitable representation to this problem on a global scale, even if it does not handle all details adequately. For their simulation they use three different forms for the resistivity. First is a uniform and constant resistivity. Second is a resistivity proportional to the current density, which is related to argument that resistivity is driven by wave-particle interactions which should be strongest in regions where the current is the greatest. Thirdly is a model where the resistivity varies with the magnetic field strength, which was suggested by previous results from particle simulations of the same problem. The simulation then gives approximately the same response of the magnetosphere for all three of the models. Each results in the formation and ejection of plasmoids, but the energy stored in the magnetotail, the timing of substorm onset in relation to the appearance of a southward interplanetary magnetic field, and the speed of ejection of the plasmoids formed differ with the resistivity models.

  18. A Mechanism for the Loading-Unloading Substorm Cycle Missing in MHD Global Magnetospheric Simulation Models

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Uritsky, V.; Vassiliadis, D.; Baker, D. N.

    2005-01-01

    Loading and consequent unloading of magnetic flux is an essential element of the substorm cycle in Earth's magnetotail. We are unaware of an available global MHD magnetospheric simulation model that includes a loading- unloading cycle in its behavior. Given the central role that MHD models presently play in the development of our understanding of magnetospheric dynamics, and given the present plans for the central role that these models will play in ongoing space weather prediction programs, it is clear that this failure must be corrected. A 2-dimensional numerical driven current-sheet model has been developed that incorporates an idealized current- driven instability with a resistive MHD system. Under steady loading, the model exhibits a global loading- unloading cycle. The specific mechanism for producing the loading-unloading cycle will be discussed. It will be shown that scale-free avalanching of electromagnetic energy through the model, from loading to unloading, is carried by repetitive bursts of localized reconnection. Each burst leads, somewhat later, to a field configuration that is capable of exciting a reconnection burst again. This process repeats itself in an intermittent manner while the total field energy in the system falls. At the end of an unloading interval, the total field energy is reduced to well below that necessary to initiate the next unloading event and, thus, a loading-unloading cycle results. It will be shown that, in this model, it is the topology of bursty localized reconnection that is responsible for the appearance of the loading-unloading cycle.

  19. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  20. Analysis and statistics of discontinuities as obtained from 3D simulation of MHD turbulence

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; He, Jian-Sen; Tu, Chuan-Yi; Yang, Li-Ping; Wang, Xin; Marsch, Eckart; Wang, Ling-Hua

    2016-03-01

    The turbulent solar wind abounds with MHD discontinuities, and such discontinuities are often found in close connection with turbulence intermittency, constituting a possible main contributor to the turbulence dissipation and solar wind heating. Among the discontinuities, tangential (TD) and rotational (RD) ones are two most important types. Recently, the connection between turbulence intermittency and proton thermodynamics has been being intensively investigated. Such connections are founded to be involved with MHD instablilities, but the difference of TDs an RDs in this process has not yet been covered. Herewith we define new methods for identifying TDs and RDs obtained from a three-dimensional MHD simulation with pressure anisotropy. Especially, we define the Total Variance of Increments (TVI) as a new measure of magnetic field changes. Based on the identified cases, we compare their occurrence rates and heating effects. More specifically, we find that the thermal states embedding TDs, compared with their RD counterparts, tend to be more associated with extreme plasma parameters or instabilites. Some other possible applications of TVI-like norms are also herewith discussed.

  1. Global MHD simulations of cosmic ray driven galactic winds

    NASA Astrophysics Data System (ADS)

    Ruszkowski, Mateusz; Yang, Hsiang-Yi Karen; Gould Zweibel, Ellen

    2016-04-01

    Galactic outflows play an important role in galactic evolution. Despite their importance, a detailed understanding of the physical mechanisms responsible for the driving of these winds is lacking. In an effort to gain more insight into the nature of these flows, we perform global three-dimensional magneto-hydrodynamical simulations of an isolated starbursting galaxy. We focus on the dynamical role of cosmic rays injected by supernovae, and specifically on the impact of the streaming and anisotropic diffusion of cosmic rays along the magnetic fields. We find that these microphysical effects can have a significant effect on the wind launching and mass loading factors depending on the details of the plasma physics. Cosmic rays stream away from the densest regions near the galactic disk along partially ordered magnetic fields and, in the process, accelerate more tenuous gas away from the galaxy. For cosmic ray acceleration efficiencies broadly consistent with the observational constraints, cosmic rays are likely to have a notable impact on the wind launching.

  2. Double Dynamo Signatures in a Global MHD Simulation and Mean-field Dynamos

    NASA Astrophysics Data System (ADS)

    Beaudoin, Patrice; Simard, Corinne; Cossette, Jean-François; Charbonneau, Paul

    2016-08-01

    The 11 year solar activity cycle is the most prominent periodic manifestation of the magnetohydrodynamical (MHD) large-scale dynamo operating in the solar interior, yet longer and shorter (quasi-) periodicities are also present. The so-called “quasi-biennial” signal appearing in many proxies of solar activity has been gaining increasing attention since its detection in p-mode frequency shifts, which suggests a subphotospheric origin. A number of candidate mechanisms have been proposed, including beating between co-existing global dynamo modes, dual dynamos operating in spatially separated regions of the solar interior, and Rossby waves driving short-period oscillations in the large-scale solar magnetic field produced by the 11 year activity cycle. In this article, we analyze a global MHD simulation of solar convection producing regular large-scale magnetic cycles, and detect and characterize shorter periodicities developing therein. By constructing kinematic mean-field α 2Ω dynamo models incorporating the turbulent electromotive force (emf) extracted from that same simulation, we find that dual-dynamo behavior materializes in fairly wide regions of the model’s parameters space. This suggests that the origin of the similar behavior detected in the MHD simulation lies with the joint complexity of the turbulent emf and differential rotation profile, rather that with dynamical interactions such as those mediated by Rossby waves. Analysis of the simulation also reveals that the dual dynamo operating therein leaves a double-period signature in the temperature field, consistent with a dual-period helioseismic signature. Order-of-magnitude estimates for the magnitude of the expected frequency shifts are commensurate with helioseismic measurements. Taken together, our results support the hypothesis that the solar quasi-biennial oscillations are associated with a secondary dynamo process operating in the outer reaches of the solar convection zone.

  3. The Substorm Current Wedge: Further Insights from MHD Simulations

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, M.

    2015-01-01

    Using a recent magnetohydrodynamic simulation of magnetotail dynamics, we further investigate the buildup and evolution of the substorm current wedge (SCW), resulting from flow bursts generated by near-tail reconnection. Each flow burst generates an individual current wedge, which includes the reduction of cross-tail current and the diversion to region 1 (R1)-type field-aligned currents (earthward on the dawn and tailward on the duskside), connecting the tail with the ionosphere. Multiple flow bursts generate initially multiple SCW patterns, which at later times combine to a wider single SCW pattern. The standard SCWmodel is modified by the addition of several current loops, related to particular magnetic field changes: the increase of Bz in a local equatorial region (dipolarization), the decrease of |Bx| away from the equator (current disruption), and increases in |By| resulting from azimuthally deflected flows. The associated loop currents are found to be of similar magnitude, 0.1-0.3 MA. The combined effect requires the addition of region 2 (R2)-type currents closing in the near tail through dawnward currents but also connecting radially with the R1 currents. The current closure at the inner boundary, taken as a crude proxy of an idealized ionosphere, demonstrates westward currents as postulated in the original SCW picture as well as North-South currents connecting R1- and R2-type currents, which were larger than the westward currents by a factor of almost 2. However, this result should be applied with caution to the ionosphere because of our neglect of finite resistance and Hall effects.

  4. Formation of Dense Clumps/Cores in Infrared Dark Clouds and Their Magnetic Field Properties from AMR MHD Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Li, Pak Shing; Klein, Richard I.

    2014-07-01

    Massive infrared dark clouds (IRDCs) are believed to be the precursors to star clusters and massive stars (e.g. Bergin & Tafalla 2007). The supersonic turbulent nature of molecular clouds in the presence of magnetic fields poses a great challenge in understanding the structure and dynamics of molecular clouds and the star formation therein (e.g. Falgarone et al. 2008, Crutcher et al. 2010, Peretto & Fuller 2010, Hernandez & Tan 2011, Harcar et al. 2013, Kainulainen & Tan 2013). We perform two high resolution ideal MHD AMR simulations with supersonically driven turbulence on the formation of massive infrared dark clouds, using our radiative-MHD AMR code ORION2 (P.S. Li, et al. 2012), to reveal the complex 3D filamentary structure and the subsequent formation of dense clumps and cores inside the dark clouds. The two models differ only in field strength, with one model having an initial field 10 times as strong as the other. The magnetic properties of the clumps from the two models are compared with the Zeeman observations summarized in Crutcher et al. (2010). Our dense clumps exhibit a power-law relation between magnetic field strength and density similar to the observations. Despite the order of magnitude difference in initial field strength, with the magnetic field enhancement and fragmentation as the result of turbulence, the magnetic properties of clumps in the weak field model are remarkably similar to those in the strong field model, except for a clear difference in the magnetic field orientation with respect to the global mean field direction. The almost random orientation of the weak field simulation is inconsistent with the observation of the field orientation on large and small scales by H.-b. Li, et al. (2009). I will briefly summarize the physical properties of the filamentary dark clouds in the simulations and report a detailed comparison of the magnetic properties of dense clumps in the simulations with the Zeeman observations. We have continued the

  5. Extended MHD Simulations of Tearing Instabilities and the Dynamo Effect in the Reversed-Field Pinch

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Dearborn, J.; Bhattacharjee, A.

    2009-11-01

    Observations on MST indicate the importance of the Hall current in sawtooth crashes and the dynamo effect in a RFP. We employ our Magnetic Reconnection Code (MRC) to perform fully 3D extended MHD simulations in the RFP, including the Hall current and electron pressure gradient in a generalized Ohm's law. The MRC is an MPI-parallelized finite-volume based simulation code that integrates the extended MHD equations. It supports arbitrary curvilinear coordinate mappings, allowing it to be adapted to cylindrical and toroidal geometries. In order to overcome restrictive time-step limits, it uses implicit time integration. We have benchmarked the code for linear tearing instabilities, and performed fully nonlinear simulations. Due to the presence of the Hall current, novel vortical flows are seen in the vicinity of rational surfaces, akin to those seen in recent sawtooth studies in tokamaks, when the peak of the current density separates from the stagnation point of the flow. We calculate the dynamo field by averaging, and compare simulations with observations.

  6. Modeling of magnetic reconnection in the magnetotail using global MHD simulation with an effective resistivity model

    NASA Astrophysics Data System (ADS)

    Den, M.; Horiuchi, R.; Fujita, S.; Tanaka, T.

    2011-12-01

    Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. Tanaka and Fujita reproduced substorm evolution process by numerical simulation with the global MHD code [1]. In the MHD framework, the dissipation model is introduced for modeling of the kinetic effects. They found that the normalized reconnection viscosity, one of the dissipation model employed there, gave a large effect for the dipolarization, central phenomenon in the substorm development process, though that viscosity was assumed to be a constant parameter. It is well known that magnetic reconnection is controlled by microscopic kinetic mechanism. Frozen-in condition is broken due to particle kinetic effects and collisionless reconnection is triggered when current sheet is compressed as thin as ion kinetic scales under the influence of external driving flow [2, 3]. Horiuchi and his collaborators showed that reconnection electric field generated by microscopic physics evolves inside ion meandering scale so as to balance the flux inflow rate at the inflow boundary, which is controlled by macroscopic physics [2]. That is, effective resistivity generated through this process can be expressed by balance equation between micro and macro physics. In this paper, we perform substorm simulation by using the global MHD code developed by Tanaka [3] with this effective resistivity instead of the empirical resistivity model. We obtain the AE indices from simulation data, in which substorm onset can be seen clearly, and investigate the relationship between the substorm development and the effective resistivity model. [1] T. Tanaka, A, Nakamizo, A. Yoshikawa, S. Fujita, H. Shinagawa, H. Shimazu, T. Kikuchi, and K. K. Hashimoto, J. Geophys. Res. 115 (2010) A05220,doi:10.1029/2009JA014676. [2] W. Pei, R. Horiuchi, and T. Sato, Physics of Plasmas,Vol. 8 (2001), pp. 3251-3257. [3] A. Ishizawa, and R. Horiuchi, Phys. Rev. Lett., Vol. 95, 045003 (2005). [4

  7. Propagation of Pi2 pulsations through the braking region in global MHD simulations

    NASA Astrophysics Data System (ADS)

    Ream, J. B.; Walker, R. J.; Ashour-Abdalla, M.; El-Alaoui, M.; Wiltberger, M.; Kivelson, M. G.; Goldstein, M. L.

    2015-12-01

    We investigate the propagation of Pi2 period pulsations from their origin in the plasma sheet through the braking region, the region where the fast flows are slowed as they approach the inner edge of the plasma sheet. Our approach is to use both the University of California, Los Angeles (UCLA) and Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) computer codes to simulate the Earth's magnetosphere during a substorm that occurred on 14 September 2004 when Pi2 pulsations were observed. We use two different MHD models in order to test the robustness of our conclusions about Pi2. The simulations are then compared with ground-based and satellite data. We find that the propagation of the pulsations in the simulations, especially through the braking region, depends strongly on the ionospheric models used at the inner boundary of the MHD models. With respect to typical observed values, the modeled conductances are high in the UCLA model and low in the LFM model. The different conductances affect the flows, producing stronger line tying that slows the flow in the braking region more in the UCLA model than in the LFM model. Therefore, perturbations are able to propagate much more freely into the inner magnetosphere in the LFM results. However, in both models Pi2 period perturbations travel with the dipolarization front (DF) that forms at the earthward edge of the flow channel, but as the DF slows in the braking region, -8≤x≤-6 RE, the Pi2 period perturbations begin to travel ahead of it into the inner magnetosphere. This indicates that the flow channels generate compressional waves with periods that fall within the Pi2 range and that, as the flows themselves are stopped in the braking region, the compressional wave continues to propagate into the inner magnetosphere.

  8. Isolated Coronal Mass Ejections and Associated Phenomena: MHD Simulations and STEREO Observations

    NASA Astrophysics Data System (ADS)

    Lugaz, Noé; Roussev, Ilia; Sokolov, Igor; Shibata, Kazunari; Schwadron, Nathan; Downs, Cooper

    2012-07-01

    Coronal Mass Ejections (CMEs), the most energetic events occurring in our solar system, are associated with a range of other phenomena such as EUV waves, dimming regions and solar energetic particles (SEPs). With the advancement of global numerical simulations and the new fleet of spacecraft observing the Sun and the heliosphere, it is possible to combine simulations with data analyses to gain new insight into the complex Sun-Earth system. In this talk, I will discuss magneto-hydrodynamic (MHD) simulations of CMEs and associated phenomena. In particular, I will focus on the changes in magnetic connectivity and the opening of previously closed field lines during and after an eruption and discuss the consequences for the acceleration and transport of energetic particles. I will also present combined numerical simulations and observations by SDO and STEREO/SECCHI of CMEs and EUV waves, which have led to new insights into CME deflection, expansion and rotation.

  9. Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas

    SciTech Connect

    Hamlin, Nathaniel D.; Seyler, Charles E.

    2014-12-15

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.

  10. An MHD simulation study of the poloidal mode field line resonance in the Earth's dipole magnetosphere

    NASA Technical Reports Server (NTRS)

    Ding, D. Q.; Denton, . E.; Hudson, M. K.; Lysak, R. L.

    1995-01-01

    The poloidal mode field line resonance in the Earth's dipole magnetic field is investigated using cold plasma ideal MHD simulations in dipole geometry. In order to excite the poloidal mode resonance, we use either an initial or a continuous velocity perturbation to drive the system. The perturbation is localized at magnetic shell L = 7 with plasma flow in the radial direction (electric field component in the azimuthal direction). It is found that with the initial perturbation alone, no polodial mode resonance can be obtained and the initially localized perturbation spreads out across all magnetic L shells. With the continuous perturbation, oscillating near the poloidal resonance frequency, a global-scale poloidal cavity mode can be obtained. For the first time, a localized guided poloidal mode resonance is obtained when a radial component of electric field is added to the initial perturbation such that the curl of the electric field is everywhere perpendicular to the background dipole magnetic field. During the localized poloidal resonance, plasma vortices parallel/antiparallel to the background dipole magnetic field B(sub 0). This circular flow, elongated radially, results in twisting of magnetic field flux tubes, which, in turn, leads to the slowdown of the circular plasma flow and reversal of the plasma vortices. The energy associated with the localized poloidal resonance is conserved as it shifts back and forth between the oscillating plasma vortices and the alternately twisted magnetic flux tubes. In the simulations the eigenfunctions associated with the localized poloidal resonance are grid-scale singular functions. This result indicates that ideal MHD is inadequate to describe the underlying problem and nonideal MHD effects are needed for mode broadening.

  11. Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet

    NASA Astrophysics Data System (ADS)

    Ul Haq, Rizwan; Nadeem, Sohail; Hayat Khan, Zafar; Sher Akbar, Noreen

    2015-01-01

    Present model is devoted for the stagnation point flow of nanofluid with magneto-hydrodynamics (MHD) and thermal radiation effects passed over a stretching sheet. Moreover, we have considered the combined effects of velocity and thermal slip. Condition of zero normal flux of nanoparticles at the wall for the stretched flow phenomena is yet to be explored in the literature. Convinced partial differential equations of the model are transformed into the system of coupled nonlinear differential equations and then solved numerically. Graphical results are plotted for velocity, temperature and nanoparticle concentration for various values of emerging parameters. Variation of stream lines, skin friction coefficient, local Nusselt and Sherwood number are displayed along with the effective parameters. Final conclusion has been drawn on the basis of both numerical and graphs results.

  12. Jupiter Magnetotail Interaction with a Variable Solar Wind: A 3D MHD Simulation

    NASA Astrophysics Data System (ADS)

    Ranquist, D. A.; Bagenal, F.; Delamere, P. A.; Ma, X.

    2015-12-01

    Jupiter's magnetosphere is the largest object within the heliosphere. Voyager 2 detected its influence at Saturn's orbit, 4.3 AU away. It takes considerable time, therefore, for the solar wind to propagate such lengths down the tail. This propagation time is much greater than typical periods between changes in direction of the interplanetary magnetic field (IMF). We expect these variable magnetic fields to create a jumbled structure in Jupiter's magnetotail, resulting in magnetic reconnection and other magnetic processes. We simulate the global interaction of the solar wind with Jupiter's magnetosphere using a 3D magnetohydrodynamics (MHD) code. Delamere & Bagenal (2010) argue that the interaction is largely viscous, so we simulate the jovian magnetosphere as a region where the momentum equation has an added loss term. We also use in situ data gathered by the Ulysses spacecraft near Jupiter's orbit for solar wind input. Here, we report on the simulated dynamics in Jupiter's tail region.

  13. Nonlinear MHD simulation of DC helicity injection in the Pegasus spherical tokamak

    NASA Astrophysics Data System (ADS)

    Bayliss, Adam; Sovinec, Carl

    2006-10-01

    DC helicity injection has been successfully employed in spherical tokamaks (ST's) to produce a tokamak-like plasma with either a poloidal-gap voltage known as coaxial helicity injection [HIT-II, NSTX] or a biased cathode gun configuration [CDX, PEGASUS]. In PEGASUS, the tokamak-like plasma which is subsequently ohmically driven is the product of a reversal of vacuum poloidal flux and a merger of gun-injected current filaments. A 3D nonlinear MHD computation using the NIMROD code [Sovinec et al. JCP 195, 355 (2004)] simulates the formation, merger, and relaxation of the gun-injected current filaments to the tokamak-like plasma. The reversal of poloidal flux due to the field induced by the helicity drive is reproduced and the MHD processes leading to the merger and relaxation of the current filaments are described. Over the lifetime of a helically-driven experimental shot (approximately 10ms), the extent to which the merged plasma exhibits amplication of poloidal flux and the injected current in the relaxed state, reported in PEGASUS, is explored. The results are compared with simulations of current drive in NSTX via coaxial helicity injection which exhibit an n=1 open field-line kink [Tang and Boozer, Phys. Plasmas 11, 2679 (2004)].

  14. FLASH MHD simulations of experiments that study shock-generated magnetic fields

    NASA Astrophysics Data System (ADS)

    Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Graziani, C.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.

    2015-12-01

    We summarize recent additions and improvements to the high energy density physics capabilities in FLASH, highlighting new non-ideal magneto-hydrodynamic (MHD) capabilities. We then describe 3D Cartesian and 2D cylindrical FLASH MHD simulations that have helped to design and analyze experiments conducted at the Vulcan laser facility. In these experiments, a laser illuminates a carbon rod target placed in a gas-filled chamber. A magnetic field diagnostic (called a Bdot) employing three very small induction coils is used to measure all three components of the magnetic field at a chosen point in space. The simulations have revealed that many fascinating physical processes occur in the experiments. These include megagauss magnetic fields generated by the interaction of the laser with the target via the Biermann battery mechanism, which are advected outward by the vaporized target material but decrease in strength due to expansion and resistivity; magnetic fields generated by an outward expanding shock via the Biermann battery mechanism; and a breakout shock that overtakes the first wave, the contact discontinuity between the target material and the gas, and then the initial expanding shock. Finally, we discuss the validation and predictive science we have done for this experiment with FLASH.

  15. Lattice Boltzmann simulation of thermofluidic transport phenomena in a DC magnetohydrodynamic (MHD) micropump.

    PubMed

    Chatterjee, Dipankar; Amiroudine, Sakir

    2011-02-01

    A comprehensive non-isothermal Lattice Boltzmann (LB) algorithm is proposed in this article to simulate the thermofluidic transport phenomena encountered in a direct-current (DC) magnetohydrodynamic (MHD) micropump. Inside the pump, an electrically conducting fluid is transported through the microchannel by the action of an electromagnetic Lorentz force evolved out as a consequence of the interaction between applied electric and magnetic fields. The fluid flow and thermal characteristics of the MHD micropump depend on several factors such as the channel geometry, electromagnetic field strength and electrical property of the conducting fluid. An involved analysis is carried out following the LB technique to understand the significant influences of the aforementioned controlling parameters on the overall transport phenomena. In the LB framework, the hydrodynamics is simulated by a distribution function, which obeys a single scalar kinetic equation associated with an externally imposed electromagnetic force field. The thermal history is monitored by a separate temperature distribution function through another scalar kinetic equation incorporating the Joule heating effect. Agreement with analytical, experimental and other available numerical results is found to be quantitative. PMID:21053082

  16. Global MHD Simulations of Accretion Disks in Cataclysmic Variables. I. The Importance of Spiral Shocks

    NASA Astrophysics Data System (ADS)

    Ju, Wenhua; Stone, James M.; Zhu, Zhaohuan

    2016-06-01

    We present results from the first global 3D MHD simulations of accretion disks in cataclysmic variable (CV) systems in order to investigate the relative importance of angular momentum transport via turbulence driven by the magnetorotational instability (MRI) compared with that driven by spiral shock waves. Remarkably, we find that even with vigorous MRI turbulence, spiral shocks are an important component of the overall angular momentum budget, at least when temperatures in the disk are high (so that Mach numbers are low). In order to understand the excitation, propagation, and damping of spiral density waves in our simulations more carefully, we perform a series of 2D global hydrodynamical simulations with various equation of states, both with and without mass inflow via the Lagrangian point (L1). Compared with previous similar studies, we find the following new results. (1) The linear wave dispersion relation fits the pitch angles of spiral density waves very well. (2) We demonstrate explicitly that mass accretion is driven by the deposition of negative angular momentum carried by the waves when they dissipate in shocks. (3) Using Reynolds stress scaled by gas pressure to represent the effective angular momentum transport rate {α }{eff} is not accurate when mass accretion is driven by non-axisymmetric shocks. (4) Using the mass accretion rate measured in our simulations to directly measure α defined in standard thin-disk theory, we find 0.02≲ {α }{eff}≲ 0.05 for CV disks, consistent with observed values in quiescent states of dwarf novae. In this regime, the disk may be too cool and neutral for the MRI to operate and spiral shocks are a possible accretion mechanism. However, we caution that our simulations use unrealistically low Mach numbers in this regime and, therefore, future models with more realistic thermodynamics and non-ideal MHD are warranted.

  17. One year in the Earth's magnetosphere: A global MHD simulation and spacecraft measurements

    NASA Astrophysics Data System (ADS)

    Facskó, G.; Honkonen, I.; Živković, T.; Palin, L.; Kallio, E.; Ã gren, K.; Opgenoorth, H.; Tanskanen, E. I.; Milan, S.

    2016-05-01

    The response of the Earth's magnetosphere to changing solar wind conditions is studied with a 3-D Magnetohydrodynamic (MHD) model. One full year (155 Cluster orbits) of the Earth's magnetosphere is simulated using Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS-4) magnetohydrodynamic code. Real solar wind measurements are given to the code as input to create the longest lasting global magnetohydrodynamics simulation to date. The applicability of the results of the simulation depends critically on the input parameters used in the model. Therefore, the validity and the variance of the OMNIWeb data are first investigated thoroughly using Cluster measurement close to the bow shock. The OMNIWeb and the Cluster data were found to correlate very well before the bow shock. The solar wind magnetic field and plasma parameters are not changed significantly from the L1 Lagrange point to the foreshock; therefore, the OMNIWeb data are appropriate input to the GUMICS-4. The Cluster SC3 footprints are determined by magnetic field mapping from the simulation results and the Tsyganenko (T96) model in order to compare two methods. The determined footprints are in rather good agreement with the T96. However, it was found that the footprints agree better in the Northern Hemisphere than the Southern one during quiet conditions. If the By is not zero, the agreement of the GUMICS-4 and T96 footprint is worse in longitude in the Southern Hemisphere. Overall, the study implies that a 3-D MHD model can increase our insight of the response of the magnetosphere to solar wind conditions.

  18. MHD Modeling in Complex 3D Geometries: Towards Predictive Simulation of SIHI Current Drive

    NASA Astrophysics Data System (ADS)

    Hansen, Christopher James

    The HIT-SI experiment studies Steady Inductive Helicity Injection (SIHI) for the purpose of forming and sustaining a spheromak plasma. A spheromak is formed in a nearly axisymmetric flux conserver, with a bow tie cross section, by means of two semi-toroidal injectors. The plasma-facing surfaces of the device, which are made of copper for its low resistivity, are covered in an insulating coating in order to operate in a purely inductive manner. Following formation, the spheromak flux and current are increased during a quiescent period marked by a decrease in the global mode activity. A proposed mechanism, Imposed Dynamo Current Drive (IDCD), is expected to be responsible for this phase of quiescent current drive. Due to the geometric complexity of the experiment, previous numerical modeling efforts have used a simplified geometry that excludes the injector volumes from the simulated domain. The effect of helicity injection is then modeled by boundary conditions on this reduced plasma volume. The work presented here has explored and developed more complete computational models of the HIT-SI device. This work is separated into 3 distinct but complementary areas: 1) Development of a 3D MHD equilibrium code that can incorporate the non-axisymmetric injector fields present in HIT-SI and investigation of equilibria of interest during spheromak sustainment. 2) A 2D axisymmetric MHD equilibrium code that was used to explore reduced order models for mean-field evolution using equations derived from IDCD theory including coupling to 3D equilibria. 3) A 3D time-dependent non-linear MHD code that is capable of modeling the entire plasma volume including dynamics within the injectors. Although HIT-SI was the motivation for, and experiment studied in this research, the tools and methods developed are general --- allowing their application to a broad range of magnetic confinement experiments. These tools constitute a significant advance for modeling plasma dynamics in devices with

  19. Nonlinear MHD simulations of Quiescent H-mode plasmas in DIII-D

    NASA Astrophysics Data System (ADS)

    Liu, F.; Huijsmans, G. T. A.; Loarte, A.; Garofalo, A. M.; Solomon, W. M.; Snyder, P. B.; Hoelzl, M.; Zeng, L.

    2015-09-01

    In the Quiescent H-mode (QH-mode) regime, the edge harmonic oscillation (EHO), thought to be a saturated kink-peeling mode (KPM) driven unstable by current and rotation, is found in experiment to provide sufficient stationary edge particle transport to avoid the periodic expulsion of particles and energy by edge localized modes (ELMs). In this paper, both linear and nonlinear MHD modelling of QH-mode plasmas from the DIII-D tokamak have been investigated to understand the mechanism leading to the appearance of the EHO in QH-mode plasmas. For the first time nonlinear MHD simulations with low-n modes both with ideal wall and resistive wall boundary conditions have been carried out with the 3D non-linear MHD code JOREK. The results show, in agreement with the original conjectures, that in the non-linear phase, kink peeling modes are the main unstable modes in QH-mode plasmas of DIII-D and that the kink-peeling modes saturate non-linearly leading to a 3D stationary state. The characteristics of the kink-peeling modes, in terms of mode structure and associated decrease of the edge plasma density associated with them, are in good agreement with experimental measurements of the EHO in DIII-D. The effect of plasma resistivity, the role of plasma parallel rotation as well as the effect of the conductivity of the vacuum vessel wall on the destabilization and saturation of kink-peeling modes have been evaluated for experimental QH-mode plasma conditions in DIII-D.

  20. MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect

    NASA Astrophysics Data System (ADS)

    Mat Yasin, Mohd Hafizi; Ishak, Anuar; Pop, Ioan

    2016-06-01

    The steady two-dimensional magnetohydrodynamic (MHD) flow past a permeable stretching/shrinking sheet with radiation effects is investigated. The similarity transformation is introduced to transform the governing partial differential equations into a system of ordinary differential equations before being solved numerically using a shooting method. The results are obtained for the skin friction coefficient, the local Nusselt number and the local Sherwood number as well as the velocity, temperature and the concentration profiles for some values of the governing parameters, namely, suction/injection parameter S, stretching/shrinking parameter λ, magnetic parameter M, radiation parameter R, heat source/sink Q and chemical rate parameter K. For the shrinking case, there exist two solutions for a certain range of parameters, but the solution is unique for the stretching case. The stability analysis verified that the upper branch solution is linearly stable and physically reliable while the lower branch solution is not. For the reliable solution, the skin friction coefficient increases in the present of magnetic field. The heat transfer rate at the surface decreases in the present of radiation.

  1. Implementation of Inductive Magnetosphere-Ionosphere Coupling and its Effects on Global MHD Magnetospheric Simulations

    NASA Astrophysics Data System (ADS)

    Xi, S.; Lotko, W.; Zhang, B.; Brambles, O.; Wiltberger, M. J.; Lyon, J.; Merkin, V. G.

    2010-12-01

    In global modeling, magnetosphere-ionosphere (MI) coupling physically connects a global magnetospheric (GM) model and a global ionospheric-thermospheric (GIT) model. The field-aligned current from the GM model and the conductance distributions from the GIT model are used in a Poisson equation derived from the ionospheric Ohm's law combined with current continuity to determine the electrostatic potential in the ionosphere. In current GM models, this electrostatic potential is mapped to the inner boundary of the GM simulation to determine electrostatic boundary conditions on the electric field and MHD velocity there. Inductive effects and the finite Alfven transit time between the low-altitude GM boundary and the high-altitude GIT boundary (MI gap region) are neglected in this formulation of MI coupling. Using fields and currents derived from Lyon-Fedder-Mobarry GM simulations, and conductance distributions derived from its standalone empirical conductance model in the MI coupling Poisson equation, we have computed the fast Fourier transform of the electrostatic field at the low-altitude LFM simulation boundary as described above, and the FFT of the inductive electric field at the boundary under the assumption that μ 0 Σ P vA ≤ 1, where Σ P is the ionospheric Pedersen conductance and vA is the smallest value of the Alfven speed in the MI gap region. In this regime, the complete electric field at the low-altitude simulation boundary includes the usual mapped electrostatic field with an inductive addition for which the finite Alfven transit time and the diversion of field-aligned into polarization currents in the gap region are negligible (Lotko, 2004). By comparing the boundary-averaged spectra of the electrostatic and so-determined inductive fields, we confirm that the purely electrostatic formulation of MI coupling is valid when the MHD state varies on times scales exceeding about 200 s. For faster MHD time variations, the inductive electric field is shown to

  2. Complexities of a 3-D plasmoid flux rope as shown by an MHD simulation

    NASA Astrophysics Data System (ADS)

    Farr, N. L.; Baker, D. N.; Wiltberger, M.

    2008-12-01

    The results of a global magnetohydrodynamic (MHD) simulation of a pair of magnetospheric substorms on 11 August 2002 are presented. Comparisons of data with simulation results reveal a good agreement regarding the sequence of events during substorm development. We give particular emphasis to results in the simulation of a flux rope formed during the second substorm. Unlike standard 2-D depictions of reconnection and plasmoid release during the substorm sequence, the simulation shows a highly complex structure that has considerable winding of both closed and open field lines. Additionally, the simulated flux rope does not move tailward uniformly, but rather it has asymmetric motion in which the dawn flank portion moves tailward prior to the dusk portion of the flux rope. This results in a skewed flux rope structure that runs almost parallel to the tail axis instead of perpendicular to it. The simulation compares well with both prior flux rope simulations as well as satellite observations of flux ropes. We use the global simulation to map flux tube properties to the ionosphere, which allows the complexity of the mapping of the magnetic field structure from the tail to the ionosphere to be seen in a novel manner.

  3. Flow Matching Results of an MHD Energy Bypass System on a Supersonic Turbojet Engine Using the Numerical Propulsion System Simulation (NPSS) Environment

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2011-01-01

    Flow matching has been successfully achieved for an MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment helped perform a thermodynamic cycle analysis to properly match the flows from an inlet employing a MHD energy bypass system (consisting of an MHD generator and MHD accelerator) on a supersonic turbojet engine. Working with various operating conditions (such as the applied magnetic field, MHD generator length and flow conductivity), interfacing studies were conducted between the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis. This paper further describes the analysis of a supersonic turbojet engine with an MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to a range of 0 to 7.0 Mach with specific net thrust range of 740 N-s/kg (at ambient Mach = 3.25) to 70 N-s/kg (at ambient Mach = 7). These results were achieved with an applied magnetic field of 2.5 Tesla and conductivity levels in a range from 2 mhos/m (ambient Mach = 7) to 5.5 mhos/m (ambient Mach = 3.5) for an MHD generator length of 3 m.

  4. Interpreting Irradiance Distributions Using High-Resolution 3D MHD Simulations

    NASA Astrophysics Data System (ADS)

    Peck, Courtney; Rast, Mark; Criscuoli, Serena; Uitenbroek, Han; Rempel, Matthias D.

    2016-05-01

    We present initial results of studies aimed at understanding the impact of the unresolved magnetic field distribution on solar spectral irradiance. Using high-resolution 3D MHD simulations (from MURaM code) and spectral synthesis (with the RH code), we examine the emergent spectra of two atmospheres with similar mean field strengths but differing imposed-field conditions at wavelengths spanning from visible to infrared. Comparing the contrast against the magnetic field strength for the two magnetic simulations, we find differences in the distributions of contrasts versus field strength. We repeat the analysis after convolving the images with the PSF of a typical solar telescope (1-meter) and discuss the potential implications for irradiance modeling and future steps.

  5. The role of condensation and heat conduction in the formation of prominences - An MHD simulation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Bao, J. J.; An, C. H.; Tandberg-Hanssen, E.

    1990-01-01

    The effects of condensation and thermal conduction on the formation of Kippenhahn-Schlueter (K-S) type prominences in quiet regions (QP) due to symmetric mass injection are investigated. To implement this investigation a self-consistent, two-dimensional, nonplanar, time-dependent MHD simulation model is developed. In the model, various values of the injection velocity, density, and magnetic field strength are used to determine the most favorable conditions for the QP formation. Based on these simulation results, it is found that the formation of a K-S type field configuration should be considered as a dynamic process which needs both condensation amd mass injection to supply enough mass to maintain such a configuration to complete the quiescent prominence formation process.

  6. OpenGGCM Simulation of Ballooning and Axial MHD Mode at Substorm Onset (Invited)

    NASA Astrophysics Data System (ADS)

    Raeder, J.; Zhu, P.; Ge, Y.; Siscoe, G. L.

    2010-12-01

    It is generally accepted that magnetic reconnection is the main mechanism that dissipates power during a substorm. It is less clear, however, whether the beginning of magnetic reconnection in the magnetotail also signifies the onset of the substorm expansion phase itself, i.e., whether the "outside-in" scenario applies, or if a different process happens first closer to Earth that triggers the reconnection onset in the magnetotail, i.e., the "inside-out" scenario. Global MHD simulations have generally supported the "outside-in" scenario. However, ideal MHD instabilities that could possibly trigger tail reconnection may have been missed due to coarse numerical resolution or due to other numerical effects. Here, we present results from an OpenGGCM simulation of the March 23, 2007 substorm that clearly shows growth of the ballooning mode as suggested by our earlier analysis (Zhu et al., 2009), as well as growth of an ideal-like instability that is purely axial and was previously reported by Siscoe et al. (2009). Both instabilities occur simultaneously and are immediately followed by reconnection onset. The simulations results are in accordance with recent Geotail observations of ballooning with a wavelength of approximately 0.5 RE, and the time scales agree with that of the explosive growth phase. The exact relation between the three instabilities, i.e., ballooning, the axial mode, and tearing, is not entirely clear yet; however, having demonstrated that the OpenGGCM reproduces all of them, they can now be analyzed in more detail. Furthermore, we present the expected auroral signature of these processes, which will allow for a more detailed comparison of the simulation results with ground based imagers.

  7. MHD SIMULATIONS OF ACCRETION ONTO Sgr A*: QUIESCENT FLUCTUATIONS, OUTBURSTS, AND QUASIPERIODICITY

    SciTech Connect

    Chan Chikwan; Liu Siming; Fryer, Christopher L.; Psaltis, Dimitrios; Oezel, Feryal; Melia, Fulvio; Rockefeller, Gabriel

    2009-08-10

    High-resolution observations of Sgr A* have revealed a wide variety of phenomena, ranging from intense rapid flares to quasi-periodic oscillations (QPOs), making this object an ideal system to study the properties of low luminosity accreting black holes. In this paper, we use a pseudospectral algorithm to construct and evolve a three-dimensional magnetohydrodynamic (MHD) model of the accretion disk in Sgr A*. Assuming a hybrid thermal-nonthermal emission scheme and calibrating the parameters by observations, we show that the MHD turbulence in the environment of Sgr A* can by itself only produce factor two fluctuations in luminosity. These fluctuations cannot explain the magnitude of flares observed in this system. However, we also demonstrate that external forcing of the accretion disk, which may be generated by the 'clumpy material' raining down onto the disk from the large-scale flow, do produce outbursts qualitatively similar to those observed by XMM-Newton in X-rays and by ground-based facilities in the near infrared. Strong, but short-term QPOs emerge naturally in the simulated light curves. We attribute these to nonaxisymmetric density perturbations that emerge as the disk evolves back toward its quiescent state.

  8. Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics

    SciTech Connect

    Klein, R I; Li, P S; McKee, C F; Fisher, R

    2008-04-10

    Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse through the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256{sup 3} and 512{sup 3} simulations on supersonic but sub-Alfvenic turbulent systems with AD using the Heavy-Ion Approximation developed in Li et al. (2006). Our calculations are based on the assumption that the number of ions is conserved, but we show that these results approximately apply to the case of time-dependent ionization in molecular clouds as well. Convergence studies allow us to determine the optimal value of the ionization mass fraction when using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent systems. We find that ambipolar diffusion steepens the velocity and magnetic power spectra compared to the ideal MHD case. Changes in the density PDF, total magnetic energy, and ionization fraction are determined as a function of the AD Reynolds number. The power spectra for the neutral gas properties of a strongly magnetized medium with a low AD Reynolds number are similar to those for a weakly magnetized medium; in particular, the power spectrum of the neutral velocity is close to that for Burgers turbulence.

  9. Two-Species, 3D, MHD Simulation of Europa's Interaction with Jupiter's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Liu, Yifan; Nagy, Andrew F.; Kabin, Konstantin; Combi, Michael R.; DeZeeuw, Darren L.; Gombosi, Tamas I.; Powell, Kenneth G.

    2000-01-01

    The interaction of Europa with the Jovian a magnetosphere has been studied by using a two species in ideal magnetohydrodynamic (MHD) numerical model. This model considers the upstream plasma in the Jovian magnetosphere and the molecular oxygen ions in the ionosphere of Europa, separately. We present results a from simulation studies, which take into account impact ionization, recombination, and the effect of a possible induced dipole magnetic field of Europa. The total mass loading of the magnetospheric flow and the ionization frequency used in the model are consistent with the estimates of Europa's ionosphere and atmosphere. The multi-species MHD equations are solved by using a finite volume, high-order, Godunov-type method on an adoptively refined unstructured grid, which allows a detailed modeling of the region near Europa's surface, while still resolving both the upstream region and the satellite's wake. We have paid special attention to the wake of Europa, in order to be able to make comparisons with the Galileo's E4 flyby observations, as well as other model calculations. The calculated escape flux of a O2+ down the tail was found to be about 5.6 x 10(exp 25) s(sup -1).

  10. On Europa's Magnetospheric Interaction: A MHD Simulation of the E4 Flyby

    NASA Technical Reports Server (NTRS)

    Kabin, K.; Combi, M. R.; Gombosi, T. I.; Nagy, A. F.; DeZeeuw, D. L.; Powell, K. G.

    1999-01-01

    The global three-dimensional interaction of Europa with the Jovian magnetosphere is modeled by using a complete set of ideal magnetohydrodynamic (MHD) equations. The model accounts for exospheric mass loading, ion-neutral charge exchange, recombination, and a possible intrinsic dipole magnetic field of Europa. The single-fluid MHD equations are solved by using a modem, finite volume, higher-order, Godunov-type method on an adoptively refined unstructured grid, which allows detailed modeling of the region near Europa while still resolving both the upstream region and the satellite's wake. The magnetic field and plasma density measured during Galileo's EGA flyby of December 19, 1996, are reproduced reasonably well in the simulation. We find the agreement between the data and our model particularly convincing if we assume that the plasma velocity during the EGA flyby deviated from the nominal corotation direction by approximately 20 deg. Evidence from the Galileo energetic particle detector also supports this assumption. In this case, we can fit the data using a dipole with orientation close to that of an induced dipole arising from the interaction of a hypothetical conducting subsurface layer on Europa with the periodically changing magnetic field of Jupiter. However, the magnitude of the dipole in our model is somewhat smaller (70%) than that suggested by Khurana et al. The total mass loading and ion-neutral charge exchange rates are consistent with the estimates of Europa's atmosphere and ionosphere.

  11. Rarefaction and compressional standing slow mode structures in Mercury's magnetosheath: 3D MHD simulations

    NASA Astrophysics Data System (ADS)

    Pantellini, Filippo; Griton, Léa; Varela, Jacobo

    2015-07-01

    We show that slow mode compressional fronts form upstream of the day side magnetopause in MHD simulations of Mercury's magnetosphere. The strongest compressional fronts are located upstream of the magnetopause with strong magnetic shear. Compressional fronts are crossed by magnetic field lines connecting the interplanetary magnetic field and the planet's intrinsic field, their role is to bend the magnetic field in the magnetosheath towards the magnetopause. Besides these compressional fronts, already observed in space and theoretically discussed by various authors for the case of the Earth, we observe the formation of a slow mode standing rarefaction wave spatially growing over a substantial fraction of the distance between the bow shock and the magnetopause. The slow mode source region for the rarefaction waves is located in the magnetosheath, near the bow shock's nose. The generated standing rarefaction waves, however, form even at large distances from the source region along the magnetospheric flanks. They fine-tune the magnetic field line draping and plasma flow around the magnetopause. In ideal MHD the magnetospheres of Mercury, the Earth and the giant planets do closely resemble each other, we therefore expect the mentioned slow mode structures not to be specific to Mercury.

  12. Nonlinear MHD simulation of current drive by multi-pulsed coaxial helicity injection in spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2011-10-01

    The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.

  13. Lagrangian MHD Particle-in-Cell simulations of coronal interplanetary shocks driven by observations

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Bacchini, Fabio; Bemporad, Alessandro; Susino, Roberto; Olshevskyi, Vyacheslav

    2016-04-01

    In this work, we compare the spatial distribution of the plasma parameters along the June 11, 1999 CME-driven shock front with the results obtained from a CME-like event simulated with the FLIPMHD3D code, based on the FLIP-MHD Particle-in-Cell (PiC) method. The observational data are retrieved from the combination of white-light (WL) coronagraphic data (for the upstream values) and the application of the Rankine-Hugoniot (RH) equations (for the downstream values). The comparison shows a higher compression ratio X and Alfvénic Mach number MA at the shock nose, and a stronger magnetic field deflection d towards the flanks, in agreement with observations. Then, we compare the spatial distribution of MA with the profiles obtained from the solutions of the shock adiabatic equation relating MA, X, and the angle between the upstream magnetic field and the shock front normal for the special cases of parallel and perpendicular shock, and with a semi-empirical expression for a generically oblique shock. The semi-empirical curve approximates the actual values of MA very well, if the effects of a non-negligible shock thickness and plasma-to magnetic pressure ratio are taken into account throughout the computation. Moreover, the simulated shock turns out to be supercritical at the nose and sub-critical at the flanks. Finally, we develop a new 1D Lagrangian ideal MHD method based on the GrAALE code, to simulate the ion-electron temperature decoupling due to the shock transit. Two models are used, a simple solar wind model and a variable-gamma model. Both produce results in agreement with observations, the second one being capable of introducing the physics responsible for the additional electron heating due to secondary effects (collisions, Alfvén waves, etc.). Work supported by the European Commission under the SWIFF project (swiff.eu)

  14. Plasmoid dynamics in 3D resistive MHD simulations of magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Samtaney, R.; Loureiro, N. F.; Uzdensky, D. A.; Schekochihin, A. A.

    2012-04-01

    Magnetic reconnection is a well known plasma process believed to lie at the heart of a variety of phenomena such as sub-storms in the Earth's magnetosphere, solar/stellar and accretion-disk flares, sawteeth activity in fusion devices, etc. During reconnection, the global magnetic field topology changes rapidly, leading to the violent release of magnetic energy. Over the past few years, the basic understanding of this fundamental process has undergone profound changes. The validity of the most basic, and widely accepted, reconnection paradigm - the famous Sweet-Parker (SP) model, which predicts that, in MHD, reconnection is extremely slow, its rate scaling as S-1/2, where S is the Lundquist number of the system - has been called into question as it was analytically demonstrated that, for S ≫ 1, SP-like current sheets are violently unstable to the formation of a large number of secondary islands, or plasmoids. Subsequent numerical simulations in 2D have confirmed the validity of the linear theory, and shown that plasmoids quickly grow to become wider than the thickness of the original SP current sheet, thus effectively changing the underlying reconnection geometry. Ensuing numerical work has revealed that the process of plasmoid formation, coalescence and ejection from the sheet drastically modifies the steady state picture assumed by Sweet and Parker, and leads to the unexpected result that MHD reconnection is independent of S. In this talk, we review these recent developments and present results from three-dimensional simulations of high-Lundquist number reconnection in the presence of a guide field. A parametric study varying the strength of the guide field is presented. Plasmoid flux and width distribution functions are quantified and compared with corresponding two dimensional simulations.

  15. Propagation of BBFs and Dipolarization Fronts in the Global MHD simulation of February 27, 2009 Substorm

    NASA Astrophysics Data System (ADS)

    Ge, Y.; Raeder, J.; Angelopoulos, V.; Gilson, M. L.; Runov, A.

    2010-12-01

    A global MHD simulation has been performed to investigate the THEMIS substorm on February 27, 2009. During this substorm the conjugated observations from the space and on the THEMIS ground observatories are available. The location and time of this substorm onset can be determined based on these observations. The initial auroral brightening is found at around 07:49 UT in the field of view of Fort Smith station (FSMI), with a pre-existing auroral arc located equatorward. A couple minutes later, the in situ observations recorded a sharp dipolarization front sunward passing through THEMIS spacecraft, which travels almost 10 RE in the magnetotail. In this study our global MHD model, i.e., OpenGGCM, driven by the real-time solar wind/IMF conditions, is able to reproduce the key features of these substorm signatures, including the auroral breakup at FSMI with the same onset time as the observations, and a strong earthward Bursty Bulk Flow (BBF) and dipolarization fronts that cause the substorm onset signatures. It is found in the simulation that the auroral breakup is caused by the strong flow shear and the flow vortices which form as the BBF moves earthward. Investigation of the tail BBF and its dipolarization front (DF) reveals that the bipolar change of the Bz component ahead of the DF can be produced by the interaction between two distinct plasmas from separate X lines: the anti-sunward moving southward flux tubes in the tailward flows emanating from an inner magnetic reconnection region, and the sunward traveling dipolarized tubes within the front of a strong earthward BBF that originates in a mid-tail reconnection region. The rebound and oscillations of the intruding BBF reported by the recent THEMIS observations are also seen in the simulation when the BBF encounters the high-pressure inner magnetosphere.

  16. A Real-time 3D Visualization of Global MHD Simulation for Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Murata, K.; Matsuoka, D.; Kubo, T.; Shimazu, H.; Tanaka, T.; Fujita, S.; Watari, S.; Miyachi, H.; Yamamoto, K.; Kimura, E.; Ishikura, S.

    2006-12-01

    Recently, many satellites for communication networks and scientific observation are launched in the vicinity of the Earth (geo-space). The electromagnetic (EM) environments around the spacecraft are always influenced by the solar wind blowing from the Sun and induced electromagnetic fields. They occasionally cause various troubles or damages, such as electrification and interference, to the spacecraft. It is important to forecast the geo-space EM environment as well as the ground weather forecasting. Owing to the recent remarkable progresses of super-computer technologies, numerical simulations have become powerful research methods in the solar-terrestrial physics. For the necessity of space weather forecasting, NICT (National Institute of Information and Communications Technology) has developed a real-time global MHD simulation system of solar wind-magnetosphere-ionosphere couplings, which has been performed on a super-computer SX-6. The real-time solar wind parameters from the ACE spacecraft at every one minute are adopted as boundary conditions for the simulation. Simulation results (2-D plots) are updated every 1 minute on a NICT website. However, 3D visualization of simulation results is indispensable to forecast space weather more accurately. In the present study, we develop a real-time 3D webcite for the global MHD simulations. The 3-D visualization results of simulation results are updated every 20 minutes in the following three formats: (1)Streamlines of magnetic field lines, (2)Isosurface of temperature in the magnetosphere and (3)Isoline of conductivity and orthogonal plane of potential in the ionosphere. For the present study, we developed a 3-D viewer application working on Internet Explorer browser (ActiveX) is implemented, which was developed on the AVS/Express. Numerical data are saved in the HDF5 format data files every 1 minute. Users can easily search, retrieve and plot past simulation results (3D visualization data and numerical data) by using

  17. Dayside Proton Aurora: Comparisons between Global MHD Simulations and Image Observations

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Fuselier, S. A.; Petrinec, S.; Frey, H. U.; Burch, J. L.

    2003-01-01

    The IMAGE mission provides a unique opportunity to evaluate the accuracy of current global models of the solar wind interaction with the Earth's magnetosphere. In particular, images of proton auroras from the Far Ultraviolet Instrument (FUV) onboard the IMAGE spacecraft are well suited to support investigations of the response of the Earth's magnetosphere to interplanetary disturbances. Accordingly, we have modeled two events that occurred on June 8 and July 28, 2000, using plasma and magnetic field parameters measured upstream of the bow shock as input to three-dimensional magnetohydrodynamic (MHD) simulations. This paper begins with a discussion of images of proton auroras from the FUV SI-12 instrument in comparison with the simulation results. The comparison showed a very good agreement between intensifications in the auroral emissions measured by FUV SI-12 and the enhancement of plasma flows into the dayside ionosphere predicted by the global simulations. Subsequently, the IMAGE observations are analyzed in the context of the dayside magnetosphere's topological changes in magnetic field and plasma flows inferred from the simulation results. Finding include that the global dynamics of the auroral proton precipitation patterns observed by IMAGE are consistent with magnetic field reconnection occurring as a continuous process while the iMF changes in direction and the solar wind dynamic pressure varies. The global simulations also indicate that some of the transient patterns observed by IMAGE are consistent with sporadic reconnection processes. Global merging patterns found in the simulations agree with the antiparallel merging model. though locally component merging might broaden the merging region, especially in the region where shocked solar wind discontinuities first reach the magnetopause. Finally, the simulations predict the accretion of plasma near the bow shock in the regions threaded by newly open field lines on which plasma flows into the dayside

  18. Cavities of Weak Magnetic Field Strength in the Wake of FTEs: Results from Global Magnetospheric MHD Simulations

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Sibeck, D. G.; Hesse, M.; Wang, Y.; Rastaetter, L.; Toth, G.; Ridley, A.

    2009-01-01

    We use the global magnetohydrodynamic (MHD) code BATS-R-US to model multipoint observations of Flux Transfer Event (FTE) signatures. Simulations with high spatial and temporal resolution predict that cavities of weak magnetic field strength protruding into the magnetosphere trail FTEs. These predictions are consistent with recently reported multi-point Cluster observations of traveling magnetopause erosion regions (TMERs).

  19. Relativistic Modeling Capabilities in PERSEUS Extended-MHD Simulation Code for HED Plasmas

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel; Seyler, Charles

    2015-11-01

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as hybrid X-pinches and laser-plasma interactions. We have overcome a major challenge of a relativistic fluid implementation, namely the recovery of primitive variables (density, velocity, pressure) from conserved quantities at each time step of a simulation. Our code recovers non-relativistic results along with important features of published Particle-In-Cell simulation results for a laser penetrating a super-critical hydrogen gas with Fast Ignition applications. In particular, we recover the penetration of magnetized relativistic electron jets ahead of the laser. Our code also reveals new physics in the modeling of a laser incident on a thin foil. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.

  20. Two-dimensional Numerical Simulation on Performance of Liquid Metal MHD Generator

    NASA Astrophysics Data System (ADS)

    Yamada, Katsunori; Maeda, Tetsuhiko; Hasegawa, Yasuo; Okuno, Yoshihiro

    The performance of a liquid metal MHD generator is investigated with a two-dimensional numerical simulation. The effects of the electrode length, the position of current lead connection and the insertion of insulator on the performance are examined taking account of the current flow in the electrode. There exists an optimal electrode length for a given distribution of applied magnetic flux density. For a short electrode, the efficiency decreases because the power output becomes small. For a long electrode, on the other hand, the efficiency also decreases owing to the leakage current from the upstream and downstream edges of the electrode. An optimal current lead position was revealed. This fact is ascribed to the distributions of induced magnetic field and the current flow in the electrode. It was found that the insertion of insulator is effective for improving the performance, by which the eddy current can be reduced.

  1. The magnetic topology of the plasmoid flux rope in a MHD simulation of magnetotail reconnection

    SciTech Connect

    Birn, J.; Hesse, M.

    1989-01-01

    On the basis of a three-dimensional MHD simulation we discuss the magnetic topology of a plasmoid that forms by a localized reconnection process in a magnetotail configuration including a net dawn-dusk magnetic field component B/sub yN/. As a consequence of b/sub yN/ /ne/ 0 the plasmid gets a helical flux rope structure rather than an isolated island or bubble structure. Initially all field lines of the plasmid flux rope remain connected with the Earth, while at later times a gradually increasing amount of flux tubes becomes separated, connecting to either the distant boundary or to the flank boundaries. In this stage topologically different flux tubes become tangled and wrapped around each other, consistent with predictions on the basis of ad-hoc plasmid models. 10 refs., 8 figs.

  2. The magnetic topology of the plasmoid flux rope in a MHD-simulation of magnetotail reconnection

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, M.

    1990-01-01

    On the basis of a 3D MHD simulation, the magnetic topology of a plasmoid that forms by a localized reconnection process in a magnetotail configuration (including a net dawn-dusk magnetic field component B sub y N is discussed. As a consequence of B sub y N not equalling 0, the plasmoid assumes a helical flux rope structure rather than an isolated island or bubble structure. Initially all field lines of the plasmoid flux rope remain connected with the earth, while at later times a gradually increasing amount of flux tubes becomes separated, connecting to either the distant boundary or to the flank boundaries. In this stage, topologically different flux tubes become tangled and wrapped around each other, consistent with predictions on the basis of an ad hoc plasmoid model.

  3. Modeling CME-shock-driven storms in 2012-2013: MHD test particle simulations

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.; Paral, J.; Kress, B. T.; Wiltberger, M.; Baker, D. N.; Foster, J. C.; Turner, D. L.; Wygant, J. R.

    2015-02-01

    The Van Allen Probes spacecraft have provided detailed observations of the energetic particles and fields environment for coronal mass ejection (CME)-shock-driven storms in 2012 to 2013 which have now been modeled with MHD test particle simulations. The Van Allen Probes orbital plane longitude moved from the dawn sector in 2012 to near midnight and prenoon for equinoctial storms of 2013, providing particularly good measurements of the inductive electric field response to magnetopause compression for the 8 October 2013 CME-shock-driven storm. An abrupt decrease in the outer boundary of outer zone electrons coincided with inward motion of the magnetopause for both 17 March and 8 October 2013 storms, as was the case for storms shortly after launch. Modeling magnetopause dropout events in 2013 with electric field diagnostics that were not available for storms immediately following launch have improved our understanding of the complex role that ULF waves play in radial transport during such events.

  4. Large scale standing slow mode structures in MHD simulations of the hermean magnetosphere

    NASA Astrophysics Data System (ADS)

    Pantellini, Filippo; Meyrand, Romain; Varela, Jacobo

    2015-04-01

    Standing slow mode compressional fronts are seen to form upstream of the day side magnetopause in MHD simulations of Mercury's magnetosphere. These fronts are seen to form upstream of the portions of the magnetopause characterized by a near reversal of the magnetic field orientation. Their role is to bend the magnetosheath field lines towards the magnetopause. Besides these compressional fronts, already observed in space and theoretically discussed by various authors for the case of the Earth, large scale slow mode rarefaction waves are also seen to form in most parts of the magnetosheath. The rarefaction waves are essential to divert the interplanetary magnetic field lines and the solar wind plasma flow around the magnetopause.

  5. Initial Flow Matching Results of MHD Energy Bypass on a Supersonic Turbojet Engine Using the Numerical Propulsion System Simulation (NPSS) Environment

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2010-01-01

    Preliminary flow matching has been demonstrated for a MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment was used to perform a thermodynamic cycle analysis to properly match the flows from an inlet to a MHD generator and from the exit of a supersonic turbojet to a MHD accelerator. Working with various operating conditions such as the enthalpy extraction ratio and isentropic efficiency of the MHD generator and MHD accelerator, interfacing studies were conducted between the pre-ionizers, the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis and describes the NPSS analysis of a supersonic turbojet engine with a MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to an explored and desired range of 0 to 7.0 Mach.

  6. Temporal evolution of a Current Sheet with Initial Finite Perturbations by Three-dimensional MHD Simulations

    NASA Astrophysics Data System (ADS)

    Yokoyama, Takaaki

    Temporal evolution of a current sheet with initial perturbations is studied by using the threedimensional resistive magnetohydrodynamic (MHD) simulations. The magnetic reconnection is considered to be the main engine of the energy rele ase in solar flares. The structure of the diffusion region is, however, not stil l understood under the circumstances with enormously large magnetic Reynolds num ber as the solar corona. In particular, the relationship between the flare's macroscopic physics and the microscopic ones are unclear. It is generally believed that the MHD turbulence s hould play a role in the intermediate scale. The initial current sheet is in an approximately hydromagnetic equilibrium with anti-parallel magnetic field in the y-direction. We imposed a finite-amplitude perturbations (=50ee what happens. Special attention is paid upon the evolution of a three-dimens ional structure in the direction along the initial electric current (z-direction ). Our preliminary results are as follows: (1) In the early phase of the evolut ion, high wavenumber modes in the z-direction are excited and grow. (2) Many "X "-type neutral points (lines) are generated along the magnetic neutral line (pla ne) in the current sheet. When they evolve into the non-linear phase, three-dime nsional structures in the z-direction also evolve. The spatial scale in the z-di rection seems to be almost comparable with that in the xy-plane. (3) The energy release rate is reduced in case of 3D simulations compared with 2D ones probably because of the reduction of the inflow cross sections by the formation of pattc hy structures in the current sheet.

  7. Saturn's periodicities: New results from an MHD simulation of magnetospheric response to rotating ionospheric vortices

    NASA Astrophysics Data System (ADS)

    Kivelson, M.; Jia, X.

    2013-12-01

    In previous work we demonstrated that a magnetohydrodynamic (MHD) simulation of Saturn's magnetosphere in which periodicity is imposed by rotating vortical flows in the ionosphere reproduces many reported periodically varying properties of the system. Here we shall show that previously unreported features of the MHD simulation of Saturn's magnetosphere illuminate additional measured properties of the system. By averaging over a rotation period, we identify a global electric field whose magnitude is a few tenths of a mV/m (see Figure 1). The electric field intensity decreases with radial distance in the middle magnetosphere, consistent with drift speeds v=E/B of a few km/s towards the morning side and relatively independent of radial distance. The electric field within 10 RS in the equatorial plane is oriented from post-noon to post-midnight, in excellent agreement with observations [e.g., Thomsen et al., 2012; Andriopoulou et al., 2012, 2013; Wilson et al., 2013]. By following the electric field over a full rotation phase we identify oscillatory behavior whose magnitude is consistent with the reported fluctuations of measured electric fields. Of particular interest is the nature of the fast mode perturbations that produce periodic displacement of the magnetopause and flapping of the current sheet. Figure (2) shows the total perturbation pressure (the sum of magnetic and thermal pressure) in the equatorial plane at a rotation phase for which the ionospheric flow near noon is equatorward. By following the perturbations over a full rotation period, we demonstrate properties of the fast mode wave launched by the rotating flow structures and thereby characterize the 'cam' signal originally proposed by Espinosa et al. [2003].

  8. An MHD simulation of plasmoid instability in the dayside ionosphere of an unmagnetized planet

    NASA Astrophysics Data System (ADS)

    Hitoshi, S.; Terada, N.; Kasaba, Y.

    2015-12-01

    A numerical simulation of magnetic reconnection in the dayside ionosphere of an unmagnetized planet and a comparison of the size distribution of flux ropes obtained from simulation with that from observation will be reported. Flux ropes have been frequently observed in the dayside ionospheres of Venus and Mars[Russell and Elphic, 1979; Cloutier et al.,1999] and their radius has been found to be between 6 to 12 km near the subsolar location of Venus[Russell et al., 1990]. Dreher et al. [1995] suggested using an MHD simulation that reconnection caused by an IMF rotation can generate flux ropes at the Venus ionopause. However, Dreher et al. [1995] examined only the linear stage of reconnection, so the nonlinear stage that takes into consideration the vertical convection of the reconnection site along the intrinsic convection in the Venus ionosphere has yet to be investigated. In this study, using a 2-D multi-species MHD simulation, the spatiotemporal evolution of reconnection in the ionosphere of Venus is examined. The size distribution of flux ropes is also examined and the validity of the generation mechanism of flux ropes is discussed by comparing the rope size distribution with the observed one. In the ionosphere of Venus, our simulation result shows that plasmoid instability [Loureiro et al., 2007] occurs in a Sweet-Parker (SP) current sheet above the altitude where Lundquist number exceeds 106, and consequently many plasmoids are generated. In the nonlinear stage, secondary reconnections occur in the current sheets, which exist between adjacent pairs of plasmoids, and thus smaller flux ropes are created. It has been suggested that the smaller side of the size distribution increases as a result of hierarchical reconnections in the SP current sheet [Shibata et al., 2001]. The observational size distribution [Vignes et al., 2003] shows that the population of small flux ropes is larger than that of large ones and it is consistent with the simulation result. Through

  9. Complexities of a 3-D flux rope as shown by MHD simulation

    NASA Astrophysics Data System (ADS)

    Farr, N.; Baker, D. N.; Wiltberger, M.

    2007-12-01

    This paper presents the results of a global magnetohydrodynamic (MHD) simulation of a pair of substorms on August 11, 2002. Comparisons of data with simulation results reveal an agreement regarding the sequence of events in the magnetosphere. We then present the results in the simulation of a flux rope formed during the second substorm. Unlike standard 2-D depictions of reconnection and plasmoid release during a substorm, the simulation shows a highly complex structure that has considerable winding of both closed and open field lines. Additionally the flux rope does not move tailward uniformly, but rather has a assymetric motion where the dawn flank moves tailward prior to the dusk end of the flux rope, resulting in a a skewed flux rope that runs almost downtail instead of crosstail. These features can add considerably complexity to satellites observing a flux rope structure in-situ. A single spacecraft could observe particle populations that go through a sequence of alternating open and closed field lines and spacecraft separated by small spatial distances could observe quite different populations as well.

  10. MHD simulations of boundary layer formation along the dayside Venus ionopause due to mass loading

    NASA Astrophysics Data System (ADS)

    McGary, J. E.; Pontius, D. H.

    1994-02-01

    A two-dimensional magnetohydrodynamic (MHD) simulation of mass-loaded solar wind flow around the dayside of Venus is presented. For conditions appropriate to a low-altitude ionopause the simulations show that mass loading from the pickup of oxygen ions produces a boundary layer of finite thickness along the ionopause. Within this layer the temperatures exhibit strong gradients normal to and away from the ionopause. Furthermore, there is a shear in the bulk flow velocity across the boundary layer, such that the (predominantly tangential) flow decreases in speed as the ionopause is approached and remains small along the ionopause, consistent with Pioneer Venus observations. The total mass density increases significantly as the flow approaches the ionopause, where the contribution of O(+) to the total number density is a few percent. Numerical simulations are carried out for various mass addition rates and demonstrate that the boundary layer develops when oxygen ion production exceeds approximately 2 x 105/cu m/s. For the upstream solar wind parameters and mass loading rates chosen for these simulations, the results are consistent with observations made on the dayside of Venus for average ionopause conditions near 300 km.

  11. The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheets

    NASA Astrophysics Data System (ADS)

    Aliakbar, V.; Alizadeh-Pahlavan, A.; Sadeghy, K.

    2009-03-01

    Flow induced in a viscoelastic fluid by a linearly stretched sheet is investigated assuming that the fluid is Maxwellian and the sheet is subjected to a transverse magnetic field. The objective is to investigate the effects of parameters such as elasticity number, magnetic number, radiative heat transfer, Prandtl number, and Eckert number on the temperature field above the sheet. To do this, boundary layer theory will be used to simplify energy and momentum equations assuming that fluid physical/rheological properties remain constant. A suitable similarity transformation will be used to transform boundary layer equations from PDEs into ODEs. Homotopy analysis method (HAM) will be invoked to find an analytical solution for the temperature field above the sheet knowing the velocity profiles (see Alizadeh-Pahlavan et al. [Alizadeh-Pahlavan A, Aliakbar V, Vakili-Farahani F, Sadeghy K. MHD flows of UCM fluids above porous stretching sheets using two-auxiliary parameter homotopy analysis method. Commun. Nonlinear Sci Numer Simulat, in press]). The importance of manipulating the transverse velocity component, v, will be discussed on the temperature field above the sheet.

  12. The distribution of MHD turbulence in the heliosphere and the charged particle radiation environment

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.

    2004-12-01

    Magnetohydrodynamic (MHD) turbulence plays an important role in cross scale couplings in the heliospheric system and is central to understanding the distribution and variations of charged particle radiation. The nonlinear turbulent cascade process acts as a conduit connecting large scale fluid-like plasma motions to small scale kinetic motions, and is thus most likely an integral part of heating processes from the coronal base to the outer boundaries of the heliosphere. Turbulence also establishes key parameters that determine the transport (and perhaps also, acceleration) of energetic charged particles. In the inner heliospheric realm of solar energetic particles, turbulence can account for scattering, field line complexity, and topological trapping, and can provide other indirect effects such as turbulent transport affecting CMEs and shocks. To understand the distribution and spectra of galactic cosmic rays, one must know the diffusion tensor and therefore local turbulence properties. Turbulence is transported outward in the supersonic solar wind, while the cosmic rays diffuse and drift inwards from the interstellar medium. Thus to understand how the spectrum of galactic cosmic rays is established at any point in interplanetary space, it is necessary to have knowledge of the turbulence everywhere in the heliosphere. Here we summarize recent progress in this challenging area. Headway has been made by employing a four equation transport model with one point nonlinear modeling of locally homogeneous turbulence. The model follows turbulence energy density, correlation scale, temperature and cross helicity under the influence of specified large scale fields. The turbulence is driven by large scale shear, and in the outer heliosphere, by pickup ions. A few constants must be estimated either from theory or observations -- the MHD Karman-Taylor constants, the shear strength, a turbulence geometry factor ("mixing term"), and the Alfven ratio. The latitudinal dependence of

  13. Particle acceleration and non-thermal emission in Pulsar Wind Nebulae from relativistic MHD simulations

    NASA Astrophysics Data System (ADS)

    Olmi, B.; Del Zanna, L.; Amato, E.; Bucciantini, N.; Bandiera, R.

    2015-09-01

    Pulsar wind nebulae are among the most powerful particle accelerators in the Galaxy with acceleration efficiencies that reach up to 30% and maximum particle energies in the PeV range. In recent years relativistic axisymmetric MHD models have proven to be excellent tools for describing the physics of such objects, and particularly successful at explaining their high energy morphology, down to very fine details. Nevertheless, some important aspects of the physics of PWNe are still obscure: the mechanism(s) responsible for the acceleration of particles of all energies is (are) still unclear, and the origin of the lowest energy (radio emitting) particles is most mysterious. The correct interpretation of the origin of radio emitting particles is of fundamental importance, as this holds information about the amount of pair production in the pulsar magnetosphere, and hence on the role of pulsars as antimatter factories. On the other hand, the long lifetimes of these particles against synchrotron losses, allows them to travel far from their injection location, making their acceleration site difficult to constrain. As far as the highest energy (X and gamma-ray emitting) particles are concerned, their acceleration is commonly believed to occur at the pulsar wind termination shock. But since the upstream flow is thought to have non-uniform properties along the shock surface, important constraints on the acceleration mechanism(s) could come from exact knowledge of the location and flow properties where particles are being accelerated. We investigate in detail both topics by means of 2D numerical MHD simulations. Different assumptions on the origin of radio particles and more generally on the injection sites of all particles are considered, and the corresponding emission properties are computed. We discuss the physical constraints that can be inferred from comparison of the synthetic emission properties against multiwavelength observations of the PWN class prototype, the Crab

  14. Time-dependent simulation of oblique MHD cosmic-ray shocks using the two-fluid model

    NASA Technical Reports Server (NTRS)

    Frank, Adam; Jones, T. W.; Ryu, Dongsu

    1995-01-01

    Using a new, second-order accurate numerical method we present dynamical simulations of oblique MHD cosmic-ray (CR)-modified plane shock evolution. Most of the calculations are done with a two-fluid model for diffusive shock acceleration, but we provide also comparisons between a typical shock computed that way against calculations carried out using the more complete, momentum-dependent, diffusion-advection equation. We also illustrate a test showing that these simulations evolve to dynamical equilibria consistent with previously published steady state analytic calculations for such shocks. In order to improve understanding of the dynamical role of magnetic fields in shocks modified by CR pressure we have explored for time asymptotic states the parameter space of upstream fast mode Mach number, M(sub f), and plasma beta. We compile the results into maps of dynamical steady state CR acceleration efficiency, epsilon(sub c). We have run simulations using constant, and nonisotropic, obliquity (and hence spatially) dependent forms of the diffusion coefficient kappa. Comparison of the results shows that while the final steady states achieved are the same in each case, the history of CR-MHD shocks can be strongly modified by variations in kappa and, therefore, in the acceleration timescale. Also, the coupling of CR and MHD in low beta, oblique shocks substantially influences the transient density spike that forms in strongly CR-modified shocks. We find that inside the density spike a MHD slow mode wave can be generated that eventually steepens into a shock. A strong layer develops within the density spike, driven by MHD stresses. We conjecture that currents in the shear layer could, in nonplanar flows, results in enhanced particle accretion through drift acceleration.

  15. MHD mixed convection flow of a power law nanofluid over a vertical stretching sheet with radiation effect

    NASA Astrophysics Data System (ADS)

    Aini Mat, Nor Azian; Arifin, Norihan Md.; Nazar, Roslinda; Ismail, Fudziah; Bachok, Norfifah

    2013-09-01

    A similarity solution of the steady magnetohydrodynamic (MHD) mixed convection boundary layer flow due to a stretching vertical heated sheet in a power law nanofluid with thermal radiation effect is theoretically studied. The governing system of partial differential equations is first transformed into a system of ordinary differential equations. The transformed equations are solved numerically using the shooting method. The influence of pertinent parameters such as the nanoparticle volume fraction parameter, the magnetic parameter, the buoyancy or mixed convection parameter and the radiation parameter on the flow and heat transfer characteristics is discussed. Comparisons with published results are also presented.

  16. Fractional boundary layer flow and radiation heat transfer of MHD viscoelastic fluid over an unsteady stretching surface

    SciTech Connect

    Shen, Bingyu; Zheng, Liancun Chen, Shengting

    2015-10-15

    This paper presents an investigation for magnetohydrodynamic (MHD) viscoelastic fluid boundary layer flow and radiation heat transfer over an unsteady stretching sheet in presence of heat source. Time dependent fractional derivative is first introduced in formulating the boundary layer equations. Numerical solutions are obtained by using the finite difference scheme and L1-algorithm approximation. Results indicate that the proposed model describes a basic delaying times framework for viscoelastic flow and radiation heat transfer. The effects of involved parameters on velocity and temperature fields are shown graphically and analyzed in detail.

  17. Global MHD Simulations of Space Plasma Environments: Heliosphere, Comets, Magnetospheres of Plants and Satellites

    NASA Technical Reports Server (NTRS)

    Kabin, K.; Hansen, K. C.; Gombosi, T. I.; Combi, M. R.; Linde, T. J.; DeZeeuw, D. L.; Groth, C. P. T.; Powell, K. G.; Nagy, A. F.

    2000-01-01

    Magnetohydrodynamics (MHD) provides an approximate description of a great variety of processes in space physics. Accurate numerical solutions of the MHD equations are still a challenge, but in the past decade a number of robust methods have appeared. Once these techniques made the direct solution of MHD equations feasible, a number of global three-dimensional models were designed and applied to many space physics objects. The range of these objects is truly astonishing, including active galactic nuclei, the heliosphere, the solar corona, and the solar wind interaction with planets, satellites, and comets. Outside the realm of space physics, MHD theory has been applied to such diverse problems as laboratory plasmas and electromagnetic casting of liquid metals. In this paper we present a broad spectrum of models of different phenomena in space science developed in the recent years at the University of Michigan. Although the physical systems addressed by these models are different, they all use the MHD equations as a unifying basis.

  18. Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm

    NASA Technical Reports Server (NTRS)

    Kato, Hiromasa; Tannehill, John C.; Mehta, Unmeel B.

    2003-01-01

    A new parabolized Navier-Stokes (PNS) algorithm has been developed to efficiently compute magnetohydrodynamic (MHD) flows in the low magnetic Reynolds number regime. In this regime, the electrical conductivity is low and the induced magnetic field is negligible compared to the applied magnetic field. The MHD effects are modeled by introducing source terms into the PNS equation which can then be solved in a very efficient manner. To account for upstream (elliptic) effects, the flowfields are computed using multiple streamwise sweeps with an iterated PNS algorithm. Turbulence has been included by modifying the Baldwin-Lomax turbulence model to account for MHD effects. The new algorithm has been used to compute both laminar and turbulent, supersonic, MHD flows over flat plates and supersonic viscous flows in a rectangular MHD accelerator. The present results are in excellent agreement with previous complete Navier-Stokes calculations.

  19. MHD simulations of Earth's bow shock: Interplanetary magnetic field orientation effects on shape and position

    NASA Astrophysics Data System (ADS)

    Chapman, J. F.; Cairns, Iver H.; Lyon, J. G.; Boshuizen, Christopher R.

    2004-04-01

    The location and geometry of Earth's bow shock vary considerably with the solar wind conditions. More specifically, Earth's bow shock is formed by the steepening of fast mode waves, whose speed vms depends upon the angle θbn between the local shock normal n and the magnetic field vector BIMF, as well as the Alfvén and sound speeds (vA and cS). Since vms is a minimum for θbn = 0° and low Alfvén Mach number MA, and maximum for θbn = 90° and high MA, this implies that as θIMF (the angle between BIMF and vsw) varies, the magnitude of vms should vary also across the shock, leading to changes in shape. This paper presents 3-D MHD simulation data which illustrate the changes in shock location and geometry in response to changes in θIMF and MA, for 1.4 ≤ MA ≤ 9.7 and 0° ≤ θIMF ≤ 90°. Specifically, for oblique IMF the shock's geometry is shown to become skewed in planes containing BIMF (e.g., the x - z plane). This is also emphasized in the terminator plane data, where the shock is best represented by ellipses, with centers translated along the z axis. For the θIMF = 90° simulations the shock is symmetric about the x axis in both the x - y and x - z planes. Simulations for field-aligned flow (θIMF = 0°) show a dimpling of the nose of the shock as MA → 1. The simulations also illustrate the general movement of the shock in response to changes in MA; high MA shocks are found closer to Earth than low MA shocks. 's [1991] magnetopause model is used in the simulations, and we discuss the limitations of this, as well as the expected results using a self-consistent model.

  20. Attempts to Simulate Anisotropies of Solar Wind Fluctuations Using MHD with a Turning Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Roberts, D. Aaron

    2010-01-01

    We examine a "two-component" model of the solar wind to see if any of the observed anisotropies of the fields can be explained in light of the need for various quantities, such as the magnetic minimum variance direction, to turn along with the Parker spiral. Previous results used a 3-D MHD spectral code to show that neither Q2D nor slab-wave components will turn their wave vectors in a turning Parker-like field, and that nonlinear interactions between the components are required to reproduce observations. In these new simulations we use higher resolution in both decaying and driven cases, and with and without a turning background field, to see what, if any, conditions lead to variance anisotropies similar to observations. We focus especially on the middle spectral range, and not the energy-containing scales, of the simulation for comparison with the solar wind. Preliminary results have shown that it is very difficult to produce the required variances with a turbulent cascade.

  1. MHD simulations of magnetized laser-plasma interaction for laboratory astrophysics

    NASA Astrophysics Data System (ADS)

    Khiar, Benjamin; Ciardi, Andrea; Vinci, Tommaso; Revet, Guilhem; Fuchs, Julien; Higginson, Drew

    2015-11-01

    Laser-driven plasmas coupled with externally applied strong, steady-state, magnetic fields have applications that range from ICF to astrophysical studies of jet collimation, accretion shock dynamics in young stars and streaming instabilities in space plasmas. We have recently included the modelling of laser energy deposition in our three-dimensional, resistive two-temperature MHD code GORGON. The model assumes linear inverse-bremsstrahlung absorption and the laser propagation is done in the geometrical optics approximation. We present full scale numerical simulations of actual experiments performed on the ELFIE installation at LULI, including plasma generated from single and multiple laser plasmas embedded in a magnetic field of strength up to 20 T, and experiments and astrophysical simulations that have shown the viability of poloidal magnetic fields to directly result in the collimation of outflows and the formation of jets in astrophysical accreting systems, such as in young stellar objects. The authors acknowledge the support from the Ile-de-France DIM ACAV, from the LABEX Plas@par and from the ANR grant SILAMPA.

  2. The Biermann Battery In Cosmological Mhd Simulations Of Population III Star Formation

    SciTech Connect

    Xu, Hao; O' Shea, Brian W; Li, Hui; Li, Shengtai; Norman, Michael L; Collins, David C

    2008-01-01

    We report the results of the first self-consistent three-dimensional adaptive mesh refinement magnetohydrodynamical simulations of Population III star formation including the Biermann battery effect. We find that the Population III stellar cores formed including this effect are both qualitatively and quantitatively similar to those from hydrodynamics-only (non-MHD) cosmological simulations. We observe peak magnetic fields of {approx_equal} 10{sup -9} G in the center of our star-forming halo at z {approx_equal} 17.55 at a baryon density of n{sub B} {approx} 10{sup 10} cm{sup -3}. The magnetic fields created by the Biermann battery effect are predominantly formed early in the evolution of the primordial halo at low density and large spatial scales, and then grow through compression and by shear flows. The fields seen in this calculation are never large enough to be dynamically important (with {beta} {ge} 10{sup 15} at all times before the termination of our calculation), and should be considered the minimum possible fields in existence during Population III star formation. The lack of magnetic support lends credibility to assumptions made in previous calculations regarding the lack of importance of magnetic fields in Population III star formation. In addition, these magnetic fields may be seed fields for the stellar dynamo or the magnetorotational instability at higher densities and smaller spatial scales.

  3. Fast Wave Trains Associated with Solar Eruptions: Insights from 3D Thermodynamic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Downs, C.; Liu, W.; Torok, T.; Linker, J.; Mikic, Z.; Ofman, L.

    2015-12-01

    EUV imaging observations during the SDO/AIA era have provided new insights into a variety of wave phenomena occurring in the low solar corona. One example is the observation of quasi-periodic, fast-propagating wave trains that are associated with solar eruptions, including flares and CMEs. While there has been considerable progress in understanding such waves from both an observational and theoretical perspective, it remains a challenge to pin down their physical origin. In this work, we detail our results from a case-study 3D thermodynamic MHD simulation of a coronal mass ejection where quasi-periodic wave trains are generated during the simulated eruption. We find a direct correlation between the onset of non-steady reconnection in the flare current sheet and the generation of quasi-periodic wave train signatures when patchy, collimated downflows interact with the flare arcade. Via forward modeling of SDO/AIA observables, we explore how the appearance of the wave trains is affected by line-of-sight integration and the multi-thermal nature of the coronal medium. We also examine how the wave trains themselves are channeled by natural waveguides formed in 3D by the non-uniform background magnetic field. While the physical association of the reconnection dynamics to the generation of quasi-periodic wave trains appears to be a compelling result, unanswered questions posed from recent observations as well as future prospects will be discussed.

  4. 3D Multifluid MHD simulation for Uranus and Neptune: the seasonal variations of their magnetosphere

    NASA Astrophysics Data System (ADS)

    Cao, X.; Paty, C. S.

    2015-12-01

    The interaction between Uranus' intrinsic magnetic field and the solar wind is quite different from the magnetospheric interactions of other planets. Uranus' large obliquity, coupled with the fact that its dipole moment is off-centered and highly tilted relative to the rotation axis, leads to unique and seasonally dependent interaction geometries with the solar wind. We present results from adapting a multifluid MHD simulation to examine these seasonally dependent geometries in terms of the global magnetospheric structure, magnetopause and bow shock location, and magnetotail configuration. The Voyager 2 spacecraft encountered Uranus near solstice, and was able to observe the magnetic field structure and plasma characteristics of a twisted magnetotail [Behannon et al., 1987]. We use such magnetometer and plasma observations as a basis for benchmarking our simulations for the solstice scenario. Auroral observations made by the Hubble Space Telescope during equinox [Lamy et al.,2012] give some indication of the magnetospheric interaction with the solar wind. We also demonstrate the structural difference of the magnetosphere between solstice and equinox seasons. The magnetosphere at equinox is quite distinct due to the orientation and rotation of the magnetic axis relative to the solar wind direction.

  5. Formation and Eruption of an Active Region Sigmoid: NLFFF Modeling and MHD Simulation

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Wu, S.; Feng, X.; Hu, Q.

    2013-12-01

    We present a magnetic analysis of the formation and eruption of an active region sigmoid in AR 11283 from 2011 September 4 to 6, which is jointly based on observations, static nonlinear force-free field (NLFFF) extrapolation and dynamic MHD simulation. A time sequence of NLFFF model's outputs are used to reproduce the evolution of the magnetic field of the region over three days leading to a X-class flare near the end of 2011 September 6. In the first day, a new bipolar emerges into the negative polarity of a pre-existing mature bipolar, forming a magnetic topology with a coronal null on the magnetic separatrix surface between the two flux system, while the field is still near potential at the end of the day. After then photospheric shearing and twisting build up non-potentiality in the embedded core region, with a flux rope (FR) formed there above the polarity inversion line by tether-cutting reconnection between the strongly sheared field lines. Within this duration, the core field has gained a magnetic free energy of ˜ 1032 erg. In this core a sigmoid is observed distinctly at 22:00 UT on September 6, closely before its eruption at 22:12 UT. Comparison of the SDO/AIA observations with coronal magnetic field suggests that the sigmoid is formed by emission due to enhanced current sheet along the BPSS (bald-patch separatrix surface, in which the field lines graze the line-tied photosphere at the neutral line) that separates the FR from the ambient flux. Quantitative inspection of the pre-eruption field on 22:00 UT suggests a mechanism for the eruption: tether cutting at the null triggers a torus instability of the FR--overlying field system. This pre-eruption NLFFF is then input into a time-dependent MHD model to simulate the fast magnetic evolution during eruption, which successfully reproduces the observations. The highly asymmetric magnetic environment along with the lateral location of the null leads to a strongly inclined non-radial direction of the eruption

  6. Simulation and analytic analysis of radiation driven islands at the density limit

    NASA Astrophysics Data System (ADS)

    Brennan, D. P.; Liu, C.; Gates, D. A.; Delgado-Aparicio, L.; White, R.

    2014-10-01

    The effect of radiative cooling on the onset and evolution of magnetic islands is investigated with nonlinear resistive MHD simulations and reduced theoretical analysis. The configuration is a cylindrical tokamak with a m/n = 2/1 island and includes three dimensional resistivity and anisotropic heat conduction in the simulations. The radiative cooling is implemented as a temperature perturbation inside the island, which modifies the island structure and drives the island more unstable. Analytic reduction of the saturated island size and structure supports the simulation results. The results offer intuitive understanding of experimental observations of radiation driven magnetic islands, which may explain density limit disruptions.

  7. The role of the electron convection term for the parallel electric field and electron acceleration in MHD simulations

    SciTech Connect

    Matsuda, K.; Terada, N.; Katoh, Y.; Misawa, H.

    2011-08-15

    There has been a great concern about the origin of the parallel electric field in the frame of fluid equations in the auroral acceleration region. This paper proposes a new method to simulate magnetohydrodynamic (MHD) equations that include the electron convection term and shows its efficiency with simulation results in one dimension. We apply a third-order semi-discrete central scheme to investigate the characteristics of the electron convection term including its nonlinearity. At a steady state discontinuity, the sum of the ion and electron convection terms balances with the ion pressure gradient. We find that the electron convection term works like the gradient of the negative pressure and reduces the ion sound speed or amplifies the sound mode when parallel current flows. The electron convection term enables us to describe a situation in which a parallel electric field and parallel electron acceleration coexist, which is impossible for ideal or resistive MHD.

  8. Analysis of Voyager Observed High-Energy Electron Fluxes in the Heliosheath Using MHD Simulations

    NASA Technical Reports Server (NTRS)

    Washimi, Haruichi; Webber, W. R.; Zank, Gary P.; Hu, Qiang; Florinski, Vladimir; Adams, James; Kubo, Yuki

    2011-01-01

    The Voyager spacecraft (V1 and V2) observed electrons of 6-14 MeV in the heliosheath which showed several incidences of flux variation relative to a background of gradually increasing flux with distance from the Sun. The increasing flux of background electrons is thought to result from inward radial diffusion. We compare the temporal electron flux variation with dynamical phenomena in the heliosheath that are obtained from our MHD simulations. Because our simulation is based on V2 observed plasma data before V2 crossed the termination shock, this analysis is effective up to late 2008, i.e., about a year after the V2-crossing, during which disturbances, driven prior to the crossing time, survived in the heliosheath. Several electron flux variations correspond to times directly associated with interplanetary shock events. One noteworthy example corresponds to various times associated with the March 2006 interplanetary shock, these being the collision with the termination shock, the passage past the V1 spacecraft, and the collision with the region near the heliopause, as identified by W.R. Webber et al. for proton/helium of 7-200 MeV. Our simulations indicate that all other electron flux variations, except one, correspond well to the times when a shock-driven magneto-sonic pulse and its reflection in the heliosheath either passed across V1/V2, or collided with the termination shock or with the plasma sheet near the heliopause. This result suggests that variation in the electron flux should be due to either direct or indirect effects of magnetosonic pulses in the heliosheath driven by interplanetary shocks

  9. First MHD simulation of collapse and fragmentation of magnetized molecular cloud cores

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Tomisaka, Kohji; Matsumoto, Tomoaki

    2004-02-01

    This is the first paper about fragmentation and mass outflow in molecular clouds by using three-dimensional magnetohydrodynamical (MHD) nested-grid simulations. The binary star formation process is studied, paying particular attention to the fragmentation of a rotating magnetized molecular cloud. We assume an isothermal rotating and magnetized cylindrical cloud in hydrostatic balance. Non-axisymmetric as well as axisymmetric perturbations are added to the initial state and the subsequent evolutions are studied. The evolution is characterized by three parameters: the amplitude of the non-axisymmetric perturbations, the rotation speed and the magnetic field strength. As a result, it is found that non-axisymmetry hardly evolves in the early phase, but begins to grow after the gas contracts and forms a thin disc. Disc formation is strongly promoted by the rotation speed and the magnetic field strength. There are two types of fragmentation: that from a ring and that from a bar. Thin adiabatic cores fragment if their thickness is less than 1/4 of the radius. For the fragments to survive, they should be formed in a heavily elongated barred core or a flat round disc. In the models showing fragmentation, outflows from respective fragments are found as well as those driven by the rotating bar or the disc.

  10. Solar wind-magnetosphere energy coupling function fitting: Results from a global MHD simulation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Han, J. P.; Li, H.; Peng, Z.; Richardson, J. D.

    2014-08-01

    Quantitatively estimating the energy input from the solar wind into the magnetosphere on a global scale is still an observational challenge. We perform three-dimensional magnetohydrodynamic (MHD) simulations to derive the energy coupling function. Based on 240 numerical test runs, the energy coupling function is given by Ein=3.78×107nsw0.24Vsw1.47BT0.86[sin2.70(θ/2)+0.25]. We study the correlations between the energy coupling function and a wide variety of magnetospheric activity, such as the indices of Dst, Kp, ap, AE, AU, AL, the polar cap index, and the hemispheric auroral power. The results indicate that this energy coupling function gives better correlations than the ɛ function. This result is also applied to a storm event under northward interplanetary magnetic field conditions. About 13% of the solar wind kinetic energy is transferred into the magnetosphere and about 35% of the input energy is dissipated in the ionosphere, consistent with previous studies.

  11. MHD turbulence model for global simulations of the solar wind and SEP acceleration

    SciTech Connect

    Sokolov, Igor V.; Roussev, Ilia I.

    2008-08-25

    The aim of the present work is to unify the various transport equations for turbulent waves that are used in different areas of space physics. We mostly focus on the magnetohydrodynamic (MHD) turbulence, in particular the Alfvenic turbulence.

  12. Radiation in molecular dynamic simulations

    SciTech Connect

    Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M

    2008-10-13

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The new technique passes a key test: it relaxes to a blackbody spectrum for a plasma in local thermodynamic equilibrium. This new tool also provides a method for assessing the accuracy of energy and momentum exchange models in hot dense plasmas. As an example, we simulate the evolution of non-equilibrium electron, ion, and radiation temperatures for a hydrogen plasma using the new molecular dynamics simulation capability.

  13. Proceedings of the workshop on nonlinear MHD and extended MHD

    SciTech Connect

    1998-12-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  14. Global Structure of Idealized Stream Interaction Regions Using 3D MHD Simulations

    NASA Astrophysics Data System (ADS)

    Pahud, D. M.; Hughes, W. J.; Merkin, V. G.

    2014-12-01

    The global structure of the heliosphere during solar cycles (SC) 23 and 24 differed significantly in many ways, for example in terms of global magnetic field strength, velocity structure and the observed properties of Stream Interaction Region (SIR) and associated shocks. The differences considered in this study focus primarily on the effects of the three-dimensional (3D) structure of SIRs. During the minimum of SC 24, equatorial coronal holes were prevalent as sources of low-latitude high-speed solar wind. In contrast, the canonical depiction of SC 23's minimum wind configuration is of a band of slow wind undulating about the heliographic equator. Using the heliospheric adaptation of the Lyon-Fedder-Mobarry magnetohydrodynamic (MHD) model (LFM-helio), we have run simulations for two idealized global solar wind conditions. The first simulation approximates the classical tilted dipole, with fast solar wind at high latitudes and a band of slow wind tilted with respect to the heliographic equator, and the second consists of global slow solar wind with equatorial circular sources of high-speed streams. The evolution of the SIRs from 0.1 AU to 2.0 AU is characterized using the amplitude and location of the maximum compressions of the plasma and the magnetic field as well as the largest deflection of solar wind flow. The relation between plasma and magnetic field compressions differs between the two cases considered. The SIRs produced by the equatorial coronal holes have similar maximum densities to those of the tilted dipole case, but the magnetic field magnitude is larger and the plasma is hotter. This suggests that evolution depends on the 3D structure of the SIR and its effects on the competitive roles of the growth of the structure, driven by compression from dynamic pressure, and and relaxation from the plasma flow and magnetic field deflections occurring in the region. Magnetic field threading SIRs and tracing plasma parcels are examined.

  15. Investigating Charon's Impact on Pluto's Interaction with the Solar Wind through Multifluid MHD Simulations

    NASA Astrophysics Data System (ADS)

    Hale, J. M.; Paty, C. S.

    2014-12-01

    Charon's mass, orbital parameters, and distinct surface composition relative to Pluto suggest that it plays a significant role in Pluto's dynamic interaction with the solar wind. Its high mass ( ~ 10% of total system mass ) and close orbit ( < 20 Pluto Radii ) are thought to result in regionally enhanced atmospheric escape from Pluto as well as ionospheric deformation. Additionally, there are multiple mechanisms through which Charon could possess a tenuous atmosphere—and therefore ionosphere. Firstly, spectral observations of short-lived hydrated ammonia on Charon's surface could be caused by semi-regular cryovolcanism, which would also source a water group atmosphere (Cook et al., 2007). Secondly, recent work indicates that Charon could have a nightside parasitic atmosphere that is captured from material escaping from Pluto (Tucker et al., 2014). Either possibility would result in Charon presenting a sizable obstacle to the incoming solar wind. This work studies Charon's effects on the Pluto-solar wind interaction using a 3-dimensional multifluid MHD model which has been modified to include a second body within the system. This second body (Charon) represents not only an additional gravitational perturbation to the system, but can also provide a local and distinct plasma source, a sink for plasma sourced from Pluto or the solar wind, and cause an obstruction and perturbation to the solar wind. Specifically, we investigate the possibility of enhanced ionospheric loss from Pluto due to Charon's gravitational attraction, as well as the overall dynamics of a two-body system interacting with the solar wind in which each body has an ionosphere and periodically passes through the bow shock of the other body. The former objective is made possible by tracking the flux of plasma sourced from Pluto. The latter objective is accomplished by performing simulations in which Charon is upstream of Pluto as well as simulations in which Charon is placed downstream, within Pluto

  16. 3D MHD simulations of the HIT-SI spheromak experiment

    NASA Astrophysics Data System (ADS)

    Izzo, V. A.

    2004-11-01

    The HIT-SI spheromak, which is driven by steady inductive helicity injection (SIHI), consists of the toroidally symmetric spheromak confinement region and two non-symmetric helicity injectors. Each injector resembles a 180^o segment of an RFP in which the flux and current are oscillated. The two injectors are mounted on opposite ends of the spheromak and are situated 90^o apart spatially and operated 90^o out of phase temporally, giving constant helicity injection. The 3D MHD code NIMROD is used to simulate HIT-SI operation, but the code's toroidally symmetric boundary requires a creative treatment of the injectors. Initially, the injectors are neglected completely and a hollow current profile equilibrium is allowed to decay in the spheromak region for several Lundquist numbers (S). For S around 600 or larger, relaxation will flatten the current profile during decay, briefly increasing the total plasma current, whereas at lower S resistive dissipation dominates [1]. Sustained HIT-SI operation is simulated with non-axisymmetric boundary conditions. In driven simulations at low S, no axisymmetric fields are generated as a result of relaxation of the predominantly n=1 injector fields until the injectors are quickly shut off and the fields are forced to reconnect. At S=500, an n=0 component arises due to relaxation during sustainment. As S is increased further, the ratio of n=0 (equilibrium) fields to n=1 (injector) fields increases, and a scaling is determined. The HIT-SI device is designed to have no currents penetrating the walls, and this is ensured by a 0.3mm insulating ceramic layer on the interior of the copper flux conserver. This is modeled in the simulation with a highly resistive 1mm layer at the edge of the grid. Significantly faster plasma decay times are seen with the thin layer than for comparable simulations with no layer. The result can be explained in terms of helicity balance argument like that used by Jarboe and Alper [2] to explain RFP loop

  17. Kelvin-Helmholtz instability during northward IMF conditions: Global 3-Dimensional MHD simulations (Invited)

    NASA Astrophysics Data System (ADS)

    Merkin, V. G.; Lyon, J.; Claudepierre, S. G.

    2013-12-01

    The Kelvin-Helmholtz Instability (KHI) has long been suggested to operate on the magnetospheric boundary, where the magnetosheath plasma streams past the magnetosphere. The instability is thought to be responsible for inducing various wave populations in the magnetosphere and for mass, momentum and energy transport across the magnetospheric boundary. Waves attributed to the KHI have been observed at the Earth's magnetosphere flanks as well as at Saturn and Mercury during spacecraft crossings, and remotely at boundaries of Coronal Mass Ejections (CMEs). Recent high-resolution global 3D magnetohydrodynamic (MHD) simulations of the magnetosphere confirm the existence of pronounced perturbations of the magnetospheric boundary, which are thought to be due to KHI. Such global simulations had been challenging in the past because of the need to encompass the entire magnetosphere, while sufficiently resolving the boundary layer. Here we present results of such a high-resolution simulation of the magnetosphere, using the Lyon-Fedder-Mobarry (LFM) model, under steady northward Interplanetary Magnetic Field (IMF) conditions. We find the magnetospheric boundary to be globally unstable, including the high-latitude boundary layer (meridional plane), where magnetic tension is apparently not sufficient to stabilize the growth of oscillations. Roughly beyond the terminator, global modes, coupled into the surface modes, become apparent, so that the entire body of the magnetosphere is engaged in an oscillatory motion. The wave vector of the surface oscillations has a component perpendicular to the background flow and tangential to the shear layer (in the equatorial plane, k_z component of the wave vector), which is consistent with the generation of field-aligned currents that flow on closed field lines between the inner portion of the boundary layer and the ionosphere. We calculate the distribution of wave power in the equatorial plane and find it consistent with the existence of a

  18. The Delta x B = 0 Constraint Versus Minimization of Numerical Errors in MHD Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, Bjoern; Mansour, Nagi (Technical Monitor)

    2002-01-01

    The MHD equations are a system of non-strictly hyperbolic conservation laws. The non-convexity of the inviscid flux vector resulted in corresponding Jacobian matrices with undesirable properties. It has previously been shown by Powell et al. (1995) that an 'almost' equivalent MHD system in non-conservative form can be derived. This non-conservative system has a better conditioned eigensystem. Aside from Powell et al., the MHD equations can be derived from basic principles in either conservative or non-conservative form. The Delta x B = 0 constraint of the MHD equations is only an initial condition constraint, it is very different from the incompressible Navier-Stokes equations in which the divergence condition is needed to close the system (i.e., to have the same number of equations and the same number of unknown). In the MHD formulations, if Delta x B = 0 initially, all one needs is to construct appropriate numerical schemes that preserve this constraint at later time evolutions. In other words, one does not need the Delta x B condition to close the MHD system. We formulate our new scheme together with the Cargo & Gallice (1997) form of the MHD approximate Riemann solver in curvilinear grids for both versions of the MHD equations. A novel feature of our new method is that the well-conditioned eigen-decomposition of the non-conservative MHD equations is used to solve the conservative equations. This new feature of the method provides well-conditioned eigenvectors for the conservative formulation, so that correct wave speeds for discontinuities are assured. The justification for using the non-conservative eigen-decomposition to solve the conservative equations is that our scheme has a better control of the numerical error associated with the divergence of the magnetic condition. Consequently, computing both forms of the equations with the same eigen-decomposition is almost equivalent. It will be shown that this approach, using the non-conservative eigensystem when

  19. The formation and evolution of a plasmoid flux rope using a global MHD simulation of an actual substorm event

    NASA Astrophysics Data System (ADS)

    Farr, Nathan; Baker, Daniel N.; Wiltberger, Michael

    We present the results of a global magnetohydrodynamic (MHD) simulation of a pair of substorms on August 11, 2002. Comparisons of data with simulation results reveal an agreement regarding the timing and sequence of events in the magnetosphere. We then present the results in the simulation of a plasmoid flux rope formed during the second substorm. Unlike standard 2-D depictions of reconnection and plasmoid release during a substorm, the simulation shows a highly complex structure that has considerable winding of both closed and open field lines. Additionally, the flux rope does not move tailward uniformly, but rather has a asymmetric motion in which the dawn flank portion moves tailward prior to the dusk end of the flux rope, resulting in a a skewed flux rope that runs almost downtail instead of crosstail. The flux rope structure begins on closed field lines, then progresses through open field lines and finally onto IMF field lines. Using the global simulation we can connect the large scale magnetotail reconfiguration with features on the auroral boundary of the model. The results shown here are in agreement with existing MHD tail simulations as well as flux rope observations from satellite data.

  20. Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation

    NASA Astrophysics Data System (ADS)

    Bromberg, Omer; Tchekhovskoy, Alexander

    2016-02-01

    Relativistic jets are associated with extreme astrophysical phenomena, like the core collapse of massive stars in gamma-ray bursts (GRBs) and the accretion on to supermassive black holes in active galactic nuclei. It is generally accepted that these jets are powered electromagnetically, by the magnetized rotation of a central compact object (black hole or neutron star). However, how the jets produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic, Poynting-flux-dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetized central object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a global, external kink mode that grows on long time-scales. It bodily twists the jet, reducing its propagation velocity. We show analytically that in flat density profiles, like the ones associated with galactic cores, the external mode grows and may stall the jet. In the steep profiles of stellar envelopes the external kink weakens as the jet propagates outward. (ii) a local, internal kink mode that grows over short time-scales and causes small-angle magnetic reconnection and conversion of about half of the jet electromagnetic energy flux into heat. We suggest that internal kink instability is the main dissipation mechanism responsible for powering GRB prompt emission.

  1. Trapping solids at the inner edge of the dead zone: 3-D global MHD simulations

    NASA Astrophysics Data System (ADS)

    Dzyurkevich, N.; Flock, M.; Turner, N. J.; Klahr, H.; Henning, Th.

    2010-06-01

    Context. The poorly-ionized interior of the protoplanetary disk or “dead zone” is the location where dust coagulation processes may be most efficient. However even here, planetesimal formation may be limited by the loss of solid material through radial drift, and by collisional fragmentation of the particles. Both depend on the turbulent properties of the gas. Aims: Our aim here is to investigate the possibility that solid particles are trapped at local pressure maxima in the dynamically evolving disk. We perform the first 3-D global non-ideal magnetohydrodynamical (MHD) calculations of a section of the disk treating the turbulence driven by the magneto-rotational instability (MRI). Methods: We use the ZeusMP code with a fixed Ohmic resistivity distribution. The domain contains an inner MRI-active region near the young star and an outer midplane dead zone, with the transition between the two modeled by a sharp increase in the magnetic diffusivity. Results: The azimuthal magnetic fields generated in the active zone oscillate over time, changing sign about every 150 years. We thus observe the radial structure of the “butterfly pattern” seen previously in local shearing-box simulations. The mean magnetic field diffuses from the active zone into the dead zone, where the Reynolds stress nevertheless dominates, giving a residual α between 10-4 and 10-3. The greater total accretion stress in the active zone leads to a net reduction in the surface density, so that after 800 years an approximate steady state is reached in which a local radial maximum in the midplane pressure lies near the transition radius. We also observe the formation of density ridges within the active zone. Conclusions: The dead zone in our models possesses a mean magnetic field, significant Reynolds stresses and a steady local pressure maximum at the inner edge, where the outward migration of planetary embryos and the efficient trapping of solid material are possible.

  2. Self-organisation in protoplanetary discs. Global, non-stratified Hall-MHD simulations

    NASA Astrophysics Data System (ADS)

    Béthune, William; Lesur, Geoffroy; Ferreira, Jonathan

    2016-05-01

    Context. Recent observations have revealed organised structures in protoplanetary discs, such as axisymmetric rings or horseshoe concentrations, evocative of large-scale vortices. These structures are often interpreted as the result of planet-disc interactions. However, these discs are also known to be unstable to the magneto-rotational instability (MRI) which is believed to be one of the dominant angular momentum transport mechanism in these objects. It is therefore natural to ask whether the MRI itself could produce these structures without invoking planets. Aims: The nonlinear evolution of the MRI is strongly affected by the low ionisation fraction in protoplanetary discs. The Hall effect in particular, which is dominant in dense and weakly ionised parts of these objects, has been shown to spontaneously drive self-organising flows in local, shearing box simulations. Here, we investigate the behaviour of global MRI-unstable disc models dominated by the Hall effect and characterise their dynamics. Methods: We validated our implementation of the Hall effect into the PLUTO code with predictions from a spectral method in cylindrical geometry. We then performed 3D unstratified Hall-MHD simulations of Keplerian discs for a broad range of Hall, Ohmic, and ambipolar Elsasser numbers. Results: We confirm the transition from a turbulent to an organised state as the intensity of the Hall effect is increased. We observe the formation of zonal flows, their number depending on the available magnetic flux and on the intensity of the Hall effect. For intermediate Hall intensity, the flow self-organises into long-lived magnetised vortices. Neither the addition of a toroidal field nor Ohmic or ambipolar diffusion change this picture drastically in the range of parameters we have explored. Conclusions: Self-organisation by the Hall effect is a robust phenomenon in global non-stratified simulations. It is able to quench turbulent transport and spontaneously produce axisymmetric

  3. Nonequilibrium radiative hypersonic flow simulation

    NASA Astrophysics Data System (ADS)

    Shang, J. S.; Surzhikov, S. T.

    2012-08-01

    Nearly all the required scientific disciplines for computational hypersonic flow simulation have been developed on the framework of gas kinetic theory. However when high-temperature physical phenomena occur beneath the molecular and atomic scales, the knowledge of quantum physics and quantum chemical-physics becomes essential. Therefore the most challenging topics in computational simulation probably can be identified as the chemical-physical models for a high-temperature gaseous medium. The thermal radiation is also associated with quantum transitions of molecular and electronic states. The radiative energy exchange is characterized by the mechanisms of emission, absorption, and scattering. In developing a simulation capability for nonequilibrium radiation, an efficient numerical procedure is equally important both for solving the radiative transfer equation and for generating the required optical data via the ab-initio approach. In computational simulation, the initial values and boundary conditions are paramount for physical fidelity. Precise information at the material interface of ablating environment requires more than just a balance of the fluxes across the interface but must also consider the boundary deformation. The foundation of this theoretic development shall be built on the eigenvalue structure of the governing equations which can be described by Reynolds' transport theorem. Recent innovations for possible aerospace vehicle performance enhancement via an electromagnetic effect appear to be very attractive. The effectiveness of this mechanism is dependent strongly on the degree of ionization of the flow medium, the consecutive interactions of fluid dynamics and electrodynamics, as well as an externally applied magnetic field. Some verified research results in this area will be highlighted. An assessment of all these most recent advancements in nonequilibrium modeling of chemical kinetics, chemical-physics kinetics, ablation, radiative exchange

  4. Three-Dimensional MHD Simulation of the Magnetosheath Plasma and Magnetic Field in the Presence of Cusp

    NASA Astrophysics Data System (ADS)

    Ku, H. C.; Sibeck, D. G.; Wing, S.

    2001-12-01

    An accurate knowledge of the magnetosheath is essential for studies of the bow shock, magnetopause, and solar input into the magnetosphere. Gasdynamic models may not give sufficient accuracy whereas the cost/time constraints preclude running the 3-D MHD global simulations for numerous solar wind conditions. A 3-D magnetosheath MHD model is needed and presented as a viable alternative. The inner boundary of the model is the magnetopause, which has been previously determined from the pressure balance and exhibits a small indentation near the cusp regions. The initial position of the bow shock is taken from a gasdynamic model and subsequently adjusted when the magnetic field is included. The results of the gasdynamic and MHD models are compared with the following input parameters: the heat capacity ration γ = 2, the solar wind sonic Mach number, M∞ = 7, 9.81 (solar wind velocity v = 400 ; km ; s-1), temperature T = 105, 1.96 x 105 K, n = 10 ; cm-3, Bx = 10 \\cos θ \\cos φ ; nT, By = 10 \\cos θ sin φ ; nT, and Bz = 10 sin θ ; nT. There is a pronounced dawn-dusk asymmetry for both Mack numbers, and the presence of a strongly southward interplanetary magnetic field results in an equatorial belt of depressed depletion layer densities and plasma pressures between the cusp. The missing pressure is supplied by an equatorial band of enhanced magnetic field strengths. Near the subsolar point MHD densities fall to values 60% and 45 % of those in the gasdynamic models for M∞ = 9.81 and 7, resepctively. However, the standoff distance of bow shock increases significantly with stronger southward field component for low Mack numbers. By contrast, a standing shock wave attached to the the cusp becomes particularly noticeable for a strong dawn-dusk IMF orientation and high Mach numbers (M∞ = 9.81).

  5. MODELING STATISTICAL PROPERTIES OF SOLAR ACTIVE REGIONS THROUGH DIRECT NUMERICAL SIMULATIONS OF 3D-MHD TURBULENCE

    SciTech Connect

    Malapaka, Shiva Kumar; Mueller, Wolf-Christian

    2013-09-01

    Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.

  6. Unsteady Flow of Radiating and Chemically Reacting MHD Micropolar Fluid in Slip-Flow Regime with Heat Generation

    NASA Astrophysics Data System (ADS)

    Abo-Dahab, S. M.; Mohamed, R. A.

    2013-11-01

    An analytical study of the problem of unsteady free convection with thermal radiation and heat generation on MHD micropolar fluid flow through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime has been presented. The Rosseland diffusion approximation is used to describe the radiation heat flux in the energy equation. The homogeneous chemical reaction of first order is accounted for in the mass diffusion equation. A uniform magnetic field acts perpendicular on the porous surface absorbing micropolar fluid with a suction velocity varying with time. A perturbation technique is applied to obtain the expressions for the velocity, microrotation, temperature, and concentration distributions. Expressions for the skin-friction, Nusselt number, and Sherwood number are also obtained. The results are discussed graphically for different values of the parameters entered into the equations of the problem.

  7. 2D Radiation MHD K-shell Modeling of Single Wire Array Stainless Steel Experiments on the Z Machine

    SciTech Connect

    Thornhill, J. W.; Giuliani, J. L.; Apruzese, J. P.; Chong, Y. K.; Davis, J.; Dasgupta, A.; Whitney, K. G.; Clark, R. W.; Jones, B.; Coverdale, C. A.; Ampleford, D. J.; Cuneo, M. E.; Deeney, C.

    2009-01-21

    Many physical effects can produce unstable plasma behavior that affect K-shell emission from arrays. Such effects include: asymmetry in the initial density profile, asymmetry in power flow, thermal conduction at the boundaries, and non-uniform wire ablation. Here we consider how asymmetry in the radiation field also contributes to the generation of multidimensional plasma behavior that affects K-shell power and yield. To model this radiation asymmetry, we have incorporated into the MACH2 r-z MHD code a self-consistent calculation of the non-LTE population kinetics based on radiation transport using multi-dimensional ray tracing. Such methodology is necessary for modeling the enhanced radiative cooling that occurs at the anode and cathode ends of the pinch during the run-in phase of the implosion. This enhanced radiative cooling is due to reduced optical depth at these locations producing an asymmetric flow of radiative energy that leads to substantial disruption of large initial diameter (>5 cm) pinches and drives 1D into 2D fluid (i.e., Rayleigh-Taylor like) flows. The impact of this 2D behavior on K-shell power and yield is investigated by comparing 1D and 2D model results with data obtained from a series of single wire array stainless steel experiments performed on the Z generator.

  8. Non-equilibrium Helium Ionization in an MHD Simulation of the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Golding, Thomas Peter; Leenaarts, Jorrit; Carlsson, Mats

    2016-02-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11-18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.

  9. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    NASA Astrophysics Data System (ADS)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  10. Numerical simulation for the unsteady MHD flow and heat transfer of couple stress fluid over a rotating disk.

    PubMed

    Khan, Najeeb Alam; Aziz, Shahnila; Khan, Nadeem Alam

    2014-01-01

    The present work is devoted to study the numerical simulation for unsteady MHD flow and heat transfer of a couple stress fluid over a rotating disk. A similarity transformation is employed to reduce the time dependent system of nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs). The Runge-Kutta method and shooting technique are employed for finding the numerical solution of the governing system. The influences of governing parameters viz. unsteadiness parameter, couple stress and various physical parameters on velocity, temperature and pressure profiles are analyzed graphically and discussed in detail. PMID:24835274

  11. Numerical Simulation for the Unsteady MHD Flow and Heat Transfer of Couple Stress Fluid over a Rotating Disk

    PubMed Central

    2014-01-01

    The present work is devoted to study the numerical simulation for unsteady MHD flow and heat transfer of a couple stress fluid over a rotating disk. A similarity transformation is employed to reduce the time dependent system of nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs). The Runge-Kutta method and shooting technique are employed for finding the numerical solution of the governing system. The influences of governing parameters viz. unsteadiness parameter, couple stress and various physical parameters on velocity, temperature and pressure profiles are analyzed graphically and discussed in detail. PMID:24835274

  12. Identification and characterisation of small-scale heating events in the solar atmosphere from 3D MHD simulations

    NASA Astrophysics Data System (ADS)

    Guerreiro, Nuno; Haberreiter, Margit; Hansteen, Viggo; Schmutz, Werner

    2015-04-01

    We study the properties of the small-scale heating events in the solar atmosphere in the nano flare and micro flare energy scale using 3D MHD simulations. We put forward a method to identify and track the heating events in time to study their life times, frequency distributions and spectral signatures. These results aim to better understand the observations from future space missions such as the EUI and SPICE instruments onboard Solar Orbiter and improve our knowledge of the role of small-scale heating events in the heating of the corona.

  13. Simulation of ULF wave-modulated radiation belt electron precipitation during the 17 March 2013 storm

    NASA Astrophysics Data System (ADS)

    Brito, T.; Hudson, M. K.; Kress, B.; Paral, J.; Halford, A.; Millan, R.; Usanova, M.

    2015-05-01

    Balloon-borne instruments detecting radiation belt precipitation frequently observe oscillations in the millihertz frequency range. Balloons measuring electron precipitation near the poles in the 100 keV to 2.5 MeV energy range, including the MAXIS, MINIS, and most recently the Balloon Array for Relativistic Radiation belt Electron Losses balloon experiments, have observed this modulation at ULF wave frequencies. Although ULF waves in the magnetosphere are seldom directly linked to increases in electron precipitation since their oscillation periods are much larger than the gyroperiod and the bounce period of radiation belt electrons, test particle simulations show that this interaction is possible. Three-dimensional simulations of radiation belt electrons were performed to investigate the effect of ULF waves on precipitation. The simulations track the behavior of energetic electrons near the loss cone, using guiding center techniques, coupled with an MHD simulation of the magnetosphere, using the Lyon-Fedder-Mobarry code, during a coronal mass ejection (CME)-shock event on 17 March 2013. Results indicate that ULF modulation of precipitation occurs even without the presence of electromagnetic ion cyclotron waves, which are not resolved in the MHD simulation. The arrival of a strong CME-shock, such as the one simulated, disrupts the electric and magnetic fields in the magnetosphere and causes significant changes in both components of momentum, pitch angle, and L shell of radiation belt electrons, which may cause them to precipitate into the loss cone.

  14. MHD simulations of the magnetospheres of Jupiter and Saturn: Application to the Cassini mission

    NASA Astrophysics Data System (ADS)

    Hansen, Kenneth Calvin

    2001-08-01

    We have developed global magnetohydrodynamic (MHD) models of the magnetospheres of Jupiter and Saturn motivated by the need to better understand the global structure and dynamics of the magnetospheres, their interaction with the solar wind and the plasma sources internal to them. The models are also used both as planning tools for the Cassini mission to Saturn and to give a global perspective to the measurements. Our model of Jupiter's magnetosphere is the first to include the Io mass loading region and to solve for the plasma flow in the inner magnetosphere. With the model we study the bow shock and magnetopause crossings made by Cassini and Galileo. In addition, we examine the field- aligned currents in Jupiter's inner magnetosphere with a height integrated ionospheric model coupled to the magnetosphere at the inner boundary. We find that the model describes the state of the magnetosphere at the time of Cassini quite well. The models of Saturn's magnetosphere that we present represent the first and only global models of the Kronian magnetosphere to date. With the models we study the effects of different source terms and different solar wind conditions on the configuration of the magnetosphere. Although simpler models are useful for understanding the relative roles of the icy satellite and Titan plasma sources and the configuration for different solar wind conditions, these models cannot fully account for the plasma in the inner magnetosphere of Saturn. The higher source rate gives good agreement with the mass densities measured by Voyager. For this case, we study the general structure of the magnetosphere as well as some applications of the model to the Cassini mission. We have examined the plasma environment at the satellites of Saturn, provided information about the plasma ram direction and extracted data from the model along the Cassini tour. We have carried out two simulations of the two-body, coupled Saturn-Titan system with Titan in super-fast magnetosonic

  15. Tail current surge: New insights from a global MHD simulation and comparison with satellite observations

    NASA Astrophysics Data System (ADS)

    Ohtani, Shin-Ichi; Raeder, Joachim

    2004-01-01

    The present study examines the tailward propagation of substorm-associated variations of the tail current intensity. In the substorm event of 24 November 1996, the Interball and IMP 8 satellites were located in the midnight sector at X = -26 and -36 RE, respectively, and observed an increase and a decrease of the lobe magnetic field strength corresponding to the storage and release of the lobe magnetic energy. Both spacecraft observed BZ to decrease initially and then increase in the course of the decrease in ∣BX∣, a feature that was reported previously as a manifestation of the tailward expansion of the current disruption region. The delay of the signatures between the two satellites confirms that the associated current system moved tailward. Motivated by this fortuitous coordination of the satellite observation, the present study revisits a global MHD simulation previously conducted specifically for this substorm event [, 2001]. The most noticeable feature of the modeled tail dynamics is the repeated occurrence of tail current surges, that is, temporal intensifications of the tail current that propagate tailward. The first tail current surge is accompanied by the stretching of the tail magnetic field, which starts in the inner magnetosphere and extends tailward. The associated tailward flow redistributes the plasma pressure in such a way that the tail current is reduced in its intensity in the near-Earth region, while the pressure gradient increases at the propagation front, which intensifies the local current. The last major tail current surge is caused by the near-Earth reconnection. Inside a plasmoid, the pressure gradient current is intensified on the tailward side of the O-line, and it propagates tailward as the plasmoid grows and is released. For each tail current surge, irrespective of its cause, the intensification of the tail current is followed by the reduction, and its tailward propagation creates the aforementioned phase relationship between BX

  16. Interpretation of the Time-Intensity Profile of the 15 March 2013 Solar Energetic Particle Event with Global MHD Simulation

    NASA Astrophysics Data System (ADS)

    Plunkett, S. P.; Wu, C.; Liou, K.; Vourlidas, A.; Dryer, Ph. D., M.; Wu, S.; Mewaldt, R. A.

    2013-12-01

    The coronal mass ejection (CME) event on March 15, 2013 is one of the few solar events in cycle 24 that produced a large solar energetic particle (SEP) event and severe geomagnetic activity. SEP observations from the ACE spacecraft show a complex time-intensity profile that is not easily understood with current SEP theories. In this study, we employ a global three-dimensional (3-D) magnetohydrodynamic (MHD) simulation to help interpret the observations. The simulation is based on the H3DMHD code and incorporates extrapolations of photospheric magnetic field as the inner boundary condition at 2.5 solar radii (Rs). A Gaussian-shaped velocity pulse is imposed at the inner boundary as a proxy of the CME. It is found that the time-intensity profile of the high-energy (> 10MeV) SEPs can be explained by the evolution of the CME-driven shock and its interaction with the heliospheric current sheet and the non-uniform solar wind. Specifically, we demonstrate that the shock Mach number at the well-connected shock location is correlated (r ≥ 0.8) with the concurrent proton SEP fluxes with energies greater than 10 and 30 MeV. This study demonstrates that global MHD simulation, despite the limitation implied by its physics-based ideal fluid continuum assumption, can be a useful tool for SEP data analysis.

  17. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Noble, Scott C.; Krolik, Julian H.

    2011-01-01

    We present new global calculations of X-ray spectra from fully relativistic magneto-hydrodynamic (MHO) simulations of black hole (BH) accretion disks. With a self consistent radiative transfer code including Compton scattering and returning radiation, we can reproduce the predominant spectral features seen in decades of X-ray observations of stellar-mass BHs: a broad thermal peak around 1 keV, power-law continuum up to >100 keV, and a relativistically broadened iron fluorescent line. By varying the mass accretion rate, different spectral states naturally emerge: thermal-dominant, steep power-law, and low/hard. In addition to the spectral features, we briefly discuss applications to X-ray timing and polarization.

  18. Numerical simulation of flare energy build-up and release via Joule dissipation. [solar MHD model

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Bao, J. J.; Wang, J. F.

    1986-01-01

    A new numerical MHD model is developed to study the evolution of an active region due to photospheric converging motion, which leads to magnetic-energy buildup in the form of electric current. Because this new MHD model has incorporated finite conductivity, the energy conversion occurs from magnetic mode to thermal mode through Joule dissipation. In order to test the causality relationship between the occurrence of flare and photospheric motion, a multiple-pole configuration with neutral point is used. Using these results it is found that in addition to the converging motion, the initial magnetic-field configuration and the redistribution of the magnetic flux at photospheric level enhance the possibility for the development of a flare.

  19. A Three-Dimensional MHD Simulation of the Solar Wind for a Tilted-Dipole Magnetic Field on the Sun

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2007-01-01

    Using a three-dimensional MHD model, we simulate the global steady-state structure of the solar corona and solar wind for a dipole magnetic field on the Sun inclined by 30 degrees to the solar rotation axis. This represents the solar conditions typical for a declining phase of solar cycle. The computations can extend from the coronal base out to 100-AU and at large heliospheric distances includes the effects of interstellar neutral hydrogen and their interaction with solar wind protons. The simulations can model the formation of corotating interaction regions and the heliospheric current sheet. The simulations are also capable of describing very strong rarefaction regions that include embedded sub-Alfvenic regions that form on the trailing edge of a fast flows.

  20. Zero-beta MHD simulations of a solar eruption driven by a solar wind in the corona

    NASA Astrophysics Data System (ADS)

    Lee, Hwanhee; Magara, Tetsuya; Kang, Jihye

    2016-05-01

    Solar winds always exist in the corona, continuously carrying out magnetized plasmas from the solar surface toward the interplanetary space. We assume that a solar wind also plays an important role in producing a solar eruption. To confirm this hypothesis, we construct a solar eruption model in which a solar wind upflow is imposed at the top boundary of three-dimensional zero-beta magnetogydrodynamic (MHD) simulations. The initial magnetic field is given by nonlinear force-free field (NLFFF) reconstruction that is applied to the surface field provided by a flux emergence simulation. The simulation demonstrates that a solar eruption occurs due to the imbalance between magnetic pressure gradient force and magnetic tension force caused by a solar wind that gradually transports the envelope flux outward. This result provides important insights into the role of solar winds in producing solar eruptions.

  1. Time Dependent MHD Nano-Second Grade Fluid Flow Induced by Permeable Vertical Sheet with Mixed Convection and Thermal Radiation

    PubMed Central

    Ramzan, Muhammad; Bilal, Muhammad

    2015-01-01

    The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM). Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile. PMID:25962063

  2. Time Dependent MHD Nano-Second Grade Fluid Flow Induced by Permeable Vertical Sheet with Mixed Convection and Thermal Radiation.

    PubMed

    Ramzan, Muhammad; Bilal, Muhammad

    2015-01-01

    The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM). Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile. PMID:25962063

  3. MHD-based modeling of radiation and polarization signatures of blazar emission

    NASA Astrophysics Data System (ADS)

    Zhang, Haocheng; Li, Hui; Boettcher, Markus

    2016-04-01

    Observations have shown that sometimes strong multiwavelength flares are accompanied by drastic polarization variations, indicating active participation of magnetic fields during flares. We have developed a 3D numerical tool set of magnetohydrodynamics, Fokker-Planck particle evolution, and polarization-dependent radiation transfer codes. This allows us to study the snap-shot spectra, multiwavelength light curves, and time-dependent optical polarization signatures self-consistently. We have made a simultaneous fit of a multiwavelength flare with 180 degree polarization angle swing of the blazar 3C279 reported by Abdo et al. 2010. Our work has shown that this event requires an increase in the nonthermal particles, a decrease in the magnetic field strength, and a change in the magnetic field structure. We conclude that this event is likely due to a shock-initiated magnetic reconnection in an emission environment with relatively strong magnetic energy. We have performed magnetrohydrodynamic simulations to support this statement. Our simulations have found that the blazar emission region may be strongly magnetized. In this situation, polarization angle swings are likely to be correlated with strong gamma-ray flares.

  4. Hybrid MHD/particle simulation study of sub-cyclotron Alfvén Eigenmodes in NSTX

    NASA Astrophysics Data System (ADS)

    Lestz, Jeff; Belova, Elena; Gorelenkov, N. N.

    2015-11-01

    Low toroidal mode number, high frequency compressional (CAE) and global (GAE) Alfvén Eigenmodes are often driven unstable by super-Alfvénic beam ions in NSTX. These modes have been identified as part of an energy channeling mechanism that may explain observed anomalous electron temperature profile flattening in beam-heated NSTX discharges. 3D hybrid simulations using the HYM code are conducted to study the excitation and stability properties of such CAE and GAE modes in NSTX and NSTX-like plasmas. HYM allows for the self-consistent simulation of these modes with a delta-f particle treatment of the energetic beam ions coupled to a single fluid resistive MHD model of the thermal plasma. Particular attention is paid to the sensitivity of CAE/GAE excitation on parametric changes in the equilibrium beam ion distribution function, among other factors.

  5. Four-fluid MHD Simulations of the Plasma and Neutral Gas Environment of Comet Churyumov-Gerasimenko Near Perihelion

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Toth, G.; Gombosi, T.; Jia, X.; Rubin, M.; Fougere, N.; Tenishev, V.; Combi, M.; Bieler, A.; Hansen, K.; Shou, Y.; Altwegg, K.

    2015-10-01

    We develop a 3-D four fluid model to study the plasma environment of comet Churyumov- Gerasimenko (CG), which is the target of the Rosetta mission. Our model is based on BATS-R-US within the SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates mass loading processes, including photo and electron impact ionization, furthermore taken into account are charge exchange, dissociative ion-electron recombination, as well as collisional interactions between different fluids. We simulate the near nucleus plasma and neutral gas environment with a realistic shape model of CG near perihelion and compare our simulation results with Rosetta observations.

  6. Experimental Study and Simulation of W7-AS Transient MHD Modes

    SciTech Connect

    Pokol, G.; Papp, G.; Por, G.; Zoletnik, S.; Weller, A.

    2008-03-19

    Transient MHD modes present in pure ECRH W7-AS plasmas have been shown to be in correlation with transient transport events (ELM-like modes). Here the spatial structure of the individual transients is analyzed using short-time Fourier transform and continuous analytical wavelet transform based techniques. Processing of Mirnov coil data partly confirms the properties derived from earlier, simpler analyses. Theoretical explanation of the properties of these modes (spatial structure and rapid damping) is attempted by models based involving drift-Alfven turbulence or shear Alfven waves.

  7. Three-dimensional MHD simulation of two coronal mass ejections' propagation and interaction using a successive magnetized plasma blobs model

    NASA Astrophysics Data System (ADS)

    Shen, F.; Feng, X. S.; Wang, Yuming; Wu, S. T.; Song, W. B.; Guo, J. P.; Zhou, Y. F.

    2011-09-01

    A three-dimensional (3-D), time-dependent, numerical magnetohydrodynamic (MHD) model is used to investigate the evolution and interaction of two coronal mass ejections (CMEs) in the nonhomogeneous ambient solar wind. The background solar wind is constructed on the basis of the self-consistent source surface with observed line of sight of magnetic field and density from the source surface of 2.5 Rs to Earth's orbit (215 Rs) and beyond. The two successive CMEs occurring on 28 March 2001 and forming a multiple magnetic cloud in interplanetary space are chosen as a test case, in which they are simulated by means of a two high-density, high-velocity, and high-temperature magnetized plasma blobs model, and are successively ejected into the nonhomogeneous background solar wind medium along different initial launch directions. The dynamical propagation and interaction of the two CMEs between 2.5 and 220 Rs are investigated. Our simulation results show that, although the two CMEs are separated by 10 h, the second CME is able to overtake the first one and cause compound interactions and an obvious acceleration of the shock. At the L1 point near Earth the two resultant magnetic clouds in our simulation are consistent with the observations by ACE. In this validation study we find that this 3-D MHD model, with the self-consistent source surface as the initial boundary condition and the magnetized plasma blob as the CME model, is able to reproduce and explain some of the general characters of the multiple magnetic clouds observed by satellite.

  8. Toward understanding the Sun-to-Earth evolution of the 2012 July 12-16 Coronal Mass Ejection Using Three-dimensional MHD Simulation

    NASA Astrophysics Data System (ADS)

    Shen, F.; Feng, X.; Shen, C.

    2013-12-01

    Dynamic process of coronal mass ejections (CMEs) in the heliosphere is the key information for us to evaluate the CMEs' geo-effectiveness and to improve the accurate prediction of CME induced Shock Arrival Time (SAT) at Earth's environment. We present a three-dimensional (3D) magnetohydrodynamic (MHD) simulation of the evolution of the CME in a realistic ambient solar wind for the July 12-16, 2012 event by using the 3D COIN-TVD MHD code. The influence of the background solar wind speed to the SAT is analyzed. The influence of the initial position and polarity of the plasma blob to IMF Bz is also studied. In the validation study of this CME event (July 12-16, 2012), we find that this 3D COIN-TVD MHD model, with the magnetized plasma blob as CME model, provide a relatively satisfactory comparison with the ACE spacecraft observations at the L1 point.

  9. Interaction of dipolarization fronts within multiple bursty bulk flows in global MHD simulations of a substorm on 27 February 2009

    NASA Astrophysics Data System (ADS)

    Ge, Y. S.; Raeder, J.; Angelopoulos, V.; Gilson, M. L.; Runov, A.

    2011-01-01

    We performed a global MHD simulation of a well-studied substorm on 27 February 2009 (Runov et al., 2009) to understand the generation and large-scale evolution of dipolarization fronts within bursty bulk flows (BBFs). Conjugate, well-positioned Time History of Events and Macroscale Interactions During Substorms (THEMIS) observations from space and ground observatories provide significant constraints to the simulation model. The main substorm onset auroral brightening, at 0749 UT, was in the field of view of Fort Smith (FSMI), just poleward of a preexisting auroral arc. Two minutes later, the space probes recorded a sharp dipolarization front moving sunward, passing by THEMIS and traversing ˜10 RE along the magnetotail. Our global MHD model, OpenGGCM, driven by real-time solar wind/interplanetary magnetic field conditions, is able to reproduce the key features of these signatures. We show that the auroral breakup is caused by the strong flow shear and the flow vortices formed by the BBF flows. Rebound oscillations of the intruding BBF (consistent with recent observations by Panov et al. (2010a)) and filamentation of the front into 1 RE size undulations are superimposed on the flow pattern. Further investigation of the interaction of the BBF and the dipolarization fronts (DFs) reveals that an observed bipolar Bz signature ahead of the DF is due to the interaction between two distinct plasmas emanating from multiple X lines: antisunward-moving flux tubes from a reconnection region at ˜13 RE and sunward-moving dipolarization region within a BBF from a midtail reconnection region at ˜23 RE.

  10. Type II solar radio bursts predicted by 3-D MHD CME and kinetic radio emission simulations

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Cairns, Iver H.

    2014-01-01

    Impending space weather events at Earth are often signaled by type II solar radio bursts. These bursts are generated upstream of shock waves driven by coronal mass ejections (CMEs) that move away from the Sun. We combine elaborate three-dimensional (3-D) magnetohydrodynamic predictions of realistic CMEs near the Sun with a recent analytic kinetic radiation theory in order to simulate two type II bursts. Magnetograms of the Sun are used to reconstruct initial solar magnetic and active region fields for the modeling. STEREO spacecraft data are used to dimension the flux rope of the initial CME, launched into an empirical data-driven corona and solar wind. We demonstrate impressive accuracy in time, frequency, and intensity for the two type II bursts observed by the Wind spacecraft on 15 February 2011 and 7 March 2012. Propagation of the simulated CME-driven shocks through coronal plasmas containing preexisting density and magnetic field structures that stem from the coronal setup and CME initiation closely reproduce the isolated islands of type II emission observed. These islands form because of a competition between the growth of the radio source due to spherical expansion and a fragmentation of the radio source due to increasingly radial fields in the nose region of the shock and interactions with streamers in the flank regions of the shock. Our study provides strong support for this theory for type II bursts and implies that the physical processes involved are understood. It also supports a near-term capability to predict and track these events for space weather predictions.

  11. Relativistic MHD Simulations of Collision-induced Magnetic Dissipation in Poynting-flux-dominated Jets/outflows

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-06-01

    We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.

  12. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  13. Interpretation of solar irradiance monitor measurements through analysis of 3D MHD simulations

    SciTech Connect

    Criscuoli, S.; Uitenbroek, H.

    2014-06-20

    Measurements from the Spectral Irradiance Monitor (SIM) on board the Solar Radiation and Climate Experiment mission indicate that solar spectral irradiance at visible and IR wavelengths varies in counter phase with the solar activity cycle. The sign of these variations is not reproduced by most of the irradiance reconstruction techniques based on variations of surface magnetism employed so far, and it is not yet clear whether SIM calibration procedures need to be improved or if instead new physical mechanisms must be invoked to explain such variations. We employ three-dimensional magnetohydrodynamic simulations of the solar photosphere to investigate the dependence of solar radiance in SIM visible and IR spectral ranges on variations of the filling factor of surface magnetic fields. We find that the contribution of magnetic features to solar radiance is strongly dependent on the location on the disk of the features, which are negative close to disk center and positive toward the limb. If features are homogeneously distributed over a region around the equator (activity belt), then their contribution to irradiance is positive with respect to the contribution of HD snapshots, but decreases with the increase of their magnetic flux for average magnetic flux larger than 50 G in at least two of the visible and IR spectral bands monitored by SIM. Under the assumption that the 50 G snapshots are representative of quiet-Sun regions, we thus find that the Spectral Irradiance can be in counter-phase with the solar magnetic activity cycle.

  14. Ideal MHD

    NASA Astrophysics Data System (ADS)

    Freidberg, Jeffrey P.

    2014-06-01

    1. Introduction; 2. The ideal MHD model; 3. General properties of ideal MHD; 5. Equilibrium: one-dimensional configurations; 6. Equilibrium: two-dimensional configurations; 7. Equilibrium: three-dimensional configurations; 8. Stability: general considerations; 9. Alternate MHD models; 10. MHD stability comparison theorems; 11. Stability: one-dimensional configurations; 12. Stability: multi-dimensional configurations; Appendix A. Heuristic derivation of the kinetic equation; Appendix B. The Braginskii transport coefficients; Appendix C. Time derivatives in moving plasmas; Appendix D. The curvature vector; Appendix E. Overlap limit of the high b and Greene-Johnson stellarator models; Appendix F. General form for q(y); Appendix G. Natural boundary conditions; Appendix H. Upper and lower bounds on dQKIN.

  15. Simulation of within-canopy radiation exchange

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radiation exchange at the surface plays a critical role in the surface energy balance, plant microclimate, and plant growth. The ability to simulate the surface energy balance and the microclimate within the plant canopy is contingent upon simulation of the surface radiation exchange. A validation a...

  16. Estimating solar radiation for plant simulation models

    NASA Technical Reports Server (NTRS)

    Hodges, T.; French, V.; Leduc, S.

    1985-01-01

    Five algorithms producing daily solar radiation surrogates using daily temperatures and rainfall were evaluated using measured solar radiation data for seven U.S. locations. The algorithms were compared both in terms of accuracy of daily solar radiation estimates and terms of response when used in a plant growth simulation model (CERES-wheat). Requirements for accuracy of solar radiation for plant growth simulation models are discussed. One algorithm is recommended as being best suited for use in these models when neither measured nor satellite estimated solar radiation values are available.

  17. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps

    NASA Astrophysics Data System (ADS)

    Hayashi, K.

    2013-11-01

    We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.

  18. Relativistic MHD simulations of collision-induced magnetic dissipation in Poynting-flux-dominated jets/outflows

    SciTech Connect

    Deng, Wei

    2015-07-21

    The question of the energy composition of the jets/outflows in high-energy astrophysical systems, e.g. GRBs, AGNs, is taken up first: Matter-flux-dominated (MFD), σ < 1, and/or Poynting-flux-dominated (PFD), σ >1? The standard fireball IS model and dissipative photosphere model are MFD, while the ICMART (Internal-Collision-induced MAgnetic Reconnection and Turbulence) model is PFD. Motivated by ICMART model and other relevant problems, such as “jets in a jet” model of AGNs, the author investigates the models from the EMF energy dissipation efficiency, relativistic outflow generation, and σ evolution points of view, and simulates collisions between high-σ blobs to mimic the situation of the interactions inside the PFD jets/outflows by using a 3D SRMHD code which solves the conservative form of the ideal MHD equations. σb,f is calculated from the simulation results (threshold = 1). The efficiency obtained from this hybrid method is similar to the efficiency got from the energy evolution of the simulations (35.2%). Efficiency is nearly σ independent, which is also confirmed by the hybrid method. σb,i - σb,f provides an interesting linear relationship. Results of several parameter studies of EMF energy dissipation efficiency are shown.

  19. MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Imtiaz, Maria; Alsaedi, Ahmed; Kutbi, Marwan A.

    2015-12-01

    An analysis has been carried out for the three dimensional flow of viscous nanofluid in the presence of partial slip and thermal radiation effects. The flow is induced by a permeable stretching surface. Water is treated as a base fluid and alumina as a nanoparticle. Fluid is electrically conducting in the presence of applied magnetic field. Entire different concept of nonlinear thermal radiation is utilized in the heat transfer process. Different from the previous literature, the nonlinear system for temperature distribution is solved and analyzed. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent series solutions are computed for the velocity and temperature. Effects of different parameters on the velocity, temperature, skin friction coefficient and Nusselt number are computed and examined. It is concluded that heat transfer rate increases when temperature and radiation parameters are increased.

  20. Localized reconnection in the magnetotail driven by lobe flow channels: Global MHD simulation

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Lyons, L. R.

    2016-02-01

    Recent ionospheric measurements suggest polar cap flow channels often trigger nightside auroral brightening. However, measurements were limited to the ionosphere, and it was not understood if such flow channels can exist in the lobe and can trigger magnetotail reconnection in a localized cross-tail extent. We examined if localized flow channels can form self-consistently in a global MHD regime, and if so, how such flow channels originate and relate to localized magnetotail reconnection. We show that lobe convection became nonuniform with azimuthally narrow flow channels (enhanced dawn-dusk electric fields) of ~3 RE cross-tail width. The flow channels propagated from the dayside toward the plasma sheet as an interplanetary magnetic field (IMF) discontinuity swept tailward. The plasma sheet around the lobe flow channels became thinner with a similar cross-tail extent and then localized reconnection occurred. These results suggest that localized flow channels can propagate tailward across the lobe and drive localized magnetotail reconnection, that the cross-tail width of reconnection and resulting plasma sheet flow channels and dipolarization fronts are related to the width of inflow from the lobe, and that IMF discontinuities drive lobe flow channels.

  1. CME-CME Interaction As Revealed by MHD Simulations and SECCHI Observations

    NASA Astrophysics Data System (ADS)

    Lugaz, Noé; Farrugia, Charles; Roussev, Ilia; Moestl, Christian; Davies, Jackie; Gombosi, Tamas

    2012-07-01

    As we move towards solar maximum 24, immense progress can be expected in the forecasting and understanding of space weather and solar eruptions, thanks to the expanding fleet of satellites observing the Sun and the heliosphere (SOHO, Hinode, STEREO, SDO). As the frequency of coronal mass ejections (CMEs) increases to multiple eruptions per day, the interaction of successive CMEs in the inner heliosphere becomes more likely. CME-CME interaction is thought to be one major cause of intense and extreme geo-magnetic storms due to the compression of the magnetic field and the extended duration. In this talk, I will discuss how magneto-hydrodynamics (MHD) models and remote-sensing observations can shed light on the physical processes during CME-CME interaction and help explain complex in situ measurements at 1 AU. I will present some recent remote-sensing observations by STEREO/SECCHI of CMEs interacting in the heliosphere and discuss how knowledge gained from past numerical and observational studies may help us predict geo-effective events associated with multiple CMEs from remote-sensing observations.

  2. The Effects of Differential Rotation on the Magnetic Structure of the Solar Corona: MHD Simulations

    NASA Technical Reports Server (NTRS)

    Lionello, Roberto; Riley, Pete; Linker, Jon A.; Mikic, Zoran

    2004-01-01

    Coronal holes are magnetically open regions from which the solar wind streams. Magnetic reconnection has been invoked to reconcile the apparently rigid rotation of coronal holes with the differential rotation of magnetic flux in the photosphere. This mechanism might also be relevant to the formation of the slow solar wind, the properties of which seem to indicate an origin from the opening of closed magnetic field lines. We have developed a global MHD model to study the effect of differential rotation on the coronal magnetic field. Starting from a magnetic flux distribution similar to that of Wang et al., which consists of a bipolar magnetic region added to a background dipole field, we applied differential rotation over a period of 5 solar rotations. The evolution of the magnetic field and of the boundaries of coronal holes are in substantial agreement with the findings of Wang et al.. We identified examples of interchange reconnection and other changes of topology of the magnetic field. Possible consequences for the origin of the slow solar wind are also discussed.

  3. Three-Dimensional MHD Simulation of Current Sheet Evolution During the Growth Phase of Magnetospheric Substorms

    NASA Astrophysics Data System (ADS)

    Hall, F.; Otto, A.

    2004-12-01

    Current sheet thinning in the near-Earth magnetotail is an important element of growth phase dynamics since it determines the conditions for substorm onset. The growth phase is initiated by the erosion of closed dayside magnetic flux. This flux is replenished by convection of closed magnetic flux from the near-Earth tail region to the dayside. However, this process of magnetic flux replenishment is subject to the entropy and mass conservation constraints imposed on the slow quasi-static convection of magnetic flux tubes from the mid- and far-tail regions, first identified by Erickson and Wolf (1980). We examine whether the depletion of flux from a finite reservoir in the near-Earth tail region leads to the observed current sheet thinning. This hypothesis is tested using a self-consistent three-dimensional MHD code which is coupled to a semi-empirical magnetic field model. The resulting system was relaxed to an equilibrium state using a modification of a `ballistic relaxation' method. We discuss the structure of the equilibrium near-Earth magnetotail. A plasma outflow is prescribed in the near-Earth magnetotail to model the depletion of the `flux reservoir' described above. The resulting evolution of the current sheet is discussed.

  4. A global MHD simulation study of the vortices at the magnetosphere boundary under the southward IMF condition

    NASA Astrophysics Data System (ADS)

    Park, K.; Ogino, T.; Lee, D.; Walker, R. J.; Kim, K.

    2013-12-01

    One of the significant problems in magnetospheric physics concerns the nature and properties of the processes which occur at the magnetopause boundary; in particular how energy, momentum, and plasma the magnetosphere receives from the solar wind. Basic processes are magnetic reconnection [Dungey, 1961] and viscouslike interaction, such as Kelvin-Helmholtz instability [Dungey 1955, Miura, 1984] and pressure-pulse driven [Sibeck et al. 1989]. In generally, magnetic reconnection occurs efficiently when the IMF is southward and the rate is largest where the magnetosheath magnetic field is antiparallel to the geomagnetic field. [Sonnerup, 1974; Crooker, 1979; Luhmann et al., 1984; Park et al., 2006, 2009]. The Kelvin-Helmholtz instability is driven by the velocity shear at the boundary, which occur frequently when the IMF is northward. Also variation of the magnetic field and the plasma properties is reported to be quasi-periodic with 2-3min [Otto and Fairfield, 2000] and period of vortex train with 3 to 4 minutes by global MHD simulation [Ogino, 2011]. The pressure-pulse is driven by the solar wind. And the observations of the magnetospheric magnetic field response show quasi-periodic with a period of 8 minutes [Sibeck et al., 1989; Kivelson and Chen, 1995]. There have been few studies of the vortices in the magnetospheric boundary under southward IMF condition. However it is not easy to find the generation mechanism and characteristic for vortices in complicated 3-dimensional space. Thus we have performed global MHD simulation for the steady solar wind and southward IMF conditions. From the simulation results, we find that the vortex occurs at R= 11.7Re (IMF Bz = -2 nT) and R= 10.2Re (IMF Bz = -10 nT) in the dayside magnetopause boundary. Also the vortex rotates counterclockwise in duskside magnetopause (clockwise in dawnside) and propagates tailward. Across the vortex, magnetic field and plasma properties clearly show quasi-periodic fluctuations with a period of 8

  5. The Cool Surge Following Flux Emergence in a Radiation-MHD Experiment

    NASA Astrophysics Data System (ADS)

    Nóbrega-Siverio, D.; Moreno-Insertis, F.; Martínez-Sykora, J.

    2016-05-01

    Cool and dense ejections, typically Hα surges, often appear alongside EUV or X-ray coronal jets as a result of the emergence of magnetized plasma from the solar interior. Idealized numerical experiments explain those ejections as being indirectly associated with the magnetic reconnection taking place between the emerging and preexisting systems. However, those experiments miss basic elements that can importantly affect the surge phenomenon. In this paper we study the cool surges using a realistic treatment of the radiation transfer and material plasma properties. To that end, the Bifrost code is used, which has advanced modules for the equation of state of the plasma, photospheric and chromospheric radiation transfer, heat conduction, and optically thin radiative cooling. We carry out a 2.5D experiment of the emergence of magnetized plasma through (meso) granular convection cells and the low atmosphere to the corona. Through detailed Lagrange tracing we study the formation and evolution of the cool ejection and, in particular, the role of the entropy sources; this allows us to discern families of evolutionary patterns for the plasma elements. In the launch phase, many elements suffer accelerations well in excess of gravity; when nearing the apex of their individual trajectories, instead, the plasma elements follow quasi-parabolic trajectories with accelerations close to {g}ȯ . We show how the formation of the cool ejection is mediated by a wedge-like structure composed of two shocks, one of which leads to the detachment of the surge from the original emerged plasma dome.

  6. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    DOE PAGESBeta

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-05-29

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.« less

  7. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    SciTech Connect

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-05-29

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.

  8. The Latitudinal Excursion of Coronal Magnetic Field Lines in Response to Differential Rotation: MHD Simulations

    NASA Technical Reports Server (NTRS)

    Lionello, Roberto; Linker, Jon A.; Mikic, Zoran; Riley, Pete

    2006-01-01

    Solar energetic particles, which are believed to originate from corotating interacting regions (CIRS) at low heliographic latitude, were observed by the Ulysses spacecraft even as it passed over the Sun's poles. One interpretation of this result is that high-latitude field lines intercepted by Ulysses connect to low-latitude CIRs at much larger heliocentric distances. The Fisk model explains the latitudinal excursion of magnetic field lines in the solar corona and heliosphere as the inevitable consequence of the interaction of a tilted dipole in a differentially rotating photosphere with rigidly rotating coronal holes. We use a time-dependent three-dimensional magnetohydrodynamic (MHD) algorithm to follow the evolution of a simple model of the solar corona in response to the differential rotation of the photospheric magnetic flux. We examine the changes of the coronal-hole boundaries, the redistribution of the line-of-sight magnetic field, and the precession of field lines in the corona. Our results confirm the basic idea of the Fisk model, that differential rotation leads to changes in the heliographic latitude of magnetic field lines. However, the latitudinal excursion of magnetic field lines in this simple "tilted dipole" model is too small to explain the Ulysses observations. Although coronal holes in our model rotate more rigidly than do photospheric features (in general agreement with observations), they do not rotate strictly rigidly as assumed by Fisk. This basic difference between our model and Fisk's will be explored in the future by considering more realistic magnetic flux distributions, as observed during Ulysses polar excursions.

  9. 3D Dynamics of Magnetopause Reconnection Using Hall-MHD Global Simulations

    NASA Astrophysics Data System (ADS)

    Maynard, K.; Germaschewski, K.; Raeder, J.; Bhattacharjee, A.

    2011-12-01

    Magnetic reconnection at Earth's magnetopause and in the magnetotail is of crucial importance for the dynamics of the global magnetosphere and space weather. Even though the plasma conditions in the magnetosphere are largely in the collisionless regime, most of the existing research using global computational models employ single-fluid magnetohydrodynamics (MHD) with artificial resistivity. Studies of reconnection in simplified, two-dimensional geometries have established that two-fluid and kinetic effects can dramatically alter dynamics and reconnection rates when compared with single-fluid models. These enhanced models also introduce particular signatures, for example a quadrupolar out-of-plane magnetic field component that has already been observed in space by satellite measurements. However, results from simplified geometries cannot be translated directly to the dynamics of three-dimensional magnetospheric reconnection. For instance, magnetic flux originating from the solar wind and arriving at the magnetopause can either reconnect or be advected around the magnetosphere. In this study, we use a new version of the OpenGGCM code that incorporates the Hall term in a Generalized Ohm's Law to study magnetopause reconnection under synthetic solar wind conditions and investigate how reconnection rates and dynamics of flux transfer events depend on the strength of the Hall term. The OpenGGCM, a global model of Earth's magnetosphere, has recently been ported to exploit modern computing architectures like the Cell processor and SIMD capabilities of conventional processors using an automatic code generator. These enhancements provide us with the performance needed to include the computationally expensive Hall physics.

  10. Test of Shi et al. Method to Infer the Magnetic Reconnection Geometry from Spacecraft Data: MHD Simulation with Guide Field and Antiparallel Kinetic Simulation

    NASA Technical Reports Server (NTRS)

    Denton, R.; Sonnerup, B. U. O.; Swisdak, M.; Birn, J.; Drake, J. F.; Heese, M.

    2012-01-01

    When analyzing data from an array of spacecraft (such as Cluster or MMS) crossing a site of magnetic reconnection, it is desirable to be able to accurately determine the orientation of the reconnection site. If the reconnection is quasi-two dimensional, there are three key directions, the direction of maximum inhomogeneity (the direction across the reconnection site), the direction of the reconnecting component of the magnetic field, and the direction of rough invariance (the "out of plane" direction). Using simulated spacecraft observations of magnetic reconnection in the geomagnetic tail, we extend our previous tests of the direction-finding method developed by Shi et al. (2005) and the method to determine the structure velocity relative to the spacecraft Vstr. These methods require data from four proximate spacecraft. We add artificial noise and calibration errors to the simulation fields, and then use the perturbed gradient of the magnetic field B and perturbed time derivative dB/dt, as described by Denton et al. (2010). Three new simulations are examined: a weakly three-dimensional, i.e., quasi-two-dimensional, MHD simulation without a guide field, a quasi-two-dimensional MHD simulation with a guide field, and a two-dimensional full dynamics kinetic simulation with inherent noise so that the apparent minimum gradient was not exactly zero, even without added artificial errors. We also examined variations of the spacecraft trajectory for the kinetic simulation. The accuracy of the directions found varied depending on the simulation and spacecraft trajectory, but all the directions could be found within about 10 for all cases. Various aspects of the method were examined, including how to choose averaging intervals and the best intervals for determining the directions and velocity. For the kinetic simulation, we also investigated in detail how the errors in the inferred gradient directions from the unmodified Shi et al. method (using the unperturbed gradient

  11. Radiation and chemical reaction effects on MHD flow along a moving vertical porous plate

    NASA Astrophysics Data System (ADS)

    Ramana Reddy, G. V.; Bhaskar Reddy, N.; Gorla, R. S. R.

    2016-02-01

    This paper presents an analysis of the effects of magnetohydrodynamic force and buoyancy on convective heat and mass transfer flow past a moving vertical porous plate in the presence of thermal radiation and chemical reaction. The governing partial differential equations are reduced to a system of self-similar equations using the similarity transformations. The resultant equations are then solved numerically using the fourth order Runge-Kutta method along with the shooting technique. The results are obtained for the velocity, temperature, concentration, skin-friction, Nusselt number and Sherwood number. The effects of various parameters on flow variables are illustrated graphically, and the physical aspects of the problem are discussed.

  12. Impurity mixing and radiation asymmetry in massive gas injection simulations of DIII-D

    SciTech Connect

    Izzo, V. A.

    2013-05-15

    Simulations of neon massive gas injection into DIII-D are performed with the 3D MHD code NIMROD. The poloidal and toroidal distribution of the impurity source is varied. This report will focus on the effects of the source variation on impurity mixing and radiated power asymmetry. Even toroidally symmetric impurity injection is found to produce asymmetric radiated power due to asymmetric convective heat flux produced by the 1/1 mode. When the gas source is toroidally localized, the phase relationship between the mode and the source location is important, affecting both radiation peaking and impurity mixing. Under certain circumstances, a single, localized gas jet could produce better radiation symmetry during the disruption thermal quench than evenly distributed impurities.

  13. MHD flow past a parabolic flow past an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction

    NASA Astrophysics Data System (ADS)

    Muthucumaraswamy, R.; Sivakumar, P.

    2016-02-01

    The problem of MHD free convection flow with a parabolic starting motion of an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction has been examined in detail in this paper. The fluid considered here is a gray, absorbing emitting radiation but a non-scattering medium. The dimensionless governing coupled linear partial differential equations are solved using the Laplace transform technique. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time on the velocity, temperature, concentration. The results are discussed graphically and qualitatively. The numerical results reveal that the radiation induces a rise in both the velocity and temperature, and a decrease in the concentration. The model finds applications in solar energy collection systems, geophysics and astrophysics, aerospace and also in the design of high temperature chemical process systems.

  14. CME flux rope and shock identifications and locations: Comparison of white light data, Graduated Cylindrical Shell model, and MHD simulations

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Cairns, Iver H.; Xie, Hong; St. Cyr, O. C.; Gopalswamy, N.

    2016-03-01

    Coronal mass ejections (CMEs) are major transient phenomena in the solar corona that are observed with ground-based and spacecraft-based coronagraphs in white light or with in situ measurements by spacecraft. CMEs transport mass and momentum and often drive shocks. In order to derive the CME and shock trajectories with high precision, we apply the graduated cylindrical shell (GCS) model to fit a flux rope to the CME directed toward STEREO A after about 19:00 UT on 29 November 2013 and check the quality of the heliocentric distance-time evaluations by carrying out a three-dimensional magnetohydrodynamic (MHD) simulation of the same CME with the Block Adaptive Tree Solar-Wind Roe Upwind Scheme (BATS-R-US) code. Heliocentric distances of the CME and shock leading edges are determined from the simulated white light images and magnetic field strength data. We find very good agreement between the predicted and observed heliocentric distances, showing that the GCS model and the BATS-R-US simulation approach work very well and are consistent. In order to assess the validity of CME and shock identification criteria in coronagraph images, we also compute synthetic white light images of the CME and shock. We find that the outer edge of a cloud-like illuminated area in the observed and predicted images in fact coincides with the leading edge of the CME flux rope and that the outer edge of a faint illuminated band in front of the CME leading edge coincides with the CME-driven shock front.

  15. Two-dimensional Simulation of Magnetohydrodynamic Flow in a Liquid Metal MHD Generator Taking the Induced Magnetic Field into Consideration

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazuya; Maeda, Tetsuhiko; Hasegawa, Yasuo

    The magnetohydrodynamic flow in a liquid metal MHD generator is investigated with two-dimensional numerical simulation, where the induced magnetic field is considered. Numerical results indicate that the power output becomes the highest at the loading parameter of 0.64, which is higher than the loading parameter of 0.5 giving the highest power output in the theoretical analysis without the induced magnetic field. This results from the strong negative induced magnetic field with the low loading parameter. It is shown that the eddy current exists in the upstream and downstream region of the generator channel. And the induced magnetic flux density is the strongest at the center of the eddy current. This is because x-direction electric field is generated near the upstream and downstream edge of the electrodes. It is observed that the distributions of the x-direction velocity become M-shaped in the generator channel. In the downstream region, the M-shaped Hartmann velocity profile is developed with the high loading parameter. With the low loading parameter, on the contrary, the velocity in the main flow is higher than that near the wall.

  16. New insights into the generalized Rutherford equation for nonlinear neoclassical tearing mode growth from 2D reduced MHD simulations

    NASA Astrophysics Data System (ADS)

    Westerhof, E.; de Blank, H. J.; Pratt, J.

    2016-03-01

    Two dimensional reduced MHD simulations of neoclassical tearing mode growth and suppression by ECCD are performed. The perturbation of the bootstrap current density and the EC drive current density perturbation are assumed to be functions of the perturbed flux surfaces. In the case of ECCD, this implies that the applied power is flux surface averaged to obtain the EC driven current density distribution. The results are consistent with predictions from the generalized Rutherford equation using common expressions for Δ \\text{bs}\\prime and Δ \\text{ECCD}\\prime . These expressions are commonly perceived to describe only the effect on the tearing mode growth of the helical component of the respective current perturbation acting through the modification of Ohm’s law. Our results show that they describe in addition the effect of the poloidally averaged current density perturbation which acts through modification of the tearing mode stability index. Except for modulated ECCD, the largest contribution to the mode growth comes from this poloidally averaged current density perturbation.

  17. Radial dependence of solar energetic particles derived from the 15 March 2013 solar energetic particle event and global MHD simulation

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Chun; Liou, Kan; Wu, S. T.; Dryer, Murray; Plunkett, Simon

    2016-03-01

    We study an unusual solar energetic particle (SEP) event that was associated with the coronal mass ejection (CME) on March 15, 2013. Enhancements of the SEP fluxes were first detected by the ACE spacecraft at 14:00 UT, ˜7 hours after the onset of the CME (07:00 UT), and the SEP's peak intensities were recorded ˜36 hours after the onset of the CME. Our recent study showed that the CME-driven shock Mach number, based on a global three-dimensional (3-D) magnetohydrodynamic (MHD) simulation, is well correlated with the time-intensity of 10-30 MeV and 30-80 MeV protons. Here we focus on the radial dependence (r-α) of 4He (3.43-41.2 MeV/n) and O (7.30-89.8 MeV/n) energetic particles from ACE/SIS. It is found that the scaling factor (α) ranges between 2 and 4 for most of the energy channels. We also found that the correlation coefficients tend to increase with SEP energies.

  18. 3D MHD Simulations of accreting neutron stars: evidence of QPO emission from the surface

    SciTech Connect

    Bachetti, Matteo; Burderi, Luciano; Romanova, Marina M.; Kulkarni, Akshay; Salvo, Tiziana di

    2010-07-15

    3D Magnetohydrodynamic simulations show that when matter accretes onto neutron stars, in particular if the misalignment angle is small, it does not constantly fall at a fixed spot. Instead, the location at which matter reaches the star moves. These moving hot spots can be produced both during stable accretion, where matter falls near the magnetic poles of the star, and unstable accretion, characterized by the presence of several tongues of matter which fall on the star near the equator, due to Rayleigh-Taylor instabilities. Precise modeling with Monte Carlo simulations shows that those movements could be observed as high frequency Quasi Periodic Oscillations. We performed a number of new simulation runs with a much wider set of parameters, focusing on neutron stars with a small misalignment angle. In most cases we observe oscillations whose frequency is correlated with the mass accretion rate M. Moreover, in some cases double QPOs appear, each of them showing the same correlation with M.

  19. Anisotropic turbulence studies of liquid metal MHD flows using numerical simulations

    NASA Astrophysics Data System (ADS)

    Kumar, Raghwendra; Verma, M. K.; Kumar, Vaibhav

    2010-02-01

    Liquid metal flow at low magnetic Reynolds number is simulated. Direct numerical simulation using pseudo-spectral method in periodic box geometry has been used for this purpose. The statistical distribution of fluctuation energy in different Fourier modes of the velocity fields is calculated. Unlike the simple fluid, spectral distribution of energy in this situation does not follow Kolmogorov scaling law (E(k) ~ k-5/3). Rather, our preliminary investigations suggest that it is steeper and follows E(k) ~ k-3 scaling law for very strong magnetic field.

  20. Effects of chemical reaction on MHD mixed convection stagnation point flow toward a vertical plate in a porous medium with radiation and heat generation

    NASA Astrophysics Data System (ADS)

    Hari, Niranjan; Sivasankaran, S.; Bhuvaneswari, M.; Siri, Zailan

    2015-12-01

    The aim of the present study is to analyze the effects of chemical reaction on MHD mixed convection with the stagnation point flow towards a vertical plate embedded in a porous medium with radiation and internal heat generation. The governing boundary layer equations are transformed into a set of ordinary differential equations using similarity transformations. Then they are solved by shooting technique with Runge-Kutta fourth order iteration. The obtained numerical results are illustrated graphically and the heat and mass transfer rates are given in tabular form. The velocity and temperature profiles overshoot near the plate on increasing the chemical reaction parameter, Richardson number and magnetic field parameter.

  1. Three-dimensional MHD boundary layer flow due to an axisymmetric shrinking sheet with radiation, viscous dissipation and heat source/sink

    NASA Astrophysics Data System (ADS)

    Madhu, M.; Balaswamy, B.; Kishan, N.

    2016-05-01

    An analysis is made to study a three dimensional MHD boundary layer flow and heat transfer due to a porous axisymmetric shrinking sheet. The governing partial differential equations of momentum and energy are transformed into self similar non-linear ordinary differential equations by using the suitable similarity transformations. These equations are, then solved by using the variational finite element method. The flow phenomena is characterised by the magnetic parameter M, suction parameter S, porosity parameter Kp, heat source/sink parameter Q, Prandtl number Pr, Eckert number Ec and radiation parameter Rd. The numerical results of the velocity and temperature profiles are obtained and displayed graphically.

  2. Radiated fields from an electromagnetic pulse simulator

    NASA Astrophysics Data System (ADS)

    Pelletier, M.; Delisle, G. Y.; Kashyap, S.

    Simulators of electromagnetic pulses allow generation within a limited time of very high-intensity fields such as those produced in a nuclear explosion. These fields can be radiated out of the test zone at a lower but nevertheless significant level; if the intensity of these fields is sufficiently high, damage to humans and electronic equipment can result. An evaluation of the potential danger of these simulator emissions requires knowledge of the amplitude, duration, and the energy of the radiated impulses. A technique is presented for calculating the fields radiated by a parallel-plane electromagnetic pulse simulator. The same method can also be applied to a rhombic type simulator. Sample numerical results are presented along with the calculations of the energy and power density and a discussion of the formation of the field in the frequency domain.

  3. High-order Godunov schemes for global 3D MHD simulations of accretion disks. I. Testing the linear growth of the magneto-rotational instability

    NASA Astrophysics Data System (ADS)

    Flock, M.; Dzyurkevich, N.; Klahr, H.; Mignone, A.

    2010-06-01

    We assess the suitability of various numerical MHD algorithms for astrophysical accretion disk simulations with the PLUTO code. The well-studied linear growth of the magneto-rotational instability is used as the benchmark test for a comparison between the implementations within PLUTO and against the ZeusMP code. The results demonstrate the importance of using an upwind reconstruction of the electro-motive force (EMF) in the context of a constrained transport scheme, which is consistent with plane-parallel, grid-aligned flows. In contrast, constructing the EMF from the simple average of the Godunov fluxes leads to a numerical instability and the unphysical growth of the magnetic energy. We compare the results from 3D global calculations using different MHD methods against the analytical solution for the linear growth of the MRI, and discuss the effect of numerical dissipation. The comparison identifies a robust and accurate code configuration that is vital for realistic modeling of accretion disk processes.

  4. Mathematical modelling in MHD technology

    SciTech Connect

    Scheindlin, A.E.; Medin, S.A. )

    1990-01-01

    The technological scheme and the general parameters of the commercial scale pilot MHD power plant are described. The characteristics of the flow train components and the electrical equipment are discussed. The basic ideas of the mathematical modelling of the processes and the devices operation in MHD systems are considered. The application of different description levels in computer simulation is analyzed and the examples of typical solutions are presented.

  5. CYCLIC THERMAL SIGNATURE IN A GLOBAL MHD SIMULATION OF SOLAR CONVECTION

    SciTech Connect

    Cossette, Jean-Francois; Charbonneau, Paul; Smolarkiewicz, Piotr K.

    2013-11-10

    Global magnetohydrodynamical simulations of the solar convection zone have recently achieved cyclic large-scale axisymmetric magnetic fields undergoing polarity reversals on a decadal time scale. In this Letter, we show that these simulations also display a thermal convective luminosity that varies in-phase with the magnetic cycle, and trace this modulation to deep-seated magnetically mediated changes in convective flow patterns. Within the context of the ongoing debate on the physical origin of the observed 11 yr variations in total solar irradiance, such a signature supports the thesis according to which all, or part, of the variations on decadal time scales and longer could be attributed to a global modulation of the Sun's internal thermal structure by magnetic activity.

  6. Numerical simulation of MHD for electromagnetic edge dam in continuous casting.

    SciTech Connect

    Chang, F. C.

    1999-03-30

    A computer model was developed to predict eddy currents and fluid flows in molten steel. The model was verified by comparing predictions with experimental results of liquid-metal containment and fluid flow in electromagnetic (EM) edge dams (EMDs) designed at Inland Steel for twin-roll casting. The model can optimize the EMD design so it is suitable for application, and minimize expensive, time-consuming full-scale testing. Numerical simulation was performed by coupling a three-dimensional (3-D) finite-element EM code (ELEKTRA) and a 3-D finite-difference fluids code (CaPS-EM) to solve heat transfer, fluid flow, and turbulence transport in a casting process that involves EM fields. ELEKTRA is able to predict the eddy-current distribution and the electromagnetic forces in complex geometries. CaPS-EM is capable of modeling fluid flows with free surfaces. Results of the numerical simulation compared measurements obtained from a static test.

  7. 2D radiation-magnetohydrodynamic simulations of SATURN imploding Z-pinches

    SciTech Connect

    Hammer, J.H.; Eddleman, J.L.; Springer, P.T.

    1995-11-06

    Z-pinch implosions driven by the SATURN device at Sandia National Laboratory are modeled with a 2D radiation magnetohydrodynamic (MHD) code, showing strong growth of magneto-Rayleigh Taylor (MRT) instability. Modeling of the linear and nonlinear development of MRT modes predicts growth of bubble-spike structures that increase the time span of stagnation and the resulting x-ray pulse width. Radiation is important in the pinch dynamics keeping the sheath relatively cool during the run-in and releasing most of the stagnation energy. The calculations give x-ray pulse widths and magnitudes in reasonable agreement with experiments, but predict a radiating region that is too dense and radially localized at stagnation. We also consider peaked initial density profiles with constant imploding sheath velocity that should reduce MRT instability and improve performance. 2D krypton simulations show an output x-ray power > 80 TW for the peaked profile.

  8. Multifluid MHD simulation of Saturn's magnetosphere: Dynamics of mass- and momentum-loading, and seasonal variation of the plasma sheet

    NASA Astrophysics Data System (ADS)

    Rajendar, A.; Paty, C. S.; Arridge, C. S.; Jackman, C. M.; Smith, H. T.

    2013-12-01

    Saturn's magnetosphere is driven externally, by the solar wind, and internally, by the planet's strong magnetic field, rapid rotation rate, and the addition of new plasma created from Saturn's neutral cloud. Externally, the alignment of the rotational and magnetic dipole axes, combined with Saturn's substantial inclination to its plane of orbit result in substantial curvature of the plasma sheet during solstice. Internally, new water group ions are produced in the inner regions of the magnetosphere from photoionization and electron-impact ionization of the water vapor and OH cloud sourced from Enceladus and other icy bodies in Saturn's planetary system. In addition to this, charge-exchange collisions between the relatively fast-moving water group ions and the slower neutrals results in a net loss of momentum from the plasma. In order to study these phenomena, we have made significant modifications to the Saturn multifluid model. This model has been previously used to investigate the external triggering of plasmoids and the interchange process using a fixed internal source rate. In order to improve the fidelity of the model, we have incorporated a physical source of mass- and momentum-loading by including an empirical representation of Saturn's neutral cloud and modifying the multifluid MHD equations to include mass- and momentum-loading terms. Collision cross-sections between ions, electrons, and neutrals are calculated as functions of closure velocity and energy at each grid point and time step, enabling us to simulate the spatially and temporally varying plasma-neutral interactions. In addition to this, by altering the angle of incidence of the solar wind relative to Saturn's rotational axis and applying a realistic latitudinally- and seasonally-varying ionospheric conductivity, we are also able to study seasonal effects on Saturn's magnetosphere. We use the updated multifluid simulation to investigate the dynamics of Saturn's magnetosphere, focusing specifically

  9. Analysis of Helicities and Hall and MHD Dynamo Effects in Two-Fluid Reversed-Field Pinch Simulations

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua; Sovinec, Carl

    2015-11-01

    Relaxation in the RFP is studied numerically with extended-MHD modeling that includes the Hall term and ion gyroviscous stress. Previous results show significant coupling between magnetic relaxation and parallel flow evolution [King PoP 19, 055905]. Computations presented here display quasi-periodic relaxation events with current relaxation through MHD and Hall dynamo drives. The MHD dynamo always relaxes currents while the Hall dynamo may add or subtract from it, but the total dynamo drive is similar to single-fluid MHD computations. Changes in plasma momentum are due to viscous coupling to the wall and fluctuation-induced Maxwell stresses transport momentum radially inward when two-fluid effects are included. The magnetic helicity and hybrid helicity, a two-fluid extension of magnetic helicity that includes cross and kinetic helicity [Turner, 1986], are well-conserved relative to magnetic energy at each event. The cross helicity is well-conserved in single-fluid MHD but is significantly affected by both two-fluid effects and ion gyroviscosity. The plasma parallel current evolves towards the predicted flat profile; however, the plasma flow does not. Work supported through NSF grant PHY-0821899 and DOE grant DE-FG02-06ER54850.

  10. MHD simulations using average solar wind conditions for substorms observed under northward IMF conditions

    NASA Astrophysics Data System (ADS)

    Park, K. S.; Lee, D.-Y.; Ogino, T.; Lee, D. H.

    2015-09-01

    Substorms are known to sometimes occur even under northward interplanetary magnetic field (IMF) conditions. In this paper, we perform three-dimensional global magnetohydrodynamic simulations to examine dayside reconnection, tail, and ionospheric signatures for two cases of substorm observations under prolonged northward and dawnward IMF conditions: (1) a strongly northward/dawnward IMF case with BIMF = (0, -20, 20) nT; (2) a weakly northward/dawnward IMF case with BIMF = (0, -2, 2) nT. Throughout the simulations, we used the constant solar wind conditions to reflect the prolonged solar wind conditions around the substorm times. We found that, in both cases, the tail reconnection occurred after the usual high-latitude reconnection on the dayside, providing a possible energy source for later triggered substorm observations under northward IMF conditions. The presence of an equal amount of IMF By allows the high-latitude reconnected magnetic field lines to transport to the tail lobe, eventually leading to the tail reconnection. The simulation results also revealed the following major differences between the two cases: First, the reconnection onset (both on dayside and in the tail) occurs earlier in the strongly northward IMF case than in the weakly northward IMF case. Second, the polar cap size, which is finite in both cases despite the northward IMF conditions and thus supports the lobe energy buildup needed for the substorm occurrences, is larger in the strongly northward IMF case. Accordingly, the polar cap potential is far larger in the strongly northward IMF case (hundreds of kilovolt) than in the weakly northward IMF case (tens of kilovolt). Third, in the strongly northward IMF case, the strong earthward tail plasma flow appears to be caused by the enhanced convection (so enhanced duskward Ey) due to the tail reconnection. In contrast, in the weakly northward IMF case, the earthward tail plasma flow increases gradually in association with a modestly increased

  11. Forward and Inverse Modeling of Helioseismic Holography Measurements of MHD Simulations of Convection and Sunspot Flows

    NASA Astrophysics Data System (ADS)

    DeGrave, Kyle; Braun, Douglas; Birch, Aaron; Crouch, Ashley D.; Javornik, Brenda; Rempel, Matthias D.

    2016-05-01

    We test and validate newly-developed, empirically-derived sensitivity kernels for use in helioseismic analysis. These kernels are based on the Born approximation and derived from applying direct measurements to artificial realizations of incoming and scattered wavefields. These kernels are employed in a series of forward and inverse modeling of flows from the near-surface layers of two publicly available magnetohydrodynamic (MURaM-based) solar simulations - a quiet-Sun simulation, and one containing a sunspot. Forward travel times computed using the kernels generally compare favorably in non-magnetic regions. One finding of note is the presence of flow-like artifacts in the sunspot measurements which appear when the spot umbra or penumbra falls within the measurement pupils. Inversions for the horizontal flow components are able to reproduce the large-scale supergranule-sized flows in the upper 3Mm of both domains, but are compromised by noise at greater depths. In spite of the magnetic artifact, the moat flow surrounding the spot is at least qualitatively recovered. This work is supported by the NASA Heliophysics Division through NNH12CF68C, NNH12CF23C, and NNX16AG88G, and by the NSF Solar-Terrestrial Program through grant AGS-1127327.

  12. Numerical simulation of surface wave dynamics of liquid metal MHD flow on an inclined plane in a magnetic field with spatial variation

    NASA Astrophysics Data System (ADS)

    Gao, Donghong

    Interest in utilizing liquid metal film flows to protect the plasma-facing solid structures places increasing demand on understanding the magnetohydrodynamics (MHD) of such flows in a magnetic field with spatial variation. The field gradient effect is studied by a two-dimensional (2D) model in Cartesian coordinates. The thin film flow down an inclined plane in spanwise (z-direction) magnetic field with constant streamwise gradient and applied current is analyzed. The solution to the equilibrium flow shows forcefully the M-shaped velocity profile and dependence of side layer thickness on Ha-1/2 whose definition is based on field gradient. The major part of the dissertation is the numerical simulation of free surface film flows and understanding the results. The VOF method is employed to track the free surface, and the CSF model is combined with VOF method to account for surface dynamics condition. The code is validated with respect to Navier-Stokes solver and MHD implementation by computations of ordinary wavy films, MHD flat films and a colleague proposed film flow. The comparisons are performed against respective experimental, theoretical or numerical solutions, and the results are well matched with them. It is found for the ordinary water falling films, at low frequency and high flowrate, the small forcing disturbance at inlet flowrate develops into big roll waves preceded by small capillary bow waves; at high frequency and low Re, it develops into nearly sinusoidal waves with small amplitude and without fore-running capillary waves. The MHD surface instability is investigated for two kinds of film flows in constant streamwise field gradient: one with spatial disturbance and without surface tension, the other with inlet forcing disturbance and with surface tension. At no surface tension condition, the finite amplitude disturbance is rapidly amplified and degrades to irregular shape. With surface tension to maintain smooth interface, finite amplitude regular waves

  13. Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations

    NASA Astrophysics Data System (ADS)

    Otto, A.; Fairfield, D. H.

    2000-09-01

    On March 24, 1995, the Geotail spacecraft observed large fluctuations of the magnetic field and plasma properties in the low-latitude boundary layer about 15 RE tailward of the dusk meridian. Although the magnetospheric and magnetosheath magnetic fields were strongly northward, the Bz component showed strong short-duration fluctuations in which Bz could even reach negative values. We have used two-dimensional magnetohydrodynamic simulations with magnetospheric and magnetosheath input parameters specifically chosen for this Geotail event to identify the processes which cause the observed boundary properties. It is shown that these fluctuations can be explained by the Kelvin-Helmholtz instability if the k vector of the instability has a component along the magnetic field direction. The simulation results show many of the characteristic properties of the Geotail observations. In particular, the quasi-periodic strong fluctuations are well explained by satellite crossings through the Kelvin-Helmholtz vortices. It is illustrated how the interior structure of the Kelvin-Helmholtz vortices leads to the rapid fluctuations in the Geotail observations. Our results suggest an average Kelvin-Helmholtz wavelength of about 5 RE, with a vortex size of close to 2 RE for an average repetition time of 2.5 min. The growth time for these waves implies a source region of about 10-16 RE upstream from the location of the Geotail spacecraft (i.e., near the dusk meridian). The results also indicate a considerable mass transport of magnetosheath material into the magnetosphere by magnetic reconnection in the Kelvin-Helmholtz vortices.

  14. Kelvin Helmholtz Instability at the Equatorial Magnetotail Boundary: MHD Simulation and Comparison with Geotail Observations

    NASA Technical Reports Server (NTRS)

    Fairfield, Donald H.; Otto, A.

    1999-01-01

    On March 24, 1995 the Geotail spacecraft observed large fluctuations of the magnetic field and plasma properties in the Low Latitude Boundary Layer (LLBL) about 15 R(sub E) tailward of the dusk meridian. Although the magnetospheric and the magnetosheath field were strongly northward, the B(sub z) component showed strong short duration fluctuations in which B(sub z) could even reach negative values. We have used two-dimensional magnetohydrodynamic simulations with magnetospheric and magnetosheath input parameters specifically chosen for this. Geotail event to identify the processes which cause the observed boundary properties. It is shown that these fluctuations can be explained by the Kelvin-Helmholtz instability if the k vector of the instability has a component along the magnetic field direction. The simulation results show many of the characteristic properties of the Geotail observations. In particular, the quasi-periodic strong fluctuations are well explained by satellite crossings through the Kelvin-Helmholtz vortices. It is illustrated how the interior structure of the Kelvin-Helmholtz vortices leads to the rapid fluctuations in the Geotail observations. Our results suggest an average Kelvin-Helmholtz wavelength of about 5 R(sub E) with a vortex size of close to 2 R(sub E) for an average repetition time of 2.5 minutes. The growth time for these waves implies a source region of about 10 to 16 R(sub E) upstream from the location of the Geotail spacecraft (i.e., near the dusk meridian). The results also indicate a considerable mass transport of magnetosheath material into the magnetosphere by magnetic reconnection in the Kelvin-Helmholtz vortices.

  15. MHD Simulation of Magnetic Nozzle Plasma with the NIMROD Code: Applications to the VASIMR Advanced Space Propulsion Concept

    NASA Astrophysics Data System (ADS)

    Tarditi, Alfonso G.; Shebalin, John V.

    2002-11-01

    A simulation study with the NIMROD code [1] is being carried on to investigate the efficiency of the thrust generation process and the properties of the plasma detachment in a magnetic nozzle. In the simulation, hot plasma is injected in the magnetic nozzle, modeled as a 2D, axi-symmetric domain. NIMROD has two-fluid, 3D capabilities but the present runs are being conducted within the MHD, 2D approximation. As the plasma travels through the magnetic field, part of its thermal energy is converted into longitudinal kinetic energy, along the axis of the nozzle. The plasma eventually detaches from the magnetic field at a certain distance from the nozzle throat where the kinetic energy becomes larger than the magnetic energy. Preliminary NIMROD 2D runs have been benchmarked with a particle trajectory code showing satisfactory results [2]. Further testing is here reported with the emphasis on the analysis of the diffusion rate across the field lines and of the overall nozzle efficiency. These simulation runs are specifically designed for obtaining comparisons with laboratory measurements of the VASIMR experiment, by looking at the evolution of the radial plasma density and temperature profiles in the nozzle. VASIMR (Variable Specific Impulse Magnetoplasma Rocket, [3]) is an advanced space propulsion concept currently under experimental development at the Advanced Space Propulsion Laboratory, NASA Johnson Space Center. A plasma (typically ionized Hydrogen or Helium) is generated by a RF (Helicon) discharge and heated by an Ion Cyclotron Resonance Heating antenna. The heated plasma is then guided into a magnetic nozzle to convert the thermal plasma energy into effective thrust. The VASIMR system has no electrodes and a solenoidal magnetic field produced by an asymmetric mirror configuration ensures magnetic insulation of the plasma from the material surfaces. By powering the plasma source and the heating antenna at different levels it is possible to vary smoothly of the

  16. Coherent Synchrotron Radiation: Theory and Simulations.

    SciTech Connect

    Novokhatski, Alexander; /SLAC

    2012-03-29

    The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum

  17. Simulation of Radiation Belt Precipitation During the March 17, 2013 Storm

    NASA Astrophysics Data System (ADS)

    Brito, T. V.; Hudson, M. K.; Paral, J.

    2014-12-01

    Balloon-borne instruments detecting radiation belt precipitation frequently observe oscillations in the mHZ frequency range. Several balloon missions measuring electron precipitation near the poles in the 100 keV to 2.5 MeV energy range, including the MAXIS, MINIS, and most recently the BARREL campaign, have observed this modulation at ULF wave frequencies (Clilverd et al., 2007; Millan et al., 2011). However, ULF waves in the magnetosphere, commonly associated with oscillations in solar wind dynamic pressure on the dayside and with Kelvin-Helmhotz instabilities in the flanks, are seldom directly linked to increases in electron precipitation since their oscillation periods are much larger than the gyroperiod and the bounce period of radiation belt electrons. It has been conjectured that ULF oscillations in the magnetosphere may modulate EMIC wave growth rates. EMIC waves, in turn, have long been associated with energetic electron precipitation, since they can cause pitch angle scattering of these particles, thus lowering their mirror points (Miyoshi et al., 2008; Carson et al., 2013). This would explain the ULF modulation of MeV electrons seen by the balloon instruments. However, test particle simulations show that another hypothesis is possible (Brito et al., 2012). 3D simulations of radiation belt electrons were performed to investigate the effect of ULF waves on precipitation. The simulations track the behavior of energetic electrons near the loss cone, using guiding center techniques, coupled with an MHD simulation of the magnetosphere, using the LFM code, during a CME-shock event on March 17, 2013. Results indicate that ULF modulation of precipitation occurs even without the presence of VLF-type waves, which are not resolved in the MHD simulation.

  18. MHD properties of magnetosheath flow

    NASA Astrophysics Data System (ADS)

    Siscoe, G. L.; Crooker, N. U.; Erickson, G. M.; Sonnerup, B. U. Ö.; Maynard, N. C.; Schoendorf, J. A.; Siebert, K. D.; Weimer, D. R.; White, W. W.; Wilson, G. R.

    2002-04-01

    We discuss four aspects of magnetosheath flow that require MHD for their calculation and understanding. We illustrate these aspects with computations using a numerical MHD code that simulates the global magnetosphere and its magnetosheath. The four inherently MHD aspects of magnetosheath flow that we consider are the depletion layer, the magnetospheric sash, MHD flow deflections, and the magnetosheath's slow-mode expansion into the magnetotail. We introduce new details of these aspects or illustrate known details in a new way, including the dependence of the depletion layer on interplanetary magnetic filed clock angle; agreement between the locations of the antiparallel regions of Luhmann et al. (J. Geophys. Res. 89 (1984) 1739) and the magnetospheric sash, and deflections corresponding separately to a stagnation line and magnetic reconnection.

  19. 3D MHD Simulations of the May 2, 1998 halo CME: Shock formation and SEP acceleration

    NASA Astrophysics Data System (ADS)

    Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.; Forbes, T. G.; Lee, M. A.

    We present the results of two numerical models of the partial-halo CME event associated with NOAA AR8210 on May 2, 1998. Our simulations are fully three-dimensional and involve compressible magnetohydrodynamics with turbulent energy transport. We begin by first producing a steady-state solar wind for Carrington Rotation 1935/6, following the methodology described in Roussev et al. (2003). We impose shearing motions along the polarity inversion line of AR8210, followed by converging motions, both via the modification of the boundary conditions at the Sun's surface. As a consequence, a flux rope forms within the sheared arcade during the CME. The flux rope gradually accelerates, leaving behind the remnants of a flare loop system that results from ongoing magnetic reconnection in the naturally formed current sheet. The flux rope leaves the Sun, forming a CME emerging through a highly structured, ambient solar wind. A shock wave forms in front of the ejected matter. Estimates for the spectral index and cutoff energy for the diffusive solar energetic particle shock acceleration mechanism show that the protons can be efficiently accelerated up to energies 0.1-10 GeV.

  20. IRIS observations and MHD simulations of explosive events in the transition region of the Sun

    NASA Astrophysics Data System (ADS)

    Guo, Lijia; Innes, Davina; Huang, Yi-Min; Bhattacharjee, Amitava

    2016-05-01

    Small-scale explosive events on the Sun are thought to be related to magnetic reconnection. While Petschek reconnection has been considered as a reconnection mechanism for explosive events on the Sun for quite a long time, the fragmentation of a current sheet in the high-Lundquist-number regime caused by the plasmoid instability has recently been proposed as a possible mechanism for fast reconnection. The actual reconnection sites are too small to be resolved with images but these reconnection mechanisms, Petschek and the plasmoid instability, have very different density and velocity structures and so can be distinguished by high-resolution line profiles observations. We use high-resolution sit-and-stare spectral observations of the Si IV line, obtained by the IRIS spectrometer, to identify sites of reconnection, and follow the development of line profiles. The aim is to obtain a survey of typical line profiles produced by small-scale reconnection events in the transition region and compare them with synthetic line profiles from numerical simulations of a reconnecting current sheet to determine whether reconnection occurs via the plasmoid instabilty or the Petschek mechanism. Direct comparison between IRIS observations and numerical results suggests that the observed Si IV profiles can be reproduced with a fragmented current layer subject to plasmoid instability but not by bi-directional jets that characterise the Petschek mechanism. This result suggests that if these small-scale events are reconnection sites, then fast reconnection proceeds via the plasmoid instability, rather than the Petschek mechanism during small-scale reconnection on the Sun.

  1. Numerical simulations of transverse oscillations in radiatively cooling coronal loops

    NASA Astrophysics Data System (ADS)

    Magyar, Norbert; Van Doorsselaere, Tom; Marcu, Alexandru

    2016-05-01

    We aim to study the influence of radiative cooling on the standing kink oscillations of coronal loops. To solve the 3D MHD ideal problem, we use the FLASH code. Our model consists of a straight, density enhanced and gravitationally stratified magnetic flux tube. We perturbed the system initially, leading to a transverse oscillation of the structure, and followed its evolution for a number of periods. A realistic radiative cooling is implemented. Results are compared to available analytical theory. We find that in the linear regime (i.e. low amplitude perturbation and slow cooling) the obtained period and damping time are in good agreement with theory. The cooling leads to an amplification of the oscillation amplitude. However, the difference between the cooling and non-cooling cases is small (around 6% after 6 oscillations). In high amplitude runs with realistic cooling, instabilities deform the loop, leading to increased damping. In this case, the difference between cooling and non-cooling is still negligible at around 12%. A set of simulations with higher density loops are also performed, to explore what happens when the cooling takes place in a very short time (t cool ≈ 100 s). In this case, the difference in amplitude after nearly 3 oscillation periods for the low amplitude case is 21% between cooling and non-cooling cases. We strengthen the results of previous analytical studies that state that the amplification due to cooling is ineffective, and its influence on the oscillation characteristics is small, at least for the cases shown here. Furthermore, the presence of a relatively strong damping in the high amplitude runs even in the fast cooling case indicates that it is unlikely that cooling could alone account for the observed, flare-related undamped oscillations of coronal loops. These results may be significant in the field of coronal seismology, allowing its application to coronal loop oscillations with observed fading-out or cooling behaviour.

  2. Response of Mercury's Magnetosphere to Solar Wind Forcing: Results of Global MHD Simulations with Coupled Planetary Interior

    NASA Astrophysics Data System (ADS)

    Jia, Xianzhe; Slavin, James; Poh, Gangkai; Toth, Gabor; Gombosi, Tamas

    2016-04-01

    As the innermost planet, Mercury arguably undergoes the most direct space weathering interactions due to its weak intrinsic magnetic field and its close proximity to the Sun. It has long been suggested that two processes, i.e., erosion of the dayside magnetosphere due to intense magnetopause reconnection and the shielding effect of the induction currents generated at the conducting core, compete against each other in governing the large-scale structure of Mercury's magnetosphere. An outstanding question concerning Mercury's space weather is which of the two processes is more important. To address this question, we have developed a global MHD model in which Mercury's interior is electromagnetically coupled to the surrounding space environment. As demonstrated in Jia et al. (2015), the new modeling capability allows for self-consistently characterizing the dynamical response of the Mercury system to time-varying external conditions. To assess the relative importance of induction and magnetopause reconnection in controlling the magnetospheric configuration, especially under strong solar driving conditions, we have carried out multiple global simulations that adopt a wide range of solar wind dynamic pressure and IMF conditions. We find that, while the magnetopause standoff distance decreases with increasing solar wind pressure, just as expected, its dependence on the solar wind pressure follows closely a power-law relationship with an index of ~ -1/6, rather than a steeper power-law falling-off expected for the case with only induction present. This result suggests that for the range of solar wind conditions examined, the two competing processes, namely induction and reconnection, appear to play equally important roles in determining the global configuration of Mercury's magnetosphere, consistent with the finding obtained by Slavin et al. (2014) based on MESSENGER observations. We also find that the magnetic perturbations produced by the magnetospheric current systems

  3. Application of rank-ordered multifractal analysis (ROMA) to intermittent fluctuations in 3D turbulent flows, 2D MHD simulation and solar wind data

    NASA Astrophysics Data System (ADS)

    Wu, C.; Chang, T.

    2010-12-01

    A new method in describing the multifractal characteristics of intermittent events was introduced by Cheng and Wu [Chang T. and Wu C.C., Physical Rev, E77, 045401(R), 2008]. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has been demonstrated using results obtained from a 2D MHD simulation. It has also been successfully applied to in-situ solar wind observations [Chang T., Wu, C.C. and Podesta, J., AIP Conf Proc. 1039, 75, 2008], and the broadband electric field oscillations from the auroral zone [Tam, S.W.Y. et al., Physical Rev, E81, 036414, 2010]. We take the next step in this procedure. By using the ROMA spectra and the scaled probability distribution functions (PDFs), raw PDFs can be calculated, which can be compared directly with PDFs from observations or simulation results. In addition to 2D MHD simulation results and in-situ solar wind observation, we show clearly using the ROMA analysis the multifractal character of the 3D fluid simulation data obtained from the JHU turbulence database cluster at http://turbulence.pha.jhu.edu. In particular, we show the scaling of the non-symmetrical PDF for the parallel-velocity fluctuations of this 3D fluid data.

  4. Simulation of three-dimensional multi-phase flow characteristics in the deswirl section of the CDIF MHD power train

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Petrick, M.

    1994-06-01

    A three-dimensional, two-phase, turbulent flow computer code was used to predict flow characteristics of seed particles and coal gas in the deswirl section of the CDIF MHD power train system. Seed material which has a great effect on the overall performance of the MHD system is injected in the deswirl against the swirling coal gas flow coming from the first stage combustor. While testing the MHD system, excessive seed material (70% more than theoretical value) was required to achieve design operating conditions. Calculations show that the swirling coal gas flow turns a 90 degree angle to minimize the swirl motion before entering a second stage combustor and many seed particles are too slow to react to the flow turning and deposit on the walls of the deswirl section. Some seed material deposited on the walls is covered by slag layer and removed from the gas flow. The reduction of seed material in the gas flow decreases MHD power generation significantly. A computational experiment was conducted and its results show that seed injection on the wall can be minimized by simply changing the seed injection and an optimum location was identified. If seed is injected from the location of choice, the seed deposition is reduced by a factor of 10 compared to the original case.

  5. MHD simulation of the initiation of the 2006 December 13 coronal mass ejection in AR 10930: the structure of the erupting flux rope

    NASA Astrophysics Data System (ADS)

    Fan, Yuhong

    2016-05-01

    We present a three-dimensional MHD simulation of the initiation of the coronal mass ejection (CME) on 13 December 2006 in the emerging δ-sunspot active region NOAA 10930. The simulation shows that the CME can result from the emergence of a east-west oriented twist flux rope whose positive, following emerging pole corresponds to the observed positive rotating sunspot emerging along the southern edge of the dominant pre-existing negative sunspot. The erupting flux rope resulting in the simulation accelerates to a terminal speed that exceeds 1500 km/s and undergoes a counter-clockwise rotation of nearly 180 degrees in the early phase of the eruption, such that its front and flanks all exhibit southward directed magnetic fields, explaining the observed southward magnetic field in the magnetic cloud impacting the Earth. Our simulation also demonstrates that the source active region is capable of repeated eruptions as a result of continued flux emergence.

  6. Space radiator simulation manual for computer code

    NASA Technical Reports Server (NTRS)

    Black, W. Z.; Wulff, W.

    1972-01-01

    A computer program that simulates the performance of a space radiator is presented. The program basically consists of a rigorous analysis which analyzes a symmetrical fin panel and an approximate analysis that predicts system characteristics for cases of non-symmetrical operation. The rigorous analysis accounts for both transient and steady state performance including aerodynamic and radiant heating of the radiator system. The approximate analysis considers only steady state operation with no aerodynamic heating. A description of the radiator system and instructions to the user for program operation is included. The input required for the execution of all program options is described. Several examples of program output are contained in this section. Sample output includes the radiator performance during ascent, reentry and orbit.

  7. Online Simulation of Radiation Track Structure Project

    NASA Technical Reports Server (NTRS)

    Plante, Ianik

    2015-01-01

    Space radiation comprises protons, helium and high charged and energy (HZE) particles. High-energy particles are a concern for human space flight, because they are no known options for shielding astronauts from them. When these ions interact with matter, they damage molecules and create radiolytic species. The pattern of energy deposition and positions of the radiolytic species, called radiation track structure, is highly dependent on the charge and energy of the ion. The radiolytic species damage biological molecules, which may lead to several long-term health effects such as cancer. Because of the importance of heavy ions, the radiation community is very interested in the interaction of HZE particles with DNA, notably with regards to the track structure. A desktop program named RITRACKS was developed to simulate radiation track structure. The goal of this project is to create a web interface to allow registered internal users to use RITRACKS remotely.

  8. KULL Simulations of OMEGA Radiation Flow Experiments

    NASA Astrophysics Data System (ADS)

    Kallman, J.; MacLaren, S.; Baker, K.; Amala, P.; Lewis, K.; Zika, M.

    2012-10-01

    The problem of radiation flow in a right circular cylinder is of interest for the verification and validation of radiation codes, which utilize several mechanisms for determining radiation transport (diffusion, discrete ordinates, and Monte Carlo). This flow is analogous to free molecular flow in a similar geometry.footnotetextE. Garelis and T.E. Wainwright. Phys. Fluids. 16, 4 (1973) A series of experiments were conducted on the OMEGA laser in cases with a low-density heated cylindrical wall. The experiments consisted of a 1.6 mm diameter gold hohlraum containing an on-axis 700 μm diameter SiO2 cylinder contained in an 80 μm thick carbon foam tube. Five shots panning three test cases were used: the nominal geometry described above (heated wall), the carbon tube replaced with solid gold, and a gold cap placed on the laser end of the cylinder assembly to block axial radiation flow. Simulations of each experimental target type were run with the KULL radiation code, and were used to compare the different radiation transport packages in KULL by employing synthetic diagnostics to match the experimental DANTE cavity radiation temperature time history and soft x-ray images taken by a streak camera imaging the far end of the hohlraum.

  9. First magnetic seismology of the CME reconnection outflow layer in the low corona with 2.5-D MHD simulations of the Kelvin-Helmholtz instability

    NASA Astrophysics Data System (ADS)

    Nykyri, Katariina; Foullon, Claire

    2013-08-01

    For conditions observed in the low corona, we perform 2.5-D magnetohydrodynamic (MHD) simulations of the Kelvin-Helmholtz instability (KHI) at the surface of a coronal mass ejection (CME). We match the observed time development of the KHI with simulated growth from 110 MHD experiments representing a parametric range of realistic magnetic field strengths and orientations and two key values of the velocity shear, ΔV, inferred from observations. The results are field strengths Be≈ 8-9 G and Bs≈ 10-11 G in the CME reconnection outflow layer and the surrounding sheath, respectively, for ΔV≈770kms-1; for nearly perpendicular orientation (1° tilt) of Bs with respect to the flow plane, Be can be tilted between 3 and 10°; tilting Bs up to 15° would slow the growth of the KHI by too much. Our simulations also reveal hidden dynamics and structure of the CME ejecta layer such as plasma mixing via reconnection in the vortices.

  10. Simulating radiative shocks in nozzle shock tubes

    NASA Astrophysics Data System (ADS)

    van der Holst, B.; Tóth, G.; Sokolov, I. V.; Daldorff, L. K. S.; Powell, K. G.; Drake, R. P.

    2012-06-01

    We use the recently developed Center for Radiative Shock Hydrodynamics (CRASH) code to numerically simulate laser-driven radiative shock experiments. These shocks are launched by an ablated beryllium disk and are driven down xenon-filled plastic tubes. The simulations are initialized by the two-dimensional version of the Lagrangian Hyades code which is used to evaluate the laser energy deposition during the first 1.1 ns. Later times are calculated with the CRASH code. CRASH solves for the multi-material hydrodynamics with separate electron and ion temperatures on an Eulerian block-adaptive-mesh and includes a multi-group flux-limited radiation diffusion and electron thermal heat conduction. The goal of the present paper is to demonstrate the capability to simulate radiative shocks of essentially three-dimensional experimental configurations, such as circular and elliptical nozzles. We show that the compound shock structure of the primary and wall shock is captured and verify that the shock properties are consistent with order-of-magnitude estimates. The synthetic radiographs produced can be used for comparison with future nozzle experiments at high-energy-density laser facilities.

  11. MHD effects and heat transfer for the UCM fluid along with Joule heating and thermal radiation using Cattaneo-Christov heat flux model

    NASA Astrophysics Data System (ADS)

    Shah, S.; Hussain, S.; Sagheer, M.

    2016-08-01

    Present study examines the numerical analysis of MHD flow of Maxwell fluid with thermal radiation and Joule heating by considering the recently developed Cattaneo-Christov heat flux model which explains the time relaxation characteristics for the heat flux. The objective is to analyze the governing parameters such as viscoelastic fluid parameter, Magnetic parameter, Eckert and Prandtl number's impact on the velocity and temperature profiles through graphs and tables. Suitable similarity transformations have been used to reduce the formulated PDEs into a system of coupled non-linear ODEs. Shooting technique has been invoked for finding the numerical solutions of the dimensionless velocity and temperature profiles. Additionally, the MATLAB built-in routine bvp4c has also been used to verify and strengthen the results obtained by shooting method. From some special cases of the present work, a comparison with the previously published results has been presented.

  12. The Effects of Thermal Radiation on an Unsteady MHD Axisymmetric Stagnation-Point Flow over a Shrinking Sheet in Presence of Temperature Dependent Thermal Conductivity with Navier Slip

    PubMed Central

    Mondal, Sabyasachi; Haroun, Nageeb A. H.; Sibanda, Precious

    2015-01-01

    In this paper, the magnetohydrodynamic (MHD) axisymmetric stagnation-point flow of an unsteady and electrically conducting incompressible viscous fluid in with temperature dependent thermal conductivity, thermal radiation and Navier slip is investigated. The flow is due to a shrinking surface that is shrunk axisymmetrically in its own plane with a linear velocity. The magnetic field is imposed normally to the sheet. The model equations that describe this fluid flow are solved by using the spectral relaxation method. Here, heat transfer processes are discussed for two different types of wall heating; (a) a prescribed surface temperature and (b) a prescribed surface heat flux. We discuss and evaluate how the various parameters affect the fluid flow, heat transfer and the temperature field with the aid of different graphical presentations and tabulated results. PMID:26414006

  13. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  14. Simulating the interaction of the heliosphere with the local interstellar medium: MHD results from a finite volume approach, first bidimensional results

    NASA Technical Reports Server (NTRS)

    Chanteur, G.; Khanfir, R.

    1995-01-01

    We have designed a full compressible MHD code working on unstructured meshes in order to be able to compute accurately sharp structures embedded in large scale simulations. The code is based on a finite volume method making use of a kinetic flux splitting. A bidimensional version of the code has been used to simulate the interaction of a moving interstellar medium, magnetized or unmagnetized with a rotating and magnetized heliopspheric plasma source. Being aware that these computations are not realistic due to the restriction to two dimensions, we present it to demonstrate the ability of this new code to handle this problem. An axisymetric version, now under development, will be operational in a few months. Ultimately we plan to run a full 3d version.

  15. Self-consistent spectra from GRMHD simulations with radiative cooling: A link to reality for Sgr A

    NASA Astrophysics Data System (ADS)

    Drappeau, S.; Dibi, S.; Dexter, J.; Markoff, S.; Fragile, P. C.

    2011-12-01

    Cosmos++ (Anninos et al., 2005) is one of the first fully relativistic magneto-hydro-dynamical (MHD) codes that can self-consistently account for radiative cooling, in the optically thin regime. As the code combines a total energy conservation formulation with a radiative cooling function, we have now the possibility to produce spectra energy density from these simulations and compare them to data. In this paper, we present preliminary results of spectra calculated using the same cooling functions from 2D Cosmos++ simulations of the accretion flow around Sgr A*. The simulation parameters were designed to roughly reproduce Sgr A*'s behavior at very low ( 10^{-8}-10^{-7} M_{⊙}/yr) accretion rate, but only via spectra can we test that this has been achieved.

  16. TWO-DIMENSIONAL RADIATIVE MAGNETOHYDRODYNAMIC SIMULATIONS OF THE IMPORTANCE OF PARTIAL IONIZATION IN THE CHROMOSPHERE

    SciTech Connect

    Martinez-Sykora, Juan; De Pontieu, Bart; Hansteen, Viggo

    2012-07-10

    The bulk of the solar chromosphere is weakly ionized and interactions between ionized particles and neutral particles likely have significant consequences for the thermodynamics of the chromospheric plasma. We investigate the importance of introducing neutral particles into the MHD equations using numerical 2.5D radiative MHD simulations obtained with the Bifrost code. The models span the solar atmosphere from the upper layers of the convection zone to the low corona, and solve the full MHD equations with non-gray and non-LTE radiative transfer, and thermal conduction along the magnetic field. The effects of partial ionization are implemented using the generalized Ohm's law, i.e., we consider the effects of the Hall term and ambipolar diffusion in the induction equation. The approximations required in going from three fluids to the generalized Ohm's law are tested in our simulations. The Ohmic diffusion, Hall term, and ambipolar diffusion show strong variations in the chromosphere. These strong variations of the various magnetic diffusivities are absent or significantly underestimated when, as has been common for these types of studies, using the semi-empirical VAL-C model as a basis for estimates. In addition, we find that differences in estimating the magnitude of ambipolar diffusion arise depending on which method is used to calculate the ion-neutral collision frequency. These differences cause uncertainties in the different magnetic diffusivity terms. In the chromosphere, we find that the ambipolar diffusion is of the same order of magnitude or even larger than the numerical diffusion used to stabilize our code. As a consequence, ambipolar diffusion produces a strong impact on the modeled atmosphere. Perhaps more importantly, it suggests that at least in the chromospheric domain, self-consistent simulations of the solar atmosphere driven by magnetoconvection can accurately describe the impact of the dominant form of resistivity, i.e., ambipolar diffusion. This

  17. Rare event simulation in radiation transport

    SciTech Connect

    Kollman, C.

    1993-10-01

    This dissertation studies methods for estimating extremely small probabilities by Monte Carlo simulation. Problems in radiation transport typically involve estimating very rare events or the expected value of a random variable which is with overwhelming probability equal to zero. These problems often have high dimensional state spaces and irregular geometries so that analytic solutions are not possible. Monte Carlo simulation must be used to estimate the radiation dosage being transported to a particular location. If the area is well shielded the probability of any one particular particle getting through is very small. Because of the large number of particles involved, even a tiny fraction penetrating the shield may represent an unacceptable level of radiation. It therefore becomes critical to be able to accurately estimate this extremely small probability. Importance sampling is a well known technique for improving the efficiency of rare event calculations. Here, a new set of probabilities is used in the simulation runs. The results are multiple by the likelihood ratio between the true and simulated probabilities so as to keep the estimator unbiased. The variance of the resulting estimator is very sensitive to which new set of transition probabilities are chosen. It is shown that a zero variance estimator does exist, but that its computation requires exact knowledge of the solution. A simple random walk with an associated killing model for the scatter of neutrons is introduced. Large deviation results for optimal importance sampling in random walks are extended to the case where killing is present. An adaptive ``learning`` algorithm for implementing importance sampling is given for more general Markov chain models of neutron scatter. For finite state spaces this algorithm is shown to give with probability one, a sequence of estimates converging exponentially fast to the true solution.

  18. MHD Spectroscopy

    SciTech Connect

    Heeter, R F; Fasoli, A; Testa, D; Sharapov, S; Berk, H L; Breizman, B; Gondhalekar, A; Mantsinen, M

    2004-03-23

    Experiments are conducted on the JET tokamak to assess the diagnostic potential of MHD active and passive spectroscopy, for the plasma bulk and its suprathermal components, using Alfv{acute e}n Eigenmodes (AEs) excited by external antennas and by energetic particles. The measurements of AE frequencies and mode numbers give information on the bulk plasma. Improved equilibrium reconstruction, in particular in terms of radial profiles of density and safety factor, is possible from the comparison between the antenna driven spectrum and that calculated theoretically. Details of the time evolution of the non-monotonic safety factor profile in advanced scenarios can be reconstructed from the frequency of ICRH-driven energetic particle modes. The plasma effective mass can be inferred from the resonant frequency of externally driven AEs in discharges with similar equilibrium profiles. The stability thresholds and the nonlinear development of the instabilities can give clues on energy and spatial distribution of the fast particle population. The presence of unstable AEs provides lower limits in the energy of ICRH generated fast ion tails. Fast ion pressure gradients and their evolution can be inferred from the stability of AEs at different plasma radial positions. Finally, the details of the AE spectrum in the nonlinear stage can be used to obtain information about the fast particle velocity space diffusion.

  19. MHD simulation of the initiation of the 2006 December 13 coronal mass ejection in AR 10930: the structure of the erupting flux rope

    NASA Astrophysics Data System (ADS)

    Fan, Yuhong

    2016-07-01

    We present a three-dimensional MHD simulation of the initiation of the coronal mass ejection (CME) on 13 December 2006 in the emerging δ-sunspot active region NOAA 10930. The setup of the simulation is similar to a previous simulation by Fan (2011), but with a significantly widened simulation domain to accommodate the wide CME. The simulation shows that the CME can result from the emergence of a east-west oriented twist flux rope whose positive, following emerging pole corresponds to the observed positive rotating sunspot emerging against the southern edge of the dominant pre-existing negative sunspot. The erupting flux rope resulting from the simulation accelerates to a terminal speed that exceeds 1500 km/s and undergoes a counter-clockwise rotation of nearly 180 degrees such that its front and flanks all exhibit southward directed magnetic fields, explaining the observed southward magnetic field in the magnetic cloud impacting the Earth. Our simulation also demonstrates that the source region is capable of repeated eruptions as a result of continued flux emergence.

  20. Three-dimensional MHD simulation of the evolution of the April 2000 CME event and its induced shocks using a magnetized plasma blob model

    NASA Astrophysics Data System (ADS)

    Shen, F.; Feng, X. S.; Wu, S. T.; Xiang, C. Q.; Song, W. B.

    2011-04-01

    A three-dimensional (3-D) time-dependent, numerical magnetohydrodynamic (MHD) model with asynchronous and parallel time-marching method is used to investigate the propagation of coronal mass ejections (CMEs) in the nonhomogenous background solar wind flow. The background solar wind is constructed based on the self-consistent source surface with observed line-of-sight of magnetic field and density from the source surface of 2.5 Rs to the Earth's orbit (215 Rs) and beyond. The CMEs are simulated by means of a very simple flux rope model: a high-density, high-velocity, and high-temperature magnetized plasma blob is superimposed on a steady state background solar wind with an initial launch direction. The dynamical interaction of a CME with the background solar wind flow between 2.5 and 220 Rs is investigated. The evolution of the physical parameters at the cobpoint, which is located at the shock front region magnetically connected to ACE spacecraft, is also investigated. We have chosen the well-defined halo-CME event of 4-6 April 2000 as a test case. In this validation study we find that this 3-D MHD model, with the asynchronous and parallel time-marching method, the self-consistent source surface as initial boundary conditions, and the simple flux rope as CME model, provide a relatively satisfactory comparison with the ACE spacecraft observations at the L1 point.

  1. KULL Simulations of OMEGA Radiation Flow Experiments

    NASA Astrophysics Data System (ADS)

    Kallman, J.; MacLaren, S.; Baker, K.; Brunner, T.; Lewis, K.; Zika, M.

    2013-10-01

    The problem of radiation flow in a right circular cylinder is of interest for the verification and validation of radiation codes since the flow is analytically analogous to diffusive free molecular flow in a similar geometry. Experiments were conducted on the OMEGA laser utilizing a low-density heated-cylindrical-wall target. The targets consisted of a 1.6 mm diameter gold hohlraum containing an on-axis 700 μm diameter SiO2 cylinder inside an 80 μm thick Ta2O5 aerogel tube. The FY13 targets also feature ``light-pipe'' diagnostics to measure the progression of the radiation front inside the foam. Simulations were run with the KULL multi-physics code, employing a new laser ray-tracing package. Comparisons of synthetic diagnostics derived from code results to x-ray measurements of drive temperature and heat front propagation provide a methodology to constrain simulation models. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. MHD stability of tokamak plasmas

    SciTech Connect

    Chance, M.S. Sun, Y.C.; Jardin, S.C.; Kessel, C.E.; Okabayashi, M.

    1992-08-01

    This paper will give an overview of the some of the methods which are used to simulate the ideal MHD properties of tokamak plasmas. A great deal of the research in this field is necessarily numerical and the substantial progress made during the past several years has roughly paralleled the continuing availability of more advanced supercomputers. These have become essential to accurately model the complex configurations necessary for achieving MHD stable reactor grade conditions. Appropriate tokamak MHD equilibria will be described. Then the stability properties is discussed in some detail, emphasizing the difficulties of obtaining stable high {beta} discharges in plasmas in which the current is mainly ohmically driven and thus demonstrating the need for tailoring the current and pressure profiles of the plasma away from the ohmic state. The outline of this paper will roughly follow the physics development to attain the second region of stability in the PBX-M device at The Princeton Plasmas Physics Laboratory.

  3. Radiation Magnetohydrodynamic Simulations of Protostellar Collapse: Nonideal Magnetohydrodynamic Effects and Early Formation of Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Tomida, Kengo; Okuzumi, Satoshi; Machida, Masahiro N.

    2015-03-01

    The transport of angular momentum by magnetic fields is a crucial physical process in the formation and evolution of stars and disks. Because the ionization degree in star-forming clouds is extremely low, nonideal magnetohydrodynamic (MHD) effects such as ambipolar diffusion and ohmic dissipation work strongly during protostellar collapse. These effects have significant impacts in the early phase of star formation as they redistribute magnetic flux and suppress angular momentum transport by magnetic fields. We perform three-dimensional nested-grid radiation magnetohydrodynamic simulations including ohmic dissipation and ambipolar diffusion. Without these effects, magnetic fields transport angular momentum so efficiently that no rotationally supported disk is formed even after the second collapse. Ohmic dissipation works only in a relatively high density region within the first core and suppresses angular momentum transport, enabling formation of a very small rotationally supported disk after the second collapse. With both ohmic dissipation and ambipolar diffusion, these effects work effectively in almost the entire region within the first core and significant magnetic flux loss occurs. As a result, a rotationally supported disk is formed even before a protostellar core forms. The size of the disk is still small, about 5 AU at the end of the first core phase, but this disk will grow later as gas accretion continues. Thus, the nonideal MHD effects can resolve the so-called magnetic braking catastrophe while keeping the disk size small in the early phase, which is implied from recent interferometric observations.

  4. MHD Power Generation

    ERIC Educational Resources Information Center

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  5. Oscillatory MHD Convective Flow of Second Order Fluid Through Porous Medium in a Vertical Rotating Channel in Slip-Flow Regime with Heat Radiation

    NASA Astrophysics Data System (ADS)

    Garg, B. P.; Singh, K. D.; Bansal, A. K.

    2015-02-01

    An analysis of an oscillatory magnetohydrodynamic (MHD) convective flow of a second order (viscoelastic), incompressible, and electrically conducting fluid through a porous medium bounded by two infinite vertical parallel porous plates is presented. The two porous plates with slip-flow condition and the no-slip condition are subjected respectively to a constant injection and suction velocity. The pressure gradient in the channel varies periodically with time. A magnetic field of uniform strength is applied in the direction perpendicular to the planes of the plates. The induced magnetic field is neglected due to the assumption of a small magnetic Reynolds number. The temperature of the plate with no-slip condition is non-uniform and oscillates periodically with time and the temperature difference of the two plates is assumed high enough to induce heat radiation. The entire system rotates in unison about the axis perpendicular to the planes of the plates. Adopting complex variable notations, a closed form solution of the problem is obtained. The analytical results are evaluated numerically and then presented graphically to discuss in detail the effects of different parameters of the problem. The velocity, temperature and the skin-friction in terms of its amplitude and phase angle have been shown graphically to observe the effects of the viscoelastic parameter γ, rotation parameter Ω, suction parameter λ , Grashof number Gr, Hartmann number M, the pressure A, Prandtl number Pr, radiation parameter N and the frequency of oscillation ω .

  6. A unified radiative magnetohydrodynamics code for lightning-like discharge simulations

    SciTech Connect

    Chen, Qiang Chen, Bin Xiong, Run; Cai, Zhaoyang; Chen, P. F.

    2014-03-15

    A two-dimensional Eulerian finite difference code is developed for solving the non-ideal magnetohydrodynamic (MHD) equations including the effects of self-consistent magnetic field, thermal conduction, resistivity, gravity, and radiation transfer, which when combined with specified pulse current models and plasma equations of state, can be used as a unified lightning return stroke solver. The differential equations are written in the covariant form in the cylindrical geometry and kept in the conservative form which enables some high-accuracy shock capturing schemes to be equipped in the lightning channel configuration naturally. In this code, the 5-order weighted essentially non-oscillatory scheme combined with Lax-Friedrichs flux splitting method is introduced for computing the convection terms of the MHD equations. The 3-order total variation diminishing Runge-Kutta integral operator is also equipped to keep the time-space accuracy of consistency. The numerical algorithms for non-ideal terms, e.g., artificial viscosity, resistivity, and thermal conduction, are introduced in the code via operator splitting method. This code assumes the radiation is in local thermodynamic equilibrium with plasma components and the flux limited diffusion algorithm with grey opacities is implemented for computing the radiation transfer. The transport coefficients and equation of state in this code are obtained from detailed particle population distribution calculation, which makes the numerical model is self-consistent. This code is systematically validated via the Sedov blast solutions and then used for lightning return stroke simulations with the peak current being 20 kA, 30 kA, and 40 kA, respectively. The results show that this numerical model consistent with observations and previous numerical results. The population distribution evolution and energy conservation problems are also discussed.

  7. Alfven Wave Tomography for Cold MHD Plasmas

    SciTech Connect

    I.Y. Dodin; N.J. Fisch

    2001-09-07

    Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.

  8. Detection and characterization of small-scale heating events in the solar atmosphere from 3D-MHD simulations and their potential role in coronal heating

    NASA Astrophysics Data System (ADS)

    Guerreiro, Nuno; Haberreiter, Margit; Schmutz, Werner; Hansteen, Viggo

    2016-07-01

    Aiming at better understanding the mechanism(s) responsible for the coronal heating we focus on analyzing the properties of the magnetically generated small-scale heating events (SSHEs) in the solar atmosphere. We present a comprehensive method to detect and follow SSHEs over time in 3D-MHD simulations of the solar atmosphere. Applying the method we are able to better understand the properties of the SSHEs and how the plasma in their vicinity respond to them. We study the lifetime, energy and spectral signatures and show that the energy flux dissipated by them is enough to heat the corona. Ultimately, these results will be important for the coordinated scientific exploration of SPICE and EUI along with other instruments on board solar orbiter.

  9. Characterization of small-scale heating events in the solar atmosphere from 3D-MHD simulations and their potential role in coronal heating

    NASA Astrophysics Data System (ADS)

    Guerreiro, Nuno; Haberreiter, Margit; Hansteen, Viggo; Schmutz, Werner

    2016-04-01

    Aiming at better understanding the mechanism(s) responsible for the coronal heating and the ubiquitous redshifts observed in the lower transition region we focus on analyzing the properties of small-scale heating events (SSHEs) in the solar atmosphere. We present a comprehensive method to follow SSHEs over time in 3D-MHD simulations of the solar atmosphere. Applying the method we are able to better understand the properties of the SSHEs and how the plasma in their vicinity respond to them. We present results for the lifetime, energy and spectral signatures of the SSHEs. Ultimately, these results will be important for the coordinated scientific exploration of SPICE and EUI along with other interments on board solar orbiter. ​

  10. Characterisation of small-scale heating events in the solar atmosphere from 3D MHD simulations and their potential role in coronal heating

    NASA Astrophysics Data System (ADS)

    Haberreiter, M.; Guerreiro, N.; Hansteen, V. H.; Schmutz, W. K.

    2015-12-01

    The physical mechanism that heats the solar corona is one of the still open science questions in solar physics. One of the proposed mechanism for coronal heating are nanoflares. To investigate their role in coronal heating we study the properties of the small-scale heating events in the solar atmosphere using 3D MHD simulations. We present a method to identify and track these heating events in time which allows us to study their life time, energy, and spectral signatures. These spectal signatures will be compared with available spectrosopic observations obtained with IRIS and SUMER. Ultimately, these results will be important for the coordinated scientific exploitation of SPICE and EUI along with other instruments onboard Solar Orbiter to address the coronal heating problem.

  11. Center for Gyrokinetic/MHD Hybrid Simulation of Energetic Particle Physics in Toroidal Plasmas (CSEPP). Final report

    SciTech Connect

    Chen, Yang

    2012-03-07

    At Colorado University-Boulder the primary task is to extend our gyrokinetic Particle-in-Cell simulation of tokamak micro-turbulence and transport to the area of energetic particle physics. We have implemented a gyrokinetic ion/massless fluid electron hybrid model in the global {delta} f-PIC code GEM, and benchmarked the code with analytic results on the thermal ion radiative damping rate of Toroidal Alfven Eigenmodes (TAE) and with mode frequency and spatial structure from eigenmode analysis. We also performed nonlinear simulations of both a single-n mode (n is the toroidal mode number) and multiple-n modes, and in the case of single-n, benchmarked the code on the saturation amplitude vs. particle collision rate with analytical theory. Most simulations use the f method for both ions species, but we have explored the full-f method for energetic particles in cases where the burst amplitude of the excited instabilities is large as to cause significant re-distribution or loss of the energetic particles. We used the hybrid model to study the stability of high-n TAEs in ITER. Our simulations show that the most unstable modes in ITER lie in the rage of 10 < n < 20. Thermal ion pressure effect and alpha particles non-perturbative effect are important in determining the mode radial location and stability threshold. The thermal ion Landau damping rate and radiative damping rate from the simulations are compared with analytical estimates. The thermal ion Landau damping is the dominant damping mechanism. Plasma elongation has a strong stabilizing effect on the alpha driven TAEs. The central alpha particle pressure threshold for the most unstable n=15 mode is about {beta}{sub {alpha}}(0) = 0.7% for the fully shaped ITER equilibrium. We also carried nonlinear simulations of the most unstable n = 15 mode and found that the saturation amplitude for the nominal ITER discharge is too low to cause large redistribution or loss of alpha particles. To include kinetic electron effects

  12. Local structures of homogeneous Hall MHD turbulence

    NASA Astrophysics Data System (ADS)

    Miura, H.; Araki, K.

    2011-12-01

    Local structures of decaying homogeneous and isotropic Hall MHD turbulence are studied by means of direct numerical simulations. Regions of strong vorticity and strong current density in Hall MHD turbulence are compared to those of single-fluid MHD turbulence. An analysis by the use of a low-pass filter reveals that the introduction of the Hall term can modify not only small-scale structures of the current density but also structures of the vorticity field, especially at the scales smaller than the ion skin depth.

  13. Radiation Chemistry of Simulated (99)Mo Product

    SciTech Connect

    Carson, S.D.; Garcia, M.J.; McDonald, M.J.; Simpson, R.L.; Tallant, D.R.

    1998-11-06

    PharrnaceuticaI houses that produce {sup 99}Tc/{sup 99}Tc generators have on occasion received {sup 99}Mo that contained a black precipitate. Addition of sodium hypochlorite to product bottles prior to shipment prevents precipitate formation, indicating the precipitate is a reduced form of Mo. The radiation effects of the dose from {sup 99}Mo on the product and product bottle have been determined by irradiating simulated {sup 99}Mo product solutions with the {sup 60}Co source at Sandia National Laboratories' Gamma Irradiation Facility (GE). The GIF experiment successfully generated a black precipitate in amounts sufficient for isolation and analysis by infrared and Rrunan spectroscopy. Changes in the pH of the basic {sup 99}Mo product solution during irradiation were monitored by titration. ResuIts of these analyses and the nature of the process that generates the precipitate, a mixture of molybdenum oxides that forms in plastic bottles, but not in glass containers, are discussed.

  14. Radiative Transfer Simulations of Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Pavlyuchenkov, Yaroslav; Wiebe, Dmitry; Fateeva, Anna; Vasyunina, Tatiana

    2011-04-01

    The determination of prestellar core structure is often based on observations of (sub)millimeter dust continuum. However, recently the Spitzer Space Telescope provided us with IR images of many objects not only in emission but also in absorption. We developed a technique to reconstruct the density and temperature distributions of protostellar objects based on radiation transfer (RT) simulations both in mm and IR wavelengths. Best-fit model parameters are obtained with the genetic algorithm. We apply the method to two cores of Infrared Dark Clouds and show that their observations are better reproduced by a model with an embedded heating source despite the lack of 70 μm emission in one of these cores. Thus, the starless nature of massive cores can only be established with the careful case-by-case RT modeling.

  15. Radiative transfer simulations of magnetar flare beaming

    NASA Astrophysics Data System (ADS)

    van Putten, T.; Watts, A. L.; Baring, M. G.; Wijers, R. A. M. J.

    2016-05-01

    Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.

  16. Radiative transfer simulations of magnetar flare beaming

    NASA Astrophysics Data System (ADS)

    van Putten, T.; Watts, A. L.; Baring, M. G.; Wijers, R. A. M. J.

    2016-09-01

    Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.

  17. Characterization of MHD activity and its influence on radiation asymmetries during massive gas injection in DIII-D

    NASA Astrophysics Data System (ADS)

    Shiraki, D.; Commaux, N.; Baylor, L. R.; Eidietis, N. W.; Hollmann, E. M.; Izzo, V. A.; Moyer, R. A.; Paz-Soldan, C.

    2015-07-01

    Measurements from the DIII-D tokamak show that toroidal radiation asymmetries during fast shutdown by massive gas injection (MGI) are largely driven by n=1 magnetohydrodynamic modes during the thermal quench. The phenomenology of these modes, which are driven unstable by profile changes as the thermal energy is quenched, is described based on detailed magnetic measurements. The toroidal evolution of the dominantly n=1 perturbation is understood to be a function of three parameters: the location of the MGI port, pre-MGI plasma rotation, and n=1 error fields. The resulting level of radiation asymmetry in these DIII-D plasmas is modest, with a toroidal peaking factor (TPF) of 1.2+/- 0.1 for the total thermal quench energy and 1.4+/- 0.3 for the peak radiated power, both of which are below the estimated limit for ITER (TPF ≈ 2) (Sugihara et al 2007 Nucl. Fusion 47 337).

  18. Compound simulator IR radiation characteristics test and calibration

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Zhang, Li; Li, Fan; Tian, Yi; Yang, Yang; Li, Zhuo; Shi, Rui

    2015-10-01

    The Hardware-in-the-loop simulation can establish the target/interference physical radiation and interception of product flight process in the testing room. In particular, the simulation of environment is more difficult for high radiation energy and complicated interference model. Here the development in IR scene generation produced by a fiber array imaging transducer with circumferential lamp spot sources is introduced. The IR simulation capability includes effective simulation of aircraft signatures and point-source IR countermeasures. Two point-sources as interference can move in two-dimension random directions. For simulation the process of interference release, the radiation and motion characteristic is tested. Through the zero calibration for optical axis of simulator, the radiation can be well projected to the product detector. The test and calibration results show the new type compound simulator can be used in the hardware-in-the-loop simulation trial.

  19. Simulation of Fault Arc Based on Different Radiation Models in a Closed Tank

    NASA Astrophysics Data System (ADS)

    Li, Mei; Zhang, Junpeng; Hu, Yang; Zhang, Hantian; Wu, Yifei

    2016-05-01

    This paper focuses on the simulation of a fault arc in a closed tank based on the magneto-hydrodynamic (MHD) method, in which a comparative study of three radiation models, including net emission coefficients (NEC), semi-empirical model based on NEC as well as the P1 model, is developed. The pressure rise calculated by the three radiation models are compared to the measured results. Particularly when the semi-empirical model is used, the effect of different boundary temperatures of the re-absorption layer in the semi-empirical model on pressure rise is concentrated on. The results show that the re-absorption effect in the low-temperature region affects radiation transfer of fault arcs evidently, and thus the internal pressure rise. Compared with the NEC model, P1 and the semi-empirical model with 0.7<α<0.83 are more suitable to calculate the pressure rise of the fault arc, where is an adjusted parameter involving the boundary temperature of the re-absorption region in the semi-empirical model. supported by National Key Basic Research Program of China (973 Program) (No. 2015CB251002), National Natural Science Foundation of China (Nos. 51221005, 51177124), the Fundamental Research Funds for the Central Universities, the Program for New Century Excellent Talents in University and Shaanxi Province Natural Science Foundation of China (No. 2013JM-7010)

  20. Four-fluid MHD simulations of the plasma and neutral gas environment of comet 67P/Churyumov-Gerasimenko near perihelion

    NASA Astrophysics Data System (ADS)

    Huang, Zhenguang; Tóth, Gábor; Gombosi, Tamas I.; Jia, Xianzhe; Rubin, Martin; Fougere, Nicolas; Tenishev, Valeriy; Combi, Michael R.; Bieler, Andre; Hansen, Kenneth C.; Shou, Yinsi; Altwegg, Kathrin

    2016-05-01

    The neutral and plasma environment is critical in understanding the interaction of the solar wind and comet 67P/Churyumov-Gerasimenko (CG), the target of the European Space Agency's Rosetta mission. To serve this need and support the Rosetta mission, we have developed a 3-D four-fluid model, which is based on BATS-R-US (Block-Adaptive Tree Solarwind Roe-type Upwind Scheme) within SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photoionization and electron impact ionization, charge exchange, dissociative ion-electron recombination, and collisional interactions between different fluids. We simulated the plasma and neutral gas environment near perihelion in three different cases: an idealized comet with a spherical body and uniform neutral gas outflow, an idealized comet with a spherical body and illumination-driven neutral gas outflow, and comet CG with a realistic shape model and illumination-driven neutral gas outflow. We compared the results of the three cases and showed that the simulations with illumination-driven neutral gas outflow have magnetic reconnection, a magnetic pileup region and nucleus directed plasma flow inside the nightside reconnection region, which have not been reported in the literature.

  1. Soret and Dufour effects on MHD slip flow with thermal radiation over a porous rotating infinite disk

    NASA Astrophysics Data System (ADS)

    Anjali Devi, S. P.; Uma Devi, R.

    2011-04-01

    In this investigation, thermal radiation effect over an electrically conducting, Newtonian fluid in a steady laminar magnetohydrodynamic convective flow over a porous rotating infinite disk with the consideration of heat and mass transfer in the presence of Soret and Dufour diffusion effects is investigated. The partial differential equations governing the problem under consideration are transformed by a similarity transformation into a system of ordinary differential equations which are solved numerically using fourth order Runge-Kutta based shooting method. The effects of the magnetic interaction parameter, slip flow parameter, Soret number, Dufour number, Schmidt number, radiation parameter, Prandtl number and suction parameter on the fluid velocity, temperature and concentration distributions in the regime are depicted graphically and are analyzed in detail. The corresponding skin-friction coefficients, the Nusselt number and the Sherwood number are also calculated and displayed in tables showing the effects of various parameters on them.

  2. Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mostafa A. A.

    2007-03-01

    In this paper, the effects of variable thermal conductivity and radiation on the flow and heat transfer of an electrically conducting micropolar fluid over a continuously stretching surface with varying temperature in the presence of a magnetic field are considered. The surface temperature is assumed to vary as a power-law temperature. The governing conservation equations of mass, momentum, angular momentum and energy are converted into a system of non-linear ordinary differential equations by means of similarity transformation. The resulting system of coupled non-linear ordinary differential equations is solved numerically. The numerical results show that the thermal boundary thickness increases as the thermal conductivity parameter S increases, while it decreases as the radiation parameter F increases. Also, it was found that the Nusselt number increases as F increases and decreases as S increases.

  3. Simulating Radiation Transport in Curved Spacetimes

    NASA Astrophysics Data System (ADS)

    Endeve, Eirik; Hauck, Cory; Xing, Yulong; Cardall, Christian; Mezzacappa, Anthony

    2014-03-01

    We are developing methods for simulation of radiation transport in systems governed by strong gravity (e.g., neutrino transport in core-collapse supernovae). By employing conservative formulations of the general relativistic Boltzmann equation, we aim to develop methods that are (i) high-order accurate for computational efficiency; (ii) robust in the sense that the phase space density f preserves the maximum principle of the physical model (f ∈ [ 0 , 1 ] for fermions); and (iii) applicable to curvilinear coordinate systems to accommodate curved spacetimes, which result in gravity-induced frequency shift and angular aberration. Our approach is based on the Runge-Kutta discontinuous Galerkin method, which has many attractive properties, including high-order accuracy on a compact stencil. We present the physical model, describe our numerical methods, and show results from implementations in spherical and axial symmetry. Our tests show that the method is high-order accurate and strictly preserves the maximum principle on f. We also demonstrate the ability of our method to accurately include effects of a strong gravitational field.

  4. Debris disk radiative transfer simulation tool (DDS)

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Hillenbrand, L. A.

    2005-10-01

    A WWW interface for the simulation of spectral energy distributions of optically thin dust configurations with an embedded radiative source is presented. The density distribution, radiative source, and dust parameters can be selected either from an internal database or defined by the user. This tool is optimized for studying circumstellar debris disks where large grains (a ≫1 μm) are expected to determine the far-infrared through millimeter dust reemission spectral energy distribution. The tool is available at http://aida28.mpia-hd.mpg.de/~swolf/dds. Catalogue identifier:ADVV Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:none Computers:PC with Intel(R) XEON(TM) 2.80 GHz processor Operating systems or monitors under which the program has been tested:SUSE Linux 9.1 Programming language used:Fortran 90 (for the main program; furthermore Perl, CGI and HTML) Memory required to execute with typical data:108 words No. of bits in a word:8 No. of lines in distributed program, including test data, etc.:44 636 No. of bytes in distributed program, including test data, etc.: 4 806 280 Distribution format:tar.gz Nature of the physical problem:Simulation of scattered light and thermal reemission in arbitrary optically dust distributions with spherical, homogeneous grains where the dust parameters (optical properties, sublimation temperature, grain size) and SED of the illuminating/heating radiative source can be arbitrarily defined (example application: [S. Wolf, L.A. Hillenbrand, Astrophys. J. 596 (2003) 603]). The program is optimized for studying circumstellar debris disks where large grains (i.e. with large size parameters) are expected to determine the far-infrared through millimeter dust reemission spectral energy distribution. Method of solution:Calculation of the dust temperature distribution and dust reemission and scattering spectrum in the

  5. One-Dimensional Simulation of Isotropic Radiation

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Downing, R. G.

    1987-01-01

    Solar cells tested for effects of radiation in unidirectional beam. Cam groove imparts cosecant-function velocity to solar cells on rotating target plate. Cells on stationary plate above rotating one absorb steady perpendicular radiation from test source.

  6. Dual solutions of radiative MHD nanofluid flow over an exponentially stretching sheet with heat generation/absorption

    NASA Astrophysics Data System (ADS)

    Naramgari, Sandeep; Sulochana, C.

    2016-01-01

    In this study, we analyzed the heat and mass transfer in thermophoretic radiative hydromagnetic nanofluid flow over an exponentially stretching porous sheet embedded in porous medium with internal heat generation/absorption, viscous dissipation and suction/injection effects. The governing partial differential equations of the flow are converted into nonlinear coupled ordinary differential equations by using similarity transformation. Runge-Kutta-based shooting technique is employed to yield the numerical solutions for the model. The effect of non-dimensional parameters on velocity, temperature and concentration profiles are discussed and presented through graphs. The physical quantities of interest local skin friction coefficient, Nusselt and Sherwood numbers are calculated and presented through tables.

  7. Galaxies that shine: radiation-hydrodynamical simulations of disc galaxies

    NASA Astrophysics Data System (ADS)

    Rosdahl, Joakim; Schaye, Joop; Teyssier, Romain; Agertz, Oscar

    2015-07-01

    Radiation feedback is typically implemented using subgrid recipes in hydrodynamical simulations of galaxies. Very little work has so far been performed using radiation-hydrodynamics (RHD), and there is no consensus on the importance of radiation feedback in galaxy evolution. We present RHD simulations of isolated galaxy discs of different masses with a resolution of 18 pc. Besides accounting for supernova feedback, our simulations are the first galaxy-scale simulations to include RHD treatments of photoionization heating and radiation pressure, from both direct optical/UV radiation and multiscattered, re-processed infrared (IR) radiation. Photoheating smooths and thickens the discs and suppresses star formation about as much as the inclusion of (`thermal dump') supernova feedback does. These effects decrease with galaxy mass and are mainly due to the prevention of the formation of dense clouds, as opposed to their destruction. Radiation pressure, whether from direct or IR radiation, has little effect, but for the IR radiation we show that its impact is limited by our inability to resolve the high optical depths for which multiscattering becomes important. While artificially boosting the IR optical depths does reduce the star formation, it does so by smoothing the gas rather than by generating stronger outflows. We conclude that although higher resolution simulations, and potentially also different supernova implementations, are needed for confirmation, our findings suggest that radiation feedback is more gentle and less effective than is often assumed in subgrid prescriptions.

  8. MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation

    NASA Astrophysics Data System (ADS)

    Swati, Mukhopadhyay; Iswar, Chandra Moindal; Tasawar, Hayat

    2014-10-01

    This article numerically examines the boundary layer flow due to an exponentially stretching surface in the presence of an applied magnetic field. Casson fluid model is used to characterize the non-Newtonian fluid behavior. The flow is subjected to suction/blowing at the surface. Analysis is carried out in presence of thermal radiation and prescribed surface heat flux. In this study, an exponential order stretching velocity and prescribed exponential order surface heat flux are accorded with each other. The governing partial differential equations are first converted into nonlinear ordinary differential equations by using appropriate transformations and then solved numerically. The effect of increasing values of the Casson parameter is to suppress the velocity field. However the temperature is enhanced when Casson parameter increases. It is found that the skin-friction coefficient increases with increasing values of suction parameter. Temperature also increases for large values of power index n in both suction and blowing cases at the boundary. It is observed that the thermal radiation enhances the effective thermal diffusivity and hence the temperature rises.

  9. Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion

    NASA Astrophysics Data System (ADS)

    Misra, J. C.; Sinha, A.

    2013-05-01

    In this paper, a theoretical analysis is presented for magnetohydrodynamic flow of blood in a capillary, its lumen being porous and wall permeable. The unsteadiness in the flow and temperature fields is caused by the time-dependence of the stretching velocity and the surface temperature. Thermal radiation, velocity slip and thermal slip conditions are taken into account. In order to study the flow field as well as the temperature field, the problem is formulated as a boundary value problem consisting of a system of nonlinear coupled partial differential equations. The problem is analysed by using similarity transformation and boundary layer approximation. Solution of the problem is achieved by developing a suitable numerical method and using high speed computers. Computational results for the variation in velocity, temperature, skin-friction co-efficient and Nusselt number are presented in graphical/tabular form. Effects of different parameters are adequately discussed. Since the study takes care of thermal radiation in blood flow, the results reported here are likely to have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding/regulating blood flow and heat transfer in capillaries.

  10. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory.

    PubMed

    Norbury, John W; Schimmerling, Walter; Slaba, Tony C; Azzam, Edouard I; Badavi, Francis F; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A; Blattnig, Steve R; Boothman, David A; Borak, Thomas B; Britten, Richard A; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S; Eisch, Amelia J; Robin Elgart, S; Goodhead, Dudley T; Guida, Peter M; Heilbronn, Lawrence H; Hellweg, Christine E; Huff, Janice L; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A; Norman, Ryan B; Ottolenghi, Andrea; Patel, Zarana S; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A; Semones, Edward; Shay, Jerry W; Shurshakov, Vyacheslav A; Sihver, Lembit; Simonsen, Lisa C; Story, Michael D; Turker, Mitchell S; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J

    2016-02-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012

  11. Stochastic Simulation of Daily Solar Radiation from Sunshine Duration

    NASA Astrophysics Data System (ADS)

    Lockart, N.; Kavetski, D.; Franks, S. W.

    2014-12-01

    Solar radiation is a key component of the energy balance used for estimating evaporation. As solar radiation is not widely measured, many empirical models have been developed to estimate solar radiation using sunshine hours (SSH) data. Most of these models only provide deterministic estimates of monthly solar radiation and do not provide an estimate of the uncertainty in the predictions. This study developed five stochastic models which use daily SSH data to produce probabilistic simulations of solar radiation, and can be used to estimate historical daily radiation. The predictive uncertainty due to the timing of the SSH during the day (estimated using Monte Carlo simulation), as well as due to external errors (such as the variability in cloud type and atmospheric composition), were considered. The developed models differ in their parameterisation of the direct and diffuse components of the solar radiation, using either no scaling, linear or quadratic scaling of the radiation by the daily SSH fraction to account for cloud attenuation. For each model the simulated solar radiation was compared with the observed radiation. The performance of the five models was compared and the models were found to perform similarly well, with an average error of approximately 9% for all locations studied. The results suggest that the uncertainty due to the timing of the SSH does not dominate predictive errors in global radiation. Rather the external uncertainty is the dominant source of predictive error in the radiation estimates.

  12. MHD Turbulence and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  13. Formation of vortices on the Kronian magnetosphere with the high temporal and spatial resolution for MHD simulation

    NASA Astrophysics Data System (ADS)

    Fukazawa, K.; Ogino, T.; Walker, R. J.; Yumoto, K.

    2010-12-01

    In a series of studies we have reported vortices at the dawn magnetopause at Saturn in simulations when IMF was northward which we interpreted at resulting from the Kelvin Helmholtz (K-H) instability [Fukazawa et al., 2007; Walker et al., 2010]. Studies of the K-H waves using quasi-local simulations at the Earth have shown that the formation of the vortices can be highly dependent on the grid spacing used in the simulations [Matsumoto and Seki, 2010] In particular there can be secondary variations in the vortex structure. However these simulations did not include the magnetic curvature which affects the occurrence of KH instability because they do not treat the global configuration. On the other hand, it has been hard to simulate the global magnetosphere with a sufficiently small grid interval to investigate these effects on the global configuration. Recently thanks to the developments of computer and numerical calculation techniques, we have been able perform the global magnetospheric simulations of the magnetosphere with relatively small grid spacing. As the results of this simulation of Kronian magnetosphere, we found that the formation process and configuration of vortex were different from the previous low resolution simulations. In particular, the growth rate of KH wave seems to be high and waves is appeared around dusk side clearly. In this study we will show the results of high resolution global simulation of the Kronian magnetosphere, analysis of the vortices, changes in the configuration of magnetic field lines related to the vortices and their effects on aurora at Saturn.

  14. Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel.

    PubMed

    Hatami, M; Hatami, J; Ganji, D D

    2014-02-01

    In this paper, heat transfer and flow analysis for a non-Newtonian third grade nanofluid flow in porous medium of a hollow vessel in presence of magnetic field are simulated analytically and numerically. Blood is considered as the base third grade non-Newtonian fluid and gold (Au) as nanoparticles are added to it. The viscosity of nanofluid is considered a function of temperature as Vogel's model. Least Square Method (LSM), Galerkin method (GM) and fourth-order Runge-Kutta numerical method (NUM) are used to solve the present problem. The influences of the some physical parameters such as Brownian motion and thermophoresis parameters on non-dimensional velocity and temperature profiles are considered. The results show that increasing the thermophoresis parameter (N(t)) caused an increase in temperature values in whole domain and an increase in nanoparticles concentration just near the inner wall of vessel. Furthermore by increasing the MHD parameter, velocity profiles decreased due to magnetic field effect. PMID:24286727

  15. Four-fluid MHD Simulations of the Plasma and Neutral Gas Environment of Comet 67P/Churyumov-Gerasimenko Near Perihelion

    NASA Astrophysics Data System (ADS)

    Huang, Zhenguang; Toth, Gabor; Gombosi, Tamas; Jia, Xianzhe; Rubin, Martin; Fougere, Nicolas; Tenishev, Valeriy; Combi, Michael; Bieler, Andre; Hansen, Kenneth; Shou, Yinsi; Altwegg, Kathrin

    2016-04-01

    The neutral and plasma environment is critical in understanding the interaction of the solar wind and comet 67P/Churyumov-Gerasimenko (CG), the target of the European Space Agency's Rosetta mission. In this study, we have developed a 3-D four-fluid model, which is based on BATS-R-US (Block-Adaptive Tree Solarwind Roe-type Upwind Scheme) within SWMF (Space Weather Modeling Framework) that solves the governing multi-fluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. We simulated the plasma and neutral gas environment of comet CG with SHAP5 model near perihelion and we showed that the plasma environment in the inner coma region have some new features: magnetic reconnection in the tail region, a magnetic pile-up region on the nightside, and nucleus directed plasma flow inside the nightside reconnection region.

  16. Effect of subgrid cloud-radiation interaction on climate simulations

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoqing; Liang, Xin-Zhong

    2005-12-01

    The mosaic representation of subgrid cloud-radiation interaction is implemented in the radiation scheme of the NCAR Community Climate Model version 3 (CCM3) to investigate its impacts on global climate simulations. It is found that the CCM3 with the modified radiation scheme enables the use of more realistic cloud amounts as well as cloud water contents while producing net radiative fluxes closer to observations. The improved vertical distribution of cloud water path based on the cloud-resolving model (CRM) simulations increases the radiative heating in the upper troposphere over the tropics, which reduces the long-standing cold bias in the temperature field. Consequently, not only the representation of cloud-radiation interactions is more physically consistent and accurate, but also the climate simulations are significantly affected and improved.

  17. Broken Ergodicity in MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2010-01-01

    Ideal magnetohydrodynamic (MHD) turbulence may be represented by finite Fourier series, where the inherent periodic box serves as a surrogate for a bounded astrophysical plasma. Independent Fourier coefficients form a canonical ensemble described by a Gaussian probability density function containing a Hermitian covariance matrix with positive eigenvalues. The eigenvalues at lowest wave number can be very small, resulting in a large-scale coherent structure: a turbulent dynamo. This is seen in computations and a theoretical explanation in terms of 'broken ergodicity' contains Taylor s theory of force-free states. An important problem for future work is the case of real, i.e., dissipative flows. In real flows, broken ergodicity and coherent structure are still expected to occur in MHD turbulence at the largest scale, as suggested by low resolution simulations. One challenge is to incorporate coherent structure at the largest scale into the theory of turbulent fluctuations at smaller scales.

  18. MHD forced convective laminar boundary layer flow from a convectively heated moving vertical plate with radiation and transpiration effect.

    PubMed

    Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295

  19. MHD Forced Convective Laminar Boundary Layer Flow from a Convectively Heated Moving Vertical Plate with Radiation and Transpiration Effect

    PubMed Central

    Uddin, Md. Jashim; Khan, Waqar A.; Ismail, A. I. Md.

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to whilst the magnetic field and mass transfer velocity are taken to be proportional to where is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295

  20. The effect of a brief northward turning in IMF Bz on solar wind-magnetosphere coupling in a global MHD simulation

    NASA Astrophysics Data System (ADS)

    Pham, Kevin H.; Lopez, Ramon E.; Bruntz, Robert

    2016-05-01

    In this paper we examine the response of the magnetosphere-ionopshere (M-I) system to a transient northward excursion in the interplanetary magnetic field (IMF) using the Lyon-Fedder-Mobarry (LFM) global MHD simulation. The simulated IMF transitions hold from a steady southward IMF to a steady northward IMF before suddenly transitioning back to southward IMF after 20 min. Once the IMF returns southward, the M-I system is in a state of reduced energy dissipation for approximately an hour as it reconfigures back into a standard southward IMF configuration. We find that the northward IMF excursion affects both the viscous and reconnection interactions with the solar wind. The flow of plasma in the magnetosphere is significantly disrupted by the reconnection cycle under northward IMF. This reduce the transfer of mechanical energy from the solar wind due to the viscous interaction, and the magnetosphere-ionosphere system is in a mixed topological configuration containing elements produced by both of southward IMF reconnection and the Dungey cycle, as well as northward IMF reconnection and the presence of reverse cell convection at high latitudes. The effects of the transient northward IMF must be completely cleared out before the system can return to an optimal state of energy transfer characteristic of steady southward IMF. As a result, a simple 20 min excursion of northward IMF can put the magnetosphere-ionosphere system into a reduced state of coupling to the solar wind for some time following the return to steady southward IMF; for LFM we saw a reduced state lasting an hour

  1. Light-Cone Effect of Radiation Fields in Cosmological Radiative Transfer Simulations

    NASA Astrophysics Data System (ADS)

    Ahn, Kyungjin

    2015-02-01

    We present a novel method to implement time-delayed propagation of radiation fields in cosmo-logical radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative trans-fer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.

  2. SciDAC - Center for Simulation of Wave Interactions with MHD -- General Atomics Support of ORNL Collaboration

    SciTech Connect

    Abla, G

    2012-11-09

    The Center for Simulation of Wave Interactions with Magnetohydrodynamics (SWIM) project is dedicated to conduct research on integrated multi-physics simulations. The Integrated Plasma Simulator (IPS) is a framework that was created by the SWIM team. It provides an integration infrastructure for loosely coupled component-based simulations by facilitating services for code execution coordination, computational resource management, data management, and inter-component communication. The IPS framework features improving resource utilization, implementing application-level fault tolerance, and support of the concurrent multi-tasking execution model. The General Atomics (GA) team worked closely with other team members on this contract, and conducted research in the areas of computational code monitoring, meta-data management, interactive visualization, and user interfaces. The original website to monitor SWIM activity was developed in the beginning of the project. Due to the amended requirements, the software was redesigned and a revision of the website was deployed into production in April of 2010. Throughout the duration of this project, the SWIM Monitoring Portal (http://swim.gat.com:8080/) has been a critical production tool for supporting the project's physics goals.

  3. Hubble Space Telescope scale 3D simulations of MHD disc winds: a rotating two-component jet structure

    NASA Astrophysics Data System (ADS)

    Staff, J. E.; Koning, N.; Ouyed, R.; Thompson, A.; Pudritz, R. E.

    2015-02-01

    We present the results of large scale, three-dimensional magnetohydrodynamics simulations of disc winds for different initial magnetic field configurations. The jets are followed from the source to 90 au scale, which covers several pixels of Hubble Space Telescope images of nearby protostellar jets. Our simulations show that jets are heated along their length by many shocks. We compute the emission lines that are produced, and find excellent agreement with observations. The jet width is found to be between 20 and 30 au while the maximum velocities perpendicular to the jet are found to be up to above 100 km s-1. The initially less open magnetic field configuration simulations result in a wider, two-component jet; a cylindrically shaped outer jet surrounding a narrow and much faster, inner jet. These simulations preserve the underlying Keplerian rotation profile of the inner jet to large distances from the source. However, for the initially most open magnetic field configuration the kink mode creates a narrow corkscrew-like jet without a clear Keplerian rotation profile and even regions where we observe rotation opposite to the disc (counter-rotating). The RW Aur jet is narrow, indicating that the disc field in that case is very open meaning the jet can contain a counter-rotating component that we suggest explains why observations of rotation in this jet have given confusing results. Thus magnetized disc winds from underlying Keplerian discs can develop rotation profiles far down the jet that is not Keplerian.

  4. Dipole Alignment in Rotating MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  5. COMPARING THE EFFECT OF RADIATIVE TRANSFER SCHEMES ON CONVECTION SIMULATIONS

    SciTech Connect

    Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre

    2012-11-10

    We examine the effect of different radiative transfer schemes on the properties of three-dimensional (3D) simulations of near-surface stellar convection in the superadiabatic layer, where energy transport transitions from fully convective to fully radiative. We employ two radiative transfer schemes that fundamentally differ in the way they cover the 3D domain. The first solver approximates domain coverage with moments, while the second solver samples the 3D domain with ray integrations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere.

  6. Simulation of Merger of Two Black Holes and Gravitational Radiation

    NASA Video Gallery

    This movie shows a simulation of the merger of two black holes and the resulting emission of gravitational radiation. The colored fields represent a component of the curvature of space-time. The ou...

  7. Computer simulation of radiation damage in gallium arsenide

    NASA Technical Reports Server (NTRS)

    Stith, John J.; Davenport, James C.; Copeland, Randolph L.

    1989-01-01

    A version of the binary-collision simulation code MARLOWE was used to study the spatial characteristics of radiation damage in proton and electron irradiated gallium arsenide. Comparisons made with the experimental results proved to be encouraging.

  8. From Coronal Observations to MHD Simulations, the Building Blocks for 3D Models of Solar Flares (Invited Review)

    NASA Astrophysics Data System (ADS)

    Janvier, M.; Aulanier, G.; Démoulin, P.

    2015-12-01

    Solar flares are energetic events taking place in the Sun's atmosphere, and their effects can greatly impact the environment of the surrounding planets. In particular, eruptive flares, as opposed to confined flares, launch coronal mass ejections into the interplanetary medium, and as such, are one of the main drivers of space weather. After briefly reviewing the main characteristics of solar flares, we summarise the processes that can account for the build-up and release of energy during their evolution. In particular, we focus on the development of recent 3D numerical simulations that explain many of the observed flare features. These simulations can also provide predictions of the dynamical evolution of coronal and photospheric magnetic field. Here we present a few observational examples that, together with numerical modelling, point to the underlying physical mechanisms of the eruptions.

  9. A nonlinear structural subgrid-scale closure for compressible MHD. II. A priori comparison on turbulence simulation data

    NASA Astrophysics Data System (ADS)

    Grete, Philipp; Vlaykov, Dimitar G.; Schmidt, Wolfram; Schleicher, Dominik R. G.

    2016-06-01

    Even though compressible plasma turbulence is encountered in many astrophysical phenomena, its effect is often not well understood. Furthermore, direct numerical simulations are typically not able to reach the extreme parameters of these processes. For this reason, large-eddy simulations (LES), which only simulate large and intermediate scales directly, are employed. The smallest, unresolved scales and the interactions between small and large scales are introduced by means of a subgrid-scale (SGS) model. We propose and verify a new set of nonlinear SGS closures for future application as an SGS model in LES of compressible magnetohydrodynamics. We use 15 simulations (without explicit SGS model) of forced, isotropic, homogeneous turbulence with varying sonic Mach number Ms=0.2 -20 as reference data for the most extensive a priori tests performed so far in literature. In these tests, we explicitly filter the reference data and compare the performance of the new closures against the most widely tested closures. These include eddy-viscosity and scale-similarity type closures with different normalizations. Performance indicators are correlations with the turbulent energy and cross-helicity flux, the average SGS dissipation, the topological structure and the ability to reproduce the correct magnitude and the direction of the SGS vectors. We find that only the new nonlinear closures exhibit consistently high correlations (median value > 0.8) with the data over the entire parameter space and outperform the other closures in all tests. Moreover, we show that these results are independent of resolution and chosen filter scale. Additionally, the new closures are effectively coefficient-free with a deviation of less than 20%.

  10. Global MHD simulation of the magnetospheric response to large and sudden enhancement of the solar wind dynamic pressure

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Kataoka, R.; Den, M.; Tanaka, T.; Nagatsuma, T.; Fujita, S.

    2013-12-01

    A large and sudden enhancement of the dynamic pressure in the solar wind generates a geomagnetic sudden commencement (SC). The magnetic field variation of SC at auroral latitudes shows a bipolar change which consists of preliminary impulse (PI) and main impulse (MI). Fujita et al. [2003a, 2003b] reproduced the PI/MI magnetic field variation using a magnetosphere-ionosphere coupling simulation and clarified the fundamental mechanisms. Interestingly, Araki et al. [1997] reported an anomalously large-amplitude SC of more than 200 nT with an unusually spiky waveform at low latitude, which occurred when the magnetopause was pushed inside geostationary orbit. Such a super SC is the target of this study. We investigate the large-amplitude SC at auroral latitudes when a large solar wind dynamic pressure impinges on the magnetosphere using a newly developed magnetosphere-ionosphere coupling simulation which has advanced robustness. We simulate two SC events of dynamic pressure enhancement of 16 times larger than the standard value, caused by the density enhancement and velocity enhancement, respectively. As an initial result of the comparison with the SC events, it is found that magnetic field variation of PI/MI is larger and sharper in the case of velocity rise than the case of density rise. It is therefore suggested that high-speed solar wind may be needed to create large and sharp SC. It is also found that a magnetic field variation similar to so-called Psc appears after PI/MI only in the case of velocity rise. When the high-speed solar wind impinges on magnetosphere, vortices are repeatedly formed at the equatorial magnetopause, probably due to the K-H instability. It seems that the high pressure of the vortices play an essential role as a current generator to drive the field-aligned currents and the magnetic field oscillation. In this presentation, we discuss the mechanisms of super SC in more detail, combining the other interesting simulation results.

  11. Galactic Cosmic Ray Simulator at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Slaba, Tony C.; Rusek, Adam

    2015-01-01

    The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment is to attempt to reproduce the unmodified, external GCR spectrum at a ground based accelerator. A possibly better approach would use the modified, shielded tissue spectrum, to select accelerator beams impinging on biological targets. NASA plans for implementation of a GCR simulator at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory will be discussed.

  12. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiation therapy simulation system. 892.5840 Section 892.5840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy...

  13. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiation therapy simulation system. 892.5840 Section 892.5840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy...

  14. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy simulation system. 892.5840 Section 892.5840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy...

  15. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiation therapy simulation system. 892.5840 Section 892.5840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy...

  16. Comparison of LFM-test particle simulations and radial diffusion models of radiation belt electron injection into the slot region

    NASA Astrophysics Data System (ADS)

    Chu, F.; Hudson, M.; Kress, B.

    2008-12-01

    The physics-based Lyon-Fedder-Mobarry (LFM) code simulates Earth's magnetospheric topology and dynamics by solving the equations of ideal MHD using input solar wind parameters at the upstream boundary. Comparison with electron phase space density evolution during storms using a radial diffusion code, as well as spacecraft measurements where available, will tell us when diffusion is insufficiently accurate for radiation belt simulation, for example, during CME-shock injection events like March 24, 1991, which occurred on MeV electron drift time scales of minutes (Li et al., 1993). The 2004 July and 2004 November storms, comparable in depth of penetration into the slot region to the Halloween 2003 storm, have been modeled with both approaches. The November 8, 2004 storm was preceded by a Storm Sudden Commencement produced by a CME-shock followed by minimum Dst = -373 nT, while the July 23 to July 28 storm interval had milder consecutive drops in Dst, corresponding to multiple CME shocks and southward IMF Bz turnings. We have run the November and July storms with LFM using ACE data as upstream input, running the July storm with lower temporal resolution over a longer time interval. The November storm was different because the SCC shock was unusually intense, therefore the possibility of drift time scale acceleration by the associated magnetosonic impulse produced by the shock exists, as in March 1991 and also Halloween 2003 events (Kress et al., 2007). It can then take a short time (minutes) for electrons to be transported to low L shell while conserving their first invariant, resulting in a peak in energy and phase space density in the slot region. Radial diffusion suffices for some storm periods like the July 2004 sequence of three storms, while the guiding center test particle simulation in MHD fields is necessary to describe prompt injections which occur faster than diffusive time scales, for which November 2004 is a likely candidate. Earlier examples have been

  17. MRI-driven accretion on to magnetized stars: global 3D MHD simulations of magnetospheric and boundary layer regimes

    NASA Astrophysics Data System (ADS)

    Romanova, M. M.; Ustyugova, G. V.; Koldoba, A. V.; Lovelace, R. V. E.

    2012-03-01

    We discuss results of global three-dimensional magnetohydrodynamic simulations of accretion on to a rotating magnetized star with a tilted dipole magnetic field, where the accretion is driven by the magnetorotational instability (MRI). The simulations show that MRI-driven turbulence develops in the disc, and angular momentum is transported outwards primarily due to the magnetic stress. The turbulent flow is strongly inhomogeneous and the densest matter is in azimuthally stretched turbulent cells. We investigate two regimes of accretion: a magnetospheric regime and a boundary layer (BL) regime. In the magnetospheric regime, the magnetic field of the star is dynamically important: the accretion disc is truncated by the star's magnetic field within a few stellar radii from the star's surface, and matter flows to the star in funnel streams. The funnel streams flow towards the south and north magnetic poles but are not equal due to the inhomogeneity of the flow. The hotspots on the stellar surface are not symmetric as well. In the BL regime, the magnetic field of the star is dynamically unimportant, and matter accretes on to the surface of the star through the BL. The magnetic field in the inner disc is strongly amplified by the shear of the accretion flow, and the matter and magnetic stresses become comparable. Accreting matter forms a belt-shaped hot region on the surface of the star. The belt has inhomogeneous density distribution which varies in time due to variable accretion rate. The peaks in the variability curve are associated with accretion of individual turbulent cells. They show 20-50 per cent density amplifications at periods of ˜5-10 dynamical time-scales at the surface of the star. Spiral waves in the disc are excited in both magnetospheric and BL regimes of accretion. Results of simulations can be applied to classical T Tauri stars, accreting brown dwarfs, millisecond pulsars, dwarf novae cataclysmic variables and other stars with magnetospheres smaller

  18. Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alina, D.; Alves, M. I. R.; Aniano, G.; Armitage-Caplan, C.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fanciullo, L.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Sandri, M.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Zonca, A.

    2015-04-01

    Polarized emission observed by Planck HFI at 353 GHz towards a sample of nearby fields is presented, focusing on the statistics of polarization fractions p and angles ψ. The polarization fractions and column densities in these nearby fields are representative of the range of values obtained over the whole sky. We find that: (i) the largest polarization fractions are reached in the most diffuse fields; (ii) the maximum polarization fraction pmax decreases with column density NH in the more opaque fields with NH> 1021 cm-2; and (iii) the polarization fraction along a given line of sight is correlated with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate of this parameter may be recovered from the maximum polarization fraction pmax in diffuse regions where the magnetic field is ordered on large scales and perpendicular to the line of sight. This emphasizes the impact of anisotropies of the magnetic field on the emerging polarization signal. The decrease of the maximum polarization fraction with column density in nearby molecular clouds is well reproduced in the simulations, indicating that it is essentially due to the turbulent structure of the magnetic field: an accumulation of variously polarized structures along the line of sight leads to such an anti-correlation. In the simulations, polarization fractions are also found to anti-correlate with the angle dispersion function 𝒮. However, the dispersion of the polarization angle for a given polarization fraction is found to be larger in the simulations than in the observations, suggesting a shortcoming in the physical content of these numerical models. In summary, we find that the turbulent structure of the magnetic field is able to reproduce the main statistical

  19. Signatures of small-scale heating events in EUV spectral lines as modeled from 3D MHD simulations

    NASA Astrophysics Data System (ADS)

    Guerreiro, Nuno; Haberreiter, Margit; Hansteen, Viggo; Curdt, Werner; Schmutz, Werner

    2014-05-01

    We aim at understanding the implications of small scale heating events in the solar atmosphere for the variations of the solar spectral irradiance. We present a technique for identification and characterization of these events in 3D simulations of the solar atmosphere. An accurate property determination of these events in time and space will help us to understand how spectral lines, in particular in the EUV, respond to them and which kind of spectral signatures one would expect to find in observations as from SOHO/SUMER and eventually from future space missions, as for example observations by SPICE on board Solar Orbiter.

  20. New Insights about Meridional Circulation Dynamics from 3D MHD Global Simulations of Solar Convection and Dynamo Action

    NASA Astrophysics Data System (ADS)

    Passos, D.; Charbonneau, P.; Miesch, M. S.

    2016-04-01

    The solar meridional circulation is a "slow", large scale flow that transports magnetic field and plasma throughout the convection zone in the (r,θ) plane and plays a crucial role in controlling the magnetic cycle solutions presented by flux transport dynamo models. Observations indicate that this flow speed varies in anti-phase with the solar cycle at the solar surface. A possible explanation for the source of this variation is based on the fact that inflows into active regions alter the global surface pattern of the meridional circulation. In this work we examine the meridional circulation profile that emerges from a 3D global simulation of the solar convection zone, and its associated dynamics. We find that at the bottom of the convection zone, in the region where the toroidal magnetic field accumulates, the meridional circulation is highly modulated through the action of a magnetic torques and thus provides evidence for a new mechanism to explain the observed cyclic variations.

  1. Three-dimensional relativistic MHD simulations of active galactic nuclei jets: magnetic kink instability and Fanaroff-Riley dichotomy

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander; Bromberg, Omer

    2016-09-01

    Energy deposition by active galactic nuclei jets into the ambient medium can affect galaxy formation and evolution, the cooling of gas flows at the centres of galaxy clusters, and the growth of the supermassive black holes. However, the processes that couple jet power to the ambient medium and determine jet morphology are poorly understood. For instance, there is no agreement on the cause of the well-known Fanaroff-Riley (FR) morphological dichotomy of jets, with FRI jets being shorter and less stable than FRII jets. We carry out global 3D magnetohydrodynamic simulations of relativistic jets propagating through the ambient medium. We show that the flat density profiles of galactic cores slow down and collimate the jets, making them susceptible to the 3D magnetic kink instability. We obtain a critical power, which depends on the galaxy core mass and radius, below which jets become kink-unstable within the core, stall, and inflate cavities filled with relativistically hot plasma. Jets above the critical power stably escape the core and form powerful backflows. Thus, the kink instability controls the jet morphology and can lead to the FR dichotomy. The model-predicted dependence of the critical power on the galaxy optical luminosity agrees well with observations.

  2. Three-dimensional Relativistic MHD Simulations of Active Galactic Nuclei Jets: Magnetic Kink Instability and Fanaroff-Riley Dichotomy

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander; Bromberg, Omer

    2016-04-01

    Energy deposition by active galactic nuclei jets into the ambient medium can affect galaxy formation and evolution, the cooling of gas flows at the centres of galaxy clusters, and the growth of the supermassive black holes. However, the processes that couple jet power to the ambient medium and determine jet morphology are poorly understood. For instance, there is no agreement on the cause of the well-known Fanaroff-Riley (FR) morphological dichotomy of jets, with FRI jets being shorter and less stable than FRII jets. We carry out global 3D magnetohydrodynamic simulations of relativistic jets propagating through the ambient medium. We show that the flat density profiles of galactic cores slow down and collimate the jets, making them susceptible to the 3D magnetic kink instability. We obtain a critical power, which depends on the galaxy core mass and radius, below which jets become kink-unstable within the core, stall, and inflate cavities filled with relativistically-hot plasma. Jets above the critical power stably escape the galaxy cores and form powerful backflows. Thus, the kink instability controls the jet morphology and can lead to the FR dichotomy. The model-predicted dependence of the critical power on the galaxy optical luminosity agrees well with observations.

  3. PIC code KARAT simulation of different types of polarization radiation generated by relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Artyomov, K. P.; Ryzhov, V. V.; Naumenko, G. A.; Shevelev, M. V.

    2012-05-01

    Different types of polarization radiation generated by a relativistic electron beam are simulated using fully electromagnetic particle-in-cell (PIC) code KARAT. The simulation results for diffraction radiation, transition radiation, Smith-Purcell radiation and Vavilov-Cherenkov radiation are in a good agreement with experimental data and analytical models. Modern PIC simulation is a good tool to check and predict experimental results.

  4. Simulations of laser experiments of radiative and non-radiative shocks

    NASA Astrophysics Data System (ADS)

    Fryxell, B.; Rutter, E.; Myra, E. S.

    2012-06-01

    The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan was established to study the properties of radiative shocks using both numerical simulation and shock-tube experiments on the Omega Laser at the University of Rochester. The laser accelerates a thin Be disk, which acts like a piston, driving a shock with an initial propagation velocity of 200 km/s into a tube filled with Xe. Analytic estimates indicate that a shock propagating with a velocity greater than about 60 km/s through Xe under these conditions should be strongly radiative. This paper discusses numerical simulations of a proposed modification to this experiment that produces a non-radiative shock. Comparison of the radiative and non-radiative cases provides an excellent opportunity for assessing the effects of radiation on shock structure and flow morphology. For the non-radiative case, the initial shock speed is reduced to 20 km/s by increasing the thickness of the Be disk and by decreasing the energy of the laser. Two-dimensional simulations of targets with cylindrical shock tubes and three-dimensional simulations of more complex targets with elliptical shock tubes are described. In addition, the effect of the shock speed on the cross-sectional area of the tube is discussed.

  5. High Performance Radiation Transport Simulations on TITAN

    SciTech Connect

    Baker, Christopher G; Davidson, Gregory G; Evans, Thomas M; Hamilton, Steven P; Jarrell, Joshua J; Joubert, Wayne

    2012-01-01

    In this paper we describe the Denovo code system. Denovo solves the six-dimensional, steady-state, linear Boltzmann transport equation, of central importance to nuclear technology applications such as reactor core analysis (neutronics), radiation shielding, nuclear forensics and radiation detection. The code features multiple spatial differencing schemes, state-of-the-art linear solvers, the Koch-Baker-Alcouffe (KBA) parallel-wavefront sweep algorithm for inverting the transport operator, a new multilevel energy decomposition method scaling to hundreds of thousands of processing cores, and a modern, novel code architecture that supports straightforward integration of new features. In this paper we discuss the performance of Denovo on the 10--20 petaflop ORNL GPU-based system, Titan. We describe algorithms and techniques used to exploit the capabilities of Titan's heterogeneous compute node architecture and the challenges of obtaining good parallel performance for this sparse hyperbolic PDE solver containing inherently sequential computations. Numerical results demonstrating Denovo performance on early Titan hardware are presented.

  6. Geometric Modeling, Radiation Simulation, Rendering, Analysis Package

    Energy Science and Technology Software Center (ESTSC)

    1995-01-17

    RADIANCE is intended to aid lighting designers and architects by predicting the light levels and appearance of a space prior to construction. The package includes programs for modeling and translating scene geometry, luminaire data and material properties, all of which are needed as input to the simulation. The lighting simulation itself uses ray tracing techniques to compute radiance values (ie. the quantity of light passing through a specific point in a specific direction), which aremore » typically arranged to form a photographic quality image. The resulting image may be analyzed, displayed and manipulated within the package, and converted to other popular image file formats for export to other packages, facilitating the production of hard copy output.« less

  7. Broken Symmetry and Coherent Structure in MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Absolute equilibrium ensemble theory for ideal homogeneous magnetohydrodynamic (MHD) turbulence is fairly well developed. Theory and Simulation indicate that ideal MHD turbulence non-ergodic and contains coherent structure. The question of applicability real (i.e., dissipative) MHD turbulence is examined. Results from several very long time numerical simulations on a 64(exp 3) grid are presented. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection with inverse spectral cascades and selective decay will also be discussed.

  8. Simulation of free-electron lasers seeded with broadband radiation

    SciTech Connect

    Bajlekov, Svetoslav; Fawley, William; Schroeder, Carl; Bartolini, Riccardo; Hooker, Simon

    2011-03-10

    The longitudinal coherence of free-electron laser (FEL) radiation can be enhanced by seeding the FEL with high harmonics of an optical laser pulse. The radiation produced by high-harmonic generation (HHG), however, has a fast-varying temporal profile that can violate the slowly varying envelope approximation and limited frequency window that is employed in conventional free-electron laser simulation codes. Here we investigate the implications of violating this approximation on the accuracy of simulations. On the basis of both analytical considerations and 1D numerical studies, it is concluded that, for most realistic scenarios, conventional FEL codes are capable of accurately simulating the FEL process even when the seed radiation violates the slowly varying envelope approximation. We additionally discuss the significance of filtering the harmonic content of broadband HHG seeds.

  9. Simulate the volcanic radiation features in medium wave infrared channels

    NASA Astrophysics Data System (ADS)

    Gong, Cailan; Jiang, Shan; Liu, Fengyi; Hu, Yong

    2015-10-01

    There are different scales and intensities of the volcanic eruption in the world every year. Existing medium wave infrared (MWI) remote sensing channels are often at atmospheric window in 3-5μm, lack of water vapor and carbon dioxide(CO2) absorption channels data, such as 2.2μm, 2.7μm and so on, however the 2.7μm absorption bands can be used as volcanoes, forest fires and other hot target identification. In order to obtain the high-temperature targets (HTT)radiation features, such as volcanic eruptions and forest fires in the water vapor absorption channels, Firstly, the HTT should be identified from the existing bands based on the temperature differences between the objects and the surrounding environment. Then, the HTT radiation features were simulated, and the correlation between the radiations of different bands were established with statistical analysis method. The HTT reorganization from remote sensing data, radiation characteristics simulation in different atmospheric models were described, then the bands transformed models were set up. The volcanic HTT radiation characteristics were simulated in wavelength 2.7μm and 4.433-4.498μm (band 24 of MODIS) based on the known bands of 3.55 -3.93μm (band 3 of FengYun-3 Visible and Infrared Scanning Radiometer (VIRR)). The simulated results were tested by the volcanic HTT radiation characteristics with 4.433-4.498μm by known bands of MODIS image and the simulated 4.433-4.498μm image. The causes of errors generated were analyzed. The study methods were useful to the new remote sensor bands imaging characteristics simulation analysis.

  10. Computer simulation radiation damages in condensed matters

    NASA Astrophysics Data System (ADS)

    Kupchishin, A. I.; Kupchishin, A. A.; Voronova, N. A.; Kirdyashkin, V. I.; Gyngazov, V. A.

    2016-02-01

    As part of the cascade-probability method were calculated the energy spectra of primary knocked-out atoms and the concentration of radiation-induced defects in a number of metals irradiated by electrons. As follows from the formulas, the number of Frenkel pairs at a given depth depends on three variables having certain physical meaning: firstly, Cd (Ea h) is proportional to the average energy of the considered depth of the PKA (if it is higher, than the greater number of atoms it will displace); secondly is inversely proportional to the path length λ2 for the formation of the PKA (if λ1 is higher than is the smaller the probability of interaction) and thirdly is inversely proportional to Ed. In this case calculations are in satisfactory agreement with the experimental data (for example, copper and aluminum).

  11. Galactic Cosmic Ray Simulation at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Slaba, Tony C.; Rusek, Adam

    2015-01-01

    The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The results of these workshops will be discussed in this paper.

  12. Survey of MHD plant applications

    NASA Technical Reports Server (NTRS)

    Lynch, J. J.; Seikel, G. R.; Cutting, J. C.

    1979-01-01

    Open-cycle MHD is one of the major R&D efforts in the Department of Energy's program to meet the national goal of reducing U.S. dependence on oil through increased utilization of coal. MHD offers an effective way to use coal to produce electric power at low cost in a highly efficient and environmentally acceptable manner. Open-cycle MHD plants are categorized by the MHD combustor oxidizer, its temperature and the method of preheat. The paper discusses MHD baseline plant design, open-cycle MHD plant in the Energy Conversion Alternatives Study (ECAS), early commercial MHD plants, conceptual studies of the engineering test facility, retrofit (addition of an MHD topping cycle to an existing steam plant), and other potential applications and concepts. Emphasis is placed on a survey of both completed and ongoing studies to define both commercial and pilot plant design, cost, and performance.

  13. Advancements in Afterbody Radiative Heating Simulations for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Panesi, Marco; Brandis, Aaron M.

    2016-01-01

    Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell

  14. Time-dependent radiation dose simulations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju

    2016-07-01

    Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.

  15. Hall-MHD simulations of the magnetosphere-northward solar wind interface : the Kelvin-Helmholtz instability as an entry mechanism for the solar wind through mixing and reconnections

    NASA Astrophysics Data System (ADS)

    Leroy, Matthieu; Keppens, Rony

    2016-04-01

    The transfer of matter from the solar-wind to the Earth's magnetosphere during southward solar wind is mostly well understood but the processes governing the same phenomenon during northward solar wind remains to be fully apprehended. Numerous numerical studies have investigated the topic with many interesting results but most of these were considering two-dimensional situations with simplified magnetic configuration and often neglecting the inhomogeneities for the sake of clarity. Given the typical parameters at the magnetosphere-solar wind interface, the situation must be considered in the frame of Hall-MHD, due to the fact that the current layers widths and the gradient lengths can be in the order of the ion inertial length. As a consequence of Hall-MHD creating a third vector component from two planar ones, and also because magnetic perturbations can affect the field configuration at a distance in all directions and not only locally, three-dimensional treatment is necessary. In this spirit three-dimensional simulations of a configuration approaching the conditions leading to the development of Kelvin-Helmholtz instabilities at the flank of the magnetosphere during northward oriented solar-wind are performed as means to study the entry of solar-wind matter into Earth's magnetic field. In the scope of assessing the effect of the Hall-term in the physical processes, the simulations are also performed in the MHD frame. Furthermore the influence of the density and velocity jump through the shear layer on the rate of mass entering the magnetosphere is explored. Indeed, depending on the exact values of the physical quantities, the Kelvin-Helmholtz instability may have to compete with secondary instabilities and the non-linear phase may exhibit vortex merging and large-scale structures reorganisation, creating very different mixing layers, or generate different reconnection sites, locally and at a distance. These different configurations may have discernible signatures

  16. nIFTy galaxy cluster simulations - II. Radiative models

    NASA Astrophysics Data System (ADS)

    Sembolini, Federico; Elahi, Pascal Jahan; Pearce, Frazer R.; Power, Chris; Knebe, Alexander; Kay, Scott T.; Cui, Weiguang; Yepes, Gustavo; Beck, Alexander M.; Borgani, Stefano; Cunnama, Daniel; Davé, Romeel; February, Sean; Huang, Shuiyao; Katz, Neal; McCarthy, Ian G.; Murante, Giuseppe; Newton, Richard D. A.; Perret, Valentin; Puchwein, Ewald; Saro, Alexandro; Schaye, Joop; Teyssier, Romain

    2016-07-01

    We have simulated the formation of a massive galaxy cluster (M_{200}^crit = 1.1 × 1015 h-1 M⊙) in a Λ cold dark matter universe using 10 different codes (RAMSES, 2 incarnations of AREPO and 7 of GADGET), modelling hydrodynamics with full radiative subgrid physics. These codes include smoothed-particle hydrodynamics (SPH), spanning traditional and advanced SPH schemes, adaptive mesh and moving mesh codes. Our goal is to study the consistency between simulated clusters modelled with different radiative physical implementations - such as cooling, star formation and thermal active galactic nucleus (AGN) feedback. We compare images of the cluster at z = 0, global properties such as mass, and radial profiles of various dynamical and thermodynamical quantities. We find that, with respect to non-radiative simulations, dark matter is more centrally concentrated, the extent not simply depending on the presence/absence of AGN feedback. The scatter in global quantities is substantially higher than for non-radiative runs. Intriguingly, adding radiative physics seems to have washed away the marked code-based differences present in the entropy profile seen for non-radiative simulations in Sembolini et al.: radiative physics + classic SPH can produce entropy cores, at least in the case of non cool-core clusters. Furthermore, the inclusion/absence of AGN feedback is not the dividing line -as in the case of describing the stellar content - for whether a code produces an unrealistic temperature inversion and a falling central entropy profile. However, AGN feedback does strongly affect the overall stellar distribution, limiting the effect of overcooling and reducing sensibly the stellar fraction.

  17. Enhanced Spectral Anisotropies Near the Proton-Cyclotron Scale: Possible Two-Component Structure in Hall-FLR MHD Turbulence Simulations

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Goldstein, Melvyn L.

    2011-01-01

    Recent analysis of the magnetic correlation function of solar wind fluctuations at 1 AU suggests the existence of two-component structure near the proton-cyclotron scale. Here we use two-and-one-half dimensional and three-dimensional compressible MHD models to look for two-component structure adjacent the proton-cyclotron scale. Our MHD system incorporates both Hall and Finite Larmor Radius (FLR) terms. We find that strong spectral anisotropies appear adjacent the proton-cyclotron scales depending on selections of initial condition and plasma beta. These anisotropies are enhancements on top of related anisotropies that appear in standard MHD turbulence in the presence of a mean magnetic field and are suggestive of one turbulence component along the inertial scales and another component adjacent the dissipative scales. We compute the relative strengths of linear and nonlinear accelerations on the velocity and magnetic fields to gauge the relative influence of terms that drive the system with wave-like (linear) versus turbulent (nonlinear) dynamics.

  18. MHD Wave Modes Resolved in Fine-Scale Chromospheric Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Verth, G.; Jess, D. B.

    2016-02-01

    Due to its complex and dynamic fine-scale structure, the chromosphere is a particularly challenging region of the Sun's atmosphere to understand. It is now widely accepted that to model chromospheric dynamics, even on a magnetohydrodynamic (MHD) scale, while also calculating spectral line emission, one must realistically include the effects of partial ionization and radiative transfer in a multi-fluid plasma under non-LTE conditions. Accurate quantification of MHD wave energetics must be founded on a precise identification of the actual wave mode being observed. This chapter focuses on MHD kink-mode identification, MHD sausage mode identification, and MHD torsional Alfvén wave identification. It then reviews progress in determining more accurate energy flux estimations of specific MHD wave modes observed in the chromosphere. The chapter finally examines how the discovery of these MHD wave modes has helped us advance the field of chromospheric magnetoseismology.

  19. RADIATIVE HYDRODYNAMIC SIMULATIONS OF ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Bard, S.; Carlsson, M.

    2010-10-10

    We investigate the formation and evolution of the Ca II H line in a sunspot. The aim of our study is to establish the mechanisms underlying the formation of the frequently observed brightenings of small regions of sunspot umbrae known as 'umbral flashes'. We perform fully consistent NLTE radiation hydrodynamic simulations of the propagation of acoustic waves in sunspot umbrae and conclude that umbral flashes result from increased emission of the local solar material during the passage of acoustic waves originating in the photosphere and steepening to shock in the chromosphere. To quantify the significance of possible physical mechanisms that contribute to the formation of umbral flashes, we perform a set of simulations on a grid formed by different wave power spectra, different inbound coronal radiation, and different parameterized chromospheric heating. Our simulations show that the waves with frequencies in the range 4.5-7.0 mHz are critical to the formation of the observed blueshifts of umbral flashes while waves with frequencies below 4.5 mHz do not play a role despite their dominance in the photosphere. The observed emission in the Ca II H core between flashes only occurs in the simulations that include significant inbound coronal radiation and/or extra non-radiative chromospheric heating in addition to shock dissipation.

  20. A 3D Radiative Transfer Simulation of Lyma-alpha Backscatter Intensity Reduced From Voyager’s Ultraviolet Spectrometer

    NASA Astrophysics Data System (ADS)

    Fayock, Brian; Zank, Gary; Heerikhuisen, Jacob

    2014-06-01

    Models of the heliosphere have evolved for the past few decades to fit observations made by a large number of spacecraft. Voyager missions have provided unique in-situ measurements that have proven to be essential for model testing. Lyman-alpha backscatter intensity has been reduced from measurements taken by the ultraviolet spectrometers on board both Voyager spacecraft. We have developed a 3D Monte Carlo radiative transfer code to simulate this backscatter intensity by generating millions of photons from the sun to scatter within a neutral hydrogen distribution resulting from a state-of-the-art 3D MHD-kinetic neutral heliospheric model, both of which have been developed within the Center for Space Physics and Aeronomic Research at the University of Alabama in Huntsville. While many have attempted to simulate the Voyager observations, we are the first to achieve agreement with our results. In this presentation, we will discuss the core mechanisms driving the radiative transfer code, the statistical quantities collected, and the interpretation of the results relative to the spacecraft data.

  1. Simulation of Relativistic Shocks and Associated Self-Consistent Radiation

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2010-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked regions. Simulations show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields and particle acceleration. These magnetic fields contribute to the electron's transverse deflection behind the shock. The "jitter" radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. We will present detailed spectra for conditions relevant of various astrophysical sites of shock formation via the Weibel instability. In particular we will discuss the application to GRBs and SNRs.

  2. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2014-10-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Initial results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.

  3. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2013-10-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Preliminary results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.

  4. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2015-11-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.

  5. Interactions of Radiation and Convection in Simulated Tropical Cloud Clusters.

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Krueger, Steven K.; Liou, K. N.

    1995-05-01

    A two-dimensional cumulus ensemble model is used to study the interactions of radiation and convection in tropical squall cloud clusters. The model includes cloud-scale and mesoscale dynamics, an improved bulk ice microphysics parameterization, and an advanced interactive radiative transfer scheme. The life cycle of a tropical squall line is simulated over a 12-h period using thermodynamic and kinematic initial conditions as well as large-scale advective forcing typical of a GATE Phase III squall cluster environment. The focus is on the interaction and feedback between longwave (or IR) radiation and cloud processes.It will be shown that clew-sky IR cooling enhances convection and, hence, surface precipitation. Simulation results reveal an increase of surface precipitation by 15% (1.7 mm) over a 12-b period due to this clear-sky cooling. With fully interactive IR radiative heating, direct destabilization of clouds via IR radiative top cooling and base warming generates more turbulence and contributes to the longevity and extent of the upper-tropospheric stratiform (anvil) clouds associated with deep convection. The greater extent of anvil clouds decreases the outgoing IR flux at the top of the atmosphere by as much as 20 W m2.With fully interactive IR radiative heating, the anvil cirrus reduces the IR cooling of the troposphere with respect to the clear-sky values. This cloud IR radiative forcing has a negative feedback on tropical deep convection, which will be referred to as `anvil cloud IR radiative feedback.' This feedback decreases surface precipitation by 10% (1.3 mm). It will also be shown that IR radiative processes modify the hydrometer profiles by affecting convection. On changing the cloud particle size distributions prescribed in radiation calculations, it is further demonstrated that the size distributions significantly influence the convective activity through their effects on the cloud IR radiative forcing.The impact of clear-air IR cooling and cloud

  6. Numerical Analysis of MHD Accelerator with Non-Equilibrium Air Plasma

    NASA Astrophysics Data System (ADS)

    Anwari, M.; H. Qazi, H.; Sukarsan; Harada, N.

    2012-12-01

    Magnetohydrodynamic (MHD) accelerator is proposed as a next generation propulsion system. It can be used to increase the performance of a propulsion system. The objective of this study is to investigate the performance of MHD accelerator using non-equilibrium air plasma as working gas. In this study, the fundamental performance of MHD accelerator such as flow performance and electrical performance is evaluated at different levels of applied magnetic field using 1-D numerical simulation. The numerical simulation is developed based on a set of differential equations with MHD approximation. To solve this set of differential equations the MacCormack scheme is used. A specified channel designed and developed at NASA Marshall Space Flight Centre is used in the numerical simulation. The composition of the simulated air plasma consists of seven species, namely, N2, N, O2, O, NO, NO+, and e-. The performance of the non-equilibrium MHD accelerator is also compared with the equilibrium MHD accelerator.

  7. Simulated 2050 aviation radiative forcing from contrails and aerosols

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Chieh; Gettelman, Andrew

    2016-06-01

    The radiative forcing from aviation-induced cloudiness is investigated by using the Community Atmosphere Model Version 5 (CAM5) in the present (2006) and the future (through 2050). Global flight distance is projected to increase by a factor of 4 between 2006 and 2050. However, simulated contrail cirrus radiative forcing in 2050 can reach 87 mW m-2, an increase by a factor of 7 from 2006, and thus does not scale linearly with fuel emission mass. This is due to non-uniform regional increase in air traffic and different sensitivities for contrail radiative forcing in different regions. CAM5 simulations indicate that negative radiative forcing induced by the indirect effect of aviation sulfate aerosols on liquid clouds in 2050 can be as large as -160 mW m-2, an increase by a factor of 4 from 2006. As a result, the net 2050 radiative forcing of contrail cirrus and aviation aerosols may have a cooling effect on the planet. Aviation sulfate aerosols emitted at cruise altitude can be transported down to the lower troposphere, increasing the aerosol concentration, thus increasing the cloud drop number concentration and persistence of low-level clouds. Aviation black carbon aerosols produce a negligible net forcing globally in 2006 and 2050 in this model study. Uncertainties in the methodology and the modeling are significant and discussed in detail. Nevertheless, the projected percentage increase in contrail radiative forcing is important for future aviation impacts. In addition, the role of aviation aerosols in the cloud nucleation processes can greatly influence on the simulated radiative forcing from aircraft-induced cloudiness and even change its sign. Future research to confirm these results is necessary.

  8. Formation of globular clusters induced by external ultraviolet radiation II: Three-dimensional radiation hydrodynamics simulations

    NASA Astrophysics Data System (ADS)

    Abe, Makito; Umemura, Masayuki; Hasegawa, Kenji

    2016-08-01

    We explore the possibility of the formation of globular clusters under ultraviolet (UV) background radiation. One-dimensional spherical symmetric radiation hydrodynamics (RHD) simulations by Hasegawa et al. have demonstrated that the collapse of low-mass (106-7 M⊙) gas clouds exposed to intense UV radiation can lead to the formation of compact star clusters like globular clusters (GCs) if gas clouds contract with supersonic infall velocities. However, three-dimensional effects, such as the anisotropy of background radiation and the inhomogeneity in gas clouds, have not been studied so far. In this paper, we perform three-dimensional RHD simulations in a semi-cosmological context, and reconsider the formation of compact star clusters in strong UV radiation fields. As a result, we find that although anisotropic radiation fields bring an elongated shadow of neutral gas, almost spherical compact star clusters can be procreated from a "supersonic infall" cloud, since photo-dissociating radiation suppresses the formation of hydrogen molecules in the shadowed regions and the regions are compressed by UV heated ambient gas. The properties of resultant star clusters match those of GCs. On the other hand, in weak UV radiation fields, dark matter-dominated star clusters with low stellar density form due to the self-shielding effect as well as the positive feedback by ionizing photons. Thus, we conclude that the "supersonic infall" under a strong UV background is a potential mechanism to form GCs.

  9. Generalized reduced MHD equations

    SciTech Connect

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1998-07-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson.

  10. MHD Generating system

    DOEpatents

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  11. Disk MHD generator study

    NASA Technical Reports Server (NTRS)

    Retallick, F. D.

    1980-01-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  12. Realistic three-dimensional radiative transfer simulations of observed precipitation

    NASA Astrophysics Data System (ADS)

    Adams, I. S.; Bettenhausen, M. H.

    2013-12-01

    Remote sensing observations of precipitation typically utilize a number of instruments on various platforms. Ground validation campaigns incorporate ground-based and airborne measurements to characterize and study precipitating clouds, while the precipitation measurement constellation envisioned by the Global Precipitation Measurement (GPM) mission includes measurements from differing space-borne instruments. In addition to disparities such as frequency channel selection and bandwidth, measurement geometry and resolution differences between observing platforms result in inherent inconsistencies between data products. In order to harmonize measurements from multiple passive radiometers, a framework is required that addresses these differences. To accomplish this, we have implemented a flexible three-dimensional radiative transfer model. As its core, the radiative transfer model uses the Atmospheric Radiative Transfer Simulator (ARTS) version 2 to solve the radiative transfer equation in three dimensions using Monte Carlo integration. Gaseous absorption is computed with MonoRTM and formatted into look-up tables for rapid processing. Likewise, scattering properties are pre-computed using a number of publicly available codes, such as T-Matrix and DDSCAT. If necessary, a melting layer model can be applied to the input profiles. Gaussian antenna beams estimate the spatial resolutions of the passive measurements, and realistic bandpass characteristics can be included to properly account for the spectral response of the simulated instrument. This work presents three-dimensional simulations of WindSat brightness temperatures for an oceanic rain event sampled by the Tropical Rainfall Measuring Mission (TRMM) satellite. The 2B-31 combined Precipitation Radar / TRMM Microwave Imager (TMI) retrievals provide profiles that are the input to the radiative transfer model. TMI brightness temperatures are also simulated. Comparisons between monochromatic, pencil beam simulations and

  13. Numerical simulation of radiative heat loss in an experimental burner

    SciTech Connect

    Cloutman, L.D.; Brookshaw, L.

    1993-09-01

    We describe the numerical algorithm used in the COYOTE two-dimensional, transient, Eulerian hydrodynamics program to allow for radiative heat losses in simulations of reactive flows. The model is intended primarily for simulations of industrial burners, but it is not confined to that application. It assumes that the fluid is optically thin and that photons created by the fluid immediately escape to free space or to the surrounding walls, depending upon the application. The use of the model is illustrated by simulations of a laboratory-scale experimental burner. We find that the radiative heat losses reduce the local temperature of the combustion products by a modest amount, typically on the order of 50 K. However, they have a significant impact on NO{sub x} production.

  14. Dispersive waves in a seeded MHD generator.

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1972-01-01

    The equations giving the response of a slightly ionized plasma with monatomic components to sinusoidal perturbations have been formulated. Included in the model equations were the electron Hall effect, electron thermal diffusion, radiation, and electron-atom rate processes. Plasma conditions were limited to those where viscous effects, the induced magnetic field, ion slip, and atom-atom inelastic processes can be neglected. Presented are results of numerical calculations for MHD generators with a working fluid of potassium seeded argon.

  15. Simulation of the radiation fields from ionizing radiation sources inside the containment in an accident

    SciTech Connect

    Kalugin, M. A.

    2010-12-15

    In the present work, a set of codes used for simulations of the radiation fields from ionizing radiation sources inside the containment in an accident is described. A method of evaluating the gamma dose rate from a space and energy distributed source is given. The dose rate is calculated by means of the design point kernel method and using buildup factors. The code MCU-REA with the ORIMCU module is used for the burnup calculations.

  16. How well do we need to simulate cloud radiative effects to simulate stratocumulus?

    NASA Astrophysics Data System (ADS)

    Bellon, G.

    2014-12-01

    Using Large-Eddy Simulations with a simple representation of the cloud radiative effect, we confirm that the cloud radiative cooling at the top of the cloud is crucial to the simulation of the equilibrium, stratocumulus-capped boundary layer. In the perspective of representing this radiative cooling in a lower-resolution model, we study how spatial averaging can alter this equilibrium. Vertical averaging over large layers, or introducing some cooling above the cloud top destabilizes the stratocumulus equilibrium. On the other hand, the stratocumulus equilibrium is not very sensitive to horizontal averaging of the cloud radiative effect. Furthermore, we investigate whether the cloud radiative effect can be computed from the large-scale variables. We show that the variance of the liquid water path has to be taken into account. These experiments provide a set of necessary conditions to represent the cloud radiative effect in a larger-scale model such as a GCM or a CRM well enough to simulate the interaction between turbulence and cloud radiative effect essential to stratcumulus.

  17. Space environment simulation at radiation test of nonmetallic materials

    NASA Astrophysics Data System (ADS)

    Briskman, B. A.; Klinshpont, E. R.; Tupikov, V. I.

    1999-05-01

    Russia [1] (B.A. Briskman, V.I. Toupikov, E.N. Lesnovsky, Proceedings of the Seventh International Symposium on Materials in Space Environment, Toulouse, France, 16-20 June 1997, ESA, SP-399, p. 537) has proposed new international standard for the testing of materials to simulated space radiation. The proposal was submitted to ISO (The International Organization for Standards) Technical Committee 20 (Aircraft and Space Vehicles), Subcommittee 14 (Space Systems and Operations) and was approved as Working Draft 15856 at the Los-Angeles meeting (1997). The second version of the draft was approved at the Beijing meeting (1998). The standard extends to space ionizing radiation: protons, electrons, solar ultraviolet, soft X-radiation, bremsstrahlung, that effect the polymeric materials of space engineering. The special feature of interaction of the space ionizing radiation with materials is the localization of the main part of absorbed energy in thin near-surface layers. Numerous problems appear in simulating the ionizing radiation impact, which require a solution for correct conduction of the on-ground tests.

  18. Simulation of the global contrail radiative forcing: A sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Yi, Bingqi; Yang, Ping; Liou, Kuo-Nan; Minnis, Patrick; Penner, Joyce E.

    2012-12-01

    The contrail radiative forcing induced by human aviation activity is one of the most uncertain contributions to climate forcing. An accurate estimation of global contrail radiative forcing is imperative, and the modeling approach is an effective and prominent method to investigate the sensitivity of contrail forcing to various potential factors. We use a simple offline model framework that is particularly useful for sensitivity studies. The most-up-to-date Community Atmospheric Model version 5 (CAM5) is employed to simulate the atmosphere and cloud conditions during the year 2006. With updated natural cirrus and additional contrail optical property parameterizations, the RRTMG Model (RRTM-GCM application) is used to simulate the global contrail radiative forcing. Global contrail coverage and optical depth derived from the literature for the year 2002 is used. The 2006 global annual averaged contrail net (shortwave + longwave) radiative forcing is estimated to be 11.3 mW m-2. Regional contrail radiative forcing over dense air traffic areas can be more than ten times stronger than the global average. A series of sensitivity tests are implemented and show that contrail particle effective size, contrail layer height, the model cloud overlap assumption, and contrail optical properties are among the most important factors. The difference between the contrail forcing under all and clear skies is also shown.

  19. ISS Radiation Shielding and Acoustic Simulation Using an Immersive Environment

    NASA Technical Reports Server (NTRS)

    Verhage, Joshua E.; Sandridge, Chris A.; Qualls, Garry D.; Rizzi, Stephen A.

    2002-01-01

    The International Space Station Environment Simulator (ISSES) is a virtual reality application that uses high-performance computing, graphics, and audio rendering to simulate the radiation and acoustic environments of the International Space Station (ISS). This CAVE application allows the user to maneuver to different locations inside or outside of the ISS and interactively compute and display the radiation dose at a point. The directional dose data is displayed as a color-mapped sphere that indicates the relative levels of radiation from all directions about the center of the sphere. The noise environment is rendered in real time over headphones or speakers and includes non-spatial background noise, such as air-handling equipment, and spatial sounds associated with specific equipment racks, such as compressors or fans. Changes can be made to equipment rack locations that produce changes in both the radiation shielding and system noise. The ISSES application allows for interactive investigation and collaborative trade studies between radiation shielding and noise for crew safety and comfort.

  20. Response of radiation belt simulations to different radial diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.

    2013-12-01

    Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  1. Development of a Space Radiation Monte Carlo Computer Simulation

    NASA Technical Reports Server (NTRS)

    Pinsky, Lawrence S.

    1997-01-01

    The ultimate purpose of this effort is to undertake the development of a computer simulation of the radiation environment encountered in spacecraft which is based upon the Monte Carlo technique. The current plan is to adapt and modify a Monte Carlo calculation code known as FLUKA, which is presently used in high energy and heavy ion physics, to simulate the radiation environment present in spacecraft during missions. The initial effort would be directed towards modeling the MIR and Space Shuttle environments, but the long range goal is to develop a program for the accurate prediction of the radiation environment likely to be encountered on future planned endeavors such as the Space Station, a Lunar Return Mission, or a Mars Mission. The longer the mission, especially those which will not have the shielding protection of the earth's magnetic field, the more critical the radiation threat will be. The ultimate goal of this research is to produce a code that will be useful to mission planners and engineers who need to have detailed projections of radiation exposures at specified locations within the spacecraft and for either specific times during the mission or integrated over the entire mission. In concert with the development of the simulation, it is desired to integrate it with a state-of-the-art interactive 3-D graphics-capable analysis package known as ROOT, to allow easy investigation and visualization of the results. The efforts reported on here include the initial development of the program and the demonstration of the efficacy of the technique through a model simulation of the MIR environment. This information was used to write a proposal to obtain follow-on permanent funding for this project.

  2. Broken Ergodicity in MHD Turbulence in a Spherical Domain

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; wang, Yifan

    2011-01-01

    Broken ergodicity (BE) occurs in Fourier method numerical simulations of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence. Although naive statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that low-wave-number coefficients have non-zero mean values that can be very large compared to the associated standard deviation. In other words, large-scale coherent structure (i.e., broken ergodicity) in homogeneous MHD turbulence can spontaneously grow out of random initial conditions. Eigenanalysis of the modal covariance matrices in the probability density functions of ideal statistical theory leads to a theoretical explanation of observed BE in homogeneous MHD turbulence. Since dissipation is minimal at the largest scales, BE is also relevant for resistive magnetofluids, as evidenced in numerical simulations. Here, we move beyond model magnetofluids confined by periodic boxes to examine BE in rotating magnetofluids in spherical domains using spherical harmonic expansions along with suitable boundary conditions. We present theoretical results for 3-D and 2-D spherical models and also present computational results from dynamical simulations of 2-D MHD turbulence on a rotating spherical surface. MHD turbulence on a 2-D sphere is affected by Coriolus forces, while MHD turbulence on a 2-D plane is not, so that 2-D spherical models are a useful (and simpler) intermediate stage on the path to understanding the much more complex 3-D spherical case.

  3. Nonequilibrium, large-amplitude MHD fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron; Wiltberger, Michael J.

    1995-01-01

    Compressible MHD simulations in one dimension with three-dimensional vectors are used to investigate a number of processes relevant to problems in interplanetary physics. The simulations indicate that a large-amplitude nonequilibrium (e.g., linearly polarized) Alfvenic wave, which always starts with small relative fluctuations in the magnitude B of the magnetic field, typically evolves to flatten the magnetic profile in most regions. Under a wide variety of conditions B and the density rho become anticorrelated on average. If the mean magnetic field is allowed to decrease in time, the point where the transverse magnetic fluctuation amplitude delta B(sub T) is greater than the mean field B(sub 0) is not special, and large values of delta B(sub T)/B(sub 0) do not cause the compressive thermal energy to increase remarkably or the wave energy to dissipate at an unusually high rate. Nor does the 'backscatter' of the waves that occurs when the sound speed is less than the Alfven speed result, in itself, in substantial energy dissipation, but rather primarily in a phase change between the magnetic and velocity fields. For isolated wave packets the backscatter does not occur for any of the parameters examined; an initial radiation of acoustic waves away from the packet establishes a stable traveling structure. Thus these simulations, although greatly idealized compared to reality, suggest a picture in which the interplanetary fluctuations should have small deltaB and increasingly quasi-pressure balanced compressive fluctuations, as observed, and in which the dissipation and 'saturation' at delta B(sub T)/B(sub 0) approximately = 1 required by some theories of wave acceleration of the solar wind do not occur. The simulations also provide simple ways to understand the processes of nonlinear steepening and backscattering of Alfven waves and demonstrate the existence of previously unreported types of quasi-steady MHD states.

  4. Simulation of the UV-radiation at the Martian surface

    NASA Astrophysics Data System (ADS)

    Kolb, C.; Stimpfl, P.; Krenn, H.; Lammer, H.; Kargl, G.; Abart, R.; Patel, M. R.

    The UV-radiation at the Martian surface is for several reasons of importance. UV radiation can cause specific damages in the DNA-containing living systems and is involved in the formation of catalytically produced oxidants such as superoxide ions and peroxides. These are capable to oxidize and subsequently destroy organic matter. Lab simulations are necessary to investigate and understand the effects of organic matter removal at the Martian surface. We designed a radiation apparatus which simulates the solar spectrum at the Martian surface between 200 and 700 nm. The system consists of an UV-enhanced xenon arc lamp and special exchangeable filter-sets and mirrors for simulating the effects of the Martian atmospheric column and dust loading. A special collimating system bundles the final parallel beam so that the intensity at the target spot is independent from the distance between the ray source and the sample. The system was calibrated by means of an optical photo-spectrometer to align the ray output with the theoretical target spectrum and to ensure spectral homogeneity. We present preliminary data on calibration and performance of our system, which is integrated in the Austrian Mars simulation facility.

  5. Simulation of phase conjugation for laser radiation upon nonstationary SBS

    SciTech Connect

    Bogachev, V A; Maslov, N V; Starikov, F A

    2010-06-23

    We report the three-dimensional simulation results of phase conjugation upon nonstationary stimulated Brillouin scattering of a focused laser beam. It is shown that in the case of deep focusing of laser radiation in the SBS cell, the phase conjugation quality decreases with increasing laser power and reflection coefficient, in agreement with experimental results. In calculations, the process of Stokes radiation generation is studied in detail, the reasons for a decrease in the phase conjugation quality are explained, and a means of its improvement is proposed. (nonlinear optical phenomena)

  6. Cloud radiative forcing effects on observed and simulated global energetics

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Robertson, Franklin

    1993-01-01

    The research objectives are the following: (1) to examine how cloud-radiation processes generate/destroy available potential energy by altering both meridional and zonal temperature gradient; (2) to investigate how the atmospheric dynamic fields respond to the cloud-altered mass distributions through the energy conversion circuit; and (3) to examine how the improved version of CCM1 simulates observationally obtained cloud-radiative forcing and its associated energetics and circulations. Significant accomplishments in the past year towards obtaining these objectives and the focus of current research and plans for next year are discussed.

  7. Absorbed radiation by various tissues during simulated endodontic radiography.

    PubMed

    Torabinejad, M; Danforth, R; Andrews, K; Chan, C

    1989-06-01

    The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures. PMID:2592879

  8. GCR Simulator Development Status at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Slaba, T. C.; Norbury, J. W.; Blattnig, S. R.

    2015-01-01

    There are large uncertainties connected to the biological response for exposure to galactic cosmic rays (GCR) on long duration deep space missions. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed with mono-energetic ions beams. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment at the NASA Space Radiation Laboratory (NSRL) are discussed. First, comparisons are made between direct simulation of the external, free space GCR field, and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, a reference environment for the GCR simulator and suitable for deep space missions is identified and described in terms of fluence and integrated dosimetric quantities. Analysis results are given to justify the use of a single reference field over a range of shielding conditions and solar activities. Third, an approach for simulating the reference field at NSRL is presented. The approach directly considers the hydrogen and helium energy spectra, and the heavier ions are collectively represented by considering the linear energy transfer (LET) spectrum. While many more aspects of the experimental setup need to be considered before final implementation of the GCR simulator, this preliminary study provides useful information that should aid the final design. Possible drawbacks of the proposed methodology are discussed and weighed

  9. Why and How do Solar Eruptions Occur? Studies based on SDO/HMI Vector Magnetograms and Data-Driven MHD Simulations

    NASA Astrophysics Data System (ADS)

    Jiang, C.

    2015-12-01

    Although it is well recognized that solar eruptions are the most powerful driver of space weather, why and how these eruptions occur are still open questions. Over the past forty years a variety of models have been proposed to explain the initiation mechanism of solar eruptions. Some researchers emphasize the importance of ideal magnetohydrodynamic (MHD) instabilities, by which, magnetic flux ropes that emerge from the convection zone or form above the photosphere are launched into the outer corona. Others stress the primary role of magnetic reconnection, and believe that without reconnection eruptions can never happen even if the magnetic energy is excessively supplied. All these models are, however, idealized or hypothetical simplification of the realistic case that is much more complex and elusive in observation. Here we will show how the solar eruptions originate and develop in an unprecedentedly realistic way by using full MHD modeling driven directly by magnetic field data from observation without any kind of artificial configuration or constraint. We demonstrate that our model can reproduce the magnetic field and its evolution in an excellent agreement with the state-of-the-art EUV observation following the timeline from a long-duration quasi-static evolution (over days) to the fast eruption (in minutes), which is a typical evolution pattern of solar eruptions from its origin to onset. Our studied events represent a wide range of flares from the minor C-class to major X-class and include both the confined and eruptive ones. We conclude that magnetic flux emergence and the resulted photospheric shearing motions play a primary role in leading to the solar eruptions and their triggers can either be magnetic reconnection or MHD instability, and how the solar eruptions occur, once being triggered, can be predicted by following evolution of the unstable pre-eruptive magnetic configuration.

  10. Influence of thermophoresis on heat and mass transfer under non-Darcy MHD mixed convection along a vertical flat plate embedded in a porous medium in the presence of radiation

    NASA Astrophysics Data System (ADS)

    Kishan, N.; Jagadha, S.

    2016-01-01

    The paper presents an investigation of the influence of thermophoresis on MHD mixed convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid along a vertical flat plate with radiation effects. The plate is permeable and embedded in a porous medium. To describe the deviation from the Darcy model the Forchheimer flow model is used. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformation. The nonlinear ordinary differential equations are linearized by using quasilinearization technique and then solved numerically by using implicit finite difference scheme. The numerical results are analyzed for the effects of various physical parameters such as magnetic parameter Ha, mixed convection parameter Ra d /Pe d , Reynolds number Red, radiation parameter R, thermophoretic parameter τ, Prandtl number Pr, and Schmidt number Sc. The heat transfer coefficient is also tabulated for different values of physical parameters.

  11. Automatic CT simulation optimization for radiation therapy: A general strategy

    SciTech Connect

    Li, Hua Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M.; Mutic, Sasa; Yu, Lifeng; Anastasio, Mark A.; Low, Daniel A.

    2014-03-15

    Purpose: In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. Methods: The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Results: Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube

  12. Simulation of neutron radiation damage in silicon semiconductor devices.

    SciTech Connect

    Shadid, John Nicolas; Hoekstra, Robert John; Hennigan, Gary Lee; Castro, Joseph Pete Jr.; Fixel, Deborah A.

    2007-10-01

    A code, Charon, is described which simulates the effects that neutron damage has on silicon semiconductor devices. The code uses a stabilized, finite-element discretization of the semiconductor drift-diffusion equations. The mathematical model used to simulate semiconductor devices in both normal and radiation environments will be described. Modeling of defect complexes is accomplished by adding an additional drift-diffusion equation for each of the defect species. Additionally, details are given describing how Charon can efficiently solve very large problems using modern parallel computers. Comparison between Charon and experiment will be given, as well as comparison with results from commercially-available TCAD codes.

  13. Molecular dynamics simulation of radiation damage cascades in diamond

    SciTech Connect

    Buchan, J. T.; Robinson, M.; Christie, H. J.; Roach, D. L.; Ross, D. K.; Marks, N. A.

    2015-06-28

    Radiation damage cascades in diamond are studied by molecular dynamics simulations employing the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent and only isolated point defects are generated. Quantitative analysis shows that the instantaneous maximum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA energy, with only 50% of displacements resulting in defects, superior to graphite where the same quantity is nearly 75%.

  14. Propagation of radiation in fluctuating multiscale plasmas. II. Kinetic simulations

    SciTech Connect

    Pal Singh, Kunwar; Robinson, P. A.; Cairns, Iver H.; Tyshetskiy, Yu.

    2012-11-15

    A numerical algorithm is developed and tested that implements the kinetic treatment of electromagnetic radiation propagating through plasmas whose properties have small scale fluctuations, which was developed in a companion paper. This method incorporates the effects of refraction, damping, mode structure, and other aspects of large-scale propagation of electromagnetic waves on the distribution function of quanta in position and wave vector, with small-scale effects of nonuniformities, including scattering and mode conversion approximated as causing drift and diffusion in wave vector. Numerical solution of the kinetic equation yields the distribution function of radiation quanta in space, time, and wave vector. Simulations verify the convergence, accuracy, and speed of the methods used to treat each term in the equation. The simulations also illustrate the main physical effects and place the results in a form that can be used in future applications.

  15. Advanced simulations of optical transition and diffraction radiation

    NASA Astrophysics Data System (ADS)

    Aumeyr, T.; Billing, M. G.; Bobb, L. M.; Bolzon, B.; Bravin, E.; Karataev, P.; Kruchinin, K.; Lefevre, T.; Mazzoni, S.

    2015-04-01

    Charged particle beam diagnostics is a key task in modern and future accelerator installations. The diagnostic tools are practically the "eyes" of the operators. The precision and resolution of the diagnostic equipment are crucial to define the performance of the accelerator. Transition and diffraction radiation (TR and DR) are widely used for electron beam parameter monitoring. However, the precision and resolution of those devices are determined by how well the production, transport and detection of these radiation types are understood. This paper reports on simulations of TR and DR spatial-spectral characteristics using the physical optics propagation (POP) mode of the Zemax advanced optics simulation software. A good consistency with theory is demonstrated. Also, realistic optical system alignment issues are discussed.

  16. INVESTIGATING THE RELIABILITY OF CORONAL EMISSION MEASURE DISTRIBUTION DIAGNOSTICS USING THREE-DIMENSIONAL RADIATIVE MAGNETOHYDRODYNAMIC SIMULATIONS

    SciTech Connect

    Testa, Paola; De Pontieu, Bart; Martinez-Sykora, Juan; Hansteen, Viggo; Carlsson, Mats

    2012-10-10

    Determining the temperature distribution of coronal plasmas can provide stringent constraints on coronal heating. Current observations with the Extreme ultraviolet Imaging Spectrograph (EIS) on board Hinode and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory provide diagnostics of the emission measure distribution (EMD) of the coronal plasma. Here we test the reliability of temperature diagnostics using three-dimensional radiative MHD simulations. We produce synthetic observables from the models and apply the Monte Carlo Markov chain EMD diagnostic. By comparing the derived EMDs with the 'true' distributions from the model, we assess the limitations of the diagnostics as a function of the plasma parameters and the signal-to-noise ratio of the data. We find that EMDs derived from EIS synthetic data reproduce some general characteristics of the true distributions, but usually show differences from the true EMDs that are much larger than the estimated uncertainties suggest, especially when structures with significantly different density overlap along the line of sight. When using AIA synthetic data the derived EMDs reproduce the true EMDs much less accurately, especially for broad EMDs. The differences between the two instruments are due to the: (1) smaller number of constraints provided by AIA data and (2) broad temperature response function of the AIA channels which provide looser constraints to the temperature distribution. Our results suggest that EMDs derived from current observatories may often show significant discrepancies from the true EMDs, rendering their interpretation fraught with uncertainty. These inherent limitations to the method should be carefully considered when using these distributions to constrain coronal heating.

  17. Reduced Extended MHD

    NASA Astrophysics Data System (ADS)

    Morrison, P. J.; Abdelhamid, H. M.; Grasso, D.; Hazeltine, R. D.; Lingam, M.; Tassi, E.

    2015-11-01

    Over the years various reduced fluid models have been obtained for modeling plasmas, with the goal of capturing important physics while maintaining computability. Such models have included the physics contained in various generalizations of Ohm's law, including Hall drift and electron inertia. In a recent publication it was shown that full 3D extended MHD is a Hamiltonian system by finding its noncanonical Poisson bracket. Subsequently, this bracket was shown to be derivable from that for Hall MHD by a series of remarkable transformations, which greatly simplifies the proof of the Jacobi identity and allows one to immediately obtain generalizations of the helicity and cross helicity. In this poster we use this structure to obtain exact reduced fluid models with the effects of full two-fluid theory. Results of numerical computations of collisionless reconnection using an exact reduced 4-field model will be presented and analytical comparisons of mode structure of previous reduced models will be made.

  18. MHD performance demonstration experiment, FY 1974 to FY 1984

    NASA Astrophysics Data System (ADS)

    Whitehead, G. L.; Christensen, L. S.; Felderman, R. J.

    1984-06-01

    A national program for the development of commercial, open-cycle, magnetohydrodynamic (MHD) power generation is described. The emphasis of that national program was, and is, on establishing the engineering feasibilty of using coal to fuel the MHD power system. In order to establish feasibility it was necessary to experimentally demonstrate that an MHD generator system simulating a commercial-sized device can convert 16 to 18% of the available thermal energy into electric power at an isentropic efficiency of 60 to 70%. A presidential decree encouraged any government agency which might possess an organic MHD capability to assist ERDA in formulating and executing the national program. Since the largest MHD facility in the United States was located at the Arnold Engineering Development Center (AEDC), it was selected to be the national program element to demonstrate performance. As a result, the AEDC has been under contract since December 1973 (first to ERDA, later to its successor, the department of Energy, DOE) to modify existing equipment and to design, fabricate, and install new hardware to perform the MHD Performance Demonstration Experiment. The MHD facility is described and all results achieved to date are summarized.

  19. Simulation of Relativistic Shocks and Associated Self-consistent Radiation

    SciTech Connect

    Nishikawa, K.-I.; Mizuno, Y.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Nordlund, A ring .; Frederiksen, J.; Sol, H.; Pohl, M.; Fishman, G. J.

    2010-10-15

    We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify our technique. We also used our new technique to calculate emission from electrons in small simulation systems with three different Lorentz factors and ambient parallel magnetic fields. We obtained spectra which are consistent with those generated by electrons propagating in turbulent magnetic fields, that are generated at an early nonlinear stage of the Weibel instability.

  20. Radiation effects control: Eyes, skin. [space environment simulation

    NASA Technical Reports Server (NTRS)

    Hightower, D.; Smathers, J. B.

    1974-01-01

    Adverse effects on the lens of the eye and the skin due to exposure to proton radiation during manned space flight were evaluated. Actual proton irradiation which might be encountered in space was simulated. Irradiation regimes included single acute exposures, daily fractionated exposures, and weekly fractionated exposures. Animals were exposed and then maintained and examined periodically until data sufficient to meet the objective were obtained. No significant skin effects were noted and no serious sight impairment was exhibited.

  1. Simulation and Comparison of Martian Surface Ionization Radiation

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Zeitlin, Cary; Hassler, Donald M.; Cucinotta, Francis A.

    2013-01-01

    The spectrum of energetic particle radiation and corresponding doses at the surface of Mars is being characterized by the Radiation Assessment Detector (RAD), one of ten science instruments on the Mars Science Laboratory (MSL) Curiosity Rover. The time series of dose rate for the first 300 Sols after landing on Mars on August 6, 2012 is presented here. For the comparison to RAD measurements of dose rate, Martian surface ionization radiation is simulated by utilizing observed space quantities. The GCR primary radiation spectrum is calculated by using the Badhwar-O'Neill 2011 (BO11) galactic cosmic ray (GCR) model, which has been developed by utilizing all balloon and satellite GCR measurements since 1955 and the newer 1997-2012 Advanced Composition Explorer (ACE) measurements. In the BO11 model, solar modulation of the GCR primary radiation spectrum is described in terms of the international smoothed sunspot number and a time delay function. For the transport of the impingent GCR primary radiation through Mars atmosphere, a vertical distribution of atmospheric thickness at each elevation is calculated using the vertical profiles of atmospheric temperature and pressure made by Mars Global Surveyor measurements. At Gale Crater in the southern hemisphere, the seasonal variation of atmospheric thickness is accounted for the daily atmospheric pressure measurements of the MSL Rover Environmental Monitoring Station (REMS) by using low- and high-density models for cool- and warm-season, respectively. The spherically distributed atmospheric distance is traced along the slant path, and the resultant directional shielding by Martian atmosphere is coupled with Curiosity vehicle for dose estimates. We present predictions of dose rate and comparison to the RAD measurements. The simulation agrees to within +/- 20% with the RAD measurements showing clearly the variation of dose rate by heliospheric conditions, and presenting the sensitivity of dose rate by atmospheric pressure

  2. Coupled Radiative-Dynamical GCM Simulations of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Showman, Adam P.; Fortney, J. J.; Lian, Y.; Marley, M. S.

    2007-10-01

    The stellar flux incident on hot Jupiters is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared lightcurve, spectra, albedo, and atmospheric composition. Recent Spitzer lightcurve observations show that on some hot Jupiters, including HD189733b and HD209458b, the circulation efficiently homogenizes the temperature, whereas other planets such as Ups And b may exhibit large day-night temperature differences. Moreover, Spitzer infrared photometry and spectra constrain the vertical temperature structure in the atmosphere, which may deviate strongly from radiative equilibrium. Several groups have investigated the atmospheric circulation with a variety of 2D and 3D models (Showman and Guillot 2002; Cho et al. 2003, 2006; Langton and Laughlin 2007; Cooper and Showman 2005, 2006; Dobbs-Dixon and Lin 2007). However, all of these models drive the dynamics with simplified heating/cooling schemes that preclude robust predictions for the 3D temperature patterns, spectra, and lightcurves. Here, we present the first simulations of cloud-free hot Jupiters from a 3D general circulation model (GCM) that couples the atmospheric dynamics to a realistic representation of radiative transfer. For the dynamics, we adopt the MITgcm, which is a state-of-the-art circulation model that solves the 3D primitive equations of meteorology. Our radiation model is that of Marley and McKay (1999), which solves the two-stream radiative-transfer equations using the correlated-k method for the opacities; this radiative-transfer model has been extensively applied to brown dwarfs and extrasolar planets by Marley, Fortney, and collaborators. By coupling these components, the GCM provides a much more realistic representation of the radiative-dynamical interaction than possible with previous models. Here, we will present simulations of HD209458b and HD189733b, compare the predicted temperatures, spectra, and lightcurves with existing data, and make

  3. GEANT4 simulation of APEX background radiation and shielding

    NASA Astrophysics Data System (ADS)

    Kaluarachchi, Maduka M.; Cates, Gordon D.; Wojtsekhowski, B.

    2015-04-01

    The A' Experiment (APEX), which is approved to run at the Thomas Jefferson National Accelerator Facility (JLab) Hall A, will search for a new vector boson that is hypothesized to be a possible force carrier that couples to dark matter. APEX results should be sensitive to the mass range of 65 MeV to 550 MeV, and high sensitivity will be achieved by means of a high intensity 100 μA beam on a 0.5 g/cm2 Tungsten target resulting in very high luminosity. The experiment should be able to observe the A ' with a coupling constant α ' ~ 1 × 107 times smaller than the electromagnetic coupling constant α. To deal safely with such enormous intensity and luminosity, a full radiation analysis must be used to help with the design of proper radiation shielding. The purpose of this talk is to present preliminary results obtained by simulating radiation background from the APEX experiment using the 3D Monte-Carlo transport code Geant4. Included in the simulation is a detailed Hall A setup: the hall, spectrometers and shield house, beam dump, beam line, septa magnet with its field, as well as the production target. The results were compared to the APEX test run data and used in development of the radiation shielding for sensitive electronics.

  4. Collisional-radiative simulations of a supersonic and radiatively cooled aluminum plasma jet

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Gil, J. M.; Rodriguez, R.; Rubiano, J. G.; Mendoza, M. A.; Martel, P.; Minguez, E.; Suzuki-Vidal, F.; Lebedev, S. V.; Swadling, G. F.; Burdiak, G.; Pickworth, L. A.; Skidmore, J.

    2015-12-01

    A computational investigation based on collisional-radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet.

  5. Solar wind Mars interaction during the MAVEN Deep Dip campaigns: multi-fluid MHD simulations based upon the SWIA, NGIMS and MAG measurements

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei; Bougher, Stephen W.; Ma, Yingjuan; Toth, Gabor; Curry, Shannon M.; Nagy, Andrew F.; Halekas, Jasper S.; Luhmann, Janet G.; Mahaffy, Paul; Benna, Mehdi; Connerney, Jack E. P.; Espley, Jared; Mitchell, David L.; Brain, David A.; Jakosky, Bruce M.

    2015-11-01

    The 3-D Mars multi-fluid Block Adaptive Tree Solar-wind Roe Upwind Scheme (BATS-R-US) MHD code is used to study the solar wind interaction with the Martian upper atmosphere during the MAVEN Deep Dip campaigns. MAVEN made the first comprehensive measurements of Martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 km in the subsolar region during the second of its Deep Dip campaigns. MAVEN will start its fourth Deep Dip campaign this September and a large quantity of useful data will be returned for this study as well. In this study we adopt the MAVEN measurements as the multi-fluid MHD inputs. The estimated solar wind density and velocity, the estimated interplanetary magnetic field (IMF), and the exactly measured neutral atmosphere profile are taken from the SWIA, MAG and NGIMS instruments, respectively. We will compare the calculated ionosphere ion profiles with the NGIMS measurements. In the meantime, we will show the calculations of the global ion escape rates based upon actual measured neutral atmosphere profiles during the MAVEN Deep Dip campaigns.

  6. Simulation and analysis of airborne antenna radiation patterns

    NASA Technical Reports Server (NTRS)

    Kim, J. J.; Burnside, Walter D.

    1984-01-01

    The objective is to develop an accurate and efficient analytic solution for predicting high frequency radiation patterns of fuselage-mounted airborne antennas. This is an analytic study of airborne antenna patterns using the Uniform Geometrical Theory of Diffraction (UTD). The aircraft is modeled in its most basic form so that the solution is applicable to general-type aircraft. The fuselage is modeled as a perfectly conducting composite ellipsoid; whereas, the wings, stabilizers, nose, fuel tanks, and engines, are simulated as perfectly conducting flat plates that can be attached to the fuselage and/or to each other. The composite-ellipsoid fuselage model is necessary to successfully simulate the wide variety of real world fuselage shapes. Since the antenna is mounted on the fuselage, it has a dominant effect on the resulting radiation pattern so it must be simulated accurately, especially near the antenna. Various radiation patterns are calculated for commercial, private, and military aircraft, and the Space Shuttle Orbiter. The application of this solution to numerous practical airborne antenna problems illustrates its versatility and design capability. In most cases, the solution accuracy is verified by the comparisons between the calculated and measured data.

  7. Numerical study of 1-D, 3-vector component, thermally-conductive MHD solar wind

    NASA Technical Reports Server (NTRS)

    Han, S.; Wu, S. T.; Dryer, M.

    1993-01-01

    In the present study, transient, 1-dimensional, 3-vector component MHD equations are used to simulate steady and unsteady, thermally conductive MHD solar wind expansions between the solar surface and 1 AU (astronomical unit). A variant of SIMPLE numerical method was used to integrate the equations. Steady state solar wind properties exhibit qualitatively similar behavior with the known Weber-Davies Solutions. Generation of Alfven shock, in addition to the slow and fast MHD shocks, was attempted by the boundary perturbations at the solar surface. Property changes through the disturbance were positively correlated with the fast and slow MHD shocks. Alfven shock was, however, not present in the present simulations.

  8. Kinetic-MHD hybrid equilibrium model using a Monte-Carlo calculation of runaway electron distribution function

    NASA Astrophysics Data System (ADS)

    Matsuyama, Akinobu; Aiba, Nobuyuki; Yagi, Masatoshi

    2015-11-01

    An axisymmetric MHD equilibrium model is studied to allow the inclusion of both beam inertia and energy spectrum for runaway electron beam. Following kinetic-MHD hybrid approach, we evaluate the RE beam current from the integrals of the RE distribution function. The distribution function is here evaluated by a relativistic guiding-center trace code ETC-Rel, where we have implemented the effects of collisions, radiations, and exponential growth into the code. Because to directly treat the Dreicer mechanism in particle simulations is time consuming, the primary RE source is modeled by a Monte-Carlo weighing scheme taking into account the instantaneous generation rate. This paper applies ETC-Rel to the parametric study of the MHD equilibrium with different RE beam parameters. Kinetic effects on the MHD equilibrium appears, e.g., as enhanced Shafranov shifts due to the inertia of highly relativistic electrons. A kinetic modification to the equilibrium becomes significant if the contribution of the beam inertia - being increased with the total electron mass of multi-MeV RE populations - becomes large enough to affect the radial force balance. This work was supported in part by MEXT KAKENHI Grant No. 23561009 and 26820404.

  9. Immersed boundary method for the MHD flows of liquid metals

    NASA Astrophysics Data System (ADS)

    Grigoriadis, D. G. E.; Kassinos, S. C.; Votyakov, E. V.

    2009-02-01

    Wall-bounded magnetohydrodynamic (MHD hereafter) flows are of great theoretical and practical interest. Even for laminar cases, MHD simulations are associated with very high computational cost due to the resolution requirements for the Hartmann and side layers developing in the presence of solid obstacles. In the presence of turbulence, these difficulties are further compounded. Thus, MHD simulations in complex geometries are currently a challenge. The immersed boundary (IB hereafter) method is a reliable numerical tool for efficient hydrodynamic field simulations in arbitrarily geometries, but it has not yet been extended for MHD simulations. The present study forms the first attempt to apply the IB methodology for the computation of both the hydrodynamic and MHD fields. A consistent numerical methodology is presented that is appropriate for efficient 3D MHD simulations in geometrically complicated domains using cartesian flow solvers. For that purpose, a projection scheme for the electric current density is presented, based on an electric potential correction algorithm. A suitable forcing scheme for electric density currents in the vicinity of non-conducting immersed surfaces is also proposed. The proposed methodology has been first extensively tested for Hartmann layers in fully-developed and developing channel and duct flows at Hartmann numbers Ha=500-2000. In order to demonstrate the potential of the method, the three-dimensional MHD flow around a circular cylinder at Reynolds number Re=200 is also presented. The effects of grid resolution and variable arrangement on the simulation accuracy and consistency were examined. When compared with existing numerical or analytic solutions, excellent agreement was found for all the cases considered. The proposed projection and forcing schemes for current densities were found capable of satisfying the charge conservation law in the presence of immersed non-conducting boundaries. Finally, we show how the proposed

  10. Radiation magnetohydrodynamic simulations of protostellar collapse: Low-metallicity environments

    SciTech Connect

    Tomida, Kengo

    2014-05-10

    Among many physical processes involved in star formation, radiation transfer is one of the key processes because it dominantly controls the thermodynamics. Because metallicities control opacities, they are one of the important environmental parameters that affect star formation processes. In this work, I investigate protostellar collapse in solar-metallicity and low-metallicity (Z = 0.1 Z {sub ☉}) environments using three-dimensional radiation hydrodynamic and magnetohydrodynamic simulations. Because radiation cooling in high-density gas is more effective in low-metallicity environments, first cores are colder and have lower entropies. As a result, first cores are smaller, less massive, and have shorter lifetimes in low-metallicity clouds. Therefore, first cores would be less likely to be found in low-metallicity star forming clouds. This also implies that first cores tend to be more gravitationally unstable and susceptible to fragmentation. The evolution and structure of protostellar cores formed after the second collapse weakly depend on metallicities in the spherical and magnetized models, despite the large difference in the metallicities. Because this is due to the change of the heat capacity by dissociation and ionization of hydrogen, it is a general consequence of the second collapse as long as the effects of radiation cooling are not very large during the second collapse. On the other hand, the effects of different metallicities are more significant in the rotating models without magnetic fields, because they evolve slower than other models and therefore are more affected by radiation cooling.

  11. Symmetry, Statistics and Structure in MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Here, we examine homogeneous MHD turbulence in terms of truncated Fourier series. The ideal MHD equations and the associated statistical theory of absolute equilibrium ensembles are symmetric under P, C and T. However, the presence of invariant helicities, which are pseudoscalars under P and C, dynamically breaks this symmetry. This occurs because the surface of constant energy in phase space has disjoint parts, called components: while ensemble averages are taken over all components, a dynamical phase trajectory is confined to only one component. As the Birkhoff-Khinchin theorem tells us, ideal MHD turbulence is thus non-ergodic. This non-ergodicity manifests itself in low-wave number Fourier modes that have large mean values (while absolute ensemble theory predicts mean values of zero). Therefore, we have coherent structure in ideal MHD turbulence. The level of non-ergodicity and amount of energy contained in the associated coherent structure depends on the values of the helicities, as well as on the presence, or not, of a mean magnetic field and/or overall rotation. In addition to the well known cross and magnetic helicities, we also present a new invariant, which we call the parallel helicity, since it occurs when mean field and rotation axis are aligned. The question of applicability of these results to real (i.e., dissipative) MHD turbulence is also examined. Several long-time numerical simulations on a 64(exp 3) grid are given as examples. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection of these results with inverse spectral cascades, selective decay, and magnetic dynamos is also discussed.

  12. Helium Reionization Simulations. I. Modeling Quasars as Radiation Sources

    NASA Astrophysics Data System (ADS)

    La Plante, Paul; Trac, Hy

    2016-09-01

    We introduce a new project to understand helium reionization using fully coupled N-body, hydrodynamics, and radiative transfer simulations. This project aims to capture correctly the thermal history of the intergalactic medium as a result of reionization and make predictions about the Lyα forest and baryon temperature–density relation. The dominant sources of radiation for this transition are quasars, so modeling the source population accurately is very important for making reliable predictions. In this first paper, we present a new method for populating dark matter halos with quasars. Our set of quasar models includes two different light curves, a lightbulb (simple on/off) and symmetric exponential model, and luminosity-dependent quasar lifetimes. Our method self-consistently reproduces an input quasar luminosity function given a halo catalog from an N-body simulation, and propagates quasars through the merger history of halo hosts. After calibrating quasar clustering using measurements from the Baryon Oscillation Spectroscopic Survey, we find that the characteristic mass of quasar hosts is {M}h∼ 2.5× {10}12 {h}-1 {M}ȯ for the lightbulb model, and {M}h∼ 2.3× {10}12 {h}-1 {M}ȯ for the exponential model. In the latter model, the peak quasar luminosity for a given halo mass is larger than that in the former, typically by a factor of 1.5–2. The effective lifetime for quasars in the lightbulb model is 59 Myr, and in the exponential case, the effective time constant is about 15 Myr. We include semi-analytic calculations of helium reionization, and discuss how to include these quasars as sources of ionizing radiation for full hydrodynamics with radiative transfer simulations in order to study helium reionization.

  13. A Radiation Transfer Solver for Athena Using Short Characteristics

    NASA Astrophysics Data System (ADS)

    Davis, Shane W.; Stone, James M.; Jiang, Yan-Fei

    2012-03-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.

  14. A RADIATION TRANSFER SOLVER FOR ATHENA USING SHORT CHARACTERISTICS

    SciTech Connect

    Davis, Shane W.; Stone, James M.; Jiang Yanfei

    2012-03-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.

  15. Some effects of MHD activity on impurity transport in the PBX tokamak

    SciTech Connect

    Ida, K.; Fonck, R.J.; Hulse, R.A.; LeBlanc, B.

    1985-10-01

    The effects of MHD activity on intrinsic impurity transport are studied in ohmic discharges of the Princeton Beta Experiment (PBX) by measuring of the Z/sub eff/ profile from visible bremsstrahlung radiation and the spectral line intensities from ultraviolet spectroscopy. A diffusive/convective transport model, including an internal disruption model, is used to simulate the data. The Z/sub eff/ profile with no MHD activity is fitted with a strong inward convection, characterized by a peaking parameter c/sub v/ (= -a/sup 2/v/2rD) = 11 (3.5, +4.5). At the onset of MHD activity (a large m = 1 n = 1 oscillation followed by sawteeth), this strongly peaked profile is flattened and subsequently reaches a new quasi-equilibrium shape. This profile is characterized by reduced convection (c/sub v/ = 3.6 (-1.1, +1.6), D = 1.4 (-0.7, +5.6) x 10/sup 4/ cm/sup 2//s), in addition to the particle redistribution which accompanies the sawtooth internal disruptions. 10 figs.

  16. Numerical MHD Simulation of the Coupled Evolution of Plasma and Magnetic Field in the Solar Chromosphere. I. Gradual and Impulsive Energisation

    NASA Astrophysics Data System (ADS)

    Alekseeva, L. M.; Kshevetskii, S. P.

    2015-11-01

    The dynamical coupling between solar chromospheric plasma and the magnetic field is investigated by numerically solving a fully self-consistent, two-dimensional initial-value problem for the nonlinear collisional MHD equations including electric resistivity, thermal conduction, and, in some cases, gas-dynamic viscosity. The processes in the contact zone between two horizontal magnetic fields of opposite polarities are considered. The plasma is assumed to be initially motionless and to have a temperature of 50,000 K uniform throughout the plasma volume; the characteristic magnetic field corresponds to a plasma β≳ 1. In a physical time interval of 17 seconds typically covered by a computational run, the plasma temperature gradually increases by a factor of two to three. Against this background, an impulsive (in 0.1 seconds or less) increase in the current-aligned plasma velocity occurs at the site of the current-layer thinning (sausage-type deformation, or m=0 pinch instability). This velocity burst can be interpreted physically as an event of suprathermal-proton generation. Further development of the sausage instability results in an increase in the kinetic temperature of the protons to high values, even to those observed in flares. The form of our system of MHD equations indicates that this kind of increase is a property of the exact solution of the system for an appropriate choice of parameters. Magnetic reconnection does not manifest itself in this solution: it would generate flows forbidden by the chosen geometry. Therefore, the pinch-sausage effect can act as an energiser of the upper chromosphere and be an alternative to the magnetic-reconnection process as the producer of flares.

  17. Requirements for Simulating Space Radiation With Particle Accelerators

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Cucinotta, F.; Kim, M-H Y.

    2004-01-01

    Interplanetary space radiation consists of fully ionized nuclei of atomic elements with high energy for which only the few lowest energy ions can be stopped in shielding materials. The health risk from exposure to these ions and their secondary radiations generated in the materials of spacecraft and planetary surface enclosures is a major limiting factor in the management of space radiation risk. Accurate risk prediction depends on a knowledge of basic radiobiological mechanisms and how they are modified in the living tissues of a whole organism. To a large extent, this knowledge is not currently available. It is best developed at ground-based laboratories, using particle accelerator beams to simulate the components of space radiation. Different particles, in different energy regions, are required to study different biological effects, including beams of argon and iron nuclei in the energy range 600 to several thousand MeV/nucleon and carbon beams in the energy range of approximately 100 MeV/nucleon to approximately 1000 MeV/nucleon. Three facilities, one each in the United States, in Germany and in Japan, currently have the partial capability to satisfy these constraints. A facility has been proposed using the Brookhaven National Laboratory Booster Synchrotron in the United States; in conjunction with other on-site accelerators, it will be able to provide the full range of heavy ion beams and energies required. International cooperation in the use of these facilities is essential to the development of a safe international space program.

  18. Global simulation of chemistry and radiative forcing of mineral aerosols

    SciTech Connect

    Zhang, Yang; Easter, R.C.; Ghan, S.J.; Leung, L.R.

    1996-12-31

    Mineral aerosols are increasingly gaining attention because of their roles in atmospheric chemistry and climate system. A global three-dimensional aerosol/chemistry model (GChM) coupled with a general circulation model (GCM) is used to simulate the sources/sinks, chemistry and radiative forcing of mineral aerosols. Regional and seasonal variations in distribution of mineral aerosols are predicted based on vegetation types, threshold wind velocities and soil moisture data. The role of mineral aerosols as a reactive surface available for heterogeneous uptake of gas-phase species in the global atmosphere is investigated along with their impact on the tropospheric sulfur cycle and the photochemical oxidant cycle. In particular, the heterogeneous surface reactions of SO{sub 2}, H{sub 2}SO{sub 4}, NO{sub 3}, N{sub 2}O{sub 5}, HNO{sub 3}, O{sub 3}, OH, HO{sub 2}, H{sub 2}O{sub 2} and CH{sub 3}O{sub 2} on mineral aerosols are simulated. The direct radiative forcing by mineral aerosols and the indirect forcing through influencing droplet number concentration are further estimated. The model simulation results are analyzed and compared against the available observational data.

  19. Output from MHD Models

    NASA Astrophysics Data System (ADS)

    Vlahakis, Nektarios

    2010-03-01

    Outflows emanating from the environment of stellar or galactic objects are a widespread phenomenon in astrophysics. Their morphology ranges from nearly spherically symmetric winds to highly collimated jets. In some cases, e.g., in jets associated with young stellar objects, the bulk outflow speeds are nonrelativistic, while in others, e.g., in jets associated with active galactic nuclei or gamma-ray bursts, it can even be highly relativistic. The main driving mechanism of collimated outflows is likely related to magnetic fields. These fields are able to tap the rotational energy of the compact object or disk, accelerate, and collimate matter ejecta. To zeroth order these outflows can be described by the highly intractable theory of magnetohydrodynamics (MHD). Even in systems where the assumptions of zero resistivity (ideal MHD), steady state, axisymmetry, one fluid description, and polytropic equation of state are applicable, the problem remains difficult. In this case the problem reduces to only two equations, corresponding to the two components of the momentum equation along the flow and in the direction perpendicular to the magnetic field (transfield direction). The latter equation is the most difficult to solve, but also the most important. It answers the question on the degree of the collimation, but also crucially affects the solution of the first, the acceleration efficiency and the bulk velocity of the flow. The first and second parts of this chapter refer to nonrelativistic and relativistic flows, respectively. These Parts can be read independently. In each one, the governing equations are presented and discussed, focusing on the case of flows that are magnetically dominated near the central source. The general characteristics of the solutions in relation to the acceleration and collimation mechanisms are analyzed. As specific examples of exact solutions of the full system of the MHD equations that satisfy all the analyzed general characteristics, self

  20. Simulations of a molecular plasma in collisional-radiative nonequilibrium

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc; Moreau, Stephane

    1993-01-01

    A code for the simulation of nonequilibrium plasmas is being developed, with the capability to couple the plasma fluid-dynamics for a single fluid with a collisional-radiative model, where electronic states are treated as separate species. The model allows for non-Boltzmann distribution of the electronic states. Deviations from the Boltzmann distributions are expected to occur in the rapidly ionizing regime behind a strong shock or in the recombining regime during a fast expansion. This additional step in modeling complexity is expected to yield more accurate predictions of the nonequilibrium state and the radiation spectrum and intensity. An attempt at extending the code to molecular plasma flows is presented. The numerical techniques used, the thermochemical model, and the results of some numerical tests are described.

  1. Simulation of Relativistic Shocks and Associated Self-Consistent Radiation

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, J. F.

    2010-01-01

    Plasma instabilities excited in collisionless shocks are responsible for particle acceleration. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection behind the shock. We calculate the radiation from deflected electrons in the turbulent magnetic fields. The properties of this radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.

  2. Fully implicit adaptive mesh refinement MHD algorithm

    NASA Astrophysics Data System (ADS)

    Philip, Bobby

    2005-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.

  3. General Relativistic MHD Models of Sgr A* and M87

    NASA Astrophysics Data System (ADS)

    Dexter, Jason

    2011-01-01

    Ongoing high resolution observations of the Galactic center black hole provide a direct probe of the structure of its accretion flow (Sgr A*) on event-horizon scales. Due to its low luminosity, this source is uniquely suitable for modeling with relativistic MHD simulations. We perform time-dependent, relativistic radiative transfer on 3D simulation data to compute images and light curves of Sgr A* at millimeter wavelengths. Fitting the images to observations allows us to constrain the parameters of the accretion flow and black hole. Simulations with misaligned angular momentum and black hole spin axes ("tilted") are also considered. Due to the precession of these accretion flows, the inferred best fit parameters should appear to change on week timescales if Sgr A* is tilted. Light curves from all simulations exhibit flaring behavior consistent with the observations. The black hole shadow, a signature of the event horizon, is visible in all best fit models and may be detected in the next 5-10 years. Preliminary results from similar models of M87 are also discussed.

  4. Regular shock refraction in planar ideal MHD

    NASA Astrophysics Data System (ADS)

    Delmont, P.; Keppens, R.

    2010-03-01

    We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest, in planar ideal (magneto)hydrodynamics. In the hydrodynamical case, 3 signals arise and the interface becomes Richtmyer-Meshkov unstable due to vorticity deposition on the shocked contact. In the magnetohydrodynamical case, on the other hand, when the normal component of the magnetic field does not vanish, 5 signals will arise. The interface then typically remains stable, since the Rankine-Hugoniot jump conditions in ideal MHD do not allow for vorticity deposition on a contact discontinuity. We present an exact Riemann solver based solution strategy to describe the initial self similar refraction phase. Using grid-adaptive MHD simulations, we show that after reflection from the top wall, the interface remains stable.

  5. MHD shocks in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1991-01-01

    The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).

  6. Hyperbolic Divergence Cleaning for the MHD Equations

    NASA Astrophysics Data System (ADS)

    Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M.

    2002-01-01

    In simulations of magnetohydrodynamic (MHD) processes the violation of the divergence constraint causes severe stability problems. In this paper we develop and test a new approach to the stabilization of numerical schemes. Our technique can be easily implemented in any existing code since there is no need to modify the solver for the MHD equations. It is based on a modified system in which the divergence constraint is coupled with the conservation laws by introducing a generalized Lagrange multiplier. We suggest a formulation in which the divergence errors are transported to the domain boundaries with the maximal admissible speed and are damped at the same time. This corrected system is hyperbolic and the density, momentum, magnetic induction, and total energy density are still conserved. In comparison to results obtained without correction or with the standard “divergence source terms,” our approach seems to yield more robust schemes with significantly smaller divergence errors.

  7. Analytical investigation of critical MHD phenomena

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Development and analysis of schemes for suppression of the startup overvoltage transient in the AEDC High Performance Demonstration Experiment (HPDE), analysis of performance enhancement due to electrode voltage drop reduction by use of pyrolytic graphites in the HPDE, prediction of optimal loading schemes for the HPDE, prediction of PHDE performance with a diagonal electrical connection, and predictions of the likelihood and effects of axial current leakage between adjacent electrodes in the HPDE are reviewed. Simulations of tests at the AEDC/HPDE with STD Research Corporation multidimensional and time dependent computer codes provided additional validation for the computer codes and shed light on physical mechanisms which govern performance and durability of MHD power generators. The magnetoaerothermal effect was predicted by STD Research Corporation to have a significant effect on the HPDE/MHD generator performance at high interaction.

  8. Commercialization of MHD power technology

    SciTech Connect

    Aleman, D.J.; Jensen, A.D.; Probert, P.B.

    1984-08-01

    This paper presents an approach to the commercialization of Magnetohydrodynamics (MHD) technology from the perspective of an equipment manufacturer. It discusses and recommends actions to be taken in solving technical problems and mitigating risk for the first commercial MHD power plant.

  9. Daily radiation model for use in the simulation of passive solar buildings

    SciTech Connect

    Sillman, S.; Wortman, D.

    1981-04-01

    A model is presented to characterize solar radiation with just three input parameters for each day. This compressed daily radiation data may be used in place of hourly data in simulations of passive solar buildings. This method is tested with the SUNCAT passive simulation. Global horizontal and direct normal radiation data are input using the compressed daily form instead of by hour. Simulation results are found to be comparable to results based on hourly radiation data.

  10. Variability of surface solar radiation in unforced CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Folini, Doris; Wild, Martin

    2016-04-01

    We examine the natural variability of surface solar radiation (SSR) under pre-industrial conditions with time-invariant forcing in control runs in global climate simulations of the latest coupled model intercomparison project, CMIP5. We consider global and regional scales, as well as annual and seasonal data. Special emphasis is given to the likelihood of spurious SSR trends. To address this question, we determine for each model the range of linear SSR trends as function of the number of years over which the trend is taken. We discuss our findings with regard to potential aerosol induced dimming and its detectability in the second half of the 20th century.

  11. Radiation chemistry in the Jovian stratosphere - Laboratory simulations

    NASA Technical Reports Server (NTRS)

    Mcdonald, Gene D.; Thompson, W. R.; Sagan, Carl

    1992-01-01

    The results of the present low-pressure/continuous-flow laboratory simulations of H2/He/CH4/NH3 atmospheres' plasma-induced chemistry indicate radiation yields of both hydrocarbon and N2-containing organic compounds which increase with decreasing pressure. On the basis of these findings, upper limits of 1 million-1 billion molecules/sq cm/sec are established for production rates of major auroral-chemistry species in the Jovian stratosphere. It is noted that auroral processes may account for 10-100 percent of the total abundances of most of the observed polar-region organic species.

  12. MHD conversion of solar energy. [space electric power system

    NASA Technical Reports Server (NTRS)

    Lau, C. V.; Decher, R.

    1978-01-01

    Low temperature plasmas wherein an alkali metal vapor is a component are uniquely suited to simultaneously absorb solar radiation by coupling to the resonance lines and produce electrical power by the MHD interaction. This work is an examination of the possibility of developing space power systems which take advantage of concentrated solar power to produce electricity. It is shown that efficient cycles in which expansion work takes place at nearly constant top cycle temperature can be devised. The power density of the solar MHD generator is lower than that of conventional MHD generators because of the relatively high seed concentration required for radiation absorption and the lower flow velocity permitted to avoid total pressure losses due to heating.

  13. Kinetic parameters of uracil dosimeter in simulated extraterrestrial UV radiation

    NASA Astrophysics Data System (ADS)

    Kovács, G.; Gróf, P.; Bérces, A.; Patel, M. R.; Lammer, H.; Rontó, Gy.

    Studies of the solar UV environment on Earth 2.0 Gyr to 3.8 Gyr ago suggest that the terrestrial atmosphere was essentially anoxic, resulting in an ozone column abundance insufficient for protecting the planetary surface in the UV-B (280 nm - 315 nm) and the UV-C (200 nm - 280 nm) ranges. Since, short wavelength solar UV radiation in the UV-B and UV-C range penetrated through the atmosphere to the unprotected early Earth's surface, associated biological consequences may be expected. We discuss experimental data obtained as follows: Radiation sources applied were solar simulator and high power deuterium lamp, the wavelength were adjusted by interference filters (210, 230, 250 nm) and the irradiances were measured by OL754 spectroradiometer. The photo-reverse effect depends highly on the wavelength of the exposed radiation. Shorter wavelength UV radiation of about 200 nm is strongly effective in monomerization, while the longer wavelengths prefer the production of dimerization. In case of polychromatic light, like in space or on a planetary surface which is unprotected by an ozone layer the two processes run parallel. We could demonstrate experimentally, for the case of a uracil thin-layer that the photo-reaction process of the nucleotides can be both dimerization and the reverse process: monomerization. These results are important for the study of solar UV effects on organisms in the early terrestrial environment as well as for the search for life on Mars since we can show that biological harmful effects can also be reduced by shorter wavelength UV radiation, which is of importance in reducing DNA damages provoked by wavelengths longer than about 240 nm. Our earlier results showed that dimerization of the pyrimidin base uracil can be described by a first order kinetics, and this reaction gives the possibility to determine the dose of the UV source applied. This work is a theoretical and experimental approach to the relevant parameters of the first order kinetics.

  14. Cometary MHD and chemistry

    NASA Technical Reports Server (NTRS)

    Wegmann, R.; Schmidt, H. U.; Huebner, W. F.; Boice, D. C.

    1987-01-01

    An MHD and chemical comet-coma model was developed, applying the computer program of Huebner (1985) for the detailed chemical evolution of a spherically expanding coma and the program of Schmidt and Wegman (1982) and Wegman (1987) for the MHD flow of plasma and magnetic field in a comet to the Giotto-mission data on the ion abundances measured by the HIS ion mass spectrometer. The physics and chemistry of the coma are modeled in great detail, including photoprocesses, gas-phase chemical kinetics, energy balance with a separate electron temperature, multifluid hydrodynamics with a transition to free molecular flow, fast-streaming atomic and molecular hydrogen, counter and cross streaming of the ionized species relative to the neutral species in the coma-solar wind interaction region with momentum exchange by elastic collisions, mass-loading through ion pick-up, and Lorentz forces of the advected magnetic field. The results, both inside and outside of the contact surface, are discussed and compared with the relevant HIS ion mass spectra.

  15. Realistic Modeling of Multi-Scale MHD Dynamics of the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina; Mansour, Nagi N.; Wray, Alan; Couvidat, Sebastian; Yoon, Seokkwan; Kosovichev, Alexander

    2014-01-01

    Realistic 3D radiative MHD simulations open new perspectives for understanding the turbulent dynamics of the solar surface, its coupling to the atmosphere, and the physical mechanisms of generation and transport of non-thermal energy. Traditionally, plasma eruptions and wave phenomena in the solar atmosphere are modeled by prescribing artificial driving mechanisms using magnetic or gas pressure forces that might arise from magnetic field emergence or reconnection instabilities. In contrast, our 'ab initio' simulations provide a realistic description of solar dynamics naturally driven by solar energy flow. By simulating the upper convection zone and the solar atmosphere, we can investigate in detail the physical processes of turbulent magnetoconvection, generation and amplification of magnetic fields, excitation of MHD waves, and plasma eruptions. We present recent simulation results of the multi-scale dynamics of quiet-Sun regions, and energetic effects in the atmosphere and compare with observations. For the comparisons we calculate synthetic spectro-polarimetric data to model observational data of SDO, Hinode, and New Solar Telescope.

  16. RADIATIVE HYDRODYNAMIC SIMULATIONS OF HD209458b: TEMPORAL VARIABILITY

    SciTech Connect

    Dobbs-Dixon, Ian; Cumming, Andrew; Lin, D. N. C.

    2010-02-20

    We present a new approach for simulating the atmospheric dynamics of the close-in giant planet HD209458b that allows for the decoupling of radiative and thermal energies, direct stellar heating of the interior, and the solution of the full three-dimensional Navier-Stokes equations. Simulations reveal two distinct temperature inversions (increasing temperature with decreasing pressure) at the sub-stellar point due to the combined effects of opacity and dynamical flow structure and exhibit instabilities leading to changing velocities and temperatures on the nightside for a range of viscosities. Imposed on the quasi-static background, temperature variations of up to 15% are seen near the terminators and the location of the coldest spot is seen to vary by more than 20{sup 0}, occasionally appearing west of the anti-solar point. Our new approach introduces four major improvements to our previous methods including simultaneously solving both the thermal energy and radiative equations in both the optical and infrared, incorporating updated opacities, including a more accurate treatment of stellar energy deposition that incorporates the opacity relevant for higher energy stellar photons, and the addition of explicit turbulent viscosity.

  17. Monte Carlo simulation of radiation streaming from a radioactive material shipping cask

    SciTech Connect

    Liu, Y.Y.; Schwarz, R.A.; Tang, J.S.

    1996-04-01

    Simulated detection of gamma radiation streaming from a radioactive material shipping cask have been performed with the Monte Carlo codes MCNP4A and MORSE-SGC/S. Despite inherent difficulties in simulating deep penetration of radiation and streaming, the simulations have yielded results that agree within one order of magnitude with the radiation survey data, with reasonable statistics. These simulations have also provided insight into modeling radiation detection, notably on location and orientation of the radiation detector with respect to photon streaming paths, and on techniques used to reduce variance in the Monte Carlo calculations. 13 refs., 4 figs., 2 tabs.

  18. A tunable integrated system to simulate colder stellar radiation

    NASA Astrophysics Data System (ADS)

    Erculiani, Marco S.; Claudi, Riccardo; Barbisan, Diego; Giro, Enrico; Bonato, Matteo; Cocola, Lorenzo; Farisato, Giancarlo; Meneghini, Metteo; Poletto, Luca; Salasnich, Bernardo; Trivellin, Nicola

    2015-09-01

    In the last years, a lot of extrasolar planets have been discovered in any direction of the Galaxy. More interesting, some of them have been found in the habitable zone of their host stars. A large diversity of spectral type, from early types (A) to colder ones (M), is covered by the planetary system host stars. A lot of efforts are done in order to find habitable planets around M stars and indeed some habitable super earths were found. In this framework, "Atmosphere in a Test Tube", a project started at Astronomical observatory of Padua, simulates planetary environmental condition in order to understand how and how much the behavior of photosynthetic bacteria in different planetary/star scenarios can modify the planet atmosphere. The particular case of an habitable planet orbiting a M dwarf star is under study for the time being. The irradiation of an M star, due to its lower surface temperature is very different in quality and quantity by the irradiation of a star like our Sun. We would like to describe the study of feasibility of a new kind of tunable led stellarlight simulator capable to recreate the radiation spectrum of M type stars (but with the potential to be expanded even to F, G, K star spectra types) incident on the planet. The radiation source is a multiple LED matrix cooled by means of air fan technology. In order to endow it with modularity this device will be composed by a mosaic of circuit boards arranged in a pie-chart shape, on the surface of which will be welded the LEDs. This concept is a smart way in order to replace blown out pieces instead of changing the entire platform as well as implement the device with new modules suitable to reproduce other type of stars. The device can be driven by a PC to raise or lower the intensity of both each LED and the lamp, in order to simulate as close as possible a portion of the star spectrum. The wavelength intervals overlap the limits of photosynthetic pigment absorption range (280-850 nm), while the

  19. ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests.

    NASA Astrophysics Data System (ADS)

    Stone, James M.; Norman, Michael L.

    1992-06-01

    A detailed description of ZEUS-2D, a numerical code for the simulation of fluid dynamical flows including a self-consistent treatment of the effects of magnetic fields and radiation transfer is presented. Attention is given to the hydrodynamic (HD) algorithms which form the foundation for the more complex MHD and radiation HD algorithms. The effect of self-gravity on the flow dynamics is accounted for by an iterative solution of the sparse-banded matrix resulting from discretizing the Poisson equation in multidimensions. The results of an extensive series of HD test problems are presented. A detailed description of the MHD algorithms in ZEUS-2D is presented. A new method of computing the electromotive force is developed using the method of characteristics (MOC). It is demonstrated through the results of an extensive series of MHD test problems that the resulting hybrid MOC-constrained transport method provides for the accurate evolution of all modes of MHD wave families.

  20. Optical Properties of Thermal Control Coatings After Weathering, Simulated Ascent Heating, and Simulated Space Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Tuan, George C.; Westheimer, David T.; Peters, Wanda C.; Kauder, Lonny R.

    2008-01-01

    Spacecraft radiators reject heat to their surroundings and coatings play an important role in this heat rejection. The coatings provide the combined optical properties of low solar absorptance and high infrared emittance. The coatings are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an applique. Not designed for a terrestrial weathering environment, the durability of spacecraft paints, coatings, and appliques upon exposure to weathering and subsequent exposure to ascent heating, solar wind, and ultraviolet radiation was studied. In addition to traditional aluminum panels, new isocyanate ester composite panels were exposed for a total of 90 days at the Atmospheric Exposure Site of Kennedy Space Center's (KSC) Beach Corrosion Facility for the purpose of identifying their durability to weathering. Selected panel coupons were subsequently exposed to simulated ascent heating, solar wind, and vacuum ultraviolet (UV) radiation to identify the effect of a simulated space environment on as-weathered surfaces. Optical properties and adhesion testing were used to document the durability of the paints, coatings, and appliques.

  1. NASA Lewis Research Center combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1982-01-01

    The MHD power generation experiments were conducted in a high field strength cryomagnet which was adapted from an existing facility. In its original construction, it consisted of 12 high purity aluminum coils pool cooled in a bath of liquid neon. In this configuration, a peak field of 15 tesla was produced. For the present experiments, the center four coils were removed and a 23 cm diameter transverse warm bore tube was inserted to allow the placement of the MHD experiment between the remaining eight coils. In this configuration, a peak field of 6 tesla should be obtainable. The time duration of the experiment is limited by the neon supply which allows on the order of 1 minute of total operating time followed by an 18-hour reliquefaction period. As a result, the experiments are run in a pulsed mode. The run duration for the data presented here was 5 sec. The magnetic field profile along the MHD duct is shown. Since the working fluid is in essence superheated steam, it is easily water quenched at the exit of the diffuser and the components are designed vacuum tight so that the exhaust pipe and demister an be pumped down to simulate the vacuum of outer space.

  2. MHD Turbulence in the Taurus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Heyer, M.; Gong, H.; Brunt, C.; Ostriker, E.

    2005-12-01

    The presence of MHD turbulence in the Taurus Molecular Cloud is examined from 12CO and 13CO J=1-0 imaging observations using the FCRAO 14 meter telescope. The degree of velocity anisotropy is measured from velocity structure functions derived separately along the x and y axes using Principal Component Analysis of spectroscopic imaging data (Brunt & Heyer 2002). Such anisotropy is predicted from model descriptions and computational simulations of MHD turbulence in the case of strong magnetic fields (Goldreich & Sridhar 1995; Cho, Lazarian, & Vishniac 2002; Vestuto, Ostriker, & Stone 2003). Within a subfield of the Taurus image where the column densities are low, this velocity anisotropy is largest along an angle that is coincident with the local magnetic field direction determined independently from optical polarization of background stars.The structure function derived from data perpendicular to the local field shows a shallower scaling exponent and a larger scaling coefficient than the values that describe the structure function constructed along the magnetic field as predicted by the MHD models. This alignment provides strong evidence that the magnetic field is a significant dynamical force within this column density regime of the Taurus cloud.

  3. Statistical Theory of the Ideal MHD Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the

  4. Organ radiation exposure with EOS: GATE simulations versus TLD measurements

    NASA Astrophysics Data System (ADS)

    Clavel, A. H.; Thevenard-Berger, P.; Verdun, F. R.; Létang, J. M.; Darbon, A.

    2016-03-01

    EOS® is an innovative X-ray imaging system allowing the acquisition of two simultaneous images of a patient in the standing position, during the vertical scan of two orthogonal fan beams. This study aimed to compute organs radiation exposure to a patient, in the particular geometry of this system. Two different positions of the patient in the machine were studied, corresponding to postero-anterior plus left lateral projections (PA-LLAT) and antero-posterior plus right lateral projections (AP-RLAT). To achieve this goal, a Monte-Carlo simulation was developed based on a GATE environment. To model the physical properties of the patient, a computational phantom was produced based on computed tomography scan data of an anthropomorphic phantom. The simulations provided several organs doses, which were compared to previously published dose results measured with Thermo Luminescent Detectors (TLD) in the same conditions and with the same phantom. The simulation results showed a good agreement with measured doses at the TLD locations, for both AP-RLAT and PA-LLAT projections. This study also showed that the organ dose assessed only from a sample of locations, rather than considering the whole organ, introduced significant bias, depending on organs and projections.

  5. Global radiation-hydrodynamics simulations of red supergiant stars

    NASA Astrophysics Data System (ADS)

    Freytag, B.; Chiavassa, A.

    2013-05-01

    The small-scale surface granulation on cool main-sequence stars and white dwarfs influences the overall appearance of these objects only weakly. And it is only indirectly observable by analyzing e.g. line-shapes or temporal fluctuations - except for the Sun. The large-scale and high-contrast convective surface cells and accompanying sound waves on supergiants and low-gravity AGB stars on the other hand have a strong impact on the outer atmospheric layers and are directly detectable by interferometric observations. Necessary to interpret modern observations with their high resolution in frequency, time, and/or space are detailed numerical multi-dimensional time-dependent radiation-hydrodynamical simulations. Local simulations of small patches of convective surface layers and the atmosphere of main-sequence stars have matured over three decades and have reached an impressive level of agreement with observations and also between different computational codes. However, global simulations of the entire convective surface and atmosphere of a red supergiants are considerably more demanding - and limited - and have become available only for about one decade. Still, they show how the surface is shaped by the interaction of small surface granules, that sit on top of large envelope convection cells, and waves, that can travel as shocks into the outer atmosphere. The route to more complete future models will be discussed, that comprise the outer atmosphere of the stars and that could explain some of the little-understood phenomena like chromosphere, molsphere, or wind-formation.

  6. An antiproton simulation study using MCNPX for radiation therapy.

    PubMed

    Michael Handley, Stephen; Ahmad, Salahuddin

    2011-01-01

    Radiation therapy using antiprotons is a potential interesting future modality. Energetic antiprotons penetrate matter with almost near identical stopping powers and radio biological effectiveness (RBE) as protons in the region well before the Bragg peak region. When the antiprotons come to rest at or near the Bragg peak, they annihilate releasing almost 2 GeV per annihilation. Most of the energy is carried away on the average by 4 to 5 energetic pi mesons. The annihilations lead to roughly a doubling of physical dose with additional increase due to RBE in the Bragg peak region. This study was undertaken in order to assess the effect of the products of antiproton annihilations on depth dose profiles through MCNPX simulations. Beams of protons and antiprotons with varying energies and field sizes were used in the simulations. In our study, for 126 MeV beam, the peak to entrance (P/E) dose ratios of 4.9 for protons and 8.9 for antiprotons were found which gave the antiproton/proton P/E dose ratio equals to 1.8. This is in excellent agreement with the previous result obtained with FLUKA simulations. PMID:21876284

  7. MHD Energy Bypass Scramjet Engine

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)

    2001-01-01

    Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several

  8. MHD Wave in Sunspots

    NASA Astrophysics Data System (ADS)

    Sych, Robert

    2016-02-01

    The study of magnetohydrodynamic (MHD) waves and oscillations in the solar atmosphere is one of the fastest developing fields in solar physics, and lies in the mainstream of using solar instrumentation data. This chapter first addresses the spatial frequency morphology of sources of sunspot oscillations and waves, including their localization, size, oscillation periods, and height localization with the mechanism of cutoff frequency that forms the observed emission variability. Then, it presents a review dynamic of sunspot wave processes, provides the information about the structure of wave fronts and their time variations, and investigates the oscillation frequency transformation depending on the wave energy. The chapter also addresses the initializing solar flares caused by trigger agents like magnetoacoustic waves, accelerated particle beams, and shocks. Special attention is paid to the relation between the flare reconnection periodic initialization and the dynamics of sunspot slow magnetoacoustic waves.

  9. Production of MHD fluid

    DOEpatents

    Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel

    1976-08-24

    A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.

  10. MHD channel performance for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Swallom, D. W.

    1981-01-01

    The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation.

  11. Evaluation of materials for the MHD steam bottoming plant

    SciTech Connect

    Natesan, K.; Swift, W.M.

    1989-05-01

    Test data have been obtained on the corrosion of several commercial ASME-coded alloys and their weldments by exposing internally cooled ring specimens to simulated magnetohydrodynamics (MHD) environments. The specimens, coated with a K/sub 2/SO/sub 4/-rich deposit, were exposed for times up to 2000 h at metal temperatures of 762, 593, and 567/degree/C to simulated MHD conditions for the intermediate-temperature air heater (ITAH), ITAH transition region (transition from a low- to medium-chromium alloy to a high-chromium steel), and secondary superheater (SSH), respectively. This paper discusses, in detail, the observed corrosion scale morphologies of various exposed specimens. Data on scale thickness, depth of intergranular penetration, and metal recession are presented, and the results are used to assess the corrosion behavior of various materials for application in the MHD steam bottoming plant. 6 refs., 7 figs., 3 tabs.

  12. VISRAD, 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Li, Yingjie; Macfarlane, Joseph; Golovkin, Igor

    2015-11-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  13. Software Design for Interactive Graphic Radiation Treatment Simulation Systems*

    PubMed Central

    Kalet, Ira J.; Sweeney, Christine; Jacky, Jonathan

    1990-01-01

    We examine issues in the design of interactive computer graphic simulation programs for radiation treatment planning (RTP), as well as expert system programs that automate parts of the RTP process, in light of ten years of experience at designing, building and using such programs. An experiment in object-oriented design using standard Pascal shows that while some advantage is gained from the design, it is still difficult to achieve modularity and to integrate expert system components. A new design based on the Common LISP Object System (CLOS) is described. This series of designs for RTP software shows that this application benefits in specific ways from object-oriented design methods and appropriate languages and tools.

  14. Radiation Hydrodynamic Simulations of an Inertial Fusion Energy Reactor Chamber

    NASA Astrophysics Data System (ADS)

    Sacks, Ryan Foster

    Inertial fusion energy reactors present great promise for the future as they are capable of providing baseline power with no carbon footprint. Simulation work regarding the chamber response and first wall insult is carried out using the 1-D BUCKY radiation hydrodynamics code for a variety of differing chamber fills, radii, chamber obstructions and first wall materials. Discussion of the first wall temperature rise, x-ray spectrum incident on the wall, shock timing and maximum overpressure are presented. An additional discussion of the impact of different gas opacities and their effect on overall chamber dynamics, including the formation of two shock fronts, is also presented. This work is performed under collaboration with Lawrence Livermore National Laboratory at the University of Wisconsin-Madison's Fusion Technology Institute.

  15. Mass transfer effects on the unsteady mhd radiative- convective flow of a micropolar fluid past a vertical porous plate with variable heat and mass fluxes

    NASA Astrophysics Data System (ADS)

    Reddy, M. Gnaneswara

    2013-03-01

    The problem of unsteady two-dimensional laminar flow of a viscous incompressible micropolar fluid past a vertical porous plate in the presence of a transverse magnetic field and thermal radiation with variable heat and mass fluxes is considered. The free stream velocity is subjected to exponentially increasing or decreasing small perturbations. A uniform magnetic field acts perpendicularly to a porous surface where a micropolar fluid is absorbed with a suction velocity varying with time. The Rosseland approximation is used to describe radiative heat transfer in the limit of optically thick fluids. The effects of the flow parameters and thermophysical properties on the velocity and temperature fields across the boundary layer are investigated. The effects of various parameters on the velocity, microrotation velocity, temperature, and concentration profiles are given graphically, and the values of the skin friction and couple stress coefficients are presented.

  16. MHD technology in aluminum casting

    SciTech Connect

    Kalinichenko, I.

    1984-08-01

    The use of MHD technology in aluminum casting is discussed. Associates of the Latvian Academy of Sciences Institute of Physics developed magnetohydrodynamic units for the Siberian plant. A MHD unit made it possible to free five persons from heavy work at the plant. Labor productivity doubled in this section. With the aid of the magnetic field, the alloy silumin is obtained in only three hours. Specialists of the Irkutsk affiliate of the All-Union Scientific Research and Design Institute of the Aluminum, Magnesium and Electrode Industry are convinced that MHD technology has a bright future. However, this will necessitate the development of new MHD technology for different types of casting facilities, with their specific features taken into account.

  17. A Radiative Transfer Simulation of Water Rotational Excitation in Comets

    NASA Astrophysics Data System (ADS)

    Zakharov, V.; Biver, N.; Bockelee-Morvan, D.; Crovisier, J.; Lecacheux, A.

    2005-08-01

    In order to interpret comet observations of the 557 GHz water line performed with the Odin satellite (e.g., Lecacheux et al. 2003, A&A, 402, 55), we have developed a numerical model for the simulation of optically thick water rotational emission in cometary coma. For the treatment of radiative transfer, we have elaborated a Monte Carlo code based on the accelerated lambda iteration algorithm presented in Hogerheijde and van der Tak (2000, A&A, 362, 697). The model assumes a spherically symmetric density distribution with constant expansion velocity. It includes the seven lowest rotational levels of ortho-water, which are the primarily populated levels in the rotationally cold gas of the coma. Collisions with water and electrons, and infrared pumping, are taken into account. The model is similar to that presented by Bensch and Bergin (2004, ApJ, 615, 531). We compared the results obtained with this new model with those obtained by the model of Bockelee-Morvan (1987, A&A, 181, 169). Bockelee-Morvan used the escape probability formalism to treat radiation trapping, which is in principle only valid for large velocity gradients. Surprisingly, the results of both models differ only by a few percent, showing that the escape probability formalism can be used with good confidence to treat rotational excitation in cometary atmospheres. This model will allow us to prepare future observations by the ESA Herschel Space Observatory. V.Zakharov acknowledges financial support from CNES.

  18. A pressure-based high resolution numerical method for resistive MHD

    NASA Astrophysics Data System (ADS)

    Xisto, Carlos M.; Páscoa, José C.; Oliveira, Paulo J.

    2014-10-01

    In the paper we describe in detail a numerical method for the resistive magnetohydrodynamic (MHD) equations involving viscous flow and report the results of application to a number of typical MHD test cases. The method is of the finite volume type but mixes aspects of pressure-correction and density based solvers; the algorithm arrangement is patterned on the well-known PISO algorithm, which is a pressure method, while the flux computation makes use of the AUSM-MHD scheme, which originates from density based methods. Five groups of test cases are addressed to verify and validate the method. We start with two resistive MHD cases, namely the Shercliff and Hunt flow problems, which are intended to validate the method for low-speed resistive MHD flows. The remaining three test cases, namely the cloud-shock interaction, the MHD rotor and the MHD blast wave, are standard 2D ideal MHD problems that serve to validate the method under high-speed flow and complex interaction of MHD shocks. Finally, we demonstrate the method with a more complex application problem, and discuss results of simulation for a quasi-bi-dimensional self-field magnetoplasmadynamic (MPD) thruster, for which we study the effect of cathode length upon the electromagnetic nozzle performance.

  19. An advanced implicit solver for MHD

    NASA Astrophysics Data System (ADS)

    Udrea, Bogdan

    A new implicit algorithm has been developed for the solution of the time-dependent, viscous and resistive single fluid magnetohydrodynamic (MHD) equations. The algorithm is based on an approximate Riemann solver for the hyperbolic fluxes and central differencing applied on a staggered grid for the parabolic fluxes. The algorithm employs a locally aligned coordinate system that allows the solution to the Riemann problems to be solved in a natural direction, normal to cell interfaces. The result is an original scheme that is robust and reduces the complexity of the flux formulas. The evaluation of the parabolic fluxes is also implemented using a locally aligned coordinate system, this time on the staggered grid. The implicit formulation employed by WARP3 is a two level scheme that was applied for the first time to the single fluid MHD model. The flux Jacobians that appear in the implicit scheme are evaluated numerically. The linear system that results from the implicit discretization is solved using a robust symmetric Gauss-Seidel method. The code has an explicit mode capability so that implementation and test of new algorithms or new physics can be performed in this simpler mode. Last but not least the code was designed and written to run on parallel computers so that complex, high resolution runs can be per formed in hours rather than days. The code has been benchmarked against analytical and experimental gas dynamics and MHD results. The benchmarks consisted of one-dimensional Riemann problems and diffusion dominated problems, two-dimensional supersonic flow over a wedge, axisymmetric magnetoplasmadynamic (MPD) thruster simulation and three-dimensional supersonic flow over intersecting wedges and spheromak stability simulation. The code has been proven to be robust and the results of the simulations showed excellent agreement with analytical and experimental results. Parallel performance studies showed that the code performs as expected when run on parallel

  20. Unsteady MHD boundary layer stagnation point flow with heat and mass transfer in nanofluid in the presence of mass fluid suction and thermal radiation

    NASA Astrophysics Data System (ADS)

    Salem, A. M.; Ismail, Galal; Fathy, Rania

    2015-06-01

    The unsteady boundary layer stagnation point flow of heat and mass transfer in a nanofluid with magnetic field and thermal radiation is theoretically investigated. The resulting governing equations are nondimensionalized and are transformed using a similarity transformation and then solved numerically by the shooting method. Comparison with the previously published work is presented and the results are found to be in good agreement. The effects of unsteadiness parameter A , solid volume fraction , magnetic field M, radiation parameter R, Schmidit number Sc and suction parameter w on the fluid flow, heat and mass transfer characteristic are discussed. Dual similarity solutions for the velocity, temperature and concentration profiles are obtained for some negative values of the unsteadiness parameter. It is found that the critical values of A for which the dual solution exists depend on the values of solid volume fraction parameter in the presence of the Schmidit number. Also, the magnetic field parameter as well as the mass fluid suction widen the range of A for which the solution exists. The results also indicate that momentum, thermal and concentration boundary layer thickness for the first solution are thinner than that of the second solution.