Science.gov

Sample records for radical cation formation

  1. The formation of DNA sugar radicals from photoexcitation of guanine cation radicals.

    PubMed

    Shukla, Lata I; Pazdro, Robert; Huang, James; DeVreugd, Christopher; Becker, David; Sevilla, Michael D

    2004-05-01

    In this investigation of radical formation and reaction in gamma- irradiated DNA and model compounds, we report the conversion of the guanine cation radical (one-electron oxidized guanine, G(.+)) to the C1' sugar radical and another sugar radical at the C3' or C4' position (designated C3'(.)/C4'(.)) by visible and UV photolysis. Electron spin resonance (ESR) spectroscopic investigations were performed on salmon testes DNA as well as 5'-dGMP, 3'-dGMP, 2'-deoxyguanosine and other nucleosides/nucleotides as model systems. DNA samples (25- 150 mg/ml D(2)O) were prepared with Tl(3+) or Fe(CN)(3-)(6) as electron scavengers. Upon gamma irradiation of such samples at 77 K, the electron-gain path in the DNA is strongly suppressed and predominantly G(.+) is found; after UV or visible photolysis, the fraction of the C1' sugar radical increases with a concomitant reduction in the fraction of G(.+). In model systems, 3'- dGMP(+.) and 5'-dGMP(+.) were produced by attack of Cl(.-)(2) on the parent nucleotide in 7 M LiCl glass. Subsequent visible photolysis of the 3'-dGMP(+.) (77 K) results predominantly in formation of C1'(.) whereas photolysis of 5'-dGMP(+.) results predominantly in formation of C3'(.)/C4'(.). We propose that sugar radical formation is a result of delocalization of the hole in the electronically excited base cation radical into the sugar ring, followed by deprotonation at specific sites on the sugar. PMID:15161365

  2. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    SciTech Connect

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  3. Halogenated silanes, radicals, and cations

    NASA Astrophysics Data System (ADS)

    Wang, Liming; He, Yi-Liang

    2008-09-01

    Quantum chemistry study has been carried out on the structure and energetics of halogenated silanes, radicals, and cations (SiHxXy0,+1, X = F, Cl, Br; x + y = 1-4). The geometries are optimized at B3LYP/6-31+G(2df,p) level. The adiabatic ionization energiess (IEas), relative energetics of cations, proton affinities (PAs) of silanes, and the enthalpies of formation are predicted using G3(CC) model chemistry. Non-classical ion complex structures are found for hydrogenated cations and transition states connecting classical and non-classical structures are also located. The most stable cations for silylene and silyl radicals have their classical divalent and trivalent structures, and those for silanes have non-classical structures except for SiH3Br+ and SiH2Br2+. The non-classical structures for halosilane cations imply difficulty in experimentally measurement of the adiabatic ionization energies using photoionization or photoelectron studies. For SiH3X, SiH2X2, and SiHX3, the G3(CC) adiabatic IEas to classical ionic structures closest to their neutrals agree better with the photoelectron spectroscopic measurements. The transition states between classical and non-classical structures also hamper the photoionization determination of the appearance energies for silylene cations from silanes. The G3(CC) results for SiHx0,+1 agree excellently with the photoionization mass spectrometric study, and the results for fluorinated and chlorinated species also agree with the previous theoretical predictions at correlation levels from BAC-MP4 to CCSD(T)/CBS. The predicted enthalpy differences between SiH2Cl+, SiHCl2+, and SiCl3+ are also in accordance with previous kinetics study. The G3(CC) results show large discrepancies to the collision-induced charge transfer and/or dissociation reactions involving SiFx+ and SiClx+ ions, for which the G3(CC) enthalpies of formation are also significantly differed from the previous theoretical predictions, especially on SiFx+ (x = 2-4). The G3

  4. Radiolytic generation of radical cations in xenon matrices. Tetramethylcyclopropane radical cation and its transformations

    SciTech Connect

    Qin, X.Z.; Trifunac, A.D. )

    1990-04-05

    Radiolytic generation of radical cations in xenon matrices containing electron scavengers is illustrated by studying the 1,1,2,2-tetramethylcyclopropane radical cation. Dilute and concentrated solutions of tetramethylcyclopropane in xenon without electron scavengers and neat tetramethylcyclopropane yielded neutral radicals upon {gamma}-irradiation. Speculation on the mechanisms of radical formation is presented. The radical species observed in the {gamma}-irradiation of neat tetramethylcyclopropane appears to be identical with the paramagnetic species observed in CF{sub 2}ClCFCl{sub 2} above 120 K, suggesting that a neutral radical rather than the ring-opened distonic radical cation is observed in the CF{sub 2}ClCFCl{sub 2} matrix.

  5. Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay.

    PubMed

    Nwosu, Ugwumsinachi G; Roy, Amitava; dela Cruz, Albert Leo N; Dellinger, Barry; Cook, Robert

    2016-01-01

    Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm(-1) and 1595 cm(-1), and at lower frequencies between 694 cm(-1) and 806 cm(-1), as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHP-P of 6.1 G at an average concentration of 7.5 × 10(17) spins per g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10(-2) spins per Fe(II) atom. PMID:26647158

  6. Analysis of diarylmethylamine compounds using electrospray mass spectrometry: formation mechanisms of radical ions and dehydro cations.

    PubMed

    Cai, Tian; Xu, Xiao-Ying; Wu, Zhi-Jun

    2015-12-01

    A series of diarylmethylamine compounds were analyzed using electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS). [M](+)˙ and [M - H](+) were both observed, but showed different abundances. A possible mechanism for the formation of [M](+)˙ and [M - H](+) was proposed to explicate the rule for the ratio change of I([M](+)˙)/I([M-H](+)). The [M](+)˙ has two structures, which can interconvert into each other in the gas phase. The substituted groups on the benzene rings play a crucial role in the transfer between the two structures. Electron withdrawing groups can prevent the formation of carbocations, thus nitro-containing diarylmethylamines remained mainly as structure I and were detected as [M](+)˙. On the contrary, electron donating groups help to stabilize carbocations. This makes structure I transfer to structure II, and structure II prefers to further generate [M - H](+) by loss of an H radical. Nuclear magnetic resonance and D-labelled MS experiments indicate that the 1-C-H bond has strong activity. PMID:26465612

  7. Pentachlorophenol radical cations generated on Fe(III)-montmorillonite initiate octachlorodibenzo-p-dioxin formation in clays: DFT and FTIR studies

    PubMed Central

    Gu, Cheng; Liu, Cun; Johnston, Cliff T.; Teppen, Brian J.; Li, Hui; Boyd, Stephen A.

    2011-01-01

    Octachlorodibenzodioxin (OCDD) forms spontaneously from pentachlorophenol (PCP) on the surfaces of Fe(III)-saturated smectite clay (1). Here, we used in situ FTIR methods and quantum mechanical calculations to determine the mechanism by which this reaction is initiated. As the clay was dehydrated, vibrational spectra showed new peaks that grew and then reversibly disappeared as the clay rehydrated. First principle DFT calculations of hydrated Fe-PCP clusters reproduced these transient FTIR peaks when inner-sphere complexation and concomitant electron transfer produced Fe(II) and PCP radical cations. Thus, our experimental (FTIR) and theoretical (quantum mechanical) results mutually support the hypothesis that OCDD formation on Fe-smectite surfaces is initiated by the reversible formation of metastable PCP radical cations via single electron transfer from PCP to Fe(III). The negatively charged clay surface apparently selects for this reaction mechanism by stabilizing PCP radical cations. PMID:21254769

  8. Dynamics of poly(4-hydroxystyrene) radical cation

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazumasa; Kozawa, Takahiro; Tagawa, Seiichi

    2008-03-01

    Poly(4-hydroxystyrene) (PHS) has been used in KrF excimer laser (248 nm) lithography as a backbone polymer, and is also a promising material for EUV or electron beam lithography. Analysis of the intermediate species is important for the control of reactions in resist materials. Since the size of integrated circuits fabricated for mass production will decrease below 30 nm and the size error must also be decreased to the molecular level, the elucidation of proton dynamics at the molecular level is also important for reducing the deviation of the resist pattern size. In this study, the dynamics of PHS radical cations were studied, because PHS radical cation is main source of proton. The transient absorption of PHS was observed in the near-infrared region (NIR) in p-dioxane solutions by pulse radiolysis. The intramolecular PHS dimer radical cation (M2 +.) were observed, whereas p-cresol shows no distinct CR band. Although the radical cations of phenol derivatives are known to be easily deprotonated, it was found that M2 +. formation prevents deprotonation by its charge resonance stabilization.

  9. Cations or Radicals? Inherent Reactivity of Biosynthetic Intermediates in the B-Ring Formation of Rotenoid Natural Products.

    PubMed

    Kirkpatrick, Adam K; Siebert, Matthew R

    2016-04-21

    Compounds of the rotenoid class are naturally occurring in the Leguminosae and Nyctaginacae families. Rotenoids have found a myriad of uses, for example, in the agricultural industry as an insecticide and piscicide, and as an anticancer therapeutic. The scientific literature questions whether cyclization of the rotenoid B-ring occurs via a pathway containing either cationic or free-radical intermediates. In this work, both propositions are analyzed using DFT (B3LYP and M06-2X) and the G3 composite method in gas- and (implicit) solution-phase. The accuracy of these methods is compared to several experimental C-H bond dissociation energies (BDEs). We find that of the methods surveyed M06-2X provides the most accurate BDEs. Further, there is a clear thermodynamic preference for the free-radical pathway. PMID:27014924

  10. Polymerization of ionized acetylene clusters into covalent bonded ions: evidence for the formation of benzene radical cation.

    PubMed

    Momoh, Paul O; Abrash, Samuel A; Mabrouki, Ridha; El-Shall, M Samy

    2006-09-27

    Since the discovery of acetylene and benzene in protoplanetary nebulae under powerful ultraviolet ionizing radiation, efforts have been made to investigate the polymerization of ionized acetylene. Here we report the efficient formation of benzene ions within gas-phase ionized acetylene clusters (C2H2)n+ with n = 3-60. The results from experiments, which use mass-selected ion mobility techniques, indicate that the (C2H2)3+ ion has unusual stability similar to that of the benzene cation; its primary fragment ions are similar to those reported from the benzene cation, and it has a collision cross section of 47.4 A2 in helium at 300 K, similar to the value of 47.9 A2 reported for the benzene cation. In other words, (C2H2)3+ structurally looks like benzene, it has stability similar to that of benzene, it fragments such as benzene, therefore, it must be benzene! PMID:16984178

  11. Investigation of Fragmentation of Tryptophan Nitrogen Radical Cation

    NASA Astrophysics Data System (ADS)

    Piatkivskyi, Andrii; Happ, Marshall; Lau, Justin Kai-Chi; Siu, K. W. Michael; Hopkinson, Alan C.; Ryzhov, Victor

    2015-08-01

    This work describes investigation of the fragmentation mechanism of tryptophan N-indolyl radical cation, H3N+-TrpN• ( m/ z 204) studied via DFT calculations and several gas-phase experimental techniques. The main fragment ion at m/ z 131, shown to be a mixture of up to four isomers including 3-methylindole (3MI) π-radical cation, was found to undergo further loss of an H atom to yield one of the two isomeric m/ z 130 ions. 3-Methylindole radical cation generated independently (via CID of [CuII(terpy)3MI]•2+) displayed gas-phase reactivity partially similar to that of the m/ z 131 fragment, further confirming our proposed mechanism. CID of deuterated tryptophan N-indolyl radical cation ( m/ z 208) suggested that up to six H atoms are involved in the pathway to formation of the m/ z 131 ion, consistent with hydrogen atom scrambling during CID of protonated Trp.

  12. Terthiophene radical cations end-capped by bicyclo[2.2.2]octene units: formation of bent pi-dimers mutually attracted at the central position.

    PubMed

    Yamazaki, Daisuke; Nishinaga, Tohru; Tanino, Nobuhide; Komatsu, Koichi

    2006-11-15

    A terthiophene fused with bicyclo[2.2.2]octene units only at both ends was newly synthesized. Since there is no steric hindrance at the central position, this terthiophene has a possibility to interact only at the central position. One-electron oxidation of this terthiophene afforded a highly stable radical-cation salt as deep blue crystals. The result of X-ray crystal structural analysis demonstrated a characteristically bent pi-dimereric structure, which is formed by mutual attraction of single radical-cation species at the central position to minimize the steric repulsion. Remarkably short intermolecular distances between the central thiophene rings of each unit of the dimeric pair, that is, 2.976(10) A for Cbeta-Cbeta, 3.091(10) A for Calpha-Calpha, and 3.779(3) A for S-S, are good indication of the existence of attracting interaction, which was confirmed by theoretical calculations. This interaction was experimentally demonstrated by the reversible formation of the pi-dimer in CH2Cl2 solution using ESR and UV-vis-NIR spectroscopy. The crystal of the pi-dimer is in its singlet state and ESR silent in the solid state at 300 K, but the signal of a triplet state of the pi-dimer was observed by heating the solid at 400 K. This indicates that this pi-dimer has a quite small triplet-singlet enegy gap and the triplet state is thermally accessible. PMID:17090025

  13. Electronic spectrum of 9-methylanthracenium radical cation

    NASA Astrophysics Data System (ADS)

    O'Connor, Gerard D.; Sanelli, Julian A.; Dryza, Vik; Bieske, Evan J.; Schmidt, Timothy W.

    2016-04-01

    The predissociation spectrum of the cold, argon-tagged, 9-methylanthracenium radical cation is reported from 8000 cm-1 to 44 500 cm-1. The reported spectrum contains bands corresponding to at least eight electronic transitions ranging from the near infrared to the ultraviolet. These electronic transitions are assigned through comparison with ab initio energies and intensities. The infrared D1←D0 transitions exhibit significant vibronic activity, which is assigned through comparison with TD-B3LYP excited state frequencies and intensities, as well as modelled vibronic interactions. Dissociation of 9-methylanthracenium is also observed at high visible-photon energies, resulting in the loss of either CH2 or CH3. The relevance of these spectra, and the spectra of other polycyclic aromatic hydrocarbon radical cations, to the largely unassigned diffuse interstellar bands, is discussed.

  14. Structure and reactions of cation-radicals of esters in freon matrices

    SciTech Connect

    Belevskii, V.N.; Belopushkin, S.I.; Fel'dman, V.I.

    1987-11-01

    In CFCl/sub 3/ matrices the cation-radicals of methyl and ethyl formates, formed in ..gamma..-irradiated solutions, at 77 K efficiently undergo intramolecular H atom transfer to form the secondary cation-radicals HC(OH)OCH/sub 2/CH/sub 2/ and DC(OH)OCD/sub 2/CH/sub 2/. This process does not occur in the deuteroformate cation-radical DCOOCH/sub 2/CD/sub 3//sup +./, which is observed in the ESR spectra in different conformations, depending on the temperature. Ion-molecule reactions involving cation-radicals are indicated

  15. Fragmentation Pathways in the Uracil Radical Cation

    SciTech Connect

    Zhou, Congyi; Matsika, Spiridoula; Kotur, Marija; Weinacht, Thomas C.

    2012-08-24

    We investigate pathways for fragmentation in the uracil radical cation using ab initio electronic structure calculations. We focus on the main fragments produced in pump–probe dissociative ionization experiments. These are fragments with mass to charge ratios (m/z) of 69, 28, 41, and 42. Barriers to dissociation along the ground ionic surface are reported, which provide an estimate of the energetic requirements for the production of the main fragments. Finally, direct and sequential fragmentation mechanisms have been analyzed, and it is concluded that sequential fragmentation after production of fragment with m/z 69 is the dominant mechanism for the production of the smaller fragments.

  16. Electron Spin Resonance Spectroscopic Studies of Radical Cation Reactions.

    NASA Astrophysics Data System (ADS)

    Dai, Sheng

    1990-01-01

    A spin Hamiltonian suitable for theoretical analyses of ESR spectra in this work is derived by using the general effective Hamiltonian theory in the usual Schrodinger representation. The Permutation Indices method is extended to obtain the dynamic exchange equations used in ESR lineshape simulation. The correlation between beta-hydrogen coupling constants and their geometric orientations is derived through the use of a perturbation method. The three electron bond model is extended to rationalize unimolecular rearrangements of radical cations. The ring-closed radical cations of 9,10-octalin oxide and syn-sesquinorbornene oxide have been characterized by ESR spectroscopy in the CFCl_3 matrix at low temperature. The ESR spectra of the former radical cation exhibit a novel alternating linewidth effect arising from an internal relation between the coupling constants for the four equivalent pairs of hydrogens. The self-electron-transfer rate constants between the methyl viologen dication and cation have been determined by dynamic ESR lineshape simulations at room temperature in allyl alcohol, water, methanol and propargyl alcohol solvents. The radical cation formed by the radiolytic oxidation of allylamine in Freon matrices at 77 K is shown to be the 3-iminiopropyl distonic species(3-iminium-1-propyl radical) resulting from a symmetry-allowed 1,2-hydrogen shift in the parent radical cation. The nucleophilic endocyclization of the but-3-en-1-ol radical cation to the protonated tetrahydrofuran -3-yl radical was observed in the radiolytic oxidation of but-3-en-1-ol in Freon matrices. ESR studies of the radiolytic oxidation of 1,5-hexadiyne have resulted in the first spectroscopic characterization of the radical cation Cope rearrangement, the 1,5-hexadiyne radical cation isomerizing to the 1,2,4,5 -hexatetraene radical cation. ESR studies show that the symmetric(C_{rm 2v}) bicyclo (3.3.0) -octa-2,6-diene-4,8-diyl(a bridged 1,4 -bishomobenzene species) radical cation is

  17. ESR study of the aziridine and azetidine radical cations: evidence for the C. C ring-opened aziridine radical cation

    SciTech Connect

    Qin, X.Z.; Williams, F.

    1986-05-22

    The radical cations from aziridine and azetidine have been characterized by ESR spectroscopy following their generation in the solid state by ..gamma.. irradiation of dilute solutions of the parent compounds in the CFCl/sub 3/ matrix at 77 K. The ESR parameters of the azetidine radical cation are typical of those for nitrogen-centered amine radical cations such as Me/sub 2/NH*/sup +/. On the other hand, the radical cation formed from aziridine has very different ESR parameters that compare closely to those for the isoelectronic C...C ring-opened form of the oxirane radical cation and the allyl radical. The radical cation formed from azetidine is therefore assigned a ring-closed structure with the unpaired electron in a 2p/sub z/ orbital on nitrogen perpendicular to the ring plane, whereas the cation from aziridine is an allylic C...C ring-opened planar isomer with the unpaired electron in a nonbonding ..pi.. orbital centered mainly on the two end carbon atoms. The neutral 1-aziridinyl and 1-azetidinyl radicals have been detected as radical products following the ..gamma.. irradiation of the parent compounds in the CFCl/sub 2/CF/sub 2/Cl and CF/sub 3/CCl/sub 3/ matrices. In particular, the 1-azetidinyl radical is produced cleanly from the azetidine radical cation in the CFCl/sub 2/CF/sub 2/Cl matrix at ca. 100 K.

  18. Catalytic Carbocation Generation Enabled by the Mesolytic Cleavage of Alkoxyamine Radical Cations.

    PubMed

    Zhu, Qilei; Gentry, Emily C; Knowles, Robert R

    2016-08-16

    A new catalytic method is described to access carbocation intermediates via the mesolytic cleavage of alkoxyamine radical cations. In this process, electron transfer between an excited state oxidant and a TEMPO-derived alkoxyamine substrate gives rise to a radical cation with a remarkably weak C-O bond. Spontaneous scission results in the formation of the stable nitroxyl radical TEMPO(.) as well as a reactive carbocation intermediate that can be intercepted by a wide range of nucleophiles. Notably, this process occurs under neutral conditions and at comparatively mild potentials, enabling catalytic cation generation in the presence of both acid sensitive and easily oxidized nucleophilic partners. PMID:27403637

  19. Aryl sulfoxide radical cations. Generation, spectral properties, and theoretical calculations.

    PubMed

    Baciocchi, Enrico; Del Giacco, Tiziana; Gerini, Maria Francesca; Lanzalunga, Osvaldo

    2006-08-17

    Aromatic sulfoxide radical cations have been generated by pulse radiolysis and laser flash photolysis techniques. In water (pulse radiolysis) the radical cations showed an intense absorption band in the UV region (ca. 300 nm) and a broad less intense band in the visible region (from 500 to 1000 nm) whose position depends on the nature of the ring substituent. At very low pulse energy, the radical cations decayed by first-order kinetics, the decay rate increasing as the pH increases. It is suggested that the decay involves a nucleophilic attack of H(2)O or OH(-) (in basic solutions) to the positively charged sulfur atom to give the radical ArSO(OH)CH(3)(*). By sensitized [N-methylquinolinium tetrafluoborate (NMQ(+))] laser flash photolysis (LFP) the aromatic sulfoxide radical cations were generated in acetonitrile. In these experiments, however, only the band of the radical cation in the visible region could be observed, the UV band being covered by the UV absorption of NMQ(+). The lambda(max) values of the bands in the visible region resulted almost identical to those observed in water for the same radical cations. In the LFP experiments the sulfoxide radical cations decayed by second-order kinetics at a diffusion-controlled rate, and the decay is attributed to the back electron transfer between the radical cation and NMQ(*). DFT calculations were also carried out for a number of 4-X ring substituted (X = H, Me, Br, OMe, CN) aromatic sulfoxide radical cations (and their neutral parents). In all radical cations, the conformation with the S-O bond almost coplanar with the aromatic ring is the only one corresponding to the energy minimum. The maximum of energy corresponds to the conformation where the S-O bond is perpendicular to the aromatic ring. The rotational energy barriers are not very high, ranging from 3.9 to 6.9 kcal/mol. In all radical cations, the major fraction of charge and spin density is localized on the SOMe group. However, a substantial delocalization

  20. Photochemical generation, isomerization, and oxygenation of stilbene cation radicals

    SciTech Connect

    Lewis, F.D.; Bedell, A.M.; Dykstra, R.E.; Elbert, J.E. ); Gould, I.R.; Farid, S. )

    1990-10-24

    The cation radicals of cis- and trans-stilbene and several of their ring-substituted derivatives have been generated in solution directly by means of pulsed-laser-induced electron transfer to singlet cyanoanthracenes or indirectly via electron transfer from biphenyl to the singlet cyanoanthracene followed by secondary electron transfer from the stilbenes to the biphenyl cation radical. Transient absorption spectra of the cis- and trans-stilbene cation radicals generated by secondary electron transfer are similar to those previously obtained in 77 K matrices. Quantum yields for radical ion-pair cage escape have been measured for direct electron transfer from the stilbenes to three neutral and one charged singlet acceptor. These values increase as the ion-pair energy increases due to decreased rate constants for radical ion-pair return electron transfer, in accord with the predictions of Marcus theory for highly exergonic electron transfer. Cage-escape efficiencies are larger for trans- vs cis-stilbene cation radicals, possibly due to the greater extent of charge delocalization in the planar trans vs nonpolar cis cation radicals. Cage-escape stilbene cation radicals can initiate a concentration-dependent one way cis- {yields} trans-stilbene isomerization reaction.

  1. UVA-visible photo-excitation of guanine radical cations produces sugar radicals in DNA and model structures

    PubMed Central

    Adhikary, Amitava; Malkhasian, Aramice Y. S.; Collins, Sean; Koppen, Jessica; Becker, David; Sevilla, Michael D.

    2005-01-01

    This work presents evidence that photo-excitation of guanine radical cations results in high yields of deoxyribose sugar radicals in DNA, guanine deoxyribonucleosides and deoxyribonucleotides. In dsDNA at low temperatures, formation of C1′• is observed from photo-excitation of G•+ in the 310–480 nm range with no C1′• formation observed ≥520 nm. Illumination of guanine radical cations in 2′dG, 3′-dGMP and 5′-dGMP in aqueous LiCl glasses at 143 K is found to result in remarkably high yields (∼85–95%) of sugar radicals, namely C1′•, C3′• and C5′•. The amount of each of the sugar radicals formed varies dramatically with compound structure and temperature of illumination. Radical assignments were confirmed using selective deuteration at C5′ or C3′ in 2′-dG and at C8 in all the guanine nucleosides/tides. Studies of the effect of temperature, pH, and wavelength of excitation provide important information about the mechanism of formation of these sugar radicals. Time-dependent density functional theory calculations verify that specific excited states in G•+ show considerable hole delocalization into the sugar structure, in accord with our proposed mechanism of action, namely deprotonation from the sugar moiety of the excited molecular radical cation. PMID:16204456

  2. Radical-radical interactions among oxidized guanine bases including guanine radical cation and dehydrogenated guanine radicals.

    PubMed

    Zhao, Jing; Wang, Mei; Yang, Hongfang; Zhang, Meng; Liu, Ping; Bu, Yuxiang

    2013-09-19

    We present here a theoretical investigation of the structural and electronic properties of di-ionized GG base pairs (G(•+)G(•+),G(-H1)(•)G(•+), and G(-H1)(•)G(-H1)(•)) consisting of the guanine cation radical (G(•+)) and/or dehydrogenated guanine radical (G(-H1)(•)) using density functional theory calculations. Different coupling modes (Watson-Crick/WC, Hoogsteen/Hoog, and minor groove/min hydrogen bonding, and π-π stacking modes) are considered. We infer that a series of G(•+)G(•+) complexes can be formed by the high-energy radiation. On the basis of density functional theory and complete active space self-consistent (CASSCF) calculations, we reveal that in the H-bonded and N-N cross-linked modes, (G(•+)G(•+))WC, (G(-H1)(•)G(-H1)(•))WC, (G(-H1)(•)G(-H1)(•))minI, and (G(-H1)(•)G(-H1)(•))minIII have the triplet ground states; (G(•+)G(•+))HoogI, (G(-H1)(•)G(•+))WC, (G(-H1)(•)G(•+))HoogI, (G(-H1)(•)G(•+))minI, (G(-H1)(•)G(•+))minII, and (G(-H1)(•)G(-H1)(•))minII possess open-shell broken-symmetry diradical-characterized singlet ground states; and (G(•+)G(•+))HoogII, (G(•+)G(•+))minI, (G(•+)G(•+))minII, (G(•+)G(•+))minIII, (G(•+)G(•+))HoHo, (G(-H1)(•)G(•+))minIII, (G(-H1)(•)G(•+))HoHo, and (G(-H1)(•)G(-H1)(•))HoHo are the closed-shell systems. For these H-bonded diradical complexes, the magnetic interactions are weak, especially in the diradical G(•+)G(•+) series and G(-H1)(•)G(-H1)(•) series. The magnetic coupling interactions of the diradical systems are controlled by intermolecular interactions (H-bond, electrostatic repulsion, and radical coupling). The radical-radical interaction in the π-π stacked di-ionized GG base pairs ((G(•+)G(•+))ππ, (G(-H1)(•)G(•+))ππ, and (G(-H1)(•)G(-H1)(•))ππ) are also considered, and the magnetic coupling interactions in these π-π stacked base pairs are large. This is the first theoretical prediction that some di

  3. DFT study on the cycloreversion of thietane radical cations.

    PubMed

    Domingo, Luis R; Pérez-Ruiz, Raúl; Argüello, Juan E; Miranda, Miguel A

    2011-06-01

    The molecular mechanism of the cycloreversion (CR) of thietane radical cations has been analyzed in detail at the UB3LYP/6-31G* level of theory. Results have shown that the process takes place via a stepwise mechanism leading to alkenes and thiobenzophenone; alternatively, formal [4+2] cycloadducts are obtained. Thus, the CR of radical cations 1a,b(•+) is initiated by C2-C3 bond breaking, giving common intermediates INa,b. At this stage, two reaction pathways are feasible involving ion molecule complexes IMCa,b (i) or radical cations 4a,b(•+) (ii). Calculations support that 1a(•+) follows reaction pathway ii (leading to the formal [4+2] cycloadducts 5a). By contrast, 1b(•+) follows pathway i, leading to trans-stilbene radical cation (2b(•+)) and thiobenzophenone. PMID:21561127

  4. Mechanism for radical cation transport in duplex DNA oligonucleotides.

    PubMed

    Liu, Chu-Sheng; Hernandez, Rigoberto; Schuster, Gary B

    2004-03-10

    We investigated the photoinduced one-electron oxidation of a series of DNA oligomers having a covalently linked anthraquinone group (AQ) and containing [(A)(n)GG](m) or [(T)(n)GG](m) segments. These oligomers have m GG steps, where m = 4 or 6, separated by (A)(n) or (T)(n) segments, where n = 1-7 for the (A)(n) set and 1-5 for the (T)(n) set. Irradiation with UV light that is absorbed by the AQ causes injection of a radical cation into the DNA. The radical cation migrates through the DNA, causing chemical reaction, primarily at GG steps, that leads to strand cleavage after piperidine treatment. The uniform, systematic structure of the DNA oligonucleotides investigated permits the numerical solution of a kinetic scheme that models these reactions. This analysis yields two rate constants, k(hop), for hopping of the radical cation from one site to adjacent sites, and k(trap), for irreversible reaction of the radical cation with H(2)O or O(2). Analysis of these findings indicates that radical cation hopping in these duplex DNA oligomers is a process that occurs on a microsecond time scale. The value of k(hop) depends on the number of base pairs in the (A)(n) and (T)(n) segments in a systematic way. We interpret these results in terms of a thermally activated adiabatic mechanism for radical cation hopping that we identify as phonon-assisted polaron hopping. PMID:14995205

  5. Sugar radicals formed by photo-excitation of guanine cation radical in oligonucleotides

    PubMed Central

    Adhikary, Amitava; Collins, Sean; Khanduri, Deepti; Sevilla, Michael D.

    2008-01-01

    This work presents evidence that photo-excitation of guanine cation radical (G•+) in dGpdG and DNA-oligonucleotides: TGT, TGGT, TGGGT, TTGTT, TTGGTT, TTGGTTGGTT, AGA and AGGGA in frozen glassy aqueous solutions at low temperatures leads to hole transfer to the sugar phosphate backbone and results in high yields of deoxyribose radicals. In this series of oligonucleotides we find that, G•+ on photo-excitation, at 143 K leads to the formation of predominantly C5′• and C1′• with small amounts of C3′•. Photo-conversion yields of G•+ to sugar radicals in oligonucleotides decreased as the overall chain length increased. However, for high molecular weight dsDNA (salmon testes) in frozen aqueous solutions substantial conversion of G•+ to C1′• (only) sugar radical is still found (ca. 50%). Within the cohort of sugar radicals formed we find a relative increase in the formation of C1′• with length of the oligonucleotide along with decreases in C3′• and C5′• For dsDNA in frozen solutions, only the formation of C1′• is found via photo-excitation of G•+ without a significant temperature dependence (77 K to 180 K). Long wavelength visible light (>540 nm) is observed to be about as effective as light under 540 nm for photoconversion of G•+ to sugar radicals for short oligonucleotides but gradually loses effectiveness with chain length. This wavelength dependence is attributed to base-to-base hole transfer for wavelengths >540 nm. Base-to-sugar hole transfer is suggested to dominate under 540 nm. These results may have implications for a number of investigations of hole transfer through DNA in which DNA-holes are subjected to continuous visible illumination. PMID:17547448

  6. A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation.

    PubMed

    Jiao, Yang; Li, Wan-Lu; Xu, Jiang-Fei; Wang, Guangtong; Li, Jun; Wang, Zhiqiang; Zhang, Xi

    2016-07-25

    Tuning the activity of radicals is crucial for radical reactions and radical-based materials. Herein, we report a supramolecular strategy to accelerate the Fenton reaction through the construction of supramolecularly activated radical cations. As a proof of the concept, cucurbit[7]uril (CB[7]) was introduced, through host-guest interactions, onto each side of a derivative of 1,4-diketopyrrolo[3,4-c]pyrrole (DPP), a model dye for Fenton oxidation. The DPP radical cation, the key intermediate in the oxidation process, was activated by the electrostatically negative carbonyl groups of CB[7]. The activation induced a drastic decrease in the apparent activation energy and greatly increased the reaction rate. This facile supramolecular strategy is a promising method for promoting radical reactions. It may also open up a new route for the catalytic oxidation of organic pollutants for water purification and widen the realm of supramolecular catalysis. PMID:27273046

  7. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    SciTech Connect

    Kispert, Lowell D; Focsan, A Ligia; Konovalova, Tatyana A; Lawrence, Jesse; Bowman, Michael K; Dixon, David A; Molnar, Peter; Deli, Jozsef

    2007-06-11

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car•+) but also neutral radicals (#Car•) by proton loss from the methyl groups at positions 5 or 5', and possibly 9 or 9' and 13 or 13'. Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car•+ which agree with the ENDOR for carotenoid α-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity [Lycopene (III) versus 8'-apo-β-caroten-8'-al (IV)]; hydrogen bonding [Lutein (V) versus III]; host [silica-alumina versus MCM-41 molecular sieve]; and substituted metal in MCM-41. Loss of H+ from the 5(5'), 9(9') or 13(13') methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I •+…Chl•-), lower in energy than 1Chl*. Formation of I •+ results in bond lengthening, a mechanism for nonradiative energy

  8. Formation of ions and radicals from icy grains in comets

    NASA Technical Reports Server (NTRS)

    Jackson, William M.

    1992-01-01

    Two theoretical models for the formation of radicals from ice grains are examined to determine if this can explain the jets in comets. It is shown that the production rates for these radicals by the photolysis of molecules in the icy grains are not high enough to explain the jets. A new mechanism is proposed involving the release of cations and anions in the gas phase as the icy mantle surrounding the grains is evaporated. Solar visible radiation can then form radicals by photodetachment of the electrons from these anions. The production rate of radicals formed in this manner is in accord with the production rates of the observed radicals.

  9. Pyridine radical cation and its fluorine substituted derivatives

    USGS Publications Warehouse

    Bondybey, V.E.; English, J.H.; Shiley, R.H.

    1982-01-01

    The spectra and relaxation of the pyridine cation and of several of its fluorinated derivatives are studied in low temperature Ne matrices. The ions are generated by direct photoionization of the parent compounds. Of the compounds studied, laser induced → and → fluorescence is observed only for the 2, 6‐difluoropyridine cation. The analysis of the spectrum indicates that the ion is planar both in the and states. The large variety in the spectroscopic and relaxation behavior of fluoropyridine radical cations is explained in terms of their electronic structure and of the differential shifts of the individual electronic states caused by the fluorine substitution.

  10. Photoinactivation of PS2 secondary donors by PS2 cation radicals and superoxide radicals

    SciTech Connect

    Chen, G.X.; Cheniae, G.M.; Blubaugh, D.J.; Golbeck, J.H.

    1991-12-31

    Illumination of Mn- and Cl-depleted PS2 causes rapid irreversible inactivation of specific redox-active components on the donor side of the PS2 Reaction Center (RC). Under aerobic conditions, weak light preillumination of NH{sub 2}OH-PS2 causes rapid loss of Y{sub Z}{sup {plus_minus}} formation, Y{sub Z} {yields} P{sub 680}{sup +}, the A{sub T}-band thermoluminescence emission, the Y{sub Z}{sup +}-dependent (Site 1) photooxidation of exogenous e{sup {minus}} donors, and the capability to photoligate Mn{sup 2+} into the water oxidizing enzyme (photoactivation), all without significantly affecting P{sub 680}{sup +}/Q{sub A}{sup {minus}} charge separation. In contrast, aerobic high light preillumination of Mn-depleted PS2 promotes very rapid and parallel loss of photoactivation and A{sub T}-band emission capabilities significantly than loss of either Y{sub Z}{sup +}-formation or P{sub 680}{sup +}/Q{sub A}{sup {minus}} charge separation capabilities. These photodamages and those to Cl-depleted thylakoids (4,5) generally are believed to be caused by reactions between the highly oxidizing cation radicals (P{sub 680}{sup +}/Chl{sup +}) and nearby amino acid residues of D{sub 1}>D{sub 2}. The reported promotion of the photodamages by e{sup {minus}} acceptors of Q{sub A}{sup {minus}}/Q{sub B}{sup {minus}} their inhibition by e{sup {minus}} donors to Y{sub Z}{sup +} and their occurrence under strict anaerobic conditions all tend to support the idea of direct damage by P{sub 680}{sup +}/Chl{sup +}. Our studies lead us to conclude that the photodamages to the donor side components are caused minimally by a rapid mechanism requiring both superoxide and PS2 cation radicals; and by a slower mechanism driven by the PS2 cation radicals only.

  11. Carotenoid cation radicals: electrochemical, optical, and EPR study

    SciTech Connect

    Grant, J.L.; Kramer, V.J.; Ding, R.; Kispert, L.D.

    1988-03-30

    The general aim of this investigation is to determine whether carotenoid cation radicals can be produced, and stabilized, electrochemically. Hence, the authors have undertaken a detailed study of the electrooxidation of various carotenoids (..beta..-carotene (I), ..beta..-apo-8'-carotenal (II), and canthaxanthin (III) using the techniques of cyclic voltammetry, controlled-potential electrolysis (cpe) in conjunction with optical spectroscopy, and EPR spectroscopy coupled with in situ electrolysis. They report the successful generation of carotenoid cation radicals via electrochemical oxidation and, furthermore, the stabilization of these radicals for several minutes in CH/sub 2/Cl/sub 2/ and C/sub 2/H/sub 4/Cl/sub 2/ solvents.

  12. p53 Mutagenesis by benzo[a]pyrene derived radical cations.

    PubMed

    Sen, Sushmita; Bhojnagarwala, Pratik; Francey, Lauren; Lu, Ding; Penning, Trevor M; Field, Jeffrey

    2012-10-15

    Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9,10-epoxide pathway (P450/epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. On the basis of B[a]P-1,6 and 3,6-dione formation, approximately 4 μM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 μM to 10 μM B[a]P with no significant increase seen with further escalation to 50 μM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7-8-dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones. PMID:22768918

  13. Electron transfer reactions within zeolites: Radical cation from benzonorbornadiene

    SciTech Connect

    Pitchumani, K.; Ramamurthy, V.; Corbin, D.R.

    1996-08-28

    Zeolites are being used as solid acid catalysts in a number of commercial processes. Occasionally zeolites are also reported to perform as electron transfer agents. Recently, we observed that radical cations of certain olefins and thiophene oligomers can be generated spontaneously within ZSM-5 zeolites. We noticed that these radical cations generated from diphenyl polyenes and thiophene oligomers were remarkably stable (at room temperature) within ZSM-5 and can be characterized spectroscopically at leisure. We have initiated a program on electron transfer processes within large pore zeolites. The basis of this approach is that once a cation radical is generated within a large pore zeolite, it will have sufficient room to undergo a molecular transformation. Our aim is to identify a condition under which electron transfer can be routinely and reliably carried out within large pore zeolites such as faujasites. To our great surprise, when benzonorbornadiene A and a number of olefins were included in divalent cation exchanged faujasites. they were transformed into products very quickly (<15 min). This observation allowed us to explore the use of zeolites as oxidants. Results of our studies on benzonorbornadiene are presented in this communication. 16 refs., 1 fig.

  14. Absorption and electroabsorption spectra of carotenoid cation radical and dication

    NASA Astrophysics Data System (ADS)

    Krawczyk, Stanisław

    1998-05-01

    Radical cations and dications of two carotenoids astaxanthin and canthaxanthin were prepared by oxidation with FeCl 3 in fluorinated alcohols at room temperature. Absorption and electroabsorption (Stark effect) spectra were recorded for astaxanthin cations in mixed frozen matrices at temperatures about 160 K. The D 0→D 2 transition in cation radical is at 835 nm. The electroabsorption spectrum for the D 0→D 2 transition exhibits a negative change of molecular polarizability, Δ α=-1.2·10 -38 C·m 2/V (-105 A 3), which seems to originate from the change in bond order alternation in the ground state rather than from the electric field-induced interaction of D 1 and D 2 excited states. Absorption spectrum of astaxanthin dication is located at 715-717 nm, between those of D 0→D 2 in cation radical and S 0→S 2 in neutral carotenoid. Its shape reflects a short vibronic progression and strong inhomogeneous broadening. The polarizability change on electronic excitation, Δ α=2.89·10 -38 C·m 2/V (260 A 3), is five times smaller than in neutral astaxanthin. This value reflects the larger energetic distance from the lowest excited state to the higher excited states than in the neutral molecule.

  15. Gas-phase structure and reactivity of the keto tautomer of the deoxyguanosine radical cation.

    PubMed

    Feketeová, Linda; Chan, Bun; Khairallah, George N; Steinmetz, Vincent; Maître, Philippe; Radom, Leo; O'Hair, Richard A J

    2015-10-21

    Guanine radical cations are formed upon oxidation of DNA. Deoxyguanosine (dG) is used as a model, and the gas-phase infrared (IR) spectroscopic signature and gas-phase unimolecular and bimolecular chemistry of its radical cation, dG˙(+), A, which is formed via direct electrospray ionisation (ESI/MS) of a methanolic solution of Cu(NO3)2 and dG, are examined. Quantum chemistry calculations have been carried out on 28 isomers and comparisons between their calculated IR spectra and the experimentally-measured spectra suggest that A exists as the ground-state keto tautomer. Collision-induced dissociation (CID) of A proceeds via cleavage of the glycosidic bond, while its ion–molecule reactions with amine bases occur via a number of pathways including hydrogen-atom abstraction, proton transfer and adduct formation. A hidden channel, involving isomerisation of the radical cation via adduct formation, is revealed through the use of two stages of CID, with the final stage of CID showing the loss of CH2O as a major fragmentation pathway from the reformed radical cation, dG˙(+). Quantum chemistry calculations on the unimolecular and bimolecular reactivity are also consistent with A being present as a ground-state keto tautomer. PMID:25942055

  16. Oxoferryl porphyrin cation radicals in model systems: Evidence for variable metal-radical spin coupling

    NASA Astrophysics Data System (ADS)

    Bill, E.; Bominaar, E. L.; Ding, X.-Q.; Trautwein, A. X.; Winkler, H.; Mandon, D.; Weiss, R.; Gold, A.; Jayaraj, K.; Toney, G. E.

    1990-07-01

    Magnetic properties of frozen solutions of highly oxidized iron porphyrin complexes were investigated by EPR and Mössbauer spectroscopy. The Mössbauer spectra, recorded at low temperatures in various magnetic fields, were analyzed on the basis of spin Hamiltonian simulations. Spin coupling between ferryl iron (FeIV) and porphyrin cation radical was taken into account explicitly. Hyperfine and spin-coupling parameters are given for several complexes, together with zero-field parameters. One of the complexes exhibits weak spin coupling, it is the first model system exhibiting properties comparable to those of the oxoferryl cation radical enzyme Horse Radish Peroxidase I.

  17. ESR of the cation radicals from γ-irradiated ketenes in haloalkane and SF 6 matrices

    NASA Astrophysics Data System (ADS)

    Shimokoshi, Kazuo; Fujisawa, Jun; Nakamura, Kazutaka; Sato, Shin; Shida, Tadamasa

    1983-08-01

    The cation radicals of ketene and its methyl and ethyl derivatives have been produced in γ-irradiated solid solutions of haloalkanes and SF 6. From the observed isotropic proton hyperfine parameters of these cation radicals and UHF MO (INDO) calculations, the cations are found to be characteristic of ordinary π-radicals.

  18. Polyoxometalate salts of cationic nitronyl nitroxide free radicals

    NASA Astrophysics Data System (ADS)

    Coronado, Eugenio; Giménez-Saiz, Carlos; Gómez-García, Carlos J.; Romero, Francisco M.

    2008-12-01

    The cationic nitronyl nitroxide free radical of the N-methylpyridinium type p-MepyNN + has been combined with [Mo 8O 26] 4- and Keggin [SiW 12O 40] 4- polyanions to afford salts ( p-MepyNN) 4[Mo 8O 26]·DMSO (DMSO = dimethylsulfoxide) ( 1) and ( p-MepyNN) 4[SiW 12O 40]·6DMF (DMF = dimethylformamide) ( 2). Herein, their structural and magnetic properties are described.

  19. Ab initio study of the phenol-water cation radical

    NASA Astrophysics Data System (ADS)

    Hobza, Pavel; Burcl, Rudolf; Špirko, Vladimír; Dopfer, Otto; Müller-Dethlefs, Klaus; Schlag, Edward W.

    1994-07-01

    The phenol-water cation radical has been investigated by ab initio theory using the spin-restricted open-shell Hartree-Fock and spin-restricted open-shell second-order Møller-Plesset theories with 3-21G*(O) and 6-31G* basis sets. The full geometrical optimization was performed for several hydrogen-bonded structures and one hemibonded structure. Clearly, the most stable structure has been found for Cs symmetry with the linear hydrogen bond between the proton of the OH group of the phenol cation radical and the oxygen of the water, and the water hydrogens pointing away from the phenyl ring. For this structure harmonic (and for some intermolecular modes anharmonic) vibrational frequencies have been computed for various isotopic complexes. The computed shifts of phenol-localized intramolecular modes on complexation and on deuteration as well as the calculated intermolecular frequencies of the different isotopic complexes allow for an assignment of vibrational frequencies observed in the experimental zero-kinetic-energy (ZEKE) photoelectron spectra. Five out of a possible six intermolecular vibrations and several intramolecular modes have been assigned, including the 18b vibration which shows a strong blue shift in frequency upon complexation. Structure and properties of the phenol-water cation radical are compared with those of the corresponding neutral complex.

  20. Electron exchange involving a sulfur-stabilized ruthenium radical cation.

    PubMed

    Shaw, Anthony P; Ryland, Bradford L; Norton, Jack R; Buccella, Daniela; Moscatelli, Alberto

    2007-07-01

    Half-sandwich Ru(II) amine, thiol, and thiolate complexes were prepared and characterized by X-ray crystallography. The thiol and amine complexes react slowly with acetonitrile to give free thiol or amine and the acetonitrile complex. With the thiol complex, the reaction is dissociative. The thiolate complex has been oxidized to its Ru(III) radical cation and the solution EPR spectrum of that radical cation recorded. Cobaltocene reduces the thiol complex to the thiolate complex. The 1H and 31P NMR signals of the thiolate complex in acetonitrile become very broad whenever the thiolate and thiol complexes are present simultaneously. The line broadening is primarily due to electron exchange between the thiolate complex and its radical cation; the latter is generated by an unfavorable redox equilibrium between the thiol and thiolate complexes. Pyramidal inversion of sulfur in the thiol complex is fast at room temperature but slow at lower temperatures; major and minor conformers of the thiol complex were observed by 31P NMR at -98 degrees C in CD2Cl2. PMID:17569530

  1. Formation of a stable radical by oxidation of a tetraorganoborate.

    PubMed

    Braunschweig, Holger; Krummenacher, Ivo; Mailänder, Lisa; Pentecost, Leanne; Vargas, Alfredo

    2016-05-19

    Herein, we describe the selective formation of a stable neutral spiroborate radical by one-electron oxidation of the corresponding tetraorganoborate salt Li[B(C4Ph4)2], formally containing a tetrahedral borate centre and a s-cis-butadiene radical cation as the spin-bearing site. Spectroscopic and computational methods have been used to determine the spin distribution and the chromism observed in the solid state. PMID:27157624

  2. Dynamics of radical cations of poly(4-hydroxystyrene) in the presence and absence of triphenylsulfonium triflate as determined by pulse radiolysis of its highly concentrated solution

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazumasa; Ishida, Takuya; Yamamoto, Hiroki; Kozawa, Takahiro; Fujiyoshi, Ryoko; Umegaki, Kikuo

    2016-07-01

    Pulse radiolysis of highly concentrated poly(4-hydroxystyrene) (PHS) solutions in cyclohexanone and p-dioxane was performed both with and without an onium-type photoacid generator (PAG). With increasing PHS concentration, the rate constant of deprotonation of PHS radical cations was found to decrease. In the presence of PAG, the yield of the multimer radical cation of PHS was shown to decrease. We found that pairing between the anions produced by the attachment of dissociative electrons of PAGs and the monomer PHS radical cations restrict local molecular motions, leading to the formation of the multimer PHS radical cations.

  3. Multi-State Vibronic Interactions in Fluorinated Benzene Radical Cations.

    NASA Astrophysics Data System (ADS)

    Faraji, S.; Köppel, H.

    2009-06-01

    Conical intersections of potential energy surfaces have emerged as paradigms for signalling strong nonadiabatic coupling effects. An important class of systems where some of these effects have been analyzed in the literature, are the benzene and benzenoid cations, where the electronic structure, spectroscopy, and dynamics have received great attention in the literature. In the present work a brief overview is given over our theoretical treatments of multi-mode and multi-state vibronic interactions in the benzene radical cation and some of its fluorinated derivatives. The fluorobenzene derivatives are of systematic interest for at least two different reasons. (1) The reduction of symmetry by incomplete fluorination leads to a disappearance of the Jahn-Teller effect present in the parent cation. (2) A specific, more chemical effect of fluorination consists in the energetic increase of the lowest σ-type electronic states of the radical cations. The multi-mode multi-state vibronic interactions between the five lowest electronic states of the fluorobenzene radical cations are investigated theoretically, based on ab initio electronic structure data, and employing the well-established linear vibronic coupling model, augmented by quadratic coupling terms for the totally symmetric vibrational modes. Low-energy conical intersections, and strong vibronic couplings are found to prevail within the set of tilde{X}-tilde{A} and tilde{B}-tilde{C}-tilde{D} cationic states, while the interactions between these two sets of states are found to be weaker and depend on the particular isomer. This is attributed to the different location of the minima of the various conical intersections occurring in these systems. Wave-packet dynamical simulations for these coupled potential energy surfaces, utilizing the powerful multi-configuration time-dependent Hartree method are performed. Ultrafast internal conversion processes and the analysis of the MATI and photo-electron spectra shed new light

  4. Understanding electrochromic processes initiated by dithienylcyclopentene cation-radicals.

    PubMed

    Guirado, Gonzalo; Coudret, Christophe; Hliwa, Mohamed; Launay, Jean-Pierre

    2005-09-22

    Simple photochromic dithienylethylenes with either a perfluoro or a perhydro cyclopentene ring, and a variety of substituents (chlorine, iodine, trimethylsilyl, phenylthio, aldehyde, carboxylic acid, and ethynylanisyl), have been prepared and their electrochemical behavior was explored by cyclic voltammetry. All dithienylethylenes present two-electron irreversible oxidation waves in their open form, but the cation-radical of the open isomers can follow two different reaction pathways: dimerization or ring closure, whereas the halogen derivatives follow a dimerization mechanism, the presence of donor groups, such as the phenylthio-substituted compound, promote an efficient oxidative ring closure following an ECE/DISP mechanism. Electrochromic properties are also found in the corresponding ring-closed isomers. Depending on the substituents on the thiophene ring, and the perfluro or perhydro cyclopentene ring, open isomers can be obtained from oxidation (chemical or electrochemical) of the corresponding ring-closed isomers via an EC mechanism. This reaction pathway is favored by the presence of electron-withdrawing groups in the molecule. For all these compounds, closed or open, the oxidation lies between 0.8 and 1.5 V vs SCE, and provokes a permanent modification of the color, even after an oxidation-reduction cycle. This could be qualified as "electrochromism with memory". On the other hand, the ring-closed electron-rich isomers (E degrees < 0.8 V), which show reversible waves at the cation-radical or even dication level, give rise to "true electrochromism", for which no structural changes are observed. The experimental study was completed by theoretical calculations at the DFT level, using B3LYP density functional, which gave information on the total energy, the geometry, and the electronic structures of several representative compounds, either in the neutral form or in the cation-radical state. These results are important for the potential design of photochromic

  5. Theoretical studies on the dimerization of substituted paraphenylenediamine radical cations

    NASA Astrophysics Data System (ADS)

    Punyain, Kraiwan; Kelterer, Anne-Marie; Grampp, Günter

    2011-12-01

    Organic radical cations form dicationic dimers in solution, observed experimentally as diamagnetic species in temperature-dependent EPR and low temperature UV/Vis spectroscopy. Dimerization of paraphenylenediamine, N,N-dimethyl-paraphenylenediamine and 2,3,5,6-tetramethyl-paraphenylenediamine radical cation in ethanol/diethylether mixture was investigated theoretically according to geometry, energetics and UV/Vis spectroscopy. Density Functional Theory including dispersion correction describes stable dimers after geometry optimization with conductor-like screening model of solvation and inclusion of the counter-ion. Energy corrections were done on double-hybrid Density Functional Theory with perturbative second-order correlation (B2PLYP-D) including basis set superposition error (BSSE), and multireference Møller-Plesset second-order perturbation theory method (MRMP2) based on complete active space method (CASSCF(2,2)) single point calculation, respectively. All three dication π-dimers exhibit long multicenter π-bonds around 2.9 ± 0.1 Å with strongly interacting orbitals. Substitution with methyl groups does not influence the dimerization process substantially. Dispersion interaction and electrostatic attraction from counter-ion play an important role to stabilize the dication dimers in solution. Dispersion-corrected double hybrid functional B2PLYP-D and CASSCF(2,2) can describe the interaction energetics properly. Vertical excitations were computed with Tamm-Dancoff approximation for time-dependent Density Functional Theory (TDA-DFT) at the B3LYP level with the cc-pVTZ basis set including ethanol solvent molecules explicitly. A strong interaction of the counter-ion and the solvent ethanol with the monomeric species is observed, whereas in the dimers the strong interaction of both radical cation species is the dominating factor for the additional peak in UV/Vis spectra.

  6. Excited state dynamics of the astaxanthin radical cation

    NASA Astrophysics Data System (ADS)

    Amarie, Sergiu; Förster, Ute; Gildenhoff, Nina; Dreuw, Andreas; Wachtveitl, Josef

    2010-07-01

    Femtosecond transient absorption spectroscopy in the visible and NIR and ultrafast fluorescence spectroscopy were used to examine the excited state dynamics of astaxanthin and its radical cation. For neutral astaxanthin, two kinetic components corresponding to time constants of 130 fs (decay of the S 2 excited state) and 5.2 ps (nonradiative decay of the S 1 excited state) were sufficient to describe the data. The dynamics of the radical cation proved to be more complex. The main absorption band was shifted to 880 nm (D 0 → D 3 transition), showing a weak additional band at 1320 nm (D 0 → D 1 transition). We found, that D 3 decays to the lower-lying D 2 within 100 fs, followed by a decay to D 1 with a time constant of 0.9 ps. The D 1 state itself exhibited a dual behavior, the majority of the population is transferred to the ground state in 4.9 ps, while a small population decays on a longer timescale of 40 ps. Both transitions from D 1 were found to be fluorescent.

  7. Structure and Reactivity of the N-Acetyl-Cysteine Radical Cation and Anion: Does Radical Migration Occur?

    NASA Astrophysics Data System (ADS)

    Osburn, Sandra; Berden, Giel; Oomens, Jos; O'Hair, Richard A. J.; Ryzhov, Victor

    2011-10-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of N-acetyl-cysteine followed by the homolytic cleavage of the S-NO bond in the gas phase. IRMPD spectroscopy coupled with DFT calculations revealed that for the radical cation the radical migrates from its initial position on the sulfur atom to the α-carbon position, which is 2.5 kJ mol-1 lower in energy. The radical migration was confirmed by time-resolved ion-molecule reactions. These results are in contrast with our previous study on cysteine methyl ester radical cation (Osburn et al., Chem. Eur. J. 2011, 17, 873-879) and the study by Sinha et al. for cysteine radical cation ( Phys. Chem. Chem. Phys. 2010, 12, 9794-9800) where the radical was found to stay on the sulfur atom as formed. A similar approach allowed us to form a hydrogen-deficient radical anion of N-acetyl-cysteine, (M - 2H) •- . IRMPD studies and ion-molecule reactions performed on the radical anion showed that the radical remains on the sulfur, which is the initial and more stable (by 63.6 kJ mol-1) position, and does not rearrange.

  8. Electrochemical and electron paramagnetic resonance studies of a carotenoid cation radicals and dications: Effect of deuteration

    SciTech Connect

    Khaled, M.; Hadjipetrou, A.; Kispert, L. )

    1990-06-14

    The oxidation process involving the transfer of two electrons for {beta}-carotene is confirmed by bulk electrolysis in a CH{sub 2}Cl{sub 2} solvent and the observation of {Delta}E = 42 mV from cyclic voltammetric measurements. A similar process is also found to occur for {beta}-apo-8{prime}-carotenal and canthaxanthin. An additional cathodic peak between 0.2 0.5 relative to SCE is shown to be dependent on the initial formation of dications followed by the loss of H{sup +} as evidenced by a large isotope effect and most likely due to the reduction of a carotenoid cation. EPR evidence exists for the formation of radical cations by the reaction of diffusing carotenoid dictations with neutral carotenoids. The rate of formation is consistent with the differences in the diffusion coefficients of the carotenoids deduced by chronocoulometric measurements, being fastest for canthaxanthin.

  9. Reactions and structural investigation of chlorpromazine radical cation

    NASA Astrophysics Data System (ADS)

    Joshi, Ravi; Ghanty, Tapan K.; Mukherjee, T.

    2008-10-01

    Experimental and theoretical studies have been carried out to understand pro-oxidant behaviour of chlorpromazine radical cation (CPZ rad + ). Pulse radiolysis studies have shown that CPZ rad + oxidizes physiological antioxidants (uric acid and bilirubin), and biomolecules like, tyrosine and proteins (bovine serum albumin and casein), thereby acting as a pro-oxidant. Ab-initio quantum chemical calculations suggest structural and electronic changes on oxidation of CPZ. The calculations with Hartree-Fock and density functional methods show that ring nitrogen atom is the site of electron removal from CPZ and sulfur atom is the site of maximum spin in CPZ rad + . The calculations also suggest that oxidation of CPZ leads to increase in planarity of the tricyclic ring as well as tilting of alkyl side chain towards chlorine containing ring. The structural changes on oxidation of CPZ and spin delocalization in CPZ rad + fairly explain the pro-oxidant activity of CPZ.

  10. Spectroscopy of free-base N-confused tetraphenylporphyrin radical anion and radical cation.

    PubMed

    Alemán, Elvin A; Manríquez Rocha, Juan; Wongwitwichote, Wongwit; Godínez Mora-Tovar, Luis Arturo; Modarelli, David A

    2011-06-23

    The radical anions and radical cations of the two tautomers (1e and 1i) of 5,10,15,20-tetraphenyl N-confused free-base porphyrin have been studied using a combination of cyclic voltammetry, steady state absorption spectroscopy, and computational chemistry. N-Confused porphyrins (NCPs), alternatively called 2-aza-21-carba-5,10,15,20-tetraphenylporphyrins or inverted porphyrins, are of great interest for their potential as building blocks in assemblies designed for artificial photosynthesis, and understanding the absorption spectra of the corresponding radical ions is paramount to future studies in multicomponent arrays where electron-transfer reactions are involved. NCP 1e was shown to oxidize at a potential of E(ox) 0.65 V vs Fc(+)|Fc in DMF and reduce at E(red) -1.42 V, while the corresponding values for 1i in toluene were E(ox) 0.60 V and E(red) -1.64 V. The geometries of these radical ions were computed at the B3LYP/6-31+G(d)//B3LYP/6-31G(d) level in the gas phase and in solution using the polarizable continuum model (PCM). From these structures and that of H(2)TPP and its corresponding radical ions, the computed redox potentials for 1e and 1i were calculated using the Born-Haber cycle. While the computed reduction potentials and electron affinities were in excellent agreement with the experimental reduction potentials, the calculated oxidation potentials displayed a somewhat less ideal relationship with experiment. The absorption spectra of the four radical ions were also measured experimentally, with radical cations 1e(•+) and 1i(•+) displaying significant changes in the Soret and Q-band regions as well as new low energy absorption bands in the near-IR region. The changes in the absorption spectra of radical anions 1e(•-) and 1i(•-) were not as dramatic, with the changes occurring only in the Soret and Q-band regions. These results were favorably modeled using time-dependent density functional calculations at the TD-B3LYP/6-31+G(d)//B3LYP/6-31G

  11. Electronic spectra of the tetraphenylcyclobutadienecyclopentadienylnickel(II) cation and radical

    DOE PAGESBeta

    Peter R. Craig; Miller, John R.; Havlas, Zdenek; Trujillo, Marianela; Rempala, Pawel; Kirby, James P.; Noll, Bruce C.; Michl, Josef

    2016-05-02

    In this study, properties of the tetraphenylcyclobutadienecyclopentadienylnickel(II) cation 1 and its tetra-o-fluoro derivative 1a have been measured and calculated. The B3LYP/TZP optimized geometry of the free cation 1 agrees with a single-crystal X-ray diffraction structure except that in the crystal one of the phenyl substituents is strongly twisted to permit a close-packing interaction of two of its hydrogens with a nearby BF–4 anion. The low-energy parts of the solution electronic absorption and magnetic circular dichroism (MCD) spectra of 1 and 1a have been interpreted by comparison with TD-DFT (B3LYP/TZP) results. Reduction or pulse radiolysis lead to a neutral 19-electron radical,more » whose visible absorption and MCD spectra have been recorded and interpreted as well. The reduction is facilitated by ~0.1 V upon going from 1 to 1a« less

  12. Electronic Spectra of the Tetraphenylcyclobutadienecyclopentadienylnickel(II) Cation and Radical.

    PubMed

    Craig, Peter R; Havlas, Zdeněk; Trujillo, Marianela; Rempala, Pawel; Kirby, James P; Miller, John R; Noll, Bruce C; Michl, Josef

    2016-05-26

    Properties of the tetraphenylcyclobutadienecyclopentadienylnickel(II) cation 1 and its tetra-o-fluoro derivative 1a have been measured and calculated. The B3LYP/TZP optimized geometry of the free cation 1 agrees with a single-crystal X-ray diffraction structure except that in the crystal one of the phenyl substituents is strongly twisted to permit a close-packing interaction of two of its hydrogens with a nearby BF4(-) anion. The low-energy parts of the solution electronic absorption and magnetic circular dichroism (MCD) spectra of 1 and 1a have been interpreted by comparison with TD-DFT (B3LYP/TZP) results. Reduction or pulse radiolysis lead to a neutral 19-electron radical, whose visible absorption and MCD spectra have been recorded and interpreted as well. The reduction is facilitated by ∼0.1 V upon going from 1 to 1a. Unsuccessful attempts to prepare several other aryl substituted derivatives of 1 by the classical synthetic route are described in the Supporting Information . PMID:27136127

  13. Observation of radical cations by swiftness or by stealth.

    SciTech Connect

    Werst, D. W.; Trifunac, A. D.; Chemistry

    1998-01-01

    David W. Werst was born in Missouri and educated at the University of Missouri (B.S.) and the University of Minnesota (Ph.D.). His thesis work was carried out under the supervision of Paul Barbara and Ronald Gentry. He joined the Chemistry Division of Argonne National Laboratory in 1985 to conduct postdoctoral research in the group of Alexander Trifunac and has been a staff member of the Radiation and Photochemistry Group since 1989. His primary research interests are in the study of radical cation structure and reactivity and ionization processes in ordered and amorphous solids. Alexander D. Trifunac was born in Yugoslavia. He was educated at Columbia University (B.A.) and the University of Chicago (Ph.D.). His thesis work was on CIDNP, radical pair theory and experiments, with Gerhard L. Closs. He joined the Chemistry Division of Argonne National Laboratory in 1972 in a postdoctoral position. He is a senior scientist and is (since 1982) a group leader of the Radiation and Photochemistry Group. His research interests are in the study of chemistry of transient paramagnetic species involved in energy and charge-transfer processes occurring in radiolysis and in photoionization in liquids, glasses, and amorphous solids.

  14. Transient formation of the oxo-iron(IV) porphyrin radical cation during the reaction of iron(III) tetrakis-5,10,15,20-(N-methyl-4-pyridyl)porphyrin with hydrogen peroxide in aqueous solution.

    PubMed

    Saha, Tapan Kumar; Karmaker, Subarna; Tamagake, Keietsu

    2003-01-01

    The reaction of iron(III) tetrakis-5,10,15,20-(N-methyl-4-pyridyl)porphyrin (Fe(III)TMPyP) with hydrogen peroxide (H(2)O(2)) and the catalytic activity of the reaction intermediates on the luminescent peroxidation of luminol in aqueous solution were studied by using a double-mixing stopped-flow system. The observed luminescence intensities showed biphasic decay depending on the conditions. The initial flashlight decayed within <1 s followed by a sustained emission for more than 30 s. Computer deconvolution of the time-resolved absorption spectra under the same conditions revealed that the initial flashlight appeared during the formation of the oxo-iron(IV) porphyrin, TMPyPFe(IV) = O, which is responsible for the sustained emission. The absorption spectra 0.0-0.5 s did not reproduce well by a simple combination of the two spectra of Fe(III)TMPyP and TMPyPFe(IV) = O, indicating that transient species was formed at the initial stage. Addition of uric acid (UA) caused a significant delay in the initiation of the luminol emission as well as in the formation of the TMPyPFe(IV) = O. Both of them were completely diminished in the presence of UA equimolar with H(2)O(2), while mannitol had no effect at all. The delay of the light emission as well as the appearance of TMPyPFe(IV) = O was directly proportional to the [UA](0) but other kinetic profiles were not changed significantly. Based on these observations and the kinetic analysis, we confirmed the involvement of the oxo-iron(IV) porphyrin radical cation, (TMPyP)(.+)Fe(IV) = O, as an obligatory intermediate in the rate-determining step of the overall reaction, Fe(III)TMPyP + H(2)O(2) --> TMPyPFe(IV) = O, with a rate constant of k = 4.3 x 10(4)/mol/L/s. The rate constants for the reaction between the (TMPyP)(.+)Fe(IV) = O and luminol, and between the TMPyPFe(IV) = O and luminol were estimated to be 3.6 x 10(6)/mol/L/s and 1.31 x 10(4)/mol/L/s, respectively. PMID:12701092

  15. The chemistry of amine radical cations produced by visible light photoredox catalysis

    PubMed Central

    Hu, Jie; Wang, Jiang; Nguyen, Theresa H

    2013-01-01

    Summary Amine radical cations are highly useful reactive intermediates in amine synthesis. They have displayed several modes of reactivity leading to some highly sought-after synthetic intermediates including iminium ions, α-amino radicals, and distonic ions. One appealing method to access amine radical cations is through one-electron oxidation of the corresponding amines under visible light photoredox conditions. This approach and subsequent chemistries are emerging as a powerful tool in amine synthesis. This article reviews synthetic applications of amine radical cations produced by visible light photocatalysis. PMID:24204409

  16. Halogenated benzene radical cations and ground state degeneracy splitting by asymmetric substitution

    USGS Publications Warehouse

    Bondybey, V.E.; Vaughn, C.R.; Miller, T.A.; English, J.H.; Shiley, R.H.

    1981-01-01

    The absorption and laser induced fluorescence of several halogenated benzene radical cations were studied in solid Ne matrices. The spectra of 1,2,4-trifluorobenzene, l,3-dichloro-5-fluorobenzene, and l-chloro-3,5- difluorobenzene radical cations are observed and analyzed. Studies of fluorescence polarization and a photoselection technique were used to examine the splitting of the degeneracy of the benzene cation ground state by asymmetric subsitution. ?? 1981 American Institute of Physics.

  17. Novel Cβ-Cγ Bond Cleavages of Tryptophan-Containing Peptide Radical Cations

    NASA Astrophysics Data System (ADS)

    Song, Tao; Hao, Qiang; Law, Chun-Hin; Siu, Chi-Kit; Chu, Ivan K.

    2012-02-01

    In this study, we observed unprecedented cleavages of the Cβ-Cγ bonds of tryptophan residue side chains in a series of hydrogen-deficient tryptophan-containing peptide radical cations (M•+) during low-energy collision-induced dissociation (CID). We used CID experiments and theoretical density functional theory (DFT) calculations to study the mechanism of this bond cleavage, which forms [M - 116]+ ions. The formation of an α-carbon radical intermediate at the tryptophan residue for the subsequent Cβ-Cγ bond cleavage is analogous to that occurring at leucine residues, producing the same product ions; this hypothesis was supported by the identical product ion spectra of [LGGGH - 43]+ and [WGGGH - 116]+, obtained from the CID of [LGGGH]•+ and [WGGGH]•+, respectively. Elimination of the neutral 116-Da radical requires inevitable dehydrogenation of the indole nitrogen atom, leaving the radical centered formally on the indole nitrogen atom ([Ind]•-2), in agreement with the CID data for [WGGGH]•+ and [W1-CH3GGGH]•+; replacing the tryptophan residue with a 1-methyltryptophan residue results in a change of the base peak from that arising from a neutral radical loss (116 Da) to that arising from a molecule loss (131 Da), both originating from Cβ-Cγ bond cleavage. Hydrogen atom transfer or proton transfer to the γ-carbon atom of the tryptophan residue weakens the Cβ-Cγ bond and, therefore, decreases the dissociation energy barrier dramatically.

  18. High-level ab initio predictions for the ionization energy, electron affinity, and heats of formation of cyclopentadienyl radical, cation, and anion, C5H5/C5H5+/C5H5-.

    PubMed

    Lo, Po-Kam; Lau, Kai-Chung

    2014-04-01

    The ionization energy (IE), electron affinity (EA), and heats of formation (ΔH°f0/ΔH°f298) for cyclopentadienyl radical, cation, and anion, C5H5/C5H5(+)/C5H5(-), have been calculated by wave function-based ab initio CCSDT/CBS approach, which involves approximation to complete basis set (CBS) limit at coupled-cluster level with up to full triple excitations (CCSDT). The zero-point vibrational energy correction, core-valence electronic correction, scalar relativistic effect, and higher-order corrections beyond the CCSD(T) wave function are included in these calculations. The allylic [C5H5((2)A2)] and dienylic [C5H5((2)B1)] forms of cyclopentadienyl radical are considered: the ground state structure exists in the dienyl form and it is about 30 meV more stable than the allylic structure. Both structures are lying closely and are interconvertible along the normal mode of b2 in-plane vibration. The CCSDT/CBS predictions (in eV) for IE[C5H5(+)((3)A1')←C5H5((2)B1)] = 8.443, IE[C5H5(+)((1)A1)←C5H5((2)B1)] = 8.634 and EA[C5H5(-)((1)A1')←C5H5((2)B1)] = 1.785 are consistent with the respective experimental values of 8.4268 ± 0.0005, 8.6170 ± 0.0005, and 1.808 ± 0.006, obtained from photoelectron spectroscopic measurements. The ΔH°f0/ΔH°f298's (in kJ/mol) for C5H5/C5H5(+)/C5H5(-) have also been predicted by the CCSDT/CBS method: ΔH°f0/ΔH°f298[C5H5((2)B1)] = 283.6/272.0, ΔH°f0/ΔH°f298[C5H5(+)((3)A1')] = 1098.2/1086.9, ΔH°f0/ΔH°f298[C5H5(+)((1)A1)] = 1116.6/1106.0, and ΔH°f0/ΔH°f298[C5H5(-)((1)A1')] = 111.4/100.0. The comparisons between the CCSDT/CBS predictions and the experimental values suggest that the CCSDT/CBS procedure is capable of predicting reliable IE(C5H5)'s and EA(C5H5) with uncertainties of ± 17 and ± 23 meV, respectively. PMID:24621131

  19. Gas-phase electronic spectrum of the indole radical cation

    NASA Astrophysics Data System (ADS)

    Chalyavi, N.; Catani, K. J.; Sanelli, J. A.; Dryza, V.; Bieske, E. J.

    2015-08-01

    The visible and near-UV electronic spectrum of the indole radical cation is measured in the gas phase by photodissociation of indole+-Ar and indole+-He complexes in a tandem mass spectrometer. A series of resolved vibronic transitions extending from 610 to 460 nm are assigned to the D2 ← D0 band system, while weak transitions between 390 and 360 nm are assigned to the D3 ← D0 system, and a stronger, broad, unresolved absorption between 350 and 300 nm is attributed to the D4 ← D0 system. Time-dependent density functional theory calculations are used to assign vibronic structure of the D2 ← D0 band system, and show that the main active vibrational modes correspond to in-plane ring deformations. The strongest D2 ← D0 vibronic transitions of indole+-He do not correspond with any catalogued diffuse interstellar bands, even considering band displacements of up to 50 cm-1possibly caused by the attached He atom.

  20. Structure and Reactivity of the Distonic and Aromatic Radical Cations of Tryptophan

    NASA Astrophysics Data System (ADS)

    Piatkivskyi, Andrii; Osburn, Sandra; Jaderberg, Kendall; Grzetic, Josipa; Steill, Jeffrey D.; Oomens, Jos; Zhao, Junfang; Lau, Justin Kai-Chi; Verkerk, Udo H.; Hopkinson, Alan C.; Siu, K. W. Michael; Ryzhov, Victor

    2013-04-01

    In this work, we regiospecifically generate and compare the gas-phase properties of two isomeric forms of tryptophan radical cations—a distonic indolyl N-radical (H3N+ - TrpN•) and a canonical aromatic π (Trp•+) radical cation. The distonic radical cation was generated by nitrosylating the indole nitrogen of tryptophan in solution followed by collision-induced dissociation (CID) of the resulting protonated N-nitroso tryptophan. The π-radical cation was produced via CID of the ternary [CuII(terpy)(Trp)] •2+ complex. CID spectra of the two isomeric species were found to be very different, suggesting no interconversion between the isomers. In gas-phase ion-molecule reactions, the distonic radical cation was unreactive towards n-propylsulfide, whereas the π radical cation reacted by hydrogen atom abstraction. DFT calculations revealed that the distonic indolyl radical cation is about 82 kJ/mol higher in energy than the π radical cation of tryptophan. The low reactivity of the distonic nitrogen radical cation was explained by spin delocalization of the radical over the aromatic ring and the remote, localized charge (at the amino nitrogen). The lack of interconversion between the isomers under both trapping and CID conditions was explained by the high rearrangement barrier of ca.137 kJ/mol. Finally, the two isomers were characterized by infrared multiple-photon dissociation (IRMPD) spectroscopy in the ~1000-1800 cm-1 region. It was found that some of the main experimental IR features overlap between the two species, making their distinction by IRMPD spectroscopy in this region problematic. In addition, DFT theoretical calculations showed that the IR spectra are strongly conformation-dependent.

  1. Electronic absorption spectroscopy of polycyclic aromatic hydrocarbons (PAHs) radical cations generated in oleum: A superacid medium

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco; Iglesias-Groth, Susana; Manchado, Arturo

    2010-12-01

    Oleum (fuming sulphuric acid), a well known superacid, was used as medium for the generation of the radical cation of a series of selected PAHs. The resulting radical cation spectra were studied by electronic absorption spectroscopy. Not only common PAHs like naphthalene, anthracene, tetracene, pentacene, perylene, pyrene, benzo[ a]pyrene, phenanthrene and picene were studied but also the less common and very large PAHs relevant also for the astrochemical research, like coronene, hexabenzocoronene, quaterrylene, dicoronylene and a coronene oligomer. A correlation between the first ionization potential ( IP1) of the PAHs studied and the energy to the so-called A-type band of the radical cations observed in oleum has led to the equation IP1 = 1.30 EA + 4.39 (in eV) which permits to estimate the energy of the PAHs radical cation transition ( EA) in the VIS-NIR knowing the relative ionization potential or vice versa.

  2. Mechanistic Investigation of Phosphate Ester Bond Cleavages of Glycylphosphoserinyltryptophan Radical Cations under Low-Energy Collision-Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Quan, Quan; Hao, Qiang; Song, Tao; Siu, Chi-Kit; Chu, Ivan K.

    2013-04-01

    Under the conditions of low-energy collision-induced dissociation (CID), the canonical glycylphosphoserinyltryptophan radical cation having its radical located on the side chain of the tryptophan residue ([G p SW]•+) fragments differently from its tautomer with the radical initially generated on the α-carbon atom of the glycine residue ([G• p SW]+). The dissociation of [G• p SW]+ is dominated by the neutral loss of H3PO4 (98 Da), with backbone cleavage forming the [b2 - H]•+/y1 + pair as the minor products. In contrast, for [G p SW]•+, competitive cleavages along the peptide backbone, such as the formation of [G p SW - CO2]•+ and the [c2 + 2H]+/[z1 - H]•+ pair, significantly suppress the loss of neutral H3PO4. In this study, we used density functional theory (DFT) to examine the mechanisms for the tautomerizations of [G• p SW]+ and [G p SW]•+ and their dissociation pathways. Our results suggest that the dissociation reactions of these two peptide radical cations are more efficient than their tautomerizations, as supported by Rice-Ramsperger-Kassel-Marcus (RRKM) modeling. We also propose that the loss of H3PO4 from both of these two radical cationic tautomers is preferentially charge-driven, similar to the analogous dissociations of even-electron protonated peptides. The distonic radical cationic character of [G• p SW]+ results in its charge being more mobile, thereby favoring charge-driven loss of H3PO4; in contrast, radical-driven pathways are more competitive during the CID of [G p SW]•+.

  3. Novel Cβ-Cγ bond cleavages of tryptophan-containing peptide radical cations.

    PubMed

    Song, Tao; Hao, Qiang; Law, Chun-Hin; Siu, Chi-Kit; Chu, Ivan K

    2012-02-01

    In this study, we observed unprecedented cleavages of the C(β)-C(γ) bonds of tryptophan residue side chains in a series of hydrogen-deficient tryptophan-containing peptide radical cations (M(•+)) during low-energy collision-induced dissociation (CID). We used CID experiments and theoretical density functional theory (DFT) calculations to study the mechanism of this bond cleavage, which forms [M - 116](+) ions. The formation of an α-carbon radical intermediate at the tryptophan residue for the subsequent C(β)-C(γ) bond cleavage is analogous to that occurring at leucine residues, producing the same product ions; this hypothesis was supported by the identical product ion spectra of [LGGGH - 43](+) and [WGGGH - 116](+), obtained from the CID of [LGGGH](•+) and [WGGGH](•+), respectively. Elimination of the neutral 116-Da radical requires inevitable dehydrogenation of the indole nitrogen atom, leaving the radical centered formally on the indole nitrogen atom ([Ind](•)-2), in agreement with the CID data for [WGGGH](•+) and [W(1-CH3)GGGH](•+); replacing the tryptophan residue with a 1-methyltryptophan residue results in a change of the base peak from that arising from a neutral radical loss (116 Da) to that arising from a molecule loss (131 Da), both originating from C(β)-C(γ) bond cleavage. Hydrogen atom transfer or proton transfer to the γ-carbon atom of the tryptophan residue weakens the C(β)-C(γ) bond and, therefore, decreases the dissociation energy barrier dramatically. PMID:22135037

  4. Radical cations of sulfides and disulfides: An ESR study

    SciTech Connect

    Bonazzola, L.; Michaut, J.P.; Roncin, J.

    1985-09-15

    Exposure of dilute solutions of dimethylsulfide, methanethiol, tetrahydrothiophene, terbutyl and diterbutyl-sulfides, dimethyl-disulfide, and diterbutyldisulfide, in freon at 77 K to /sup 60/Co ..gamma.. rays gave the corresponding cations. From the reported ESR spectra, g tensors were obtained. It was found that both sulfide and disulfide cations exhibit the same g tensor: (g/sub max/ = 2.034 +- 0.002, g/sub int/ = 2.017 +- 0.001, g/sub min/ = 2.001 +- 0.005). From this result it has been shown that the disulfide cation is planar. This finding was supported by fully optimized geometry ab initio calculations.

  5. UV/Vis Action Spectroscopy and Structures of Tyrosine Peptide Cation Radicals in the Gas Phase.

    PubMed

    Viglino, Emilie; Shaffer, Christopher J; Tureček, František

    2016-06-20

    We report the first application of UV/Vis photodissociation action spectroscopy for the structure elucidation of tyrosine peptide cation radicals produced by oxidative intramolecular electron transfer in gas-phase metal complexes. Oxidation of Tyr-Ala-Ala-Ala-Arg (YAAAR) produces Tyr-O radicals by combined electron and proton transfer involving the phenol and carboxyl groups. Oxidation of Ala-Ala-Ala-Tyr-Arg (AAAYR) produces a mixture of cation radicals involving electron abstraction from the Tyr phenol ring and N-terminal amino group in combination with hydrogen-atom transfer from the Cα positions of the peptide backbone. PMID:27159034

  6. Low-temperature EPR and quantum chemical study of lactone radical cations and their transformations

    NASA Astrophysics Data System (ADS)

    Naumov, S.; Janovský, I.; Knolle, W.; Mehnert, R.; Turin, D. A.

    2005-07-01

    Radical cations of a number of lactones ( β-butyro-, γ-butyro-, γ-valero-, δ-hexano-, δ-valero- and ɛ-capro-) were radiolytically generated in CF 3CCl 3 matrix and investigated by EPR spectroscopy. The primary radical cation of the 4-membered ring β-butyrolactone is unstable even at 77 K and undergoes spontaneous ring opening and fragmentation, leading to the deprotonated neutral (CH 2CHCH 2) rad radical. The stability of the primary carbonyl-centred radical cations of the 5-, 6- and 7-membered lactone rings towards intramolecular H-shift from the C1 in α-position to carbonyl oxygen depends primarily on the ring size, which determines the activation energy of the transformation and distance L(H-O) of the carbonyl oxygen to the nearest H-atom on the ring. The larger the ring, the smaller the L(H-O) and also activation energy of the H-shift, making the transformation of the primary radical cation more feasible. The quantum chemical calculations facilitated the interpretation of the EPR spectra of the secondary radical cations.

  7. Comparing the gas-phase fragmentation reactions of protonated and radical cations of the tripeptides GXR

    NASA Astrophysics Data System (ADS)

    Wee, Sheena; O'Hair, Richard A. J.; McFadyen, W. David

    2004-05-01

    Electrospray ionization (ESI) mass spectrometry of methanolic solutions of mixtures of the copper salt (2,2':6',2''-terpyridine)copper(II) nitrate monohydrate ([Cu(II)(tpy)(NO3)2].H2O) and a tripeptide GXR (where X = 1 of the 20 naturally occurring amino acids) yielded [Cu(II)(tpy)(GXR)][radical sign]2+ ions, which were then subjected to collision induced dissociation (CID). In all but one case (GRR), these [Cu(II)(tpy)(GXR)][radical sign]2+ ions fragment to form odd electron GXR[radical sign]+ radical cations with sufficient abundance to examine their gas-phase fragmentation reactions. The GXR[radical sign]+ radical cations undergo a diverse range of fragmentation reactions which depend on the nature of the side chain of X. Many of these reactions can be rationalized as arising from the intermediacy of isomeric distonic ions in which the charge (i.e. proton) is sequestered by the highly basic arginine side chain and the radical site is located at various positions on the tripeptide including the peptide back bone and side chains. The radical sites in these distonic ions often direct the fragmentation reactions via the expulsion of small radicals (to yield even electron ions) or small neutrals (to form radical cations). Both classes of reaction can yield useful structural information, allowing for example, distinction between leucine and isoleucine residues. The gas-phase fragmentation reactions of the GXR[radical sign]+ radical cations are also compared to their even electron [GXR+H]+ and [GXR+2H]2+ counterparts. The [GXR+H]+ ions give fewer sequence ions and more small molecule losses while the [GXR+2H]2+ ions yield more sequence information, consistent with the [`]mobile proton model' described in previous studies. In general, all three classes of ions give complementary structural information, but the GXR[radical sign]+ radical cations exhibit a more diverse loss of small species (radicals and neutrals). Finally, links between these gas-phase results and key

  8. Generation and characterization of 1,2-diaryl-1,1,2,2-tetramethyldisilane cation radicals.

    PubMed

    Guirado, Gonzalo; Haze, Olesya; Dinnocenzo, Joseph P

    2010-05-21

    Nanosecond laser flash photolysis methods were used to generate and spectrally characterize the cation radicals of 1,2-diaryl-1,1,2,2,-tetramethyldisilanes (Ar = p-X-Ph, X = H, CH(3), OCH(3)) in hexafluoroisopropanol (HFIP) at room temperature. The disilane cation radicals rapidly reacted with methanol, with bimolecular rate constants ranging from 0.63 to 2.1 x 10(8) M(-1) s(-1). The cation radicals were found to react with tert-butanol 4-5 times more slowly than methanol, consistent with a small steric effect for nucleophile-assisted fragmentation of the Si-Si bond. The standard potentials for oxidation of the disilanes in HFIP were determined by two different methods: first, by measuring equilibrium constants for electron exchange between the disilanes and the cation radical of hexaethylbenzene and, second, by combining electrochemical data from cyclic voltammetry with the lifetimes of the disilane cation radicals measured by laser flash photolysis in the same media. Agreement between the two methods was excellent (

  9. Multistep π dimerization of tetrakis(n-decyl)heptathienoacene radical cations: a combined experimental and theoretical study.

    PubMed

    Ferrón, Cristina Capel; Capdevila-Cortada, Marçal; Balster, Russell; Hartl, František; Niu, Weijun; He, Mingqian; Novoa, Juan J; López Navarrete, Juan T; Hernández, Víctor; Ruiz Delgado, M Carmen

    2014-08-11

    Radical cations of a heptathienoacene α,β-substituted with four n-decyl side groups (D4T7(.) (+) ) form exceptionally stable π-dimer dications already at ambient temperature (Chem. Comm. 2011, 47, 12622). This extraordinary π-dimerization process is investigated here with a focus on the ultimate [D4T7(.) (+) ]2 π-dimer dication and yet-unreported transitory species formed during and after the oxidation. To this end, we use a joint experimental and theoretical approach that combines cyclic voltammetry, in situ spectrochemistry and spectroelectrochemistry, EPR spectroscopy, and DFT calculations. The impact of temperature, thienoacene concentration, and the nature and concentration of counteranions on the π-dimerization process is also investigated in detail. Two different transitory species were detected in the course of the one-electron oxidation: 1) a different transient conformation of the ultimate [D4T7(.) (+) ]2 π-dimer dications, the stability of which is strongly affected by the applied experimental conditions, and 2) intermediate [D4T7]2 (.) (+) π-dimer radical cations formed prior to the fully oxidized [D4T7]2 (.) (+) π-dimer dications. Thus, this comprehensive work demonstrates the formation of peculiar supramolecular species of heptathienoacene radical cations, the stability, nature, and structure of which have been successfully analyzed. We therefore believe that this study leads to a deeper fundamental understanding of the mechanism of dimer formation between conjugated aromatic systems. PMID:25043826

  10. Carbon-hydrogen vs. carbon-carbon bond cleavage of 1,2-diarylethane radical cations in acetonitrile-water

    SciTech Connect

    Camaioni, D.M.; Franz, J.A.

    1984-05-04

    Radical cations of 1,2-diarylethanes and 1-phenyl-2-arylethanes (Ar = phenyl, p-tolyl, p-anisyl) were generated in acidic 70% acetonitrile-water by Cu/sup 2 +/-catalyzed peroxydisulfate oxidation. The radical cations fragment mainly by loss of benzylic protons (C-H cleavage) rather than by alkyl C-C bond cleavage. The 1,2-diarylethanol products undergo further selective oxidation to aryl aldehydes and arylmethanols via rapid equilibration of diarylethane and diarylethanol radical cations. The radical cation of 2,3-dimethyl-2,3-diphenylbutane fragments efficiently by C-C cleavage, forming cumyl radical and cumyl cation. Oxidations of bibenzyl-bicumyl mixtures show selective oxidation of bicumyl dependent on total substrate concentration, providing evidence of equilibrating radical cations and showing that bicumyl fragments faster than bibenzyl loses protons. The effects of reaction conditions and substrate structure on reactivity are discussed.

  11. Calculation of structures and bond dissociation energies of radical cations: The importance of through-bond delocalization in bibenzylic systems

    SciTech Connect

    Camaioni, D.M. )

    1990-12-19

    Structures ad energies ({Delta}H{degree}{sub f}) of radical cations and their radical and cationic fragments have been calculated by use of AM1 semiempirical molecular orbital theory and compared with experimental data in the literature. Experimental {Delta}H{degree}{sub f} correlate linearly with calculated heats giving nonzero intercepts and nonunit slopes. The best correlations as judged by the variance of the fit are obtained when performed according to structure types, i.e., aromatic radical cations, alkane radical cations, radicals, and cations. These correlations enable corrections to AM1 values that allow prediction of experimental {Delta}H{degree}{sub f} with uncertainties that approach experimental uncertainties. Used in this way, AM1 can augment experimental thermochemical data and enable confident predictions of reaction enthalpies. Bibenzylic radical cations are calculated to have charge and sin localized in only one of the aromatic rings ether through space or through the ethylenic bond are found.

  12. Theoretical study of second-order hyperpolarizability for nitrogen radical cation

    NASA Astrophysics Data System (ADS)

    Tarazkar, Maryam; Romanov, Dmitri A.; Levis, Robert J.

    2015-05-01

    We report calculations of the static and dynamic hyperpolarizabilities of the nitrogen radical cation in doublet state. The electronic contributions were computed analytically using density functional theory and multi-configurational self-consistent field method with extended basis sets for non-resonant excitation. The open-shell electronic system of nitrogen radical cation provides negative second-order optical nonlinearity, suggesting that the hyperpolarizability coefficient, {{γ }(2)}, in the non-resonant regime is mainly composed of combinations of virtual one-photon transitions rather than two-photon transitions. The second-order optical properties of nitrogen radical cation have been calculated as a function of bond length starting with the neutral molecular geometry (S0 minimum) and stretching the N-N triple bond, reaching the ionic D0 relaxed geometry all the way toward dissociation limit, to investigate the effect of internuclear bond distance on second-order hyperpolarizability.

  13. Stability of phenol and thiophenol radical cations - interpretation by comparative quantum chemical approaches

    NASA Astrophysics Data System (ADS)

    Hermann, R.; Naumov, S.; Mahalaxmi, G. R.; Brede, O.

    2000-07-01

    The deprotonation kinetics of phenol-type radical cations, formed via a very efficient electron transfer in the pulse radiolysis of non-polar solutions, for example n-chlorobutane, is governed mainly by electronic effects due to the nature of the phenol substituents, whereas steric effects are of minor importance; thiophenols, which are sulphur analogues of phenols, exhibit a similar behavior. Comparative quantum chemical calculations show that the calculated spin densities at the hetero atoms correlate well with the experimentally determined radical cation lifetimes. Not only the Density Functional Theory (DTF) B3LYP but also the semiempirical quantum chemical model PM3 can be applied for the open shell systems mentioned.

  14. Spin Manipulation by Creation of Single-Molecule Radical Cations

    NASA Astrophysics Data System (ADS)

    Karan, Sujoy; Li, Na; Zhang, Yajie; He, Yang; Hong, I.-Po; Song, Huanjun; Lü, Jing-Tao; Wang, Yongfeng; Peng, Lianmao; Wu, Kai; Michelitsch, Georg S.; Maurer, Reinhard J.; Diller, Katharina; Reuter, Karsten; Weismann, Alexander; Berndt, Richard

    2016-01-01

    All-trans-retinoic acid (ReA), a closed-shell organic molecule comprising only C, H, and O atoms, is investigated on a Au(111) substrate using scanning tunneling microscopy and spectroscopy. In dense arrays single ReA molecules are switched to a number of states, three of which carry a localized spin as evidenced by conductance spectroscopy in high magnetic fields. The spin of a single molecule may be reversibly switched on and off without affecting its neighbors. We suggest that ReA on Au is readily converted to a radical by the abstraction of an electron.

  15. On the time behaviour of the concentration of pyrazinium radical cations in the early stage of the Maillard reaction

    NASA Astrophysics Data System (ADS)

    Stoesser, Reinhard; Klein, Jeannette; Peschke, Simone; Zehl, Andrea; Cämmerer, Bettina; Kroh, Lothar W.

    2007-08-01

    During the early stage of the Maillard reaction pyrazinium radical cations were detected by ESR within the reaction system D-glucose/glycine. The spectra were characterized by completely resolved hyperfine structure. The partial pressure of oxygen and the radical concentrations were measured directly in the reaction mixture by ESR using solutions of the spin probe TEMPOL and of DPPH, respectively. There are quantitative and qualitative relations of the actual concentration of the radical ions to the partial pressure of oxygen, the temperature-time regime and the mechanical mixing of the reaction system. These macroscopic parameters significantly affect both the induction period and the velocity of the time-dependent formation of free radicals. From in situ variations of p(O 2) and p(Ar) including the connected mixing effects caused by the passing the gases through the reaction mixture, steric and chemical effects of the stabilization of the radical ions were established. The determination of suitable and relevant conditions for stabilization and subsequent radical reactions contributes to the elucidation of the macroscopically known antioxidant activity of Maillard products.

  16. Spectroscopy and decay dynamics of several methyl-and fluorine-substituted benzene radical cations

    USGS Publications Warehouse

    Bondybey, V.E.; Vaughn, C.; Miller, T.A.; English, J.H.; Shiley, R.H.

    1981-01-01

    Spectra of several fluorobenzene cation radicals containing 1-3 methyl substituents were observed in solid Ne matrix and analyzed. Comparisons between these compounds and other fluorobenzenes studied previously as well as comparisons between the B?? state lifetimes in the gas phase and in the matrix are used to gain a deeper insight into the B?? state decay dynamics. ?? 1981 American Chemical Society.

  17. Participation of cationic intermediates in radical-induced homopolymerization of maleic anhydride

    SciTech Connect

    Gaylord, N.G.; Koo, J.Y.

    1981-03-01

    Since the failure to promote MAH polymerization in the presence of amine-containing redox catalyst systems suggested the presence of cationic intermediates, the radical-induced polymerization of MAH was carried out in the absence and in the presence of N,N-dimethylformamide (DMF) and N, N-dimethylaniline (DMA).

  18. Gas phase regioselectivity in the deprotonation of p-cresol radical cation

    NASA Astrophysics Data System (ADS)

    Chiavarino, B.; Crestoni, M. E.; Fornarini, S.

    2003-04-01

    The deprotonation of the radical cation of p-cresol, a model of tyrosine residues, has been studied kinetically in the gas phase. The reaction has revealed the operation of competitive deprotonation sites depending on the strength of the base, as shown by an FT-ICR study using d-labelling.

  19. Isomerization of 4-vinylcyclohexene radical cation. A tandem mass spectrometry study

    SciTech Connect

    Vollmer, D.; Rempel, D.L.; Gross, M. L. ); Williams, F. )

    1995-02-08

    Investigation by matrix-isolation ESR has shown that 4-vinylcyclohexene, 1, surprisingly undergoes isomerization to the bicyclo[3.2.1]oct-2-ene ion, 3. Here we demonstrate the occurrence of this isomerization in the gas phase by use of tandem (MS/MS) sector and Fourier transform (FT) mass spectrometries. The radical cations of 4-vinylcyclohexene (IE = 8.93 eV) or bicyclo[3.2.1]oct-2-ene (approximately 14 kcal/mol more stable than that of 4-vinylcyclohexene) were formed, in separate trials, in a chemical ionization (CI) source by electron ionization (EI). The radical cations were then studied by obtaining their collisionally activated decomposition (CAD) spectra. The CAD spectra are similar, indicating that the isomerization has occurred. Both the sector and the FT mass spectrometer results reflect those obtained in the matrix-isolation ESR investigation. That is isomerizes to 3 at high internal energy, but is stable at low internal energy. Two mechanisms explain this rearrangement. The second mechanism is questionable because the most stable olefin radical cation formed from 5 is that of bicyclo[2.2.2]-2-octene, which gives different ESR and CAD spectra than those of 1 or 3. The CAD spectrum of bicyclo[2.2.2]-2-octene radical cation indicates that the retro-Diels-Alder loss of ethylene is more facile than that from 1 or 3. 18 refs., 3 figs.

  20. Chronoamperometric study of the films formed by 4,4'-bipyridyl cation radical salts on mercury in the presence of iodide ions: consecutive two-dimensional phase transitions.

    PubMed

    Gómez, L; Ruiz, J J; Camacho, L; Rodríguez-Amaro, R

    2005-01-01

    This paper reports a new mathematical model for consecutive two-dimensional phase transitions that accounts for the chronoamperometric behavior observed in the formation of electrochemical phases by 4,4'-bipyridyl cation radical (BpyH(2)(*)(+)) on mercury in aqueous iodide solutions. Also, a new interpretation for the induction time is proposed. PMID:15620326

  1. Isomerization and dissociation of n-butylbenzene radical cation.

    PubMed

    Halbert, Stéphanie; Bouchoux, Guy

    2012-02-01

    Fragmentation mechanisms of ionized butylbenzene to give m/z 91 and m/z 92 fragment ions have been examined at the G3B3 and G3MP2B3 levels of theory. It is shown that the energetically favored pathways lead to tropylium, Tr(+), and methylene-2,4-cyclohexadiene, MCD(•+), ions. Formation of m/z 91 benzyl ions, Bz(+), by a simple bond fission (SBF) process, needs about 30 kJ/mol more energy than Tr(+). Possible formation of C(7)H(8)(•+) ions of structures different from the retro-ene rearrangement (RER) product, MCD(•+), has been also considered. Comparison with experimental data of this "thermometer" system is done through a kinetic modeling using Rice-Ramsperger-Kassel-Marcus (RRKM) and orbiting transition state (OTS) rate constant calculations on the G3MP2B3 0 K energy surface. The results agree with previous experimental observation if (i) the competitive formation of Tr(+) and Bz(+) is taken into account in the m/z 91 pathway, and (ii) the stepwise character of the RER fragmentation is introduced in the m/z 92 fragmentation route. PMID:22229805

  2. Ground and Excited-Electronic-State Dissociations of Hydrogen-Rich and Hydrogen-Deficient Tyrosine Peptide Cation Radicals

    NASA Astrophysics Data System (ADS)

    Viglino, Emilie; Lai, Cheuk Kuen; Mu, Xiaoyan; Chu, Ivan K.; Tureček, František

    2016-09-01

    We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H]+● and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS3 dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%-94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in CuII(2,2 ':6 ',2 ″-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR]+● that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates.

  3. Ground and Excited-Electronic-State Dissociations of Hydrogen-Rich and Hydrogen-Deficient Tyrosine Peptide Cation Radicals.

    PubMed

    Viglino, Emilie; Lai, Cheuk Kuen; Mu, Xiaoyan; Chu, Ivan K; Tureček, František

    2016-09-01

    We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H](+●) and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS(3) dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%-94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in Cu(II)(2,2':6',2″-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR](+●) that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates. Graphical Abstract ᅟ. PMID:27278824

  4. Ground and Excited-Electronic-State Dissociations of Hydrogen-Rich and Hydrogen-Deficient Tyrosine Peptide Cation Radicals

    NASA Astrophysics Data System (ADS)

    Viglino, Emilie; Lai, Cheuk Kuen; Mu, Xiaoyan; Chu, Ivan K.; Tureček, František

    2016-06-01

    We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H]+● and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS3 dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%-94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in CuII(2,2':6',2″-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR]+● that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates.

  5. Photo-excitation of adenine cation radical [A•+] in the near UV-vis region produces sugar radicals in Adenosine and in its nucleotides

    PubMed Central

    Adhikary, Amitava; Khanduri, Deepti; Kumar, Anil; Sevilla, Michael D.

    2011-01-01

    In this study, we report the formation of ribose sugar radicals in high yields (85 – 100%) via photo-excitation of adenine cation radical (A•+) in Ado and its ribonucleotides. Photo-excitation of A•+ at low temperatures in homogenous aqueous glassy samples of Ado, 2′-AMP, 3′-AMP and 5′-AMP forms sugar radicals predominantly at C5′- and also at C3′-sites. The C5′• and C3′• sugar radicals were identified employing Ado deuterated at specific carbon sites: C1′, C2′, and at C5′. Phosphate substitution is found to deactivate sugar radical formation at the site of substitution. Thus, in 5′-AMP, C3′• is observed to be the main radical formed via photo-excitation at ca. 143 K whereas in 3′-AMP, C5′• is the only species found. These results were supported by results obtained employing 5′-AMP with specific deuteration at C5′-site (i.e., 5′,5′-D,D-5′-AMP). Moreover, contrary to the C5′• observed in 3′-dAMP, we find that C5′• in 3′-AMP shows a clear pH dependent conformational change as evidenced by a large increase in the C4′ β–hyperfine coupling on increasing the pH from 6 to 9. Calculations performed employing DFT (B3LYP/6-31G*) for C5′• in 3′-AMP show that the two conformations of C5′• result from strong hydrogen bond formation between the O5′-H and the 3′-phosphate dianion at higher pHs. Employing time-dependent density functional theory [TD-DFT, B3LYP/6-31G(d)] we show that in the excited state, the hole transfers to the sugar moiety and has significant hole localization at the C5′-site in a number of allowed transitions. This hole localization is proposed to lead to the formation of the neutral C5′-radical (C5′•) via deprotonation. PMID:19367991

  6. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates.

    PubMed

    Cheng, Hong; Liang, Ran; Han, Rui-Min; Zhang, Jian-Ping; Skibsted, Leif H

    2014-02-01

    The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k2 = 3.2 × 10(9) L mol(-1) s(-1) in 9 : 1 v/v chloroform-methanol at 23 °C, less efficiently by the anion of salicylic acid with 2.2 × 10(8) L mol(-1) s(-1), but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations. PMID:24336797

  7. Multi-state vibronic interactions in the 1,2,3-trifluorobenzene radical cation.

    PubMed

    Faraji, Shirin; Köppel, Horst

    2012-12-14

    The multi-state and multi-mode vibronic interactions between the five lowest electronic states of the title compound are investigated theoretically by an ab initio quantum dynamical approach. The well-established linear vibronic coupling scheme is adopted, augmented by quadratic coupling terms for the totally symmetric modes. The pertinent system parameters are obtained from outer valence Greens function and equation-of-motion coupled-cluster ab initio calculations. Large-scale quantum dynamical simulations are performed employing a powerful wavepacket propagation scheme. The band shapes and line structures (as far as available) of the experimental photoelectron spectra are well reproduced. Time-dependent electronic populations reveal ultrafast internal conversion processes and allow for important insight into the fluorescence properties of the radical cation. The relation to other fluoro derivatives of the benzene radical cation is discussed. PMID:23249068

  8. Hydroxyl radical formation during peroxynitrous acid decomposition

    SciTech Connect

    Coddington, J.W.; Hurst, J.K.; Lymar, S.V.

    1999-03-24

    Yields of O{sub 2} formed during decomposition of peroxynitrous acid (ONOOH) under widely varying medium conditions are compared to predictions based upon the assumption that the reaction involves formation of discrete {sm{underscore}bullet}OH and {sm{underscore}bullet}NO{sub 2} radicals as oxidizing intermediates. The kinetic model used includes all reactions of {sm{underscore}bullet}OH, {sm{underscore}bullet}O{sub 2}{sup {minus}}, and reactive nitrogen species known to be important under the prevailing conditions; because the rate constants for all of these reactions have been independently measured, the calculations contain no adjustable fitting parameters. The model quantitatively accounts for (1) the complex pH dependence of the O{sub 2} yields and (2) the unusual effects of NO{sub 2} {sup {minus}}, which inhibits O{sub 2} formation in neutral, but not alkaline, solutions and also reverses inhibition by organic {sm{underscore}bullet}OH scavengers in alkaline media. Other observations, including quenching of O{sub 2} yields by ferrocyanide and bicarbonate, the pressure dependence of the decomposition rate, and the reported dynamic behavior for O{sub 2} generation in the presence of H{sub 2}O{sub 2}, also appear to be in accord with the suggested mechanism. Overall, the close correspondence between observed and calculated O{sub 2} yields provides strong support for decomposition via homolysis of the ONOOH peroxo bond.

  9. Electronic structures, vibrational spectra, and revised assignment of aniline and its radical cation: Theoretical study

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Piotr M.; Zierkiewicz, Wiktor; Michalska, Danuta; Hobza, Pavel

    2003-06-01

    Comprehensive studies of the molecular and electronic structures, vibrational frequencies, and infrared and Raman intensities of the aniline radical cation, C6H5NH2+ have been performed by using the unrestricted density functional (UB3LYP) and second-order Møller-Plesset (UMP2) methods with the extended 6-311++G(df,pd) basis set. For comparison, analogous calculations were carried out for the closed-shell neutral aniline. The studies provided detailed insight into the bonding changes that take place in aniline upon ionization. The natural bond orbital (NBO) analysis has revealed that the pπ-radical conjugative interactions are of prime importance in stabilizing the planar, quinoid-type structure of the aniline radical cation. It is shown that the natural charges calculated for aniline are consistent with the chemical properties of this molecule (an ortho- and para-directing power of the NH2 group in electrophilic substitutions), whereas Mulliken charges are not reliable. The theoretical vibrational frequencies of aniline, calculated by the B3LYP method, show excellent agreement with the available experimental data. In contrast, the MP2 method is deficient in predicting the frequencies of several modes in aniline, despite the use of the extended basis set in calculations. The frequencies of aniline radical cation, calculated at the UB3LYP/6-311++G(df,pd) level, are in very good agreement with the recently reported experimental data from zero kinetic energy photoelectron and infrared depletion spectroscopic studies. The clear- cut assignment of the IR and Raman spectra of the investigated molecules has been made on the basis of the calculated potential energy distributions. Several bands in the spectra have been reassigned. It is shown that ionization of aniline can be easily identified by the appearance of the very strong band at about 1490 cm-1, in the Raman spectrum. The redshift of the N-H stretching frequencies and the blueshift of the C-H stretching

  10. Mechanistic Examination of Cβ–Cγ Bond Cleavages of Tryptophan Residues during Dissociations of Molecular Peptide Radical Cations

    SciTech Connect

    Song, Tao; Ma, Ching-Yung; Chu, Ivan K.; Siu, Chi-Kit; Laskin, Julia

    2013-02-14

    In this study, we used collision-induced dissociation (CID) to examine the gas-phase fragmentations of [GnW]•+ (n = 2-4) and [GXW]•+ (X = C, S, L, F, Y, Q) species. The Cβ–Cγ bond cleavage of a C-terminal decarboxylated tryptophan residue ([M - CO2]•+) can generate [M - CO2 - 116]+, [M - CO2 - 117]•+, and [1H-indole]•+ (m/z 117) species as possible product ions. Competition between the formation of [M - CO2 - 116]+ and [1H-indole]•+ systems implies the existence of a proton-bound dimer formed between the indole ring and peptide backbone. Formation of such a proton-bound dimer is facile via a protonation of the tryptophan γ-carbon atom as suggested by density functional theory (DFT) calculations. DFT calculations also suggested the initially formed ion 2--the decarboxylated species that is active against Cβ–Cγ bond cleavage -can efficiently isomerize to form a more-stable -radical isomer (ion 9) as supported by Rice-Ramsperger-Kassel-Marcus (RRKM) modeling. The Cβ–Cγ bond cleavage of a tryptophan residue also can occur directly from peptide radical cations containing a basic residue. CID of [WGnR]•+ (n = 1-3) radical cations consistently resulted in predominant formation of [M-116]+ product ions. It appears that the basic arginine residue tightly sequesters the proton and allows the charge-remote Cβ–Cγ bond cleavage to prevail over the charge-directed one. DFT calculations predicted the barrier for the former is 6.2 kcal mol -1 lower than that of the latter. Furthermore, the pathway involving a salt-bridge intermediate also was accessible during such a bond cleavage event.

  11. Triarylporphyrin meso-Oxy Radicals: Remarkable Chemical Stabilities and Oxidation to Oxophlorin π-Cations.

    PubMed

    Shimizu, Daiki; Oh, Juwon; Furukawa, Ko; Kim, Dongho; Osuka, Atsuhiro

    2015-12-16

    5-Hydroxy-10,15,20-triarylporphyrin (oxophlorin) and its Ni(II) and Zn(II) complexes were oxidized with PbO2 to give the corresponding porphyrin meso-oxy radicals as remarkably stable species. These radicals were fully characterized with X-ray diffraction analysis, UV/vis/NIR absorption and ESR spectroscopies, magnetic susceptibility measurement, electrochemical studies, and theoretical calculations. Free-base radical and its Ni(II) complex have been shown to exist as a monoradical in solution, while the Zn(II) complex exists in an equilibrium between monomer (doublet monoradical) and dimer (a non-Kekulé singlet biradicaloid) with a dimerization constant of KD = 3.0 × 10(5) M(-1) in noncoordinating CH2Cl2 but becomes a pyridine-coordinated monoradical upon addition of pyridine. Variable temperature magnetic susceptibility measurements of these radicals revealed different magnetic interactions in the solid-states, which has been interpreted in terms of their different packing structures in a microscopic sense. These radicals undergo one-electron oxidation and reduction in a reversible manner within narrow potential windows of 0.57-0.82 V. Finally, one-electron oxidation of Ni(II) and Zn(II) porphyrin meso-oxy radicals with tris(4-bromophenyl)aminium hexachloroantimonate furnished oxophlorin π-cations, which displayed nonaromatic closed-shell character, NIR absorption, and significant double bond character of the C-O bond. PMID:26609815

  12. Radical formation and radiation damage in adamantane

    SciTech Connect

    Lloyd, R.V.; DiGregorio, S.; DiMauro, L.; Wood, D.E.

    1980-10-30

    Unequivocal samples of the 1-adamantyl (1-Ad) and 2-Ad radicals have been prepared in a matrix of adamantane (Ad) by the simultaneous deposition of atomic sodium, 1- or 2-bromoadamantane, and adamantance at 77 K. The EPR spectrum of the 1-Ad radical contrary to previous reports has a clearly resolved hyperfine structure that can be analyzed in terms of the solution parameters of Krusic et al., and the spectrum of the 2-Ad radical is identical with that previously reported by Ferrell et al. It is also shown that conditions of purification and irradiation can greatly affect the spectra obtained upon X irradiation of Ad itself. Depending upon conditions, alicyclic radicals that are primary products of ring-opening reactions or benzylic-type radicals that are probably secondary reaction products can also be obtained in addition to 1-Ad and 2-Ad radicals.

  13. Solvent effects on the resonance Raman spectra of bacteriochlorophyll a cation radical

    NASA Astrophysics Data System (ADS)

    Misono, Yasuhito; Nishizawa, Ei-ichi; Limantara, Leenawaty; Koyama, Yasushi; Itoh, Koichi

    1995-04-01

    Resonance Raman (RR) spectra were measured for the cation radical of bacteriochlorophyll a in acetone, methanol, dichloromethane and mixed solvents of acetone and methanol. The ring-breathing (C a-C m stretching) frequency of the radical (abbreviated as vr+) was observed at 1601 cm -1 in acetone (forming a penta-coordinated monomer), at 1587 cm -1 in a methanol (forming a hexa-coordinated monomer) and at 1600 cm -1 in dichloromethane (forming a penta-coordinated aggregate). The RR spectrum of the radical in dichloromethane is almost identical to the transient RR spectrum ascribed to 'the aggregated T 1 species of Bchl a' formed in the particular solvent by Nishizawa, Limantara, Nanjou, Nagae, Kakuno and Koyama, indicating that their interpretation needs to be revised.

  14. External electric field promotes proton transfer in the radical cation of adenine-thymine

    NASA Astrophysics Data System (ADS)

    Zhang, Guiqing; Xie, Shijie

    2016-07-01

    According to pKa measurements, it has been predicted that proton transfer would not occur in the radical cation of adenine-thymine (A:T). However, recent theoretical calculations indicate that proton transfer takes place in the base pair in water below the room temperature. We have performed simulations of proton transfer in the cation of B-DNA stack composed of 10 A:T base pairs in water from 20 K to 300 K. Proton transfer occurs below the room temperature, meanwhile it could also be observed at the room temperature under the external electric field. Another case that interests us is that proton transfer bounces back after ˜300 fs from the appearance of proton transfer at low temperatures.

  15. Spin-coupling in ferric metalloporphyrin radical cation complexes: Mössbauer and susceptibility studies

    NASA Astrophysics Data System (ADS)

    Lang, George; Boso, Brian; Erler, Brian S.; Reed, Christopher A.

    1986-03-01

    The ferric metalloporphyrin π-radical cation complexes Fe(III) (OClO3)2 (TPP.) and [Fe(III) Cl (TPP.)] [SbCl6] were examined in microcrystalline form by Mössbauer spectroscopy and magnetic susceptometry over a range of temperatures and applied fields. All measurements on the six-coordinate Fe(OClO3)2 (TPP.) were consistent with isolated molecules having an S=5/2 iron site with zero field splitting (12 cm-1) S2z that is ferromagnetically coupled to the S=1/2 porphyrin radical by an energy term (-110 cm-1) Sṡs. Thus the ground state is overall spin-3. In the five-coordinate [FeCl (TPP.)] [SbCl6] the susceptibility is in reasonable agreement with the results of a calculation based on zero field splitting (12 cm-1) S2z for the S=5/2 iron and antiferromagnetic coupling (200 cm-1) Sṡs with the radical to give an overall spin-2 ground state. However, the Mössbauer measurements require a more complicated model having the same large intramolecular iron-radical coupling, a smaller zero field splitting (3 cm-1) S2z, and weak intermolecular antiferromagnetic coupling between heme pairs given by (32 cm-1) s1ṡs2 or, equivalently, (0.65 cm-1) S1ṡS2. A slightly improved correspondence with the measured susceptibility results. The intermolecular antiferromagnetic coupling probably results from crystallization of the [FeCl (TPP.)]+ cations in face-to-face dimers as observed in other closely related five-coordinate iron (III) porphyrins.

  16. Efficient radical cation stabilization of PANI-ZnO and PANI-ZnO-GO composites and its optical activity

    NASA Astrophysics Data System (ADS)

    Mathavan, T.; Divya, A.; Archana, J.; Ramasubbu, A.; Benial, A. Milton Franklin; Jothirajan, M. A.

    2016-05-01

    Polyaniline (PANI) and its composites PANI-ZnO (Zinc oxide) and PANI-ZnO-GO (Graphene oxide) were successfully constructed. These materials were characterized by electron spin resonance (ESR) technique and ultraviolet visible spectrometry. The parameters such as line width, g-factor and spin concentration were deduced from ESR spectra, from the results the radical cation stabilization of PANI, PANI-ZnO and PANI-ZnO-GO composites were compared by the polaron and bipolaron formation. The absorption features obtained in the UV absorption spectra reveal the band gap of these modified PANI composites and also predicted the information of increasing and decreasing features of signal intensity and spin concentration.

  17. Topological and spectroscopic study of three-electron bonded compounds as models of radical cations of methionine-containing dipeptides

    NASA Astrophysics Data System (ADS)

    Fourré, Isabelle; Bergès, Jacqueline; Braïda, Benoît; Houée-Levin, Chantal

    2008-12-01

    Small models of radical cations of methionine-containing dipeptides, which are stabilized by formation of two-centre three-electron (2c-3e) S∴X bonds (X = S, N and O), were investigated at the BH&HLYP/6-31G(d) level and by means of topological tools. The SX distance is not so important for stability but the relative orientation of both fragments is. The AIM and ELF topological analyses shows that the nature of the S∴X bond varies with X, from purely 2c-3e in S∴S + entities to electrostatic in S∴O + ones. The σSX → σSX∗ wavelengths, obtained at the TD-BH&HLYP/cc-pVTZ level, strongly depend on X and on conformation.

  18. Hg(2+) -induced in situ generated radical cation of (S)-BINOL-based polymer for highly enantioselective recognition of phenylalaninol.

    PubMed

    Jiao, Jiemin; Li, Fei; Zhang, Shuwei; Quan, Yiwu; Zheng, Wenhua; Cheng, Yixiang; Zhu, Chengjian

    2014-08-01

    Phenylalaninol enantiomers are one of the most important chiral compounds due to its presence in biologically active molecules and pharmaceutical products. In this paper, a novel chiral fluorescence polymer sensor incorporating (S)-BINOL and oligomeric aniline via a nucleophilic addition-elimination reaction is designed and synthesized. Polymer sensor exhibits "turn-off" fluorescence quenching response upon the addition of Hg(2+) , and "turn-on" moderate fluorescence enhancement behavior towards phenylalaninol enantiomers. Meanwhile, this kind of (S)-BINOL-based polymer sensor can exhibit highly selective enantioselective recognition response towards (L)-phenylalaninol upon the addition of Hg(2+) and the value of ef can reach as high as 5.4, which can be attributed to the formation of in situ generated radical cation arisen from oligomeric aniline moiety by Hg(2+) induction. PMID:25048009

  19. Calmodulin Methionine Residues are Targets For One-Electron Oxidation by Hydroxyl Radicals: Formation of S therefore N three-electron bonded Radical Complexes

    SciTech Connect

    Nauser, Thomas; Jacoby, Michael E.; Koppenol, Willem H.; Squier, Thomas C.; Schoneich, Christian

    2005-02-01

    The one-electron (1e) oxidation of organic sulfides and methionine (Met) constitutes an important reaction mechanism in vivo.1,2 Evidence for a Cu(II)-catalyzed oxidation of Met35 in the Alzheimer's disease -amyloid peptide was obtained,3 and, based on theoretical studies, Met radical cations were proposed as intermediates.4 In the structure of -amyloid peptide, the formation of Met radical cations appears to be facilitated by a preexisting close sulfur-oxygen (S-O) interaction between the Met35 sulfur and the carbonyl oxygen of the peptide bond C-terminal to Ile31.5 Substitution of Ile31 with Pro31 abolishes this S-O interaction,5 significantly reducing the ability of -amyloid to reduce Cu(II), and converts the neurotoxic wild-type -amyloid into a non-toxic peptide.6 The preexisting S-O bond characterized for wild-type -amyloid suggests that electron transfer from Met35 to Cu(II) is supported through stabilization of the Met radical cation by the electron-rich carbonyl oxygen, generating an SO-bonded7 sulfide radical cation (Scheme 1, reaction 1).5

  20. Characterizing radiation-induced oxidation of DNA by way of the monohydrated guanine-cytosine radical cation.

    PubMed

    Jaeger, Heather M; Schaefer, Henry F

    2009-06-11

    The interaction of one water molecule with the guanine-cytosine radical cation has been studied with ab initio and density functional methods in order to help elucidate the nature of oxidized aqueous DNA. The theoretical spin density of [GC]*(+) reveals that the radical center is localized on guanine. The adiabatic ionization potential lowers from 7.63 to 6.71 eV in concurrence with the formation of the Watson-Crick base pair and hydration by one water molecule. A natural bond orbital analysis of partial charges shows that approximately 80% of the positive charge persists on guanine upon hydration and formation of the Watson-Crick base pair with cytosine. Hydration energies were computed with second-order Z-averaged perturbation theory (ZAPT2) using the aug-cc-pVDZ basis set at 11 stationary points on the B3LYP/DZP++ potential energy surface. The hydration energy at the global minimum is 14.2 kcal mol(-1). The lowest energy structures correspond to hydration near the glycosidic bond sites. Structural changes in the Watson-Crick base pair are predominantly seen for monohydration in the groove regions of double-helix DNA. PMID:19445496

  1. Oxygen-18 tracer studies of enzyme reactions with radical/cation diagnostic probes

    SciTech Connect

    Moe, Luke A.; Fox, Brian G. . E-mail: bgfox@biochem.wisc.edu

    2005-12-09

    This review considers reactions of enzymes with the cyclopropanoid radical/cation diagnostic probes norcarane, 1,1-dimethylcyclopropane, and 1,1-diethylcyclopropane as elaborated by the use of {sup 18}O{sub 2} and {sup 18}OH{sub 2} to trace the origin of O-atoms incorporated during catalysis. The reactions of soluble and integral membrane diiron enzymes are summarized and compared to results obtained from cytochrome P450 studies. Norcarane proved to be an excellent substrate for the diiron enzyme toluene 4-monooxygenase and its engineered isoforms, with k {sub cat} and coupling between NADH utilization and total hydroxylated products comparable to that determined for toluene, the natural substrate. Results obtained with toluene 4-monooxygenase show that the un-rearranged and radical-rearranged alcohol products have a high percentage of O-atom incorporation (>80-95%) from O{sub 2}, while the cation-derived ring-expansion products have O-atom incorporation primarily derived from solvent water. Mechanistic possibilities accounting for this difference are discussed.

  2. Internal rotation of the methyl group in the radical cation of dimethyl ether

    NASA Astrophysics Data System (ADS)

    Matsushita, Michio; Momose, Takamasa; Shida, Tadamasa

    1990-04-01

    The radical cation of dimethyl ether has been studied by ESR in the temperature region of 6-140 K for focusing on the internal rotation of the methyl groups. The methyl groups rotate almost freely at above 70 K to give a septet ESR spectrum. At temperatures below 40 K there emerge extra lines due to the tunneling rotation of the methyl groups. From the analysis of the line shape, the interaction potential for the rotation of the two methyl groups, if any, should be approximated as proportional to cos 3theta1 cos 3theta2, where theta1 and theta2 denote the rotational angles of the methyl groups measured from the potential minima of the internal rotation of the methyl groups. The activation energy for the thermally induced internal rotation is determined to be about 100 cal/mol at temperatures above 25 K, whereas at lower temperatures the apparent activation energy drops sharply, which is consistent with the quantum tunneling of the methyl protons. The small activation energy of 100 cal/mol for the radical cation is compatible with the result of ab initio MO calculation for the potential barrier.

  3. Collision cross-sections of [C,H,O] cations and radical cations from aliphatic [C,H,O] compounds

    NASA Astrophysics Data System (ADS)

    van Houte, J. J.; van Thuijl, J.

    1994-05-01

    Over 260 collision cross-section [sigma]ot, expressed in »ngströms squared, have been determined for the studied ions at 20 and 70 eV by extrapolation of [sigma]t to zero target gas pressure, and these yield two types of structural information. The first type concerns occurrence and detection of cyclic ions, the second isomerization of parent molecular ions and different product ion distributions at 20 and 70 eV. In addition, examples of two distinct fragmentation mechanisms operative in the formation of identical daughter ions from a given precursor could be traced. Formation of cyclic daughter ions is, for instance, observed for C2H3O+ from oxirane, C3H5O+ from oxetane, C4H7O+2 from 4-methyl-1,3-dioxolane. Cyclic molecular ions are formed in varying proportions from oxirane, tetrahydrofuran, 2- and 4-methyl-1,3-dioxolane but not from porpylene oxide, oxetane and 1,3-dioxolane. Isomerization of the parent molecular ion is proposed for the following fragmentations: CH2 from allyl alcohol, CHO2+ from formic acid, C2H2O·+ from oxirane, and C3H6O·+ from 3-methyl butanal and 2-methyl pentanal. Different product ion distributions at 20 and 70 eV were found for C3H5O+ from ethyl propionate and 2-pentanone, C2H4O·+ and C4H8O·+ from butane-1,3-diol, and C3H6O·+ from 2- and 4-methyl-1,3-dioxolane. Two distinct fragmentation mechanisms were traced for the following processes: CH2OH, C2H2O·+ and C2H3O+ from methyl vinyl ether, CH2 and C2H5O+ from butane-1,3-diol and C2H2O·+ from butanone. Self protonation of acetaldehyde also appears to take place by two mechanisms. Energy partitioning is evident in the formation of formyl cations HCO+ but wears off for processes in which larger daughter ions are formed. For formyl cations from straight chain aldehydes, the 70 eV collision cross-section is linearly related to the logarithm of the reciprocal of the number of degrees of freedom in the parent molcule, log (1/DFp). One example of a proton-bound dimer is given, that of

  4. Gas-phase reactions of aryl radicals with 2-butyne: experimental and theoretical investigation employing the N-methyl-pyridinium-4-yl radical cation.

    PubMed

    Lam, A K Y; Li, C; Khairallah, G; Kirk, B B; Blanksby, S J; Trevitt, A J; Wille, U; O'Hair, R A J; da Silva, G

    2012-02-21

    Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH(3)C≡CCH(3)) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH(3) loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP+2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C(4) side-chain, followed by cyclization and/or low-energy H atom β-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph˙)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH(3) loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid

  5. COMPUTATIONAL STUDY OF INTERSTELLAR GLYCINE FORMATION OCCURRING AT RADICAL SURFACES OF WATER-ICE DUST PARTICLES

    SciTech Connect

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2012-07-20

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH{sup .} radical and H{sub 3}O{sup +} surface defects. The coupling of incoming CO molecules with the surface OH{sup .} radicals on the ice clusters yields the formation of the COOH{sup .} radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol{sup -1} and -22 kcal mol{sup -1}, respectively. The COOH{sup .} radicals couple with incoming NH=CH{sub 2} molecules (experimentally detected in the ISM) to form the NHCH{sub 2}COOH{sup .} radical glycine through energy barriers of 12 kcal mol{sup -1}, exceedingly high at ISM cryogenic temperatures. Nonetheless, when H{sub 3}O{sup +} is present, one proton may be barrierless transferred to NH=CH{sub 2} to give NH{sub 2}=CH{sub 2}{sup +}. This latter may react with the COOH{sup .} radical to give the NH{sub 2}CH{sub 2}COOH{sup +.} glycine radical cation which can then be transformed into the NH{sub 2}CHC(OH){sub 2}{sup +.} species (the most stable form of glycine in its radical cation state) or into the NH{sub 2}CHCOOH{sup .} neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh

  6. Cytochrome c catalyses the formation of pentyl radical and octanoic acid radical from linoleic acid hydroperoxide.

    PubMed Central

    Iwahashi, Hideo; Nishizaki, Koji; Takagi, Ichiro

    2002-01-01

    A reaction of 13-hydroperoxide octadecadienoic acid (13-HPODE) with cytochrome c was analysed using ESR, HPLC-ESR and HPLC-ESR-MS by the combined use of the spin-trapping technique. The ESR, HPLC-ESR and HPLC-ESR-MS analyses showed that cytochrome c catalyses formation of pentyl and octanoic acid radicals from 13-HPODE. On the other hand, only the alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone/octanoic acid radical adduct was detected in the elution profile of HPLC-ESR for a mixture of 13-HPODE with haematin, indicating that haematin catalyses the formation of octanoic acid radical. In addition, the reaction of 13-HPODE with cytochrome c was inhibited by chlorogenic acid, caffeic acid and ferulic acid via two possible mechanisms, i.e. reducing cytochrome c (chlorogenic acid and caffeic acid) and scavenging the radical intermediates (chlorogenic acid, caffeic acid and ferulic acid). PMID:11742529

  7. Single-Crystal X-ray Structures of conductive π-Stacking Dimers of Tetrakis(alkylthio)benzene Radical Cations.

    PubMed

    Chen, Xiaoyu; Gao, Feng; Yang, Wuqin

    2016-01-01

    Salts containing radical cations of 1,2,4,5-tetrakis(isopropylthio)benzene (TPB) and 1,2,4,5-tetrakis(ethylthio) benzene (TEB) have been successfully synthesized with . These newly synthesized salts have been characterized by UV-Vis absorption, EPR spectroscopy, conductivity measurement, single crystal X-ray diffraction analysis as well as DFT calculation. This study raises the first crystal structure of conductive π-stacking radical cation with single phenyl ring and reveals their conductivity has relationship with the stack structure which affected by the substituent. PMID:27403720

  8. Single-Crystal X-ray Structures of conductive π-Stacking Dimers of Tetrakis(alkylthio)benzene Radical Cations

    PubMed Central

    Chen, Xiaoyu; Gao, Feng; Yang, Wuqin

    2016-01-01

    Salts containing radical cations of 1,2,4,5-tetrakis(isopropylthio)benzene (TPB) and 1,2,4,5-tetrakis(ethylthio) benzene (TEB) have been successfully synthesized with . These newly synthesized salts have been characterized by UV-Vis absorption, EPR spectroscopy, conductivity measurement, single crystal X-ray diffraction analysis as well as DFT calculation. This study raises the first crystal structure of conductive π-stacking radical cation with single phenyl ring and reveals their conductivity has relationship with the stack structure which affected by the substituent. PMID:27403720

  9. Single-Crystal X-ray Structures of conductive π-Stacking Dimers of Tetrakis(alkylthio)benzene Radical Cations

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyu; Gao, Feng; Yang, Wuqin

    2016-07-01

    Salts containing radical cations of 1,2,4,5-tetrakis(isopropylthio)benzene (TPB) and 1,2,4,5-tetrakis(ethylthio) benzene (TEB) have been successfully synthesized with . These newly synthesized salts have been characterized by UV-Vis absorption, EPR spectroscopy, conductivity measurement, single crystal X-ray diffraction analysis as well as DFT calculation. This study raises the first crystal structure of conductive π-stacking radical cation with single phenyl ring and reveals their conductivity has relationship with the stack structure which affected by the substituent.

  10. Evidence for radical formation at Tyr-353 in Mycobacterium tuberculosis catalase-peroxidase (KatG).

    PubMed

    Zhao, Xiangbo; Girotto, Stefania; Yu, Shengwei; Magliozzo, Richard S

    2004-02-27

    Mycobacterium tuberculosis KatG is a heme-containing catalase-peroxidase responsible for activation, through its peroxidase cycle, of the front line antituberculosis antibiotic isoniazid (isonicotinic acid hydrazide). Formation of Compound I (oxyferryl heme-porphyrin pi-cation radical), the classical peroxidase intermediate generated when the resting enzyme turns over with alkyl peroxides, is rapidly followed by production of a protein-centered tyrosyl radical in this enzyme. In our efforts to identify the residue at which this radical is formed, nitric oxide was used as a radical scavenging reagent. Quenching of the tyrosyl radical generated in the presence of NO was shown using electron paramagnetic resonance spectroscopy, and formation of nitrotyrosine was confirmed by proteolytic digestion followed by high performance liquid chromatography analysis of the NO-treated enzyme. These results are consistent with formation of nitrosyltyrosine by addition of NO to tyrosyl radical and oxidation of this intermediate to nitrotyrosine. Two predominant nitrotyrosine-containing peptides were identified that were purified and sequenced by Edman degradation. Both peptides were derived from the same M. tuberculosis KatG sequence spanning residues 346-356 with the amino acid sequence SPAGAWQYTAK, and both peptides contained nitrotyrosine at residue 353. Some modification of Trp-351 most probably into nitrosotryptophan was also found in one of the two peptides. Control experiments using denatured KatG or carried out in the absence of peroxide did not produce nitrotyrosine. In the mutant enzyme KatG(Y353F), which was constructed using site-directed mutagenesis, a tyrosyl radical was also formed upon turnover with peroxide but in poor yield compared with wild-type KatG. Residue Tyr-353 is unique to M. tuberculosis KatG and may play a special role in the function of this enzyme. PMID:14665627

  11. Jahn-Teller and pseudo-Jahn-Teller effects in trifluoromethane radical cation

    NASA Astrophysics Data System (ADS)

    Ghanta, Susanta

    2016-08-01

    Jahn-Teller (JT) and pseudo-Jahn-Teller (PJT) effects in the ground, first and second excited electronic states of the trifluoromethane radical cation are theoretically examined here. Extensive ab initio computation of electronic potential energy surfaces and their coupling surfaces are performed. Full quantum dynamics are obtained by both time-independent and time-dependent quantum mechanical methods. This system belongs to (E+A)⊗e JT-PJT family. Our results compare well with the experimental data. JT interactions are fairly strong in the second excited B˜2 E electronic state and the PJT interaction between A˜2A2 - B˜2 E electronic states is stronger which cause an increase of the spectral line density of the vibronic spectrum.

  12. Aqueous oxidation of sulfonamide antibiotics: aromatic nucleophilic substitution of an aniline radical cation.

    PubMed

    Tentscher, Peter R; Eustis, Soren N; McNeill, Kristopher; Arey, J Samuel

    2013-08-19

    Sulfonamide antibiotics are an important class of organic micropollutants in the aquatic environment. For several, sulfur dioxide extrusion products have been previously reported upon photochemical or dark oxidation. Using quantum chemical modeling calculations and transient absorption spectroscopy, it is shown that single-electron oxidation from sulfadiazine produces the corresponding aniline radical cation. Density functional theory calculations indicate that this intermediate can exist in four protonation states. One species exhibits a low barrier for an intramolecular nucleophilic attack at the para position of the oxidized aniline ring, in which a pyrimidine nitrogen acts as a nucleophile. This attack can lead to a rearranged structure, which exhibits the same connectivity as the SO2 -extruded oxidation product that was previously observed in the aquatic environment and characterized by NMR spectroscopy. We report a detailed reaction mechanism for this intramolecular aromatic nucleophilic substitution, and we discuss the possibility of this reaction pathway for other sulfonamide drugs. PMID:23828254

  13. Excited state properties of the astaxanthin radical cation: A quantum chemical study

    NASA Astrophysics Data System (ADS)

    Dreuw, Andreas; Starcke, Jan Hendrik; Wachtveitl, Josef

    2010-07-01

    Using time-dependent density functional theory, the excited electronic states of the astaxanthin radical cation (AXT rad + ) are investigated. While the optically allowed excited D 1 and D 3 states are typical ππ∗ excited states, the D 2 and D 4 states are nπ∗ states. Special emphasis is put onto the influence of the carbonyl groups onto the excited states. For this objective, the excited states of four hypothetical carotenoids and zeaxanthin have been computed. Addition of a carbonyl group to a conjugated carbon double bond system does essentially not change the vertical excitation energies of the optically allowed ππ∗ states due to two counter-acting effects: the excitation energy should increase due to the -M-effect of the carbonyl group and at the same time decrease owing to the elongation of the conjugated double bond system by the carbonyl group itself.

  14. Excited states and electrochromism of radical cation of the carotenoid astaxanthin

    NASA Astrophysics Data System (ADS)

    Krawczyk, Stanisław

    1998-09-01

    Radical cations of the carotenoid astaxanthin were generated by chemical oxidation with Fe(Cl) 3, and their absorption and electroabsorption (Stark) spectra at temperatures about 150 K were recorded in the spectral range from 5900 to 26000 cm -1 (380 to 1700 nm), covering two absorptive electronic transitions from D 0 (ground) to D 1 and D 2 excited states. The changes in static polarizability are negative and equal -40±10 A 3 for D 0→D 1 and -105±15 A 3 for D 0→D 2, pointing that dominant contribution to polarizabilities results from the coupling of D 1 and D 2 with the ground state. An approximate localization of the next excited state with ground-state parity is estimated based on arguments from perturbation theory.

  15. Spontaneous Superlattice Formation in Nanorods through PartialCation Exchange

    SciTech Connect

    Robinson, Richard D.; Sadtler, Bryce; Demchenko, Denis O.; Erdonmez, Can K.; Wang, Lin-Wang; Alivisatos, A. Paul

    2007-03-14

    Lattice mismatch strains are widely known to controlnanoscale pattern formation in heteroepitaxy, but such effects have notbeen exploited in colloidal nanocrystal growth. We demonstrate acolloidal route to synthesizing CdS-Ag2S nanorod superlattices throughpartial cation exchange. Strain induces the spontaneous formation ofperiodic structures. Ab initio calculations of the interfacial energy andmodeling of strain energies show that these forces drive theself-organization. The nanorod superlattices exhibit high stabilityagainst ripening and phase mixing. These materials are tunablenear-infrared emitters with potential applications as nanometer-scaleoptoelectronic devices.

  16. The mechanism of the retro-Diels-Alder reaction in 4-vinylcyclohexene cation radical

    NASA Astrophysics Data System (ADS)

    Pancíř, J.; Tureček, F.

    1984-06-01

    Butadiene cation radicals are produced symmetrically from the ring and side-chain of the vinylcyclohexene cation radical near the onset of the fragmentation. The appearance energies of C 4H 6+- and C 4H 2D 4+- from (3,3,6,6-D 4)vinylcyclohex ene were measured as 11.07 ± 0.05 and 11.06 ± 0.06 eV, respectively. This sets the barrier to retro-Diels-Alder decomposition at 1140 kJ mol -1 above the energy of 1 and 44 kJ mol -1 above the thermochemical threshold corresponding to C 4H 6+- + C 4H 6. Topological molecular orbital calculations indicate that this lowest-energy path involves a sequential rupture of the C 3C 4 and C 5C 6 bonds, with a calculated barrier of 211 kJ mol -1. The second, two-step reaction channel proceeds by subsequent fission of the C 5C 6 and C 3C 4 bonds with a barrier of 299 kJ mol -1. This channel is found experimentally as a break on the ionization efficiency curve at 12.1 eV. Both the supra-supra and the supra-antara pericyclic reactions go through energy maxima and are therefore forbidden. The supra-supra process is the most favorable route for decomposition from the first excited state, the activation energy being 333 kJ mol -1. The preference for the two-step mechanism is due to hyperconjugative stabilization of intermediate molecular configurations.

  17. Synthesis, Physical Properties and Reactivity of Stable Antiaromatic 1,4-DIHYDROPYRAZINES and Their Associated Radical Cations

    NASA Astrophysics Data System (ADS)

    Brook, David James Rawsthorne

    oxidation resulted in cleavage of the pyrazine ring and in trifluoroacetic acid only the DDTTA radical cation was observed as an oxidation product. With iron carbonyls, HTTA produced an unstable pi coordinated intermediate, detected by NMR spectroscopy. This decomposed to give an insoluble iron carbonyl with stoichiometry Fe_{5 }(CO)_{8}. With cobalt and manganese carbonyls, reaction resulted in the formation of 4.9, probably through metal-hydrido intermediates. Reaction of DDTTA with tetracyanoquinodimathane (TCNQ) results in three phases of composition DDTTA(TCNQ)_ {2}, two of which were characterised by single crystal X-ray diffraction, the third by X-ray powder diffraction. The materials are semiconductors with infinite TCNQ stacks. HTTA also gave a TCNQ salt of composition HTTAcdotTCNQcdotCH _{3}CN with the TCNQ molecules arranged in discrete dimers. Magnetic properties of the TCNQ salts along with the trifluoracetate and tetraphenyl borate salts of DDTTA^{+} were investigated. These suggest that the hydrogen bonded arrangement of DDTTA cations within the P1 form of DDTTA(TCNQ) _{2} give rise to short range ferromagnetic interactions between cations.

  18. Simultaneous electrochemical and electron paramagnetic resonance studies of carotenoid cation radicals and dications

    SciTech Connect

    Khaled, M.; Hadjipetrou, A.; Kispert, L.D. ); Allendoerfer, R.D. )

    1991-03-21

    Comproportionation equilibrium constants have been determined from simultaneous electrochemical and EPR measurements for the carotenoid cation radicals (CAR{sup {sm bullet}+}) and dications (CAR {sup 2+}) of {beta}-carotene (1), {beta}-apo-8{prime}-carotenal (2), and canthaxanthin (3). K(1){sub com} = 2.4 {times} 10{sup {minus}2}, K{sub com}(2) = 1.8 {times} 10{sup {minus}2}, K{sub com}(3) = 2.1 {times} 10{sup 3}. These indicated that, upon oxidation of 3, 96% CAR{sup {sm bullet}+} would be formed while 99.7% CAR{sup 2+} would be formed for 1 and 2 if the oxidation potential was 100 mV anodic of the first observed voltammetric wave. This explains the reason for the strong EPR spectrum observed for 3 and the weak EPR spectra observed for 1 and 2. Rotating disk experiments confirm that oxidation of carotenoids occurs by an EE rather than by an ECE mechanism and are highly quasireversible systems. The second oxidation peak in the CV spectrum of 2 has been shown not to be due to a dication analogous to the CV of 3 but to a radical apparently from the oxidation of a decay product of the dication from 2.

  19. One-electron oxidation of alcohols by the 1,3,5-trimethoxybenzene radical cation in the excited state during two-color two-laser flash photolysis.

    PubMed

    Cai, Xichen; Sakamoto, Masanori; Fujitsuka, Mamoru; Majima, Tetsuro

    2007-03-15

    One-electron oxidation of alcohols such as methanol, ethanol, and 2-propanol by 1,3,5-trimethoxybenzene radical cation (TMB*+) in the excited state (TMB*+*) was observed during the two-color two-laser flash photolysis. TMB*+ was formed by the photoinduced bimolecular electron-transfer reaction from TMB to 2,3,5,6-tetrachlorobenzoquinone (TCQ) in the triplet excited-state during the first 355-nm laser flash photolysis. Then, TMB*+* was generated from the selective excitation of TMB*+ during the second 532 nm laser flash photolysis. Hole transfer rate constants from TMB*+* to methanol, ethanol, and 2-propanol were calculated to be (5.2 +/- 0.5) x 10(10), (1.4 +/- 0.3) x 10(11), and (3.2 +/- 0.6) x 10(11) M-1 s-1, respectively. The order of the hole transfer rate constants is consistent with oxidation potentials of alcohol. Formation of TCQH radical (TCQH*) with a characteristic absorption peak at 435 nm was observed in the microsecond time scale, suggesting that deprotonation of the alcohol radical cation occurs after the hole transfer and that TCQ radical anion (TCQ*-), generated together with TMB*+ by the photoinduced electron-transfer reaction, reacts with H+ to give TCQH*. PMID:17295459

  20. On the dissociation of the naphthalene radical cation: new iPEPICO and tandem mass spectrometry results.

    PubMed

    West, Brandi; Joblin, Christine; Blanchet, Valerie; Bodi, Andras; Sztáray, Bálint; Mayer, Paul M

    2012-11-15

    The dissociation of the naphthalene radical cation has been reinvestigated here by a combination of tandem mass spectrometry and imaging photoelectron photoion coincidence spectroscopy (iPEPICO). Six reactions were explored: (R1) C(10)H(8)(•+) → C(10)H(7)(+) + H (m/z = 127); (R2) C(10)H(8)(•+) → C(8)H(6)(•+) + C(2)H(2) (m/z = 102); (R3) C(10)H(8)(•+) → C(6)H(6)(•+) + C(4)H(2) (m/z = 78); (R4) C(10)H(8)(•+) → C(10)H(6)(•+) + H(2) (m/z = 126); (R5) C(10)H(7)(+) → C(6)H(5)(+) + C(4)H(2) (m/z = 77); (R6) C(10)H(7)(+) → C(10)H(6)(•+) + H (m/z = 126). The E(0) activation energies for the reactions deduced from the present measurements are (in eV) 4.20 ± 0.04 (R1), 4.12 ± 0.05 (R2), 4.27 ± 0.07 (R3), 4.72 ± 0.06 (R4), 3.69 ± 0.26 (R5), and 3.20 ± 0.13 (R6). The corresponding entropies of activation, ΔS(‡)(1000K), derived in the present study are (in J K(-1) mol(-1)) 2 ± 2 (R1), 0 ± 2 (R2), 4 ± 4 (R3), 11 ± 4 (R4), 5 ± 15 (R5), and -19 ± 11 (R6). The derived E(0) value, combined with the previously reported IE of naphthalene (8.1442 eV) results in an enthalpy of formation for the naphthyl cation, Δ(f)H°(0K) = 1148 ± 14 kJ mol(-1)/Δ(f)H°(298K) = 1123 ± 14 kJ mol(-1) (site of dehydrogenation unspecified), slightly lower than the previous estimate by Gotkis and co-workers. The derived E(0) for the second H-loss leads to a Δ(f)H° for ion 7, the cycloprop[a]indene radical cation, of Δ(f)H°(0K) =1457 ± 27 kJ mol(-1)/Δ(f)H°(298K)(C(10)H(6)(+)) = 1432 ± 27 kJ mol(-1). Detailed comparisons are provided with values (experimental and theoretical) available in the literature. PMID:23088182

  1. Radical formation in the coma from photodissociation of ice grains

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Gerth, Christopher

    1990-01-01

    Long ago visual observations of comets suggested that there are jets in comets but it has only been recently that A'Hearn et al. have proven that some of these jets are due to emission from the CN radical. Recent studies in the lab have shown that CN radicals can be ejected directly into the gas phase from the photolysis of frozen vapors if the parent molecular has been excited to repulsive excited state. This later observation suggests that the jets that have been observed may be due to photodissociation of icy grains in the coma. A theory of radical formation from icy grains is presented. It is shown that direct formation of free radicals in the coma is an effective way to produce radicals from icy grains in the coma. The model predicts that icy grains could produce from 6 to 800,000 OH radicals/s per grain depending upon whether the radius of the grain is 0.3 to 100 micron.

  2. Formation of ions and radicals from icy grains in comets

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Gerth, Christopher; Hendricks, Charles

    1991-01-01

    Ion and radical formation in comets are thought to occur primarily by photodissociation of gas phase molecules. Experimental evidence and theoretical calculations are presented that show that some of the radical and ions can come directly from ice grains. The experimental evidence suggest that if the frozen molecules on the surface of grains undergo direct dissociation then they may be able to release radicals directly in the gas phase. If the molecules undergo predissociation it is unlikely that they will release radicals in the gas phase since they should be quenched. Calculations of this direct photodissociation mechanism further indicate that even if the parent molecule undergoes direct dissociation, the yield will not be high enough to explain the rays structure in comets unless the radicals are stored in the grains and then released when the grain evaporates. Calculations were also performed to determine the maximum number of ions that can be stored in an icy grain's radius. This number is compared with the ratio of the ion to neutral molecular density. The comparison suggests that some of the ions observed near the nucleus of the comet could have originally been present in the cometary nucleus. It is also pointed out that the presence of these ions in icy grains could lead to radical formation via electron recombination. Finally, an avalanche process was evaluated as another means of producing ions in comets.

  3. Synthesis of the iron phthalocyaninate radical cation μ-nitrido dimer and its interaction with hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Grishina, E. S.; Makarova, A. S.; Kudrik, E. V.; Makarov, S. V.; Koifman, O. I.

    2016-03-01

    The iron phthalocyaninate μ-nitrido dimer radical cation, as well as the μ-nitrido dimer complexes of iron phthalocyaninate, was found to have high catalytic activity in the oxidation of organic compounds. It was concluded that this compound is of interest as a model of active intermediates—catalase and oxidase enzymes.

  4. Review: Formation of Peptide Radical Ions Through Dissociative Electron Transfer in Ternary Metal-Ligand-Peptide Complexes

    SciTech Connect

    Chu, Ivan K.; Laskin, Julia

    2011-12-31

    The formation and fragmentation of odd-electron ions of peptides and proteins is of interest to applications in biological mass spectrometry. Gas-phase redox chemistry occurring during collision-induced dissociation of ternary metal-ligand-peptide complexes enables the formation of a variety of peptide radicals including the canonical radical cations, M{sup +{sm_bullet}}, radical dications, [M{sup +}H]{sup 2+{sm_bullet}}, radical anions, [M-2H]{sup -{sm_bullet}}. In addition, odd-electron peptide ions with well-defined initial location of the radical site are produced through side chain losses from the radical ions. Subsequent fragmentation of these species provides information on the role of charge and the location of the radical site on the competition between radical-induced and proton-driven fragmentation of odd-electron peptide ions. This account summarizes current understanding of the factors that control the efficiency of the intramolecular electron transfer (ET) in ternary metal-ligand-peptide complexes resulting in formation of odd-electron peptide ions. Specifically, we discuss the effect of the metal center, the ligand and the peptide structure on the competition between the ET, proton transfer (PT), and loss of neutral peptide and neutral peptide fragments from the complex. Fundamental studies of the structures, stabilities, and the energetics and dynamics of fragmentation of such complexes are also important for detailed molecular-level understanding of photosynthesis and respiration in biological systems.

  5. Reactions of 5-methylcytosine cation radicals in DNA and model systems: thermal deprotonation from the 5-methyl group vs. excited state deprotonation from sugar

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Palmer, Brian J.; Todd, Andrew D.; Heizer, Alicia N.; Sevilla, Michael D.

    2014-01-01

    Purpose To study the formation and subsequent reactions of the 5-methyl-2′-deoxycytidine cation radical (5-Me-2′-dC•+) in nucleosides and DNA-oligomers and compare to one electron oxidized thymidine. Materials and methods Employing electron spin resonance (ESR), cation radical formation and its reactions were investigated in 5-Me-2′-dC, thymidine (Thd) and their derivatives, in fully double stranded (ds) d[GC*GC*GC*GC*]2 and in the 5-Me-C/A mismatched, d[GGAC*AAGC:CCTAATCG], where C* = 5-Me-C. Results We report 5-Me-2′-dC•+ production by one-electron oxidation of 5-Me-2′-dC by Cl2•− via annealing in the dark at 155 K. Progressive annealing of 5-Me-2′-dC•+ at 155 K produces the allylic radical (C-CH2•). However, photoexcitation of 5-Me-2′-dC•+ by 405 nm laser or by photoflood lamp leads to only C3′• formation. Photoexcitation of N3-deprotonated thyminyl radical in Thd and its 5′-nucleotides leads to C3′• formation but not in 3′-TMP which resulted in the allylic radical (U-CH2•) and C5′• production. For excited 5-Me-2′,3′-ddC•+, absence of the 3′-OH group does not prevent C3′• formation. For d[GC*GC*GC*GC*]2 and d[GGAC*AAGC:CCTAATCG], intra-base paired proton transferred form of G cation radical (G(N1-H)•:C(+H+)) is found with no observable 5-Me-2′-dC•+ formation. Photoexcitation of (G(N1-H)•:C(+H+)) in d[GC*GC*GC*GC*]2 produced only C1′• and not the expected photoproducts from 5-Me-2′-dC•+. However, photoexcitation of (G(N1-H)•:C(+H+)) in d[GGAC*AAGC:CCTAATCG] led to C5′• and C1′• formation. Conclusions C-CH2• formation from 5-Me-2′-dC•+ occurs via ground state deprotonation from C5-methyl group on the base. In the excited 5-Me-2′-dC•+ and 5-Me-2′,3′-ddC•+, spin and charge localization at C3′ followed by deprotonation leads to C3′• formation. Thus, deprotonation from C3′ in the excited cation radical is kinetically controlled and sugar C-H bond energies are

  6. Cationic PAMAM Dendrimers Aggressively Initiate Blood Clot Formation

    PubMed Central

    Jones, Clinton F.; Campbell, Robert A.; Brooks, Amanda E.; Assemi, Shoeleh; Tadjiki, Soheyl; Thiagarajan, Giridhar; Mulcock, Cheyanne; Weyrich, Andrew S.; Brooks, Benjamin D.; Ghandehari, Hamidreza; Grainger, David W.

    2012-01-01

    Poly(amidoamine) (PAMAM) dendrimers are increasingly studied as model nanoparticles for a variety of biomedical applications, notably in systemic administrations. However, with respect to blood contacting applications, amine-terminated dendrimers have recently been shown to activate platelets and cause a fatal, disseminated intravascular coagulation (DIC)-like condition in mice and rats. We here demonstrate that, upon addition to blood, cationic G7 PAMAM dendrimers induce fibrinogen aggregation, which may contribute to the in vivo DIC-like phenomenon. We demonstrate that amine-terminated dendrimers act directly on fibrinogen in a thrombin-independent manner to generate dense, high-molecular-weight fibrinogen aggregates with minimal fibrin fibril formation. In addition, we hypothesize this clot-like behavior is likely mediated through electrostatic interactions between the densely charged cationic dendrimer surface and negatively charged fibrinogen domains. Interestingly, cationic dendrimers also induced aggregation of albumin, suggesting that many negatively charged blood proteins may be affected by cationic dendrimers. To investigate this further, zebrafish embryos (ZFE) were employed to more specifically determine the speed of this phenomenon and the pathway- and dose-dependency of the resulting vascular occlusion phenotype. These novel findings show that G7 PAMAM dendrimers significantly and adversely impact many blood components to produce rapid coagulation and strongly suggest that these effects are independent of classic coagulation mechanisms. These results also strongly suggest the need to fully characterize amine-terminated PAMAM dendrimers in regards to their adverse effects on both coagulation and platelets, which may contribute to blood toxicity. PMID:23062017

  7. Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays.

    PubMed

    Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Zhu, Yunqing; Wang, Chuanyi

    2016-06-21

    Environmentally persistent free radicals (EPFRs) are occasionally detected in Superfund sites but the formation of EPFRs induced by polycyclic aromatic hydrocarbons (PAHs) is not well understood. In the present work, the formation of EPFRs on anthracene-contaminated clay minerals was quantitatively monitored via electron paramagnetic resonance (EPR) spectroscopy, and surface/interface-related environmental influential factors were systematically explored. The obtained results suggest that EPFRs are more readily formed on anthracene-contaminated Fe(III)-montmorillonite than in other tested systems. Depending on the reaction condition, more than one type of organic radicals including anthracene-based radical cations with g-factors of 2.0028-2.0030 and oxygenic carbon-centered radicals featured by g-factors of 2.0032-2.0038 were identified. The formed EPFRs are stabilized by their interaction with interlayer surfaces, and such surface-bound EPFRs exhibit slow decay with 1/e-lifetime of 38.46 days. Transformation pathway and possible mechanism are proposed on the basis of experimental results and quantum mechanical simulations. Overall, the formation of EPFRs involves single-electron-transfer from anthracene to Fe(III) initially, followed by H2O addition on formed aromatic radical cation. Because of their potential exposure in soil and atmosphere, such clay surface-associated EPFRs might induce more serious toxicity than PAHs and exerts significant impacts on human health. PMID:27224055

  8. Formation of Chlorotriophenoxy Radicals from Complete Series Reactions of Chlorotriophenols with H and OH Radicals.

    PubMed

    Xu, Fei; Shi, Xiangli; Zhang, Qingzhu; Wang, Wenxing

    2015-01-01

    The chlorothiophenoxy radicals (CTPRs) are key intermediate species in the formation of polychlorinated dibenzothiophenes/thianthrenes (PCDT/TAs). In this work, the formation of CTPRs from the complete series reactions of 19 chlorothiophenol (CTP) congeners with H and OH radicals were investigated theoretically by using the density functional theory (DFT) method. The profiles of the potential energy surface were constructed at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants were evaluated by the canonical variational transition-state (CVT) theory with the small curvature tunneling (SCT) contribution at 600-1200 K. The present study indicates that the structural parameters, thermal data, and rate constants as well as the formation potential of CTPRs from CTPs are strongly dominated by the chlorine substitution at the ortho-position of CTPs. Comparison with the study of formation of chlorophenoxy radicals (CPRs) from chlorophenols (CPs) clearly shows that the thiophenoxyl-hydrogen abstraction from CTPs by H is more efficient than the phenoxyl-hydrogen abstraction from CPs by H, whereas the thiophenoxyl-hydrogen abstraction from CTPs by OH is less impactful than the phenoxyl-hydrogen abstraction from CPs by OH. Reactions of CTPs with H can occur more readily than that of CTPs with OH, which is opposite to the reactivity comparison of CPs with H and OH. PMID:26270566

  9. Formation of Chlorotriophenoxy Radicals from Complete Series Reactions of Chlorotriophenols with H and OH Radicals

    PubMed Central

    Xu, Fei; Shi, Xiangli; Zhang, Qingzhu; Wang, Wenxing

    2015-01-01

    The chlorothiophenoxy radicals (CTPRs) are key intermediate species in the formation of polychlorinated dibenzothiophenes/thianthrenes (PCDT/TAs). In this work, the formation of CTPRs from the complete series reactions of 19 chlorothiophenol (CTP) congeners with H and OH radicals were investigated theoretically by using the density functional theory (DFT) method. The profiles of the potential energy surface were constructed at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants were evaluated by the canonical variational transition-state (CVT) theory with the small curvature tunneling (SCT) contribution at 600–1200 K. The present study indicates that the structural parameters, thermal data, and rate constants as well as the formation potential of CTPRs from CTPs are strongly dominated by the chlorine substitution at the ortho-position of CTPs. Comparison with the study of formation of chlorophenoxy radicals (CPRs) from chlorophenols (CPs) clearly shows that the thiophenoxyl-hydrogen abstraction from CTPs by H is more efficient than the phenoxyl-hydrogen abstraction from CPs by H, whereas the thiophenoxyl-hydrogen abstraction from CTPs by OH is less impactful than the phenoxyl-hydrogen abstraction from CPs by OH. Reactions of CTPs with H can occur more readily than that of CTPs with OH, which is opposite to the reactivity comparison of CPs with H and OH. PMID:26270566

  10. A quantum chemical topological analysis of the C-C bond formation in organic reactions involving cationic species.

    PubMed

    Domingo, Luis R; Pérez, Patricia

    2014-07-21

    ELF topological analysis of the ionic Diels-Alder (I-DA) reaction between the N,N-dimethyliminium cation and cyclopentadiene (Cp) has been performed in order to characterise the C-C single bond formation. The C-C bond formation begins in the short range of 2.00-1.96 Åvia a C-to-C pseudoradical coupling between the most electrophilic center of the iminium cation and one of the two most nucleophilic centers of Cp. The electron density of the pseudoradical center generated at the most electrophilic carbon of the iminium cation comes mainly from the global charge transfer which takes place along the reaction. Analysis of the global reactivity indices indicates that the very high electrophilic character of the iminium cation is responsible for the negative activation energy found in the gas phase. On the other hand, the analysis of the radical P(k)(o) Parr functions of the iminium cation, and the nucleophilic P(k)(-) Parr functions of Cp makes the characterisation of the most favourable two-center interaction along the formation of the C-C single bond possible. PMID:24901220

  11. Solvent effects on the resonance Raman and electronic absorption spectra of bacteriochlorophyll a cation radical

    SciTech Connect

    Misono, Yasuhito; Itoh, Koichi; Limanatara, Leenawaty; Koyama, Yasushi

    1996-02-08

    Resonance Raman and electronic absorption spectra of bacteriocholrophyll a cation radical (BChl a{sup .+}) were recorded in 14 different kinds of solvents. The frequency of the ring-breathing Raman band of BChl a{sup .+} was in the region of 1596-1599 cm{sup -1} in solvents forming the pentacoordinated state in neutral bacteriochlorophyll a (BChl a), while it was in the region of 1584-1588 cm{sup -1} in solvents forming the hexacoordinated state. BChl a{sup .+} exhibited a key absorption band in the regions 546-554 and 557-563 nm in the above penta- and hexa-coordinating solvents. Therefore, it has been concluded that the penta- and hexa-coordinated states are retained even after conversion of BChl a into BChl a{sup .+} (one-electron oxidization). Application of this rule to the case of 2-propanol solution showed transformation from the penta- to the hexa-coordinated state upon one-electron oxidation in this particular solution. The coordination states of BChl a{sup .+} could be correlated with the donor number(DN) and the Taft parameters, {Beta} and {pi}{sup *}, of the solvent: The hexacoordinated state was formed in solvents with DN >= 18 or {Beta} > 0.5 showing higher electron donating power, while the pentacoordinated state was formed in solvents with {pi}{sup *} > 0.65 showing higher dielectric stabilization. 27 refs., 8 figs., 3 tabs.

  12. Reactive Pathways in the Chlorobenzene-Ammonia Dimer Cation Radical: New Insights from Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Nyambo, Silver; Uhler, Brandon; Kalume, Aimable; Muzangwa, Lloyd; Reid, Scott

    2014-06-01

    Previously, we have studied non-covalent interactions in mono-halogenated benzene clusters using mass selected resonant 2-photon ionization methods. We have extended our studies by investigating the interaction between these mono-halobenzenes with a prototypical N atom donor (NH_3). Thus, we have obtained electronic spectra of PhX…(NH_3)n ( X=F, Cl, Br and n=1,2….) complexes in the region of the PhX monomer S_0-S_1 (ππ*) transition. Here we are mainly focusing on PhCl…NH_3 dimer. We found that upon ionization of the dimer, three reactive pathways of the [PhCl…NH_3]+. have been evidenced. The primary pathway is the Cl atom elimination, previously evidenced. The second and third pathways, HCl elimination and H atom elimination are identified for the first time in the R2PI studies of the dimer. Electronic spectra obtained for the three pathways shows that they originate from a common precursor. The reactive pathways in this system were extensively characterized computationally. We used DFT and post-Hartree Fock electronic structure calculations, Frank-Condon analysis to support our experimental findings. The results were consistent with previous direct ab initio molecular dynamics calculations, we found two nearly iso-energetic Wheland intermediates which lie significantly lower in energy than the initially formed dimer cation radical [PhCl…NH_3]+..

  13. Unconventional hydrogen bonding to organic ions in the gas phase: Stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine

    NASA Astrophysics Data System (ADS)

    Hamid, Ahmed M.; El-Shall, M. Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G.

    2014-08-01

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N+.(HCN)n and C4H4N2+.(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH+(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CHδ+⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH+⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH+⋯NCH..NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CHδ+⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CHδ+⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CHδ+ centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  14. GLYCOLALDEHYDE FORMATION VIA THE DIMERIZATION OF THE FORMYL RADICAL

    SciTech Connect

    Woods, Paul M.; Viti, Serena; Slater, Ben; Raza, Zamaan; Brown, Wendy A.; Burke, Daren J.

    2013-11-10

    Glycolaldehyde, the simplest monosaccharide sugar, has recently been detected in low- and high-mass star-forming cores. Following our previous investigation into glycolaldehyde formation, we now consider a further mechanism for the formation of glycolaldehyde that involves the dimerization of the formyl radical, HCO. Quantum mechanical investigation of the HCO dimerization process upon an ice surface is predicted to be barrierless and therefore fast. In an astrophysical context, we show that this mechanism can be very efficient in star-forming cores. It is limited by the availability of the formyl radical, but models suggest that only very small amounts of CO are required to be converted to HCO to meet the observational constraints.

  15. Investigation of the molecular structure of radical cation of s-trioxane: quantum chemical calculations and low-temperature EPR results

    NASA Astrophysics Data System (ADS)

    Janovský, I.; Naumov, S.; Knolle, W.; Mehnert, R.

    2003-06-01

    s-Trioxane radical cation was radiolytically generated in freon matrix and the changes of the EPR spectra with temperature, arising from conformational interconversion involving ring, were observed. The equilibration, leading to six equivalent protons (hfs splitting constant 5.9 mT) characteristic of the average planar geometry of the radical cation, occurs at ˜120 K in CF 3CCl 3. Supplementary experiments with 1,3-dioxane, which forms a radical cation with a similar electronic structure, were also performed. DFT quantum chemical calculations were used to support the experimental results.

  16. The Guanine Cation Radical: Investigation of Deprotonation States by ESR and DFT

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Becker, David; Sevilla, Michael D.

    2008-01-01

    This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G•+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2′-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation, G•+ (pH 3–5), singly deprotonated species, G(-H)• (pH 7–9) and doubly deprotonated species, G(-2H)•− (pH>11) are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N substituted derivatives at N1, N2 N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G•+, G(-H)•, and G(-2H)•−. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)•. Using the B3LYP/6–31G(d) method, the geometries and energies of G•+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)• and G(N2-H)•, were investigated. In a non-hydrated state G(N2-H)• is found to be more stable than G(N1-H)• but on hydration with 7 water molecules G(N1-H)• is found to be more stable than G(N2-H)•. The theoretically calculated hyperfine coupling constants (HFCC) of G•+, G(N1-H)• and G(-2H)•− match the experimentally observed HFCCs best on hydration with 7 or more waters. For G(-2H)•−, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until 9 or 10 waters of hydration are included. PMID:17125389

  17. The dynamical behavior of the s-trioxane radical cation-A low-temperature EPR and theoretical study.

    PubMed

    Naumov, Sergej S; Knolle, Wolfgang; Naumov, Sergej P; Pöppl, Andreas; Janovský, Igor

    2014-01-01

    The radical cation of s-trioxane, radiolytically generated in a freon (CF3CCl3) matrix, was studied in the 10-140 K temperature region. Reversible changes of the EPR spectra were observed, arising from both ring puckering and ring inversion through the molecular plane. The ESREXN program based on the Liouville density matrix equation, allowing the treatment of dynamical exchange, has been used to analyze the experimental results. Two limiting conformer structures of the s-trioxane radical cation were taken into account, namely "rigid" half-boat and averaged planar ones, differing strongly in their electron distribution. The spectrum due to the "rigid" half-boat conformer can be observed only at very low (<60 K) temperatures, when the exchange of conformers is very slow. Two transition states for interconversion by puckering and ring-inversion were identified, close in activation energy (2.3 and 3.0 kJ/mol calculated). Since the energy difference is very small, both processes set on at a comparable temperature. In the case of nearly complete equilibration (fast exchange) between six energetically equivalent structures at T > 120 K in CF3CCl3, a septet due to six equivalent protons (hfs splitting constant 5.9 mT) is observed, characteristic of the dynamically averaged planar geometry of the radical cation. DFT quantum chemical calculations and spectral simulation including intramolecular dynamical exchange support the interpretation. PMID:25353382

  18. To jump or not to jump? Cα hydrogen atom transfer in post-cleavage radical-cation complexes.

    PubMed

    Bythell, Benjamin J

    2013-02-14

    Conventionally, electron capture or transfer to a polyprotonated peptide ion produces an initial radical-cation intermediate which dissociates "directly" to generate complementary c(n)' and z(m)(•) sequence ions (or ions and neutrals). Alternatively, or in addition, the initial radical-cation intermediate can undergo H(•) migration to produce c(n)(•) (or c(n) - H(•)) and z(m)' (or z(m)(•) + H(•)) species prior to complex separation ("nondirect"). This reaction significantly complicates spectral interpretation, creates ambiguity in peak assignment, impairs effective algorithmic processing (reduction of the spectrum to solely (12)C m/z values), and reduces sequence ion signal-to-noise. Experimental evidence indicates that the products of hydrogen atom transfer reactions are substantially less prevalent for higher charge state precursors. This effect is generally rationalized on the basis of decreased complex lifetime. Here, we present a theoretical study of these reactions in post N-C(α) bond cleavage radical-cation complexes as a function of size and precursor charge state. This approach provides a computational estimate of the barriers associated with these processes for highly charged peptides with little charge solvation. The data indicate that the H(•) migration is an exothermic process and that the barrier governing this reaction rises steeply with precursor ion charge state. There is also some evidence for immediate product separation following N-C(α) bond cleavage at higher charge state. PMID:22809411

  19. A search for blues brothers: X-ray crystallographic/spectroscopic characterization of the tetraarylbenzidine cation radical as a product of aging of solid magic blue.

    PubMed

    Talipov, Marat R; Hossain, Mohammad M; Boddeda, Anitha; Thakur, Khushabu; Rathore, Rajendra

    2016-03-14

    Magic blue (MB+˙ SbCl6− salt), i.e. tris-4-bromophenylamminium cation radical, is a routinely employed one-electron oxidant that slowly decomposes in the solid state upon storage to form so called ‘blues brothers’, which often complicate the quantitative analyses of the oxidation processes. Herein, we disclose the identity of the main ‘blues brother’ as the cation radical and dication of tetrakis-(4-bromophenyl)benzidine (TAB) by a combined DFT and experimental approach, including isolation of TAB+˙ SbCl6− and its X-ray crystallography characterization. The formation of TAB in aged magic blue samples occurs by a Scholl-type coupling of a pair of MB followed by a loss of molecular bromine. The recognition of this fact led us to the rational design and synthesis of tris(2-bromo-4-tert-butylphenyl)amine, referred to as ‘blues cousin’ (BC: Eox1 = 0.78 V vs. Fc/Fc+, λmax(BC+˙) = 805 nm, εmax = 9930 cm−1 M−1), whose oxidative dimerization is significantly hampered by positioning the sterically demanding tert-butyl groups at the para-positions of the aryl rings. A ready two-step synthesis of BC from triphenylamine and the high stability of its cation radical (BC+˙) promise that BC will serve as a ready replacement for MB and an oxidant of choice for mechanistic investigations of one-electron transfer processes in organic, inorganic, and organometallic transformations. PMID:26878458

  20. The Influence of Zeolites on Radical Formation During Lignin Pyrolysis.

    PubMed

    Bährle, Christian; Custodis, Victoria; Jeschke, Gunnar; van Bokhoven, Jeroen A; Vogel, Frédéric

    2016-09-01

    Lignin from lignocellulosic biomass is a promising source of energy, fuels, and chemicals. The conversion of the polymeric lignin to fuels and chemicals can be achieved by catalytic and noncatalytic pyrolysis. The influence of nonporous silica and zeolite catalysts, such as silicalite, HZSM5, and HUSY, on the radical and volatile product formation during lignin pyrolysis was studied by in situ high-temperature electron paramagnetic resonance spectroscopy (HTEPR) as well as GC-MS. Higher radical concentrations were observed in the samples containing zeolite compared to the sample containing only lignin, which suggests that there is a stabilizing effect by the inorganic surfaces on the formed radical fragments. This effect was observed for nonporous silica as well as for HUSY, HZSM5, and silicalite zeolite catalysts. However, the effect is far larger for the zeolites owing to their higher specific surface area. The zeolites also showed an effect on the volatile product yield and the product distribution within the volatile phase. Although silicalite showed no effect on the product selectivity, the acidic zeolites such as HZSM5 or HUSY increased the formation of deoxygenated products such as benzene, toluene, xylene (BTX), and naphthalene. PMID:27486717

  1. Effects of Hofmeister salt series on gluten network formation: Part I. Cation series.

    PubMed

    Tuhumury, H C D; Small, D M; Day, L

    2016-12-01

    Different cationic salts were used to investigate the effects of the Hofmeister salt series on gluten network formation. The effects of cationic salts on wheat flour dough mixing properties, the rheological and the chemical properties of the gluten extracted from the dough with different respective salts, were investigated. The specific influence of different cationic salts on the gluten structure formation during dough mixing, compared to the sodium ion, were determined. The effects of different cations on dough and gluten of different flours mostly followed the Hofmeister series (NH4(+), K(+), Na(+), Mg(2+) and Ca(2+)). The impacts of cations on gluten structure and dough rheology at levels tested were relatively small. Therefore, the replacement of sodium from a technological standpoint is possible, particularly by monovalent cations such as NH4(+), or K(+). However the levels of replacement need to take into account sensory attributes of the cationic salts. PMID:27374596

  2. Non-photochemical Fluorescence Quenching in Photosystem II Antenna Complexes by the Reaction Center Cation Radical.

    PubMed

    Paschenko, V Z; Gorokhov, V V; Grishanova, N P; Korvatovskii, B N; Ivanov, M V; Maksimov, E G; Mamedov, M D

    2016-06-01

    efficiency for non-photochemical antenna fluorescence quenching by RC cation radical in comparison to that of photochemical quenching are discussed. PMID:27301286

  3. Procainamide, but not N-Acetylprocainamide, Induces Protein Free Radical Formation on Myeloperoxidase: A Potential Mechanism of Agranulocytosis

    PubMed Central

    Siraki, Arno G.; Deterding, Leesa J.; Bonini, Marcelo G.; Jiang, JinJie; Ehrenshaft, Marilyn; Tomer, Kenneth B.; Mason, Ronald P.

    2009-01-01

    Procainamide (PA) is a drug that is used to treat tachycardia in post-operative patients or for long term maintenance of cardiac arrythmias. Unfortunately, its use has also been associated with agranulocytosis. Here we have investigated the metabolism of PA by myeloperoxidase (MPO) and the formation of an MPO protein free radical. We hypothesized that PA oxidation by MPO/H2O2 would produce a PA cation radical that, in the absence of a biochemical reductant, would lead to the free-radical oxidation of MPO. We utilized a novel anti-DMPO antibody to detect DMPO (5,5-dimethyl-1-pyrroline N-oxide) covalently bound to protein, which forms only by the reaction of DMPO with a protein free radical. We found that PA metabolism by MPO/H2O2 induced the formation of DMPO-MPO, which was inhibited by MPO inhibitors and ascorbate. N-acetyl-PA did not cause DMPO-MPO formation, indicating that the unsubstituted aromatic amine was more oxidizable. PA had a lower calculated ionization potential than N-acetyl-PA. The DMPO adducts of MPO metabolism, as analyzed by electron spin resonance spectroscopy, included a nitrogen-centered radical and a phenyl radical derived from PA, either of which may be involved in the free radical formation on MPO. Furthermore, we also found protein-DMPO adducts in MPO-containing, intact human promyelocytic leukemia cells (HL-60). MPO was affinity-purified from HL-60 cells treated with PA/H2O2 and was found to contain DMPO using the anti-DMPO antibody. Mass spectrometry analysis confirmed the identity of the protein as human MPO. These findings were also supported by the detection of protein free radicals with electron spin resonance in the cellular cytosolic lysate. The formation of an MPO protein free radical is believed to be mediated by free radical metabolites of PA, which we characterized by spin trapping. We propose that drug-induced free radical formation on MPO may play a role in the origin of agranulocytosis. PMID:18489081

  4. Hydroxyl radical formation in phagocytic cells of the rat.

    PubMed

    Drath, D B; Karnovsky, M L; Huber, G L

    1979-01-01

    Polymorphonuclear leukocytes (PMN) and macrophages, harvested from the peritoneum and lung, release superoxide (O-.2) and hydrogen peroxide (H2O2) during phagocytosis. These two agents are thought to react with each other to produce a highly active oxidative substance known as hydroxyl radical (OH.). We present evidence suggesting that these radicals are generated by phagocytic cells of the rat. Our findings are based upon an assay where ethylene gas is generated from methional by the action of this radical. Ethylene generation was shown to be inhibited by superoxide dismutase, catalase, and scavengers of OH.. Of the cells examined, PMN generated the most ethylene from methional, exhibiting a fourfold increase during phagocytosis. Pulmonary and peritoneal macrophages caused smaller amounts of this gas to be formed. Regardless of cell type, an intact cell was required for ethylene generation. Zymosan appeared to be the most effective particle for all cells in ethylene formation from methional, although opsonization was critical only for PMN. Ethylene generation was dependent on cell concentration to an extent and increased with time. PMID:222719

  5. The loss of NH2O from the N-hydroxyacetamide radical cation CH3C(O)NHOH+

    NASA Astrophysics Data System (ADS)

    Jobst, Karl J.; Burgers, Peter C.; Ruttink, Paul J. A.; Terlouw, Johan K.

    2006-08-01

    A previous study [Ch. Lifshitz, P.J.A. Ruttink, G. Schaftenaar, J.K. Terlouw, Rapid Commun. Mass Spectrom. 1 (1987) 61] shows that metastable N-hydroxyacetamide ions CH3C(O)NHOH+ (HA-1) do not dissociate into CH3CO+ + NHOH by direct bond cleavage but rather yield CH3CO+ + NH2OE The tandem mass spectrometry based experiments of the present study on the isotopologue CH3C(O)NDOD+ reveal that the majority of the metastable ions lose the NH2O radical as NHDO rather than ND2O. A mechanistic analysis using the CBS-QB3 model chemistry shows that the molecular ions HA-1 rearrange into hydrogen-bridged radical cations [OCC(H2)H...N(H)OH]+ whose acetyl cation component then catalyses the transformation NHOH --> NH2O prior to dissociation. The high barrier for the unassisted 1,2-H shift in the free radical, 43 kcal mol-1, is reduced to a mere 7 kcal mol-1 for the catalysed transformation which can be viewed as a quid-pro-quo reaction involving two proton transfers.

  6. Free Radical Formation after Intensive Exercise in Thoroughbred Skeletal Muscles

    PubMed Central

    MINAMI, Yoshio; KAWAI, Minako; MIGITA, Taiko C.; HIRAGA, Atsushi; MIYATA, Hirofumi

    2011-01-01

    Although high oxygen consumption in skeletal muscle may result in severe oxidative stress, there are no direct studies that have documented free radical production in horse muscles after intensive exercise. To find a new parameter indicating the muscle adaptation state for the training of Thoroughbred horses, we examined free radical formation in the muscle by using electron paramagnetic resonance (EPR). Ten male Thoroughbred horses received conventional training for 18 weeks. Before and after the training period, all horses performed an exhaustive incremental load exercise on a 6% incline treadmill. Muscle samples of the middle gluteal muscle were taken pre-exercise and 1 min, 1 hr, and 1 day after exercise. Muscle fiber type composition was also determined in the pre-exercise samples by immunohistochemical staining with monoclonal antibody to myosin heavy chain. We measured the free radical in the muscle homogenate using EPR at room temperature, and the amount was expressed as relative EPR signal intensity. There was a significant increase in Type IIA muscle fiber composition and a decrease in Type IIX fiber composition after the training period. Before the training period, the mean value of the relative EPR signal intensity showed a significant increase over the pre-exercise value at 1 min after the exercise and an incomplete recovery at 24 hr after the exercise. While no significant changes were found in the relative EPR signal intensity after the training period. There was a significant relationship between percentages of Type IIA fiber and change rates in EPR signal intensity at 1 min after exercise. The measurement of free radicals may be useful for determining the muscle adaptation state in the training of Thoroughbred horses. PMID:24833984

  7. Hydroxyl radical substitution in halogenated carbonyls: oxalic acid formation.

    PubMed

    Christiansen, Carrie J; Dalal, Shakeel S; Francisco, Joseph S; Mebel, Alexander M; Gaffney, Jeffrey S

    2010-03-01

    An ab initio study of OH radical substitution reactions in halogenated carbonyls is conducted. Hydroxyl radical substitution into oxalyl dichloride [ClC(O)C(O)Cl] and oxalyl dibromide [BrC(O)C(O)Br], resulting in the formation of oxalic acid, is presented. Analogous substitution reactions in formyl chloride [ClCH(O)], acetyl chloride [ClC(O)CH(3)], formyl bromide [BrCH(O)], and acetyl bromide [BrC(O)CH(3)] are considered. Energetics of competing hydrogen abstraction reactions for all applicable species are computed for comparison. Geometry optimizations and frequency computations are performed using the second-order Møller-Plesset perturbation theory (MP2) and the 6-31G(d) basis set for all minimum species and transition states. Single point energy computations are performed using fourth-order Møller-Plesset perturbation theory (MP4) and coupled cluster theory [CCSD(T)]. Potential energy surfaces, including activation energies and enthalpies, are determined from the computations. These potential energy surfaces show that OH substitution into ClC(O)C(O)Cl and BrC(O)C(O)Br, resulting in the formation of oxalic acid and other minor products, is energetically favorable. Energetics of analogous reactions with ClCH(O), BrCH(O), ClC(O)CH(3), and BrC(O)CH(3) are also computed. PMID:20131850

  8. Phthalocyanine. pi. -cation-radical species: photochemical and electrochemical preparation of (ZnPc(-1))/sup. +/ in solution

    SciTech Connect

    Nyokong, T.; Gasyna, Z.; Stillman, M.J.

    1987-02-25

    The ..pi..-cation-radical species of ZnPc, (ZnPc(-1))/sup .+/ (Pc = phthalocyanine), has been formed quantitatively as a stable product in solution following photochemical reactions with visible-region light in the presence of electron acceptors. The photolyses were carried out by excitation into the phthalocyanine's Q band (lambda > 580 nm), with carbon tetrabromide as an irreversible electron acceptor. The neutral parent species could be regenerated following photooxidation by the addition of sodium dithionite. Cyclic voltammetry of neutral ZnPcL species identified the ring oxidation potentials; for ZnPc(py) and ZnPc(im) (py = pyridine; im = imidazole). In dimethylacetamide, there is one oxidation couple at 0.70 and 0.71 V vs. SCE, respectively, and there are two reduction couples, at -0.96 and -1.28 V vs SCE, for the pyridine complex, and at -0.98 and -1.53 V vs SCE, for the imidazole complex. Each of these reactions was reversible on the cyclic voltammetry time scale. The electrochemical and photochemical oxidation products were characterized by absorption, magnetic circular dichroism (MCD), and electron paramagnetic resonance (EPR) spectroscopies. Four clearly resolvable, optical transitions, centered at 440, 500, 720, and 825 nm, are observed in the absorption spectrum of the cation radical species. EPR spectra obtained from frozen solutions of the ..pi.. cation radicals gave isotropic g values that are characteristic of the oxidation at the phthalocyanine ligand (the g values were between 2.0055 and 2.0068). 52 references, 4 figures, 2 tables.

  9. A Radical-Mediated Pathway for the Formation of [M + H](+) in Dielectric Barrier Discharge Ionization.

    PubMed

    Wolf, Jan-Christoph; Gyr, Luzia; Mirabelli, Mario F; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-09-01

    Active capillary plasma ionization is a highly efficient ambient ionization method. Its general principle of ion formation is closely related to atmospheric pressure chemical ionization (APCI). The method is based on dielectric barrier discharge ionization (DBDI), and can be constructed in the form of a direct flow-through interface to a mass spectrometer. Protonated species ([M + H](+)) are predominantly formed, although in some cases radical cations are also observed. We investigated the underlying ionization mechanisms and reaction pathways for the formation of protonated analyte ([M + H](+)). We found that ionization occurs in the presence and in the absence of water vapor. Therefore, the mechanism cannot exclusively rely on hydronium clusters, as generally accepted for APCI. Based on isotope labeling experiments, protons were shown to originate from various solvents (other than water) and, to a minor extent, from gaseous impurities and/or self-protonation. By using CO2 instead of air or N2 as plasma gas, additional species like [M + OH](+) and [M - H](+) were observed. These gas-phase reaction products of CO2 with the analyte (tertiary amines) indicate the presence of a radical-mediated ionization pathway, which proceeds by direct reaction of the ionized plasma gas with the analyte. The proposed reaction pathway is supported with density functional theory (DFT) calculations. These findings add a new ionization pathway leading to the protonated species to those currently known for APCI. Graphical Abstract ᅟ. PMID:27380388

  10. A Radical-Mediated Pathway for the Formation of [M + H]+ in Dielectric Barrier Discharge Ionization

    NASA Astrophysics Data System (ADS)

    Wolf, Jan-Christoph; Gyr, Luzia; Mirabelli, Mario F.; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-07-01

    Active capillary plasma ionization is a highly efficient ambient ionization method. Its general principle of ion formation is closely related to atmospheric pressure chemical ionization (APCI). The method is based on dielectric barrier discharge ionization (DBDI), and can be constructed in the form of a direct flow-through interface to a mass spectrometer. Protonated species ([M + H]+) are predominantly formed, although in some cases radical cations are also observed. We investigated the underlying ionization mechanisms and reaction pathways for the formation of protonated analyte ([M + H]+). We found that ionization occurs in the presence and in the absence of water vapor. Therefore, the mechanism cannot exclusively rely on hydronium clusters, as generally accepted for APCI. Based on isotope labeling experiments, protons were shown to originate from various solvents (other than water) and, to a minor extent, from gaseous impurities and/or self-protonation. By using CO2 instead of air or N2 as plasma gas, additional species like [M + OH]+ and [M - H]+ were observed. These gas-phase reaction products of CO2 with the analyte (tertiary amines) indicate the presence of a radical-mediated ionization pathway, which proceeds by direct reaction of the ionized plasma gas with the analyte. The proposed reaction pathway is supported with density functional theory (DFT) calculations. These findings add a new ionization pathway leading to the protonated species to those currently known for APCI.

  11. A Radical-Mediated Pathway for the Formation of [M + H]+ in Dielectric Barrier Discharge Ionization

    NASA Astrophysics Data System (ADS)

    Wolf, Jan-Christoph; Gyr, Luzia; Mirabelli, Mario F.; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-09-01

    Active capillary plasma ionization is a highly efficient ambient ionization method. Its general principle of ion formation is closely related to atmospheric pressure chemical ionization (APCI). The method is based on dielectric barrier discharge ionization (DBDI), and can be constructed in the form of a direct flow-through interface to a mass spectrometer. Protonated species ([M + H]+) are predominantly formed, although in some cases radical cations are also observed. We investigated the underlying ionization mechanisms and reaction pathways for the formation of protonated analyte ([M + H]+). We found that ionization occurs in the presence and in the absence of water vapor. Therefore, the mechanism cannot exclusively rely on hydronium clusters, as generally accepted for APCI. Based on isotope labeling experiments, protons were shown to originate from various solvents (other than water) and, to a minor extent, from gaseous impurities and/or self-protonation. By using CO2 instead of air or N2 as plasma gas, additional species like [M + OH]+ and [M - H]+ were observed. These gas-phase reaction products of CO2 with the analyte (tertiary amines) indicate the presence of a radical-mediated ionization pathway, which proceeds by direct reaction of the ionized plasma gas with the analyte. The proposed reaction pathway is supported with density functional theory (DFT) calculations. These findings add a new ionization pathway leading to the protonated species to those currently known for APCI.

  12. Detection of the short-lived radical cation intermediate in the electrooxidation of N,N-dimethylaniline by mass spectrometry.

    PubMed

    Brown, Timothy A; Chen, Hao; Zare, Richard N

    2015-09-14

    The N,N-dimethylaniline (DMA) radical cation DMA(.+) , a long-sought transient intermediate, was detected by mass spectrometry (MS) during the electrochemical oxidation of DMA. This was accomplished by coupling desorption electrospray ionization (DESI) MS with a waterwheel working electrode setup to sample the surface of the working electrode during electrochemical analysis. This study clearly shows that DESI-based electrochemical MS is capable of capturing electrochemically generated intermediates with half-lives on the order of microseconds, which is 4-5 orders of magnitude faster than previously reported electrochemical mass spectrometry techniques. PMID:26352029

  13. Formation and Stabilization of Combustion-Generated, Environmentally Persistent Radicals on Ni(II)O Supported on a Silica Surface

    PubMed Central

    Vejerano, Eric; Lomnicki, Slawomir M.; Dellinger, Barry

    2013-01-01

    Previous studies have indicated Environmentally Persistent Free Radicals (EPFRs) are formed when hydroxyl- and chlorine-substituted aromatics chemisorbed on Cu(II)O and Fe(III)2O3 surfaces and were stabilized through their interactions with the surface metal cation. The current study reports our laboratory investigation on the formation and stabilization of EPFRs on an Ni(II)O surface. The EPFRs were produced by the chemisorption of adsorbates on the supported metal oxide surface and transfer of an electron from the adsorbate to the metal center, resulting in reduction of the metal cation. Depending on the temperature and the nature of the adsorbate, more than one type of organic radical was formed. A phenoxyl-type radical, with g-value between 2.0029 and 2.0044, and a semiquinone-type radical, with g-value from 2.0050 to as high as 2.0081, were observed. The half-lives on Ni(II)O were long and ranged from 1.5 to 5.2 days, which were similar to what were observed on Fe(III)2O3,. The yields of the EPFRs formed on Ni(II)O was ~ 8x higher than on Cu(II)O and ~50x higher than on Fe(III)2O3. PMID:22831558

  14. Radical formation, chemical processing, and explosion of interstellar grains

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1976-01-01

    The ultraviolet radiation in interstellar space is shown to create a sufficient steady-state density of free radicals in the grain mantle material consisting of oxygen, carbon, nitrogen, and hydrogen to satisfy the critical condition for initiation of chain reactions. The criterion for minimum critical particle size for maintaining the chain reaction is of the order of the larger grain sizes in a distribution satisfying the average extinction and polarization measures. The triggering of the explosion of interstellar grains leading to the ejection of complex interstellar molecules is shown to be most probable where the grains are largest and where radiation is suddenly introduced; i.e., in regions of new star formation. Similar conditions prevail at the boundaries between very dark clouds and H II regions. When the energy released by the chemical activity of the free radicals is inadequate to explode the grain, the resulting mantle material must consist of extremely large organic molecules which are much more resistant to the hostile environment of H II regions than the classical dirty-ice mantles made up of water, methane, and ammonia.

  15. Positive exchange interaction in the radical ion pair of benzophenone anion and 1,4-diazabicyclo[2,2,2]octane cation radicals studied by FT-EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Shinji; Akiyama, Kimio; Tero-Kubota, Shozo

    1996-12-01

    Electron spin polarization generated from the photoreduction of benzophenone (BP) and its derivatives in the presence of 1,4-diazabicyclo[2,2,2]octane (DABCO) was studied in various solvents. The DABCO cation radical obtained showed a CIDEP spectrum with A/E (absorption/emission) polarization by RPM, while other neutral radicals gaee an E/A pattern. Using triplet quenchers, it was confirmed that these RPM signals were generated through the triplet reaction process. The present results revealed that the radical ion pair including the BP anion and DABCO +. cation radicals has a positive J, while the neutral radical pairs generated under the same condition have a negative J. The sign of J is independent of the polarity of the organic solvents used.

  16. Key Role of End-Capping Groups in Optoelectronic Properties of Poly-p-phenylene Cation Radicals

    PubMed Central

    2015-01-01

    Poly-p-phenylenes (PPs) are prototype systems for understanding the charge transport in π-conjugated polymers. In a combined computational and experimental study, we demonstrate that the smooth evolution of redox and optoelectronic properties of PP cation radicals toward the polymeric limit can be significantly altered by electron-donating iso-alkyl and iso-alkoxy end-capping groups. A multiparabolic model (MPM) developed and validated here rationalizes this unexpected effect by interplay of the two modes of hole stabilization: due to the framework of equivalent p-phenylene units and due to the electron-donating end-capping groups. A symmetric, bell-shaped hole in unsubstituted PPs becomes either slightly skewed and shifted toward an end of the molecule in iso-alkyl-capped PPs or highly deformed and concentrated on a terminal unit in PPs with strongly electron-donating iso-alkoxy capping groups. The MPM shows that the observed linear 1/n evolution of the PP cation radical properties toward the polymer limit originates from the hole stabilization due to the growing chain of p-phenylene units, while shifting of the hole toward electron-donating end-capping groups leads to early breakdown of these 1/n dependencies. These insights, along with the readily applicable and flexible multistate parabolic model, can guide studies of complex donor–spacer–acceptor systems and doped molecular wires to aid the design of the next generation materials for long-range charge transport and photovoltaic applications. PMID:25264475

  17. Electrochemical Behavior of meso-Substituted Porphyrins: The Role of Cation Radicals to the Half-Wave Oxidation Potential Splitting.

    PubMed

    Tran, Thai T H; Chang, Yan-Ru; Hoang, Tuan K A; Kuo, Ming-Yu; Su, Yuhlong O

    2016-07-21

    In this study, the electrochemical behavior of free base and zinc meso-substituted porphyrins is examined by cyclic voltammetry (CV) and density functional theory (DFT). The results show that the half-wave oxidation potential splitting of the two oxidation states (ΔE= second E1/2 - first E1/2) of tetraphenylporphyrin (H2TPP) and its zinc complex (ZnTPP) are higher than those of porphyrins and their zinc complexes with meso-substituted five-membered heterocylic rings. The ΔE values follow the trend of TPP > T(3'-thienyl)P > T(3'-furyl)P > T(2'-thienyl)P for both meso-porphyrins and their respective zinc complexes. By employing DFT calculations, we have found that the trend of ΔE values is consistent with that of highest spin density (HSD) distribution and HOMO-LUMO energy gaps of cationic radicals as well as the π-conjugation between central porphyrin and meso-substituted rings. Also, they exhibit the better resonance between the porphyrin ring with meso-substituted rings as moving from porphyrins and their zinc complexes with phenyl rings to five-membered heterocyclic rings. A good agreement between calculated and experimental results indicates that cationic radicals, especially their spin density distribution, do play an important role in half-wave oxidation potential splitting of meso-porphyrins and their zinc complexes. PMID:27379447

  18. Unconventional hydrogen bonding to organic ions in the gas phase: Stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine

    SciTech Connect

    Hamid, Ahmed M.; El-Shall, M. Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G.

    2014-08-07

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C{sub 5}H{sub 5}N{sup +·}(HCN){sub n} and C{sub 4}H{sub 4}N{sub 2}{sup +·}(HCN){sub n} clusters, respectively, with n = 1–4. For comparison, the binding of 1–4 HCN molecules to the protonated pyridine C{sub 5}H{sub 5}NH{sup +}(HCN){sub n} has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH{sup δ+}⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH{sup +}⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH{sup +}⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH{sup δ+}⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11–12 kcal/mol) are stronger than the similar (CH{sup δ+}⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH{sup δ+} centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  19. Electronic and vibrational spectra of matrix isolated anthracene radical cations - Experimental and theoretical aspects

    NASA Technical Reports Server (NTRS)

    Szczepanski, Jan; Vala, Martin; Talbi, Dahbia; Parisel, Olivier; Ellinger, Yves

    1993-01-01

    The IR vibrational and visible/UV electronic absorption spectra of the anthracene cation, An(+), were studied experimentally, in argon matrices at 12 K, as well as theoretically, using ab initio calculations for the vibrational modes and enhanced semiempirical methods with configuration interaction for the electronic spectra. It was found that both approaches predicted well the observed photoelectron spectrum. The theoretical IR intensities showed some remarkable differences between neutral and ionized species (for example, the CH in-plane bending modes and CC in-plane stretching vibrations were predicted to increase by several orders of magnitude upon ionization). Likewise, estimated experimental IR intensities showed a significant increase in the cation band intensities over the neutrals. The implication of these findings for the hypothesis that polycyclic aromatic hydrocarbon cations are responsible for the unidentified IR emission bands from interstellar space is discussed.

  20. Structural Basis for Glycyl Radical Formation By Pyruvate Formate-Lyase Activating Enzyme

    SciTech Connect

    Vey, J.L.; Yang, J.; Li, M.; Broderick, W.E.; Broderick, J.B.; Drennan, C.L.

    2009-05-26

    Pyruvate formate-lyase activating enzyme generates a stable and catalytically essential glycyl radical on G{sup 734} of pyruvate formate-lyase via the direct, stereospecific abstraction of a hydrogen atom from pyruvate formate-lyase. The activase performs this remarkable feat by using an iron-sulfur cluster and S-adenosylmethionine (AdoMet), thus placing it among the AdoMet radical superfamily of enzymes. We report here structures of the substrate-free and substrate-bound forms of pyruvate formate-lyase-activating enzyme, the first structures of an AdoMet radical activase. To obtain the substrate-bound structure, we have used a peptide substrate, the 7-mer RVSGYAV, which contains the sequence surrounding G{sup 734}. Our structures provide fundamental insights into the interactions between the activase and the G{sup 734} loop of pyruvate formate-lyase and provide a structural basis for direct and stereospecific H atom abstraction from the buried G{sup 734}4 of pyruvate formate-lyase.

  1. Theoretical study of electronically excited radical cations of naphthalene and anthracene as archetypal models for astrophysical observations. Part I. Static aspects.

    PubMed

    Ghanta, S; Reddy, V Sivaranjana; Mahapatra, S

    2011-08-28

    Motivated by the recent discovery of new diffuse interstellar bands and results from laboratory experiments, ab initio quantum chemistry calculations are carried out for the lowest six electronic states of naphthalene and anthracene radical cations. The calculated adiabatic electronic energies are utilized to construct suitable diabatic electronic Hamiltonians in order to perform nuclear dynamics studies in Part II. Complex entanglement of the electronic states is established for both the radical cations and the coupling surfaces among them are also derived in accordance with the symmetry selection rules. Critical examination of the coupling parameters of the Hamiltonian suggests that 29 (out of 48) and 31 (out of 66) vibrational modes are relevant in the nuclear dynamics in the six lowest electronic states of naphthalene and anthracene radical cations, respectively. PMID:21750790

  2. Xe-bearing hydrocarbon ions: Observation of Xe.acetylene+rad and Xe.benzene+rad radical cations and calculations of their ground state structures

    NASA Astrophysics Data System (ADS)

    Cui, Zhong-hua; Attah, Isaac K.; Platt, Sean P.; Aziz, Saadullah G.; Kertesz, Miklos; El-Shall, M. S.

    2016-04-01

    This work reports evidence for novel types of Xe-bearing hydrocarbon radical cations. The Xe.acetylene+rad radical cation adduct is observed at nearly room temperature using the mass-selected drift cell technique. The irreversible addition of the Xe atom and the lack of back dissociation to HCCH+rad + Xe is consistent with the calculated binding energy of 0.85 eV to be contrasted with the metastable nature of the neutral Xe.acetylene adduct. The observed Xe.benzene+rad radical cation appears to be a weakly bound complex stabilized mainly by ion-induced dipole interaction consistent with a calculated binding energy in the range of 0.14-0.17 eV.

  3. N-substituted phenothiazine derivatives: how the stability of the neutral and radical cation forms affects overcharge performance in lithium-ion batteries.

    PubMed

    Narayana, Kishore Anand; Casselman, Matthew D; Elliott, Corrine F; Ergun, Selin; Parkin, Sean R; Risko, Chad; Odom, Susan A

    2015-04-27

    Phenothiazine and five N-substituted derivatives were evaluated as electrolyte additives for overcharge protection in LiFePO4 /synthetic graphite lithium-ion batteries. We report on the stability and reactivity of both the neutral and radical-cation forms of these six compounds. While three of the compounds show extensive overcharge protection, the remaining three last for only one to a few cycles. UV/Vis studies of redox shuttle stability in the radical cation form are consistent with the overcharge performance: redox shuttles with spectra that show little change over time exhibit extensive overcharge performance, whereas those with changing spectra have limited overcharge protection. In one case, we determined that a C-N bond cleaves upon oxidation, forming the phenothiazine radical cation and leading to premature overcharge protection failure; in another case, poor solubility appears to limit protection. PMID:25504135

  4. Ne matrix spectra of the sym-C6Br3F3+ radical cation

    USGS Publications Warehouse

    Bondybey, V.E.; Sears, T.J.; Miller, T.A.; Vaughn, C.; English, J.H.; Shiley, R.S.

    1981-01-01

    The electronic absorption and laser excited, wavelength resolved fluorescence spectra of the title cation have been observed in solid Ne matrix and vibrationally analysed. The vibrational structure of the excited B2A2??? state shows close similarity to the parent compound. The X2E??? ground state structure is strongly perturbed and irregular owing to a large Jahn-Teller distortion. The data are analysed in terms of a recently developed, sophisticated multimode Jahn-Teller theoretical model. We have generated the sym-C6Br3F3+ cations in solid Ne matrix and obtained their wavelength resolved emission and absorption spectra. T ground electronic X2E??? state exhibits an irregular and strongly perturbed vibrational structure, which can be successfully modeled using sophisticated multimode Jahn-Teller theory. ?? 1981.

  5. Interfacial/free radical polymerization microencapsulation: kinetics of particle formation.

    PubMed

    Mahabadi, H K; Ng, T H; Tan, H S

    1996-01-01

    Microcapsules containing pigment and polymer were prepared by dispersing a viscous mixture of pigment, core monomers, initiators and oil-soluble shell monomer in an aqueous solution of surfactants, forming oil-in-water droplets. Subsequently, a water-soluble shell monomer was added to these droplets, encapsulating them via interfacial (IF) polycondensation. These microcapsules were then heated for free radical (FR) polymerization of the core monomers. Effects of primary variables, such as the shearing time during particle formation, surfactant concentration, organic phase concentration, and mode of water-soluble shell monomer addition, were studied. The results indicated that polyvinylalcohol (PVOH), used as the surfactant/stabilizer, reacted with the oil-soluble shell monomers. The depletion of PVOH, especially when PVOH concentration was low, resulted in rapid growth of particle size and, eventually, suspension failure. The kinetic data revealed a particle formation mechanism which consists of two processes. The first process is the formation of an equilibrium particle size by the equilibrium process of particle breakage due to the mechanical shearing force and coalescence due to collisions among particles and surface tension forces. The second process is the reaction between PVOH and oil-soluble shell monomer which leads to the depletion of PVOH and consequently causes more coalescence of particles and a significant increase in the equilibrium particle size. The net effect of these two processes shows an optimum shearing time where the smallest particle size can be attained, and this optimum time is a function of several primary variables. Methods to prevent the reaction and therefore the depletion of PVOH are proposed. PMID:8864993

  6. Theoretical study of the electronically excited radical cations of naphthalene and anthracene as archetypal models for astrophysical observations. Part II. Dynamics consequences.

    PubMed

    Ghanta, S; Reddy, V Sivaranjana; Mahapatra, S

    2011-08-28

    Nuclear dynamics is investigated theoretically from first principles by employing the ab initio vibronic models of the prototypical naphthalene and anthracene radical cations developed in Part I. This Part is primarily aimed at corroborating a large amount of available experimental data with a specific final goal to establish an unambiguous link with the current observations in astrophysics and astronomy. The detailed analyses presented here perhaps establish that these two prototypical polycyclic aromatic hydrocarbon radical cations are indeed potential carriers of the observed diffuse interstellar bands. PMID:21750791

  7. Synthesis of a calix[4]arene derivative for isolation of a stable cation radical salt for use as a colorimetric sensor of nitric oxide.

    PubMed

    Rathore, Rajendra; Abdelwahed, Sameh H; Guzei, Ilia A

    2004-10-27

    We have designed and synthesized a modified calixarene derivative (1) that allows, for the first time, the isolation of a stable cation radical salt that binds a single molecule of nitric oxide deep within its cavity with remarkable efficiency (KNO >108 M-1), as demonstrated by isolation of a crystalline complex [1, NO]+ and its characterization by X-ray crystallography as well as by optical spectroscopy. Furthermore, the ready accessibility of the calixarene cation radical will allow the exploration of its use for developing efficient sensing devices for nitric oxide based on the accompanied color changes. PMID:15493892

  8. Mechano-chemical radical formation and polymerization initiation during wet grinding of alumina.

    PubMed

    Damm, C; Peukert, W

    2011-11-01

    The formation of free radicals during wet grinding of alumina in a stirred media mill was studied by using the test radical 2,2-diphenyl-1-picrylhydracyl (DPPH). The kinetics of mechano-chemical radical formation follows a zeroth-order rate law. Particle breakage as well as mechanical activation of the surface of the alumina particles contributes to the radical formation. The rate constants of the radical formation due to mechanical activation of the particle surface k(A) and due to particle breakage k(B) depend on the milling process parameters. The radical formation during wet grinding of alumina was exploited to initiate mechano-chemical polymerization reactions of acrylic acid and acryl amide, respectively. In this way nanoparticles functionalized with polyacrylic acid and polyacryl amide, respectively, are obtained. The influence of the milling process parameters on the kinetics of mechano-chemical radical formation and on the grafted amount of polymer is discussed on the basis of stress energy and number of stress events in the mill. A correlation between the grafted amount of polyacryl amide on the alumina particles and the total radical formation rate was found showing that the concentration of mechano-chemically formed free radicals governs the efficacy of a chemical reaction at activated particle surfaces. PMID:21820123

  9. Vibrational studies of reactive intermediates of aromatic amines. IV. Radical cation time-resolved resonance Raman investigation of N, N-dimethylaniline and N, N-diethylaniline derivatives

    NASA Astrophysics Data System (ADS)

    Poizat, O.; Guichard, V.; Buntinx, G.

    1989-05-01

    The radical cation time-resolved resonance Raman spectra of various isotopic derivatives of N, N-dimethylaniline (DMA), N, N-diethylaniline (DEA), N, N-dimethyl-p-toluidine (4MDMA) and 3, 5, N, N-tetramethylaniline (3,5DMDMA) are reported in the 300-1800 cm-1 range. Excitation was in the weak radical cation absorption around 480 nm. Complete vibrational assignments are proposed. The band activity and the changes in frequency with respect to the neutral molecules are consistent with a quinoidal-type conformation of the framework close to planarity. Stabilization of this conformation is observed when the phenyl ring contains methyl substituents. The analysis of the Raman enhancements suggests that the quinoidal character of the radical structure is significantly lowered in the resonant excited state. An obvious analogy is found between the spectra of DMA+ ṡ and of the biphenyl radical cation, which clearly indicates that (i) a nearly common chromophore structure characterizes these two radical cations and (ii) the distortion of this chromophore structure in the resonant excited state is comparable in both compounds, i.e., the biphenyl+ ṡ* ←biphenyl+ ṡ and DMA+ ṡ* ←DMA+ ṡ transitions are of similar nature. These results are consistent with structural previsions from simple molecular orbital considerations and a comprehensive interpretation of the Raman spectra is given in terms of HOMO population.

  10. Formation of bromate in sulfate radical based oxidation: mechanistic aspects and suppression by dissolved organic matter.

    PubMed

    Lutze, Holger V; Bakkour, Rani; Kerlin, Nils; von Sonntag, Clemens; Schmidt, Torsten C

    2014-04-15

    Sulfate radical based oxidation is discussed being a potential alternative to hydroxyl radical based oxidation for pollutant control in water treatment. However, formation of undesired by-products, has hardly been addressed in the current literature, which is an issue in other oxidative processes such as bromate formation in ozonation of bromide containing water (US-EPA and EU drinking water standard of bromate: 10 μg L(-1)). Sulfate radicals react fast with bromide (k = 3.5 × 10(9) M(-1) s(-1)) which could also yield bromate as final product. The mechanism of bromate formation in aqueous solution in presence of sulfate radicals has been investigated in the present paper. Further experiments were performed in presence of humic acids and in surface water for investigating the relevance of bromate formation in context of pollutant control. The formation of bromate by sulfate radicals resembles the well described mechanism of the hydroxyl radical based bromate formation. In both cases hypobromous acid is a requisite intermediate. In presence of organic matter formation of bromate is effectively suppressed. That can be explained by formation of superoxide formed in the reaction of sulfate radicals plus aromatic moieties of organic matter, since superoxide reduces hypobromous acid yielding bromine atoms and bromide. Hence formation of bromate can be neglected in sulfate radical based oxidation at typical conditions of water treatment. PMID:24565691

  11. Comparison of the Reactivity of the Three Distonic Isomers of the Pyridine Radical Cation Toward Tetrahydrofuran in Solution and in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Widjaja, Fanny; Jin, Zhicheng; Nash, John J.; Kenttämaa, Hilkka I.

    2013-04-01

    The reactivity of the three distonic isomers of the pyridine radical cation toward tetrahydrofuran is compared in solution and in the gas phase. In solution, the distonic ions were generated by UV photolysis at 300 nm from iodo-precursors in acidic 50:50 tetrahydrofuran/water solutions. In the gas phase, the ions were generated by collisionally activated dissociation (CAD) of protonated iodo-precursors in an FT-ICR mass spectrometer, as described in the literature. The same major reaction, hydrogen atom abstraction, was observed in solution and in the gas phase. Attempts to cleave the iodine atom from the 2-iodopyridinium cation in the gas phase and in solution yielded the 2-pyridyl cation in addition to the desired 2-dehydropyridinium cation. In the gas phase, this ion was ejected prior to the examination of the desired ion's chemical properties. This was not possible in solution. This study suggests that solvation effects are not significant for radical reactions of charged radicals. On the other hand, the even-electron ion studied, the 2-pyridyl cation, shows substantial solvation effects. For example, in solution, the 2-pyridyl cation forms a stable adduct with tetrahydrofuran, whereas in the gas phase, only addition/elimination reactions were observed.

  12. Umbrella motion of the methyl cation, radical, and anion molecules. I. Potentials, energy levels and partition functions

    NASA Astrophysics Data System (ADS)

    Ragni, Mirco; Bitencourt, Ana Carla P.; Prudente, Frederico V.; Barreto, Patricia R. P.; Posati, Tamara

    2016-03-01

    A study of the umbrella motion of the methyl cation, radical, and anion molecules is presented. This is the floppiest mode of vibration of all three species and its characterization is of fundamental importance for understanding their reactivity. Minimum Energy Paths of the umbrella motions according to the hyperspherical treatment were obtained, by single point calculations, at the CCSD(T)/aug-cc-pVQT level of theory in the Born-Oppenheimer approximation. These energy profiles permit us to calculate the vibrational levels through the Hyperquantization algorithm, which is shown appropriated for the description of the umbrella motion of these three molecules. The adiabatic electron affinity and ionization potentials were estimated to good accuracy. Partition functions are also calculated in order to obtain information on the reaction rates involving these groups.

  13. Formaldehyde mediated proton-transport catalysis in the ketene-water radical cation CH2C(O)OH2+

    NASA Astrophysics Data System (ADS)

    Lee, Richard; Ruttink, Paul J. A.; Burgers, Peter C.; Terlouw, Johan K.

    2006-09-01

    Previous studies have shown that the solitary ketene-water ion CH2C(O)OH2+ (1) does not isomerize into CH2C(OH)2+ (2), its more stable hydrogen shift isomer. Tandem mass spectrometry based collision experiments reveal that this isomerization does take place in the CH2O loss from low-energy 1,3-dihydroxyacetone ions (HOCH2)2CO+. A mechanistic analysis using the CBS-QB3 model chemistry shows that such molecular ions rearrange into hydrogen-bridged radical cations [CH2C(O)O(H)-H...OCH2]+ in which the CH2O molecule catalyzes the transformation 1 --> 2 prior to dissociation. The barrier for the unassisted reaction, 29 kcal mol-1, is reduced to a mere 0.6 kcal mol-1 for the catalysed transformation. Formaldehyde is an efficient catalyst because its proton affinity meets the criterion for facile proton-transport catalysis.

  14. (Bi)sulfite Oxidation by Copper,Zinc-Superoxide Dismutase: Sulfite-Derived, Radical-Initiated Protein Radical Formation

    PubMed Central

    Ranguelova, Kalina; Bonini, Marcelo G.; Mason, Ronald P.

    2010-01-01

    Background Sulfur dioxide, formed during the combustion of fossil fuels, is a major air pollutant near large cities. Its two ionized forms in aqueous solution, sulfite and (bi)sulfite, are widely used as preservatives and antioxidants to prevent food and beverage spoilage. (Bi)sulfite can be oxidized by peroxidases to form the very reactive sulfur trioxide anion radical (•SO3−). This free radical further reacts with oxygen to form the peroxymonosulfate anion radical (−O3SOO•) and sulfate anion radical (SO4• −). Objective To explore the critical role of these radical intermediates in further oxidizing biomolecules, we examined the ability of copper,zinc-superoxide dismutase (Cu,Zn-SOD) to initiate this radical chain reaction, using human serum albumin (HSA) as a model target. Methods We used electron paramagnetic resonance, optical spectroscopy, oxygen uptake, and immuno-spin trapping to study the protein oxidations driven by sulfite-derived radicals. Results We found that when Cu,Zn-SOD reacted with (bi)sulfite, •SO3− was produced, with the concomitant reduction of SOD-Cu(II) to SOD-Cu(I). Further, we demonstrated that sulfite oxidation mediated by Cu,Zn-SOD induced the formation of radical-derived 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin-trapped HSA radicals. Conclusions The present study suggests that protein oxidative damage resulting from (bi)sulfite oxidation promoted by Cu,Zn-SOD could be involved in oxidative damage and tissue injury in (bi)sulfite-exacerbated allergic reactions. PMID:20348042

  15. Fluorescence of the perylene radical cation and an inaccessible D0/D1 conical intersection: An MMVB, RASSCF, and TD-DFT computational study

    NASA Astrophysics Data System (ADS)

    Tokmachev, Andrei M.; Boggio-Pasqua, Martial; Mendive-Tapia, David; Bearpark, Michael J.; Robb, Michael A.

    2010-01-01

    The photophysics of the perylene radical cation (Pe•+) was studied using the molecular mechanics-valence bond (MMVB) hybrid force field. Potential energy surfaces of the first three electronic states were investigated. Geometry optimizations of critical points—including conical intersections between the relevant electronic states—were performed using the MMVB analytical energy gradient for cations. No accessible planar conical intersection between the D0 and D1 states of Pe•+ was found; this is consistent with the experimentally observed D1 lifetimes and the observation of D1 emission from this cation in the condensed phase. Benchmark RASSCF and TD-DFT calculations support the reliability of the MMVB results.

  16. Cationic cluster formation versus disproportionation of low-valent indium and gallium complexes of 2,2'-bipyridine

    PubMed Central

    Lichtenthaler, Martin R.; Stahl, Florian; Kratzert, Daniel; Heidinger, Lorenz; Schleicher, Erik; Hamann, Julian; Himmel, Daniel; Weber, Stefan; Krossing, Ingo

    2015-01-01

    Group 13 MI compounds often disproportionate into M0 and MIII. Here, however, we show that the reaction of the MI salt of the weakly coordinating alkoxyaluminate [GaI(C6H5F)2]+[Al(ORF)4]− (RF=C(CF3)3) with 2,2'-bipyridine (bipy) yields the paramagnetic and distorted octahedral [Ga(bipy)3]2+•{[Al(ORF)4]−}2 complex salt. While the latter appears to be a GaII compound, both, EPR and DFT investigations assign a ligand-centred [GaIII{(bipy)3}•]2+ radical dication. Surprisingly, the application of the heavier homologue [InI(C6H5F)2]+[Al(ORF)4]− leads to aggregation and formation of the homonuclear cationic triangular and rhombic [In3(bipy)6]3+, [In3(bipy)5]3+ and [In4(bipy)6]4+ metal atom clusters. Typically, such clusters are formed under strongly reductive conditions. Analysing the unexpected redox-neutral cationic cluster formation, DFT studies suggest a stepwise formation of the clusters, possibly via their triplet state and further investigations attribute the overall driving force of the reactions to the strong In−In bonds and the high lattice enthalpies of the resultant ligand stabilized [M3]3+{[Al(ORF)4]−}3 and [M4]4+{[Al(ORF)4]−}4 salts. PMID:26478464

  17. A 1,2,3-dithiazolyl-o-naphthoquinone: a neutral radical with isolable cation and anion oxidation states.

    PubMed

    Smithson, Chad S; MacDonald, Daniel J; Matt Letvenuk, T; Carello, Christian E; Jennings, Michael; Lough, Alan J; Britten, James; Decken, Andreas; Preuss, Kathryn E

    2016-06-21

    Under aprotic conditions, the reaction of 4-amino-1,2-naphthoquinone with excess S2Cl2 generates 4,5-dioxo-naphtho[1,2-d][1,2,3]dithiazol-2-ium chloride in a typical Herz condensation. By contrast, prior literature reports an imine (NH) product, 4,5-dioxo-1H-naphtho[1,2-d][1,2,3]dithiazole, for the same reaction performed in acetic acid. Herein, the cation product is isolated with four different counter-anions (Cl(-), GaCl4(-), FeCl4(-) and OTf(-)). Reduction of the cation generates a neutral radical 1,2,3-dithiazolyl-o-naphthoquinone, with potential ligand properties. Further reduction generates a closed shell anion, isolated as a water-stable Li(+) complex and exhibiting O,O-bidentate chelation. The hydroxy (OH) isomer of the original imine (NH) product is reported, and this can be readily deprotonated and acylated (OAc). All species are structurally characterized. Solution redox behaviour and EPR are discussed where appropriate. PMID:27216412

  18. Vinylogous tetrathiafulvalene (TTF) {pi}-electron donors and derived radical cations: ESR spectroscopic, magnetic, and X-ray structural studies

    SciTech Connect

    Bryce, M.R.; Moore, A.J.; Tanner, B.K.

    1996-06-01

    The properties of new 2,2`-ethanediylidene(1,3-diethile) derivatives 5, 6 and 8-11 are reported. Cyclic voltammetric studies establish that they are efficient donor molecules, with the extended conjugation resulting in stabilization of dications, relative to tetrathiafulvalene TTF (1). Radical cations are generated by oxidation of the neutral compounds with trifluoroacetic acid or anhydrous silver perchlorate in dichloromethane, and their ESR and proton ENDOR spectra are reported. The bulk of the spin population resides in the central S{sub 2} {double_bond}C-C{double_bond}CS{sub 2} part of the {pi}-system. The X-ray crystal structure of donor 6 reveals that the 2,2`-ethanediylidene(1,3-dithiole) framework is planar. Donor 6 forms a crystalline 1:1 charge-transfer complex with TCNQ, the X-ray crystal structure of which shows a mixed stack structure. A solution of this complex in acetonitrile exhibits ESR spectra of both radical ions, 6{sup {lg_bullet}}{sup +} and TCNQ{sup {lg_bullet}}{sup +}. Static susceptibility data are reported for TCNQ complexes of some of these donors. 20 refs., 9 figs., 7 tabs.

  19. 15N electron nuclear double resonance of the primary donor cation radical P+.865 in reaction centers of Rhodopseudomonas sphaeroides: additional evidence for the dimer model.

    PubMed Central

    Lubitz, W; Isaacson, R A; Abresch, E C; Feher, G

    1984-01-01

    Four 15N hyperfine coupling constants, including signs, have been measured by electron nuclear double resonance (ENDOR) and electron nuclear nuclear triple resonance (TRIPLE) for the bacteriochlorophyll a radical cation, BChla+., in vitro and for the light-induced primary donor radical cation, P+.865, in reaction centers of Rhodopseudomonas sphaeroides R-26. A comparison of the data shows that the hyperfine coupling constants have the same sign in both radicals and are, on the average, smaller by a factor of 2 in P+.865. These results provide additional evidence that P+.865 is a bacteriochlorophyll dimer and are in contradiction with the monomer structure of P+.865 recently proposed by O'Malley and Babcock. The reduction factors of the individual 15N couplings, together with the evidence from proton ENDOR data and molecular orbital calculations, indicate a dimer structure in which only two rings (either I and I or III and III) of the bacteriochlorophyll macrocycles overlap. PMID:6096857

  20. Cationic Pillararenes Potently Inhibit Biofilm Formation without Affecting Bacterial Growth and Viability.

    PubMed

    Joseph, Roymon; Naugolny, Alissa; Feldman, Mark; Herzog, Ido M; Fridman, Micha; Cohen, Yoram

    2016-01-27

    It is estimated that up to 80% of bacterial infections are accompanied by biofilm formation. Since bacteria in biofilms are less susceptible to antibiotics than are bacteria in the planktonic state, biofilm-associated infections pose a major health threat, and there is a pressing need for antibiofilm agents. Here we report that water-soluble cationic pillararenes differing in the quaternary ammonium groups efficiently inhibited the formation of biofilms by clinically important Gram-positive pathogens. Biofilm inhibition did not result from antimicrobial activity; thus, the compounds should not inhibit growth of natural bacterial flora. Moreover, none of the cationic pillararenes caused detectable membrane damage to red blood cells or toxicity to human cells in culture. The results indicate that cationic pillararenes have potential for use in medical applications in which biofilm formation is a problem. PMID:26745311

  1. Time-resolved fluorescence spectroscopic investigation of cationic polymer/DNA complex formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, Cosimo; Bassi, Andrea; Taroni, Paola; Pezzoli, Daniele; Volonterio, Alessandro; Candiani, Gabriele

    2011-07-01

    Since DNA is not internalized efficiently by cells, the success of gene therapy depends on the availability of carriers to efficiently deliver genetic material into target cells. Gene delivery vectors can be broadly categorized into viral and non-viral ones. Non-viral gene delivery systems are represented by cationic lipids and polymers rely on the basics of supramolecular chemistry termed "self-assembling": at physiological pH, they are cations and spontaneously form lipoplexes (for lipids) and polyplexes (for polymers) complexing nucleic acids. In this scenario, cationic polymers are commonly used as non-viral vehicles. Their effectiveness is strongly related to key parameters including DNA binding ability and stability in different environments. Time-resolved fluorescence spectroscopy of SYBR Green I (DNA dye) was carried out to characterize cationic polymer/DNA complex (polyplex) formation dispersed in aqueous solution. Both fluorescence amplitude and lifetime proved to be very sensitive to the polymer/DNA ratio (N/P ratio, +/-).

  2. Complex formation of alkaline-earth cations with crown ethers and cryptands in methanol solutions

    SciTech Connect

    Buschman, H.J.

    1986-06-01

    The complexation of alkaline-earth cations by different crown ethers, azacrown ethers, and cryptands has been studied in methanol solutions by means of calorimetric and potentiometric titrations. The smallest monocyclic ligands examined from 2:1 complexes (ratio of ligand to cation) with cations which are too large to fit into the ligand cavity. With the smallest cryptand, only Sr/sup 2 +/ and Ba/sup 2 +/ ions are able to form exclusive complexes. In the case of the reaction of cryptand (211) with Ca/sup 2 +/, a separate estimation of stability constants for the formation of exclusive and inclusive complexes was possible for the first time. Higher values for stability constants are found for the reaction of alkaline-earth cations with cryptands compared to the reaction with alkali ions. This increase is only caused by favorable entropic contributions.

  3. C---lH...O and O...H...O bonded intermediates in the dissociation of low energy methyl glycolate radical cations

    NASA Astrophysics Data System (ADS)

    Suh, Dennis; Kingsmill, Carol A.; Ruttink, Paul J. A.; Burgers, Peter C.; Terlouw, Johan K.

    1995-08-01

    Low energy methyl glycolate radical cations HOCH2C(=O)OCH3+, 1, abundantly lose HCO, yielding protonated methyl formate H---C(OH)OCH3+. Tandem mass spectrometry based experiments on 2H, 13C and 18O labelled isotopologues show that this loss is largely (about 75%) atom specific. Analysis of the atom connectivity in the product ions indicates that the reaction proceeds analogously to the loss of HCO and CH3CO from ionized acetol HOCH2C(=O)CH3+ and acetoin HOCH(CH3)C(=O)CH3+, respectively. The mechanism, it is proposed, involves isomerization of 1 to the key intermediate CH2=O... H---C(=O)OCH3+, an H-bridged ion-dipole complex of neutral formaldehyde and ionized methyl formate. Next, charge transfer takes place to produce CH3OC(H)=O...HC(H)=O+, an H-bridged ion-dipole complex of ionized formaldehyde and neutral methyl formate, followed by proton transfer to generate the products. Preliminary ab initio calculations executed at the UMP3/6-31G*//6-31G*+ZPVE level of theory are presented in support of this proposal. The non-specific loss of HCO from 1 (about 25%) is rationalized to occur via the same mechanism, but after communication with isomeric dimethyl carbonate ions CH3OC(=O)OCH3+, 2, via the O...H...O bonded intermediate [CH2=O...H...O=C---OCH3]+. The latter pathway is even more important in the formation of CH2OH+ ions from 1 which, it is shown, is not a simple bond cleavage reaction, but may involve consecutive or concerted losses of CH3 and CO2 from the above O...H...O bonded species. Ionized methyl lactate HOCH(CH3)C(=O)OCH3+, the higher homologue of 1, shows a unimolecular chemistry which is akin to that of 1.

  4. Compound ES of cytochrome c peroxidase contains a Trp {pi}-cation radical. Characterization by CW and pulsed Q-band ENDOR spectroscopy

    SciTech Connect

    Huyett, J.E.; Doan, P.E.; Gurbiel, R.; Houseman, A.L.P.; Sivaraja, M.; Hoffman, B.M.; Goodin, D.B.

    1995-09-06

    The fully oxidized state of cytochrome c peroxidase (CcP), called ES, contains two oxidizing equivalents, one as an oxyferryl heme and the other as an organic radical on an amino acid residue. The unusual electron paramagnetic resonance spectrum of ES has been shown to be due to a weak distributed exchange coupling between the two paramagnetic redox centers. Various residues have been proposed as the radical site over the years. In this paper continuous wave and pulsed Q-band electron nuclear double resonance (ENDOR) spectroscopy confirms that the radical is located on Trp-191, as previously proposed. The paper completes the characterization of the active site of compound ES as being comprized of an oxyferryl heme coupled to the Trp-191 {pi}-cation radical by a weak spin exchange. 47 refs., 11 figs., 2 tabs.

  5. Theoretical study of reactivity of methane, methyl fluoride, and methyl chloride: Interaction with their radical cations and proton donors

    SciTech Connect

    Hess, B.A. Jr. ); Zahradnik, R. )

    1990-07-18

    This work deals with interactions between CH{sub 4} and CH{sub 4}{sup {sm bullet}+}, CH{sub 3}F and CH{sub 3}F{sup {sm bullet}+}, and CH{sub 3}Cl and CH{sub 3}Cl{sup {sm bullet}+}. The calculated {Delta}H{sub 0} values (MP4/6-31G**//MP2/6-31G**, ZPE included) for processes leading to CH{sub 5}{sup +} and CH{sub 3}{sup {sm bullet}}, and to CFH{sub 4} and CH{sub 2}F{sup {sm bullet}} amount to {minus}1.8 and {minus}21.0 kcal/mol, respectively. The {Delta}H{sub 0} leading to CClH{sub 4}{sup +} and CH{sub 2}Cl{sup {sm bullet}} (MP4/6-31G**//SCF/6-31G**, ZPE included) is {minus}2.3 kcal/mol. The calculated reaction heat for the first interaction is significantly closer to experimental values ({minus}4.16 and {minus}6 kcal/mol, respectively) than their previous theoretical estimates. The structures of the radical cations (CH{sub 4}{sup {sm bullet}+}, CH{sub 3}F{sup {sm bullet}+}) possess features of van der Waals associates.

  6. Dimerization of the octaethylporphyrin {pi} cation radical complex of cobalt(II): Thermodynamic, kinetic, and spectroscopic studies

    SciTech Connect

    Ni, Y.; Lee, S.; Wayland, B.B.

    1999-08-23

    One electron oxidation of cobalt(II) can occur from either the cobalt d or porphyrin {pi} orbitals depending on the choice of porphyrin and reaction media. Oxidation of (octaethylporphyrinato)cobalt(II), (OEP)Co{sup II} (1), in the presence of ligands such as H{sub 2}O and CO produces diamagnetic five and six coordinate complexes of cobalt(III). In the absence of additional ligands to coordinate with Co(III) the first oxidation of [(OEP)Co{sup II}]{sup +} (2). Metalloporphyrin {pi} cation radical complexes and dimers of the OEP derivatives have been extensively investigated. This article reports on the interconversion of the paramagnetic (S = 1) monomer, [(OEP)Co{sup II}]{sup +} (2), with a diamagnetic dimer, [(OEP)-Co{sup II}]{sub 2}{sup 2+} (3), in dichloromethane solvant. {sup 1}H NMR shift and line width studies in CD{sub 2}Cl{sub 2} are applied in evaluating the thermodynamic and activation parameters for homolytic dissociation of the diamagnetic dimer (3).

  7. Chlorophyll-quinone photochemistry in liposomes: mechanisms of radical formation and decay

    SciTech Connect

    Hurley, J.K.; Tollin, G.

    1980-01-01

    Laser flash photolysis has been used to investigate the mechanism of formation and decay of the radical species generated by light induced electron transfer from chlorophyll a triplet to quinone in egg phosphatidyl choline bilayer vesicles. Chlorophyll triplet quenching by quinone is controlled by diffusion occurring within the bilayer membrane and reflects bilayer viscosity. Radical formation via separation of the intermediate ion pair is also inhibited by increased bilayer viscosity. Cooperativity is observed in this process due to an enhancement of radical separation by electron transfer from semiquinone anion radical to a neighboring quinone molecule. Two modes of radical decay are observed, a rapid recombination occurring within the bilayer and a much slower recombination occurring across the bilayer. The slow decay is only observed with quinones which are not tightly anchored into the bilayer, and is probably the result of electron transfer from semiquinone anion radical formed within the bilayer to a quinone molecule residing at the bilayer-water interface. With benzoquinone, approximately 60% of the radical decay occurs via the slow mode. Triplet to radical conversion efficiencies in the bilayer systems are comparable to those obtained in fluid solution (approx. 60%). However, radical recombination, at least for the slow decay mechanism, is considerably retarded.

  8. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds.

    PubMed

    Borrowman, Cuyler K; Zhou, Shouming; Burrow, Timothy E; Abbatt, Jonathan P D

    2016-01-01

    In the 1980s long-lived radical species were identified in cigarette tar. Since then, environmentally persistent free radicals (EPFRs) have been observed in ambient particulate matter, and have been generated in particulate matter generated from internal combustion engines. For the first time, we measure in situ the formation and decay of EPFRs through the heterogeneous reaction of ozone and several polycyclic aromatic compounds (PAC). Solid anthracene (ANT), pyrene (PY), benzo[a]pyrene (BAP), benzo[ghi]perylene (BGHIP), 1,4-naphthoquinone (1,4NQ), and 9,10-anthraquinone (AQ) were reacted with gas-phase ozone in a flow system placed in the active cavity of an electron paramagnetic resonance (EPR) spectrometer, and the formation of radicals was measured on the timescale of tens of minutes at ambient levels of ozone down to 30 ppb. For most substrates the net radical production is initially rapid, slows at intermediate times, and is followed by a slow decay. For oxidized solid BAP, radical signal persists for many days in the absence of ozone. To evaluate the effect of substrate phase, the solid PAHs were also dissolved in squalane, an organic oil inert to ozone, which yielded a much higher maximum radical concentration and faster radical decay when exposed to ozone. With higher mobility, reactants were apparently able to more easily diffuse and react with each other, yielding the higher radical concentrations. The EPR spectra exhibit three radicals types, two of which have been assigned to semiquinone species and one to a PAH-derived, carbon-centered radical. Although our system uses levels of PAC not typically found in the environment it is worth noting that the amounts of radical formed, on the order of 10(18) radicals per g, are comparable to those observed in ambient particulate matter. PMID:26603953

  9. Radical Formation Initiates Solvent-Dependent Unfolding and β-sheet Formation in a Model Helical Peptide.

    PubMed

    Owen, Michael C; Strodel, Birgit; Csizmadia, Imre G; Viskolcz, Béla

    2016-06-01

    We examined the effects of Cα-centered radical formation on the stability of a model helical peptide, N-Ac-KK(AL)10KK-NH2. Three, 100 ns molecular dynamics simulations using the OPLS-AA force field were carried out on each α-helical peptide in six distinct binary TIP4P water/2,2,2-trifluoroethanol (TFE) mixtures. The α-helicity was at a maximum in 20% TFE, which was inversely proportional to the number of H-bonds between water molecules and the peptide backbone. The radial distribution of TFE around the peptide backbone was highest in 20% TFE, which enhanced helix stability. The Cα-centered radical initiated the formation of a turn within 5 ns, which was a smaller kink at high TFE concentrations, and a loop at lower TFE concentrations. The highest helicity of the peptide radical was measured in 100% TFE. The formation of hydrogen bonds between the peptide backbone and water destabilized the helix, whereas the clustering of TFE molecules around the radical center stabilized the helix. Following radical termination, the once helical structure converted to a β-sheet rich state in 100% water only, and this transition did not occur in the nonradical control peptide. This study gives evidence on how the formation of peptide radicals can initiate α-helical to β-sheet transitions under oxidative stress conditions. PMID:27169334

  10. Multiphoton processes in cyclohexane and trans-decalin and the formation of high-mobility cations

    SciTech Connect

    Liu, A.; Sauer, M.C. Jr.; Trifunac, A.D. )

    1993-10-28

    The dependence of the absolute efficiencies of production of free electrons and HM[sub +] (positive ions with anomalously high mobility) on the intensity of 248- and 308-nm laser pulses has been measured for neat cyclohexane and trans-decalin and for solutions containing aromatic compounds. In the neat solvents, the yields of electrons and HM[sub +] have the same intensity dependence; for ionization of these two alkanes, two photons are required at 248 nm and three photons at 308 nm. In solutions containing aromatic solutes, where the major fraction of the light absorption is by the solute, yields of both free electron and HM[sub +] are markedly higher, and at both 248 and 308 nm the intensity dependences indicate two photons are required for ionization but that three photons are required to create HM[sub +]. This is consistent with the explanation, based on previously reported product analysis studies from this laboratory, that the aromatic solute is ionized when its excited state, created by the first photon, absorbs a second photon and the radical cation absorbs a third photon, which enables it to react with the solvent, creating HM[sub +]. Examination of previously reported results on anthracene in 2-propanol supports a similar explanation for the observed decrease in the quantum yield of the anthracene radical cation with increasing intensity. 39 refs., 12 figs., 4 tabs.

  11. Communication: Ion mobility of the radical cation dimers: (Naphthalene)2+• and naphthalene+•-benzene: Evidence for stacked sandwich and T-shape structures

    NASA Astrophysics Data System (ADS)

    Platt, Sean P.; Attah, Isaac K.; Aziz, Saadullah; El-Shall, M. Samy

    2015-05-01

    Dimer radical cations of aromatic and polycyclic aromatic molecules are good model systems for a fundamental understanding of photoconductivity and ferromagnetism in organic materials which depend on the degree of charge delocalization. The structures of the dimer radical cations are difficult to determine theoretically since the potential energy surface is often very flat with multiple shallow minima representing two major classes of isomers adopting the stacked parallel or the T-shape structure. We present experimental results, based on mass-selected ion mobility measurements, on the gas phase structures of the naphthalene+ṡ ṡ naphthalene homodimer and the naphthalene+ṡ ṡ benzene heterodimer radical cations at different temperatures. Ion mobility studies reveal a persistence of the stacked parallel structure of the naphthalene+ṡ ṡ naphthalene homodimer in the temperature range 230-300 K. On the other hand, the results reveal that the naphthalene+ṡ ṡ benzene heterodimer is able to exhibit both the stacked parallel and T-shape structural isomers depending on the experimental conditions. Exploitation of the unique structural motifs among charged homo- and heteroaromatic-aromatic interactions may lead to new opportunities for molecular design and recognition involving charged aromatic systems.

  12. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III) Reaction Intermediate Models of Peroxidase Enzymes.

    PubMed

    Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi

    2016-01-01

    The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity. PMID:27355940

  13. Formation of free radicals during mechanical degradation of elastomers.

    NASA Technical Reports Server (NTRS)

    Devries, K. L.; Williams, M. L.; Roylance, D. K.

    1971-01-01

    Solithane 113 (an amorphous polyurethane elastomer) was prepared by curing equal proportions of castor oil and trifunctional isocyanate for 6 hr 45 min at 170 F. The sample material was mechanically degraded by grinding below and above its glass transition point at liquid nitrogen and room temperatures. The EPR spectra of ground samples were recorded and the number of free radicals were determined by a computer double-integration of the recorded spectra and by a comparison of the values with those of a standard material. Curves of EPR spectra suggest that different molecular mechanisms may be active in degradation of this material below and above its glass transition temperature.

  14. Electronic Characterization of Reaction Intermediates: The Fluorenylium, Phenalenylium, and Benz[f]indenylium Cations and Their Radicals.

    PubMed

    Fulara, Jan; Chakraborty, Arghya; Maier, John P

    2016-03-01

    Three vibrationally resolved absorption systems commencing at 538, 518, and 392 nm were detected in a 6 K neon matrix after mass-selected deposition of C13 H9 (+) ions (m/z=165) produced from fluorene in a hot-cathode discharge ion source. The benz[f]indenylium (BfI(+) : 538 nm), fluorenylium (FL9(+) : 518 nm), and phenalenylium (PHL(+) : 392 nm) cations are the absorbing molecules. Two electronic systems corresponding to neutral species are apparent at 490 and 546 nm after irradiation of the matrix with λ<260 nm photons and were assigned to the FL9 and BfI radicals, respectively. The strongest peak at 518 nm is the origin of the 2 (1) B2 ←X̃ (1) A1 absorption of FL9(+) , and the 490 nm band is the 2 (2) A2 ←X̃ (2) B1 origin of FL9. The electronic systems commencing at 538 nm and 546 nm were assigned to the 1 (1) A1 ←X̃ (1) A1 and 1 (2) A2 ←X̃ (2) A2 transitions of BfI(+) and BfI. The 392 nm band is the 1 (1) E'←X̃ (1) A1 ' transition of PHL(+). The electronic spectra of C13 H9 (+) /C13 H9 were assigned on the basis of the vertical excitation energies calculated with SAC-CI and MS-CASPT2 methods. PMID:26845059

  15. C{sub 8}H{sub 8} radical cations of cyclooctatetraene, semibullvalene, and their common bisallylic rearrangement product. Electronic structure and potential energy surfaces

    SciTech Connect

    Bally, T.; Truttmann, L.; Dai, S.; Williams, F.

    1995-08-02

    The recently discovered access paths to the radical cation of bicyclo[3,3,0]octa-2,6-diene-4,8-diyl (BOD{sup +}) are explored by electronic absorption (EA) spectroscopy whereby previous ESR results are confirmed. The electronic and molecular structure of BOD{sup +} and of its photoprecursor, the radical cation of cyclooctatetraene (COT{sup +}), are discussed on the basis of their EA spectra and ab initio calculations. The ground and excited state potential surfaces common to the title cations are explored, and it is shown that the COT{sup +} {yields} BOD{sup +} photorearrangement proceeds mainly by virtue of a pronounced Jahn-Teller distortion of the second excited state of COT{sup +} ({sup 2}E). This distortion competes effectively with internal conversion to the first excited state, leads to an inversion of the ground state symmetry, and covers a substantial part of the reaction path leading to the bisallylic cation. 37 refs., 8 figs., 4 tabs.

  16. Free radical formation in vivo and hepatotoxicity due to anesthesia with halothane

    SciTech Connect

    Plummer, J.L.; Beckwith, A.L.; Bastin, F.N.; Adams, J.F.; Cousins, M.J.; Hall, P.

    1982-09-01

    In vivo studies were undertaken to determine whether free radical formation in the liver during administration of various halogenated anesthetics is associated with hepatotoxicity of these agents in an animal model. In addition to the anesthetics halothane, enflurane, and isoflurane, carbon tetrachloride was studied as an example of a hepatotoxic halogenated compound acting by a free radical mechanism. Free radicals were trapped in vivo during anesthesia as stable adducts using the spin trap, alpha-phenyl-t-butyl nitrone. These adducts were extracted from the liver and studied by electron spin resonance spectrometry. Free radicals were detected after administration of halothane or carbon tetrachloride, compounds which were hepatotoxic under the conditions of the experiment, but were not found after anesthesia induced with enflurane or isoflurane, anesthetics which were not hepatotoxic under identical conditions. The free radical trapped after alpha-phenyl-t-butyl nitrone treatment of halothane-anesthetized rats appeared to be a metabolic intermediate of halothane.

  17. Formation of Stable Cationic Lipid/DNA Complexes for Gene Transfer

    NASA Astrophysics Data System (ADS)

    Hofland, Hans E. J.; Shephard, Lee; Sullivan, Sean M.

    1996-07-01

    Stable cationic lipid/DNA complexes were formed by solubilizing cationic liposomes with 1% octylglucoside and complexing a DNA plasmid with the lipid in the presence of detergent. Removal of the detergent by dialysis yielded a lipid/DNA suspension that was able to transfect tissue culture cells up to 90 days after formation with no loss in activity. Similar levels of gene transfer were obtained by mixing the cationic lipid in a liposome form with DNA just prior to cell addition. However, expression was completely lost 24 hr after mixing. The transfection efficiency of the stable complex in 15% fetal calf serum was 30% of that obtained in the absence of serum, whereas the transient complex was completely inactivated with 2% fetal calf serum. A 90-day stability study comparing various storage conditions showed that the stable complex could be stored frozen or as a suspension at 4 degrees C with no loss in transfection efficiency. Centrifugation of the stable complex produced a pellet that contained approximately 90% of the DNA and 10% of the lipid. Transfection of cells with the resuspended pellet and the supernatant showed that the majority of the transfection activity was in the pellet and all the toxicity was in the supernatant. Formation of a stable cationic lipid/DNA complex has produced a transfection vehicle that can be stored indefinitely, can be concentrated with no loss in transfection efficiency, and the toxicity levels can be greatly reduced when the active complex is isolated from the uncomplexed lipid.

  18. Peroxy radical concentration and ozone formation rate at a rural site in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Kleinman, Lawrence; Lee, Yin-Nan; Springston, Stephen R.; Lee, Jai H.; Nunnermacker, Linda; Weinstein-Lloyd, Judith; Zhou, Xianliang; Newman, Leonard

    1995-04-01

    As part of the Southern Oxidants Study, Brookhaven National Laboratory operated an intensive measurement site near Metter, Georgia, during parts of the summers of 1991 and 1992. Measurements were made of photochemically active trace gases and meteorological parameters relevant to determining causes for elevated ambient ozone concentration. The 1992 data set was used to calculate peroxy radical concentration and ozone formation rate based on determining the departure from the photostationary state (PSS) and based on a radical budget equation, such as applied previously to the 1991 data set. Averaged over the 28-day experimental period, we find maximum radical production occurring near noon at 2.5 ppb h-1, maximum peroxy radical concentration also occurring near noon at 80 ppt, and maximum ozone production of 8 ppb h-1 occurring near 1000 EST. Ozone photolysis accounts for 55% of radical production, HCHO and other carbonyl compounds about 40%. The radical budget and PSS methods depend in different ways on atmospheric photochemistry and a comparison between them affords a test of our understanding of the photochemical production of O3. We find that these methods agree to the extent expected based on uncertainty estimates. For the data set as a whole, the median estimate for fractional error in hourly average peroxy radical concentration determined from the radical budget method is approximately 30% and from the PSS method, 50%. Error estimates for the PSS method are highly variable, becoming infinite as peroxy radical concentration approaches zero. This behavior can be traced back to the difference form of the PSS equations. To conduct a meaningful comparison between the methods, the data set was segregated into subsets based on PSS uncertainty estimates. For the low-uncertainty subset, consisting of a third of the whole data set, we find that the ratio of peroxy radical concentration predicted from the PSS method to that predicted from the radical budget method to be

  19. Velocity Map Imaging Study of Ion-Radical Chemistry: Charge Transfer and Carbon-Carbon Bond Formation in the Reactions of Allyl Radicals with C(.).

    PubMed

    Pei, Linsen; Farrar, James M

    2016-08-11

    We present an experimental and computational study of the dynamics of collisions of ground state carbon cations with allyl radicals, C3H5, at a collision energy of 2.2 eV. Charge transfer to produce the allyl cation, C3H5(+), is exoergic by 3.08 eV and proceeds via energy resonance such that the electron transfer occurs without a significant change in nuclear velocities. The products have sufficient energy to undergo the dissociation process C3H5(+) → C3H4(+) + H. Approximately 80% of the reaction products are ascribed to charge transfer, with ∼40% of those products decaying via loss of a hydrogen atom. We also observe products arising from the formation of new carbon-carbon bonds. The experimental velocity space flux distributions for the four-carbon products are symmetric about the centroid of the reactants, providing direct evidence that the products are mediated by formation of a C4H5(+) complex living at least a few rotational periods. The primary four-carbon reaction products are formed by elimination of molecular hydrogen from the C4H5(+) complex. More than 75% of the nascent C4H3(+) products decay by C-H bond cleavage to yield a C4H2(+) species. Quantum chemical calculations at the MP2/6-311+g(d,p) level of theory support the formation of a nonplanar cyclic C4H5(+) adduct that is produced when the p-orbital containing the unpaired electron on C(+) overlaps with the unpaired spin density on the terminal carbon atoms in allyl. Product formation then occurs by 1,2-elimination of molecular hydrogen from the cyclic intermediate to form a planar cyclic C4H3(+) product. The large rearrangement in geometry as the C4H3(+) products are formed is consistent with high vibrational excitation in that product and supports the observation that the majority of those products decay to form the C4H2(+) species. PMID:27434380

  20. Formation of radical-anions and radicals in the reaction of sodium sulfide with aromatic halogen compounds

    SciTech Connect

    Annenkova, V.Z.; Antonik, L.M.; Vakul'skaya, T.I.; Voronkov, M.G.

    1986-03-20

    The ESR and UV spectroscopic methods were used to establish the mechanism of the substitution of a chlorine atom by sulfide sulfur in the reactions of 2,5-dichloro-nitrobenzene (i) and p-dichlorobenzene (II) with sodium sulfide in N-methyl-2-pyrrolidone. The S/sub 2//sup -./ and S/sub 3//sup -./ radical-anions were detected and identified. The former corresponds to a narrow singlet with a g factor of 2.005 (lambdamax 440 nm), while the latter corresponds to a broad ESR signal with a g value of 2.028 (lambdamax 618 nm) (1-3). The formation of the radical-anion of the reagent gave grounds for supposing that the reaction of (I) and (II) with sodium sulfide takes place through a one-electron transfer stage. Thus, a stable radical-anion characterized by hyperfine structure (hfs) (3/sub N/ x 2/sub H/ x 3/sub H/ x 3/sub H/ with constants of 11.6, 3.7, 3.5, and 0.7 Oe respectively) is formed in the nitrobenzene-sodium sulfide system.

  1. Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate.

    PubMed

    Lutze, Holger V; Kerlin, Nils; Schmidt, Torsten C

    2015-04-01

    Sulfate radical (SO4(-)) based oxidation is discussed as a potential water treatment option and is already used in ground water remediation. However, the complex SO4(-) chemistry in various matrices is poorly understood. In that regard, the fast reaction of SO4(-) with Cl(-) is of high importance since Cl(-) belongs to the main constituents in aqueous environments. This reaction yields chlorine atoms (Cl) as primary products. Cl initiate a cascade of subsequent reactions with a pH dependent product pattern. At low pH (<5) formation of chlorine derived oxidation products such as chlorate (ClO3(-)) is favoured. This is undesired because ClO3(-) may reveal adverse effects on the environment and human health. At pH > 5 Cl mainly react with water yielding hydroxyl radicals. Thus, at moderate Cl(-) concentrations (mM range) the SO4(-)-based process may be converted into a conventional (hydroxyl radical -based) advanced oxidation process. The conversion of SO4(-) into OH, however, is interrupted in presence of bicarbonate by scavenging of Cl. PMID:25455043

  2. DNA strand exchange stimulated by spontaneous complex formation with cationic comb-type copolymer.

    PubMed

    Kim, Won Jong; Akaike, Toshihiro; Maruyama, Atsushi

    2002-10-30

    Cationic comb-type copolymers (CCCs) composed of a polycation backbone and water-soluble side chains accelerate by 4-5 orders the DNA strand exchange reaction (SER) between double helical DNA and its homologous single-strand DNA. The accelerating effect is considered due to alleviation of counterion association during transitional intermediate formation in sequential displacement pathway. CCCs stabilize not only matured hybrids but also the nucleation complex to accelerate hybridization. PMID:12392411

  3. Free-radical Destruction of Sphingolipids Resulting in 2-hexadecenal Formation

    PubMed Central

    Shadyro, Oleg; Lisovskaya, Alexandra; Semenkova, Galina; Edimecheva, Irina; Amaegberi, Nadezda

    2015-01-01

    The action of hypochlorous acid (HOCl) and γ-radiation on aqueous lysosphingolipid dispersions was found to produce 2-hexadecenal (Hex). This process includes the stages of formation of nitrogen-centered radicals from the starting molecules and the subsequent fragmentation of these radicals via the rupture of C–C and O–H bonds. These findings prove the existence of a nonenzymatic pathway of sphingolipid destruction leading to the formation of Hex, which possesses a wide spectrum of biological activity. Analysis of the effect of HOCl on transplantable rat glioma C6 cells and human embryonic kidney 293 cells points to the formation of Hex. This suggests that the described mechanism of free-radical destruction of sphingolipids may be replicated on cell culture under the stress of active chlorine forms. PMID:25861222

  4. Möbius-Hückel topology switching in an expanded porphyrin cation radical as studied by EPR and ENDOR spectroscopy.

    PubMed

    Möbius, Klaus; Plato, Martin; Klihm, Gudrun; Laurich, Christoph; Savitsky, Anton; Lubitz, Wolfgang; Szyszko, Bartosz; Stępień, Marcin; Latos-Grażyński, Lechosław

    2015-03-01

    The symmetry of the arrangement of objects has fascinated philosophers, artists and scientists for a long time, and still does. Symmetries often exist in nature, but are also created artificially, for instance by chemical synthesis of novel molecules and materials. The one-sided, non-orientable Möbius band topology is a paradigm of such a symmetry-based fascination. In the early 1960s, in synthetic organic chemistry the interest in molecules with Möbius symmetry was greatly stimulated by a short paper by Edgar Heilbronner. He predicted that sufficiently large [n]annulenes with a closed-shell electron configuration of 4n π-electrons should allow for sufficient π-overlap stabilization to be synthesizable by twisting them with a 180° phase change into the Möbius symmetry of their hydrocarbon skeleton. In 2007, the group of Lechosław Latos-Grażyński succeeded in synthesizing the compound di-p-benzi[28]hexa-phyrin(1.1.1.1.1.1), compound 1, which can dynamically switch between Hückel and Möbius conjugation depending, in a complex manner, on the polarity and temperature of the surrounding solvent. This discovery of "topology switching" between the two-sided (Hückel) and one-sided (Möbius) molecular state with closed-shell electronic configuration was based primarily on the results of NMR spectroscopy and DFT calculations. The present EPR and ENDOR work on the radical cation state of compound 1 is the first study of a ground-state open-shell system which exhibits a Hückel-Möbius topology switch that is controlled by temperature, like in the case of the closed-shell precursor. The unpaired electron interacting with magnetic nuclei in the molecule is used as a sensitive probe for the electronic structure and its symmetry properties. For a Hückel conformer with its higher symmetry, we expect - and observe - fewer ENDOR lines than for a Möbius conformer. The ENDOR results are supplemented by and in accordance with theoretical calculations based on density

  5. Radical Pathways for the Prebiotic Formation of Pyrimidine Bases from Formamide.

    PubMed

    Nguyen, Huyen Thi; Jeilani, Yassin A; Hung, Huynh Minh; Nguyen, Minh Tho

    2015-08-20

    The prebiotic formation of nucleobases, the building blocks of RNA/DNA, is of current interest. Highly reactive radical species present in the atmosphere under irradiation have been suggested to be involved in the prebiotic synthesis of nucleobases from formamide (FM). We studied several free radical reaction pathways for the synthesis of pyrimidine bases (cytosine, uracil, and thymine) from FM under cold conditions. These pathways are theoretically determined using density functional theory (DFT) computations to examine their kinetic and thermodynamic feasibilities. These free radical reaction pathways share some common reaction types such as H-rearrangement, (•)H/(•)OH/(•)NH2 radical loss, and intramolecular radical cyclization. The rate-determining steps in these pathways are characterized with low energy barriers. The energy barriers of the ring formation steps are in the range of 3-7 kcal/mol. Although DFT methods are known to significantly underestimate the barriers for addition of (•)H radical to neutral species, many of these reactions are highly exergonic with energy release of -15 to -52 kcal/mol and are thus favorable. Among the suggested pathways for formation of cytosine (main route, routes 7a and 1a), uracil (main route, routes 7b and 1b), and thymine (main route and route 26a), the main routes are in general thermodynamically more exergonic and more kinetically favored than other alternative routes with lower overall energy barriers. The reaction energies released following formation of cytosine, uracil, and thymine from FM via the main radical routes amount to -59, -81, and -104 kcal/mol, respectively. Increasing temperature induces unfavorable changes in both kinetic and thermodynamic aspects of the suggested routes. However, the main routes are still more favored than the alternative pathways at the temperature up to the boiling point of FM. PMID:26196536

  6. Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis.

    PubMed

    Flühe, Leif; Marahiel, Mohamed A

    2013-08-01

    Sactipeptides represent a new emerging class of ribosomally assembled and posttranslationally modified peptides that show diverse bioactivities. Their common hallmark is an intramolecular thioether bond that crosslink the sulfur atom of a cysteine residue with the α-carbon of an acceptor amino acid. This review summarizes recent achievements concerning the biosynthesis of sactipeptides in general and with special focus on the common enzymatic radical SAM mechanism leading to the thioether linkage formation. In addition this mechanism is compared to the mechanism of thioether bond formation during lanthipeptide biosynthesis and to other radical based thioether bond forming reactions. PMID:23891473

  7. Nighttime formation of peroxy and hydroxyl radicals during the BERLIOZ campaign: Observations and modeling studies

    NASA Astrophysics Data System (ADS)

    Geyer, Andreas; BäChmann, Kurt; Hofzumahaus, Andreas; Holland, Frank; Konrad, Stefan; Klüpfel, Thomas; PäTz, Hans-Werner; Perner, Dieter; Mihelcic, Djuro; SchäFer, Hans-Jürgen; Volz-Thomas, Andreas; Platt, Ulrich

    2003-02-01

    Traditionally, tropospheric radical chemistry is discussed in terms of the daytime photochemically produced hydroxyl radical (OH). Radicals, however, are also important during nighttime: this is especially true for ozone and the nitrate radical (NO3), which both act as key initiators of the degradation of alkenes such as biogenic monoterpenes. These reactions lead to the formation of peroxy radicals (HO2 and RO2) and hydroxyl radicals at night. We present recent observations of nighttime concentrations of NO3, RO2, HO2, and OH by differential optical absorption spectroscopy (DOAS), matrix isolation electron spin resonance (MIESR), laser-induced fluorescence (LIF), and a chemical amplifier (CA) in the framework of the Berliner Ozonexperiment (BERLIOZ) campaign at Pabstthum, Germany, together with modeling studies of nocturnal radical chemistry. Modeled RO2 mixing ratios reached 40 ppt while the measured ROx level went up to 22 ppt at the same time. Modeled and measured HO2 mixing ratios were up to 6 and 4 ppt, respectively. In the case of OH, a nocturnal concentration of (1.85 ± 0.82) × 105 cm-3 was measured during one night. At this time, the model yielded an OH level of (4.1 ± 0.7) × 105 cm-3. This overestimation by the model could point to a missing nocturnal sink of OH. Nitrate radical reactions with terpenes were found responsible for producing 77% of the RO2 radicals, 53% of the HO2, and 36% of the OH radicals during night. Nighttime ozonolysis formed 12% of the RO2, 47% of the HO2, and 64% of the OH radicals. Another 11% of the RO2 radicals were formed by OH-volatile organic compound (VOC) reactions. A positive linear correlation of RO2 and NO3 was observed and could be reproduced in model calculations originating from the loss of both radicals by reaction with NO and the NO3-initiated RO2 production. The contribution of nighttime OH to the atmosphere's oxidation capacity (oxidation rate of VOCs, CO, and CH4) was found negligible (<0.5%).

  8. Domino Fragmentations in Traceless Directing Groups of Radical Cascades: Evidence for the Formation of Alkoxy Radicals via C-O Scission.

    PubMed

    Harris, Trevor; Gomes, Gabriel Dos Passos; Clark, Ronald J; Alabugin, Igor V

    2016-07-15

    Direct evidence for the formation of alkoxy radicals is reported in radical cascades using traceless directing groups. Despite the possibility of hydrogen abstraction in the fragmenting step, followed by loss of R-OH, β-scission is preferred for the formation of alkoxy radicals. For the first time, the C-O radical was intermolecularly trapped using a silyl enol ether. Various C-X fragmenting groups were explored as possible traceless directing groups for the preparation of extended polyaromatics. Computational evidence shows that a combination of aromatization, steric and stereoelectronic effects assists the fragmentation to alkoxy radicals. Additionally, a new through-space interaction was discovered between O and Sn in the fragmentation as a specific transition state stabilizing effect. PMID:27304982

  9. Formation of stable radicals in catechin/nitrous acid systems: participation of dinitrosocatechin.

    PubMed

    Morina, Filis; Takahama, Umeo; Mojović, Miloš; Popović-Bijelić, Ana; Veljović-Jovanović, Sonja

    2016-03-01

    Catechins are transformed into dinitrosocatechins (diNOcats) and then oxidized to the quinones by salivary nitrite under conditions simulating the stomach. This manuscript deals with formation of stable radicals in the NO group of diNOcat during nitrite-induced oxidation of (+)-catechin and diNOcat at pH 2. We postulated two mechanisms for the stable radical formation; one is nitrous acid-induced oxidation of diNOcat in the A-ring, and the other intermolecular charge transfer from the A-ring of diNOcat and/or diNOcat quinone to the quinone moiety of the B-ring of diNOcat quinone. In addition, an unstable phenoxyl radical, which might be transformed into quinone, was also produced, accompanying the formation of the stable radical on the NO group. Taking the above results into account, we mainly focus on the adverse effects of the radicals and quinone, which may be produced from (+)-catechin in the stomach under the conditions of high salivary nitrite concentrations. PMID:26471661

  10. Effect of gas-containing microspheres and echo contrast agents on free radical formation by ultrasound.

    PubMed

    Kondo, T; Misík, V; Riesz, P

    1998-09-01

    Stabilized microbubbles (microspheres) are widely used to enhance the contrast of ultrasound imaging. Our data provide direct evidence that the contrast agents, Levovist, PVC-AN (polyvinylidene chloride-acrylonitryl copolymer), and Albunex (compared to 5% human albumin), at concentrations comparable to those used for ultrasound imaging, enhance H2O2 production (through the superoxide-dependent pathway) in air-saturated aqueous solutions exposed to 47 kHz ultrasound above the cavitation threshold. These agents also act as scavengers of .H atoms and .OH radicals, thus lowering H2O2 formation (by recombination of .OH radicals) in argon-saturated solutions. EPR spin trapping also reveals that secondary radicals derived from the contrast agents are produced by reactions with .H and .OH which are formed by pyrolysis of water inside cavitation bubbles. In addition, the contrast agents themselves undergo pyrolysis reactions in the cavitation bubbles as demonstrated by formation of methyl radicals. Possible deleterious consequences of the formation of sonochemical intermediates may have to be assessed, particularly since some of the echo contrast agents have been shown to lower the cavitation threshold of diagnostic ultrasound. Unlike the microspheres formed from organic molecules, inorganic microspheres, Eccospheres, because of their stability and inert nature with respect to participation in free radical processes, appear to be suitable tools for enhancing the yields of aqueous sonochemical reactions. PMID:9741598

  11. Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes

    SciTech Connect

    Ramos, C.L.; Pou, S.; Britigan, B.E.; Cohen, M.S.; Rosen, G.M. )

    1992-04-25

    Using the electron spin resonance/spin trapping system, 4-pyridyl 1-oxide N-tert-butylnitrone (4-POBN)/ethanol, hydroxyl radical was detected as the alpha-hydroxyethyl spin trapped adduct of 4-POBN, 4-POBN-CH(CH3)OH, from phorbol 12-myristate 13-acetate-stimulated human neutrophils and monocytes without the addition of supplemental iron. 4-POBN-CH(CH3)OH was stable in the presence of a neutrophil-derived superoxide flux. Hydroxyl radical formation was inhibited by treatment with superoxide dismutase, catalase, and azide. Treatment with a series of transition metal chelators did not appreciably alter 4-POBN-CH(CH3)OH, which suggested that hydroxyl radical generation was mediated by a mechanism independent of the transition metal-catalyzed Haber-Weiss reaction. Kinetic differences between transition metal-dependent and -independent mechanisms of hydroxyl radical generation by stimulated neutrophils were demonstrated by a greater rate of 4-POBN-CH(CH3)-OH accumulation in the presence of supplemental iron. Detection of hydroxyl radical from stimulated monocyte-derived macrophages, which lack myeloperoxidase, required the addition of supplemental iron. The addition of purified myeloperoxidase to an enzymatic superoxide generating system resulted in the detection of hydroxyl radical that was dependent upon the presence of chloride and was inhibited by superoxide dismutase, catalase, and azide. These findings implicated the reaction of hypochlorous acid and superoxide to produce hydroxyl radical. 4-POBN-CH(CH3)OH was not observed upon stimulation of myeloperoxidase-deficient neutrophils, whereas addition of myeloperoxidase to the reaction mixture resulted in the detection of hydroxyl radical. These results support the ability of human neutrophils and monocytes to generate hydroxyl radical through a myeloperoxidase-dependent mechanism.

  12. Formation of highly oxidized multifunctional compounds: Autoxidation of peroxy radicals formed in the oxidation of alkenes

    NASA Astrophysics Data System (ADS)

    Mentel, Thomas; Ehn, Mikael; Thornton, Joel; Kleist, Einhard; Pullinen, Iida; Springer, Monika; Wahner, Andreas; Wildt, Jürgen

    2015-04-01

    Recent studies show that peroxy radicals are key intermediates in particle formation. Permutation reactions involving highly oxidized peroxy radicals form stable products with extremely low volatility (ELVOC). We suggest that ELVOC are the postulated organic compounds that explain growth of small particles (Ehn et al., Nature, 2014). To elucidate the pathways of ELVOC formation, experiments were performed in the Juelich Plant Atmosphere Chamber. We applied High Resolution Nitrate-Chemical Ionization Mass Spectrometry for detection of ELVOC including highly oxidized peroxy radicals. ELVOC were produced by ozonolysis of a-pinene and other cyclic alkenes (Rissanen et al., JACS, 2014, Mentel et al., ACPD, 2015), as well as by reactions of the target compounds with OH. ELVOC with C10 skeletons carry a large number of oxygens, still containing 14 or 16 H-atoms. ELVOC-dimers with twice the number of C-atoms of the reactant were also observed. The formation of ELVOC can be explained by fast intramolecular H-shifts in combination with classical peroxy radical termination reactions, leading to ketones, alcohols, and hydroperoxides (including peroxy acids). The subsequent H-shifts enable the formation of an increasing number of hydroperoxide groups under reproduction of a peroxy radical (containing now two more oxygens). Addition of NOX to the system increases the concentrations of nitrates at the expense of the corresponding peroxy radicals, confirming their identification as peroxy radicals. Furthermore, the concentrations of ELVOC dimers decrease strongly with increasing NOX suggesting that they are indeed formed by peroxy-peroxy permutation reactions. ELVOC are involved in new particle formation, and can explain the major fraction of the early growth observed in field studies. ELVOC dimers are very likely key in new particle formation as their formation is strongly suppressed with increasing NOX in accordance with the observed NOX dependence of new particle formation (Ehn

  13. Pseudomonas and neutrophil products modify transferrin and lactoferrin to create conditions that favor hydroxyl radical formation.

    PubMed Central

    Britigan, B E; Edeker, B L

    1991-01-01

    In vivo most extracellular iron is bound to transferrin or lactoferrin in such a way as to be unable to catalyze the formation of hydroxyl radical from superoxide (.O2-) and hydrogen peroxide (H2O2). At sites of Pseudomonas aeruginosa infection bacterial and neutrophil products could possibly modify transferrin and/or lactoferrin forming catalytic iron complexes. To examine this possibility, diferrictransferrin and diferriclactoferrin which had been incubated with pseudomonas elastase, pseudomonas alkaline protease, human neutrophil elastase, trypsin, or the myeloperoxidase product HOCl were added to a hypoxanthine/xanthine oxidase .O2-/H2O2 generating system. Hydroxyl radical formation was only detected with pseudomonas elastase treated diferrictransferrin and, to a much lesser extent, diferriclactoferrin. This effect was enhanced by the combination of pseudomonas elastase with other proteases, most prominently neutrophil elastase. Addition of pseudomonas elastase-treated diferrictransferrin to stimulated neutrophils also resulted in hydroxyl radical generation. Incubation of pseudomonas elastase with transferrin which had been selectively iron loaded at either the NH2- or COOH-terminal binding site yielded iron chelates with similar efficacy for hydroxyl radical catalysis. Pseudomonas elastase and HOCl treatment also decreased the ability of apotransferrin to inhibit hydroxyl radical formation by a Fe-NTA supplemented hypoxanthine/xanthine oxidase system. However, apotransferrin could be protected from the effects of HOCl if bicarbonate anion was present during the incubation. Apolactoferrin inhibition of hydroxyl radical generation was unaffected by any of the four proteases or HOCl. Alteration of transferrin by enzymes and oxidants present at sites of pseudomonas and other bacterial infections may increase the potential for local hydroxyl radical generation thereby contributing to tissue injury. Images PMID:1655825

  14. On the Electronic Spectroscopy of Closed Shell Cations Derived from Resonance Stabilized Radicals: Insights from Theory and Franck-Condon Analysis

    NASA Astrophysics Data System (ADS)

    Troy, Tyler P.; Kable, Scott H.; Schmidt, Timothy W.; Reid, Scott A.

    2012-06-01

    Recent attention has been directed on closed shell aromatic cations as potential carriers of the diffuse interstellar bands. The spectra of mass-selected, matrix-isolated benzylium and tropylium cations were recently reported [Nagy, A., Fulara, J., Garkusha, I. and Maier, J. P. (2011), Angew. Chem. Int. Ed., 50: 3022-3025]. The benzylium spectrum shows an extended progression in a low frequency (510 cm-1) ring distortion mode. Modeling of the benzylium spectrum using (TD)DFT and MCSCF-PT2 methods in concert with multidimensional Franck-Condon (FC) analysis is found to yield excellent agreement with the experimental spectrum. We extended this analysis to larger (2 and 3 ring) PAH cations derived from resonance stabilized radicals, which are predicted to show strong S0 → Sn transitions in the visible region. The FC progression is significantly quenched in the larger species, and our results for 1-napthylmethylium are in excellent agreement with very recent experiments [Nagy, A., Fulara, J., and Maier, J. P. (2011), J. Am. Chem. Soc., 133, 19796]. Since carriers of the DIBs should exhibit spectra dominated by a single vibronic transition, our results demonstrate that closed-shell cations may present spectra with the required properties. Furthermore, the calculated ionization energies of a range of CSCs were found to be in the 13-14 eV range, consistent with variations in behaviour of the DIB carriers with respect to various astrophysical environments.

  15. Ion/molecule reactions of 2-chloro- and 2-bromopropene radical cations with methanol and ethanol--FT-ICR spectrometry and DFT calculations

    NASA Astrophysics Data System (ADS)

    Grützmacher, Hans-Friedrich; Büchner, Michael; Zipse, Hendrik

    2005-02-01

    Continuing the studies of ion/molecule reactions of haloalkene radical cations with nucleophiles, the reactions of the radical cations of 2-chloropropene, 1+, and 2-bromopropene. 2+, with methanol and ethanol, respectively, have been investigated by FT-ICR spectrometry and by computational analysis using DFT calculation (BHLYP/6-311 + G(2d,p)//BHLYP/6-31 + G(d) level). Only slow reactions (reaction efficiency <1%) are observed for 1+/methanol and 2+/methanol. Slow proton transfer is the main process for 1+/methanol besides minor addition of methanol to 1+ followed by loss of HCl or Cl. Addition of methanol accompanied by loss of Br is the exclusive process observed for 2+/methanol. In contrast, both 1+ and 2+ react efficiently with ethanol yielding protonated acetaldehyde as the exclusive (1+) or by far dominant (2+) primary reaction product. The computational analysis of these ion/molecule reactions shows that in the case of 1+/methanol and 2+/methanol all processes are either endothermic or blocked by large activation energies. Nonetheless, addition of methanol to the ionized CC double bond of 1+ or 2+ is exothermic, yielding in each case a pair of isomeric [beta]-distonic methoxonium ions. A new reaction mechanism has been found for the HX (X = Cl, Br) elimination from the less stable isomer of the distonic intermediates. Further, an energetically favorable transition state has been detected for hydrogen atom transfer from the [alpha]-CH2 group of alcohol to the halogenoalkene radical cations. These findings lead to a revised mechanism of the oxidation process and provide a plausible explanation for the excessive H/D exchange between 1+ and CD3OH during their slow reaction.

  16. Cu(II) and Cu(I) coordination complexes involving two tetrathiafulvalene-1,3-benzothiazole hybrid ligands and their radical cation salts.

    PubMed

    Yokota, Sayo; Tsujimoto, Keijiro; Hayashi, Sadayoshi; Pointillart, Fabrice; Ouahab, Lahcène; Fujiwara, Hideki

    2013-06-01

    Preparations, crystal structure analyses, and magnetic property investigations on a new Cu(II)(hfac)2 complex coordinated with two TTF-CH═CH-BTA ligands, where hfac is hexafluoroacetylacetonate, TTF is tetrathiafulvalene, and BTA is 1,3-benzothiazole, are reported together with those of its dicationic AsF6(-) salt, [Cu(hfac)2(TTF-CH═CH-BTA)2](AsF6)2, in which each TTF part is in a radical cation state. In these Cu(II)(hfac)2 complexes, two ligands are bonded to the central Cu atom of the Cu(hfac)2 part through the nitrogen atom of the 1,3-benzothiazole ring and occupy the two apical positions of the Cu(hfac)2 complex with an elongated octahedral geometry. These two ligands are located parallelly in a transverse head-to-tail manner, and the Cu(hfac)2 moiety is closely sandwiched by these two ligands. In the AsF6(-) salt of the Cu(hfac)2 complex, each TTF dimer is separated by the AsF6(-) anions and has no overlap with each other within the one-dimensional arrays, resulting in an insulating behavior. Both Cu(hfac)2 complexes showed the simple Curie-like temperature dependence of paramagnetic susceptibilities (χM), indicating that no interaction exists between the paramagnetic Cu(II) d spins. Furthermore, crystal structure analysis and magnetic/conducting properties of a radical cation ReO4(-) salt of the Cu(I) complex with two TTF-CH═CH-BTA ligands, [Cu(TTF-CH═CH-BTA)2](ReO4)2, are also described. Two nitrogen atoms of the ligands are connected to the central Cu(I) in a linear dicoordination with a Cu-N bond length of 1.879(9) Å. Two TTF parts of the neighboring complexes form a dimerized structure, and such a TTF dimer forms a one-dimensional uniform array along the a direction with a short S-S contact of 3.88 Å. Magnetic property measurement suggested the existence of a strongly antiferromagnetic one-dimensional uniform chain of S = 1/2 spins that originate from the radical cation states of the TTF dimers. Due to the construction of the one

  17. Discovery and Mechanistic Studies of Facile N-Terminal Cα–C Bond Cleavages in the Dissociation of Tyrosine-Containing Peptide Radical Cations

    SciTech Connect

    Mu, Xiaoyan; Song, Tao; Xu, Minjie; Lai, Cheuk-Kuen; Siu, Chi-Kit; Laskin, Julia; Chu, Ivan K.

    2014-03-28

    Gas phase fragmentations of protein and peptide (M) ions in a mass spectrometer—induced by, for example, electron-capture dissociation1-2 and electron-transfer dissociation3-422 —form the foundation for top-down amino acid sequencing approaches for the rapid identification of protein components in complex biological samples. During these processes, protonated protein and peptide radicals ([M + nH]•(n – 1)+)5–8 are generated; their fragmentations are governed largely by the properties of the unpaired electron. Because of their importance in modern bioanalytical chemistry, considerable attention has been drawn recently toward understanding the radical cation chemistry behind the fragmentations of these odd-electron biomolecular ions in the gas phase.

  18. A complete map of the ion chemistry of the naphthalene radical cation? DFT and RRKM modeling of a complex potential energy surface

    NASA Astrophysics Data System (ADS)

    Solano, Eduardo A.; Mayer, Paul M.

    2015-09-01

    The fragmentation mechanisms of the naphthalene molecular ion to [M-C4H2]+•, [M-C2H2]+•, [M-H2]+•, and [M-H•]+ were obtained at the UB3LYP/6-311+G(3df,2p)//UB3LYP/6-31G(d) level of theory and were subsequently used to calculate the microcanonical rate constants, k(E)'s, for all the steps by the Rice-Ramsperger-Kassel-Marcus formalism. The pre-equilibrium and steady state approximations were applied on different regions of the potential energy profiles to obtain the fragmentation k(E)'s and calculate the relative abundances of the ions as a function of energy. These results reproduce acceptably well the imaging photoelectron-photoion coincidence spectra of naphthalene, in the photon-energy range 14.0-18.8 eV that was previously reported by our group. Prior to dissociation, the molecular ion rapidly equilibrates with a set of isomers that includes the Z- and E-phenylvinylacetylene (PVA) radical cations. The naphthalene ion is the predominant isomer below 10 eV internal energy, with the other isomers remaining at steady state concentrations. Later on, new steady-state intermediates are formed, such as the azulene and 1-phenyl-butatriene radical cations. The naphthalene ion does not eject an H atom directly but eliminates an H2 molecule in a two-step fragmentation. H• loss occurs instead from the 1-phenyl-butatriene ion. The PVA ions initiate the ejection of diacetylene (C4H2) to yield the benzene radical cation. Acetylene elimination yields the pentalene cation at low energies (where it can account for 45.9%-100.0% of the rate constant of this channel), in a three-step mechanism starting from the azulene ion. However, above 7.6 eV, the major [M-C2H2]+• structure is the phenylacetylene cation.

  19. A complete map of the ion chemistry of the naphthalene radical cation? DFT and RRKM modeling of a complex potential energy surface.

    PubMed

    Solano, Eduardo A; Mayer, Paul M

    2015-09-14

    The fragmentation mechanisms of the naphthalene molecular ion to [M-C4H2](+•), [M-C2H2](+•), [M-H2](+•), and [M-H(•)](+) were obtained at the UB3LYP/6-311+G(3df,2p)//UB3LYP/6-31G(d) level of theory and were subsequently used to calculate the microcanonical rate constants, k(E)'s, for all the steps by the Rice-Ramsperger-Kassel-Marcus formalism. The pre-equilibrium and steady state approximations were applied on different regions of the potential energy profiles to obtain the fragmentation k(E)'s and calculate the relative abundances of the ions as a function of energy. These results reproduce acceptably well the imaging photoelectron-photoion coincidence spectra of naphthalene, in the photon-energy range 14.0-18.8 eV that was previously reported by our group. Prior to dissociation, the molecular ion rapidly equilibrates with a set of isomers that includes the Z- and E-phenylvinylacetylene (PVA) radical cations. The naphthalene ion is the predominant isomer below 10 eV internal energy, with the other isomers remaining at steady state concentrations. Later on, new steady-state intermediates are formed, such as the azulene and 1-phenyl-butatriene radical cations. The naphthalene ion does not eject an H atom directly but eliminates an H2 molecule in a two-step fragmentation. H(•) loss occurs instead from the 1-phenyl-butatriene ion. The PVA ions initiate the ejection of diacetylene (C4H2) to yield the benzene radical cation. Acetylene elimination yields the pentalene cation at low energies (where it can account for 45.9%-100.0% of the rate constant of this channel), in a three-step mechanism starting from the azulene ion. However, above 7.6 eV, the major [M-C2H2](+•) structure is the phenylacetylene cation. PMID:26374033

  20. A complete map of the ion chemistry of the naphthalene radical cation? DFT and RRKM modeling of a complex potential energy surface

    SciTech Connect

    Solano, Eduardo A.; Mayer, Paul M.

    2015-09-14

    The fragmentation mechanisms of the naphthalene molecular ion to [M–C{sub 4}H{sub 2}]{sup +•}, [M–C{sub 2}H{sub 2}]{sup +•}, [M–H{sub 2}]{sup +•}, and [M–H{sup •}]{sup +} were obtained at the UB3LYP/6-311+G(3df,2p)//UB3LYP/6-31G(d) level of theory and were subsequently used to calculate the microcanonical rate constants, k(E)’s, for all the steps by the Rice-Ramsperger-Kassel-Marcus formalism. The pre-equilibrium and steady state approximations were applied on different regions of the potential energy profiles to obtain the fragmentation k(E)’s and calculate the relative abundances of the ions as a function of energy. These results reproduce acceptably well the imaging photoelectron-photoion coincidence spectra of naphthalene, in the photon-energy range 14.0–18.8 eV that was previously reported by our group. Prior to dissociation, the molecular ion rapidly equilibrates with a set of isomers that includes the Z- and E-phenylvinylacetylene (PVA) radical cations. The naphthalene ion is the predominant isomer below 10 eV internal energy, with the other isomers remaining at steady state concentrations. Later on, new steady-state intermediates are formed, such as the azulene and 1-phenyl-butatriene radical cations. The naphthalene ion does not eject an H atom directly but eliminates an H{sub 2} molecule in a two-step fragmentation. H{sup •} loss occurs instead from the 1-phenyl-butatriene ion. The PVA ions initiate the ejection of diacetylene (C{sub 4}H{sub 2}) to yield the benzene radical cation. Acetylene elimination yields the pentalene cation at low energies (where it can account for 45.9%–100.0% of the rate constant of this channel), in a three-step mechanism starting from the azulene ion. However, above 7.6 eV, the major [M–C{sub 2}H{sub 2}]{sup +•} structure is the phenylacetylene cation.

  1. Post-translational activation introduces a free radical into pyruvate formate-lyase.

    PubMed Central

    Knappe, J; Neugebauer, F A; Blaschkowski, H P; Gänzler, M

    1984-01-01

    Pyruvate formate-lyase (formate acetyltransferase; EC 2.3.1.54) of Escherichia coli cells is post-translationally interconverted between inactive and active forms. Conversion of the inactive to the active form is catalyzed by an Fe2+-dependent activating enzyme and requires adenosylmethionine and dihydroflavodoxin. This process is shown here to introduce a paramagnetic moiety into the structure of pyruvate formate-lyase. It displays an EPR signal at g = 2 with a doublet splitting of 1.5 mT and could comprise an organic free radical located on an amino acid residue of the polypeptide chain. Hypophosphite was discovered as a specific reagent that destroys both the enzyme radical and the enzyme activity; it becomes covalently bound to the protein. The enzymatic generation of the radical, which is linked to adenosylmethionine cleavage into 5'-deoxyadenosine and methionine, possibly occurs through an Fe-adenosyl complex. These results suggest a radical mechanism for the catalytic cycle of pyruvate formate-lyase. PMID:6369325

  2. HYDROXYL FREE RADICAL MEDIATED FORMATION OF 8-HYDROXYGUANINE IN ISOLATED DNA (JOURNAL VERSION)

    EPA Science Inventory

    Formation of 8-hydroxyguanine within calf thymus DNA has been studied after exposure to uv-H2O2 as a hydroxyl free radical generating system. Using high-pressure liquid chromatography with electrochemical detection, the amount of 8-hydroxy-2-deoxyguanosine (8-OHdG) was measured. ...

  3. Modeling the radical chemistry in an oxidation flow reactor: radical formation and recycling, sensitivities, and the OH exposure estimation equation.

    PubMed

    Li, Rui; Palm, Brett B; Ortega, Amber M; Hlywiak, James; Hu, Weiwei; Peng, Zhe; Day, Douglas A; Knote, Christoph; Brune, William H; de Gouw, Joost A; Jimenez, Jose L

    2015-05-14

    Oxidation flow reactors (OFRs) containing low-pressure mercury (Hg) lamps that emit UV light at both 185 and 254 nm ("OFR185") to generate OH radicals and O3 are used in many areas of atmospheric science and in pollution control devices. The widely used potential aerosol mass (PAM) OFR was designed for studies on the formation and oxidation of secondary organic aerosols (SOA), allowing for a wide range of oxidant exposures and short experiment duration with reduced wall loss effects. Although fundamental photochemical and kinetic data applicable to these reactors are available, the radical chemistry and its sensitivities have not been modeled in detail before; thus, experimental verification of our understanding of this chemistry has been very limited. To better understand the chemistry in the OFR185, a model has been developed to simulate the formation, recycling, and destruction of radicals and to allow the quantification of OH exposure (OHexp) in the reactor and its sensitivities. The model outputs of OHexp were evaluated against laboratory calibration experiments by estimating OHexp from trace gas removal and were shown to agree within a factor of 2. A sensitivity study was performed to characterize the dependence of the OHexp, HO2/OH ratio, and O3 and H2O2 output concentrations on reactor parameters. OHexp is strongly affected by the UV photon flux, absolute humidity, reactor residence time, and the OH reactivity (OHR) of the sampled air, and more weakly by pressure and temperature. OHexp can be strongly suppressed by high OHR, especially under low UV light conditions. A OHexp estimation equation as a function of easily measurable quantities was shown to reproduce model results within 10% (average absolute value of the relative errors) over the whole operating range of the reactor. OHexp from the estimation equation was compared with measurements in several field campaigns and shows agreement within a factor of 3. The improved understanding of the OFR185 and

  4. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals.

    PubMed

    Murphy, John J; Bastida, David; Paria, Suva; Fagnoni, Maurizio; Melchiorre, Paolo

    2016-04-14

    An important goal of modern organic chemistry is to develop new catalytic strategies for enantioselective carbon-carbon bond formation that can be used to generate quaternary stereogenic centres. Whereas considerable advances have been achieved by exploiting polar reactivity, radical transformations have been far less successful. This is despite the fact that open-shell intermediates are intrinsically primed for connecting structurally congested carbons, as their reactivity is only marginally affected by steric factors. Here we show how the combination of photoredox and asymmetric organic catalysis enables enantioselective radical conjugate additions to β,β-disubstituted cyclic enones to obtain quaternary carbon stereocentres with high fidelity. Critical to our success was the design of a chiral organic catalyst, containing a redox-active carbazole moiety, that drives the formation of iminium ions and the stereoselective trapping of photochemically generated carbon-centred radicals by means of an electron-relay mechanism. We demonstrate the generality of this organocatalytic radical-trapping strategy with two sets of open-shell intermediates, formed through unrelated light-triggered pathways from readily available substrates and photoredox catalysts--this method represents the application of iminium ion activation (a successful catalytic strategy for enantioselective polar chemistry) within the realm of radical reactivity. PMID:27075098

  5. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals

    NASA Astrophysics Data System (ADS)

    Murphy, John J.; Bastida, David; Paria, Suva; Fagnoni, Maurizio; Melchiorre, Paolo

    2016-04-01

    An important goal of modern organic chemistry is to develop new catalytic strategies for enantioselective carbon–carbon bond formation that can be used to generate quaternary stereogenic centres. Whereas considerable advances have been achieved by exploiting polar reactivity, radical transformations have been far less successful. This is despite the fact that open-shell intermediates are intrinsically primed for connecting structurally congested carbons, as their reactivity is only marginally affected by steric factors. Here we show how the combination of photoredox and asymmetric organic catalysis enables enantioselective radical conjugate additions to β,β-disubstituted cyclic enones to obtain quaternary carbon stereocentres with high fidelity. Critical to our success was the design of a chiral organic catalyst, containing a redox-active carbazole moiety, that drives the formation of iminium ions and the stereoselective trapping of photochemically generated carbon-centred radicals by means of an electron-relay mechanism. We demonstrate the generality of this organocatalytic radical-trapping strategy with two sets of open-shell intermediates, formed through unrelated light-triggered pathways from readily available substrates and photoredox catalysts—this method represents the application of iminium ion activation (a successful catalytic strategy for enantioselective polar chemistry) within the realm of radical reactivity.

  6. Hydrogen exchange of the glycyl radical of pyruvate formate-lyase is catalyzed by cysteine 419.

    PubMed

    Parast, C V; Wong, K K; Lewisch, S A; Kozarich, J W; Peisach, J; Magliozzo, R S

    1995-02-28

    Pyruvate formate-lyase (PFL) catalyzes the reversible conversion of CoA and pyruvate into acetyl-CoA and formate. Active enzyme contains a glycyl radical whose alpha-hydrogen undergoes rapid exchange with solvent (t1/2 approximately 5 min at 0 degree C). We have investigated this exchange using site-directed mutagenesis and mechanism-based inactivation. Mutation of the active-site cysteine 419 into a serine, which renders the enzyme catalytically inactive, abolishes alpha-hydrogen exchange in the radical. This suggests that the exchange process is not an intrinsic property of the glycyl radical but is a consequence of its interaction with cysteine 419. This residue is also demonstrated to be involved in the transfer of the radical to acetylphosphinate, a mechanism-based inactivator of the enzyme. In contrast, mutation of the other essential cysteine 418 to a serine has no effect on the hydrogen exchange or the transfer of the radical to acetylphosphinate. A mechanism for the hydrogen exchange catalyzed by cysteine 419 consistent with a redox role for this residue in the normal catalytic reaction is proposed. PMID:7873518

  7. Photochemical Formation of Hydroxyl Radical in Red-Soil-Polluted Seawater in Okinawa, Japan -Potential Impacts on Marine Organisms

    NASA Astrophysics Data System (ADS)

    Arakaki, T.; Hamdun, A. M.; Okada, K.; Kuroki, Y.; Ikota, H.; Fujimura, H.; Oomori, T.

    2004-12-01

    Development of pineapple farmlands and construction of recreational facilities caused runoff of red soil into coastal ocean (locally termed as red-soil-pollution) in the north of Okinawa Island, Japan. In an attempt to understand the impacts of red soil on oxidizing power of the seawater, we studied formation of hydroxyl radical (OH radical), the most potent oxidant in the environment, in red-soil-polluted seawaters, using 313 nm monochromatic light. Photo-formation rates of OH radical showed a good correlation with dissolved iron concentrations (R = 0.98). The major source of OH radical was found to be the Fenton reaction (a reaction between Fe(II) and HOOH). The un-filtered red-soil-polluted seawater samples exhibited faster OH radical formation rates than the filtered samples, suggesting that iron-bearing red soil particles enhanced formation of OH radical.

  8. Formation and Implications of Alpha-Synuclein Radical in Maneb- and Paraquat-Induced Models of Parkinson's Disease.

    PubMed

    Kumar, Ashutosh; Leinisch, Fabian; Kadiiska, Maria B; Corbett, Jean; Mason, Ronald P

    2016-07-01

    Parkinson's disease (PD) is a debilitating, progressive, neurodegenerative disorder characterized by progressive loss of dopaminergic neurons and motor deficits. Alpha-synuclein-containing aggregates represent a feature of a variety of neurodegenerative disorders, including PD; however, the mechanism that initiates and promotes intraneuronal alpha-synuclein aggregation remains unknown. We hypothesized protein radical formation as an initiating mechanism for alpha-synuclein aggregation. Therefore, we used the highly sensitive immuno-spin trapping technique to investigate protein radical formation as a possible mechanism of alpha-synuclein aggregation as well as to investigate the source of protein radical formation in the midbrains of Maneb- and paraquat-coexposed mice. Coexposure to Maneb and paraquat for 6 weeks resulted in active microgliosis, NADPH oxidase activation, and inducible nitric oxide synthase (iNOS) induction, which culminated in protein radical formation in the midbrains of mice. Results obtained with immuno-spin trapping and immunoprecipitation experiments confirmed formation of alpha-synuclein radicals in dopaminergic neurons of exposed mice. Free radical formation requires NADPH oxidase and iNOS, as indicated by decreased protein radical formation in knockout mice (P47phox(-/-) and iNOS(-/-)) and in mice treated with inhibitors such as FeTPPS (a peroxynitrite decomposition catalyst), 1400 W (an iNOS inhibitor), or apocynin (a NADPH oxidase inhibitor). Concurrence of protein radical formation with dopaminergic neuronal death indicated a link between protein radicals and disease progression. Taken together, these results show for the first time the formation and detection of the alpha-synuclein radical and suggest that NADPH oxidase and iNOS play roles in peroxynitrite-mediated protein radical formation and subsequent neuronal death in the midbrains of Maneb- and paraquat-coexposed mice. PMID:25952542

  9. Free radical mediated formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters.

    PubMed

    Zhang, Xiaowei; Gao, Boyan; Qin, Fang; Shi, Haiming; Jiang, Yuangrong; Xu, Xuebing; Yu, Liangli Lucy

    2013-03-13

    The present study was conducted to test the hypothesis that a free radical was formed and mediated the formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters, a group of food contaminants, from diacylglycerols at high temperature under a low-moisture condition for the first time. The presence of free radicals in a vegetable oil kept at 120 °C for 20 min was demonstrated using an electron spin resonance (ESR) spectroscopy examination with 5,5-dimethylpyrroline-N-oxide (DMPO) as the spin trap agent. ESR investigation also showed an association between thermal treatment degree and the concentration of free radicals. A Fourier transform infrared spectroscopy (FT-IR) analysis of sn-1,2-stearoylglycerol (DSG) at 25 and 120 °C suggested the possible involvement of an ester carbonyl group in forming 3-MCPD diesters. On the basis of these results, a novel free radical mediated chemical mechanism was proposed for 3-MCPD diester formation. Furthermore, a quadrupole-time of flight (Q-TOF) MS/MS investigation was performed and detected the DMPO adducts with the cyclic acyloxonium free radical (CAFR) and its product MS ions, proving the presence of CAFR. Furthermore, the free radical mechanism was validated by the formation of 3-MCPD diesters through reacting DSG with a number of organic and inorganic chlorine sources including chlorine gas at 120 and 240 °C. The findings of this study might lead to the improvement of oil and food processing conditions to reduce the level of 3-MCPD diesters in foods and enhance food safety. PMID:23425600

  10. Spontaneous formation of biocompatible vesicles in aqueous mixtures of amino acid-based cationic surfactants and SDS/SDBS.

    PubMed

    Shome, Anshupriya; Kar, Tanmoy; Das, Prasanta K

    2011-02-01

    The spontaneous formation of vesicles by six amino acid-based cationic surfactants and two anionic surfactants (sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS)) is reported. The head-group structure of the cationic surfactants is minutely altered to understand their effect on vesicle formation. To establish the regulatory role of the aromatic group in self-aggregation, both aliphatic and aromatic side-chain-substituted amino acid-based cationic surfactants are used. The presence of aromaticity in any one of the constituents favors the formation of vesicles by cationic/anionic surfactant mixtures. The formation of vesicles is primarily dependent on the balance between the hydrophobicity and hydrophilicity of both cationic and anionic surfactants. Vesicle formation is characterized by surface tension, fluorescence anisotropy, transmission electron microscopy, dynamic light scattering, and phase diagrams. These vesicles are thermally stable up to 65 °C, determined by temperature-dependent fluorescence anisotropy. According to the MTT assay, these catanionic vesicles are nontoxic to NIH3T3 cells, thus indicating their wider applicability as delivery vehicles to cells. Among the six cationic surfactants examined, tryptophan- and tyrosine-based surfactants have the ability to reduce HAuCl(4) to gold nanoparticles (GNPs), which is utilized to obtain in-situ-synthesized GNPs entrapped in vesicles without the need for any external reducing agent. PMID:21275029

  11. Photochemistry at interfaces: a source of radicals impacting on aerosol formation and properties

    NASA Astrophysics Data System (ADS)

    George, C.; D'anna, B.; Monge, M.; Dupart, Y.

    2011-12-01

    Recent findings confirm the presence of light absorbing organic material (HULIS, biomass burning particles, PAHs) in atmospheric aerosols... but also at the air/ocean interface. The presence of such light absorbing material allows photosensitised processes to occur. The latter may be sources of radicals in the troposphere that may alter its oxidation capacity (as for instance through the formation of HONO) or change the pathways leading to particle formation and ageing. We will exemplify such processes by presenting new data on the generation of radicals from dust particles or at the air/sea interface leading to particle formation in presence of SO2. These are recent findings that are questioning our current understanding of tropospheric photochemistry.

  12. Synthesis and Characterization of [n]CPP (n = 5, 6, 8, 10, and 12) Radical Cation and Dications: Size-Dependent Absorption, Spin, and Charge Delocalization.

    PubMed

    Kayahara, Eiichi; Kouyama, Takahiko; Kato, Tatsuhisa; Yamago, Shigeru

    2016-01-13

    Radical cations and dications of [n]cyclo-p-phenylenes ([n]CPPs, n = 5, 6, 10, and 12), which are the models of those of linear oligo-p-phenylenes without a terminus, were synthesized as hexafluoroantimonate salts by the one- and two-electron chemical oxidation of CPP by NOSbF6 or SbF5. The radical cations, [n]CPP(•+), and dications, [n]CPP(2+), exhibited remarkable bathochromic shifts in their UV-vis-NIR absorption bands, suggesting that [n]CPP(•+) and larger [n]CPP(2+) exhibit longer polyene character than the shorter analogues. The larger bathochromic shift was consistent with the narrower HOMO-SOMO and HOMO-LUMO gaps in larger [n]CPP(•+) and [n]CPP(2+), respectively. In [n]CPP(•+), the spins and charges were equally and fully delocalized over the p-phenylene rings of the CPPs, as noted by ESR. (1)H NMR revealed that the hydrogen of [n]CPP(2+) shifted to a high magnetic field from the neutral compounds due to the diamagnetic ring current derived from the in-plane aromaticity of [n]CPP(2+). The single resonances observed in all [n]CPP(2+) strongly suggest the complete delocalization of the charges over the CPPs. Furthermore, the contribution of biradical character was clarified for [10]- and [12]CPP by VT-NMR experiment and theoretical calculation. PMID:26675620

  13. Photoinduced formation of peroxyl radicals in aqueous solutions of nucleobase derivatives at 77 K

    NASA Astrophysics Data System (ADS)

    Lozinova, T. A.; Lander, A. V.

    2015-05-01

    It is shown that the formation of free radicals photoinduced by near-UV irradiation at 77 K in aqueous solutions of guanosine-5'-monophosphate (GMP), adenosine (Ado), adenine (A), and thymine (T) containing NaCl (0.1 M) is intensified in the presence of O2. Signals of peroxyl radicals O{2/-·} and HO{2/·} are indicated in analyzing EPR spectra, and their overall yield is 20-40% of the total amount of the formed paramagnetic products. It is found that the concentration ratio of O{2/-·} and HO{2/·} radicals depends not only on pH of the solutions before freezing but also on the duration of irradiation and method of freezing the samples. Plausible mechanisms of the processes are discussed.

  14. [Riboflavin-radical formation by mechanochemical solid-state reaction using stainless steel vessel].

    PubMed

    Kondo, Shin-ichi; Furuta, Youji; Okita, Shintarou; Sasai, Yasushi; Aramaki, Hideki; Kuzuya, Masayuki

    2004-03-01

    The mechanochemical reaction of free riboflavin (FR) due to vibratory ball milling was carried out in a stainless steel vessel at room temperature under anaerobic conditions. The ESR of the fractured sample showed a broad single-line spectrum. It is suggested that the solid-state single-electron transfer (SSET) reaction from the surface of the stainless steel vessel to FR proceeded during the vibratory milling, resulting in the formation of the corresponding anion radicals. When the mechanochemical reaction of FR in the presence of calcium pantothenate (PC) was carried out, the radical concentration increased with the increasing PC content. It was shown that the anion radical in the metal complex was stable for a lengthy period of time even in highly humid air. PMID:15049132

  15. Acid-base equilibria involved in secondary reactions following the 4-carboxybenzophenone sensitized photooxidation of methionylglycine in aqueous solution. Spectral and time resolution of the decaying (S...N){sup +} radical cation

    SciTech Connect

    Hug, G.L.; Marciniak, B. |; Bobrowski, K. ||

    1996-09-05

    A radical cation with an intramolecular sulfur-nitrogen bond was formed in the photoinitiated transfer of an electron from the sulfur atom of the dipeptide Met-Gly to 4-carboxybenzophenone in its triplet state. The sulfur-nitrogen coupling involved two-center, three-electron bonds. The kinetics of the reactions of these radical cations, which were initiated by a laser flash, were followed over time. The principal method of implementing the spectral resolutions was accomplished through a multiple linear regression technique. This spectral analysis was repeated for numerous time windows during the lifetime of the transients` decays. The resulting concentrations of the transients were consistent with an independent factor analysis. It was found that the decay of the radical cations was multiexponential and that the decay varied with pH. A simplified reaction scheme was proposed whereby the absorbing radical cations can alternatively decay by an irreversible channel or react reversibly with OH{sup -}. Rate constants for the three elementary reactions of this scheme were determined from an analysis of the decay of the concentration of the radical cations. In addition, the equilibrium constant for the reversible reaction was determined by two separate procedures. 35 refs., 7 figs., 2 tabs.

  16. Absence of an effect of vitamin E on protein and lipid radical formation during lipoperoxidation of LDL by lipoxygenase

    PubMed Central

    Ganini, Douglas; Mason, Ronald P.

    2014-01-01

    LDL oxidation is the primary event in atherosclerosis, where LDL lipoperoxidation leads to modifications in the apolipoprotein B-100 (apo B-100) and lipids. Intermediate species of lipoperoxidation are known to be able to generate amino acid-centered radicals. Thus, we hypothesized that lipoperoxidation intermediates induce protein-derived free radical formation during LDL oxidation. Using DMPO and immuno spin-trapping, we detected the formation of protein free radicals on LDL incubated with Cu2+ or the soybean lipoxidase (LPOx)/phospholipase A2 (PLA2). With low concentrations of DMPO (1 mM), Cu2+ dose-dependently induced oxidation of LDL and easily detected apo B-100 radicals. Protein radical formation in LDL incubated with Cu2+ showed maximum yields after 30 minutes. In contrast, the yields of apo B-100-radicals formed by LPOx/PLA2 followed a typical enzyme-catalyzed kinetics that was unaffected by DMPO concentrations of up to 50 mM. Furthermore, when we analyzed the effect of antioxidants on protein radical formation during LDL oxidation, we found that ascorbate, urate and Trolox dose-dependently reduced apo B-100-free radical formation in LDL exposed to Cu2+. In contrast, Trolox was the only antioxidant that even partially protected LDL from LPOx/PLA2. We also examined the kinetics of lipid radical formation and protein radical formation induced by Cu2+ or LPOx/PLA2 for LDL supplemented with α-tocopherol. In contrast to the potent antioxidant effect of α-tocopherol on the delay of LDL oxidation induced by Cu2+, when we used the oxidizing system LPOx/PLA2, no significant protection was detected. The lack of protection of α-tocopherol on the apo B-100 and lipid free radical formation by LPOx may explain the failure of vitamin E as a cardiovascular protective agent for humans. PMID:25091900

  17. The inhibitory effects of γ-glutamylcysteine derivatives from fresh garlic on glycation radical formation.

    PubMed

    Shi, Fei; Bai, Bing; Ma, Shufeng; Ji, Shujuan; Liu, Ling

    2016-03-01

    The effects of three reactive peptides, γ-glutamylmethylcysteine (γ-GMC), γ-glutamylpropylcysteine (γ-GPC), and γ-glutamylbutylcysteine (γ-GBC) on the suppression of reactive radicals during the heating of l-lysine in the presence or absence of glucose was studied by electron spin resonance spectroscopy. γ-GMC and γ-GPC were extracted from fresh garlic, and γ-GBC was a synthetic peptide. The results showed that γ-GMC and γ-GPC effectively suppress formation of l-lysine radicals, but that γ-GBC exhibits low radical inhibition. The origin of the short peptides, and the length of their side chain, influenced their surface hydrophobicity and subsequent radical inhibition. In addition, the oxidation of l-lysine was inhibited by the peptides in a similar manner to their inhibition of the Maillard reaction (MR), and their radical inhibition was consistent with similar activity towards N(ε)-(carboxymethyl)lysine (CML). PMID:26471590

  18. Role of the Filters in the Formation and Stabilization of Semiquinone Radicals Collected from Cigarette Smoke

    PubMed Central

    Maskos, Zofia; Dellinger, Barry

    2013-01-01

    The fractional pyrolysis of Bright tobacco was performed in nitrogen atmosphere over the temperature range of 240 – 510 °C in a specially constructed, high temperature flow reactor system. Electron paramagnetic resonance (EPR) spectroscopy was used to analyze the free radicals in the initially produced total particular matter (TPM) and in TPM after exposure to ambient air (aging). Different filters have been used to collect TPM from tobacco smoke: cellulosic, cellulose nitrate, cellulose acetate, nylon, Teflon and Cambridge. The collection of the primary radicals (measured immediately after collection of TPM on filters), the formation and stabilization of the secondary radicals (defined as radicals formed during aging of TPM samples on the filters) depend significantly on the material of the filter. A mechanistic explanation about different binding capability of the filters decreasing in the order: cellulosic < cellulose nitrate < cellulose acetate < nylon ~ teflon is presented. Different properties were observed for the Cambridge filter. Specific care must be taken using the filters for identification of radicals from tobacco smoke to avoid artifacts in each case. PMID:24265513

  19. Properties of compositional volume grating formation with photoinitiated cationic-ring-opening polymerization

    NASA Astrophysics Data System (ADS)

    Paraschis, Loukas; Sugiyama, Yasuyuki; Akella, Annapoorna; Honda, Tokuyuki; Hesselink, Lambertus

    1998-11-01

    We investigated compositional volume grating formation in the Polaroid medium that utilizes the cationic-ring-opening photoinitiated polymerization process, and compared our conclusions with the current physical model describing polymer holographic recording. We identified the effects of diffusion and polymerization during illumination, as well as significant postexposure grating development. Holographic recording in this medium allows for final strong gratings with high recording sensitivity (S approximately 2 cm/mJ), that were not limited at the higher recording intensities (I less than or equal to 250 mW/cm2) corresponding to photon (exposure) limited recording. The results of the present analysis allow for more comprehensive physical description of grating formation in the photoinitiated CROP process, and evaluation of the polymer recording process in a nonvolatile holographic storage system.

  20. Effect of electrolytes and temperature on dications and radical cations of carotenoids: Electrochemical, optical absorption, and high-performance liquid chromatography studies

    SciTech Connect

    He, Z.; Kispert, L.D.

    1999-11-25

    The effect of supporting electrolytes and temperature on the behavior of dications and radical cations of carotenoids is studied. Cyclic voltammograms (CVs) of canthaxanthin (I) at 23 and {minus}25 C show that Car{sup sm{underscore}bullet+} of I has similar stability during the time of the CV scan, when using tetrabutylammonium perchlorate (TBAPC), tetrabutylammonium tetrafluoroborate (TBATFB), or tetrabutylammonium hexafluorophosphate (TBAHFP) as supporting electrolyte. However, the stability of Car{sup 2+} decreases when using TBAPC or TBATFB; {beta}-carotene (II) shows similar behavior. The CV of I at {minus}25 C shows a strong cathodic wave (wave 6) near {minus}0.15 V (vs Ag) with an intensity about half that of the neutral oxidation wave when TBAPC or TBATFB is the supporting electrolyte. When TBAHFP is used, wave 6 (ca. {minus}0.05 V vs Ag) is ca. 8 times weaker than when TBAPC or TBATFB is used. This wave results from the reduction of a species that may be a decay product of Car{sup 2+} of I. Results show that these electrolytes commonly used in electrochemical studies may affect the studied systems to different extents. In simultaneous bulk electrolysis (BE) and optical absorption spectroscopic measurements, the absorption band of Car{sup 2+} of I in the presence of 0.1 M TBAHFP can be observed by lowering the BE temperature to {minus}20 C. In the presence of 0.1 M TBAPC or TBATFB, this band is not observed, even at {minus}50 C. Isomerization of neutral I (as shown by HPLC and its blue absorption band shift) is observed only when the Car{sup 2+} absorption band is absent during BE. This observation, along with an increase of the neutral absorption band after stopping BE, suggests that the equilibrium Car + Car{sup 2+} {r{underscore}equilibrium} 2Car{sup {sm{underscore}bullet}+} is shifted to the left because Car{sup 2+} decays more quickly than Car{sup {sm{underscore}bullet}+} in the presence of electrolyte and this is a major path for formation of cis

  1. Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: a reaction kinetics study.

    PubMed

    Sinha, Sourab; Raj, Abhijeet

    2016-03-01

    The role of resonantly stabilized radicals such as propargyl, cyclopentadienyl and benzyl in the formation of aromatic hydrocarbons such as benzene and naphthalene in the high temperature environments has been long known. In this work, the possibility of benzyl recombination to form three-ring aromatics, phenanthrene and anthracene, is explored. A reaction mechanism for it is developed, where reaction energetics are calculated using density functional theory (B3LYP functional with 6-311++G(d,p) basis set) and CBS-QB3, while temperature-dependent reaction kinetics are evaluated using transition state theory. The mechanism begins with barrierless formation of bibenzyl from two benzyl radicals with the release of 283.2 kJ mol(-1) of reaction energy. The further reactions involve H-abstraction by a H atom, H-desorption, H-migration, and ring closure to gain aromaticity. Through mechanism and rate of production analyses, the important reactions leading to phenanthrene and anthracene formation are determined. Phenanthrene is found to be the major product at high temperatures. Premixed laminar flame simulations are carried out by including the proposed reactions for phenanthrene formation from benzyl radicals and compared to experimentally observed species profiles to understand their effects on species concentrations. PMID:26923612

  2. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene.

    PubMed

    Comandini, A; Malewicki, T; Brezinsky, K

    2012-03-15

    An experimental investigation of phenyl radical pyrolysis and the phenyl radical + acetylene reaction has been performed to clarify the role of different reaction mechanisms involved in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) serving as precursors for soot formation. Experiments were conducted using GC/GC-MS diagnostics coupled to the high-pressure single-pulse shock tube present at the University of Illinois at Chicago. For the first time, comprehensive speciation of the major stable products, including small hydrocarbons and large PAH intermediates, was obtained over a wide range of pressures (25-60 atm) and temperatures (900-1800 K) which encompass the typical conditions in modern combustion devices. The experimental results were used to validate a comprehensive chemical kinetic model which provides relevant information on the chemistry associated with the formation of PAH compounds. In particular, the modeling results indicate that the o-benzyne chemistry is a key factor in the formation of multi-ring intermediates in phenyl radical pyrolysis. On the other hand, the PAHs from the phenyl + acetylene reaction are formed mainly through recombination between single-ring aromatics and through the hydrogen abstraction/acetylene addition mechanism. Polymerization is the common dominant process at high temperature conditions. PMID:22339468

  3. Aqueous SOA formation from radical oligomerization of methyl vinyl ketone (MVK) and methacrolein (MACR)

    NASA Astrophysics Data System (ADS)

    Renard, P.; Siekmann, F.; Ravier, S.; Temime-Roussel, B.; Clément, J.; Ervens, B.; Monod, A.

    2013-12-01

    It is now accepted that one of the important pathways of secondary organic aerosol (SOA) formation occurs through aqueous phase chemistry in the atmosphere. However, the chemical mechanisms leading to macromolecules are still not well understood. It was recently shown that oligomer production by OH radical oxidation in the aerosol aqueous phase from α-dicarbonyl precursors, such as methylglyoxal and glyoxal, is irreversible and fast. We have investigated the aqueous phase photooxidation of MACR and MVK, which are biogenic organic compounds derived from isoprene. Aqueous phase photooxidation of MVK and MACR was investigated in a photoreactor using photolysis of H2O2 as OH radical source. Electrospray high resolution mass spectrometry analysis of the solutions brought clear evidence for the formation of oligomer systems having a mass range of up to 1800 Da within less than 15 minutes of reaction. Highest oligomer formation rates were obtained under conditions of low dissolved oxygen, highest temperature (T = 298 K) and highest precursor initial concentrations ([MVK]0 = 20 mM). A radical mechanism of oligomerization is proposed to explain the formation of the high molecular weight products. Furthermore, we quantified the total amount of carbon present in oligomers. Kinetic parameters of the proposed oligomerization mechanism are constrained by means of a box model that is able to reproduce the temporal evolution of intermediates and products as observed in the laboratory experiments. Additional model simulations for atmospherically-relevant conditions will be presented that show the extent to which these radical processes contribute to SOA formation in the atmospheric multiphase system as compared to other aqueous phase as well as traditional SOA sources. MVK time profile (as measured by UV Spectroscopy) and mass spectra (obtained using UPLC-ESI-MS for the retention time range 0-5 min in the positive mode) at 5, 10 and 50 min of reaction (MVK 20 mM, 25° C, under

  4. Formation of radical species in photolyzed CH 4:N 2 ices

    NASA Astrophysics Data System (ADS)

    Hodyss, Robert; Howard, Heather R.; Johnson, Paul V.; Goguen, Jay D.; Kanik, Isik

    2011-08-01

    We report photochemical studies of thin cryogenic ice films composed of N 2, CH 4 and CO in ratios analogous to those on the surfaces of Neptune's largest satellite, Triton, and on Pluto. Experiments were performed using a hydrogen discharge lamp, which provides an intense source of ultraviolet light to simulate the sunlight-induced photochemistry on these icy bodies. Characterization via infrared spectroscopy showed that C 2H 6 and C 2H 2, and HCO are formed by the dissociation of CH 4 into H, CH 2 and CH 3 and the subsequent reaction of these radicals within the ice. Other radical species, such as C 2, C2-, CN, and CNN, are observed in the visible and ultraviolet regions of the spectrum. These species imply a rich chemistry based on formation of radicals from methane and their subsequent reaction with the N 2 matrix. We discuss the implications of the formation of these radicals for the chemical evolution of Triton and Pluto. Ultimately, this work suggests that C2-, CN, HCO, and CNN may be found in significant quantities on the surfaces of Triton and Pluto and that new observations of these objects in the appropriate wavelength regions are warranted.

  5. Rearrangement as a probe for radical formation: bromomethylcyclopropane on oxygen-covered Mo(1 1 0)

    NASA Astrophysics Data System (ADS)

    Levinson, J. A.; Kretzschmar, I.; Sheehy, M. A.; Deiner, L. J.; Friend, C. M.

    2001-05-01

    The reactions of bromomethylcyclopropane on oxygen-covered Mo(1 1 0) were studied in order to investigate the lifetimes of radical intermediates, which are important in heterogeneous oxidation catalysis. The methylcyclopropyl radical is known to rearrange on the nanosecond time scale, providing us with a means of probing for radical formation. Surprisingly, no rearrangement occurs subsequent to C-Br bond dissociation, which commences at ˜220 K. Instead, displacement of bromine by oxygen occurs to yield adsorbed methylcyclopropoxide, which is identified using infrared spectroscopy. The C-O bond of methylcyclopropoxide is cleaved at ˜400 K to yield a transient methylcyclopropyl radical. As shown previously, the methylcyclopropyl radical rearranges and the ring-opened butenyl species is trapped on the surface. Addition to oxygen yields 3-buten-1-oxy and addition to the metal affords the butenyl-Mo moiety. Infrared spectroscopy is used to identify these intermediates. The same linear species are formed from the reaction of 4-bromo-1-butene. The 3-buten-1-oxy species is also formed from reactions of 3-buten-1-ol on O-covered Mo(1 1 0). Upon further heating, the 3-buten-1-oxy reacts to form 1,3-butadiene, 1-butene, water, and dihydrogen between 450 and 600 K. Ethene is also evolved at ˜560 K. The primary mechanism for ethene evolution is elimination from metal-bound butenyl. Carbon monoxide is also formed above 900 K, due to reaction of surface carbon and oxygen. The implications of our results for studies where alkyl halides are used as models for radical reactions on surfaces are discussed.

  6. Charge transfer complexes of fullerenes containing C60˙(-) and C70˙(-) radical anions with paramagnetic Co(II)(dppe)2Cl(+) cations (dppe: 1,2-bis(diphenylphosphino)ethane).

    PubMed

    Konarev, Dmitri V; Troyanov, Sergey I; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2016-04-12

    The reduction of Co(II)(dppe)Cl2 with sodium fluorenone ketyl produces a red solution containing the Co(I) species. The dissolution of C60 in the obtained solution followed by the precipitation of crystals with hexane yields a salt {Co(I)(dppe)2(+)}(C60˙(-))·2C6H4Cl2 and a novel complex {Co(dppe)2Cl}(C60) (). With C70, only the crystals of {Co(dppe)2Cl}(C70)·0.5C6H4Cl2 () are formed. Complex contains zig-zag fullerene chains whereas closely packed double chains are formed from fullerenes in . According to the optical spectra and magnetic data charge transfer occurs in both and with the formation of the Co(II)(dppe)2Cl(+) cations and the C60˙(-) or C70˙(-) radical anions. In spite of the close packing in crystals, C60˙(-) or C70˙(-) retain their monomeric form at least down to 100 K. The effective magnetic moments of and of 1.98 and 2.27μB at 300 K, respectively, do not attain the value of 2.45μB expected for the system with two non-interacting S = 1/2 spins at full charge transfer to fullerenes. Most probably diamagnetic {Co(I)(dppe)2Cl}(0) and neutral fullerenes are partially preserved in the samples which can explain the weak magnetic coupling of spins and the absence of fullerene dimerization in both complexes. The EPR spectra of and show asymmetric signals approximated by several lines with g-factors ranging from 2.0009 to 2.3325. These signals originate from the exchange interaction between the paramagnetic Co(II)(dppe)2Cl(+) cations and the fullerene˙(-) radical anions. PMID:26956368

  7. Comparison between sonodynamic effect and photodynamic effect with photosensitizers on free radical formation and cell killing.

    PubMed

    Hiraoka, Wakako; Honda, Hidemi; Feril, Loreto B; Kudo, Nobuki; Kondo, Takashi

    2006-09-01

    Although enhancement of ultrasound-induced cell killing by photodynamic reagents has been shown, the sonochemical mechanism in detail is still not clear. Here, comparison between sonodynamic effect and photodynamic effect with photosensitizers at a concentration of 10 microM on free radical formation and cell killing was made. When electron paramagnetic-resonance spectroscopy (EPR) was used to detect 2,2,6,6-tetramethyl-4-piperidone-N-oxyl (TAN) after photo-irradiation or sonication with 2,2,6,6-tetramethyl-4-piperidone (TMPD), the order of TAN formation in the photo-irradiated samples was as follows: rhodamine 6G (R6) > sulforhodamine B (SR) > hematoporphyrin (Hp) > rhodamine 123 (R123) > rose bengal (RB)>erythrosine B (Er) = 0; although there was time-dependent TAN formation when the samples were sonicated, no significant difference among these agents were observed. All these agents suppressed ultrasound-induced OH radical formation detected by EPR-spin trapping. Sensitizer-derived free radicals were markedly observed in SR, RB and Er, while trace level of radicals derived from R6 and R123 were observed. Enhancement of ultrasound-induced decrease of survival in human lymphoma U937 cells was observed at 1.5 W/cm(2) (less than inertial cavitation threshold) for R6, R123, SR and Er, and at 2.3 W/cm(2) for R6, R123, Er, RB and SR. On the other hand, photo-induced decrease of survival was observed for R6, Hp and RB at the same concentration (10 microM). These comparative results suggest that (1) (1)O(2) is not involved in the enhancement of ultrasound-induced loss of cell survival, (2) OH radicals and sensitizer-derived free radicals do not take part in the enhancement, and (3) the mechanism is mainly due to certain mechanical stress such as augmentation of physical disruption of cellular membrane by sensitizers in the close vicinity of cells and/or cavitation bubbles. PMID:16325451

  8. Effect of Base Stacking on the Acid-Base Properties of the Adenine Cation Radical [A•+] in Solution: ESR and DFT Studies

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Khanduri, Deepti

    2015-01-01

    In this study, the acid–base properties of the adenine cation radical are investigated by means of experiment and theory. Adenine cation radical (A•+) is produced by one-electron oxidation of dAdo and of the stacked DNA-oligomer (dA)6 by Cl2•− in aqueous glass (7.5 M LiCl in H2O and in D2O) and investigated by ESR spectroscopy. Theoretical calculations and deuterium substitution at C8–H and N6–H in dAdo aid in our assignments of structure. We find the pKa value of A•+ in this system to be ca. 8 at 150 K in seeming contradiction to the accepted value of ≤ 1 at ambient temperature. However, upon thermal annealing to ≥160 K, complete deprotonation of A•+ occurs in dAdo in these glassy systems even at pH ca. 3. A•+ found in (dA)6 at 150 K also deprotonates on thermal annealing. The stability of A•+ at 150 K in these systems is attributed to charge delocalization between stacked bases. Theoretical calculations at various levels (DFT B3LYP/6-31G*, MPWB95, and HF-MP2) predict binding energies for the adenine stacked dimer cation radical of 12 to 16 kcal/mol. Further DFT B3LYP/6-31G* calculations predict that, in aqueous solution, monomeric A•+ should deprotonate spontaneously (a predicted pKa of ca. −0.3 for A•+). However, the charge resonance stabilized dimer AA•+ is predicted to result in a significant barrier to deprotonation and a calculated pKa of ca. 7 for the AA•+ dimer which is 7 pH units higher than the monomer. These theoretical and experimental results suggest that A•+ isolated in solution and A•+ in adenine stacks have highly differing acid–base properties resulting from the stabilization induced by hole delocalization within adenine stacks. PMID:18611019

  9. Complexes of DNA with cationic peptides: conditions of formation and factors effecting internalization by mammalian cells.

    PubMed

    Dizhe, E B; Ignatovich, I A; Burov, S V; Pohvoscheva, A V; Akifiev, B N; Efremov, A M; Perevozchikov, A P; Orlov, S V

    2006-12-01

    This work was devoted to the study of conditions of the formation of DNA/K8 complex and analysis of factors effecting the entry of DNA/K8 complex into mammalian cells in comparison with DNA complexes with arginine-rich fragment (47-57) of human immunodeficiency virus (type 1) transcription factor Tat (Tat peptide). The stoichiometry of positively charged DNA/K8 complexes has been studied for the first time. Non-cooperative character of DNA-K8 interaction was revealed. It has been shown that along with the positive charge of such complexes, the presence of an excess of free K8 peptide in the culture medium is a necessary condition for maximal efficiency of cell transfection with DNA/K8 complexes. A stimulatory effect of free K8 peptide on the efficiency of mammalian cell transfection by DNA/K8 complexes is likely to be mediated by the interactions of cationic peptide K8 with negatively charged proteoglycans on the cell surface, which leads to protection of DNA/K8 complexes from disruption by cellular heparan sulfates. However, the protective role of free cationic peptides depends not only on their positive charge, but also on the primary structure of the peptide. In contrast with the results obtained for DNA complexes with molecular conjugates based on poly-L-lysine, the aggregation of DNA/K8 complexes leads to a significant increase in the expression of transferred gene. PMID:17223788

  10. Visible-light-promoted iminyl radical formation from vinyl azides: synthesis of 6-(fluoro)alkylated phenanthridines.

    PubMed

    Sun, Xiaoyang; Yu, Shouyun

    2016-09-18

    An efficient strategy assisted by visible-light-promoted iminyl radical formation has been developed for the synthesis of 6-(fluoro)alkylated phenanthridine derivatives. In the reactions, addition of alkyl and trifluoromethyl radicals onto vinyl azides gives iminyl radicals, which then undergo intramolecular homolytic aromatic substitution leading to phenanthridines. These reactions can be carried out under mild conditions with high chemical yields and broad substrate scope. PMID:27530901

  11. Formation of Reactive Sulfite-Derived Free Radicals by the Activation of Human Neutrophils: An ESR Study

    PubMed Central

    Ranguelova, Kalina; Rice, Annette B.; Khajo, Abdelahad; Triquigneaux, Mathilde; Garantziotis, Stavros; Magliozzo, Richard S.; Mason, Ronald P.

    2012-01-01

    The objective of the present study is to determine the effect of (bi)sulfite (hydrated sulfur dioxide) on human neutrophils and the ability of these immune cells to produce reactive free radicals due to (bi)sulfite oxidation. Myeloperoxidase (MPO) is an abundant heme protein in neutrophils that catalyzes the formation of cytotoxic oxidants implicated in asthma and inflammatory disorders. In the present study sulfite (•SO3−) and sulfate (SO4•−) anion radicals are characterized with the ESR spin-trapping technique using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in the reaction of (bi)sulfite oxidation by human MPO and human neutrophils via sulfite radical chain reaction chemistry. After treatment with (bi)sulfite, PMA-stimulated neutrophils produced DMPO-sulfite anion radical, -superoxide, and -hydroxyl radical adducts. The latter adduct probably resulted, in part, from the conversion of DMPO-sulfate to DMPO-hydroxyl radical adduct via a nucleophilic substitution reaction of the radical adduct. This anion radical (SO4•−) is highly reactive and, presumably, can oxidize target proteins to protein radicals, thereby initiating protein oxidation. Therefore, we propose that the potential toxicity of (bi)sulfite during pulmonary inflammation or lung-associated diseases such as asthma may be related to free radical formation. PMID:22326772

  12. Free radical pathways for the prebiotic formation of xanthine and isoguanine from formamide

    NASA Astrophysics Data System (ADS)

    Jeilani, Yassin A.; Nguyen, Huyen Thi; Cardelino, Beatriz H.; Nguyen, Minh Tho

    2014-04-01

    Free radical pathways for the synthesis of xanthine and isoguanine from formamide were studied using density functional theory (B3LYP/6-311G(d,p)). The proposed mechanisms are complex and appropriate for the non-aqueous scenario of prebiotic reactions. Formation of the carbonyl bond in the nucleobases proceeds through enol-keto tautomerization since the direct formation of the Cdbnd O bond is a highly endothermic step. The mechanisms show 2-amino-imidazole as a precursor for nucleobases and polyazaporphyrin. The proposed mechanisms contribute to a further understanding of the origin of biomolecules.

  13. Photochemical formation of hydroxyl radical in red-soil-polluted seawater - effects of dissolved organic compounds

    NASA Astrophysics Data System (ADS)

    Uehara, M.; Arakaki, T.

    2006-12-01

    Development of pineapple farmlands and construction of recreational facilities caused runoff of red soil into the coastal ocean (locally termed as red soil pollution) in the north of Okinawa Island, Japan. Red soil is acidic and contains a few percent of iron oxide. We were interested in the formation of hydroxyl radical (·OH), the most potent oxidant in the environment, from the photo-Fenton reaction (reaction between Fe(II) and HOOH) in red-soil-polluted seawater. Various artificial seawater solutions were prepared by adding red soil, HOOH, and/or humic acid to clean seawater, and were used for photochemical experiments. Commercially available humic acid was used to represent natural organic compounds. All the solutions were filtered through 0.45 micron filter before conducting photochemical experiments. Comparisons among the solutions indicated that dissolved chemicals from the red-soil only slightly increased the OH radical photoformation. Photoformation rates of OH radicals of the HOOH + red soil solutions were similar to the calculated rates from direct photolysis of HOOH. Furthermore, addition of humic acid to the HOOH + red soil solutions did not significantly enhance the photo-Fenton reaction, suggesting that Fe(II), even if it had been formed, did not react with HOOH to form OH radicals at detectable level in seawater.

  14. The O-H stretching vibrations in the hydrogen bonded (PHENOL) 2+ radical cationic dimer. A gradient-corrected hybrid Hartree-Fock-density functional study

    NASA Astrophysics Data System (ADS)

    Pejov, Ljupčo

    2003-07-01

    The global minimum on B3LYP, mPW1PW91 and PBE1PBE/6-31++G(d,p) potential energy surfaces (PESs) of the (phenol) 2+ cationic radical dimer corresponds to O-H +⋯O hydrogen-bonded structure, with an additional, although much weaker C-H⋯O hydrogen bond, as revealed by AIM analysis. Excellent agreement with experimental data is obtained for the anharmonic vibrational frequency shift of the dangling O-H oscillator on the basis of one-dimensional DFT O-H stretching potentials. However, theoretical calculations suggest that the ν(O-H +⋯O) mode due to the hydrogen-bonded O-H oscillator should appear at significantly lower frequencies than it was first estimated on the basis of experimental dissociation spectroscopy combined with an ion trap technique data.

  15. Thioether bond formation by SPASM domain radical SAM enzymes: Cα H-atom abstraction in subtilosin A biosynthesis.

    PubMed

    Benjdia, Alhosna; Guillot, Alain; Lefranc, Benjamin; Vaudry, Hubert; Leprince, Jérôme; Berteau, Olivier

    2016-05-01

    AlbA is a radical SAM enzyme catalyzing the formation of three unusual thioether bonds in the antibiotic subtilosin A. We demonstrate here that AlbA catalyzes direct Cα H-atom abstraction and likely contains three essential [4Fe-4S] centers. This leads us to propose novel mechanistic perspectives for thioether bond catalysis by radical SAM enzymes. PMID:27087315

  16. Mitigation of 3-Monochloro-1,2-propanediol Ester Formation by Radical Scavengers.

    PubMed

    Zhang, Hai; Jin, Pengwei; Zhang, Min; Cheong, Ling-Zhi; Hu, Peng; Zhao, Yue; Yu, Liangli; Wang, Yong; Jiang, Yuanrong; Xu, Xuebing

    2016-07-27

    The present study investigated the possible mechanism of free radical scavengers on mitigation of 3-monochloro-1,2-propanediol (3-MCPD) fatty acid ester formation in vegetable oils. The electron spin resonance investigation showed that the concentration of free radicals could be clearly decreased in 1,2-distearoyl-sn-glycerol (DSG) samples by all four antioxidants (l-ascorbyl palmitate, α-tocopherol, lipophilic tea polyphenols, and rosemary extract) at 120 °C for 20 min under a N2 atmosphere. Moreover, the rosemary extract exhibited the highest inhibition efficiency. The Fourier transform infrared spectroscopy examination of DSG with α-tocopherol at 25 and 120 °C revealed that α-tocopherol could prevent the involvement of an ester carbonyl group of DSG in forming the cyclic acyloxonium free radical intermediate. Furthermore, the ultraperformance liquid chromatography-quadrupole-time-of-flight mass spectrometry analysis showed that α-tocopherol could suppress the formation of 3-MCPD di- and monoesters. Finally, the four antioxidants could decrease 3-MCPD esters in the palm oil during deodorization. Particularly, the rosemary extract also showed the highest efficiency in 3-MCPD ester mitigation. PMID:27396990

  17. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation.

    PubMed

    Charkoudian, Louise K; Pham, David M; Franz, Katherine J

    2006-09-27

    The synthesis and structural characterization of a new pro-chelating agent, isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide (BSIH), are presented. BSIH only weakly interacts with iron unless hydrogen peroxide (H2O2) is present to remove the boronic ester protecting group to reveal a phenol that is a key metal-binding group of tridentate salicylaldehyde isonicotinoyl hydrazone (SIH). BSIH prevents deoxyribose degradation caused by hydroxyl radicals that are generated from H2O2 and redox-active iron by sequestering Fe3+ and preventing iron-promoted hydroxyl radical formation. The rate-determining step for iron sequestration is conversion of BSIH to SIH, followed by rapid Fe3+ complexation. The pro-chelate approach of BSIH represents a promising strategy for chelating a specific pool of detrimental metal ions without disturbing healthy metal ion distribution. PMID:16984186

  18. Illuminating the Atmospheric Oxidation Mechanisms, SOA Formation Pathways and Radical Yields of the Monoterpene Myrcene

    NASA Astrophysics Data System (ADS)

    Wyche, Kevin; Carr, Timo; Monks, Paul; Ellis, Andrew; Alfarra, Rami; McFiggans, Gordon; Hamilton, Jacqueline; Ward, Martyn; Boss, William; Camredon, Marie

    2010-05-01

    Biogenic Volatile Organic Compounds (BVOCs) are ubiquitous in the global troposphere, being emitted primarily from terrestrial plant life in significant quantities. Indeed, it is estimated that the total annual emission rate of all (non-methane) BVOCs is roughly ten times that of all anthropogenic volatile organic compounds (Guenther et al., 1995). With the exception of methane, the most dominant species of BVOC, in terms of emission strength, reactivity and their impact upon the atmosphere, are terpenes. Terpenes are a subdivision of BVOCs, composed primarily of hemiterpenes (C5), monoterpenes (C10), sesquiterpenes (C15) and diterpenes (C20). Under troposheric conditions terpenes react via complex and extensive gas phase oxidation pathways, have strong photochemical ozone creation potentials, constitute a significant radical source and are known to generate secondary organic aerosol (SOA) in high yields. At present there exists a certain lack of understanding regarding the oxidation mechanisms of certain terpenes and their role in SOA and radical formation. Consequently, as part of the NERC funded Aerosol Coupling in the Earth's System (ACES) and Total RAdical Production from the OZonolysis of alkenes (TRAPOZ) projects, a comprehensive series of simulation chamber experiments were conducted at the University of Manchester aerosol chamber facility, and at the EUropean PHOto REactor (EUPHORE) in order to investigate the gas phase degradation mechanisms, and SOA and radical formation potentials of a number of atmospherically significant terpenes. Both simulation chambers were highly instrumented during all experiments such that detailed and concomitant gas and aerosol phase measurements were made across a range of conditions. The work presented here describes the findings obtained from both photooxidation and ozonolysis experiments involving the common, but less well studied, aliphatic monoterpene, myrcene. The data presented include NOx and ozone measurements and

  19. A kinetic study of the reaction between N,N-dimethyl-p-toluidine and its electrogenerated radical cation in a room temperature ionic liquid.

    PubMed

    Evans, Russell G; Compton, Richard G

    2006-02-13

    The reaction between N,N-dimethyl-p-toluidine (DMT) and the radical cation generated through its one-electron oxidation has been studied electrochemically in the room temperature ionic liquid N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [Py14][NTf2]. Kinetic information obtained as linear sweep and cyclic voltammetry collected at 5 microm, 10 microm and 0.3 mm diameter platinum disk electrodes over a range of initial substrate concentrations and scan rates spanning five orders of magnitude was complemented by chronoamperometric measurements designed to probe the rate of diffusion. At the fastest scan rates the homogeneous reactions following the initial electron transfer were effectively out-run, facilitating an assessment of the electrode kinetics using DIGISIM and a validated Nicholson's method. Through digital simulation the voltammetry was then shown to be consistent with a mechanism established for the same reaction in acetonitrile, involving dimerisation of the DMT radicals following an initial and rate-determining proton transfer step. After careful consideration of all parameters, a bimolecular rate constant of (3.4 +/- 1.1) x 10(2) dm3 mol(-1) s(-1) was deduced by fitting the data. This was compared to the equivalent value for acetonitrile and, in light of this, the implications on the viability of ionic liquids for use as alternative mainstream solvents briefly assessed. PMID:16463338

  20. Aqueous Secondary Organic Aerosol (aqSOA) Formation By Radical Reactions: Model Studies Comparing the Role of OH Versus Organic Radicals

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Renard, P.; Reed Harris, A.; Vaida, V.; Monod, A.

    2014-12-01

    Chemical reactions in the aqueous phase are thought to significantly contribute to ambient aerosol mass under specific conditions. Results from many laboratory studies suggest that these reactions are efficiently initiated by the OH radical and lead to high molecular weight compounds (oligomers). Recent laboratory experiments have shown that methyl vinyl ketone (MVK) can form oligomers in high yield in aqueous solutions similar to aerosol water. Additional experiments have shown that the direct photolysis of pyruvic acid can generate organic radicals that initiate similar oligomer products upon oxidation of MVK (Renard et al., submitted). Sources of the OH radical in the aerosol aqueous phase include the direct uptake from the gas phase, Fenton reactions and, to a smaller extent, direct photolyses of hydrogen peroxide and nitrate. Recent model studies imply that under many conditions, aqSOA formation might be oxidant-limited since these OH(aq) sources are not sufficient to provide a continuous OH supply. This limitation can be (partially) removed if additional radical sources in the multiphase system are considered. Exemplary, we include the direct photolysis of aqueous pyruvic acid as a proxy for possible other radical sources. Model results will be shown and consequences for aqSOA formation and processing under ambient conditions will be discussed.

  1. Catalase Expression Is Modulated by Vancomycin and Ciprofloxacin and Influences the Formation of Free Radicals in Staphylococcus aureus Cultures

    PubMed Central

    Wang, Ying; Hougaard, Anni B.; Paulander, Wilhelm; Skibsted, Leif H.

    2015-01-01

    Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals. PMID:26150471

  2. Catalase Expression Is Modulated by Vancomycin and Ciprofloxacin and Influences the Formation of Free Radicals in Staphylococcus aureus Cultures.

    PubMed

    Wang, Ying; Hougaard, Anni B; Paulander, Wilhelm; Skibsted, Leif H; Ingmer, Hanne; Andersen, Mogens L

    2015-09-01

    Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals. PMID:26150471

  3. Formation of S-Cl phosphorothioate adduct radicals in dsDNA-S-oligomers: Hole transfer to guanine vs. disulfide anion radical formation

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Palmer, Brian J.; Todd, Andrew D.; Sevilla, Michael D.

    2013-01-01

    In phosphorothioate containing dsDNA-oligomers (S-oligomers), one of the two non-bridging oxygen atoms in the phosphate moiety of sugar-phosphate backbone is replaced by sulphur. In this work, electron spin resonance (ESR) studies of one-electron oxidation of several S-oligos by Cl2•− at low temperatures are investigated. Electrophilic addition of Cl2•− to phosphorothioate with elimination of Cl− leads to the formation of a 2-center three-electron σ2σ*1 bonded adduct radical (-P-S∸Cl). In AT S-oligomers with mutiple phosphorothioates, i.e., d[ATATAsTsAsT]2, -P-S∸Cl reacts with a neighboring phosphorothioate to form the σ2σ*1 bonded disulphide anion radical ([-P-S∸S-P-]−). With AT S-oligomers with a single phosphorothioate, i.e., d[ATTTAsAAT]2, reduced levels of conversion of -P-S∸Cl dsDNA [-P-S∸S-P-]− are found. For guanine containing S-oligomers containing one phosphorothioate, -P-S∸Cl results in one-electron oxidation of guanine base but not of A, C, or T thereby leading to selective hole transfer to G. The redox potential of -P-S∸Cl is thus higher than that of G but is lower than those of A, C, and T. Spectral assignments to -P-S∸Cl and [-P-S∸S-P-]− are based on reaction of Cl2•− with the model compound diisopropyl phosphorothioate. The results found for d[TGCGsCsGCGCA]2 suggest that [-P-S∸S-P-]− undergoes electron transfer to the one-electron oxidized G healing the base but producing a cyclic disulfide bonded backbone with a substantial bond strength (50 kcal/mol). Formation of -P-S∸Cl and its conversion to [-P-S∸S-P-]− is found to be unaffected by O2 and this is supported by the theoretically calculated electron affinities and reduction potentials of [-P-S-S-P-] and O2. PMID:23885974

  4. Formation and disappearance of superoxide radicals in aqueous solutions. [79 references

    SciTech Connect

    Allen, A O; Bielski, B H.J.

    1980-01-01

    A literature review of superoxide radicals in aqueous solutions is presented covering the following: history; methods of formation of aqueous HO/sub 2//HO/sub 2//sup -/ by radiolysis and photolysis, electrolysis, mixing nonaqueous solutions into water, chemical reactions, enzymatic generation of O/sub 2//sup -/, and photosensitization; and properties of HO/sub 2//O/sub 2//sup -/ in aqueous solution, which cover spontaneous dismutation rates, pk and absorption spectra, catalyzed dismutation, thermodynamics and the so-called Haber-Weiss Reaction.

  5. Formation of Polyion Complex (PIC) Micelles and Vesicles with Anionic pH-Responsive Unimer Micelles and Cationic Diblock Copolymers in Water.

    PubMed

    Ohno, Sayaka; Ishihara, Kazuhiko; Yusa, Shin-Ichi

    2016-04-26

    A random copolymer (p(A/MaU)) of sodium 2-(acrylamido)-2-methylpropanesulfonate (AMPS) and sodium 11-methacrylamidoundecanate (MaU) was prepared via conventional radical polymerization, which formed a unimer micelle under acidic conditions due to intramolecular hydrophobic interactions between the pendant undecanoic acid groups. Under basic conditions, unimer micelles were opened up to an expanded chain conformation by electrostatic repulsion between the pendant sulfonate and undecanoate anions. A cationic diblock copolymer (P163M99) consisting of poly(3-(methacrylamido)propyl)trimethylammonium chloride (PMAPTAC) and hydrophilic polybetaine, 2-(methacryloyloxy)ethylphosphorylcholine (MPC), blocks was prepared via controlled radical polymerization. Mixing of p(A/MaU) and P163M99 in 0.1 M aqueous NaCl under acidic conditions resulted in the formation of spherical polyion complex (PIC) micelles and vesicles, depending on polymer concentration before mixing. Shapes of the PIC micelles and vesicles changed under basic conditions due to collapse of the charge balance between p(A/MaU) and P163M99. The PIC vesicles can incorporate nonionic hydrophilic guest molecules, and the PIC micelles and vesicles can accept hydrophobic guest molecules in the hydrophobic core formed from p(A/MaU). PMID:27048989

  6. Gas-Phase Ozonolysis of Cycloalkenes: Formation of Highly Oxidized RO2 Radicals and Their Reactions with NO, NO2, SO2, and Other RO2 Radicals.

    PubMed

    Berndt, Torsten; Richters, Stefanie; Kaethner, Ralf; Voigtländer, Jens; Stratmann, Frank; Sipilä, Mikko; Kulmala, Markku; Herrmann, Hartmut

    2015-10-15

    The gas-phase reaction of ozone with C5-C8 cycloalkenes has been investigated in a free-jet flow system at atmospheric pressure and a temperature of 297 ± 1 K. Highly oxidized RO2 radicals bearing at least 5 O atoms in the molecule and their subsequent reaction products were detected in most cases by means of nitrate-CI-APi-TOF mass spectrometry. Starting from a Criegee intermediate after splitting-off an OH-radical, the formation of these RO2 radicals can be explained via an autoxidation mechanism, meaning RO2 isomerization (ROO → QOOH) and subsequently O2 addition (QOOH + O2 → R'OO). Time-dependent RO2 radical measurements concerning the ozonolysis of cyclohexene indicate rate coefficients of the intramolecular H-shifts, ROO → QOOH, higher than 1 s(-1). The total molar yield of highly oxidized products (predominantly RO2 radicals) from C5-C8 cycloalkenes in air is 4.8-6.0% affected with a calibration uncertainty by a factor of about two. For the most abundant RO2 radical from cyclohexene ozonolysis, O,O-C6H7(OOH)2O2 ("O,O" stands for two O atoms arising from the ozone attack), the determination of the rate coefficients of the reaction with NO2, NO, and SO2 yielded (1.6 ± 0.5) × 10(-12), (3.4 ± 0.9) × 10(-11), and <10(-14) cm(3) molecule(-1) s(-1), respectively. The reaction of highly oxidized RO2 radicals with other peroxy radicals (R'O2) leads to detectable accretion products, RO2 + R'O2 → ROOR' + O2, which allows to acquire information on peroxy radicals not directly measurable with the nitrate ionization technique applied here. Additional experiments using acetate as the charger ion confirm conclusively the existence of highly oxidized RO2 radicals and closed-shell products. Other reaction products, detectable with this ionization technique, give a deeper insight in the reaction mechanism of cyclohexene ozonolysis. PMID:26392132

  7. Effect of copper oxide concentration on the formation and persistency of environmentally persistent free radicals (EPFRs) in particulates.

    PubMed

    Kiruri, Lucy W; Khachatryan, Lavrent; Dellinger, Barry; Lomnicki, Slawo

    2014-02-18

    Environmentally persistent free radicals (EPFRs) are formed by the chemisorption of substituted aromatics on metal oxide surfaces in both combustion sources and superfund sites. The current study reports the dependency of EPFR yields and their persistency on metal loading in particles (0.25, 0.5, 0.75, 1, 2, and 5% CuO/silica). The EPFRs were generated through exposure of particles to three adsorbate vapors at 230 °C: phenol, 2-monochlorophenol (2-MCP), and dichlorobenzene (DCBz). Adsorption resulted in the formation of surface-bound phenoxyl- and semiquinoine-type radicals with characteristic EPR spectra displaying a g value ranging from ∼ 2.0037 to 2.006. The highest EPFR yield was observed for CuO concentrations between 1 and 3% in relation to MCP and phenol adsorption. However, radical density, which is expressed as the number of radicals per copper atom, was highest at 0.75-1% CuO loading. For 1,2-dichlorobenzene adsorption, radical concentration increased linearly with decreasing copper content. At the same time, a qualitative change in the radicals formed was observed--from semiquinone to chlorophenoxyl radicals. The two longest lifetimes, 25 and 23 h, were observed for phenoxyl-type radicals on 0.5% CuO and chlorophenoxyl-type radicals on 0.75% CuO, respectively. PMID:24437381

  8. Effect of Copper Oxide Concentration on the Formation and Persistency of Environmentally Persistent Free Radicals (EPFRs) in Particulates

    PubMed Central

    2015-01-01

    Environmentally persistent free radicals (EPFRs) are formed by the chemisorption of substituted aromatics on metal oxide surfaces in both combustion sources and superfund sites. The current study reports the dependency of EPFR yields and their persistency on metal loading in particles (0.25, 0.5, 0.75, 1, 2, and 5% CuO/silica). The EPFRs were generated through exposure of particles to three adsorbate vapors at 230 °C: phenol, 2-monochlorophenol (2-MCP), and dichlorobenzene (DCBz). Adsorption resulted in the formation of surface-bound phenoxyl- and semiquinoine-type radicals with characteristic EPR spectra displaying a g value ranging from ∼2.0037 to 2.006. The highest EPFR yield was observed for CuO concentrations between 1 and 3% in relation to MCP and phenol adsorption. However, radical density, which is expressed as the number of radicals per copper atom, was highest at 0.75–1% CuO loading. For 1,2-dichlorobenzene adsorption, radical concentration increased linearly with decreasing copper content. At the same time, a qualitative change in the radicals formed was observed—from semiquinone to chlorophenoxyl radicals. The two longest lifetimes, 25 and 23 h, were observed for phenoxyl-type radicals on 0.5% CuO and chlorophenoxyl-type radicals on 0.75% CuO, respectively. PMID:24437381

  9. Formation of polycyclic aromatic hydrocarbons from bimolecular reactions of phenyl radicals at high temperatures.

    PubMed

    Constantinidis, P; Schmitt, H-C; Fischer, I; Yan, B; Rijs, A M

    2015-11-21

    The self-reaction of the phenyl radical is one of the key reactions in combustion chemistry. Here we study this reaction in a high-temperature flow reactor by IR/UV ion dip spectroscopy, using free electron laser radiation as mid-infrared source. We identified several major reaction products based on their infrared spectra, among them indene, 1,2-dihydronaphthalene, naphthalene, biphenyl and para-terphenyl. Due to the structural sensitivity of the method, the reaction products were identified isomer-selectively. The work shows that the formation of indene and naphthalene, which was previously considered to be evidence for the HACA (hydrogen abstraction C2H2 addition) mechanism in the formation of polycyclic aromatic hydrocarbons and soot can also be understood in a phenyl addition model. PMID:26457393

  10. The antimicrobial activity of gramicidin A is associated with hydroxyl radical formation.

    PubMed

    Liou, Je-Wen; Hung, Yu-Jiun; Yang, Chin-Hao; Chen, Yi-Cheng

    2015-01-01

    Gramicidin A is an antimicrobial peptide that destroys gram-positive bacteria. The bactericidal mechanism of antimicrobial peptides has been linked to membrane permeation and metabolism disruption as well as interruption of DNA and protein functions. However, the exact bacterial killing mechanism of gramicidin A is not clearly understood. In the present study, we examined the antimicrobial activity of gramicidin A on Staphylococcus aureus using biochemical and biophysical methods, including hydroxyl radical and NAD+/NADH cycling assays, atomic force microscopy, and Fourier transform infrared spectroscopy. Gramicidin A induced membrane permeabilization and changed the composition of the membrane. The morphology of Staphylococcus aureus during gramicidin A destruction was divided into four stages: pore formation, water permeability, bacterial flattening, and lysis. Changes in membrane composition included the destruction of membrane lipids, proteins, and carbohydrates. Most interestingly, we demonstrated that gramicidin A not only caused membrane permeabilization but also induced the formation of hydroxyl radicals, which are a possible end product of the transient depletion of NADH from the tricarboxylic acid cycle. The latter may be the main cause of complete Staphylococcus aureus killing. This new finding may provide insight into the underlying bactericidal mechanism of gA. PMID:25622083

  11. Mechanisms of ascorbyl radical formation in human platelet-rich plasma.

    PubMed

    Shyu, Kou-Gi; Chang, Chao-Chien; Yeh, Yu-Chieh; Sheu, Joen-Rong; Chou, Duen-Suey

    2014-01-01

    Recently, many clinical reports have suggested that the ascorbyl free radical (Asc(∙)) can be treated as a noninvasive, reliable, real-time marker of oxidative stress, but its generation mechanisms in human blood have rarely been discussed. In this study, we used upstream substances, enzyme inhibitors, and free radical scavengers to delineate the mechanisms of Asc(∙) formation in human platelet-rich plasma (PRP). Our results show that the doublet signal was detected in PRP samples by using electron spin resonance, and the hyperfine splitting of the doublet signal was a(H) = 1.88 gauss and g-factor = 2.00627, which was determined to be the Asc(∙). We observed that the inhibitors of NADPH oxidase (NOX), cyclooxygenase (COX), lipoxygenase (LOX), cytochrome P450 (CYP450), mitochondria complex III, and nitric oxide synthase (NOS), but not xanthine oxidase, diminished the intensity of the Asc(∙) signal dose dependently. All enzyme inhibitors showed no obvious antioxidant activity during a Fenton reaction assay. In summary, the obtained data suggest that Asc(∙) formation is associated with NOX, COX, LOX, CYP450, eNOS, and mitochondria in human PRP. PMID:24696859

  12. Formation of hydroxyl radicals from photolysis of secondary organic aerosol material

    NASA Astrophysics Data System (ADS)

    Badali, K. M.; Zhou, S.; Aljawhary, D.; Antiñolo, M.; Chen, W. J.; Lok, A.; Mungall, E.; Wong, J. P. S.; Zhao, R.; Abbatt, J. P. D.

    2015-02-01

    This paper demonstrates that OH radicals are formed by photolysis of secondary organic aerosol (SOA) material formed by terpene ozonolysis. The SOA aerosol is collected on filters, dissolved in water containing a radical trap (benzoic acid), and then exposed to ultraviolet light in a photochemical reactor. The OH formation rates, which are similar for both α-pinene and limonene SOA, are measured from the formation rate of p-hydroxybenzoic acid as measured using offline HPLC analysis. To evaluate whether the OH is formed by photolysis of H2O2 or organic hydroperoxides (ROOH), the peroxide content of the SOA was measured using the horseradish peroxidase-dichlorofluorescein (HRP-DCF) assay, which was calibrated using H2O2. The OH formation rates from SOA are five times faster than from the photolysis of H2O2 solutions whose concentrations correspond to the peroxide content of the SOA solutions assuming that the HRP-DCF signal arises from H2O2 alone. The higher rates of OH formation from SOA are likely due to ROOH photolysis. This result is substantiated by photolysis experiments conducted with t-butyl hydroperoxide and cumene hydroperoxide which produce over three times more OH than photolysis of equivalent concentrations of H2O2. Relative to the peroxide level in the SOA, the quantum yield for OH generation from α-pinene SOA is 0.8 ± 0.4. This is the first demonstration of an efficient photolytic source of OH in SOA, one that may affect both cloudwater and aerosol chemistry.

  13. Formation of hydroxyl radicals from photolysis of secondary organic aerosol material

    NASA Astrophysics Data System (ADS)

    Badali, K. M.; Zhou, S.; Aljawhary, D.; Antiñolo, M.; Chen, W. J.; Lok, A.; Mungall, E.; Wong, J. P. S.; Zhao, R.; Abbatt, J. P. D.

    2015-07-01

    This paper demonstrates that OH radicals are formed by photolysis of secondary organic aerosol (SOA) material formed by terpene ozonolysis. The SOA is collected on filters, dissolved in water containing a radical trap (benzoic acid), and then exposed to ultraviolet light in a photochemical reactor. The OH formation rates, which are similar for both α-pinene and limonene SOA, are measured from the formation rate of p-hydroxybenzoic acid as measured using offline HPLC analysis. To evaluate whether the OH is formed by photolysis of H2O2 or organic hydroperoxides (ROOH), the peroxide content of the SOA was measured using the horseradish peroxidase-dichlorofluorescein (HRP-DCF) assay, which was calibrated using H2O2. The OH formation rates from SOA are 5 times faster than from the photolysis of H2O2 solutions whose concentrations correspond to the peroxide content of the SOA solutions, assuming that the HRP-DCF signal arises from H2O2 alone. The higher rates of OH formation from SOA are likely due to ROOH photolysis, but we cannot rule out a contribution from secondary processes as well. This result is substantiated by photolysis experiments conducted with t-butyl hydroperoxide and cumene hydroperoxide which produce over 3 times more OH than photolysis of equivalent concentrations of H2O2. Relative to the peroxide level in the SOA and assuming that the peroxides drive most of the ultraviolet absorption, the quantum yield for OH generation from α-pinene SOA is 0.8 ± 0.4. This is the first demonstration of an efficient photolytic source of OH in SOA, one that may affect both cloud water and aerosol chemistry.

  14. Chemistry of carotenoid neutral radicals.

    PubMed

    Ligia Focsan, A; Magyar, Adam; Kispert, Lowell D

    2015-04-15

    Proton loss from the carotenoid radical cations (Car(+)) to form neutral radicals (#Car) was investigated by numerous electrochemical, EPR, ENDOR and DFT studies described herein. The radical cation and neutral radicals were formed in solution electrochemically and stabilized on solid silica-alumina and MCM-41 matrices. Carotenoid neutral radicals were recently identified in Arabidopsis thaliana plant and photosystem II samples. Deprotonation at the terminal ends of a zeaxanthin radical cation could provide a secondary photoprotection pathway which involves quenching excited state chlorophyll by the long-lived zeaxanthin neutral radicals formed. PMID:25687648

  15. Muconaldehyde formation from 14C-benzene in a hydroxyl radical generating system

    SciTech Connect

    Latriano, L.; Zaccaria, A.; Goldstein, B.D.; Witz, G.

    1985-01-01

    It has recently been proposed that muconaldehyde, a six carbon, alpha, beta-unsaturated dialdehyde, may be a hematotoxic metabolite of benzene. The present studies indicate that trans, trans-muconaldehyde is formed from benzene in vitro in a hydroxyl radical (.OH) generating system containing ascorbate, ferrous sulfate and EDTA in phosphate buffer, pH 6.7. Muconaldehyde formed from benzene in the .OH generating system was identified by trapping it with thiobarbituric acid (TBA), which results in the formation of an adduct with a 495 nm absorption maximum and a 510 nm fluorescence emission maximum. These maxima were identical to those observed after reacting authentic trans, trans-muconaldehyde with TBA. This finding was supported by thin layer chromatography and solid phase extraction studies. In those studies benzene-derived muconaldehyde cochromatographed with the muconaldehyde/TBA standard. Analyses of the products from the .OH generating system using high performance liquid chromatography (HPLC) confirm that trans, trans-muconaldehyde is a product of benzene ring fission. Regardless of whether or not TBA was used for trapping, samples from the .OH system incubated with benzene contained a peak which cochromatographed with the muconaldehyde standard. The radioactivity profile of fractions collected during HPLC analysis demonstrates 14C-benzene to be the source of the trans, trans-muconaldehyde. The role of hydroxyl radicals in the formation of muconaldehyde was investigated by using dimethyl sulfoxide, mannitol, and ethanol as .OH scavengers. These scavengers, at concentrations of 10 and 100 mM, were found to cause a dose-dependent decrease in the formation of muconaldehyde.

  16. Secondary Organic Aerosol (SOA) Formation From the NO3 Radical Oxidation of Alpha- pinene

    NASA Astrophysics Data System (ADS)

    Perraud, V.; Yu, Y.; Bruns, E.; Ezell, M. J.; Johnson, S. N.; Alexander, M.; Zelenyuk, A.; Imre, D.; Finlayson-Pitts, B. J.

    2008-12-01

    Terpenes such as alpha-pinene, emitted in large quantities from vegetation into the troposphere, are well known to react with O3, OH and NO3 radicals leading to the formation of secondary organic aerosol, SOA. While particle formation and growth from the NO3 reaction with alpha-pinene have been reported by a number of groups, as have the gas phase products of this reaction, little is known about the chemical composition of the particles. We report studies of the composition of particles formed in the NO3 - alpha- pinene reaction using two reactors, a flow tube and a static chamber. Nitrate radicals were generated in the flow tube by the reaction of NO2 with O3 and in the static chamber by the thermal decomposition of N2O5. Particle formation and growth was monitored using SMPS and APS. A variety of analytical techniques were applied to measure the chemical composition, including FTIR of particles collected on ZnSe impactor discs, and GC-MS, ESI-MS, APCI-MS, HPLC-MS and HPLC-UV of samples collected on quartz fiber filters. In addition, particle mass spectrometer techniques including AMS and SPLAT provided real-time analysis. A number of organic nitrates were observed in the particles, along with carbonyl compounds and organic acids. Gas phase products measured using DNPH coated-cartridges included pinonaldehyde, formaldehyde, acetaldehyde and acetone. Results of studies in which concentrations of the reactants were varied will be presented and possible mechanisms and the atmospheric implications will be discussed.

  17. Biomimetic oxidative dimerization of anodically generated stilbene radical cations: effect of aromatic substitution on product distribution and reaction pathways.

    PubMed

    Hong, Fong-Jiao; Low, Yun-Yee; Chong, Kam-Weng; Thomas, Noel F; Kam, Toh-Seok

    2014-05-16

    A systematic study of the electrochemical oxidation of 1,2-diarylalkenes was carried out with the focus on detailed product studies and variation of product type as a function of aromatic substitution. A reinvestigation of the electrochemical oxidation of 4,4'-dimethoxystilbene under various conditions was first carried out, and all products formed were fully characterized and quantitated. This was followed by a systematic investigation of the effect of aromatic substitution on the nature and distribution of the products. The aromatic substituents were found to fall into three main categories, viz., substrates in which the nature and position of the aromatic substituents gave rise to essentially the same products as 4,4'-dimethoxystilbene, for example, tetraaryltetrahydrofurans, dehydrotetralins, and aldehydes (p-MeO or p-NMe2 on one ring and X on the other ring, where X = o-MeO or p-alkyl, or m- or p-EWG; e.g., 4-methoxy-4'-trifluoromethylstilbene); those that gave rise to a mixture of indanyl (or tetralinyl) acetamides and dehydrotetralins (or pallidols) (both or one ring substituted by alkyl groups, e.g., 4,4'-dimethylstilbene); and those where strategic placement of donor groups, such as OMe and OH, led to the formation of ampelopsin F and pallidol-type carbon skeletons (e.g., 4,3',4'-trimethoxystilbene). Reaction pathways to rationalize the formation of the different products are presented. PMID:24754525

  18. Structures and stabilities of hemi-bonded vs proton-transferred isomers of dimer radical cation systems (XH3sbnd YH3)+ (X,Y = N, P, As)

    NASA Astrophysics Data System (ADS)

    Ji, Li Fei; Li, An Yong; Li, Zhuo Zhe

    2015-01-01

    Structures, bonding and relative stabilities of the radical dimer cations (XH3sbnd YH3)+ (X,Y = N, P, As) have been studied theoretically. Two kinds of structures (hemi-bonded and proton-transferred isomers) are obtained for each system. For (NH3sbnd N/P/AsH3)+ the stable conformer is the proton-transferred structure; for (PH3sbnd PH3)+ and (AsH3sbnd AsH3)+ the stable structure is the hemi-bonded one; for (PH3sbnd AsH3)+ three proton-transferred and one hemi-bonded isomers were found with the stability order: (Hsbnd PH3+⋯AsH2) I > (H3PH+⋯AsH2) II > (H3P⋯AsH3+) > (H3AsH+⋯PH2) III. The hemi-bonds have large interaction energies 25.2-35.1 kcal/mol and are partially covalent in nature, while the proton-transferred structures have moderate interaction energies 6.5-22.2 kcal/mol.

  19. Mechanisms of radical formation in beef and chicken meat during high pressure processing evaluated by electron spin resonance detection and the addition of antioxidants.

    PubMed

    Bolumar, Tomas; Andersen, Mogens L; Orlien, Vibeke

    2014-05-01

    The generation of radicals during high pressure (HP) processing of beef loin and chicken breast was studied by spin trapping and electron spin resonance detection. The pressurization resulted in a higher level of spin adducts in the beef loin than in the chicken breast. It was shown that radicals were formed in the sarcoplasmic and myofibrillar fractions as well as in the non-soluble protein fraction due to the HP treatment, indicating that other radicals than iron-derived radicals were formed, and most likely protein-derived radicals. The addition of iron as well as the natural antioxidants caffeic acid, rosemary extract, and ascorbic acid resulted in an increased formation of radicals during the HP treatment, whereas addition of ethylendiamintetraacetic acid (EDTA) reduced the radical formation. This suggests that iron-species (protein-bound or free) catalyses the formation of radicals when meat systems are submitted to HP. PMID:24360471

  20. Hydroxyl radical formation and oxidative DNA damage induced by areca quid in vivo.

    PubMed

    Chen, Chiu-Lan; Chi, Chin-Wen; Liu, Tsung-Yun

    2002-02-01

    Chewing areca quid (AQ) has been implicated as a major risk factor for the development of oral squamous-cell carcinoma (OSCC). Recent studies have suggested that AQ-generated reactive oxygen species (ROS) is one of the contributing factors for oral carcinogenesis. However, the AQ used in Taiwan is different from that used in other countries. This study is designed to test whether ROS are generated and the consequent effects in locally prepared AQ in vivo. We measured the hydroxyl radical formation, as represented by the presence of o- and m-tyrosine in saliva from volunteers who chewed AQ containing 20 mg phenylalanine. Their saliva contained significantly higher amounts (p < .05) of o- and m-tyrosine as compared to the controls. In addition, chewing AQ containing Piper betle inflorescence generated higher amounts of m-tyrosine, but not o-tyrosine, in saliva than did chewing AQ containing betel leaf. We further tested the oxidative DNA damaging effect of the reconstituted AQ, as evidenced by the elevation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) levels, in hamster buccal pouch. Following daily painting for 14 d, the 8-OH-dG level in hamster buccal pouch is significantly elevated (p < .05) in the AQ-treated group versus the controls. These findings demonstrate that ROS, such as hydroxyl radical, are formed in the human oral cavity during AQ chewing, and chewing such prepared AQ might cause oxidative DNA damage to the surrounding tissues. PMID:11911495

  1. A CROSSED MOLECULAR BEAMS STUDY ON THE FORMATION OF THE EXOTIC CYANOETHYNYL RADICAL IN TITAN'S ATMOSPHERE

    SciTech Connect

    Gu, X.; Kaiser, R. I.; Mebel, A. M.; Kislov, V. V.; Klippenstein, S. J.; Harding, L. B.; Liang, M. C.; Yung, Y. L.

    2009-08-20

    The reaction of the dicarbon molecule (C{sub 2}) in its {sup 1}{sigma}{sub g} {sup +} electronic ground state with hydrogen cyanide HCN(X{sup 1}{sigma}{sup +}) is investigated in a crossed molecular beam setup to untangle the formation of the cyanoethynyl radical CCCN(X{sup 2}{sigma}{sup +}) in hydrocarbon-rich atmospheres of planets and their moons such as Titan. Combined with electronic structure and rate theory calculations, we show that this elementary reaction is rapid, has no entrance barriers, and yields CCCN via successive rearrangements of the initial HC{sub 3}N collision complex to the cyanoacetylene intermediate (HCCCN) followed by unimolecular decomposition of the latter without exit barrier. New photochemical models imply that this radical could serve as a key building block to form more complex molecules as observed in situ by the Cassini spacecraft, ultimately leading to organic aerosol particles, which make up the orange-brownish haze layers in Titan's atmosphere.

  2. A crossed molecular beams study on the formation of the exotic cyanoethynyl radical in Titan's atmosphere.

    SciTech Connect

    Gu, X.; Kaiser, R. I.; Mebel, A. M.; Kislov, V. V.; Klippenstein, S. J.; Harding, L. B.; Liang, M. C.; Yung, Y. L.

    2009-08-01

    The reaction of the dicarbon molecule (C{sub 2}) in its {sup 1}{Sigma}{sub g}{sup +} electronic ground state with hydrogen cyanide HCN(X{sup 1}{Sigma}{sup +}) is investigated in a crossed molecular beam setup to untangle the formation of the cyanoethynyl radical CCCN(X{sup 2}{Sigma}{sup +}) in hydrocarbon-rich atmospheres of planets and their moons such as Titan. Combined with electronic structure and rate theory calculations, we show that this elementary reaction is rapid, has no entrance barriers, and yields CCCN via successive rearrangements of the initial HC{sub 3}N collision complex to the cyanoacetylene intermediate (HCCCN) followed by unimolecular decomposition of the latter without exit barrier. New photochemical models imply that this radical could serve as a key building block to form more complex molecules as observed in situ by the Cassini spacecraft, ultimately leading to organic aerosol particles, which make up the orange-brownish haze layers in Titan's atmosphere.

  3. Formation and decay of the peroxy radicals in the oxidation process of Glyoxal, Methylglyoxal and Hydroxyacetone in aqueous solution

    NASA Astrophysics Data System (ADS)

    Schaefer, Thomas; Weller, Christian; Herrmann, Hartmut

    2013-04-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere in large amounts from biogenic and anthropogenic sources. For example, the semivolatile carbonyl compounds glyoxal and methylglyoxal will be produced in the oxidation process of isoprene, while hydroxyacetone can be formed by the combustion of biomass. Additionally, these semivolatile carbonyl compounds might be important for the formation of secondary organic aerosol (SOA) by partitioning between gas- and liquid phase of pre-existing particles. In the gas phase as well as in the aqueous phase (cloud droplets, fog, rain and deliquescent particles) these compounds can be further oxidized, e.g., by radicals (OH and NO3) leading to peroxy radical and then to substitued organics. There are still uncertainties concerning the oxidation pathways of glyoxal, after H-atom abstraction by, e.g., OH radicals, via alkyl radical to the peroxy radical under addition of molecular oxygen. One concept[1] claims that for dilute solutions ( 1 mM the formation of the peroxy radicals is a minor reaction pathway because of a lower rate constant of k = 1 × 106 M-1 s-1 estimated after Guzman et al., 2006[3]. The difference in the rate constants of the oxygen addition is of about three orders of magnitude and thus leads to different oxidation products and yields in the aqueous solution. Laboratory studies of glyoxal oxidation under varying oxygen concentrations have been performed in order to investigate the importance of the peroxy radical formation and alkyl radical recombination in more detail. The formation and the decay of the formed glyoxyl radicals and glyoxyl peroxy radicals were studied in low and high concentrated oxygen solutions using a laser photolysis long path absorption setup (LP-LPA). Additionally, the Tdependent decay of the peroxy radicals formed in the oxidation of methyglyoxal and hydroxyacetone was also studied using the same experiment. 1 Buxton, G. V., Malone, T. N. und Salmon, G. A., J. Chem. Soc

  4. Formation of an oxo-radical of peroxovanadate during reduction of diperoxovanadate with vanadyl sulfate or ferrous sulfate.

    PubMed

    Ramasarma, T; Ravishankar, H N

    2005-02-11

    Formation of oxygen radicals during reduction of H(2)O(2) or diperoxovanadate with vanadyl sulfate or ferrous sulfate was indicated by the 1:2:2:1 electron spin resonance (ESR) signals of the DMPO adduct typical of standard ()OH radical. Signals derived from diperoxovanadate remained unchanged in the presence of ethanol in contrast to those from H(2)O(2). This gave the clue that they represent a different radical, possibly (*)OV(O(2))(2+), formed on breaking a peroxo-bridge of diperoxovanadate complex. The above reaction mixtures evolved dioxygen or, when NADH was present, oxidized it rapidly which was accompanied by consumption of dioxygen. Operation of a cycle of peroxovanadates including this new radical is suggested to explain these redox activities both with vanadyl and ferrous sulfates. It can be triggered by ferrous ions released from cellular stores in the presence of catalytic amounts of peroxovanadates. PMID:15716128

  5. Synthesis and characterization of a triphenyl-substituted radical and an unprecedented formation of a carbene-functionalized quinodimethane.

    PubMed

    Mondal, Kartik Chandra; Samuel, Prinson P; Roesky, Herbert W; Niepötter, Benedikt; Herbst-Irmer, Regine; Stalke, Dietmar; Ehret, Fabian; Kaim, Wolfgang; Maity, Bholanath; Koley, Debasis

    2014-07-21

    The trichlorosilylcarbene monoradical (Cy-cAAC ·)SiCl3 (1) was directly converted to (Cy-cAAC ·)SiPh3 (2) by substitution of the three chlorine atoms with phenyl groups without affecting the radical center adjacent to the silicon atom. In addition to the structure determination, compound 2 was studied by EPR spectroscopy and DFT calculations. The three hyperfine lines in the EPR spectrum of 2 are due to the coupling with (14)N nucleus. Functionalized 1,4-quinodimethane Me2-cAAC=C6H4=CPh2 (7) was isolated, whereas carbon analogue of radical 2 was targeted. Cyclic voltammogram of 7 indicated that a stable radical-anion 7  ·-, as well as a radical-cation 7  ·+, can be prepared. Theoretical calculations showed that one-electron ionization energy and electron affinity of 7 are 5.1 and 0.7 eV mol(-1), respectively. PMID:24664879

  6. Secondary Organic Aerosol (SOA) Formation from Hydroxyl Radical Oxidation and Ozonolysis of Monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, Defeng; Kaminski, Martin; Schlag, Patrick; Fuchs, Hendrik; Acir, Ismail-Hakki; Bohn, Birger; Haeseler, Rolf; Kiendler-Scharr, Astrid; Rohrer, Franz; Tillmann, Ralf; Wang, Mingjin; Wegner, Robert; Wahner, Andreas; Mentel, Thomas

    2014-05-01

    Hydroxyl radical (OH) oxidation and ozonolysis are the two major pathways of daytime biogenic volatile organic compounds (VOCs) oxidation and secondary organic aerosol (SOA) formation. The pure OH oxidation of monoterpenes, an important biogenic VOC class, has seldom been investigated. In order to elucidate the importance of the reaction pathyways of the OH oxidation and ozonolysis and their roles in particle formation and growth, we investigated the particle formation of several common monoterpenes (alpha-pinene, beta-pinene, and limonene) in the large atmosphere simulation chamber SAPHIR in Juelich, Germany. The experiments were conducted for both OH dominant and pure ozonolysis case (in the presence of CO as OH scavenger) at ambient relevant conditions (low OA, low VOC and low NOx concentration). OH and ozone (O3) concentrations were measured so that the oxidation rates of OH and O3 with precursors were quantified. The particle formation and growth, aerosol yield, multi-generation reaction process and aerosol composition were analyzed. Pure ozonolysis generated a large amount of particles indicating ozonolysis plays an important role in particle formation as well as OH oxidation. In individual experiments, particle growth rates did not necessarily correlate with OH or O3 oxidation rates. However, comparing the growth rates at similar OH or O3 oxidation rates shows that generally, OH oxidation and ozonolysis have similar efficiency in particle growth. Multi-generation products are shown to be important in the OH oxidation experiment based on aerosol yield "growth curve" (Ng et al., 2006). The reaction process of OH oxidation experiments was analyzed as a function of OH dose to elucidate the role of functionalization and fragmentation. A novel analysis was developed to link the particle formation with the reaction with OH, which was also used to examine the role of functionalization and fragmentation in the particle formation by OH oxidation. These analyses show

  7. Stress-induced colouration and crosslinking of polymeric materials by mechanochemical formation of triphenylimidazolyl radicals.

    PubMed

    Verstraeten, F; Göstl, R; Sijbesma, R P

    2016-06-30

    Under mechanical stress, the hexaarylbiimidazole (HABI) motif can cleave to triphenylimidazolyl radicals when incorporated into a polymer matrix. The mechanically produced coloured radicals can initiate secondary radical reactions yielding polymer networks. Thus, the HABI mechanophore combines optical reporting of bond scission and reinforcement of polymers in a single molecular moiety. PMID:27326922

  8. Full dimensional quantum-mechanical simulations for the vibronic dynamics of difluorobenzene radical cation isomers using the multilayer multiconfiguration time-dependent Hartree method

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Faraji, Shirin; Vendrell, Oriol; Meyer, Hans-Dieter

    2012-10-01

    Full dimensional multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) calculations of the dynamics of the three difluorobenzene cationic isomers in five lowest-lying doublet electronic states using the ab initio multistate multimode vibronic coupling Hamiltonian (MMVCH) model are carried out using the Heidelberg MCTDH package. The same dynamical problems, but treated with the MCTDH scheme and using a reduced dimensional ab initio MMVCH model, have been previously reported [S. Faraji, H.-D. Meyer, and H. Köppel, "Multistate vibronic interactions in difluorobenzene radical cations. II Quantum dynamical simulations," J. Chem. Phys. 129, 074311 (2008), 10.1063/1.2958918]. For easy comparison with the reduced dimensional results, 11D or 10D ML-MCTDH calculations are also performed. Extensive ML-MCTDH test calculations are performed to find appropriate ML-MCTDH wavefunction structures (ML-trees), and the convergence of the ML-MCTDH calculations are carefully checked to ensure accurate results. Based on the appropriate ML-trees, the photoelectron (PE) spectrum and the mass analyzed threshold ionization (MATI) spectrum are simulated, analyzed, and compared with corresponding experimental spectra. Because of its efficient simulation capability for large systems, ML-MCTDH calculations save a considerable amount of central processing unit (CPU)-time, even when a reduced dimensional MMVCH is used, i.e., the same reduced model as in the corresponding MCTDH calculations. Simulations of the experimental PE spectra by full dimensional ML-MCTDH calculations reproduced main peaks, which originate from different electronic states. The agreement is improved as compared to the reduced dimensionality calculations. Unfortunately, the experimental PE spectra are not very well resolved. Therefore, we compare our calculations additionally with highly resolved MATI spectra, which, however, are only available for the tilde{X} state. Based on a series of ML-MCTDH simulations with

  9. Full dimensional quantum-mechanical simulations for the vibronic dynamics of difluorobenzene radical cation isomers using the multilayer multiconfiguration time-dependent Hartree method.

    PubMed

    Meng, Qingyong; Faraji, Shirin; Vendrell, Oriol; Meyer, Hans-Dieter

    2012-10-01

    Full dimensional multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) calculations of the dynamics of the three difluorobenzene cationic isomers in five lowest-lying doublet electronic states using the ab initio multistate multimode vibronic coupling Hamiltonian (MMVCH) model are carried out using the Heidelberg MCTDH package. The same dynamical problems, but treated with the MCTDH scheme and using a reduced dimensional ab initio MMVCH model, have been previously reported [S. Faraji, H.-D. Meyer, and H. Köppel, "Multistate vibronic interactions in difluorobenzene radical cations. II Quantum dynamical simulations," J. Chem. Phys. 129, 074311 (2008)]. For easy comparison with the reduced dimensional results, 11D or 10D ML-MCTDH calculations are also performed. Extensive ML-MCTDH test calculations are performed to find appropriate ML-MCTDH wavefunction structures (ML-trees), and the convergence of the ML-MCTDH calculations are carefully checked to ensure accurate results. Based on the appropriate ML-trees, the photoelectron (PE) spectrum and the mass analyzed threshold ionization (MATI) spectrum are simulated, analyzed, and compared with corresponding experimental spectra. Because of its efficient simulation capability for large systems, ML-MCTDH calculations save a considerable amount of central processing unit (CPU)-time, even when a reduced dimensional MMVCH is used, i.e., the same reduced model as in the corresponding MCTDH calculations. Simulations of the experimental PE spectra by full dimensional ML-MCTDH calculations reproduced main peaks, which originate from different electronic states. The agreement is improved as compared to the reduced dimensionality calculations. Unfortunately, the experimental PE spectra are not very well resolved. Therefore, we compare our calculations additionally with highly resolved MATI spectra, which, however, are only available for the X̃ state. Based on a series of ML-MCTDH simulations with longer propagation time

  10. Formation and characterization of Co(III)-semiquinonate phenoxyl radical species.

    PubMed

    Shimazaki, Yuichi; Kabe, Ryota; Huth, Stefan; Tani, Fumito; Naruta, Yoshinori; Yamauchi, Osamu

    2007-07-23

    Co(III) complexes of N(3)O-donor tripodal ligands, 2,4-di(tert-butyl)-6-{[bis(2-pyridyl)methyl]aminomethyl}phenolate (tbuL), 2,4-di(tert-butyl)-6-{[bis(6-methyl-2-pyridyl)methyl]aminomethyl}phenolate (tbuL(Mepy)(2)), were prepared, and precursor Co(II) complexes, [Co(tbuL)Cl] (1) and [Co(tbuL(Mepy)(2))Cl] (2), and ternary Co(III) complexes, [Co(tbuL)(acac)]ClO(4) (3), [Co(tbuL)(tbu-cat)] (4), and [Co(tbuL(Mepy)(2))(tbu-SQ)]ClO(4) (5), where acac, tbu-cat, and tbu-SQ refer to pentane-2,4-dionate, 3,5-di(tert-butyl)catecholate, and 3,5-di(tert-butyl)semiquinonate, respectively, were structurally characterized by the X-ray diffraction method. Complexes 3 and 5 have a mononuclear structure with a fac-N(3)O(3) donor set, while 4 has a mer-N(3)O(3) structure. The cyclic voltammogram (CV) of complex 3 exhibited one reversible redox wave centered at 0.93 V (vs Ag/AgCl) in CH(3)CN. Complex 5 was converted to a phenoxyl radical species upon oxidation with Ce(IV), showing a characteristic pi-pi* transition band at 412 nm. The ESR spectrum at low temperature and the resonance Raman spectrum of 3 established that the radical species has a Co(III)-phenoxyl radical bond. On the other hand, the CVs showed two oxidation processes at E(1/2) = 0.01 and E(pa) = 0.92 V for 4 and E(1/2a) = 0.05 and E(1/2b) = 0.69 V for 5. The rest potential of 4 (-0.11 V) was lower than the E(1/2) value, whereas that of 5 (0.18 V) was higher, indicating that the first redox wave of 4 and 5 is assigned to the tbu-cat and the tbu-SQ redox process, respectively. One-electron oxidized 4 showed absorption, resonance Raman, and ESR spectra which are similar to those of 5, suggesting formation of a stable Co(III)-semiquinonate species, which has the same oxidation level of 5. The resonance Raman spectrum of two-electron oxidized 4 showed the nu(8a) bands of the semiquinonate and phenoxyl radical, which were absent in the spectrum of one-electron oxidized 5. Since both oxidized species were ESR inactive at 5 K

  11. Crystal Structure of the New Radical Cation Salt (DOET){sub 4}[Fe(CN){sub 5}NO]{sub 1.25}(C{sub 6}H{sub 5}Cl){sub 0.75}

    SciTech Connect

    Zorina, L.V.; Khasanov, S.S.; Shibaeva, R.P.; Shevyakova, I.Yu.; Kotov, A.I.; Yagubskii, E.B.

    2004-11-01

    A new radical cation salt based on 4,5-(1,4-dioxanediyl-2,3-dithio)-4{sup '},5{sup '}-ethylenedithiotetrathiafulvalene (DOET) with the photochromic anion [Fe(CN){sub 5}NO]{sup 2-}, namely, (DOET){sub 4}[Fe(CN){sub 5}NO]{sub 1.25}(C{sub 6}H{sub 5}Cl){sub 0.75} , is synthesized. Single crystals of this salt are studied using X-ray diffraction [a = 10.398(2) A, b = 11.168(2) A, c = 18.499(4) A, {alpha} = 103.14(3) deg., {beta} = 92.80(3) deg., {gamma} = 106.02(3) deg., V = 1996.3(7) A{sup 3} , space group P1-bar, and Z = 1]. In the structure, radical cation layers alternate with anion layers along the c axis. The centrosymmetric dimers are formed by DOET radical cations in the donor layer with packing of the {beta} type. Like the vast majority of DOET-based salts, the new salt possesses semiconductor properties.

  12. Homogeneous gas-phase formation of polychlorinated naphthalene from dimerization of 4-chlorophenoxy radicals and cross-condensation of phenoxy radical with 4-chlorophenoxy radical: Mechanism and kinetics study

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Zhang, Ruiming; Li, Yunfeng; Zhang, Qingzhu

    2015-10-01

    A direct density functional theory (DFT) calculation was performed for the formation of polychlorinated naphthalenes (PCNs) from dimerization of 4-chlorophenoxy radicals (4-CPRs) and cross-condensation of phenoxy radical (PhR) with 4-CPR, respectively. Several energetically feasible formation routes were proposed. The rate constants were computed by the canonical variational transition-state theory (CVT) with the small curvature tunneling (SCT) contribution over temperature range of 600-1200 K. This study shows that PCN productions from the dimerization of 4-CPRs just contain DCNs. All the monochlorinated naphthalene (MCN) detected in the experiment from 4-chlorophenol (4-CP) as precursor are formed form the cross-condensation of PhR with 4-CPR.

  13. Secondary Organic Aerosol (SOA) formation from hydroxyl radical oxidation and ozonolysis of monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Kaminski, M.; Schlag, P.; Fuchs, H.; Acir, I.-H.; Bohn, B.; Häseler, R.; Kiendler-Scharr, A.; Rohrer, F.; Tillmann, R.; Wang, M. J.; Wegener, R.; Wildt, J.; Wahner, A.; Mentel, T. F.

    2014-05-01

    Oxidation by hydroxyl radical (OH) and ozonolysis are the two major pathways of daytime biogenic volatile organic compounds (VOCs) oxidation and secondary organic aerosol (SOA) formation. In this study, we investigated the particle formation of several common monoterpenes (α-pinene, β-pinene, and limonene) by OH dominated oxidation, which has seldom been investigated. OH oxidation experiments were carried out in the SAPHIR chamber in Jülich, Germany, at low NOx (0.01-1 ppbV) and low ozone (O3) concentration. OH concentration and OH reactivity were measured directly so that the overall reaction rates of organic compounds with OH were quantified. Multi-generation reaction process, particle growth, new particle formation, particle yield, and chemical composition were analyzed and compared with that of monoterpene ozonolysis. Multi-generation products were found to be important in OH dominated SOA formation. The relative role of functionalization and fragmentation in the reaction process of OH oxidation was analyzed by examining the particle mass and the particle size as a function of OH dose. We developed a novel method which quantitatively links particle growth to the reaction of OH with organics in a reaction system. This method was also used to analyze the evolution of functionalization and fragmentation of organics in the particle formation by OH oxidation. It shows that functionalization of organics was dominant in the beginning of the reaction (within two lifetimes of the monoterpene) and fragmentation started to be dominant after that. We compared particle formation from OH oxidation with that from pure ozonolysis. In individual experiments, growth rates of the particle size did not necessarily correlate with the reaction rate of monoterpene with OH and O3. Comparing the size growth rates at the similar reaction rates of monoterpene with OH or O3 indicates that generally, OH oxidation and ozonolysis had similar efficiency in particle growth. The SOA yield of

  14. Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Kaminski, M.; Schlag, P.; Fuchs, H.; Acir, I.-H.; Bohn, B.; Häseler, R.; Kiendler-Scharr, A.; Rohrer, F.; Tillmann, R.; Wang, M. J.; Wegener, R.; Wildt, J.; Wahner, A.; Mentel, Th. F.

    2015-01-01

    Oxidation by hydroxyl radical (OH) and ozonolysis are the two major pathways of daytime biogenic volatile organic compound (BVOC) oxidation and secondary organic aerosol (SOA) formation. In this study, we investigated the particle formation of several common monoterpenes (α-pinene, β-pinene and limonene) by OH-dominated oxidation, which has seldom been investigated. OH oxidation experiments were carried out in the SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction) chamber in Jülich, Germany, at low NOx (0.01 ~ 1 ppbV) and low ozone (O3) concentration (< 20 ppbV). OH concentration and total OH reactivity (kOH) were measured directly, and through this the overall reaction rate of total organics with OH in each reaction system was quantified. Multi-generation reaction process, particle growth, new particle formation (NPF), particle yield and chemical composition were analyzed and compared with that of monoterpene ozonolysis. Multi-generation products were found to be important in OH-dominated SOA formation. The relative role of functionalization and fragmentation in the reaction process of OH oxidation was analyzed by examining the particle mass and the particle size as a function of OH dose. We developed a novel method which quantitatively links particle growth to the reaction rate of OH with total organics in a reaction system. This method was also used to analyze the evolution of functionalization and fragmentation of organics in the particle formation by OH oxidation. It shows that functionalization of organics was dominant in the beginning of the reaction (within two lifetimes of the monoterpene) and fragmentation started to play an important role after that. We compared particle formation from OH oxidation with that from pure ozonolysis. In individual experiments, growth rates of the particle size did not necessarily correlate with the reaction rate of monoterpene with OH and O3. Comparing the size growth rates at the similar reaction rates

  15. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation.

    PubMed

    Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi

    2016-09-01

    Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed. PMID:27085689

  16. Kinetic analysis of nitroxide radical formation under oxygenated photolysis: toward quantitative singlet oxygen topology.

    PubMed

    Zigler, David F; Ding, Eva Chuheng; Jarocha, Lauren E; Khatmullin, Renat R; DiPasquale, Vanessa M; Sykes, R Brendan; Tarasov, Valery F; Forbes, Malcolm D E

    2014-12-01

    Reaction kinetics for two sterically hindered secondary amines with singlet oxygen have been studied in detail. A water soluble porphyrin sensitizer, 5,10,15,20-tetrakis-(4-sulfunatophenyl)-21,23H-porphyrin (TPPS), was irradiated in oxygenated aqueous solutions containing either 2,2,6,6-tetramethylpiperidin-4-one (TMPD) or 4-[N,N,N-trimethyl-ammonium]-2,2,6,6-tetramethylpiperidinyl chloride (N-TMPCl). The resulting sensitization reaction produced singlet oxygen in high yield, ultimately leading to the formation of the corresponding nitroxide free radicals (R2NO) which were detected using steady-state electron paramagnetic resonance (EPR) spectroscopy. Careful actinometry and EPR calibration curves, coupled with a detailed kinetic analysis, led to a simple and compact expression relating the nitroxide quantum yield ΦR2NO (from the doubly-integrated EPR signal intensity) to the initial amine concentration [R2NH]i. With all other parameters held constant, a plot of ΦR2NOvs. [R2NH]i gave a straight line with a slope proportional to the rate constant for nitroxide formation, kR2NO. This establishment of a rigorous quantitative relationship between the EPR signal and the rate constant provides a mechanism for quantifying singlet oxygen production as a function of its topology in heterogeneous media. Implications for in vivo assessment of singlet oxygen topology are briefly discussed. PMID:25369860

  17. Hydroxyl radical in/on illuminated polar snow: formation rates, lifetimes, and steady-state concentrations

    NASA Astrophysics Data System (ADS)

    Chen, Zeyuan; Chu, Liang; Galbavy, Edward S.; Ram, Keren; Anastasio, Cort

    2016-08-01

    While the hydroxyl radical (OH) in the snowpack is likely a dominant oxidant for organic species and bromide, little is known about the kinetics or steady-state concentrations of OH on/in snow and ice. Here we measure the formation rate, lifetime, and concentration of OH for illuminated polar snow samples studied in the laboratory and in the field. Laboratory studies show that OH kinetics and steady-state concentrations are essentially the same for a given sample studied as ice and liquid; this is in contrast to other photooxidants, which show a concentration enhancement in ice relative to solution as a result of kinetic differences in the two phases. The average production rate of OH in samples studied at Summit, Greenland, is 5 times lower than the average measured in the laboratory, while the average OH lifetime determined in the field is 5 times higher than in the laboratory. These differences indicate that the polar snows we studied in the laboratory are affected by contamination, despite significant efforts to prevent this; our results suggest similar contamination may be a widespread problem in laboratory studies of ice chemistry. Steady-state concentrations of OH in clean snow studied in the field at Summit, Greenland, range from (0.8 to 3) × 10-15 M, comparable to values reported for midlatitude cloud and fog drops, rain, and deliquesced marine particles, even though impurity concentrations in the snow samples are much lower. Partitioning of firn air OH to the snow grains will approximately double the steady-state concentration of snow-grain hydroxyl radical, leading to an average [OH] in near-surface, summer Summit snow of approximately 4 × 10-15 M. At this concentration, the OH-mediated lifetimes of organics and bromide in Summit snow grains are approximately 3 days and 7 h, respectively, suggesting that hydroxyl radical is a major

  18. THE ROLE OF SELECTED CATIONS IN THE FORMATION OF PSEUDOMICELLES IN AQUEOUS HUMIC ACID (R822832)

    EPA Science Inventory

    The fluorescence intensity enhancement of a pyrene probe in aqueous humic acid solutions was assessed in terms of added lanthanide and thorium cations. Among the trivalent ions it was found that size played a role, with the small Lu3+ ion producing the greatest increase in pyrene...

  19. EXPERIMENTAL STUDY OF CO{sub 2} FORMATION BY SURFACE REACTIONS OF NON-ENERGETIC OH RADICALS WITH CO MOLECULES

    SciTech Connect

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira; Hama, Tetsuya; Pirronello, Valerio

    2010-04-01

    Surface reactions between carbon monoxide and non-energetic hydroxyl radicals were carried out at 10 K and 20 K in order to investigate possible reaction pathways to yield carbon dioxide in dense molecular clouds. Hydroxyl radicals, produced by dissociating water molecules in microwave-induced plasma, were cooled down to 100 K prior to the introduction of CO. The abundances of species were monitored in situ using a Fourier transform infrared spectrometer. Formation of CO{sub 2} was clearly observed, even at 10 K, suggesting that reactions of CO with OH proceed with little or no activation barrier. The present results indicate that CO{sub 2} formation, due to reactions between CO and OH, occurs in tandem with H{sub 2}O formation, and this may lead to the formation of CO{sub 2} ice in polar environments, as typically observed in molecular clouds.

  20. Does slow energy transfer limit the observed time constant for radical pair formation in photosystem II reaction centers?

    PubMed

    Rech, T; Durrant, J R; Joseph, D M; Barber, J; Porter, G; Klug, D R

    1994-12-13

    We have used spectrally photoselective femtosecond transient absorption spectroscopy on photosystem II reaction centers to show that there are at least two pools of chlorin molecules/states which can transfer excitation energy to P680, the primary electron donor in photosystem II. It has previously been shown that one chlorin pool equilibrates with P680 in 100 fs [Durrant et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11632-11636], and we report here the observation of energy transfer from a second more weakly coupled chlorin pool. The effect of the weakly coupled pool is to increase the apparent time constant for radical pair formation from 21 ps when P680 is selectively excited to 27 ps when the accessory chlorins are excited. We conclude that it is possible to observe both radical pair formation somewhat slowed by an energy transfer step and radical pair formation not limited by this slow energy transfer, depending upon which chromophores are initially excited. These observations provide evidence that when using photoselective excitation of P680, the observed 21 ps time constant for radical pair formation is not limited by a slow energy transfer step. PMID:7993905

  1. Mechanically Stabilized Tetrathiafulvalene Radical Dimers

    SciTech Connect

    Coskun, Ali; Spruell, Jason M.; Barin, Gokhan; Fahrenbach, Albert C.; Forgan, Ross S.; Colvin, Michael T.; Carmieli, Raanan; Benitez, Diego; Tkatchouk, Ekaterina; Friedman, Douglas C.; Sarjeant, Amy A.; Wasielewski, Michael R.; Goddard, William A.; Stoddart, J. Fraser

    2011-01-01

    Two donor-acceptor [3]catenanes—composed of a tetracationic molecular square, cyclobis(paraquat-4,4'-biphenylene), as the π-electron deficient ring and either two tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) containing macrocycles or two TTF-butadiyne-containing macrocycles as the π-electron rich components—have been investigated in order to study their ability to form TTF radical dimers. It has been proven that the mechanically interlocked nature of the [3]catenanes facilitates the formation of the TTF radical dimers under redox control, allowing an investigation to be performed on these intermolecular interactions in a so-called “molecular flask” under ambient conditions in considerable detail. In addition, it has also been shown that the stability of the TTF radical-cation dimers can be tuned by varying the secondary binding motifs in the [3]catenanes. By replacing the DNP station with a butadiyne group, the distribution of the TTF radical-cation dimer can be changed from 60% to 100%. These findings have been established by several techniques including cyclic voltammetry, spectroelectrochemistry and UV-vis-NIR and EPR spectroscopies, as well as with X-ray diffraction analysis which has provided a range of solid-state crystal structures. The experimental data are also supported by high-level DFT calculations. The results contribute significantly to our fundamental understanding of the interactions within the TTF radical dimers.

  2. Understanding ozone formation and the radical budget during oil sands plume transport in the Athabasca region of Alberta

    NASA Astrophysics Data System (ADS)

    Moussa, S. G.; Leithead, A.; Li, S. M.; Wang, D. K.; O'brien, J.; Mittermeier, R. L.; Gordon, M.; Staebler, R. M.; Liu, P.; Liggio, J.

    2015-12-01

    The sources of ozone and hydroxyl radicals (OH) in the Alberta oil sands (OS) region have not previously been well characterized. In the summer of 2013, airborne measurements of various volatile organic compounds (VOCs), nitrogen oxides (NOx = NO2+NO) and ozone were made in the Athabasca OS region between August 13 and September 7, 2013. Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) and whole air samples were used to measure VOCs. A box model incorporating the Master Chemical Mechanism (MCM v3.3), was constrained by measured chemical species and meteorological parameters and used to simulate the evolution of an OS plume. In doing so, an improved understanding of the chemical factors controlling the radical budget and the evolution of ozone in oil sands plumes is achieved. Our results indicate that approximately 20% of the in-plume generated OH radicals are derived from primary sources (HCHO, O3 and HONO photolysis). The remaining OH is derived from the recycling of hydroperoxyl radical (HO2). The HO2 and alkyl peroxyl radical (RO2) chemistry leads to 35% of the ozone formation in the plume, while the main sink for ozone in the plume was via reactions with alkenes (anthropogenic and biogenic). The results of this work will help to characterize ozone formation and the factors influencing its atmospheric fate in the oil sands region.

  3. From Molecules to Surfaces: Radical-Based Mechanisms of Si-S and Si-Se Bond Formation on Silicon.

    PubMed

    Buriak, Jillian M; Sikder, Md Delwar H

    2015-08-01

    The derivatization of silicon surfaces can have profound effects on the underlying electronic properties of the semiconductor. In this work, we investigate the radical surface chemistry of silicon with a range of organochalcogenide reagents (comprising S and Se) on a hydride-terminated silicon surface, to cleanly and efficiently produce surface Si-S and Si-Se bonds, at ambient temperature. Using a diazonium-based radical initiator, which induces formation of surface silicon radicals, a group of organochalcogenides were screened for reactivity at room temperature, including di-n-butyl disulfide, diphenyl disulfide, diphenyl diselenide, di-n-butyl sulfide, diphenyl selenide, diphenyl sulfide, 1-octadecanethiol, t-butyl disulfide, and t-butylthiol, which comprises the disulfide, diselenide, thiol, and thioether functionalities. The surface reactions were monitored by transmission mode Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ionization mass spectrometry. Calculation of Si-Hx consumption, a semiquantitative measure of yield of production of surface-bound Si-E bonds (E = S, Se), was carried out via FTIR spectroscopy. Control experiments, sans the BBD diazonium radical initiator, were all negative for any evident incorporation, as determined by FTIR spectroscopy. The functional groups that did react with surface silicon radicals included the dialkyl/diphenyl disulfides, diphenyl diselenide, and 1-octadecanethiol, but not t-butylthiol, diphenyl sulfide/selenide, and di-n-butyl sulfide. Through a comparison with the rich body of literature regarding molecular radicals, and in particular, silyl radicals, reaction mechanisms were proposed for each. Armed with an understanding of the reaction mechanisms, much of the known chemistry within the extensive body of radical-based reactivity has the potential to be harnessed on silicon and could be extended to a range of technologically relevant semiconductor

  4. ESR spin trapping for characterization of radical formation in Lactobacillus acidophilus NCFM and Listeria innocua.

    PubMed

    Hougaard, Anni B; Arneborg, Nils; Andersen, Mogens L; Skibsted, Leif H

    2013-09-01

    In this study, radicals in pure cultures of Lactobacillus acidophilus NCFM and Listeria innocua were detected in a quantitative way by electron spin resonance spectroscopy using spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) or N-tert-butyl-α-phenylnitrone (PBN). No adverse effect of spin trap addition on viability was observed for any of the bacterial strains. L. acidophilus NCFM had a higher production of radicals than L. innocua when incubated in a growth medium. Furthermore, by using DMPO in a buffer system, the radicals produced by L. acidophilus NCFM could be identified as hydroxyl radicals. The presence of polyethylene glycol, impermeable for bacterial cells, decreased the signal intensity of the ESR spectrum of the DMPO-OH adduct in cultures of L. acidophilus NCFM and indicated quenching of hydroxyl radicals outside the bacteria. This suggests that radical production is an extracellular event for L. acidophilus NCFM. PMID:23811362

  5. Formation of free radicals in the photochemical modification of antifrictional plastic compositions

    SciTech Connect

    Klimov, E.S.; Vakar, A.A.; Sokolov, V.P.; Okhlobystin, O.Yu.

    1987-09-20

    Using ESR spectroscopy the authors investigated the photolysis and radical composition of a plastic lubricant composed of polyethylene, perfluoroalkylpolyester 240, oleic acid, mineral oil, and benzophenone. The spectra are comprehensively analyzed. Hyperfine structure and spin trapping are given for the polyalkyl radicals. The photochemical modification of the lubricant leading to these radicals, and their reaction with oxygen, are determined to be responsible for the enhanced adhesion of the plasticizers to the polymer.

  6. Photoinitiated electron-transfer reactions of aromatic imides with phenylcyclopropanes. Formation of radical ion pair cycloadducts. Mechanism of the reaction

    SciTech Connect

    Somich, C.; Mazzocchi, P.H.; Edwards, M.; Morgan, T.; Ammon, H.L. )

    1990-04-27

    Few investigations have addressed the cyclization of a radical anion-radical cation pair resulting from photoinitiated electron transfer. One system taht meets the criteria necessary to observe this phenomenon is the acceptor-donor pair N-methylphthalimide (NMP) and phenylcyclopropane (PC). Irradiation of NMP or N-methyl-2,3-naphthalimide (NMN) in the presence of PC in acetonitrile gave rise to two spiro tetrahydrofuranyl lactams. The regiochemistry and relative stereochemistry of these compounds were determined by NMR techniques and X-ray crystallography. The mechanism of the reaction proceeds via electron transfer from PC to the imide followed by coupling of the radical ion pair at the 1,2-position of the carbonyl to the cyclopropane ring in a stepwise fashion. Fluorescence quenching experiments, reaction efficiency, and the free energy for electron transfer using various aromatic substituted phenylcyclopropanes provided strong evidence that electron transfer occurs. The reaction of cis-2-deutero-1-phenylcyclopropane (PC-d) with NMN established that cycloaddition is stepwise rather than concerted and that both syn and anti reactive intermediates are equally accessible.

  7. Molecular-structural aspects of formation of spectral-luminescent properties of the arylsubstituted pyridinium cations

    SciTech Connect

    Tymyansky, Ya.P.; Knyazhansky, M.I.; Feigelman, V.M.; Kharlanov, V.A.

    1985-04-01

    Using the structure modelling method, the nature of different bands in the absorption spectra of arylsubstituted pyridinium cations has been ascertained. The nature and localization of radiative transitions from singlet and triplet states have been determined. The anomalous Stokes fluorescence shift at room temperature has been explained by adiabatic twist of 2,6-aryl substituents around C-C bond in an excited state. The general scheme of the excited state energy deactivation photophysical processes at 293 and 77 K is presented.

  8. Cleavage of Human Transferrin by Porphyromonas gingivalis Gingipains Promotes Growth and Formation of Hydroxyl Radicals

    PubMed Central

    Goulet, Véronique; Britigan, Bradley; Nakayama, Koji; Grenier, Daniel

    2004-01-01

    Porphyromonas gingivalis, a gram-negative anaerobic bacterium associated with active lesions of chronic periodontitis, produces several proteinases which are presumably involved in host colonization, perturbation of the immune system, and tissue destruction. The aims of this study were to investigate the degradation of human transferrin by gingipain cysteine proteinases of P. gingivalis and to demonstrate the production of toxic hydroxyl radicals (HO·) catalyzed by the iron-containing transferrin fragments generated or by release of iron itself. Analysis by polyacrylamide gel electrophoresis and Western immunoblotting showed that preparations of Arg- and Lys-gingipains of P. gingivalis cleave transferrin (iron-free and iron-saturated forms) into fragments of various sizes. Interestingly, gingival crevicular fluid samples from diseased periodontal sites but not samples from healthy periodontal sites contained fragments of transferrin. By using 55Fe-transferrin, it was found that degradation by P. gingivalis gingipains resulted in the production of free iron, as well as iron bound to lower-molecular-mass fragments. Subsequent to the degradation of transferrin, bacterial cells assimilated intracellularly the radiolabeled iron. Growth of P. gingivalis ATCC 33277, but not growth of an Arg-gingipain- and Lys-gingipain-deficient mutant, was possible in a chemically defined medium containing 30% iron-saturated transferrin as the only source of iron and peptides, suggesting that gingipains play a critical role in the acquisition of essential growth nutrients. Finally, the transferrin degradation products generated by Arg-gingipains A and B were capable of catalyzing the formation of HO·, as determined by a hypoxanthine/xanthine oxidase system and spin trapping-electron paramagnetic resonance spectrometry. Our study indicates that P. gingivalis gingipains degrade human transferrin, providing sources of iron and peptides. The iron-containing transferrin fragments or the

  9. Crystalline bipyridinium radical complexes and uses thereof

    DOEpatents

    Fahrenbach, Albert C.; Barnes, Jonathan C.; Li, Hao; Stoddart, J. Fraser; Basuray, Ashish Neil; Sampath, Srinivasan

    2015-09-01

    Described herein are methods of generating 4,4'-bipyridinium radical cations (BIPY.sup..cndot.+), and methods for utilizing the radical-radical interactions between two or more BIPY.sup..cndot.+ radical cations that ensue for the creation of novel materials for applications in nanotechnology. Synthetic methodologies, crystallographic engineering techniques, methods of physical characterization, and end uses are described.

  10. Nitro radical anion formation from nitrofuryl substituted 1,4-dihydropyridine derivatives in mixed and non-aqueous media.

    PubMed

    Argüello, J; Núñez-Vergara, L J; Bollo, S; Squella, J A

    2006-09-01

    Three new nitrofuryl substituted 1,4-dihydropyridine derivatives were electrochemically tested in the scope of newly found compounds useful as chemotherapeutic alternative to the Chagas' disease. All the compounds were capable to produce nitro radical anions sufficiently stabilized in the time window of the cyclic voltammetric experiment. In order to quantify the stability of the nitro radical anion we have calculated the decay constant, k2. Furthermore, from the voltammetric results, some parameters of biological significance as E7(1) (indicative of in vivo nitro radical anion formation) and KO2 (thermodynamic indicator of oxygen redox cycling) have been calculated. From the comparison of E7(1), KO2 and k2 values between the studied nitrofuryl 1,4-DHP derivatives and well-known current drugs an auspicious activity for one of the studied compounds i.e. FDHP2, can be expected. PMID:16473565

  11. Electrochemical generation of oxygen. 1: The effects of anions and cations on hydrogen chemisorption and anodic oxide film formation on platinum electrode. 2: The effects of anions and cations on oxygen generation on platinum electrode

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Yeager, E.; Ogrady, W. E.

    1975-01-01

    The effects were studied of anions and cations on hydrogen chemisorption and anodic oxide film formation on Pt by linear sweep voltammetry, and on oxygen generation on Pt by potentiostatic overpotential measurement. The hydrogen chemisorption and anodic oxide film formation regions are greatly influenced by anion adsorption. In acids, the strongly bound hydrogen occurs at more cathodic potential when chloride and sulfate are present. Sulfate affects the initial phase of oxide film formation by produced fine structure while chloride retards the oxide-film formation. In alkaline solutions, both strongly and weakly bound hydrogen are influenced by iodide, cyanide, and barium and calcium cations. These ions also influence the oxide film formation. Factors considered to explain these effects are discussed. The Tafel slope for oxygen generation was found to be independent on the oxide thickness and the presence of cations or anions. The catalytic activity indicated by the exchange current density was observed decreasing with increasing oxide layer thickness, only a minor dependence on the addition of certain cations and anions was found.

  12. Quantum chemical studies of a model for peptide bond formation. 3. Role of magnesium cation in formation of amide and water from ammonia and glycine

    NASA Technical Reports Server (NTRS)

    Oie, T.; Loew, G. H.; Burt, S. K.; MacElroy, R. D.

    1984-01-01

    The SN2 reaction between glycine and ammonia molecules with magnesium cation Mg2+ as a catalyst has been studied as a model reaction for Mg(2+)-catalyzed peptide bond formation using the ab initio Hartree-Fock molecular orbital method. As in previous studies of the uncatalyzed and amine-catalyzed reactions between glycine and ammonia, two reaction mechanisms have been examined, i.e., a two-step and a concerted reaction. The stationary points of each reaction including intermediate and transition states have been identified and free energies calculated for all geometry-optimized reaction species to determine the thermodynamics and kinetics of each reaction. Substantial decreases in free energies of activation were found for both reaction mechanisms in the Mg(2+)-catalyzed amide bond formation compared with those in the uncatalyzed and amine-catalyzed amide bond formation. The catalytic effect of the Mg2+ cation is to stabilize both the transition states and intermediate, and it is attributed to the neutralization of the developing negative charge on the electrophile and formation of a conformationally flexible nonplanar five-membered chelate ring structure.

  13. Reactions of OOH radical with beta-carotene, lycopene, and torulene: hydrogen atom transfer and adduct formation mechanisms.

    PubMed

    Galano, Annia; Francisco-Marquez, Misaela

    2009-08-13

    The relative free radical scavenging activity of beta-carotene, lycopene, and torulene toward OOH radicals has been studied using density functional theory. Hydrogen atom transfer (HAT) and radical adduct formation (RAF) mechanisms have been considered. All the possible reaction sites have been included in the modeling, and detailed branching ratios are reported for the first time. The reactions of hydrocarbon carotenoids (Car) with peroxyl radicals, in both polar and nonpolar environments, are predicted to proceed via RAF mechanism, with contributions higher than 98% to the overall OOH + Car reactions. Lycopene and torulene were found to be more reactive than beta-carotene. In nonpolar environments the reactivity of the studied carotenoids toward peroxyl radical follows the trend LYC > TOR > BC, whereas in aqueous solutions it is TOR > LYC > BC. OOH adducts are predicted to be formed mainly at the terminal sites of the conjugated polyene chains. The main addition sites were found to be C5 for beta-carotene and lycopene and C30 for torulene. The general agreement between the calculated magnitudes and the available experimental data supports the predictions from this work. PMID:19627101

  14. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free solution

    NASA Astrophysics Data System (ADS)

    Shen, H.; Anastasio, C.

    2011-06-01

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM. While hydroxyl radical (•OH) is the most reactive of the ROS species, there are few quantitative studies of •OH generation from PM. Here we report on •OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified •OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50 μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more •OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances •OH formation from all the samples. Fine PM (PM2.5) generally makes more •OH than the corresponding coarse PM (PMcf, i.e., 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more •OH normalized by PM mass. •OH production by SJV PM is reduced on average by (97 ± 6) % when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of •OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for •OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived •OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary •OH, although high PM events could produce much higher levels of •OH, which might lead to cytotoxicity.

  15. Investigation of Model Sunscreen Formulations Comparing the Sun Protection Factor, the Universal Sun Protection Factor and the Radical Formation Ratio.

    PubMed

    Syring, Felicia; Weigmann, Hans-Jürgen; Schanzer, Sabine; Meinke, Martina C; Knorr, Fanny; Lademann, Jürgen

    2016-01-01

    In view of globally rising skin cancer rates and harmful effects exerted by sunlight throughout the ultraviolet, visible and infrared ranges, an objective, safe and comprehensive method for determining sunscreen efficacy is required in order to warrant safe sun exposure. In this study, the influence of characteristic active ingredients (chemical filters, physical filters and antioxidants) on different sunscreen indicators, including the universal sun protection factor and the radical formation ratio, was determined and compared to their influence on sun protection factor values. Spectroscopic universal sun protection factor measurements were conducted ex vivo by analyzing tape strips taken from human skin, and radical formation ratio determination was performed via electron paramagnetic resonance spectroscopy using porcine ear skin ex vivo. The sun protection factor determination was conducted according to ISO standards (ISO 24444:2010). It was shown that chemical filters provide a protective effect which was measurable by all methods examined (spectroscopy, electron paramagnetic resonance spectroscopy and erythema formation). Physical filters, when used as single active ingredients, increased protective values in universal sun protection factor and sun protection factor measurements but exhibited no significant effect on universal sun protection factor measurements when used in combination with chemical filters or antioxidants. Antioxidants were shown to increase sun protection factor values. Radical formation ratio values were shown to be influenced merely by chemical filters, leading to the conclusion that the universal sun protection factor is the most suitable efficacy indicator for the ultraviolet range. PMID:26501151

  16. Radical formation in the [MeReO3]-catalyzed aqueous peroxidative oxidation of alkanes: a theoretical mechanistic study.

    PubMed

    Kuznetsov, Maxim L; Pombeiro, Armando J L

    2009-01-01

    Plausible mechanisms of radical formation in the catalytic system [MeReO(3)]/H(2)O(2)/H(2)O-CH(3)CN for the oxidation of alkanes to alcohols and ketones, via radical pathways, are investigated extensively at the density functional theory level. The most favorable route is based on the monoperoxo complex [MeReO(2)(O(2))(H(2)O)] and includes the formation of an H(2)O(2) adduct, water-assisted H-transfer from H(2)O(2) to the peroxo ligand, and generation of HOO(*). The thus formed reduced Re(VI) complex [MeReO(2)(OOH)(H(2)O)] reacts with H(2)O(2), resulting, upon water-assisted H-transfer and O-OH bond homolysis, in the regeneration of the oxo-Re(VII) catalyst and formation of the HO(*) radical that reacts further with the alkane. Water plays a crucial role by (i) stabilizing transition states for the proton migrations and providing easy intramolecular H-transfers in the absence of any N,O-ligands and (ii) saturating the Re coordination sphere what leads to a decrease of the activation barrier for the formation of HOO(*). The activation energy of the radical formation calculated for [MeReO(3)] (17.7 kcal/mol) is compatible with that determined experimentally [Shul'pin et al. J. Chem. Soc., Perkin Trans. 2 2001, 1351 .] for oxo-V-based catalytic systems (17 +/- 2 kcal/mol), and the overall type of mechanism proposed for such V catalysts is also effective for [MeReO(3)]. PMID:19049432

  17. Photolytic formation of free radicals and their effect on hydrocarbon pyrolysis chemistry in a concentrated solar environment: Final report

    SciTech Connect

    Hunjan, M.; Mok, W.S.; Antal, M.J. Jr.

    1987-01-01

    The objective of this research was two-fold: (1) to determine whether uv photons available in a concentrated solar environment can be used as a photolytic source to dissociate vapor phase acetone; and (2) to explore the effects of photolysis on rate and selectivity of free radical reactions. The experiments were conducted in a 1 kW arc image furnace/tubular flow reactor system. The results obtained conclusively showed that acetone readily photodissociates in a 1000 sun environment, leading to the formation of free radicals. It was further observed that Beer-Lambert law can be used to predict the rate of photolysis of acetone. Furthermore, acetone, when used as source of methyl radicals, sensitized the reaction chemistry of alkanes and alkenes at a temperature of 350/sup 0/C. The methyl radicals from photolysis of acetone enhanced the cracking reactions of the alkanes yielding smaller alkanes and alkenes. When the initial hydrocarbon reactant was an alkene, a sensitization of the addition reaction was observed leading to formation of next higher alkene. To gain a theoretical insight into the reaction chemistry of alkanes, a numerical simulation model was developed to study the photosensitized decomposition of n-butane and the simulation results thus obtained were found to be in close agreement with experimental results. 64 refs., 10 figs., 22 tabs.

  18. Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems.

    PubMed

    Parker, Dorian S N; Kaiser, Ralf I; Troy, Tyler P; Kostko, Oleg; Ahmed, Musahid; Mebel, Alexander M

    2015-07-16

    The reaction of the phenyl radical (C6H5) with molecular oxygen (O2) plays a central role in the degradation of poly- and monocyclic aromatic radicals in combustion systems which would otherwise react with fuel components to form polycyclic aromatic hydrocarbons (PAHs) and eventually soot. Despite intense theoretical and experimental scrutiny over half a century, the overall reaction channels have not all been experimentally identified. Tunable vacuum ultraviolet photoionization in conjunction with a combustion simulating chemical reactor uniquely provides the complete isomer specific product spectrum and branching ratios of this prototype reaction. In the reaction of phenyl radicals and molecular oxygen at 873 K and 1003 K, ortho-benzoquinone (o-C6H4O2), the phenoxy radical (C6H5O), and cyclopentadienyl radical (C5H5) were identified as primary products formed through emission of atomic hydrogen, atomic oxygen and carbon dioxide. Furan (C4H4O), acrolein (C3H4O), and ketene (C2H2O) were also identified as primary products formed through ring opening and fragmentation of the 7-membered ring 2-oxepinoxy radical. Secondary reaction products para-benzoquinone (p-C6H4O2), phenol (C6H5OH), cyclopentadiene (C5H6), 2,4-cyclopentadienone (C5H4O), vinylacetylene (C4H4), and acetylene (C2H2) were also identified. The pyranyl radical (C5H5O) was not detected; however, electronic structure calculations show that it is formed and isomerizes to 2,4-cyclopentadienone through atomic hydrogen emission. In combustion systems, barrierless phenyl-type radical oxidation reactions could even degrade more complex aromatic radicals. An understanding of these elementary processes is expected to lead to a better understanding toward the elimination of carcinogenic, mutagenic, and environmentally hazardous byproducts of combustion systems such as PAHs. PMID:25354358

  19. Iron sequestration by macrophages decreases the potential for extracellular hydroxyl radical formation.

    PubMed

    Olakanmi, O; McGowan, S E; Hayek, M B; Britigan, B E

    1993-03-01

    Alveolar macrophages (AM) from smokers contain a much higher quantity of intracellular iron than AM from nonsmokers. Since some forms of iron will catalyze the formation of hydroxyl radical (.OH) from superoxide and hydrogen peroxide, the ability of AM derived from smokers and nonsmokers to generate .OH was assessed. No detectable .OH was produced by AM from either source, suggesting that iron sequestration by AM may limit the potential for .OH-mediated lung injury. Consistent with this hypothesis, the ability of bronchoalveolar lavage fluid (BAL) from smokers and nonsmokers to act as an .OH catalyst decreased after exposure to AM. We found that, like AM, human monocyte-derived macrophages (MDM) have the ability to acquire large quantities of iron from small low molecular weight iron chelates as well as decrease the ability of BAL to act as a .OH catalyst. When MDM or AM were exposed to the iron chelates or BAL they were then able to generate .OH after phorbol myristate acetate stimulation. However, when acutely iron-loaded or BAL-exposed MDM were placed in culture, their ability to produce .OH decreased with time to the level of non-iron-exposed controls. This process correlated with iron translocation from the plasma membrane to the cytosol as well as a 3-9-fold increase in cellular ferritin. No increase in antioxidant enzyme levels or induction of the heat shock response was observed. Iron sequestration by macrophages may protect nearby cells from exposure to potentially cytotoxic iron-catalyzed oxidants such as .OH. PMID:8383703

  20. Hydrogen migration in formation of NH(A{sup 3}Π) radicals via superexcited states in photodissociation of isoxazole molecules

    SciTech Connect

    Zubek, Mariusz Wasowicz, Tomasz J.; Dąbkowska, Iwona; Kivimäki, Antti; Coreno, Marcello

    2014-08-14

    Formation of the excited NH(A{sup 3}Π) free radicals in the photodissociation of isoxazole (C{sub 3}H{sub 3}NO) molecules has been studied over the 14-22 eV energy range using photon-induced fluorescence spectroscopy. The NH(A{sup 3}Π) is produced through excitation of the isoxazole molecules into higher-lying superexcited states. Observation of the NH radical, which is not a structural unit of the isoxazole molecule, corroborates the hydrogen atom (or proton) migration within the molecule prior to dissociation. The vertical excitation energies of the superexcited states were determined and the dissociation mechanisms of isoxazole are discussed. The density functional and ab initio quantum chemical calculations have been performed to study the mechanism of the NH formation.

  1. Formation of CN (B2Σ+) radicals in the vacuum-ultraviolet photodissociation of pyridine and pyrimidine molecules

    NASA Astrophysics Data System (ADS)

    Wasowicz, Tomasz J.; Kivimäki, Antti; Coreno, Marcello; Zubek, Mariusz

    2014-03-01

    Formation of the excited CN(B2Σ+) free radicals in the photodissociation of pyridine (C5H5N) and pyrimidine (C4H4N2) molecules was investigated over the energy ranges 16-27 and 14.7-25 eV, respectively. Photon-induced fluorescence spectroscopy was applied to detect the vibrationally and rotationally excited CN radicals by recording the B2Σ+→X2Σ+ emission bands (violet system). The measured dissociation yield curves demonstrate that the CN(B2Σ+) formation occurs via excitation of pyridine and pyrimidine molecules into higher-lying superexcited states. This is followed by rearrangement and isomerization of the excited molecules before dissociation. The vertical excitation energies of the superexcited states were determined and the probable dissociation mechanisms of both molecules are discussed.

  2. Radical prostatectomy

    MedlinePlus

    Prostatectomy - radical; Radical retropubic prostatectomy; Radical perineal prostatectomy; Laparoscopic radical prostatectomy; LRP; Robotic-assisted laparoscopic prostatectomy; RALP; Pelvic lymphadenectomy; ...

  3. Photosensitization with anticancer agents. 17. EPR studies of photodynamic action of hypericin: formation of semiquinone radical and activated oxygen species on illumination.

    PubMed

    Diwu, Z; Lown, J W

    1993-02-01

    When hypericin was illuminated with 580 nm light in aqueous solution, the semiquinone radical, singlet oxygen, and superoxide anion radical were detected. The formation of the semiquinone radical and activated oxygen species and the transformation and competition between them depend on the quinone and oxygen concentrations, irradiation time and intensity, and the nature of substrate. In anaerobic solution containing a high concentration of the quinone, the semiquinone radical was predominantly photoproduced. In contrast, in aerobic solution, singlet oxygen is the principal product in the photosensitization of hypericin. Besides singlet oxygen, superoxide anion radical is generated by the quinone on illumination in aerobic solution via the reduction of oxygen by the semiquinone radical, but to a lesser extent than singlet oxygen. The generation of superoxide anion radical is significantly enhanced by the presence of electron donors. PMID:8381107

  4. Selective Generation of the Radical Cation Isomers [CH3CN](•+) and [CH2CNH](•+) via VUV Photoionization of Different Neutral Precursors and Their Reactivity with C2H4.

    PubMed

    Polášek, Miroslav; Zins, Emilie-Laure; Alcaraz, Christian; Žabka, Ján; Křížová, Věra; Giacomozzi, Linda; Tosi, Paolo; Ascenzi, Daniela

    2016-07-14

    Experimental and theoretical studies have been carried out to demonstrate the selective generation of two different C2H3N(+) isomers, namely, the acetonitrile [CH3CN](•+) and the ketenimine [CH2CNH](•+) radical cations. Photoionization and dissociative photoionization experiments from different neutral precursors (acetonitrile and butanenitrile) have been performed using vacuum ultraviolet (VUV) synchrotron radiation in the 10-15 eV energy range, delivered by the DESIRS beamline at the SOLEIL storage ring. For butanenitrile (CH3CH2CH2CN) an experimental ionization threshold of 11.29 ± 0.05 eV is obtained, whereas the appearance energy for the formation of [CH2CNH](•+) fragments is 11.52 ± 0.05 eV. Experimental findings are fully supported by theoretical calculations at the G4 level of theory (ZPVE corrected energies at 0 K), giving a value of 11.33 eV for the adiabatic ionization energy of butanenitrile and an exothermicity of 0.49 for fragmentation into [CH2CNH](•+) plus C2H4, hampered by an energy barrier of 0.29 eV. The energy difference between [CH3CN](•+) and [CH2CNH](•+) is 2.28 eV (with the latter being the lowest energy isomer), and the isomerization barrier is 0.84 eV. Reactive monitoring experiments of the [CH3CN](•+) and [CH2CNH](•+) isomers with C2H4 have been performed using the CERISES guided ion beam tandem mass spectrometer and exploiting the selectivity of ethylene that gives exothermic charge exchange and proton transfer reactions with [CH3CN](•+) but not with [CH2CNH](•+) isomers. In addition, minor reactive channels are observed leading to the formation of new C-C bonds upon reaction of [CH3CN](•+) with C2H4, and their astrochemical implications are briefly discussed. PMID:26890990

  5. Exploring Atmospheric Aqueous Chemistry (and Secondary Organic Aerosol Formation) through OH Radical Oxidation Experiments, Droplet Evaporation and Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Kirkland, J. R.; Lim, Y. B.; Ortiz-Montalvo, D. L.; Sullivan, A.; Häkkinen, S.; Schwier, A. N.; Tan, Y.; McNeill, V. F.; Collett, J. L.; Skog, K.; Keutsch, F. N.; Sareen, N.; Carlton, A. G.; Decesari, S.; Facchini, C.

    2013-12-01

    Gas phase photochemistry fragments and oxidizes organic emissions, making water-soluble organics ubiquitous in the atmosphere. My group and others have found that several water-soluble compounds react further in the aqueous phase forming low volatility products under atmospherically-relevant conditions (i.e., in clouds, fogs and wet aerosols). Thus, secondary organic aerosol can form as a result of gas followed by aqueous chemistry (aqSOA). We have used aqueous OH radical oxidation experiments coupled with product analysis and chemical modeling to validate and refine the aqueous chemistry of glyoxal, methylglyoxal, glycolaldehyde, and acetic acid. The resulting chemical model has provided insights into the differences between oxidation chemistry in clouds and in wet aerosols. Further, we conducted droplet evaporation experiments to characterize the volatility of the products. Most recently, we have conducted aqueous OH radical oxidation experiments with ambient mixtures of water-soluble gases to identify additional atmospherically-important precursors and products. Specifically, we scrubbed water-soluble gases from the ambient air in the Po Valley, Italy using four mist chambers in parallel, operating at 25-30 L min-1. Aqueous OH radical oxidation experiments and control experiments were conducted with these mixtures (total organic carbon ≈ 100 μM-C). OH radicals (3.5E-2 μM [OH] s-1) were generated by photolyzing H2O2. Precursors and products were characterized using electrospray ionization mass spectrometry (ESI-MS), ion chromatography (IC), IC-ESI-MS, and ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chemical modeling suggests that organic acids (e.g., oxalate, pyruvate, glycolate) are major products of OH radical oxidation at cloud-relevant concentrations, whereas organic radical - radical reactions result in the formation of oligomers in wet aerosols. Products of cloud chemistry and droplet evaporation have

  6. Aqueous-Phase Reactions of Isoprene with Sulfoxy Radical Anions as a way of Wet Aerosol Formation in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry

    2011-12-01

    Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8

  7. Electrolyte Cations Binding with Extracellular Polymeric Substances Enhanced Microcystis Aggregation: Implication for Microcystis Bloom Formation in Eutrophic Freshwater Lakes.

    PubMed

    Xu, Huacheng; Lv, Hua; Liu, Xin; Wang, Peifang; Jiang, Helong

    2016-09-01

    The hydrodynamic and structural properties of Microcystis extracellular polymeric substances (EPS) in electrolytes with different valences and ionic strengths were investigated via using dynamic light scattering, the fluorescence excitation emission matrix coupled with parallel factor (EEM-PARAFAC) analysis, two-dimensional correlation spectroscopy (2D-COS), and cryogenic transmission electron microscopy (Cryo-TEM). The hydrodynamic diameters of EPS colloids exhibited no variation for monovalent NaCl but a substantial increase for divalent CaCl2 and MgCl2. However, the negative electrophoretic mobilities for all complexes indicated that charge neutralization would not be the main mechanism for EPS aggregation. Application of EEM-PARAFAC and 2D-Fourier transform infrared (FTIR)-COS revealed obvious electrolyte binding potential with both fluorescent phenolic and aromatic compounds and nonfluorescent polysaccharides. The complexation model showed that divalent Ca(2+) and Mg(2+) exhibited a strong binding capability with phenolic -OH, aromatic C═C, and polysaccharide C-O groups, while the monovalent electrolyte exhibited negligible association with these groups. Such a strong complexation can bridge each individual biomolecule together to form EPS aggregates and Microcystis colonies, as supported by in situ Cryo-TEM and light microscope observation, respectively. Given the increased concentration in natural ecosystems, electrolyte cations, especially divalent cations, would play increased roles in Microcystis bloom formation and thus should be considered. PMID:27502019

  8. Formation of TEMPOL-hydroxylamine during reaction between TEMPOL and hydroxyl radical: HPLC/ECD study.

    PubMed

    Kudo, Wataru; Yamato, Mayumi; Yamada, Ken-Ichi; Kinoshita, Yuichi; Shiba, Takeshi; Watanabe, Toshiaki; Utsumi, Hideo

    2008-05-01

    Nitroxyl radicals are important antioxidants that have been used to protect animal tissues from oxidative damage. Their reaction with hydroxyl radical ((*)OH) is generally accepted to be the mechanism of antioxidant function. However, the direct interaction of nitroxyl radicals with (*)OH does not always provide a satisfactory explanation in various pH, because the concentration of hydrogen ion may affect the generation of secondary (*)OH-derived radicals. In the present study, it was confirmed that the reaction between 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) and (*)OH generated TEMPOL-hydroxylamine, 4-oxo-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPON) and TEMPON-hydroxylamine using HPLC coupled with electrochemical detection. In the absence of NADH, TEMPOL-H may be generated by the reaction with secondary (*)OH-derived radicals in acidic condition. In the presence of NADH, a large proportion of the non-paramagnetic products was TEMPOL-H. Finally, it was clarified that TEMPOL-H was generated during dopamine metabolism, which is believed to be one of the (*)OH sources in pathological processes such as Parkinson's disease. PMID:18484414

  9. An autocatalytic radical chain pathway in formation of an iron(IV)-oxo complex by oxidation of an iron(II) complex with dioxygen and isopropanol.

    PubMed

    Morimoto, Yuma; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi

    2013-03-28

    Evidence of an autocatalytic radical chain pathway has been reported in formation of a non-heme iron(IV)-oxo complex by oxidation of an iron(II) complex with dioxygen and isopropanol in acetonitrile at 298 K. The radical chain reaction is initiated by hydrogen abstraction from isopropanol by the iron(IV)-oxo complex. PMID:23423328

  10. Pseudoxanthomonas bacteria that drive deposit formation of wood extractives can be flocculated by cationic polyelectrolytes.

    PubMed

    Leino, Taina; Raulio, Mari; Stenius, Per; Laine, Janne; Salkinoja-Salonen, Mirja

    2012-01-01

    Runnability problems caused by suspended bacteria in water using industries, have, in contrast to biofilms, received little attention. We describe here that Pseudoxanthomonas taiwanensis, a wide-spread and abundant bacterium in paper machine water circuits, aggregated dispersions of wood extractives ("pitch") and resin acid, under conditions prevailing in machine water circuits (10(9) cfu ml(-1), pH 8, 45°C). The aggregates were large enough (up to 50 μm) so that they could be expected to clog wires and felts and to reduce dewatering of the fiber web. The Pseudoxanthomonas bacteria were negatively charged over a pH range of 3.2-10. Cationic polyelectrolytes of the types used as retention aids or fixatives to flocculate "anionic trash" in paper machines were effective in flocculating the Pseudoxanthomonas bacteria. The polyelectrolyte most effective for this purpose was of high molecular weight (7-8 × 10(6) g mol(-1)) and low charge density (1 meq g(-1)), whereas polyelectrolytes that effectively zeroed the electrophoretic mobility (i.e., neutralized the negative charge) of the bacterium were less effective in flocculating the bacteria. Based on the results, we concluded that the polyelectrolytes functioning by bridging mechanism, rather than by neutralization of the negative charge, may be useful as tools for reducing harmful deposits resulting from interaction of bacteria with wood extractives in warm water industry. PMID:21720776

  11. Solvent driving force ensures fast formation of a persistent and well-separated radical pair in plant cryptochrome.

    PubMed

    Lüdemann, Gesa; Solov'yov, Ilia A; Kubař, Tomáš; Elstner, Marcus

    2015-01-28

    The photoreceptor protein cryptochrome is thought to host, upon light absorption, a radical pair that is sensitive to very weak magnetic fields, endowing migratory birds with a magnetic compass sense. The molecular mechanism that leads to formation of a stabilized, magnetic field sensitive radical pair has despite various theoretical and experimental efforts not been unambiguously identified yet. We challenge this unambiguity through a unique quantum mechanical molecular dynamics approach where we perform electron transfer dynamics simulations taking into account the motion of the protein upon the electron transfer. This approach allows us to follow the time evolution of the electron transfer in an unbiased fashion and to reveal the molecular driving force that ensures fast electron transfer in cryptochrome guaranteeing formation of a persistent radical pair suitable for magnetoreception. We argue that this unraveled molecular mechanism is a general principle inherent to all proteins of the cryptochrome/photolyase family and that cryptochromes are, therefore, tailored to potentially function as efficient chemical magnetoreceptors. PMID:25535848

  12. A Modified Method for Studying Behavioral Paradox of Antioxidants and Their Disproportionate Competitive Kinetic Effect to Scavenge the Peroxyl Radical Formation

    PubMed Central

    Masood, Nusrat; Fatima, Kaneez; Luqman, Suaib

    2014-01-01

    We have described a modified method for evaluating inhibitor of peroxyl radicals, a well-recognized and -documented radical involved in cancer initiation and promotion as well as diseases related to oxidative stress and ageing. We are reporting hydrophilic and lipophilic as well as natural and synthetic forms of antioxidants revealing a diversified behaviour to peroxyl radical in a dose-dependent manner (1 nM–10 μM). A simple kinetic model for the competitive oxidation of an indicator molecule (ABTS) and a various antioxidant by a radical (ROO•) is described. The influences of both the concentration of antioxidant and duration of reaction (70 min) on the inhibition of the radical cation absorption are taken into account while determining the activity. The induction time of the reaction was also proposed as a parameter enabling determination of antioxidant content by optimizing and introducing other kinetic parameters in 96-well plate assays. The test evidently improves the original PRTC (peroxyl radical trapping capacity) assay in terms of the amount of chemical used, simultaneous tracking, that is, the generation of the radical taking place continually and the kinetic reduction technique (area under curve, peak value, slope, and Vmax). PMID:24672395

  13. Formation of α-keto alkyl radical in the photoreduction of chromone as studied by the laser photolysis—ESR technique

    NASA Astrophysics Data System (ADS)

    Igarashi, Masatoshi; Sakaguchi, Yoshio; Hayashi, Hisaharu; I'Haya, Yasumasa J.

    1991-06-01

    In the photochemical hydrogen abstraction reactions of chromone in 2-propanol at room temperature, beside its ketyl radical, the α-keto alkyl radical from chromone was observed, with the aid of the time-resolved electron spin resonance technique. When tri- n-butylin hydride was used as a hydrogen donor, the α-keto alkyl radical was produced predominantly from the lowest ππ* triplet state. The formation of such a non-ketyl radical in the hydrogen abstraction reaction with both of the hydrogen donors indicates the popularity of the hydrogen abstraction reactions from the ππ* triplet state of aromatic carbonyl compounds.

  14. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    NASA Astrophysics Data System (ADS)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  15. Peroxyl radical reactions with carotenoids in microemulsions: Influence of microemulsion composition and the nature of peroxyl radical precursor.

    PubMed

    El-Agamey, Ali; McGarvey, David J

    2016-01-01

    The reactions of acetylperoxyl radicals with different carotenoids (7,7'-dihydro-β-carotene and ζ-carotene) in SDS and CTAC microemulsions of different compositions were investigated using laser flash photolysis (LFP) coupled with kinetic absorption spectroscopy. The primary objective of this study was to explore the influence of microemulsion composition and the type of surfactant used on the yields and kinetics of various transients formed from the reaction of acetylperoxyl radicals with carotenoids. Also, the influence of the site (hydrocarbon phases or aqueous phase) of generation of the peroxyl radical precursor was examined by using 4-acetyl-4-phenylpiperidine hydrochloride (APPHCl) and 1,1-diphenylacetone (11DPA) as water-soluble and lipid-soluble peroxyl radical precursors, respectively. LFP of peroxyl radical precursors with 7,7'-dihydro-β-carotene (77DH) in different microemulsions gives rise to the formation of three distinct transients namely addition radical (λmax=460 nm), near infrared transient1 (NIR, λmax=700 nm) and 7,7'-dihydro-β-carotene radical cation (77DH(•+), λmax=770 nm). In addition, for ζ-carotene (ZETA) two transients (near infrared transient1 (NIR1, λmax=660 nm) and ζ-carotene radical cation (ZETA(•+), λmax=730-740 nm)) are generated following LFP of peroxyl radical precursors in the presence of ζ-carotene (ZETA) in different microemulsions. The results show that the composition of the microemulsion strongly influences the observed yield and kinetics of the transients formed from the reactions of peroxyl radicals (acetylperoxyl radicals) with carotenoids (77DH and ZETA). Also, the type of surfactant used in the microemulsions influences the yield of the transients formed. The dependence of the transient yields and kinetics on microemulsion composition (or the type of surfactant used in the microemulsion) can be attributed to the change of the polarity of the microenvironment of the carotenoid. Furthermore, the nature of

  16. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.

    PubMed

    Valko, Marian; Jomova, Klaudia; Rhodes, Christopher J; Kuča, Kamil; Musílek, Kamil

    2016-01-01

    Transition metal ions are key elements of various biological processes ranging from oxygen formation to hypoxia sensing, and therefore, their homeostasis is maintained within strict limits through tightly regulated mechanisms of uptake, storage and secretion. The breakdown of metal ion homeostasis can lead to an uncontrolled formation of reactive oxygen species, ROS (via the Fenton reaction, which produces hydroxyl radicals), and reactive nitrogen species, RNS, which may cause oxidative damage to biological macromolecules such as DNA, proteins and lipids. An imbalance between the formation of free radicals and their elimination by antioxidant defense systems is termed oxidative stress. Most vulnerable to free radical attack is the cell membrane which may undergo enhanced lipid peroxidation, finally producing mutagenic and carcinogenic malondialdehyde and 4-hydroxynonenal and other exocyclic DNA adducts. While redox-active iron (Fe) and copper (Cu) undergo redox-cycling reactions, for a second group of redox-inactive metals such as arsenic (As) and cadmium (Cd), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. While arsenic is known to bind directly to critical thiols, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. Redox-inert zinc (Zn) is the most abundant metal in the brain and an essential component of numerous proteins involved in biological defense mechanisms against oxidative stress. The depletion of zinc may enhance DNA damage by impairing DNA repair mechanisms. Intoxication of an organism by arsenic and cadmium may lead to metabolic disturbances of redox-active copper and iron, with the occurrence of oxidative stress induced by the enhanced formation of ROS/RNS. Oxidative stress occurs when excessive formation of ROS overwhelms the antioxidant defense system, as is maintained by antioxidants such as ascorbic acid, alpha

  17. The formation constants of ionomycin with divalent cations in 80% methanol/water.

    PubMed

    Stiles, M K; Craig, M E; Gunnell, S L; Pfeiffer, D R; Taylor, R W

    1991-05-01

    The protonation constants and complex formation constants of ionomycin have been determined in 80% methanol/water (w/w) at 25.0 degrees C and mu = 0.050 (tetraethylammonium perchlorate). Potentiometric and spectrometric titration techniques give the following values for the mixed-mode protonation constants of ionomycin: log KH1 = 11.94 +/- 0.02 and log KH2 = 6.80 +/- 0.03. Comparison of these values with those for model compounds indicates that KH1 and KH2 refer to equilibria involving the beta-diketone and carboxylic acid moieties, respectively. Titrations of ionomycin with metal ion at fixed values of pH produced changes in the UV-visual absorbance spectra which were analyzed to give conditional complex formation constants, KMI'. The pH dependence of the values of KMI' indicated that 1:1 divalent metal ion-ionomycin (MI) complexes and protonated MHI+ complexes were formed in the pH range studied. The values of log KMI ranged from 5.30 +/- 0.11 for Sr2+ to 10.25 +/- 0.03 for Ni2+. The selectivity pattern and relative affinities (in parentheses) for the formation of the species MI are as follows: Ni2+ (2000) greater than Zn2+ (600) greater than CO2+ (440) greater than Mn2+ (47) greater than Mg2+ (1.00) greater than Ca2+ (0.21) greater than Sr2+ (0.022). Logarithmic values of KMHI, for the reaction MI + H+ in equilibrium MHI+, ranged from 5.9 (Ni2+) to 8.4 (Sr2+). Calculations using the values of the equilibrium constants determined indicate that an appreciable fraction of the complexed ionophore exists as the protonated complex, MHI+, in the pH range of 6.5-8.5. PMID:1850743

  18. Light-stimulated formation of hydrogen peroxide and hydroxyl radical in the presence of uroporphyrin and ascorbate

    SciTech Connect

    Bachowski, G.J.; Girotti, A.W. )

    1988-01-01

    Blue light irradiation of 2-deoxyribose (DOR) in the presence of uroporphyrin I (UP), ascorbate (AH-), trace iron, and phosphate buffer resulted in a strong stimulation of hydroxyl radical (OH.)-dependent oxidation of DOR. Photostimulated generation of H{sub 2}O{sub 2} was monitored after removal of residual AH- (i) by ascorbate oxidase treatment, or (ii) by anion exchange on mini-columns of DEAE-Sephadex. Irradiation of the above mixture produced a strong burst of H{sub 2}O{sub 2} which was intensified by desferrioxamine and suppressed by catalase or EDTA. The mechanism suggested by these observations is one in which photoreduction of UP to the radical anion initiates the formation of H{sub 2}O{sub 2}, which gives rise to OH. via Fenton chemistry. This is the first known investigation of H{sub 2}O{sub 2} fluxes in a Type I (free radical) photoreaction involving AH- as the electron donor.

  19. Reactive free radical generation in vivo in heart and liver of ethanol-fed rats: correlation with radical formation in vitro

    SciTech Connect

    Reinke, L.A.; Lai, E.K.; DuBose, C.M.; McCay, P.B.

    1987-12-01

    Rats fed a high-fat ethanol-containing diet for 2 weeks were found to generate free radicals in liver and heart in vivo. The radicals are believed to be carbon-centered radicals, were detected by administering spin-trapping agents to the rats, and were characterized by electron paramagnetic resonance spectroscopy. The radicals in the liver were demonstrated to be localized in the endoplasmic reticulum. Rats fed ethanol in a low-fat diet showed significantly less free radical generation. Control animals given isocaloric diets without ethanol showed no evidence of free radicals in liver and heart. When liver microsomes prepared from rats fed the high-fat ethanol diet were incubated in a system containing ethanol, NADPH, and a spin-trapping agent, the generation of 1-hydroxyethyl radicals was observed. The latter was verified by using /sup 13/C-substituted ethanol. Microsomes from animals fed the high-fat ethanol-containing diet had higher levels of cytochrome P-450 than microsomes from rats fed the low-fat ethanol-containing diet. The results suggest that the consumption of ethanol results in the production of free radicals in rat liver and heart in vivo that appear to initiate lipid peroxidation.

  20. Substrate-Induced Radical Formation in 4-Hydroxybutyryl Coenzyme A Dehydratase from Clostridium aminobutyricum

    PubMed Central

    Zhang, Jin; Friedrich, Peter; Pierik, Antonio J.; Martins, Berta M.

    2014-01-01

    4-Hydroxybutyryl-coenzyme A (CoA) dehydratase (4HBD) from Clostridium aminobutyricum catalyzes the reversible dehydration of 4-hydroxybutyryl-CoA to crotonyl-CoA and the irreversible isomerization of vinylacetyl-CoA to crotonyl-CoA. 4HBD is an oxygen-sensitive homotetrameric enzyme with one [4Fe-4S]2+ cluster and one flavin adenine dinucleotide (FAD) in each subunit. Upon the addition of crotonyl-CoA or the analogues butyryl-CoA, acetyl-CoA, and CoA, UV-visible light and electron paramagnetic resonance (EPR) spectroscopy revealed an internal one-electron transfer to FAD and the [4Fe-4S]2+ cluster prior to hydration. We describe an active recombinant 4HBD and variants produced in Escherichia coli. The variants of the cluster ligands (H292C [histidine at position 292 is replaced by cysteine], H292E, C99A, C103A, and C299A) had no measurable dehydratase activity and were composed of monomers, dimers, and tetramers. Variants of other potential catalytic residues were composed only of tetramers and exhibited either no measurable (E257Q, E455Q, and Y296W) hydratase activity or <1% (Y296F and T190V) dehydratase activity. The E455Q variant but not the Y296F or E257Q variant displayed the same spectral changes as the wild-type enzyme after the addition of crotonyl-CoA but at a much lower rate. The results suggest that upon the addition of a substrate, Y296 is deprotonated by E455 and reduces FAD to FADH·, aided by protonation from E257 via T190. In contrast to FADH·, the tyrosyl radical could not be detected by EPR spectroscopy. FADH· appears to initiate the radical dehydration via an allylic ketyl radical that was proposed 19 years ago. The mode of radical generation in 4HBD is without precedent in anaerobic radical chemistry. It differs largely from that in enzymes, which use coenzyme B12, S-adenosylmethionine, ATP-driven electron transfer, or flavin-based electron bifurcation for this purpose. PMID:25452282

  1. Direct Evidence of Solution-Mediated Superoxide Transport and Organic Radical Formation in Sodium-Oxygen Batteries.

    PubMed

    Xia, Chun; Fernandes, Russel; Cho, Franklin H; Sudhakar, Niranjan; Buonacorsi, Brandon; Walker, Sean; Xu, Meng; Baugh, Jonathan; Nazar, Linda F

    2016-09-01

    Advanced large-scale electrochemical energy storage requires cost-effective battery systems with high energy densities. Aprotic sodium-oxygen (Na-O2) batteries offer advantages, being comprised of low-cost elements and possessing much lower charge overpotential and higher reversibility compared to their lithium-oxygen battery cousins. Although such differences have been explained by solution-mediated superoxide transport, the underlying nature of this mechanism is not fully understood. Water has been suggested to solubilize superoxide via formation of hydroperoxyl (HO2), but direct evidence of these HO2 radical species in cells has proven elusive. Here, we use ESR spectroscopy at 210 K to identify and quantify soluble HO2 radicals in the electrolyte-cold-trapped in situ to prolong their lifetime-in a Na-O2 cell. These investigations are coupled to parallel SEM studies that image crystalline sodium superoxide (NaO2) on the carbon cathode. The superoxide radicals were spin-trapped via reaction with 5,5-dimethyl-pyrroline N-oxide at different electrochemical stages, allowing monitoring of their production and consumption during cycling. Our results conclusively demonstrate that transport of superoxide from cathode to electrolyte leads to the nucleation and growth of NaO2, which follows classical mechanisms based on the variation of superoxide content in the electrolyte and its correlation with the crystallization of cubic NaO2. The changes in superoxide content upon charge show that charge proceeds through the reverse solution process. Furthermore, we identify the carbon-centered/oxygen-centered alkyl radicals arising from attack of these solubilized HO2 species on the diglyme solvent. This is the first direct evidence of such species, which are likely responsible for electrolyte degradation. PMID:27498623

  2. Formation of Poly[d(A-T)2] Specific Z-DNA by a Cationic Porphyrin

    PubMed Central

    Jang, Yoon Jung; Lee, Changyun; Kim, Seog K.

    2015-01-01

    Typical CD spectrum of the right-handed poly[d(A-T)2] was reversed when trans-bis(N-methylpyrimidium-4-yl)diphenyl porphyrin (trans-BMPyP) was bound, suggesting that the helicity of the polynucleotide was reversed to the left-handed form. The formation of the left-handed Z-form poly[d(A-T)2] was confirmed by 31P NMR, in which a single 31P peak of B-form poly[d(A-T)2] was split into two peaks, which is similar to the conventional B-Z transition of poly[d(G-C)2] induced by the high ionic strength. The observed B-Z transition is unique for poly[d(A-T)2]. The other polynucleotides, including poly[d(G-C)2], poly(dG)·poly(dC) and poly(dA)·poly(dT) remained as the right-handed form in the presence of the same porphyrin. This observation suggests that the porphyrin array that was formed along the poly[d(A-T)2] provides a template to which left-handed poly[d(A-T)2] is associated with an electrostatic interaction. PMID:25943171

  3. Photoinduced formation of threadlike micelles from mixtures of a cationic surfactant and a stilbene amphiphile.

    PubMed

    Takahashi, Yutaka; Kishimoto, Mai; Kondo, Yukishige

    2016-05-15

    This study examined the influence of ultraviolet (UV) irradiation on aqueous surfactant solutions containing an anionic stilbene derivative (sodium [4-[(E)-2-(4-butylphenyl)ethenyl]phenoxy]acetate; C4StilNa) as a photoresponsive skeleton. Prior to UV irradiation, an aqueous solution of cetyltrimethylammonium bromide (CTAB) and C4StilNa was a low-viscosity fluid forming spheroidal micelles. Exposure of the low-viscosity fluid to UV light resulted in the formation of threadlike micelles and an increase in the viscosity of the aqueous CTAB/C4StilNa solution. (1)H nuclear magnetic resonance spectroscopy indicated that the photochemically induced isomerization and dimerization reactions of C4StilNa molecules had occurred in the aggregates due to UV irradiation. Overall, the structural transformation of the stilbene groups in the C4StilNa molecules with the photochemical reactions leads to an increase in the critical packing parameter and consequently a photoinduced transition of spheroidal micelles to threadlike micelles. PMID:26967168

  4. Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide.

    PubMed

    Chu, Liang; Anastasio, Cort

    2005-07-21

    Hydrogen peroxide (HOOH) in ice and snow is an important chemical tracer for the oxidative capacities of past atmospheres. However, photolysis in ice and snow will destroy HOOH and form the hydroxyl radical (*OH), which can react with snowpack trace species. Reactions of *OH in snow and ice will affect the composition of both the overlying atmosphere (e.g., by the release of volatile species such as formaldehyde to the boundary layer) and the snow and ice (e.g., by the *OH-mediated destruction of trace organics). To help understand these impacts, we have measured the quantum yield of *OH from the photolysis of HOOH on ice. Our measured quantum yields (Phi(HOOH --> *OH)) are independent of ionic strength, pH, and wavelength, but are dependent upon temperature. This temperature dependence for both solution and ice data is best described by the relationship ln(Phi(HOOH --> *OH)) = -(684 +/- 17)(1/T) + (2.27 +/- 0.064) (where errors represent 1 standard error). The corresponding activation energy (Ea) for HOOH (5.7 kJ mol(-1)) is much smaller than that for nitrate photolysis, indicating that the photochemistry of HOOH is less affected by changes in temperature. Using our measured quantum yields, we calculate that the photolytic lifetimes of HOOH in surface snow grains under midday, summer solstice sunlight are approximately 140 h at representative sites on the Greenland and Antarctic ice sheets. In addition, our calculations reveal that the majority of *OH radicals formed on polar snow grains are from HOOH photolysis, while nitrate photolysis is only a minor contributor. Similarly, HOOH appears to be much more important than nitrate as a photochemical source of *OH on cirrus ice clouds, where reactions of the photochemically formed hydroxyl radical could lead to the release of oxygenated volatile organic compounds to the upper troposphere. PMID:16833967

  5. Theoretical enthalpies of formation and O H bond dissociation enthalpy of an α-tocopherol model and its free radical

    NASA Astrophysics Data System (ADS)

    Espinosa-García, J.

    2004-04-01

    Using DFT computations (B3LYP and BHandHLYP functionals) with isodesmic reactions as working chemical reactions, and extended basis sets with diffuse functions, the standard enthalpies of formation of an α-tocopherol model (where the aliphatic chain and the neighbour methyl group have been changed to hydrogen atoms) and its free radical α-tocopheroxy were theoretically estimated for the first time: -79.4 ± 2.0, and -54.9 ± 2.0 kcal mol -1, respectively. These enthalpies of formation correspond to the O-H bond dissociation enthalpy of BDE(O-H)=76.6 ± 2.0 kcal mol -1, in excellent agreement with the gas-phase experimental value for natural α-tocopherol, which lends confidence to the method and model used.

  6. Tanshinone (Salviae miltiorrhizae Extract) Preparations Attenuate Aminoglycoside-Induced Free Radical Formation In Vitro and Ototoxicity In Vivo

    PubMed Central

    Wang, Ai-Mei; Sha, Su-Hua; Lesniak, Wojciech; Schacht, Jochen

    2003-01-01

    Antioxidant therapy protects against aminoglycoside-induced ototoxicity in animal models. A clinically suitable antioxidant must not affect the therapeutic efficacy of aminoglycosides or exhibit any side effects of its own. In addition, the treatment should be inexpensive and convenient in order to be implemented in developing countries where the use of aminoglycosides is most common. Standardized Salviae miltiorrhizae extracts (Danshen) are used clinically in China and contain diterpene quinones and phenolic acids with antioxidant properties. We combined in vitro and in vivo approaches to investigate the effect of a clinically approved injectable Danshen solution on aminoglycoside-induced free radical generation and ototoxicity. In vitro, Danshen inhibited gentamicin-dependent lipid peroxidation (formation of conjugated dienes from arachidonic acid), as well as the gentamicin-catalyzed formation of superoxide (in a lucigenin-based chemiluminescence assay) and hydroxyl radicals (oxidation of N,N-dimethyl-p-nitrosoaniline). Danshen extracts were then administered to adult CBA mice receiving concurrent treatment with kanamycin (700 mg/kg of body weight twice daily for 15 days). Auditory threshold shifts induced by kanamycin (approximately 50 dB) were significantly attenuated. Danshen did not reduce the levels in serum or antibacterial efficacy of kanamycin. These results suggest that herbal medications may be a significantly underexplored source of antidotes for aminoglycoside ototoxicity. Such traditional medicines are widely used in many developing countries and could become an easily accepted and inexpensive protective therapy. PMID:12760856

  7. Electrochemistry and spectroelectrochemistry of nitroxyl free radicals

    SciTech Connect

    Fish, J.R.; Swarts, S.G.; Sevilla, M.D.; Malinski, T.

    1988-06-30

    This work reports electrochemical and spectroelectrochemical studies of the two nitroxyl radicals 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-yloxy (3-carbamoyl-PROXYL). Oxidation and reduction reactions have been observed in aqueous media over the pH range 2-12 in the potential range -0.8 to +0.8 V by differential pulse voltammetry, cyclic voltammetry, and thin-layer UV-visible spectroelectrochemistry, and the reaction products have been characterized by IR, NMR, and ESR spectrometry. At pH values less than 10, characteristic electrochemical behavior is observed to be analogous for both radicals, and the products from electron transfer compare quite favorably with those found by pulse radiolysis of aqueous solutions of nitroxyl radicals. At pH 2-9, a stable cation from a reversible oxidation and hydroxylamine following an irreversible reduction, as well as hydroxylated cation at pH higher than 9, are the same as those obtained in pulse radiolysis experiments. Spectroscopic evidence indicates that behavior following reduction at high pH differs for the two radicals. At pH 12, reduced TEMPO may undergo structural changes leading to the formation of a new radical consisting of a seven-membered ring.

  8. Mechanism of benzophenone ketyl radical formation in acid alcohols studied by pulse-radiolysis and rigid-matrix techniques. [Gamma rays

    SciTech Connect

    Hoshino, M.; Arai, S.; Imamura, M.; Ikehara, K.; Hama, Y.

    1980-10-02

    The mechanism of the benzophenone ketyl radical formation in acid methanol, ethanol, and 2-propanol was studied by using pulse-radiolysis and rigid-matrix techniques. When a 0.1 M ethanol solution of benzophenone containing hydrogen chloride (1.2 M) was irradiated at 77 K by ..gamma.. rays from /sup 60/Co, the absorption spectrum of the trapped intermediates was ascribed solely to benzophenone ketyl radicals. The pulse-radiolysis study of the solution at 100 K revealed that the ketyl radicals are produced by protonation of presolvated benzophenone anion radicals. At 153 K, the ketyl radicals were observed to be produced also by hydrogen-atom transfer from CH/sub 3/CHOH and CH/sub 3/CH(OH)CH/sub 3/ to benzophenone; the temperature dependence of the transfer rate constant was studied.

  9. Hydroxyl radical formation via iron-mediated Fenton chemistry is inhibited by methylated catechols.

    PubMed

    Nappi, A J; Vass, E

    1998-09-16

    The differing effects of O-methylated catecholamines and their dihydroxyphenyl precursors on the production of *OH were quantified using a previously established specific salicylate hydroxylation assay in conjunction with a sensitive electrochemical detection system. The production of *OH by the Fenton reaction was diminished significantly by O-methylated catecholamines (O-methyldopa, O-methyldopamine, O-methyltyrosine, and N-acetyl-O-methyldopamine), whereas radical production was augmented by dihydroxyphenyls (DOPA, dopamine, and N-acetyldopamine), including those with methylated side chains (N-methyldopamine and alpha-methyldopa). Monohydroxyphenyls such as octopamine, tyramine, tyrosine, and alpha-methyltyrosine had little or no effect on radical production. These data show that a methyl group positioned on the side chain of a catecholamine does not alter its pro-oxidant behavior, while a methyl group positioned on the aromatic ring renders the catecholamine sterically or kinetically unfavorable for coordination with transition metals, thus preventing the promotion of Fenton chemistry. These results highlight the importance of O-methylation in forming catechols that are less reactive than their dihydroxyphenyl precursors. Thus, factors regulating the methylation of brain catecholamines may play a crucial role in mediating neuronal integrity during aging and in the pathogenesis of certain neurodegenerative disorders. Competitive side-chain methylation reactions may sustain or perpetuate some dihydroxyphenyls, creating an oxidatively less favorable environment for cells than would result from compounds formed by O-methylation. PMID:9813302

  10. Investigation of the formation of benzoyl peroxide, benzoic anhydride, and other potential aerosol products from gas-phase reactions of benzoylperoxy radicals

    NASA Astrophysics Data System (ADS)

    Strollo, Christen M.; Ziemann, Paul J.

    2016-04-01

    The secondary organic aerosol (SOA) products of the reaction of benzaldehyde with Cl atoms and with OH radicals in air in the absence of NOx were investigated in an environmental chamber in order to better understand the possible role of organic peroxy radical self-reactions in SOA formation. SOA products and authentic standards were analyzed using mass spectrometry and liquid chromatography, and results show that the yields of benzoyl peroxide (C6H5C(O)OO(O)CC6H5) and benzoic anhydride (C6H5C(O)O(O)CC6H5), two potential products from the gas-phase self-reaction of benzoylperoxy radicals (C6H5C(O)OO·), were less than 0.1%. This is in contrast to results of recent studies that have shown that the gas-phase self-reactions of β-nitrooxyperoxy radicals formed from reactions of isoprene with NO3 radicals form dialkyl peroxides that contribute significantly to gas-phase and SOA products. Such reactions have also been proposed to explain the gas-phase formation of extremely low volatility dimers from autooxidation of terpenes. The results obtained here indicate that, at least for benzoylperoxy radicals, the self-reactions form only benzoyloxy radicals. Analyses of SOA composition and volatility were inconclusive, but it appears that the SOA may consist primarily of oligomers formed through heterogeneous/multiphase reactions possibly involving some combination of phenol, benzaldehyde, benzoic acid, and peroxybenzoic acid.

  11. Photoinduced phenoxyl radical formation from ligno- p-cresol as studied by steady-state and time-resolved EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tero-Kubota, Shozo; Tachikawa, Takashi; Ito, Fuyuki; Matsui, Mikio; Konishi, Kazuyori

    2003-11-01

    The phenoxyl radical formation mechanism from the UV-photolysis of ligno- p-cresol in organic solvents has been investigated by steady-state and time-resolved EPR spectroscopy. It is suggested that the phenoxyl radical is generated from the o-methoxy phenol moiety in the main chain of the polymer through the dissociative photoionization by the biphotonic process from the excited triplet states.

  12. Sonochemiluminescence of lucigenin: Evidence of superoxide radical anion formation by ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masanori; Takahashi, Fumiki; Asakura, Yoshiyuki; Jin, Jiye

    2016-07-01

    The sonochemiluminescence (SCL) behavior of lucigenin (Luc2+) has been studied in aqueous solutions irradiated with 500 kHz ultrasound. Compared with the SCL of a luminol system, a tremendously increased SCL intensity is observed from 50 µM Luc2+ aqueous solution (pH =11) when small amounts of coreactants such as 2-propanol coexist. It is shown that SCL intensity strongly depends on the presence of dissolved gases such as air, O2, N2, and Ar. The highest SCL intensity is obtained in an O2-saturated solution, indicating that molecular oxygen is required to generate SCL. Since SCL intensity is quenched completely in the presence of superoxide dismutase (SOD), an enzyme that can catalyze the disproportionation of O2 •‑, the generation of O2 •‑ in the ultrasonic reaction field is important in the SCL of Luc2+. In this work, the evidence of O2 •‑ production is examined by a spectrofluorometric method using 2-(2-pyridyl)benzothiazoline as the fluorescent probe. The results indicate that the yield of O2 •‑ is markedly increased in the O2-saturated solutions when a small amount of 2-propanol coexists, which is consistent with the results of SCL measurements. 2-Propanol in the interfacial region of a cavitation bubble reacts with a hydroxyl radical (•OH) to form a 2-propanol radical, CH3C•(OH)CH3, which can subsequently react with dissolved oxygen to generate O2 •‑. The most likely pathways for SCL as well as the spatial distribution of SCL in a microreactor are discussed in this study.

  13. Effect of some naturally occurring iron ion chelators on the formation of radicals in the reaction mixtures of rat liver microsomes with ADP, Fe3+ and NADPH

    PubMed Central

    Minakata, Katsuyuki; Fukushima, Kazuaki; Nakamura, Masayuki; Iwahashi, Hideo

    2011-01-01

    In order to clarify the mechanism by polyphenols of protective effects against oxidative damage or by quinolinic acid of its neurotoxic and inflammatory actions, effects of polyphenols or quinolinic acid on the radical formation were examined. The ESR measurements showed that some polyphenols such as caffeic acid, catechol, gallic acid, D-(+)-catechin, L-dopa, chlorogenic acid and L-noradrenaline inhibited the formation of radicals in the reaction mixture of rat liver microsomes with ADP, Fe3+ and NADPH. The ESR measurements showed that α-picolinic acid, 2,6-pyridinedicarboxylic acid and quinolinic acid (2,3-pyridinedicarboxylic acid) enhanced the formation of radicals in the reaction mixture of rat liver microsomes with Fe3+ and NADPH. Caffeic acid and α-picolinic acid had no effects on the formation of radicals in the presence of EDTA, suggesting that the chelation of iron ion seems to be related to the inhibitory and enhanced effects. The polyphenols may exert protective effects against oxidative damage of erythrocyte membrane, ethanol-induced fatty livers, cardiovascular diseases, inflammatory and cancer through the mechanism. On the other hand, quinolinic acid may exert its neurotoxic and inflammatory effects because of the enhanced effect on the radical formation. PMID:22128221

  14. Hydroxyl radical formation during ozonation of multiwalled carbon nanotubes: performance optimization and demonstration of a reactive CNT filter.

    PubMed

    Oulton, Rebekah; Haase, Jason P; Kaalberg, Sara; Redmond, Connor T; Nalbandian, Michael J; Cwiertny, David M

    2015-03-17

    We explored factors influencing hydroxyl radical (•OH) formation during ozonation of multiwalled carbon nanotubes (MWCNTs) and assessed this system's viability as a next-generation advanced oxidation process (AOP). Using standard reactivity metrics for ozone-based AOPs (RCT values), MWCNTs promoted •OH formation during ozonation to levels exceeding ozone (both alone and with activated carbon) and equivalent to ozone with hydrogen peroxide. MWCNTs oxidized with nitric acid exhibited vastly greater rates of ozone consumption and •OH formation relative to as-received MWCNTs. While some of this enhancement reflects their greater suspension stability, a strong correlation between RCT values and surface oxygen concentrations from X-ray photoelectron spectroscopy suggests that surface sites generated during MWCNT oxidation promote •OH exposure. Removal of several ozone-recalcitrant species [para-chlorobenzoic acid (p-CBA), atrazine, DEET, and ibuprofen] was not significantly inhibited in the presence of radical scavengers (humic acid, carbonate), in complex aquatic matrices (Iowa River water) and after 12 h of continuous exposure of MWCNTs to concentrated ozone solutions. As a proof-of-concept, oxidized MWCNTs deposited on a ceramic membrane chemically oxidized p-CBA in a flow through system, with removal increasing with influent ozone concentration and mass of deposited MWCNTs (in mg/cm2). This hybrid membrane platform, which integrates adsorption, oxidation, and filtration via an immobilized MWCNT layer, may serve as the basis for future novel nanomaterial-enabled technologies, although long-term performance trials under representative treatment scenarios remain necessary. PMID:25730285

  15. Observations of the C2 and C3 radicals and possible implications for the formation region of comets

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Rauer, H.; Boice, D.; Huebner, W.

    The abundance ratios of C2 H2 , C2 H6 and C3 H4 can give important clues for the formation region of a comet. C2 H2 , C2 H6 show only emissions in the infrared wavelengths range and the detection of these lines from ground is a difficult task. These two molecules have only been detected recently in a few bright comets, for example in comet Hyakutake and comet Hale-Bopp. C3 H4 has not been detected in any comet up to date. However these three molecules are the likely parents of the C2 and C3 radicals. The formation processes of C2 and C3 have been a long open issue. We have obtained observations of C2 and C3 emissions during the optical long-term monitoring program of Comet Hale-Bopp. Based on these observations we have investigated the various reaction pathways using a gas dynamics coma model including detailed gas-phase chemistry with photolytic reactions and self-consistent electron energetics. As the result of our study we will presented a combined reaction network, which provides good agreement between the measured and the computed C2 and C3 column density profiles for a wide range of heliocentric distances. In addition to photochemical reactions, electron-impact dissociation plays an important role in this network. Using this network and the measured profiles we can derive the abundances of C2 H2 , C2 H6 and C3 H4 in comet Hale-Bopp for rh >3AU. We will show that using our model the abundance ratios of C2 H2 , C2 H6 and C3 H4 can be obtained from optical measurements of the C2 and C3 radicals, which can made easily also in weak and distant comets. These parent molecules provide indications for the formation region of comets.

  16. Effects of electroacupuncture on learning, memory and formation system of free radicals in brain tissues of vascular dementia model rats.

    PubMed

    Wang, Li; Tang, Chunzhi; Lai, Xinsheng

    2004-06-01

    In order to observe the regulative effect of electro-acupuncture on the formation system of free radicals in the brain tissues and learning and memory in vascular dementia (VD) model rats, the Morris's water labyrinth was used for testing the learning ability and memory in VD model rats made by 4-vessel occlusion method, and the activities or contents of nitric oxide (NO), NO synthase (NOS), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px) were determined. Results showed that the mean escape latency in the electro-acupuncture group was markedly reduced in place test, and the times swam the place of the plate-form in the original plate-form quadrant were significantly more than those in the rest three quadrants in spatial probe test as compared with the model group. In the electro-acupuncture group and the nimodipine group the contents of NO and MDA and the activity of NOS were decreased, while the activities of SOD and GSH-Px were increased. It is indicated that electro-acupuncture can modulate the production and clearance of free radicals, and improve the ability of learning and memory of the VD model rats. PMID:15270273

  17. Insights in understanding aggregate formation and dissociation in cation exchange chromatography for a structurally unstable Fc-fusion protein.

    PubMed

    Chen, Zhiqiang; Huang, Chao; Chennamsetty, Naresh; Xu, Xuankuo; Li, Zheng Jian

    2016-08-19

    Cation-exchange chromatography (CEX) of a structurally unstable Fc-fusion protein exhibited multi-peak elution profile upon a salt-step elution due to protein aggregation during intra-column buffer transition where low pH and high salt coexisted. The protein exhibited a single-peak elution behavior during a pH-step elution; nevertheless, the levels of soluble aggregates (i.e. high molecular weight species, HMW) in the CEX eluate were still found up to 12-fold higher than that for the load material. The amount of the aggregates formed upon the pH-step elution was dependent on column loading with maximum HMW achieved at intermediate loading levels, supporting the hypothesis that the aggregation was the result of both the conformational changes of the bound protein and the solution concentration of the aggregation-susceptible proteins during elution. Factors such as high load pH, short protein/resin contact time, hydrophilic resin surface, and weak ionizable ligand were effective, to some extent, to reduce aggregate formation by improving the structural integrity of the bound protein. An orthogonal technique, differential scanning fluorimetry (DSF) using Sypro Orange dye confirmed that the bound protein exposed more hydrophobic area than the native molecule in free solution, especially in the pH 4-5 range. The Sypro Orange dye study of resin surface property also demonstrated that the poly[styrene-divinylbenzene]-based Poros XS with polyhydroxyl surface coating is more hydrophobic compared to the agarose-based CM Sepharose FF and SP Sepharose FF. The hydrophobic property of Poros XS contributed to stronger interactions with the partially unfolded bound protein and consequently to the higher aggregate levels seen in Poros XS eluate. This work also investigates the aggregation reversibility in CEX eluate where up to 66% of the aggregates were observed to dissociate into native monomers over a period of 120h, and links the aggregate stability to such conditions as resin

  18. The cubyl cation rearrangements.

    PubMed

    Jalife, Said; Mondal, Sukanta; Cabellos, Jose Luis; Martinez-Guajardo, Gerardo; Fernandez-Herrera, Maria A; Merino, Gabriel

    2016-02-25

    Born-Oppenheimer molecular dynamics simulations and high-level ab initio computations predict that the cage-opening rearrangement of the cubyl cation to the 7H(+)-pentalenyl cation is feasible in the gas phase. The rate-determining step is the formation of the cuneyl cation with an activation barrier of 25.3 kcal mol(-1) at the CCSD(T)/def2-TZVP//MP2/def2-TZVP level. Thus, the cubyl cation is kinetically stable enough to be formed and trapped at moderate temperatures, but it may be rearranged at higher temperatures. PMID:26880646

  19. Oligorotaxane Radicals under Orders.

    PubMed

    Wang, Yuping; Frasconi, Marco; Liu, Wei-Guang; Sun, Junling; Wu, Yilei; Nassar, Majed S; Botros, Youssry Y; Goddard, William A; Wasielewski, Michael R; Stoddart, J Fraser

    2016-02-24

    A strategy for creating foldameric oligorotaxanes composed of only positively charged components is reported. Threadlike components-namely oligoviologens-in which different numbers of 4,4'-bipyridinium (BIPY(2+)) subunits are linked by p-xylylene bridges, are shown to be capable of being threaded by cyclobis(paraquat-p-phenylene) (CBPQT(4+)) rings following the introduction of radical-pairing interactions under reducing conditions. UV/vis/NIR spectroscopic and electrochemical investigations suggest that the reduced oligopseudorotaxanes fold into highly ordered secondary structures as a result of the formation of BIPY(•+) radical cation pairs. Furthermore, by installing bulky stoppers at each end of the oligopseudorotaxanes by means of Cu-free alkyne-azide cycloadditions, their analogous oligorotaxanes, which retain the same stoichiometries as their progenitors, can be prepared. Solution-state studies of the oligorotaxanes indicate that their mechanically interlocked structures lead to the enforced interactions between the dumbbell and ring components, allowing them to fold (contract) in their reduced states and unfold (expand) in their fully oxidized states as a result of Coulombic repulsions. This electrochemically controlled reversible folding and unfolding process, during which the oligorotaxanes experience length contractions and expansions, is reminiscent of the mechanisms of actuation associated with muscle fibers. PMID:27163033

  20. Oligorotaxane Radicals under Orders

    PubMed Central

    2016-01-01

    A strategy for creating foldameric oligorotaxanes composed of only positively charged components is reported. Threadlike components—namely oligoviologens—in which different numbers of 4,4′-bipyridinium (BIPY2+) subunits are linked by p-xylylene bridges, are shown to be capable of being threaded by cyclobis(paraquat-p-phenylene) (CBPQT4+) rings following the introduction of radical-pairing interactions under reducing conditions. UV/vis/NIR spectroscopic and electrochemical investigations suggest that the reduced oligopseudorotaxanes fold into highly ordered secondary structures as a result of the formation of BIPY•+ radical cation pairs. Furthermore, by installing bulky stoppers at each end of the oligopseudorotaxanes by means of Cu-free alkyne–azide cycloadditions, their analogous oligorotaxanes, which retain the same stoichiometries as their progenitors, can be prepared. Solution-state studies of the oligorotaxanes indicate that their mechanically interlocked structures lead to the enforced interactions between the dumbbell and ring components, allowing them to fold (contract) in their reduced states and unfold (expand) in their fully oxidized states as a result of Coulombic repulsions. This electrochemically controlled reversible folding and unfolding process, during which the oligorotaxanes experience length contractions and expansions, is reminiscent of the mechanisms of actuation associated with muscle fibers. PMID:27163033

  1. Ultrasonic application to boost hydroxyl radical formation during Fenton oxidation and release organic matter from sludge

    NASA Astrophysics Data System (ADS)

    Gong, Changxiu; Jiang, Jianguo; Li, De'An; Tian, Sicong

    2015-06-01

    We examined the effects of ultrasound and Fenton reagent on ultrasonic coupling Fenton oxidation (U+F) pre-treatment processes for the disintegration of wastewater treatment plant sludge. The results demonstrated that U+F treatment could significantly increase soluble chemical oxygen demand (SCOD), total organic carbon (TOC), and extracellular polymeric substances (EPS) concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U+F treatment increased the release of SCOD by 2.1- and 1.4-fold compared with U and F alone, respectively. U+F treatment increased the release of EPS by 1.2-fold compared with U alone. After U+F treatment, sludge showed a considerably finer particle size and looser microstructure based on fluorescence microscopy, and the concentration of hydroxyl radicals (OH•) increased from 0.26 mM by F treatment to 0.43 mM by U+F treatment based on fluorescence spectrophotometer. This demonstrated that U+F treatment improves the release of organic matter from sludge.

  2. Ultrasonic application to boost hydroxyl radical formation during Fenton oxidation and release organic matter from sludge

    PubMed Central

    Gong, Changxiu; Jiang, Jianguo; Li, De’an; Tian, Sicong

    2015-01-01

    We examined the effects of ultrasound and Fenton reagent on ultrasonic coupling Fenton oxidation (U+F) pre-treatment processes for the disintegration of wastewater treatment plant sludge. The results demonstrated that U+F treatment could significantly increase soluble chemical oxygen demand (SCOD), total organic carbon (TOC), and extracellular polymeric substances (EPS) concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U+F treatment increased the release of SCOD by 2.1- and 1.4-fold compared with U and F alone, respectively. U+F treatment increased the release of EPS by 1.2-fold compared with U alone. After U+F treatment, sludge showed a considerably finer particle size and looser microstructure based on fluorescence microscopy, and the concentration of hydroxyl radicals (OH•) increased from 0.26 mM by F treatment to 0.43 mM by U+F treatment based on fluorescence spectrophotometer. This demonstrated that U+F treatment improves the release of organic matter from sludge. PMID:26066562

  3. Role of pyrite in formation of hydroxyl radicals in coal: possible implications for human health

    PubMed Central

    Cohn, Corey A; Laffers, Richard; Simon, Sanford R; O'Riordan, Thomas; Schoonen, Martin AA

    2006-01-01

    Background The harmful effects from inhalation of coal dust are well-documented. The prevalence of lung disease varies by mining region and may, in part, be related to regional differences in the bioavailable iron content of the coal. Pyrite (FeS2), a common inorganic component in coal, has been shown to spontaneously form reactive oxygen species (ROS) (i.e., hydrogen peroxide and hydroxyl radicals) and degrade nucleic acids. This raises the question regarding the potential for similar reactivity from coal that contains pyrite. Experiments were performed to specifically evaluate the role of pyrite in coal dust reactivity. Coal samples containing various amounts of FeS2 were compared for differences in their generation of ROS and degradation of RNA. Results Coals that contain iron also show the presence of FeS2, generate ROS and degrade RNA. Coal samples that do not contain pyrite do not produce ROS nor degrade RNA. The concentration of generated ROS and degradation rate of RNA both increase with greater FeS2 content in the coals. Conclusion The prevalence of coal workers' pneumoconiosis can be correlated to the amount of FeS2 in the coals. Considering the harmful effects of generation of ROS by inhaled particles, the results presented here show a possible mechanism whereby coal samples may contribute to CWP. This suggests that the toxicity of coal may be explained, in part, by the presence of FeS2. PMID:17177987

  4. Comparative study on DBPs formation profiles of intermediate organics from hydroxyl radicals oxidation of microbial cells.

    PubMed

    Ou, Tai-You; Wang, Gen-Shuh

    2016-05-01

    This study assessed the characteristics of disinfection byproducts (DBPs) formation from intermediate organics during UV/H2O2 treatment of activated sludge and algae cells under various reaction conditions. The DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), haloketones (HKs) and haloacetonitriles (HANs) in UV/H2O2-treated and chlorinated water were measured. The results showed that both dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) increased during the initial stage of UV/H2O2 treatment due to the lysis of sludge and algae cells, which enhanced the formation of both C- and N-DBPs; however, both DOC and DON decreased after longer reaction times. During the UV/H2O2 treatments, THMs formation potential (THMFP) peaked earlier than did HAAs formation potential (HAAFP). This shows that the dissolved organics released from lysis of microbial cells in the early stages of oxidation favor the production of THMs over HAAs; however, HAAs precursors increased with the oxidation time. Chlorination with bromide increased the formation of THMs and HAAs but less HKs and HANs were produced. Comparisons of normalized DBP formation potential (DBPFP) of samples collected during UV/H2O2 treatments of four different types of organic matter showed that the highest DBPFP occurred in filtered treated wastewater effluent, followed by samples of activated sludge, filtered eutrophicated pond water, and samples of algae cells. With increasing oxidation time, the dominant DBP species shifted from THMs to HAAs in the samples of activated sludge and algae cells. The DBPFP tests also showed that more HAAs were formed in biologically treated wastewater effluent, while the eutrophicated source water produced more THMs. PMID:26894677

  5. Actinide cation-cation complexes

    SciTech Connect

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO{sub 2}{sup +}) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO{sub 2}{sup +}; therefore, cation-cation complexes indicate something unique about AnO{sub 2}{sup +} cations compared to actinide cations in general. The first cation-cation complex, NpO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO{sub 2}{sup +} species, the cation-cation complexes of NpO{sub 2}{sup +} have been studied most extensively while the other actinides have not. The only PuO{sub 2}{sup +} cation-cation complexes that have been studied are with Fe{sup 3+} and Cr{sup 3+} and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, NpO{sub 2}{sup +}{center_dot}Th{sup 4+}, PuO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, and PuO{sub 2}{sup +}{center_dot}Th{sup 4+} at an ionic strength of 6 M using LIPAS are 2.4 {plus_minus} 0.2, 1.8 {plus_minus} 0.9, 2.2 {plus_minus} 1.5, and {approx}0.8 M{sup {minus}1}.

  6. Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids II. Imidazolium cations.

    SciTech Connect

    Shkrob, I. A.; Marin, T. W.; Chemerisov, S. D.; Hatcher, J.; Wishart, J.

    2011-04-14

    In part 1 of this study, radiolytic degradation of constituent anions in ionic liquids (ILs) was examined. The present study continues the themes addressed in part 1 and examines the radiation chemistry of 1,3-dialkyl substituted imidazolium cations, which currently comprise the most practically important and versatile class of ionic liquid cations. For comparison, we also examined 1,3-dimethoxy- and 2-methyl-substituted imidazolium and 1-butyl-4-methylpyridinium cations. In addition to identification of radicals using electron paramagnetic resonance spectroscopy (EPR) and selective deuterium substitution, we analyzed stable radiolytic products using {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR) and tandem electrospray ionization mass spectrometry (ESMS). Our EPR studies reveal rich chemistry initiated through 'ionization of the ions': oxidation and the formation of radical dications in the aliphatic arms of the parent cations (leading to deprotonation and the formation of alkyl radicals in these arms) and reduction of the parent cation, yielding 2-imidazolyl radicals. The subsequent reactions of these radicals depend on the nature of the IL. If the cation is 2-substituted, the resulting 2-imidazolyl radical is relatively stable. If there is no substitution at C(2), the radical then either is protonated or reacts with the parent cation forming a C(2)-C(2) {sigma}{sigma}*-bound dimer radical cation. In addition to these reactions, when methoxy or C{sub {alpha}}-substituted alkyl groups occupy the N(1,3) positions, their elimination is observed. The elimination of methyl groups from N(1,3) was not observed. Product analyses of imidazolium liquids irradiated in the very-high-dose regime (6.7 MGy) reveal several detrimental processes, including volatilization, acidification, and oligomerization. The latter yields a polymer with m/z of 650 {+-} 300 whose radiolytic yield increases with dose (0.23 monomer units per 100 eV for 1-methyl-3-butylimidazolium

  7. Key Residues of Outer Membrane Protein OprI Involved in Hexamer Formation and Bacterial Susceptibility to Cationic Antimicrobial Peptides

    PubMed Central

    Chang, Ting-Wei; Wang, Chiu-Feng; Huang, Hsin-Jye; Wang, Iren; Hsu, Shang-Te Danny

    2015-01-01

    Antimicrobial peptides (AMPs) are important components of the host innate defense mechanism against invading pathogens. Our previous studies have shown that the outer membrane protein, OprI from Pseudomonas aeruginosa or its homologue, plays a vital role in the susceptibility of Gram-negative bacteria to cationic α-helical AMPs (Y. M. Lin, S. J. Wu, T. W. Chang, C. F. Wang, C. S. Suen, M. J. Hwang, M. D. Chang, Y. T. Chen, Y. D. Liao, J Biol Chem 285:8985–8994, 2010, http://dx.doi.org/10.1074/jbc.M109.078725; T. W. Chang, Y. M. Lin, C. F. Wang, Y. D. Liao, J Biol Chem 287:418–428, 2012, http://dx.doi.org/10.1074/jbc.M111.290361). Here, we obtained two forms of recombinant OprI: rOprI-F, a hexamer composed of three disulfide-bridged dimers, was active in AMP binding, while rOprI-R, a trimer, was not. All the subunits predominantly consisted of α-helices and exhibited rigid structures with a melting point centered around 76°C. Interestingly, OprI tagged with Escherichia coli signal peptide was expressed in a hexamer, which was anchored on the surface of E. coli, possibly through lipid acids added at the N terminus of OprI and involved in the binding and susceptibility to AMP as native P. aeruginosa OprI. Deletion and mutation studies showed that Cys1 and Asp27 played a key role in hexamer formation and AMP binding, respectively. The increase of OprI hydrophobicity upon AMP binding revealed that it undergoes conformational changes for membrane fusion. Our results showed that OprI on bacterial surfaces is responsible for the recruitment and susceptibility to amphipathic α-helical AMPs and may be used to screen antimicrobials. PMID:26248382

  8. Effects of divalent cations on the formation of 4(5)-methylimidazole in fructose/ammonium hydroxide caramel model reaction.

    PubMed

    Wu, Xinlan; Yu, Di; Kong, Fansheng; Yu, Shujuan

    2016-06-15

    The objective of the present study was to detail the changes of 4(5)-methylimidazole (4-MI) and its precursors in the presence of divalent cations (Ca(2+), Mg(2+)) in a fructose/ammonium hydroxide caramel model system. The content of 4-MI and its precursor methylglyoxal (MGO) was inhibited by divalent cations (Ca(2+), Mg(2+)). The possible explanation might be that fructose and its Heyns product glucosamine interact with divalent cations to form complexes and inhibit the degradation of glucosamine into MGO. Moreover, the changes of fructose, NH4(+) and brown intensity in the presence of divalent cations indicated that fructose and glucosamine underwent intra-intermolecular polymerisation into melanoidins rather than the degradation reaction into aldehydes and ketones. PMID:26868573

  9. A better understanding of hydroxyl radical photochemical sources in cloud waters collected at the puy de Dôme station - experimental versus modelled formation rates

    NASA Astrophysics Data System (ADS)

    Bianco, A.; Passananti, M.; Perroux, H.; Voyard, G.; Mouchel-Vallon, C.; Chaumerliac, N.; Mailhot, G.; Deguillaume, L.; Brigante, M.

    2015-08-01

    The oxidative capacity of the cloud aqueous phase is investigated during three field campaigns from 2013 to 2014 at the top of the puy de Dôme station (PUY) in France. A total of 41 cloud samples are collected and the corresponding air masses are classified as highly marine, marine and continental. Hydroxyl radical (HO•) formation rates (RHO•f) are determined using a photochemical setup (xenon lamp that can reproduce the solar spectrum) and a chemical probe coupled with spectroscopic analysis that can trap all of the generated radicals for each sample. Using this method, the obtained values correspond to the total formation of HO• without its chemical sinks. These formation rates are correlated with the concentrations of the naturally occurring sources of HO•, including hydrogen peroxide, nitrite, nitrate and iron. The total hydroxyl radical formation rates are measured as ranging from approximately 2 × 10-11 to 4 × 10-10 M s-1, and the hydroxyl radical quantum yield formation (ΦHO•) is estimated between 10-4 and 10-2. Experimental values are compared with modelled formation rates calculated by the model of multiphase cloud chemistry (M2C2), considering only the chemical sources of the hydroxyl radicals. The comparison between the experimental and the modelled results suggests that the photoreactivity of the iron species as a source of HO• is overestimated by the model, and H2O2 photolysis represents the most important source of this radical (between 70 and 99 %) for the cloud water sampled at the PUY station (primarily marine and continental).

  10. Sunlight and free radicals

    NASA Astrophysics Data System (ADS)

    Tidwell, Thomas

    2013-08-01

    Thomas Tidwell reflects on the overlooked -- but prescient -- proposal by the British chemists Arthur Downes and Thomas Blunt for photochemical free-radical formation, decades before Moses Gomberg launched the field of radical chemistry by preparing triphenylmethyl, the first stable organic radical.

  11. Recent laboratory photochemical studies and their relationship to the photochemical formation of cometary radicals

    NASA Technical Reports Server (NTRS)

    Jackson, William M.

    1991-01-01

    Experimental laboratory techniques used in studying the photochemistry of stable and unstable molecules are discussed. The laboratory evidence for the photochemical formation of C2 from C2H, C3 from C3H2, and NH from NH2 is presented. Other recent results obtained in laboratory studies of H2O, H2S, NH3, and HCN are reported.

  12. Direct formation of the C5'-radical in the sugar-phosphate backbone of DNA by high-energy radiation.

    PubMed

    Adhikary, Amitava; Becker, David; Palmer, Brian J; Heizer, Alicia N; Sevilla, Michael D

    2012-05-24

    Neutral sugar radicals formed in DNA sugar-phosphate backbone are well-established as precursors of biologically important damage such as DNA strand scission and cross-linking. In this work, we present electron spin resonance (ESR) evidence showing that the sugar radical at C5' (C5'(•)) is one of the most abundant (ca. 30%) sugar radicals formed by γ- and Ar ion-beam irradiated hydrated DNA samples. Taking dimethyl phosphate as a model of sugar-phosphate backbone, ESR and theoretical (DFT) studies of γ-irradiated dimethyl phosphate were carried out. CH(3)OP(O(2)(-))OCH(2)(•) is formed via deprotonation from the methyl group of directly ionized dimethyl phosphate at 77 K. The formation of CH(3)OP(O(2)(-))OCH(2)(•) is independent of dimethyl phosphate concentration (neat or in aqueous solution) or pH. ESR spectra of C5'(•) found in DNA and of CH(3)OP(O(2)(-))OCH(2)(•) do not show an observable β-phosphorus hyperfine coupling (HFC). Furthermore, C5'(•) found in DNA does not show a significant C4'-H β-proton HFC. Applying the DFT/B3LYP/6-31G(d) method, a study of conformational dependence of the phosphorus HFC in CH(3)OP(O(2)(-))OCH(2)(•) shows that in its minimum energy conformation, CH(3)OP(O(2)(-))OCH(2)(•), has a negligible β-phosphorus HFC. On the basis of these results, the formation of radiation-induced C5'(•) is proposed to occur via a very rapid deprotonation from the directly ionized sugar-phosphate backbone, and the rate of this deprotonation must be faster than that of energetically downhill transfer of the unpaired spin (hole) from ionized sugar-phosphate backbone to the DNA bases. Moreover, C5'(•) in irradiated DNA is found to be in a conformation that does not exhibit β-proton or β-phosphorus HFCs. PMID:22553971

  13. Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation.

    PubMed

    De Vera, Glen Andrew; Stalter, Daniel; Gernjak, Wolfgang; Weinberg, Howard S; Keller, Jurg; Farré, Maria José

    2015-12-15

    When ozonation is employed in advanced water treatment plants to produce drinking water, dissolved organic matter reacts with ozone (O3) and/or hydroxyl radicals (OH) affecting disinfection byproduct (DBP) formation with subsequently used chlorine-based disinfectants. This study presents the effects of varying exposures of O3 and •OH on DBP concentrations and their associated toxicity generated after subsequent chlorination. DBP formation potential tests and in vitro bioassays were conducted after batch ozonation experiments of coagulated surface water with and without addition of tertiary butanol (t-BuOH, 10 mM) and hydrogen peroxide (H2O2, 1 mg/mg O3), and at different pH (6-8) and transferred ozone doses (0-1 mg/mg TOC). Although ozonation led to a 24-37% decrease in formation of total trihalomethanes, haloacetic acids, haloacetonitriles, and trihaloacetamides, an increase in formation of total trihalonitromethanes, chloral hydrate, and haloketones was observed. This effect however was less pronounced for samples ozonated at conditions favoring molecular ozone (e.g., pH 6 and in the presence of t-BuOH) over •OH reactions (e.g., pH 8 and in the presence of H2O2). Compared to ozonation only, addition of H2O2 consistently enhanced formation of all DBP groups (20-61%) except trihalonitromethanes. This proves that •OH-transformed organic matter is more susceptible to halogen incorporation. Analogously, adsorbable organic halogen (AOX) concentrations increased under conditions that favor •OH reactions. The ratio of unknown to known AOX, however, was greater at conditions that promote direct O3 reactions. Although significant correlation was found between AOX and genotoxicity with the p53 bioassay, toxicity tests using 4 in vitro bioassays showed relatively low absolute differences between various ozonation conditions. PMID:26378731

  14. Phase transition and cationic motion in the perovskite formate framework [(CH3)2NH2][Mg(HCOO)3

    NASA Astrophysics Data System (ADS)

    Asaji, Tetsuo; Yoshitake, Sho; Ito, Yoshiharu; Fujimori, Hiroki

    2014-11-01

    The dielectric phase transition of a metal-organic perovskite with a dimethylammonium cation, [(CH3)2NH2][Mg(HCOO)3], at Tc = 270 K was investigated using 1H nuclear magnetic resonance spectroscopy. The temperature dependence of the spin-lattice relaxation time T1, was measured to elucidate the methyl group reorientation and cation reorientation. The results was very similar to that of the zinc analog, [(CH3)2NH2][Zn(HCOO)3], previously reported. The cationic motion was expected to be the 120° reorientation of the dimethylammonium ion around the axis through the two carbon atoms of the cation. The activation energy for cationic motion was determined to be 22.7 kJ mol-1. The two methyl groups of the cation in the low-temperature phase become nonequivalent and have activation energies of 9.1 and 7.0 kJ mol-1 for reorientation about the methyl group C3-axis. The T1 measurements indicated that the Tc = 270 K phase transition is of first-order and another first-order phase transition was revealed at around 80 K. The transition entropy was estimated to be ΔS = 10 ± 1 J K-1 mol-1 for the Tc = 270 K phase transition in agreement with the simple three fold order-disorder model of dimethylammonium ion.

  15. Tar balls from Deep Water Horizon oil spill: environmentally persistent free radicals (EPFR) formation during crude weathering.

    PubMed

    Kiruri, Lucy W; Dellinger, Barry; Lomnicki, Slawo

    2013-05-01

    Tar balls collected from the Gulf of Mexico shores of Louisiana and Florida after the BP oil spill have shown the presence of electron paramagnetic resonance (EPR) spectra characteristic of organic free radicals as well as transition metal ions, predominantly iron(III) and manganese(II). Two types of organic radicals were distinguished: an asphaltene radical species typically found in crude oil (g = 2.0035) and a new type of radical resulting from the environmental transformations of crude (g = 2.0041-47). Pure asphaltene radicals are resonance stabilized over a polyaromatic structure and are stable in air and unreactive. The new radicals were identified as products of partial oxidation of crude components and result from the interaction of the oxidized aromatics with metal ion centers. These radicals are similar to semiquinone-type, environmentally persistent free radicals (EPFRs) previously observed in combustion-generated particulate and contaminated soils. PMID:23510127

  16. Tar Balls from Deep Water Horizon Oil Spill: Environmentally Persistent Free Radicals (EPFR) Formation During Crude Weathering

    PubMed Central

    Kiruri, Lucy W.; Dellinger, Barry; Lomnicki, Slawo

    2014-01-01

    Tar balls collected from the Gulf of Mexico shores of Louisiana and Florida after the BP oil spill have shown the presence of electron paramagnetic resonance (EPR) spectra characteristic of organic free radicals as well as transition metal ions, predominantly iron(III) and manganese(II). Two types of organic radicals were distinguished: an asphaltene radical species typically found in crude oil (g = 2.0035) and a new type of radical resulting from the environmental transformations of crude (g = 2.0041−47). Pure asphaltene radicals are resonance stabilized over a polyaromatic structure and are stable in air and unreactive. The new radicals were identified as products of partial oxidation of crude components and result from the interaction of the oxidized aromatics with metal ion centers. These radicals are similar to semiquinone-type, environmentally persistent free radicals (EPFRs) previously observed in combustion-generated particulate and contaminated soils. PMID:23510127

  17. Single-Molecule Kinetics Reveal Cation-Promoted DNA Duplex Formation Through Ordering of Single-Stranded Helices

    PubMed Central

    Dupuis, Nicholas F.; Holmstrom, Erik D.; Nesbitt, David J.

    2013-01-01

    In this work, the kinetics of short, fully complementary oligonucleotides are investigated at the single-molecule level. Constructs 6–9 bp in length exhibit single exponential kinetics over 2 orders of magnitude time for both forward (kon, association) and reverse (koff, dissociation) processes. Bimolecular rate constants for association are weakly sensitive to the number of basepairs in the duplex, with a 2.5-fold increase between 9 bp (k′on = 2.1(1) × 106 M−1 s−1) and 6 bp (k′on = 5.0(1) × 106 M−1 s−1) sequences. In sharp contrast, however, dissociation rate constants prove to be exponentially sensitive to sequence length, varying by nearly 600-fold over the same 9 bp (koff = 0.024 s−1) to 6 bp (koff = 14 s−1) range. The 8 bp sequence is explored in more detail, and the NaCl dependence of kon and koff is measured. Interestingly, konincreases by >40-fold (kon = 0.10(1) s−1 to 4.0(4) s−1 between [NaCl] = 25 mM and 1 M), whereas in contrast, koffdecreases by fourfold (0.72(3) s−1 to 0.17(7) s−1) over the same range of conditions. Thus, the equilibrium constant (Keq) increases by ≈160, largely due to changes in the association rate, kon. Finally, temperature-dependent measurements reveal that increased [NaCl] reduces the overall exothermicity (ΔΔH° > 0) of duplex formation, albeit by an amount smaller than the reduction in entropic penalty (−TΔΔS° < 0). This reduced entropic cost is attributed to a cation-facilitated preordering of the two single-stranded species, which lowers the association free-energy barrier and in turn accelerates the rate of duplex formation. PMID:23931323

  18. Light-scattering study of polyelectrolyte complex formation between anionic and cationic nanogels in an aqueous salt-free system.

    PubMed

    Miyake, Masafumi; Ogawa, Kazuyoshi; Kokufuta, Etsuo

    2006-08-15

    We studied complex formation in an aqueous salt-free system (pH approximately 3 and at 25 degrees C) between nanogel particles having opposite charges. Anionic gel (AG) and cationic gel (CG) particles consist of lightly cross-linked N-isopropylacrylamide (NIPA) copolymers with 2-acrylamido-2-methylpropane sulfonic acid and with 1-vinylimidazole, respectively. The number of charges per particle was -4490 for AG and +20 300 for CG, as estimated from their molar masses (3.33 MD for AG and 11.7 MD for CG) by static light scattering (SLS) and their charge densities (1.35 mmol/g for AG and 1.74 mmol/g for CG) by potentiometric titration. The complexes were formed through the addition of AG to CG and vice versa using a turbidimetric titration technique. At the endpoint of the titration, the aggregate formed was a complex based upon stoichiometric charge neutralization: CG(n)()(+) + xAG(m)()(-) --> CG(n)()(+) (AG(m)()(-))(x)() where x = (n)()/(m)(). At different stages of the titration before the endpoint, the resulting complexes were examined in detail using dynamic light scattering, SLS, and electrophoretic light scattering (ELS). The main results are summarized as follows: (i) When AG with a hydrodynamic radius (R(h)) of 119 nm is added to CG (R(h) approximately 156 nm), the (R(h)) of the complex size decreases from 156 to 80 nm. (ii) In contrast to this (R(h)) change, the molar mass increases from 11.7 MD to 24 MD with increasing amounts of added AG. (iii) Upon addition of CG to AG, the complex formed has the same size ((R(h)) approximately 80 nm) and the same molar mass (55 +/- 2.5 MD) until 55 +/- 5% of AG has been consumed in the complexation. To understand these results, we used the following two models: the random model (RM), in which the added AG particles uniformly bind to all of the CG particles in the system via a strong electrostatic attraction, and the all-or-none model (AONM), in which part of the AG particles in the system preferably bind to the added CG

  19. SOA Formation form the NO3 radicals Chemistry of Isoprene, Monoterpenes, Sesquiterpenes, Biogenic Oxygenated Compounds, and Aromatics

    NASA Astrophysics Data System (ADS)

    Kleindienst, T. E.; Jaoui, M.; Docherty, K.; Corse, E.; Offenberg, J. H.; Lewandowski, M.

    2011-12-01

    Volatile organic compounds (VOCs) are oxidized in the atmosphere primarily by hydroxyl radicals (OH) during daylight hours but also by nitrate radicals (NO3) during overnight, photochemically inactive periods. While reactions with OH have received considerable attention with regard to gas-phase reaction products and secondary organic aerosol (SOA) formation, less is known about the mechanisms and products resulting from nighttime NO3 reactions despite their potential for SOA formation. To date, there have been limited studies on the chemical characteristics of aerosol reaction products formed from VOCs oxidation with NO3, and few SOA reaction products have been identified. Nighttime reactions have nevertheless been incorporated into some air quality models despite the limited information available and substantial uncertainties which still exist. The National Exposure Research Laboratory of the U.S. Environmental Protection Agency recently undertook an integrated laboratory research effort to better understand the contribution of NO3 reactions to nighttime SOA formation. Isoprene, methacrolein, a-pinene, b-pinene, d-limonene, b-caryophyllene, farnesene, a-humulene, 2-methyl-3-buten-2-ol, toluene, m-xylene, and naphthalene were reacted with NO3 under a wide range of conditions in a series of separate photochemical reaction chamber experiments. These hydrocarbons are thought to contribute to ambient SOA formation. NO3 was formed through thermal decomposition of N2O5. The yield, physical characteristics, and composition of SOA formed in each experiment was analyzed by a suite of instruments including a scanning mobility particle sizer, a Sunset Labs semi continuous EC-OC monitor, a volatility differential mobility analyzer, a direct insertion probe-mass spectrometer, a high resolution time-of-flight aerosol mass spectrometer, and a gas-chromatography-mass spectrometer. To understand the relative contributions of nighttime versus daytime VOCs reactions, a similar

  20. The formation of a novel free radical metabolite from CCl4 in the perfused rat liver and in vivo.

    PubMed

    Connor, H D; Thurman, R G; Galizi, M D; Mason, R P

    1986-04-01

    Electron spin resonance spectroscopy has been used to monitor free radicals formed during CCl4 metabolism by perfused livers from phenobarbital-treated rats. Livers were perfused simultaneously with the spin trap phenyl N-t-butylnitrone and with either 12CCl4 or 13CCl4. Perfusate samples and CHCl3:CH3OH extracts of perfusate and liver samples were analyzed for phenyl N-t-butylnitrone radical adducts of reactive free radicals. In the organic extracts, hyperfine coupling constants and 13C isotope effects observed in the ESR spectra indicated the presence of the radical adduct of the trichloromethyl radical. Surprisingly, an additional free radical signal about two orders of magnitude more intense than that of the phenyl N-t-butylnitrone/CCl.3 radical adduct was observed in the aqueous liver perfusate. This adduct was also detected by ESR in rat urine 2 h after intragastric addition of spin trap and CCl4. This radical adduct had hyperfine coupling constants and 13C isotope effects identical with the radical adduct of the carbon dioxide anion radical (CO2-.). Analysis of the pH dependence of the coupling constants yielded a pK alpha of 2.8 for the CO2-. radical adduct formed either in the perfused liver or chemically. Carbon tetrachloride is converted into CCl.3 by cytochrome P-450 through a reductive dehalogenation. The trichloromethyl free radical reacts with oxygen to form the trichloromethyl peroxyl radical, CCl3OO., which may be converted into .COCl and then trapped. This radical adduct would hydrolyze to the carboxylic acid form, which is detected spectroscopically. Alternatively, the carbon dioxide anion free radical could form through complete dechlorination and then react with the spin trap to give the CO2-. radical adduct directly. PMID:3007463

  1. Communication: Oscillating charge migration between lone pairs persists without significant interaction with nuclear motion in the glycine and Gly-Gly-NH-CH{sub 3} radical cations

    SciTech Connect

    Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.

    2014-05-28

    Coupled electron-nuclear dynamics has been studied, using the Ehrenfest method, for four conformations of the glycine molecule and a single conformation of Gly-Gly-NH-CH{sub 3}. The initial electronic wavepacket was a superposition of eigenstates corresponding to ionization from the σ lone pairs associated with the carbonyl oxygens and the amine nitrogen. For glycine, oscillating charge migration (when the nuclei were frozen) was observed for the 4 conformers studied with periods ranging from 2 to 5 fs, depending on the energy gap between the lone pair cationic states. When coupled nuclear motion was allowed (which was mainly NH{sub 2} partial inversion), the oscillations hardly changed. For Gly-Gly-NH-CH{sub 3}, charge migration between the carbonyl oxygens and the NH{sub 2} lone pair can be observed with a period similar to glycine itself, also without interaction with nuclear motion. These simulations suggest that charge migration between lone pairs can occur independently of the nuclear motion.

  2. One-electron oxidation of gemcitabine and analogs: mechanism of formation of C3' and C2' sugar radicals.

    PubMed

    Adhikary, Amitava; Kumar, Anil; Rayala, Ramanjaneyulu; Hindi, Ragda M; Adhikary, Ananya; Wnuk, Stanislaw F; Sevilla, Michael D

    2014-11-01

    Gemcitabine is a modified cytidine analog having two fluorine atoms at the 2'-position of the ribose ring. It has been proposed that gemcitabine inhibits RNR activity by producing a C3'• intermediate via direct H3'-atom abstraction followed by loss of HF to yield a C2'• with 3'-keto moiety. Direct detection of C3'• and C2'• during RNR inactivation by gemcitabine still remains elusive. To test the influence of 2'- substitution on radical site formation, electron spin resonance (ESR) studies are carried out on one-electron oxidized gemcitabine and other 2'-modified analogs, i.e., 2'-deoxy-2'-fluoro-2'-C-methylcytidine (MeFdC) and 2'-fluoro-2'-deoxycytidine (2'-FdC). ESR line components from two anisotropic β-2'-F-atom hyperfine couplings identify the C3'• formation in one-electron oxidized gemcitabine, but no further reaction to C2'• is found. One-electron oxidized 2'-FdC is unreactive toward C3'• or C2'• formation. In one-electron oxidized MeFdC, ESR studies show C2'• production presumably from a very unstable C3'• precursor. The experimentally observed hyperfine couplings for C2'• and C3'• match well with the theoretically predicted ones. C3'• to C2'• conversion in one-electron oxidized gemcitabine and MeFdC has theoretically been modeled by first considering the C3'• and H3O(+) formation via H3'-proton deprotonation and the subsequent C2'• formation via HF loss induced by this proximate H3O(+). Theoretical calculations show that in gemcitabine, C3'• to C2'• conversion in the presence of a proximate H3O(+) has a barrier in agreement with the experimentally observed lack of C3'• to C2'• conversion. In contrast, in MeFdC, the loss of HF from C3'• in the presence of a proximate H3O(+) is barrierless resulting in C2'• formation which agrees with the experimentally observed rapid C2'• formation. PMID:25296262

  3. Secondary organic aerosol formation from the β-pinene+NO3 system: effect of humidity and peroxy radical fate

    NASA Astrophysics Data System (ADS)

    Boyd, C. M.; Sanchez, J.; Xu, L.; Eugene, A. J.; Nah, T.; Tuet, W. Y.; Guzman, M. I.; Ng, N. L.

    2015-07-01

    The formation of secondary organic aerosol (SOA) from the oxidation of β-pinene via nitrate radicals is investigated in the Georgia Tech Environmental Chamber (GTEC) facility. Aerosol yields are determined for experiments performed under both dry (relative humidity (RH) < 2 %) and humid (RH = 50 % and RH = 70 %) conditions. To probe the effects of peroxy radical (RO2) fate on aerosol formation, "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are performed. Gas-phase organic nitrate species (with molecular weights of 215, 229, 231, and 245 amu, which likely correspond to molecular formulas of C10H17NO4, C10H15NO5, C10H17NO5, and C10H15NO6, respectively) are detected by chemical ionization mass spectrometry (CIMS) and their formation mechanisms are proposed. The NO+ (at m/z 30) and NO2+ (at m/z 46) ions contribute about 11 % to the combined organics and nitrate signals in the typical aerosol mass spectrum, with the NO+ : NO2+ ratio ranging from 4.8 to 10.2 in all experiments conducted. The SOA yields in the "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are comparable. For a wide range of organic mass loadings (5.1-216.1 μg m-3), the aerosol mass yield is calculated to be 27.0-104.1 %. Although humidity does not appear to affect SOA yields, there is evidence of particle-phase hydrolysis of organic nitrates, which are estimated to compose 45-74 % of the organic aerosol. The extent of organic nitrate hydrolysis is significantly lower than that observed in previous studies on photooxidation of volatile organic compounds in the presence of NOx. It is estimated that about 90 and 10 % of the organic nitrates formed from the β-pinene+NO3 reaction are primary organic nitrates and tertiary organic nitrates, respectively. While the primary organic nitrates do not appear to hydrolyze, the tertiary organic nitrates undergo hydrolysis with a lifetime of 3-4.5 h. Results from this laboratory chamber study provide the fundamental data to evaluate the

  4. Secondary Organic Aerosol (SOA) formation from the β-pinene + NO3 system: effect of humidity and peroxy radical fate

    NASA Astrophysics Data System (ADS)

    Boyd, C. M.; Sanchez, J.; Xu, L.; Eugene, A. J.; Nah, T.; Tuet, W. Y.; Guzman, M. I.; Ng, N. L.

    2015-01-01

    The formation of secondary organic aerosol (SOA) from the oxidation of β-pinene via nitrate radicals is investigated in the Georgia Tech Environmental Chamber facility (GTEC). Aerosol yields are determined for experiments performed under both dry (RH < 2%) and humid (RH = 50% and RH = 70%) conditions. To probe the effects of peroxy radical (RO2) fate on aerosol formation, "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are performed. Gas-phase organic nitrate species (with molecular weights of 215, 229, 231 and 245 amu) are detected by chemical ionization mass spectrometry and their formation mechanisms are proposed. The ions at m/z 30 (NO+) and m/z 46 (NO2+) contribute about 11% to the total organics signal in the typical aerosol mass spectrum, with NO+ : NO2+ ratio ranging from 6 to 9 in all experiments conducted. The SOA yields in the "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are comparable. For a wide range of organic mass loadings (5.1-216.1 μg m-3), the aerosol mass yield is calculated to be 27.0-104.1%. Although humidity does not appear to affect SOA yields, there is evidence of particle-phase hydrolysis of organic nitrates, which are estimated to compose 45-74% of the organic aerosol. The extent of organic nitrate hydrolysis is significantly lower than that observed in previous studies on photooxidation of volatile organic compounds in the presence of NOx. It is estimated that about 90 and 10% of the organic nitrates formed from the β-pinene + NO3 reaction are primary organic nitrates and tertiary organic nitrates, respectively. While the primary organic nitrates do not appear to hydrolyze, the tertiary organic nitrates undergo hydrolysis with a lifetime of 3-4.5 h. Results from this laboratory chamber study provide the fundamental data to evaluate the contributions of monoterpene + NO3 reaction to ambient organic aerosol measured in the southeastern United States, including the Southern Oxidant and Aerosol Study (SOAS) and the

  5. Oxidative Damage of U937 Human Leukemic Cells Caused by Hydroxyl Radical Results in Singlet Oxygen Formation

    PubMed Central

    Rác, Marek; Křupka, Michal; Binder, Svatopluk; Sedlářová, Michaela; Matušková, Zuzana; Raška, Milan; Pospíšil, Pavel

    2015-01-01

    The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules. PMID:25730422

  6. Spin-trapping studies of peroxynitrite decomposition and of 3-morpholinosydnonimine N-ethylcarbamide autooxidation: direct evidence for metal-independent formation of free radical intermediates.

    PubMed

    Augusto, O; Gatti, R M; Radi, R

    1994-04-01

    Decomposition of peroxynitrite, the reaction product of superoxide and nitric oxide, was studied by electron paramagnetic resonance (EPR)-spin-trapping experiments with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Proton-catalyzed decomposition of peroxynitrite at pH 7.5 resulted in the formation of the DMPO-hydroxyl radical adduct (DMPO-OH). Yields were low as DMPO-OH decomposes by direct reactions with peroxynitrite anion and nitrogen dioxide. The yield of DMPO-OH greatly increased in the presence of glutathione or cysteine. Both thiols inhibited the DMPO-OH signal decay by scavenging excess peroxynitrite anion and presumably nitrogen dioxide yielded during peroxynitrite decomposition. In turn, the reactions of peroxynitrite with either glutathione or cysteine resulted in the formation of thiyl radicals, detectable as the corresponding DMPO adduct. Systematic spin-trapping studies of peroxynitrite decomposition in the presence of glutathione established that DMPO-hydroxyl radical adduct formation was metal independent, occurring in a metal-free buffer and being unaffected by diethylene-triaminepentaacetic acid. Also, quantitative competition experiments with ethanol and formate demonstrated that the oxidant generated during peroxynitrite decomposition reacts with rate constants similar to those expected for free hydroxyl radical and forming the same free radical intermediates, alpha-ethyl-hydroxy and carbon dioxide radicals, respectively. Similar spin-trapping results were obtained in studies of the autooxidation of 3-morpholinosydnonimine, a sydnonimine which generates a flux of both superoxide and nitric oxide. The obtained results contribute for the understanding of the reactivity of peroxynitrite, a transient intermediate of emerging biological significance. PMID:8161194

  7. Impacts of aqueous phase radical mechanism of oligomerization of methyl vinyl ketone (MVK) on SOA formation: on the prevailing role of dissolved oxygen

    NASA Astrophysics Data System (ADS)

    Renard, P.; Ervens, B.; Siekmann, F.; Vassalo, L.; Ravier, S.; Clement, J.; Monod, A.

    2012-12-01

    It is now recognized that the aqueous phase photochemistry of organic compounds in cloud droplets and deliquescent aerosol particles lead to the formation of oligomers and thus it might produce a substantial amount of atmospheric Secondary Organic Aerosol (SOA) with unique properties. However, the chemical mechanisms leading to these oligomers are still poorly understood, and consequently, their atmospheric impacts are difficult to assess. The goal of this study was to investigate the atmospheric impact of an aqueous phase radical mechanism of oligomerization of methyl vinyl ketone (MVK: one of the main reaction products of isoprene) on SOA formation. Aqueous phase photooxidation of MVK was investigated in a photoreactor using photolysis of H2O2 as OH radical generator. Electrospray high resolution mass spectrometry analysis of the solutions brought clear evidence for the formation of oligomer systems having a mass range of up to 1800 Da within less than 15 minutes of reaction. Highest oligomer formation rates were obtained under conditions of low dissolved oxygen, highest temperature and highest MVK initial concentrations. A radical mechanism of polymerization is proposed to explain this oligomer formation. Furthermore, we quantified the total amount of carbon present in oligomers, and the initial radical branching ratios. Kinetic parameters of the proposed oligomerization mechanism are constrained by means of a box model that is able to reproduce the temporal evolution of intermediates and products as observed in the laboratory experiments. Additional model simulations for atmospherically-relevant conditions will be presented that show the extent to which these radical processes contribute to SOA formation in the multiphase system as compared to other aqueous phase as well as traditional SOA sources.

  8. Infrared spectra of the 1-pyridinium (C5H5NH+) cation and pyridinyl (C5H5NH and 4-C5H6N) radicals isolated in solid para-hydrogen.

    PubMed

    Golec, Barbara; Das, Prasanta; Bahou, Mohammed; Lee, Yuan-Pern

    2013-12-19

    Protonated pyridine and its neutral counterparts (C5H6N) are important intermediates in organic and biological reactions and in the atmosphere. We have recorded the IR absorption spectra of the 1-pyridinium (C5H5NH(+)) cation, 1-pyridinyl (C5H5NH), and 4-pyridinyl (4-C5H6N) produced on electron bombardment during matrix deposition of a mixture of pyridine (C5H5N) and p-H2 at 3.2 K; all spectra were previously unreported. The IR features of C5H5NH(+) diminished in intensity after the matrix was maintained in darkness for 15 h, whereas those of C5H5NH and 4-C5H6N radicals increased. Irradiation of this matrix with light at 365 nm diminished lines of C5H5NH(+) and C5H5NH but enhanced lines of 4-C5H6N slightly, whereas irradiation at 405 nm diminished lines of 4-C5H6N significantly. Observed wavenumbers and relative intensities of these species agree satisfactorily with the anharmonic vibrational wavenumbers and IR intensities predicted with the B3LYP/6-31++G(d,p) method. Assignments of C5H5NH and 4-C5H6N radicals were further supported by the observation of similar spectra when a Cl2/C5H5N/p-H2 matrix was irradiated first at 365 nm and then with IR light to generate H atoms to induce the H + C5H5N reaction. PMID:24024629

  9. Generation of long-lived methylviologen radical cation in the triplet-state mediated electron transfer in a β-cyclodextrin based supramolecular triad

    NASA Astrophysics Data System (ADS)

    Rakhi, Arikkottira M.; Gopidas, Karical R.

    2015-01-01

    A novel tris(bipyridyl)ruthenium-pyrene-methylviologen supramolecular triad was assembled through inclusion complexation of adamantane-linked Ru(II)-Py dyad in MV2+-linked β-cyclodextrin. Excitation of the Ru(II) chromophore populated its 3MLCT which upon energy transfer gave 3Py, which donates an electron to MV2+ to give Ru(II)-Pyrad +-MVrad +. A second electron transfer then occurs from Ru(II) to Pyrad + to give the supramolecular Ru(III)-Py-MVrad + charge separated state. Laser flash photolysis experiments confirmed formation of MVrad + which exhibited 100 μs lifetime. Steady state irradiation of the self-assembled system in the presence of sacrificial donor also led to formation of long-lived MVrad +.

  10. Formation of nitroxyl and hydroxyl radical in solutions of sodium trioxodinitrate: effects of pH and cytotoxicity.

    PubMed

    Ivanova, Juliana; Salama, Guy; Clancy, Robert M; Schor, Nina F; Nylander, Karen D; Stoyanovsky, Detcho A

    2003-10-31

    Despite its negative redox potential, nitroxyl (HNO) can trigger reactions of oxidation. Mechanistically, these reactions were suggested to occur with the intermediate formation of either hydroxyl radical (.OH) or peroxynitrite (ONOO-). In this work, we present further experimental evidence that HNO can generate.OH. Sodium trioxodinitrate (Na2N2O3), a commonly used donor of HNO, oxidized phenol and Me2SO to benzene diols and.CH3, respectively. The oxidation of Me2SO was O2-independent, suggesting that this process reflected neither the intermediate formation of ONOO- nor a redox cycling of transition metal ions that could initiate Fenton-like reactions. In solutions of phenol, Na2N2O3 yielded benzene-1,2-diol and benzene-1,4-diol at a ratio of 2:1, which is consistent with the generation of free.OH. Ethanol and Me2SO, which are efficient scavengers of.OH, impeded the hydroxylation of phenol. A mechanism for the hydrolysis of Na2N2O3 is proposed that includes dimerization of HNO to cis-hyponitrous acid (HO-N=N-OH) with a concomitant azo-type homolytic fission of the latter to N2 and.OH. The HNO-dependent production of.OH was with 1 order of magnitude higher at pH 6.0 than at pH 7.4. Hence, we hypothesized that HNO can exert selective toxicity to cells subjected to acidosis. In support of this thesis, Na2N2O3 was markedly more toxic to human fibroblasts and SK-N-SH neuroblastoma cells at pH 6.2 than at pH 7.4. Scavengers of.OH impeded the cytotoxicity of Na2N2O3. These results suggest that the formation of HNO may be viewed as a toxicological event in tissues subjected to acidosis. PMID:12920123

  11. Catechol degradation on hematite/silica–gas interface as affected by gas composition and the formation of environmentally persistent free radicals

    PubMed Central

    Li, Hao; Guo, Huiying; Pan, Bo; Liao, Shaohua; Zhang, Di; Yang, Xikun; Min, Chungang; Xing, Baoshan

    2016-01-01

    Environmentally persistent free radicals (EPFRs) formed on a solid particle surface have received increasing attention because of their toxic effects. However, organic chemical fate regulated by EPFRs has rarely been investigated, and this information may provide the missing link in understanding their environmental behavior. Previous studies have suggested that the reduction of transition metals is involved in EPFRs formation. We thus hypothesize that an oxidative environment may inhibit EPFRs formation in particle-gas interface, which will consequently release free radicals and accelerate organic chemical degradation. Our result indicates that a 1% hematite coating on a silica surface inhibited catechol degradation in N2, especially at low catechol loadings on solid particles (SCT). However, under an O2 environment, catechol degradation decreased when SCT was <1 μg/mg but increased when SCT was >1 μg/mg. Stable organic free radicals were observed in the N2 system with g factors in the 2.0035–2.0050 range, suggesting the dominance of oxygen-centered free radicals. The introduction of O2 into the catechol degradation system substantially decreased the free radical signals and decreased the Fe(II) content. These results were observed in both dark and light irradiation systems, indicating the ubiquitous presence of EPFRs in regulating the fate of organic chemicals. PMID:27079263

  12. Catechol degradation on hematite/silica-gas interface as affected by gas composition and the formation of environmentally persistent free radicals.

    PubMed

    Li, Hao; Guo, Huiying; Pan, Bo; Liao, Shaohua; Zhang, Di; Yang, Xikun; Min, Chungang; Xing, Baoshan

    2016-01-01

    Environmentally persistent free radicals (EPFRs) formed on a solid particle surface have received increasing attention because of their toxic effects. However, organic chemical fate regulated by EPFRs has rarely been investigated, and this information may provide the missing link in understanding their environmental behavior. Previous studies have suggested that the reduction of transition metals is involved in EPFRs formation. We thus hypothesize that an oxidative environment may inhibit EPFRs formation in particle-gas interface, which will consequently release free radicals and accelerate organic chemical degradation. Our result indicates that a 1% hematite coating on a silica surface inhibited catechol degradation in N2, especially at low catechol loadings on solid particles (SCT). However, under an O2 environment, catechol degradation decreased when SCT was <1 μg/mg but increased when SCT was >1 μg/mg. Stable organic free radicals were observed in the N2 system with g factors in the 2.0035-2.0050 range, suggesting the dominance of oxygen-centered free radicals. The introduction of O2 into the catechol degradation system substantially decreased the free radical signals and decreased the Fe(II) content. These results were observed in both dark and light irradiation systems, indicating the ubiquitous presence of EPFRs in regulating the fate of organic chemicals. PMID:27079263

  13. Catechol degradation on hematite/silica–gas interface as affected by gas composition and the formation of environmentally persistent free radicals

    NASA Astrophysics Data System (ADS)

    Li, Hao; Guo, Huiying; Pan, Bo; Liao, Shaohua; Zhang, Di; Yang, Xikun; Min, Chungang; Xing, Baoshan

    2016-04-01

    Environmentally persistent free radicals (EPFRs) formed on a solid particle surface have received increasing attention because of their toxic effects. However, organic chemical fate regulated by EPFRs has rarely been investigated, and this information may provide the missing link in understanding their environmental behavior. Previous studies have suggested that the reduction of transition metals is involved in EPFRs formation. We thus hypothesize that an oxidative environment may inhibit EPFRs formation in particle-gas interface, which will consequently release free radicals and accelerate organic chemical degradation. Our result indicates that a 1% hematite coating on a silica surface inhibited catechol degradation in N2, especially at low catechol loadings on solid particles (SCT). However, under an O2 environment, catechol degradation decreased when SCT was <1 μg/mg but increased when SCT was >1 μg/mg. Stable organic free radicals were observed in the N2 system with g factors in the 2.0035–2.0050 range, suggesting the dominance of oxygen-centered free radicals. The introduction of O2 into the catechol degradation system substantially decreased the free radical signals and decreased the Fe(II) content. These results were observed in both dark and light irradiation systems, indicating the ubiquitous presence of EPFRs in regulating the fate of organic chemicals.

  14. Wurster's Blue-type cation radicals framed in a 5,10-dihydrobenzo[a]indolo[2,3-c]carbazole (BIC) skeleton: dual electrochromism with drastic changes in UV/Vis/NIR and fluorescence.

    PubMed

    Suzuki, Takanori; Sakano, Yuto; Tokimizu, Yusuke; Miura, Youhei; Katoono, Ryo; Fujiwara, Kenshu; Yoshioka, Naoki; Fujii, Nobutaka; Ohno, Hiroaki

    2014-07-01

    Electron-donating dihydrobenzindolocarbazoles (BICs) 1 a-c, which adopt planar disk-shaped geometries, were prepared by gold(I)-catalyzed cyclization as a key step. Due to the presence of a 1,4-phenylenediamine (PD) moiety in the framework, they undergo reversible one-electron oxidation to the corresponding Wurster's Blue (WB)-type species that exhibits NIR absorptions up to λ=1200 nm. In the case of the N,N'-dimethyl derivative, cation radical 1 c(+.) is stable enough to be isolated as a salt and X-ray analysis indicated paraquinoid-type bond alternation in the WB core unit, whereas the bond lengths in the peripheral benzene rings are identical to those in the neutral donor. Upon electrochemical interconversion, the redox pairs of 1 a-c and 1 a-c(+.) exhibited an electrochromic response in the UV/Vis/NIR region, which was accompanied by a drastic change in the fluorescence spectrum because only neutral donors 1 a-c are highly emissive (Φ(F) : 0.7-0.8). PMID:24861822

  15. Free Radical Reactions in Food.

    ERIC Educational Resources Information Center

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  16. Energetics and excited state dynamics of the radical pair formation in isolated CP47-reaction center complex of photosystem II at various temperatures

    SciTech Connect

    Groot, Marie-Louise; Paa lsson, Lars-Olof; Pribic, Radmila; Stokkum, Ivo H. van; Dekker, Jan P.; Grondelle, Rienk van

    1996-04-01

    The isolated CP47-reaction center complex of spinach photosystem II has been studied with time resolved picosecond fluorescence spectroscopy between 77 K and 270 K. It was observed that these particles exhibit multi-exponential fluorescence decays of the excited state at all temperatures. The major observations are an energy transfer/trapping time of {approx}40 picoseconds and a long-lived {approx}23 nanosecond component attributed to the recombination of the radical pair. These experimentally obtained parameters were used to estimate the free energy difference for the radical pair formation.

  17. Ab initio reaction kinetics of hydrogen abstraction from methyl formate by hydrogen, methyl, oxygen, hydroxyl, and hydroperoxy radicals.

    PubMed

    Tan, Ting; Pavone, Michele; Krisiloff, David B; Carter, Emily A

    2012-08-23

    Combustion of renewable biofuels, including energy-dense biodiesel, is expected to contribute significantly toward meeting future energy demands in the transportation sector. Elucidating detailed reaction mechanisms will be crucial to understanding biodiesel combustion, and hydrogen abstraction reactions are expected to dominate biodiesel combustion during ignition. In this work, we investigate hydrogen abstraction by the radicals H·, CH(3)·, O·, HO(2)·, and OH· from methyl formate, the simplest surrogate for complex biodiesels. We evaluate the H abstraction barrier heights and reaction enthalpies, using multireference correlated wave function methods including size-extensivity corrections and extrapolation to the complete basis set limit. The barrier heights predicted for abstraction by H·, CH(3)·, and O· are in excellent agreement with derived experimental values, with errors ≤1 kcal/mol. We also predict the reaction energetics for forming reactant complexes, transition states, and product complexes for reactions involving HO(2)· and OH·. High-pressure-limit rate constants are computed using transition state theory within the separable-hindered-rotor approximation for torsions and the harmonic oscillator approximation for other vibrational modes. The predicted rate constants differ significantly from those appearing in the latest combustion kinetics models of these reactions. PMID:22830521

  18. Capturing Polyradical Protein Cations after an Electron Capture Event: Evidence for their Stable Distonic Structures in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Baba, Takashi; Campbell, J. Larry

    2015-08-01

    We report on the formation and "capture" of polyradical protein cations after an electron capture event. Performed in a unique electron-capture dissociation (ECD) instrument, these experiments can generate reduced forms of multiply protonated proteins by sequential charge reduction using electrons with ~1 eV. The true structures of these possible polyradicals is considered: Do the introduced unpaired electrons recombine quickly to form a new two-electron bond, or do these unpaired electrons exist as radical sites with appropriate chemical reactivity? Using an established chemical probe—radical quenching with molecular oxygen—we demonstrate that these charge-reduced protein cations are indeed polyradicals that form adducts with up to three molecules of oxygen (i.e., tri-radical protein cations) that are stable for at least 100 ms.

  19. Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air.

    PubMed

    Zhao, Yue; Wingen, Lisa M; Perraud, Véronique; Greaves, John; Finlayson-Pitts, Barbara J

    2015-05-21

    Ozonolysis of alkenes is an important source of secondary organic aerosol (SOA) in the atmosphere. However, the mechanisms by which stabilized Criegee intermediates (SCI) react to form and grow the particles, and in particular the contributions from oligomers, are not well understood. In this study, ozonolysis of trans-3-hexene (C6H12), as a proxy for small alkenes, was investigated with an emphasis on the mechanisms of particle formation and growth. Ozonolysis experiments were carried out both in static Teflon chambers (18-20 min reaction times) and in a glass flow reactor (24 s reaction time) in the absence and presence of OH or SCI scavengers, and under different relative humidity (RH) conditions. The chemical composition of polydisperse and size-selected SOA particles was probed using different mass spectrometric techniques and infrared spectroscopy. Oligomers having SCI as the chain unit are found to be the dominant components of such SOA particles. The formation mechanism for these oligomers suggested by our results follows the sequential addition of SCI to organic peroxy (RO2) radicals, in agreement with previous studies by Moortgat and coworkers. Smaller particles are shown to have a relatively greater contribution from longer oligomers. Higher O/C ratios are observed in smaller particles and are similar to those of oligomers resulting from RO2 + nSCI, supporting a significant role for longer oligomers in particle nucleation and early growth. Under atmospherically relevant RH of 30-80%, water vapor suppresses oligomer formation through scavenging SCI, but also enhances particle nucleation. Under humid conditions, or in the presence of formic or hydrochloric acid as SCI scavengers, peroxyhemiacetals are formed by the acid-catalyzed particle phase reaction between oligomers from RO2 + nSCI and a trans-3-hexene derived carbonyl product. In contrast to the ozonolysis of trans-3-hexene, oligomerization involving RO2 + nSCI does not appear to be prevalent in the

  20. OH radical formation from the gas-phase reaction of ozone with terminal alkenes and the relationship between structure and mechanism

    SciTech Connect

    Paulson, S.E.; Chung, M.Y.; Hasson, A.S.

    1999-10-14

    The reactions of ozone with alkenes have been shown recently to lead to the direct production of OH radicals in quantities that vary from 7 to 100% depending on the structure of the alkene. OH radicals are the most important oxidizing species in the lower atmosphere, and the OH-alkene reaction is a large source of new OH radicals, important in urban and rural air during both day and night. Evidence for OH formation comes both from low-pressure direct measurements and from tracer experiments at high pressure. With the goal of measuring OH formation yields with good precision, a small-ratio relative rate technique was developed. This method uses small amounts of fast-reacting aromatics and aliphatic ethers to trace OH formation yields. Here, the authors report OH formation yields for a series of terminal alkenes reacting with ozone. Measured OH yields were 0.29 {+-} 0.05, 0.24 {+-} 0.05, 0.18 {+-} 0.04, and 0.10 {+-} 0.03 for 1-butene, 1-pentene, 1-hexene, and 1-octene, respectively. For the methyl-substituted terminal alkenes methyl propene and 2-methyl-1-butene, OH yields were 0.72 {+-} 0.12 and 0.67 {+-} 0.12, respectively. The results are discussed both in terms of their atmospheric implications and the relationship between structure and OH formation.

  1. Microemulsion formation and phase behavior of anionic and cationic surfactants with sodium dodecyl sulfate and cetyltrimethylammonium bromide

    SciTech Connect

    Li, X.; Lin, E.; Zhao, G.; Xiao, T.

    1996-12-01

    The phase behavior and solubilization of multiphase microemulsions in mixed anionic-cationic surfactant systems were studied for fixed ratio of water-to-oil and surfactant-to-alcohol. In the mixed surfactants (sodium dodecyl sulfate + cetyltrimethylammonium bromide)/heptane/alcohol/water systems, microemulsions and birefringement phases are formed by adjusting the surfactant ratio {epsilon} and the cationic weight fraction {delta}. The bicontinuous (or w/o microemulsion) {yields} birefringement o/w microemulsion transition takes place and microemulsion domain enlarges with increasing {epsilon}. The optimum surfactant concentration {gamma} increases and the corresponding optimum {delta} decreases with increasing {epsilon} and both of them decrease with increasing the alcohol chain length butanol to hexanol. The birefringent region shrinks rapidly with increasing alcohol and/or CTAB weight fractions in total surfactant concentration. Conductivity measurements have been performed in the single-phase region of the system containing mixed surfactants and alcohols at 25 C. The conductivity results indicate where a transition takes place and which of these different types of phase structures may be in the single-phase of the system containing anionic-cationic mixed surfactants.

  2. On-line cation exchange for suppression of adduct formation in negative-ion electrospray mass spectrometry of nucleic acids.

    PubMed

    Huber, C G; Buchmeiser, M R

    1998-12-15

    One major difficulty in the analysis of nucleic acids by electrospray mass spectrometry is represented by the affinity of the polyanionic sugar-phosphate backbone for nonvolatile cations, especially ubiquitous sodium and potassium ions. A simple on-line sample preparation system comprising a microflow pumping system and 45 x 0.8-mm-i.d. microcolumns packed with weak or strong cation-exchange resins is described for the efficient removal of cations from nucleic acid samples. Samples were analyzed by flow injection analysis at a 3-5 microL/min flow of 10 mM triethylamine in 50% water-50% acetonitrile. After on-line desalting, mass spectra of oligonucleotides revealed no significant sodium adduct peaks. Moreover, signal-to-noise ratios were greatly enhanced compared to direct injection of the samples. Electrospray mass spectrometry with on-line sample preparation allowed accurate molecular mass determinations of picomole amounts of crude oligonucleotide preparations ranging in size from 8 to 80 nucleotides within a few minutes. The good linearity of the calibration plot (R2 = 0.9988) over at least 2 orders of magnitude and a relative standard deviation in peak areas of less than 9% permitted the sensitive quantitative measurement of oligonucleotides in a concentration range of 0.2-20 microM with selected-ion monitoring. Finally, the on-line sample preparation system was evaluated for the mass spectrometric analysis of complex oligonucleotide mixtures. PMID:9868919

  3. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-irradiation on radical formation and polymer degradation.

    PubMed

    Bittner, B; Mäder, K; Kroll, C; Borchert, H H; Kissel, T

    1999-05-01

    Tetracycline-HCl (TCH)-loaded microspheres were prepared from poly(lactide-co-glycolide) (PLGA) by spray drying. The drug was incorporated in the polymer matrix either in solid state or as w/o emulsion. The spin probe 4-hydroxy-2,2,6, 6-tetramethyl-piperidine-1-oxyl (TEMPOL) and the spin trap tert-butyl-phenyl-nitrone (PBN) were co-encapsulated into the TCH-loaded and placebo particles. We investigated the effects of gamma-irradiation on the formation of free radicals in polymer and drug and the mechanism of chain scission after sterilization. Gamma-Irradiation was performed at 26.9 and 54.9 kGy using a 60Co source. The microspheres were characterized especially with respect to the formation of radicals and in vitro polymer degradation. Electron paramagnetic resonance (EPR) spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), high-performance liquid chromatography (HPLC), gas chromatography-mass spectroscopy (GC-MS), and scanning electron microscopy (SEM) were used for characterization of the microspheres. Using EPR spectroscopy, we successfully detected gamma-irradiation induced free radicals within the TCH-loaded microspheres, while unloaded PLGA did not contain radicals under the same conditions. The relatively low glass transition temperature of the poly(dl-lactide-co-glycolide) (37-39 degrees C) seems to favor subsequent reactions of free radicals due to the high mobility of the polymeric chains. Because of the high melting point of TCH (214 degrees C), the radicals can only be stabilized in drug loaded microspheres. In order to determine the mechanism of polymer degradation after exposure to gamma-rays, the spin trap PBN and the spin probe TEMPOL were encapsulated in the microspheres. gamma-Irradiation of microspheres containing PBN resulted in the formation of a lipophilic spin adduct, indicating that a polymeric radical was generated by random chain scission. Polymer degradation by an unzipping mechanism would have

  4. Effects of some cations on the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in a model system.

    PubMed

    Yu, Di; Yu, Shu-Juan

    2016-06-15

    The present study aimed to investigate in detail the changes to 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and its precursors in the presence of some cations (i.e., K(+), Na(+), Ca(2+), Mg(2+), Fe(2+) and Fe(3+)) in a creatinine/phenylacetaldehyde model system. Results showed that PhIP yields decreased when Fe(2+)and Fe(3+) were added to a mixture of phenylacetaldehyde and creatinine. This decrease may be attributed to the fact that Fe(3+) can form complexes with various properties with creatinine and accelerate creatinine degradation. This pathway can disturb the reaction with phenylacetaldehyde, influence aldol condensation product formation, and suppress PhIP formation. Furthermore, Ca(2+)and Mg(2+) enhanced PhIP content. Such enhancement may be attributed to the fact that CaCl2 and MgCl2 promote aldol and aldol condensation product reactions with ammonia and formaldehyde. A possible mechanism for the action of cations during PhIP formation in a model system is also proposed. PMID:26868546

  5. Formation and Properties of a Bicyclic Silylated Digermene

    PubMed Central

    Hlina, Johann; Baumgartner, Judith; Marschner, Christoph; Albers, Lena; Müller, Thomas; Jouikov, Viatcheslav V

    2014-01-01

    In the presence of PMe3 or N-heterocyclic carbenes, the reaction of oligosilanylene dianions with GeCl2⋅dioxane gives germylene–base adducts. After base abstraction, the free germylenes can dimerize by formation of a digermene. An electrochemical and theoretical study of a bicyclic tetrasilylated digermene revealed formation of a comparably stable radical anion and a more reactive radical cation, which were characterized further by UV/Vis and ESR spectroscopy. PMID:24981992

  6. Radiation effects on crystalline L-asparagine, revisited: Radical formation by EMR and periodic DFT after X-irradiation at 275 K

    NASA Astrophysics Data System (ADS)

    Knudtsen, Ingerid S.; Aalbergsjø, Siv G.; Hole, Eli O.; Sagstuen, Einar

    2015-01-01

    Radical formation by X-irradiation of single crystals of L-asparagine monohydrate at 275 K has been investigated at 240 K and 295 K using Electron Paramagnetic Resonance (EPR), Electron Nuclear DOuble Resonance (ENDOR) and ENDOR-Induced EPR spectroscopic techniques. Free radical structures suggested by detailed analysis of the experimental data were assessed by Density Functional Theory calculations in a periodic approach. The combined experimental and computational evidence revealed three stable radical species at room temperature. Two of these could reliably be established as net H-abstracted species, one from the methylene group in the amino acid side chain and the second from the amino acid back-bone carbon atom. For the third room temperature radical species, a variety of deamination- and decarboxylation products were investigated and dismissed. Even if an unambiguous structure could not be established, this radical is tentatively suggested to descend from a side-chain O3-protonated amide anion by hydrogen atom transfer from the C3 to the C4 position.

  7. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2.

    PubMed

    Rosenfeldt, Erik J; Linden, Karl G; Canonica, Silvio; von Gunten, Urs

    2006-12-01

    Comparison of advanced oxidation processes (AOPs) can be difficult due to physical and chemical differences in the fundamental processes used to produce OH radicals. This study compares the ability of several AOPs, including ozone, ozone+H2O2, low pressure UV (LP)+H2O2, and medium pressure UV (MP)+H2O2 in terms of energy required to produce OH radicals. Bench scale OH radical formation data was generated for each AOP using para-chlorobenzoic acid (pCBA) as an OH radical probe compound in three waters, Lake Greifensee water, Lake Zurich water, and a simulated groundwater. Ozone-based AOPs were found to be more energy efficient than the UV/H2O2 process at all H2O2 levels, and the addition of H2O2 in equimolar concentration resulted in 35% greater energy consumption over the ozone only process. Interestingly, the relatively high UV/AOP operational costs were due almost exclusively to the cost of hydrogen peroxide while the UV portion of the UV/AOP process typically accounted for less than 10 percent of the UV/AOP cost and was always less than the ozone energy cost. As the *OH radical exposure increased, the energy gap between UV/H2O2 AOP and ozone processes decreased, becoming negligible in some water quality scenarios. PMID:17078993

  8. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid

    NASA Astrophysics Data System (ADS)

    Shen, H.; Anastasio, C.

    2011-09-01

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM in cardiopulmonary tissues. While hydroxyl radical (•OH) is the most reactive of the ROS species, there are few quantitative studies of •OH generation from PM. Here we report on •OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified •OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50 μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more •OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances •OH formation from all the samples. Fine PM (PM2.5) generally makes more •OH than the corresponding coarse PM (PMcf, i.e. with diameters of 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more •OH normalized by PM mass. •OH production by SJV PM is reduced on average by (97 ± 6) % when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of •OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for •OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived •OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary •OH, although high PM events could produce much higher levels of •OH, which might lead to cytotoxicity.

  9. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid.

    PubMed

    Shen, H; Anastasio, C

    2011-09-16

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM in cardiopulmonary tissues. While hydroxyl radical ((•)OH) is the most reactive of the ROS species, there are few quantitative studies of (•)OH generation from PM. Here we report on (•)OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified (•)OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more (•)OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances (•)OH formation from all the samples. Fine PM (PM(2.5)) generally makes more (•)OH than the corresponding coarse PM (PM(cf), i.e. with diameters of 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more (•)OH normalized by PM mass. (•)OH production by SJV PM is reduced on average by (97±6)% when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of (•)OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for (•)OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived (•)OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary (•)OH, although high PM events could produce much higher levels of (•)OH, which might lead to cytotoxicity. PMID:22121357

  10. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid

    PubMed Central

    Shen, H.; Anastasio, C.

    2011-01-01

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM in cardiopulmonary tissues. While hydroxyl radical (•OH) is the most reactive of the ROS species, there are few quantitative studies of •OH generation from PM. Here we report on •OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified •OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more •OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances •OH formation from all the samples. Fine PM (PM2.5) generally makes more •OH than the corresponding coarse PM (PMcf, i.e. with diameters of 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more •OH normalized by PM mass. •OH production by SJV PM is reduced on average by (97±6)% when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of •OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for •OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived •OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary •OH, although high PM events could produce much higher levels of •OH, which might lead to cytotoxicity. PMID:22121357

  11. Effects of copolymer composition on the formation of ionic species, hydrogen evolution, and free-radical reaction in el-irradiated styrene-butadiene random and block copolymers

    SciTech Connect

    Basheer, R.; Dole, M.

    1984-01-01

    Block and random copolymers of butadiene and styrene as well as polybutadiene and polystyrene homopolymers have been investigated with respect to formation of trapped electrons, contribution of ionic species to crosslinking, and hydrogen gas evolution due to el radiation. The decay kinetics of the disubstituted benzyl radical has also been studied. The yields of electron trapping G(e ) are measured. The G(e ) increase linearly with increased polystyrene content in block polymers, while in random copolymer a deviation from a linear relation is observed. The contribution of ionic reactions to crosslinking is about 25-35% of the total crosslinking yield. Hydrogen production in block copolymers is approximately a linear function of the weight-fraction additivity of the yield of hydrogen formation in polystrene and polybutadiene homopolymers. Energy transfer from butadiene units to styrene units in random copolymers resulted in a deviation from such an additivity relation. The decay of the disubstituted benzyl free radical in block copolymers is a second-order reaction. In random copolymer, the decay is best interpreted in terms of equation based on a second-order decay mechanism of a fraction of the free radicals decaying in the presence of other nondecaying free radicals. 24 references, 11 figures, 3 tables.

  12. Formation of diatomic molecular radicals in reactive nitrogen-carbon plasma generated by electron cyclotron resonance discharge and pulsed laser ablation

    SciTech Connect

    Liang, Peipei; Li, Yanli; You, Qinghu; Cai, Hua; Yang, Xu; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-04-15

    The reactive nitrogen-carbon plasma generated by electron cyclotron resonance (ECR) microwave discharge of N{sub 2} gas and pulsed laser ablation of a graphite target was characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy with space resolution for a study of gas-phase reactions and molecular radical formation in the plasma. The plasma exhibits very high reactivity compared with the plasma generated solely by ECR discharge or by pulsed laser ablation and contains highly excited species originally present in the ambient gaseous environment and directly ablated from the target as well as formed as the products of gas-phase reactions occurring in the plasma. The space distribution and the time evolution of the plasma emission give an access to the gas-phase reactions for the formation of C{sub 2} and CN radicals, revealing that C{sub 2} radicals are formed mainly in the region near the target while CN radicals can be formed in a much larger region not only in the vicinity of the target, but especially in the region near a substrate far away from the target.

  13. Cationic amino acids specific biomimetic silicification in ionic liquid: a quest to understand the formation of 3-D structures in diatoms.

    PubMed

    Ramanathan, Rajesh; Campbell, Jos L; Soni, Sarvesh K; Bhargava, Suresh K; Bansal, Vipul

    2011-01-01

    The intricate, hierarchical, highly reproducible, and exquisite biosilica structures formed by diatoms have generated great interest to understand biosilicification processes in nature. This curiosity is driven by the quest of researchers to understand nature's complexity, which might enable reproducing these elegant natural diatomaceous structures in our laboratories via biomimetics, which is currently beyond the capabilities of material scientists. To this end, significant understanding of the biomolecules involved in biosilicification has been gained, wherein cationic peptides and proteins are found to play a key role in the formation of these exquisite structures. Although biochemical factors responsible for silica formation in diatoms have been studied for decades, the challenge to mimic biosilica structures similar to those synthesized by diatoms in their natural habitats has not hitherto been successful. This has led to an increasingly interesting debate that physico-chemical environment surrounding diatoms might play an additional critical role towards the control of diatom morphologies. The current study demonstrates this proof of concept by using cationic amino acids as catalyst/template/scaffold towards attaining diatom-like silica morphologies under biomimetic conditions in ionic liquids. PMID:21408611

  14. Inhibition of peroxynitrite-mediated DNA strand cleavage and hydroxyl radical formation by aspirin at pharmacologically relevant concentrations: Implications for cancer intervention

    SciTech Connect

    Chen, Wei; Zhu, Hong; Jia, Zhenquan; Li, Jianrong; Misra, Hara P.; Zhou, Kequan; Li, Yunbo

    2009-12-04

    Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in {phi}X-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 {mu}M SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.

  15. Structural Characterization of Hydroxyl Radical Adducts in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2015-06-01

    The oxidation by the hydroxyl (OH) radical is one of the most widely studied reactions because of its central role in chemistry, biology, organic synthesis, and photocatalysis in aqueous environments, wastewater treatment, and numerous other chemical processes. Although the redox potential of OH is very high, direct electron transfer (ET) is rarely observed. If it happens, it mostly proceeds through the formation of elusive OH adduct intermediate which facilitates ET and formation of hydroxide anion. Using time resolved resonance Raman technique we structurally characterized variety of OH adducts to sulfur containing organic compounds, halide ions as well as some metal cations. The bond between oxygen of OH radical and the atom of oxidized molecule differs depending on the nature of solute that OH radical reacts with. For most of sulfur containing organics, as well as halide and pseudo-halide ions, our observation suggested that this bond has two-center three-electron character. For several metal aqua ions studied, the nature of the bond depends on type of the cation being oxidized. Discussion on spectral parameters of all studied hydroxyl radical adducts as well as the role solvent plays in their stabilization will be presented.

  16. Formation of aminyl radicals on electron attachment to AZT: Abstraction from the sugar phosphate backbone vs. one-electron oxidation of Guanine

    PubMed Central

    Adhikary, Amitava; Khanduri, Deepti; Pottiboyina, Venkata; Rice, Cory T.; Sevilla, Michael D.

    2010-01-01

    Employing electron spin resonance (ESR) spectroscopy, we have characterized the radicals formed in 3′-Azido-3′-deoxythymidine (3′-AZT) and in its 5′-analog 5′-azido-5′-deoxythymidine (5′-AZT) after electron attachment in γ-irradiated aqueous (H2O or D2O) glassy (7.5 M LiCl) systems. ESR spectral studies and theoretical calculations show that the predominant site of electron capture in 3′-AZT and in 5′-AZT is at the azide group and not at the thymine moiety. The azide group in AZT is therefore more electron affinic than the most electron affinic DNA base, thymine. Electron attachment to 3′-AZT and 5′-AZT results in an unstable azide anion radical intermediate (RN3•−) that is too short lived to be observed in our work even at 77 K. At 77 K we observe the neutral aminyl radical (RNH•) after loss of N2 from RN3•− followed by protonation of nitrene anion radical (RN•−) to give RNH•. The expected RN•− intermediate is not observed as protonation from water is complete at 77 K even in under highly basic conditions. Formation of RND• in D2O solutions confirms water as the source of the NH proton in the RNH•. Our assignments to these radicals are aided by DFT calculations for hyperfine coupling constants which closely match the experimental values. On annealing to higher temperatures (ca. 160–170 K), RNH• undergoes bimolecular hydrogen abstraction reactions from the thymine methyl group and the sugar moiety resulting in the formation of the thymine allyl radical (UCH2•) and two sugar radicals - C3′•, C5′•. RNH• also results in one-electron oxidation of the guanine base in 3′-AZG. This work provides a potential mechanism for the reported radiosensitization effects of AZT. PMID:20575557

  17. The impact of cationic solid lipid nanoparticles on human neutrophil activation and formation of neutrophil extracellular traps (NETs).

    PubMed

    Hwang, Tsong-Long; Aljuffali, Ibrahim A; Hung, Chi-Feng; Chen, Chun-Han; Fang, Jia-You

    2015-06-25

    Cationic solid lipid nanoparticles (cSLNs) are extensively employed as the nanocarriers for drug/gene targeting to tumors and the brain. Investigation into the possible immune response of cSLNs is still lacking. The aim of this study was to evaluate the impact of cSLNs upon the activation of human polymorphonuclear neutrophil cells (PMNs). The cytotoxicity, pro-inflammatory mediators, Ca(2+) mobilization, mitogen-activated protein kinases (MAPKs), and neutrophil extracellular traps (NETs) as the indicators of PMN stimulation were examined in this work. The cSLNs presented a diameter of 195 nm with a zeta potential of 44 mV. The cSLNs could interact with the cell membrane to produce a direct membrane lysis and the subsequent cytotoxicity according to lactate dehydrogenase (LDH) elevation. The interaction of cSLNs with the membrane also triggered a Ca(2+) influx, followed by the induction of oxidative stress and degranulation. The cationic nanoparticles elevated the levels of superoxide anion and elastase by 24- and 9-fold, respectively. The PMN activation by cSLNs promoted the phosphorylation of p38 and Jun-N-terminal kinases (JNK) but not extracellular signal-regulated kinases (ERK). The imaging of scanning electron microscopy (SEM) and immunofluorescence demonstrated the production of NETs by cSLNs. This phenomenon was not significant for the neutral SLNs (nSLNs), although histones in NETs also increased after treatment of nSLNs. Our results suggest an important role of cSLNs in governing the activation of human neutrophils. PMID:25920576

  18. Formation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals formed in the ozonolysis of alkenes - deduced from structure-product relationships

    NASA Astrophysics Data System (ADS)

    Mentel, T. F.; Springer, M.; Ehn, M.; Kleist, E.; Pullinen, I.; Kurtén, T.; Rissanen, M.; Wahner, A.; Wildt, J.

    2015-06-01

    It has been postulated that secondary organic particulate matter plays a pivotal role in the early growth of newly formed particles in forest areas. The recently detected class of extremely low volatile organic compounds (ELVOC) provides the missing organic vapors and possibly contributes a significant fraction to atmospheric SOA (secondary organic aerosol). The sequential rearrangement of peroxy radicals and subsequent O2 addition results in ELVOC which are highly oxidized multifunctional molecules (HOM). Key for efficiency of such HOM in early particle growth is that their formation is induced by one attack of the oxidant (here O3), followed by an autoxidation process involving molecular oxygen. Similar mechanisms were recently observed and predicted by quantum mechanical calculations e.g., for isoprene. To assess the atmospheric importance and therewith the potential generality, it is crucial to understand the formation pathway of HOM. To elucidate the formation path of HOM as well as necessary and sufficient structural prerequisites of their formation we studied homologous series of cycloalkenes in comparison to two monoterpenes. We were able to directly observe highly oxidized multifunctional peroxy radicals with 8 or 10 O atoms by an Atmospheric Pressure interface High Resolution Time of Flight Mass Spectrometer (APi-TOF-MS) equipped with a NO3--chemical ionization (CI) source. In the case of O3 acting as an oxidant, the starting peroxy radical is formed on the so-called vinylhydroperoxide path. HOM peroxy radicals and their termination reactions with other peroxy radicals, including dimerization, allowed for analyzing the observed mass spectra and narrowing down the likely formation path. As consequence, we propose that HOM are multifunctional percarboxylic acids, with carbonyl, hydroperoxy, or hydroxy groups arising from the termination steps. We figured that aldehyde groups facilitate the initial rearrangement steps. In simple molecules like cycloalkenes

  19. Formation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals formed in the ozonolysis of alkenes - deduced from structure-product relationships

    NASA Astrophysics Data System (ADS)

    Mentel, T. F.; Springer, M.; Ehn, M.; Kleist, E.; Pullinen, I.; Kurtén, T.; Rissanen, M.; Wahner, A.; Wildt, J.

    2015-01-01

    It has been postulated that secondary organic particulate matter plays a pivotal role in the early growth of newly formed particles in forest areas. The recently detected class of extremely low volatile organic compounds (ELVOC) provides the missing organic vapours and possibly contributes a~significant fraction to atmospheric SOA. ELVOC are highly oxidized multifunctional molecules (HOM), formed by sequential rearrangement of peroxy radicals and subsequent O2 addition. Key for efficiency in early particle growth is that formation of HOM is induced by one attack of the oxidant (here O3) and followed by an autoxidation process involving molecular oxygen. Similar mechanisms were recently observed and predicted by quantum mechanical calculations e.g. for isoprene. To assess the atmospheric importance and therewith the potential generality, it is crucial to understand the formation pathway of HOM. To elucidate the formation path of HOM as well as necessary and sufficient structural prerequisites of their formation we studied homologues series of cycloalkenes in comparison to two monoterpenes. We were able to directly observe highly oxidized multifunctional peroxy radicals with 8 or 10 O-atoms by an Atmospheric Pressure interface High Resolution Time of Flight Mass Spectrometer equipped with a NO3--Chemical Ionization (CI) source. In case of O3 acting as oxidant the starting peroxy radical is formed on the so called vinylhydroperoxide path. HOM peroxy radicals and their termination reactions with other peroxy radicals, including dimerization, allowed for analysing the observed mass spectra and narrow down the likely formation path. As consequence we propose that HOM are multifunctional percarboxylic acids; with carbonyl-, hydroperoxy-, or hydroxy-groups arising from the termination steps. We figured that aldehyde groups facilitate the initial rearrangement steps. In simple molecules like cyloalkenes autoxidation was limited to both terminal C-atoms and two further C

  20. Quenching and radical formation in the reaction of photoexcited benzophenone with thiols and thioethers (sulfides). Nanosecond flash studies

    SciTech Connect

    Inbar, S.; Linschitz, H.; Cohen, S.G.

    1982-01-01

    Laser flash measurements have been made of rate constants and primary radical yields in the reactions of triplet benzophenone with aliphatic and aromatic thiols and with dialkyl and aryl alkyl sulfides. Reaction with n-pentylthiol in benzene leads mainly to quenching, with k/sub ir/ = 9 x 10/sup 6/ M/sup -1/ s/sup -1/ and radical yield (ketyl) = 0.14; with mesitylene-2 thiol in benzene k/sub ir/ = 7 x 10/sup 8/ M/sup -1/ s/sup -1/ and hydrogen transfer is efficient, radical yield (ketyl) approx. 1.0. In reactions with both p-chlorophenyl ethyl and diisopropyl sulfides, k/sub ir/ increases and radical yield (ketyl) decreases with increasing solvent polarity. Values of k/sub ir/ are higher and those of radical yield (ketyl) are lower for the dialkyl than for the aryl alkyl sulfide. Results are discussed in terms of rapid interaction of the triplet with S, followed by quenching and/or hydrogen transfer. Quenching without hydrogen transfer occurs to a much greater extent with sulfides and aliphatic thiols than with amines.

  1. Formation of gypsum and bassanite by cation exchange reactions in the absence of free-liquid H2O: Implications for Mars

    NASA Astrophysics Data System (ADS)

    Wilson, Siobhan A.; Bish, David L.

    2011-09-01

    Smectites and hydrated Mg sulfate minerals have been identified in close association at various locations on the Martian surface. The hydration states of sulfates and smectites are dependent on temperature and relative humidity (RH), and therefore these minerals have the potential to affect cycling and bioavailability of H2O on Mars. We have conducted X-ray powder diffraction experiments to investigate cycling of H2O within mixtures of Ca-bearing smectites and hydrated Mg sulfate minerals under conditions of varying RH similar to those that exist at or just beneath the Martian surface. Our experiments show that under conditions of varying RH, cation-exchange reactions occur between these two potential components of the Martian regolith, producing gypsum [CaSO4·2H2O] and bassanite [CaSO4·˜0.5H2O] in the absence of free-liquid H2O. Cation-exchange reactions were accompanied by significant loss of porosity, warping of the sample surface and, in some cases, volume expansion. The formation of Ca sulfate minerals in these experiments provides evidence for the development of thin films of H2O at mineral surfaces and suggests that similar processes may operate at the arid surface of Mars. Humidity-driven cation-exchange reactions between smectites and hydrated Mg sulfate minerals may therefore play a role in shaping the present-day Martian surface and could have provided a transient source of H2O and nutrients (e.g., major and trace elements and possibly organic micro/macronutrients) for putative microorganisms.

  2. 5-Thiocyanato-2′-deoxyuridine as a Possible Radiosensitizer: Electron-Induced Formation of Uracil-C5-Thiyl Radical and Its Dimerization

    PubMed Central

    Zdrowowicz, Magdalena; Chomicz, Lidia; Żyndul, Michał; Wityk, Paweł; Wiegand, Tyler J.; Hanson, Cameron G.; Adhikary, Amitava

    2015-01-01

    In this work, we have synthesized 5-thiocyanato-2′-deoxyuridine (SCNdU) along with the C6-deuterated nucleobase 5-thiocyanatouracil (6-D-SCNU) and studied their reactions with radiation-produced electrons. ESR spectra in γ-irradiated nitrogen-saturated frozen homogeneous solutions (7.5 M LiCl in H2O or D2O) of these compounds show that electron-induced S-CN bond cleavage occurs to form a thiyl radical (dU-5-S• or 6-D-U-5-S•) and CN− via the initial π-anion radical (SCNdU•−) intermediate in which the excess electron is on the uracil base. HPLC and LC-MS/MS studies of γ-irradiated N2-saturated aqueous solutions of SCNdU in the presence of sodium formate as a OH-radical scavenger at ambient temperature show the formation of the dU-5S-5S-dU dimer in preference to dU by about 10 to 1 ratio. This shows that both possible routes of electron-induced bond cleavage (dUC5-SCN and S-CN) in SCNdU•− and dU-5-S• formation are preferred for the production of the σ-type uracilyl radical (dU•) by 10 fold. DFT/M06-2x/6-31++G(d,p) calculations employing the polarizable continuum model (PCM) for aqueous solutions show that dU-5-S• and CN− formation was thermodynamically favored by over 15 kcal/mol (ΔG) compared to dU• and SCN− production. The activation barriers for C5-S and S-CN bond cleavage in SCNdU•− amount to 8.7 and 4.0 kcal/mol, respectively, favoring dU-5-S• and CN− formation. These results support the experimental observation of S-CN bond cleavage by electron addition to SCNdU that results in the formation of dU-5-S• and the subsequent dU-5S-5S-dU dimer. This establishes SCNdU as a potential radiosensitizer that could cause intra- and inter-strand crosslinking as well as DNA-protein crosslinking via S-S dimer formation. PMID:26059609

  3. The production of recombinant cationic α-helical antimicrobial peptides in plant cells induces the formation of protein bodies derived from the endoplasmic reticulum.

    PubMed

    Company, Nuri; Nadal, Anna; La Paz, José-Luis; Martínez, Sílvia; Rasche, Stefan; Schillberg, Stefan; Montesinos, Emilio; Pla, Maria

    2014-01-01

    Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, are valuable as novel therapeutics and preservatives. However, they tend to be toxic when expressed at high levels as recombinant peptides in plants, and they can be difficult to detect and isolate from complex plant tissues because they are strongly cationic and display low extinction coefficient and extremely limited immunogenicity. We therefore expressed BP100 with a C-terminal tag which preserved its antimicrobial activity and demonstrated significant accumulation in plant cells. We used a fluorescent tag to trace BP100 following transiently expression in Nicotiana benthamiana leaves and showed that it accumulated in large vesicles derived from the endoplasmic reticulum (ER) along with typical ER luminal proteins. Interestingly, the formation of these vesicles was induced by BP100. Similar vesicles formed in stably transformed Arabidopsis thaliana seedlings, but the recombinant peptide was toxic to the host during latter developmental stages. This was avoided by selecting active BP100 derivatives based on their low haemolytic activity even though the selected peptides remained toxic to plant cells when applied exogenously at high doses. Using this strategy, we generated transgenic rice lines producing active BP100 derivatives with a yield of up to 0.5% total soluble protein. PMID:24102775

  4. Tuning Lewis acidity using the reactivity of "frustrated Lewis pairs": facile formation of phosphine-boranes and cationic phosphonium-boranes.

    PubMed

    Welch, Gregory C; Cabrera, Lourdes; Chase, Preston A; Hollink, Emily; Masuda, Jason D; Wei, Pingrong; Stephan, Douglas W

    2007-08-21

    The concept of "frustrated Lewis pairs" involves donor and acceptor sites in which steric congestion precludes Lewis acid-base adduct formation. In the case of sterically demanding phosphines and boranes, this lack of self-quenching prompts nucleophilic attack at a carbon para to B followed by fluoride transfer affording zwitterionic phosphonium borates [R(3)P(C(6)F(4))BF(C(6)F(5))(2)] and [R(2)PH(C(6)F(4))BF(C(6)F(5))(2)]. These can be easily transformed into the cationic phosphonium-boranes [R(3)P(C(6)F(4))B(C(6)F(5))(2)](+) and [R(2)PH(C(6)F(4))B(C(6)F(5))(2)](+) or into the neutral phosphino-boranes R(2)P(C(6)F(4))B(C(6)F(5))(2). This new reactivity provides a modular route to a family of boranes in which the steric features about the Lewis acidic center remains constant and yet the variation in substitution provides a facile avenue for the tuning of the Lewis acidity. Employing the Gutmann-Beckett and Childs methods for determining Lewis acid strength, it is demonstrated that the cationic boranes are much more Lewis acidic than B(C(6)F(5))(3), while the acidity of the phosphine-boranes is diminished. PMID:17664977

  5. Novel reactions of one-electron oxidized radicals of selenomethionine in comparison with methionine.

    PubMed

    Mishra, B; Sharma, A; Naumov, S; Priyadarsini, K I

    2009-05-28

    Pulse radiolysis studies on hydroxyl (*OH) radical reactions of selenomethionine (SeM), a selenium analogue of methionine, were carried out, and the resultant transient radical cations and their subsequent reactions have been reported. At pH<3, the >Se*-OH radical adducts produced on reaction of SeM with *OH radical were converted to selenium centered radical cations (Se*+M), which react with another molecule of SeM to form dimer radical cation M(Se therefore Se)M+. At pH 7, the >Se*-OH radical adducts were converted to a monomer radical of the type (Se therefore N)M+ that acquires intramolecular stability through interaction with the lone pair of the N atom and this radical is denoted as SeM*+. SeM*+ decayed by first order kinetics, and the reduction potential of the couple SeM*+/SeM was determined to be 1.21+/-0.05 V vs NHE at pH 7. SeM*+ oxidized ABTS2- and TMPD with rate constants of (2.5+/-0.1)x10(8) and (6.1+/-0.2)x10(8) M(-1) s(-1), respectively, and reacted with hydroxide ion with a rate constant of (3.8+/-0.9)x10(5) M(-1) s(-1). SeM*+ reacts with molecular oxygen, and the rate constant for this reaction was determined to be (4.3+/-0.2)x10(8) M(-1) s(-1); similar reaction with methionine could not be observed experimentally. Like methionine radical cations, SeM*+ undergoes decarboxylation, although with lesser yield, to produce reducing 3-methyl-selenopropyl amino radicals (referred as alpha-amino radicals). The formation of these radicals was confirmed both by the estimation of the liberated CO2 and by one-electron reduction of MV2+, thionine, and PNAP. These results have been supported by quantum chemical calculations. Implications of these results in the biological role of SeM have also been briefly discussed. PMID:19408939

  6. Effect of xenobiotics on the respiratory activity of rat heart mitochondria and the concomitant formation of superoxide radicals

    SciTech Connect

    Stolze, K.; Nohl, H. . Inst. of Pharmacology and Toxicology)

    1994-03-01

    The effects of the xenobiotics atrazine, benzene, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lindane, toluene, and xylenol on the respiration of isolated rate heart mitochondria were studied. Bioenergetic parameters such as respiratory control (RC) and ATP/oxygen (P/O) values decreased considerably in the presence of these substances, and a concomitant increase of superoxide radical (O[sub 2][sup [minus

  7. IN VIVO EVIDENCE OF FREE RADICAL FORMATION IN THE RAT LUNG AFTER EXPOSURE TO AN EMISSION SOURCE AIR POLLUTION PARTICLE

    EPA Science Inventory

    Exposure to air pollution particles can be associated with increased human morbidity and mortality. The mechanism(s) of lung injury remains unknown. We tested the hypothesis that lung exposure to oil fly ash (an emission source air pollution particle) causes in vivo free radical ...

  8. Chemical functionalities at the silica surface determining its reactivity when inhaled. Formation and reactivity of surface radicals.

    PubMed

    Fubini, B; Giamello, E; Volante, M; Bolis, V

    1990-12-01

    Reactive radicals at the surface of quartz or other SiO2 polymorphs have been studied by EPR in relation to their possible role in pathogenicity. All the examined dusts bear the characteristic radicals of silica ground in air: Si, SiO., SiO.2 (peroxyradical) and O2.- (superoxide ion), but some also show additional spectral lines belonging to other radical forms. Comparison of standard quartz dusts (DQ-12, Min-u-sil 5) with a natural quartz and with what obtained by grinding a very pure quartz crystal indicates that to a higher purity corresponds a higher radical population. Cristobalite and vitreous silica exhibit similar spectra, with larger proportion by respect to quartz, of partially reduced oxygen forms. The reactivity of the silica surface towards O2 and NaClO aqueous solutions are investigated by examining the modification in the EPR spectra induced by these treatments. A possible mechanism for fibrogenicity is proposed whereby, within the activated macrophage, a catalytic reaction occurs between surface functionalities and macrophage oxygen metabolites. This reaction would trigger the abnormal production of fibroblast stimulating factors, ending up with silicosis. PMID:1965871

  9. FORMATION OF BETA-HYDROXYCARBONYLS FROM THE OH RADICAL-INITIATED REACTIONS OF SELECTED ALKENES (R825252)

    EPA Science Inventory

    -Hydroxycarbonyls can be formed from the gas-phase
    reactions of alkenes with the OH radical, both in the presence
    and in the absence of NO. To date, because of analytical
    difficulties, few data have been r...

  10. Investigation of SH and CS radicals formation dynamics inside the hot filament chemical vapor deposition environment by means of cavity ringdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Buzaianu, Madalina Dora

    2008-10-01

    The addition of traces amounts of sulfur containing gasses, such as H 2S, during the hot filament chemical vapor deposition of diamond thin films involving methane and hydrogen as a carrier gas, proved to enhance the formation of the nano-structured diamond and cause significant changes in the film growth behavior. The sulfur-incorporated nanocrystalline diamond, showing interesting electronic and tribological properties, raised scientific inquires about the fundamental mechanisms occurring inside the HFCVD reactor during the diamond growth. A better insight into the gas-phase and heterogeneous underlying processes can generate new ides for the customizing and optimization of the diamond synthesis in the view of new prospects of valuable technological applications. The SH and CS radicals, thought to be among the important precursors in the gas-phase and heterogeneous chemistry, were studied by means of Cavity Ringdown Spectroscopy (CRDS), a powerful non-intrusive, self-calibrating spectroscopic diagnostic tool, employed to detect the A(0) ← X(0) transition near 323 and 259 nm for SH and CS, respectively, and the A(0) ← X(1) transition near 352 nm for the SH radical. CRDS is particularly suitable to detect SH and CS radicals due to its high sensitivity, discrimination and spatial resolution, as well as the ability to provide absolute values of species concentrations. The fitting of the measured CRD decay traces of the SH and CS radicals provided the corresponding ringdown times. The substantial changes in the ringdown times observed when the filament temperature was raised to 2700 +/- 50 K (from 4.04 +/- 0.04 to 0.260 +/- 0.003 mus for SH and from 4.12 +/- 0.05 to 3.04 +/- 0.03 mus for CS, respectively) are compatible with the presence of SH and CS radicals. A simulation of the rotationally resolved SH and CS spectra near UV, based on the analysis of the radicals' Doppler line width, led to an estimate of their effective rotational temperature. The values

  11. Metal chalcogenide nanoparticle gel networks: Their formation mechanism and application for novel material generation and heavy metal water remediation via cation exchange reactions

    NASA Astrophysics Data System (ADS)

    Palhares, Leticia F.

    The dissertation research is focused on (1) uncovering the mechanism of metal chalcogenide nanoparticle gel formation; (2) extending the cation exchange reaction protocol to zinc sulfide gel networks, with the goal of accessing new aerogel chemistries and understanding the factors that drive the process; and (3) conducting a quantitative analysis of the ability of ZnS aerogels to remove heavy metal ions from aqueous solutions. The mechanism of metal chalcogenide nanoparticle gel formation was investigated using Raman spectroscopy and X-ray Photoelectron Spectroscopy to probe the chemical changes that occur during the gelation process. These techniques suggest that the bonding between the particles in the CdSe nanoparticle gels is due to the oxidation of surface selenide species, forming covalent Se--Se bonds. Treating the gel networks with a suitable reducing agent, such as a thiol, breaks the covalent bond and disperses the gel network. The addition of sodium borohydride, a "pure" reducing agent, also breaks down the gel network, strengthening the hypothesis that the reducing character of the thiols, not their ligation ability, is responsible for the gel network breakdown. UV-Vis spectroscopy, Transmission Electron Microscopy and Powder X-ray Diffraction were used to analyze the particles after successive gelation-dispersion cycles. The primary particle size decreases after repeated oxidation-reduction cycles, due to nanoparticle surface etching. This trend is observed for CdSe and CdS gel networks, allowing for the proposition that the oxidative-reductive mechanism responsible for the formation-dispersion of the gels is general, applying to other metal chalcogenide nanocrystals as well. The cation exchange reaction previously demonstrated for CdSe gels was extended to ZnS gel networks. The exchange occurs under mild reaction conditions (room temperature, methanol solvent) with exchanging ions of different size, charge and mobility (Ag+, Pb2+, Cd2+ , Cu2+). The

  12. The Radical S-Adenosyl-L-methionine Enzyme QhpD Catalyzes Sequential Formation of Intra-protein Sulfur-to-Methylene Carbon Thioether Bonds.

    PubMed

    Nakai, Tadashi; Ito, Hiroto; Kobayashi, Kazuo; Takahashi, Yasuhiro; Hori, Hiroshi; Tsubaki, Motonari; Tanizawa, Katsuyuki; Okajima, Toshihide

    2015-04-24

    The bacterial enzyme designated QhpD belongs to the radical S-adenosyl-L-methionine (SAM) superfamily of enzymes and participates in the post-translational processing of quinohemoprotein amine dehydrogenase. QhpD is essential for the formation of intra-protein thioether bonds within the small subunit (maturated QhpC) of quinohemoprotein amine dehydrogenase. We overproduced QhpD from Paracoccus denitrificans as a stable complex with its substrate QhpC, carrying the 28-residue leader peptide that is essential for the complex formation. Absorption and electron paramagnetic resonance spectra together with the analyses of iron and sulfur contents suggested the presence of multiple (likely three) [4Fe-4S] clusters in the purified and reconstituted QhpD. In the presence of a reducing agent (sodium dithionite), QhpD catalyzed the multiple-turnover reaction of reductive cleavage of SAM into methionine and 5'-deoxyadenosine and also the single-turnover reaction of intra-protein sulfur-to-methylene carbon thioether bond formation in QhpC bound to QhpD, producing a multiknotted structure of the polypeptide chain. Homology modeling and mutagenic analysis revealed several conserved residues indispensable for both in vivo and in vitro activities of QhpD. Our findings uncover another challenging reaction catalyzed by a radical SAM enzyme acting on a ribosomally translated protein substrate. PMID:25778402

  13. The Radical S-Adenosyl-l-methionine Enzyme QhpD Catalyzes Sequential Formation of Intra-protein Sulfur-to-Methylene Carbon Thioether Bonds*

    PubMed Central

    Nakai, Tadashi; Ito, Hiroto; Kobayashi, Kazuo; Takahashi, Yasuhiro; Hori, Hiroshi; Tsubaki, Motonari; Tanizawa, Katsuyuki; Okajima, Toshihide

    2015-01-01

    The bacterial enzyme designated QhpD belongs to the radical S-adenosyl-l-methionine (SAM) superfamily of enzymes and participates in the post-translational processing of quinohemoprotein amine dehydrogenase. QhpD is essential for the formation of intra-protein thioether bonds within the small subunit (maturated QhpC) of quinohemoprotein amine dehydrogenase. We overproduced QhpD from Paracoccus denitrificans as a stable complex with its substrate QhpC, carrying the 28-residue leader peptide that is essential for the complex formation. Absorption and electron paramagnetic resonance spectra together with the analyses of iron and sulfur contents suggested the presence of multiple (likely three) [4Fe-4S] clusters in the purified and reconstituted QhpD. In the presence of a reducing agent (sodium dithionite), QhpD catalyzed the multiple-turnover reaction of reductive cleavage of SAM into methionine and 5′-deoxyadenosine and also the single-turnover reaction of intra-protein sulfur-to-methylene carbon thioether bond formation in QhpC bound to QhpD, producing a multiknotted structure of the polypeptide chain. Homology modeling and mutagenic analysis revealed several conserved residues indispensable for both in vivo and in vitro activities of QhpD. Our findings uncover another challenging reaction catalyzed by a radical SAM enzyme acting on a ribosomally translated protein substrate. PMID:25778402

  14. Quenching of triplet benzophenone by 2,4,6-tri-tert-butylphenol and formation of its phenoxy radical

    SciTech Connect

    Kajii, Y.; Fujita, M.; Hiratsuka, H.; Obi, K.; Mori, Y.; Tanaka, I.

    1987-05-21

    Quenching of triplet benzophenone in benzene by 2,4,6-tri-tert-butylphenol is studied by the nanosecond laser flash photolysis. The quenching rate constant of triplet benzophenone has been determined to be 6.2 x 10/sup 8/ M/sup -1/ s/sup -1/, which is slightly smaller than the diffusion-controlled limit. The quenching reaction produces benzophenone ketyl and 2,4,6-tri-tert-butylphenoxy radicals simultaneously. The transient spectrum of the latter radical shows characteristic structured bands around 400 nm and a broad absorption between 600 and 700 nm. The extinction coefficient at the peak lambda/sub max/ = 670 nm of red absorption has been estimated to be 1200 M/sup -1/ cm/sup -1/.

  15. Glutamate neurotoxicity in rat cerebellar granule cells: a major role for xanthine oxidase in oxygen radical formation.

    PubMed

    Atlante, A; Gagliardi, S; Minervini, G M; Ciotti, M T; Marra, E; Calissano, P

    1997-05-01

    To gain insight into the mechanism through which the neurotransmitter glutamate causally participates in several neurological diseases, in vitro cultured cerebellar granule cells were exposed to glutamate and oxygen radical production was investigated. To this aim, a novel procedure was developed to detect oxygen radicals; the fluorescent dye 2',7'-dichlorofluorescein was used to detect production of peroxides, and a specific search for the possible conversion of the enzyme xanthine dehydrogenase into xanthine oxidase after the excitotoxic glutamate pulse was undertaken. A 100 microM glutamate pulse administered to 7-day-old cerebellar granule cells is accompanied by the onset of neuronal death, the appearance of xanthine oxidase, and production of oxygen radicals. Xanthine oxidase activation and superoxide (O2.-) production are completely inhibited by concomitant incubation of glutamate with MK-801, a specific NMDA receptor antagonist, or by chelation of external calcium with EGTA. Partial inhibition of both cell death and parallel production of reactive oxygen species is achieved with allopurinol, a xanthine oxidase inhibitor, leupeptin, a protease inhibitor, reducing agents such as glutathione or dithiothreitol, antioxidants such as vitamin E and vitamin C, and externally added superoxide dismutase. It is concluded that glutamate-triggered, NMDA-mediated, massive Ca2+ influx induces rapid conversion of xanthine dehydrogenase into xanthine oxidase with subsequent production of reactive oxygen species that most probably have a causal involvement in the initial steps of the series of intracellular events leading to neuronal degeneration and death. PMID:9109530

  16. Synchrotron Photoionization Mass Spectrometry Measurements of Kinetics and Product Formation in the Allyl Radical (H2CCHCH2)Self Reaction

    NASA Technical Reports Server (NTRS)

    Selby, Talitha M.; Melini, giovanni; Goulay, Fabien; Leone, Stephen R.; Fahr, Askar; Taatjes, Craig A.; Osborn, David L.

    2008-01-01

    Product channels for the self-reaction of the resonance-stabilized allyl radical, C3H5 + C3H5, have been studied with isomeric specificity at temperatures from 300-600 K and pressures from 1-6 Torr using time-resolved multiplexed photoionization mass spectrometry. Under these conditions 1,5-hexadiene was the only C6H10 product isomer detected. The lack of isomerization of the C6H10 product is in marked contrast to the C6H6 product in the related C3H3 + C3H3 reaction, and is due to the more saturated electronic structure of the C6H10 system. The disproportionation product channel, yielding allene + propene, was also detected, with an upper limit on the branching fraction relative to recombination of 0.03. Analysis of the allyl radical decay at 298 K yielded a total rate coefficient of (2.7 +/- 0.8) x 10(exp -11) cu cm/molecule/s, in good agreement with pre.vious experimental measurements using ultraviolet kinetic absorption spectroscopy and a recent theoretical determination using variable reaction coordinate transition state theory. This result provides independent indirect support for the literature value of the allyl radical ultraviolet absorption cross-section near 223 nm.

  17. A combined crossed molecular beam and theoretical investigation of the reaction of the meta-tolyl radical with vinylacetylene--toward the formation of methylnaphthalenes.

    PubMed

    Yang, Tao; Muzangwa, Lloyd; Kaiser, Ralf I; Jamal, Adeel; Morokuma, Keiji

    2015-09-01

    Crossed molecular beam experiments and electronic structure calculations on the reaction of the meta-tolyl radical with vinylacetylene were conducted to probe the formation of methyl-substituted naphthalene isomers. We present the compelling evidence that under single collision conditions 1- and 2-methylnaphthalene can be formed without an entrance barrier via indirect scattering dynamics through a bimolecular collision of two non-PAH reactants: the meta-tolyl radical and vinylacetylene. The electronic structure calculations, conducted at the UCCSD(T)-F12b/cc-pVDZ//UM06-2x/cc-pVTZ + ZPE(UM06-2x/cc-pVTZ) level of theory, reveal that this reaction is initiated by the barrierless addition of the meta-tolyl radical to the terminal vinyl carbon (C1) of vinylacetylene, via a van-der-Waals complex implying that this mechanism can play a key role in forming methyl-substituted PAHs in low temperature extreme environments such as the low temperature interstellar medium and hydrocarbon-rich atmospheres of planets and their moons in the outer solar system. The reaction mechanism, proposed from the C11H11 potential energy surface, involves a sequence of isomerizations involving hydrogen transfer and ring closure, followed by hydrogen dissociation, which eventually leads to 1- and 2-methylnaphthalene in an overall exoergic process. PMID:26220215

  18. Effects of water-filtered infrared-A and of heat on cell death, inflammation, antioxidative potential and of free radical formation in viable skin--first results.

    PubMed

    Piazena, Helmut; Pittermann, Wolfgang; Müller, Werner; Jung, Katinka; Kelleher, Debra K; Herrling, Thomas; Meffert, Peter; Uebelhack, Ralf; Kietzmann, Manfred

    2014-09-01

    The effects of water-filtered infrared-A (wIRA) and of convective heat on viability, inflammation, inducible free radicals and antioxidative power were investigated in natural and viable skin using the ex vivo Bovine Udder System (BUS) model. Therefore, skin samples from differently treated parts of the udder of a healthy cow were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, by prostaglandin E2 (PGE2) measurement and by electron spin resonance (ESR) spectroscopy. Neither cell viability, the inflammation status, the radical status or the antioxidative defence systems of the skin were significantly affected by wIRA applied within 30 min by using an irradiance of 1900 W m(-2) which is of relevance for clinical use, but which exceeded the maximum solar IR-A irradiance at the Earth's surface more than 5 times and which resulted in a skin surface temperature of about 45 °C without cooling and of about 37 °C with convective cooling by air ventilation. No significant effects on viability and on inflammation were detected when convective heat was applied alone under equivalent conditions in terms of the resulting skin surface temperatures and exposure time. As compared with untreated skin, free radical formation was almost doubled, whereas the antioxidative power was reduced to about 50% after convective heating to about 45 °C. PMID:25038541

  19. Ketyl Radical Formation via Proton-Coupled Electron Transfer in an Aqueous Solution versus Hydrogen Atom Transfer in Isopropanol after Photoexcitation of Aromatic Carbonyl Compounds.

    PubMed

    Zhang, Xiting; Ma, Jiani; Li, Songbo; Li, Ming-De; Guan, Xiangguo; Lan, Xin; Zhu, Ruixue; Phillips, David Lee

    2016-07-01

    The excited nπ* and ππ* triplets of two benzophenone (BP) and two anthraquinone (AQ) derivatives have been observed in acetonitrile, isopropanol, and mixed aqueous solutions using time-resolved resonance Raman spectroscopic and nanosecond transient absorption experiments. These experimental results, combined with results from density functional theory calculations, reveal the effects of solvent and substituents on the properties, relative energies, and chemical reactivities of the nπ* and ππ* triplets. The triplet nπ* configuration was found to act as the reactive species for a subsequent hydrogen atom transfer reaction to produce a ketyl radical intermediate in the isopropanol solvent, while the triplet ππ* undergoes a proton-coupled electron transfer (PCET) in aqueous solutions to produce a ketyl radical intermediate. This PCET reaction, which occurs via a concerted proton transfer (to the excited carbonyl group) and electron transfer (to the excited phenyl ring), can account for the experimental observation by several different research groups over the past 40 years of the formation of ketyl radicals after photolysis of a number of BP and AQ derivatives in aqueous solutions, although water is considered to be a relatively "inert" hydrogen-donor solvent. PMID:27266916

  20. Are positive ion radicals formed in pulse radiolysis of alkylbenzenesulfonates. [7 MeV linear accelerator

    SciTech Connect

    Behar, D. )

    1991-05-30

    Oxidation of alkylbenzenesulfonates by OH radicals proceeds via two routes: 75-85% of the OH radicals react via addition to the benzene ring, while the rest abstract an H atom from the alkyl group. The relative distribution between the two paths of reaction depends on the nature of the alkyl group. No evidence for the formation of cation radicals from OH adducts was found. H radicals add to the benzene ring to form cyclohexadienyl type radicals, but when reacted with isopropylbenzenesulfonate about 15% of the H radicals abstract hydrogen from the alkyl to form the benzyl type radical. The reaction of SO{sub 4}{sup {sm bullet}{minus}} with alkylbenzenesulfonates produces 50-70% OH adducts and the rest are the benzyl type radicals. At high concentrations of solute and persulfate a short-lived precursor to the benzyl radicals has been observed. The precursors observed with p-toluenesulfonate, isopropylbenzenesulfonate, and m-toluenesulfonate decay in a first-order process with the rates 1.4 {times} 10{sup 6}, 9.4 {times} 10{sup 5}, and 2.5 {times} 10{sup 5} s{sup {minus}1}, respectively. The short-lived precursor is identified as an unstable OH adduct to the benzene ring.

  1. Free radical scavenging and formation by multi-walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells

    PubMed Central

    2014-01-01

    Background Certain multi-walled carbon nanotubes (MWCNTs) have been shown to elicit asbestos-like toxicological effects. To reduce needs for risk assessment it has been suggested that the physicochemical characteristics or reactivity of nanomaterials could be used to predict their hazard. Fibre-shape and ability to generate reactive oxygen species (ROS) are important indicators of high hazard materials. Asbestos is a known ROS generator, while MWCNTs may either produce or scavenge ROS. However, certain biomolecules, such as albumin – used as dispersants in nanomaterial preparation for toxicological testing in vivo and in vitro - may reduce the surface reactivity of nanomaterials. Methods Here, we investigated the effect of bovine serum albumin (BSA) and cell culture medium with and without BEAS 2B cells on radical formation/scavenging by five MWCNTs, Printex 90 carbon black, crocidolite asbestos, and glass wool, using electron spin resonance (ESR) spectroscopy and linked this to cytotoxic effects measured by trypan blue exclusion assay. In addition, the materials were characterized in the exposure medium (e.g. for hydrodynamic size-distribution and sedimentation rate). Results The test materials induced highly variable cytotoxic effects which could generally be related to the abundance and characteristics of agglomerates/aggregates and to the rate of sedimentation. All carbon nanomaterials were found to scavenge hydroxyl radicals (•OH) in at least one of the solutions tested. The effect of BSA was different among the materials. Two types of long, needle-like MWCNTs (average diameter >74 and 64.2 nm, average length 5.7 and 4.0 μm, respectively) induced, in addition to a scavenging effect, a dose-dependent formation of a unique, yet unidentified radical in both absence and presence of cells, which also coincided with cytotoxicity. Conclusions Culture medium and BSA affects scavenging/production of •OH by MWCNTs, Printex 90 carbon black, asbestos and glass

  2. Formation of 7-carboxyheptyl radical induced by singlet oxygen in the reaction mixture of oleic acid, riboflavin and ferrous ion under the UVA irradiation.

    PubMed

    Mori, Hiroko; Iwahashi, Hideo

    2011-09-01

    Identification of the radicals was performed for the standard reaction mixtures, which contained 4.3 mM oleic acid, 25 µM riboflavin, 1 mM FeSO(4)(NH(4))(2)SO(4), 10 mM cholic acid, 40 mM phosphate buffer (pH 7.4) and 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone under the UVA irradiation (365 nm), using an electron spin resonance, an high performance liquid chromatography-electron spin resonance and an high performance liquid chromatography-electron spin resonance-mass spectrometry. The electron spin resonance and high performance liquid chromatography-electron spin resonance measurements of the standard reaction mixtures showed prominent signals (α(N) = 1.58 mT and α(H)β = 0.26 mT) and peaks 1 and 3 (retention times, 37.0 min and 49.0 min). Since the peak 3 was not observed for the standard reaction mixture without oleic acid, the radical of the peak 3 seems to be derived from oleic acid. Singlet oxygens seem to participate in the formation of the oleic acid-derived radicals because the peak height of the peak 3 observed in the standard reaction mixture of D(2)O increased to 308 ± 72% of the control. The high performance liquid chromatography-electron spin resonance-mass spectrometry analysis showed that 7-carboxyheptyl radical forms in the standard reaction mixture. PMID:21980232

  3. Effect of Siloxane Ring Strain and Cation Charge Density on the Formation of Coordinately Unsaturated Metal Sites on Silica: Insights from DFT Studies

    SciTech Connect

    Das, Ujjal; Zhang, Guanghui; Hu, Bo; Hock, Adam S.; Redfern, Paul C.; Miller, Jeffrey T.; Curtiss, Larry A.

    2015-12-01

    Amorphous silica (SiO2) is commonly used as a support in heterogeneous catalysis. However, due to the structural disorder and temperature induced change of surface morphology, the structures of silica supported metal catalysts are difficult to determine. Most studies are primarily focused on understanding the interactions of different types of surface hydroxyl groups with metal ions. In comparison, the effect of siloxane ring size on the structure of silica supported metal catalysts and how it affects catalytic activity is poorly understood. Here, we have used density functional theory calculations to understand the effect of siloxane ring strain on structure and activity of different monomeric Lewis acid metal sites on silica. In particular, we have found that large siloxane rings favor strong dative bonding interaction between metal ion and surface hydroxyls, leading to the formation of high-coordinate metal sites. In comparison, metal-silanol interaction is weak in small siloxane rings, resulting in low-coordinate metal sites. The physical origin of this size dependence is associated with siloxane ring strain, and, a correlation between metal-silanol interaction energy and ring strain energy has been observed. In addition to ring strain, the strength of the metal-silanol interaction also depends on the positive charge density of the cations. In fact, a correlation also exists between metal-silanol interaction energy and charge density of several first-row transition and post-transition metals. The theoretical results are compared with the EXAFS data of monomeric Zn(II) and Ga(III) ions grafted on silica. The molecular level insights of how metal ion coordination on silica depends on siloxane ring strain and cation charge density will be useful in the synthesis of new catalysts.

  4. Products and Mechanisms of Aerosol Formation from Reactions of OH Radicals with Linear and Branched Alkenes in the Presence of NOx (Invited)

    NASA Astrophysics Data System (ADS)

    Ziemann, P. J.; Matsunaga, A.

    2009-12-01

    The chemical and physical processes involved in the formation of secondary organic aerosol (SOA) are complex and can include reactions of volatile organic compounds with a number of atmospheric oxidants (the major ones are O3, and OH and NO3 radicals), as well as surface and condensed-phase reactions, homogeneous nucleation, and gas-particle partitioning. It should come as no surprise that understanding and accurately modeling these processes is a major challenge that has not yet been fully addressed. Alkenes emitted from vegetation are the largest source of non-methane hydrocarbons to the global atmosphere and consist mostly of isoprene (C5H8), monoterpenes (C10H16), and sesquiterpenes (C15H24), compounds with a large range of sizes and molecular structures. Their atmospheric oxidation is initiated primarily by reactions with hydroxyl radicals and can lead to a variety of products, some of which can form SOA. Because of the complexity of terpene reactions and the large numbers of products that are formed, there are advantages to studying the chemistry of simpler alkenes in order to gain insights that can be applied to more complex reaction systems. This is the approach we have taken, and in this talk I will report results of studies of the products, SOA yields, and mechanisms of SOA formation from reactions of a variety of linear and branched alkenes with hydroxyl radicals in the presence of nitrogen oxides. Products consist of a large array of multifunctional compounds, including oligomers, containing carbonyl, hydroxy, carboxyl, and nitrate groups. I will demonstrate some of the ways in which changes in molecular structure can alter both gas and SOA products, including those formed through condensed-phase reactions, and also SOA yields, and suggest explanations for these effects based on current understanding of chemical reaction mechanisms.

  5. Theoretical study of the coordination behavior of formate and formamidoximate with dioxovanadium(V) cation: implications for selectivity towards uranyl.

    PubMed

    Mehio, Nada; Johnson, J Casey; Dai, Sheng; Bryantsev, Vyacheslav S

    2015-12-21

    Poly(acrylamidoxime)-based fibers bearing random mixtures of carboxylate and amidoxime groups are the most widely utilized materials for extracting uranium from seawater. However, the competition between uranyl (UO2(2+)) and vanadium ions poses a significant challenge to the industrial mining of uranium from seawater using the current generation of adsorbents. To design more selective adsorbents, a detailed understanding of how major competing ions interact with carboxylate and amidoxime ligands is required. In this work, we employ density functional theory (DFT) and wave-function methods to investigate potential binding motifs of the dioxovanadium ion, VO2(+), with water, formate, and formamidoximate ligands. Employing higher level of theory calculations (CCSD(T)) resolve the existing controversy between the experimental results and previous DFT calculations for the structure of the hydrated VO2(+) ion. Consistent with the EXAFS data, CCSD(T) calculations predict higher stability of the distorted octahedral geometry of VO2(+)(H2O)4 compared to the five-coordinate complex with a single water molecule in the second hydration shell, while all seven tested DFT methods yield the reverse stability of the two conformations. Analysis of the relative stabilities of formate-VO2(+) complexes indicates that both monodentate and bidentate forms may coexist in thermodynamic equilibrium in solution. Investigations of VO2(+) coordination with the formamidoximate anion has revealed the existence of seven possible binding motifs, four of which are within ∼4.0 kcal mol(-1) of each other. Calculations establish that the most stable binding motif entails the coordination of oxime oxygen and amide nitrogen atoms via a tautomeric rearrangement of amidoxime to imino hydroxylamine. The difference in the most stable VO2(+) and UO2(2+) binding conformation has important implications for the design of more selective UO2(2+) ligands. PMID:26559445

  6. Matrix-isolation studies on the radiation-induced chemistry in H₂O/CO₂ systems: reactions of oxygen atoms and formation of HOCO radical.

    PubMed

    Ryazantsev, Sergey V; Feldman, Vladimir I

    2015-03-19

    The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media. PMID:25469518

  7. Photolytic formation of free radicals and their effect on hydrocarbon pyrolysis chemistry in a concentrated solar environment

    SciTech Connect

    Hunjan, M.S.; Mok, W.S.L.; Antal, M.J. Jr. . Dept. of Mechanical Engineering)

    1989-08-01

    High-energy photons present in concentrated sunlight can be used to photolytically dissociate certain vapor-phase compounds known to be sources of free radicals. These free radicals can subsequently initiate or influence pyrolysis reactions involving hydrocarbons. Experiments were conducted in a vapor-phase, tubular flow reactor placed at the focus of a 1-kW arc image furnace, which acted as a source of simulated concentrated sunlight. Experimentally observed rates of acetone photolysis were in close agreement with the values predicted by employing the Beer-Lambert law. By the use of acetone as a photosensitizing agent, the photosensitized pyrolysis chemistry of n-butane, at 350{sup 0}C, was studied. Without photosensitization, no pyrolysis was observed. With photosensitization, a modest (2-4%) conversion of n-butane to butane, hexene, propene, and other hydrocarbons was achieved. Numerical simulations of the photosensitized pyrolysis behavior provided results similar to the experimental observations. The results of numerical simulations at higher temperatures lead the authors to conclude that major photosensitization effects may be observed at temperatures between 400 and 500{sup 0}C.

  8. Singlet oxygen-dependent hydroxyl radical formation during uroporphyrin-mediated photosensitization in the presence of NADPH.

    PubMed

    Takeshita, K; Olea-Azar, C A; Mizuno, M; Ozawa, T

    2000-01-01

    The conversion of singlet oxygen ((1)O2) to hydroxyl radical (*OH) during photosensitization of uroporphyrin (UP) in the presence of NADPH was examined by a spin-trapping technique with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Significant electron spin resonance (ESR) signals of DMPO-OH adduct were observed during irradiation of the UP-NADPH system with visible light. Scavengers of *OH reduced the signal intensity to 3-30% of control, indicating that more than 70% of DMPO-OH results from freely diffusing *OH. The ESR signal was almost completely lost when quenchers of (1)O2 were added, and was enhanced when the amount of deutrated solvent was increased. The appearance of (1)O2, as determined by the oxidation of 2,2,6,6-tetramethyl-4-piperidone (TEMPD), was delayed with an increase in the concentration of NADPH, whereas the production of *OH was upregulated. These observations indicate that conversion of (1)O2 to *OH occurs quickly in the presence of NADPH. Hydrogen peroxide (H2O2) was produced (1)O2-dependently during irradiation of UP in the presence of NADPH. However, neither catalase nor desferrioxamine decreased the DMPO-OH signal, and addition of H2O2 did not increase the signal. SOD increased the signal only slightly. These results suggest that the production of *OH from (1)O2 involves neither superoxide anion radical nor H2O2. PMID:11229539

  9. Kinetics and mechanisms of the pyridinolysis of phenyl and 4-nitrophenyl chlorothionoformates. Formation and hydrolysis of 1-(aryloxythiocarbonyl)pyridinium cations.

    PubMed

    Castro, Enrique A; Cubillos, María; Santos, José G

    2004-07-01

    The title reactions are subjected to a kinetic study in water, at 25.0 degrees C, and an ionic strength of 0.2 M (KCl). By following the reactions spectrophotometrically two consecutive reactions are observed: the first is formation of the corresponding thionocarbamates (1-(aryloxythiocarbonyl)pyridinium cations) and the second is their decomposition to the corresponding phenol and pyridine, and COS. Pseudo-first-order rate coefficients (k(obsd1) and k(obsd2), respectively) are found under excess amine. Plots of k(obsd1) vs free pyridine concentration at constant pH are linear, with the slope (k(N)) independent of pH. The Brønsted-type plots (log k(N) vs pK(a) of the conjugate acids of the pyridines) are linear with slopes beta = 0.07 and 0.11 for the reactions of phenyl and 4-nitrophenyl chlorothionoformates, respectively. These Brønsted slopes are in agreement with those found in other stepwise reactions of the same pyridines in water, where the formation of a tetrahedral intermediate is the rate-determining step. In contrast to the stepwise mechanism of the title reactions that for the reactions of the same substrates with phenols is concerted, which means that substitution of a pyridino moiety in a tetrahedral intermediate by a phenoxy group destabilizes the intermediate. The second reaction corresponds to the pyridine-catalyzed hydrolysis of the corresponding 1-(aryloxythiocarbonyl)pyridinium cation. Plots of k(obsd2) vs free pyridine concentration at constant pH are linear, with the slope (k(H)) independent of pH. The Brønsted plots for k(H) are linear with slopes beta = 0.19 and 0.26 for the reactions of the phenyl and 4-nitrophenyl derivatives, respectively. These low values are explained by the fact that as pK(a) increases the effect of a better pyridine catalyst is compensated by a worse leaving pyridine from the corresponding thionocarbamate PMID:15230606

  10. Phenacyl Ethyl Carbazolium as a Long Wavelength Photoinitiator for Free Radical Polymerization.

    PubMed

    Kara, Merve; Dadashi-Silab, Sajjad; Yagci, Yusuf

    2015-12-01

    A new phenacyl-type photoinitiator based on ethyl carbazole as a long wavelength photo-initiator is developed for free radical polymerization. Phenacyl ethyl carbazolium hexafluoroantimonate (PECH) photoinitiator is synthesized in a two-step, one-pot manner by quaternizing ethyl carbazole with phenacyl bromide and subsequent ion exchange reaction with potassium hexafluoroantimonate. Under irradiation, PECH tends to undergo homolytic bond cleavage bringing about initiating free radicals. However, as evidenced by cyclic voltammetry and real-time photobleaching studies, formation of initiating cationic species is highly unlikely as the photochemically formed charged carbazole units tend to couple. PMID:26356628

  11. Formation of nanostructured porous Cu-Au surfaces: the influence of cationic sites on (electro)-catalysis

    NASA Astrophysics Data System (ADS)

    Najdovski, Ilija; Selvakannan, Pr.; Bhargava, Suresh K.; O'Mullane, Anthony P.

    2012-09-01

    The fabrication of nanostructured bimetallic materials through electrochemical routes offers the ability to control the composition and shape of the final material that can then be effectively applied as (electro)-catalysts. In this work a clean and transitory hydrogen bubble templating method is employed to generate porous Cu-Au materials with a highly anisotropic nanostructured interior. Significantly, the co-electrodeposition of copper and gold promotes the formation of a mixed bimetallic oxide surface which does not occur at the individually electrodeposited materials. Interestingly, the surface is dominated by Au(i) oxide species incorporated within a Cu2O matrix which is extremely effective for the industrially important (electro)-catalytic reduction of 4-nitrophenol. It is proposed that an aurophilic type of interaction takes place between both oxidized gold and copper species which stabilizes the surface against further oxidation and facilitates the binding of 4-nitrophenol to the surface and increases the rate of reaction. An added benefit is that very low gold loadings are required typically less than 2 wt% for a significant enhancement in performance to be observed. Therefore the ability to create a partially oxidized Cu-Au surface through a facile electrochemical route that uses a clean template consisting of only hydrogen bubbles should be of benefit for many more important reactions.The fabrication of nanostructured bimetallic materials through electrochemical routes offers the ability to control the composition and shape of the final material that can then be effectively applied as (electro)-catalysts. In this work a clean and transitory hydrogen bubble templating method is employed to generate porous Cu-Au materials with a highly anisotropic nanostructured interior. Significantly, the co-electrodeposition of copper and gold promotes the formation of a mixed bimetallic oxide surface which does not occur at the individually electrodeposited materials

  12. Formation of spiroiminodihydantoin due to the reaction between 8-oxoguanine and carbonate radical anion: A quantum computational study

    NASA Astrophysics Data System (ADS)

    Yadav, Amarjeet; Mishra, P. C.

    2014-01-01

    Reaction of 8-oxoguanine (8OG) with carbonate radical anion (CO3·-) producing spiroiminodihydantoin has been investigated using density functional theory. Geometries of reactant complex, intermediate complexes, product complexes and transition states were optimized at the B3LYP/6-31G(d,p) level of theory in gas phase which was followed by single point energy calculations employing the B3LYP, M06-2X and WB97XD functionals along with the AUG-cc-pVDZ basis set in gas phase and aqueous media. Solvent effect was treated employing the integral equation formalism of the polarizable continuum model. Possible roles of aeration, stirring and photoirradiation of reaction media which are performed in experimental studies have been explained.

  13. Drugs with susceptible sites for free radical induced oxidative transformations: the case of a penicillin.

    PubMed

    Szabó, László; Tóth, Tünde; Rácz, Gergely; Takács, Erzsébet; Wojnárovits, László

    2016-01-01

    Penicillins, as bactericidal antibiotics, have been widely used to treat infections for several decades. Their structure contains both aromatic and thioether moieties susceptible to free radical oxidation. The (•)OH induced oxidation mechanism of amoxicillin was investigated by pulse radiolysis techniques and by final product analysis performed after steady-state γ-irradiation. The predominant sites of the (•)OH attack are suggested to be the thioether group, initially yielding an (•)OH adduct to the sulfur, and the aromatic ring. This adduct to the sulfur converts to sulfur radical cation, which has three competitive reaction paths: (1) by deprotonation at the adjacent carbon α-(alkylthio)alkyl radicals form, which undergo disproportionation leading presumably to sulfoxide as main product; (2) via the pseudo-Kolbe mechanism it may transform to α-aminoalkyl radicals; (3) the radical cation can be stabilized through intramolecular S.˙.O bond formation. The reaction mechanism suggests the presence of a short-living and a stabilized (via hydrogen bonding) long-living (•)OH adduct to the sulfur. The three-electron bonded dimers of amoxicillin were not formed owing to steric hindrance. Thiyl radicals were also present in equilibrium with α-aminoalkyl radicals. In the presence of dissolved oxygen, aromatic ring hydroxylation occurred along with complex reactions resulting in e.g. oxidation of the methyl groups. The formation of the sulfoxide is especially effective in the presence of dissolved oxygen, under anaerobic condition, however, it is also generated owing to H2O2 and α-(alkylthio)alkyl radicals. The thioether moiety appears to be more sensitive to oxidation compared to the aromatic ring in case of amoxicillin. PMID:26431250

  14. Mechanism of the hydroxy radical oxidation of methacryoyl peroxynitrate (MPAN) and its pathway toward secondary organic aerosol formation in the atmosphere

    SciTech Connect

    Nguyen, Tran B.; Bates, Kelvin H.; Crounse, J. D.; Schwantes, Rebecca H.; Zhang, Xuan; Kjaergaard, Henrik G.; Surratt, Jason D.; Lin, Peng; Laskin, Alexander; Seinfeld, John H.; Wennberg, P. O.

    2015-01-01

    Methacryoyl peroxynitrate (MPAN), the acylperoxyl nitrate of methacrolein, has been suggested to be an important secondary organic aerosol (SOA) precursor from isoprene oxidation. Yet, the mechanism by which MPAN produces SOA via reaction with the hydroxyl radical (OH) is unclear. We systematically evaluate three proposed mechanisms in controlled chamber experiments and provide the first experimental support for the theoretically-predicted lactone formation pathway from the MPAN + OH reaction, producing hydroxymethyl-methyl-α-lactone (HMML). The decomposition of the MPAN-OH adduct yields HMML + NO3 (~ 75%) and hydroxyacetone + CO + NO3 (~ 25%), out-competing its reaction with atmospheric oxygen. The production of other proposed SOA precursors, e.g., methacrylic acid epoxide (MAE), from MPAN and methacrolein are negligible (< 2 %). Furthermore, we show that the beta-alkenyl moiety of MPAN is critical for lactone formation. Alkyl radicals formed via OH abstraction nstead of addition are thermalized; thus, even if they are structurally identical to the MPAN-OH adduct, they do not decompose to HMML. The SOA formation from HMML, via polyaddition of the lactone to organic compounds, is close to unity under dry conditions. However, the SOA yield is sensitive to particle liquid water and solvated ions. In hydrated sulfate-containing particles, HMML reacts primarily with H2O and aqueous sulfate, producing monomeric 2-methylglyceric acid (2MGA) and the associated organosulfate. 2MGA, a tracer for isoprene SOA, is semivolatile and its volatility increases with decreasing pH in the aerosol water. Conditions that enhance the production of neutral 2MGA will suppress SOA mass from the HMML channel. Considering the liquid water content and pH ranges of ambient particles, MGA may exist largely as a gaseous compound in some parts of the atmosphere.

  15. Increased endogenous ascorbyl free radical formation with singlet oxygen scavengers in reperfusion injury: an EPR and functional recovery study in rat hearts.

    PubMed

    Lee, J W; Bobst, E V; Wang, Y G; Ashraf, M M; Bobst, A M

    2000-12-01

    The objective of this study was to investigate the effect of singlet oxygen ((1)O2) scavengers on functional recovery and ascorbyl free radical (AFR) formation in isolated ischemic rat hearts. Hearts were subjected to 40 min. of global ischemia followed by 30 min. of reperfusion. Hemodynamics were measured as heart rate (HR), coronary flow (CF), left ventricular developed pressure (LVDP) and contractility (dP/dt). Electron paramagnetic resonance (EPR) spectroscopy was used to measure AFR release in coronary perfusate during the first two min. of reperfusion as a function of ROS scavengers. Relative to ischemic controls the administration of the (1)O2 scavengers 2,2,6,6-tetramethyl-4-piperidone x HCl (4-oxo-TEMP), carnosine (beta-alanyl-L-histidine) or a combination of the two significantly improved functional recovery as measured by LVDP. While no AFR signal was detected in coronary perfusate collected during preischemic perfusion with and without (1)O2 scavengers, the AFR background signal due to ischemia was significantly increased with the (1)O2 and *O2- scavengers. No such increase was observed with the hydroxyl radical (*OH) scavenger mannitol. Besides the AFR increase with the (1)O2 and *O2- scavengers the functional recovery was only significantly improved with the (1)O2 scavengers. In contrast to previous AFR studies we found with endogenous AFR that an increased AFR formation is not necessarily only reflecting increased oxidative stress but can also report improved functional recovery. Combining the hemodynamic data with increased AFR formation in the presence of several different ROS scavengers gives supportive evidence for (1)O2 also being involved in reperfusion injury. PMID:11156483

  16. Investigation of siRNA Nanoparticle Formation Using Mono-Cationic Detergents and Its Use in Gene Silencing in Human HeLa Cells

    PubMed Central

    Yamada, Yuma; Suzuki, Ryosuke; Harashima, Hideyoshi

    2013-01-01

    The focus of recent research has been on the development of siRNA vectors to achieve an innovative gene therapy. Most of the conventional vectors are siRNA nanoparticles complexed with cationic polymers and liposomes, making it difficult to release siRNA. In this study, we report on the use of MCD, a quaternary ammonium salt detergent containing a long aliphatic chain (L-chain) as an siRNA complexation agent using human HeLa cells (a model cancer cell). We prepared siRNA nanoparticles using various MCDs, and measured the diameters and zeta-potentials of the particles. The use of an MCD with a long L-chain resulted in the formation of a positively charged nanoparticle. In contrast, a negatively charged nanoparticle was formed when a MCD with a short L-chain was used. We next evaluated the gene silencing efficiency of the nanoparticles using HeLa cells expressing the luciferase protein. The results showed that the siRNA/MCD nanoparticles showed a higher gene silencing efficiency than Lipofectamine 2000. We also found that the efficiency of gene silencing is a function of the length of the alkyl chain in MCD and zeta-potential of the siRNA/MCD nanoparticles. Such information provides another viewpoint for designing siRNA vectors. PMID:24202451

  17. Elemental composition and radical formation potency of PM10 at an urban background station in Germany in relation to origin of air masses

    NASA Astrophysics Data System (ADS)

    Hellack, Bryan; Quass, Ulrich; Beuck, Henning; Wick, Gabriele; Kuttler, Wilhelm; Schins, Roel P. F.; Kuhlbusch, Thomas A. J.

    2015-03-01

    At an urban background station in Mülheim-Styrum, North Rhine Westphalia, Germany, a set of 75 PM10 samples was collected over a one year period, followed by analyses for mass, chemical composition and hydroxyl radical (OHrad) formation potency. Additionally, the origin of air masses for the sampling days was calculated by 48-h backward trajectories, subdivided into the four cardinal sectors. Significant lower PM10 mass concentrations were observed for summertime air masses from the west compared to the other seasons and cardinal sectors. For the OHrad formation potency higher values were detected if air masses originate from east and south, thus predominantly being of continental origin. From the elevated OHrad formation potencies in fall and winter a seasonal trend with low potencies in summers is assumed. Furthermore, source apportionment was performed by a positive matrix factor analysis, separating seven plausible factors which could be attributed to mineral dust, secondary nitrate, industry, non-exhaust traffic, fossil fuel combustion, marine aerosol and secondary aerosol factors. The intrinsic OHrad formation potency was found to be associated mainly with the fossil fuel combustion factor (45%) and industry factor (22%).

  18. Real-time monitoring of the mechanism of ibuprofen-cationic dextran crystanule formation using crystallization process informatics system (CryPRINS).

    PubMed

    Abioye, Amos Olusegun; Chi, George Tangyie; Simone, Elena; Nagy, Zoltan

    2016-07-25

    One step aqueous melt-crystallization and in situ granulation was utilized to produce ibuprofen-cationic dextran [diethylaminoethyl dextran (Ddex)] conjugate crystanules without the use of surfactants or organic solvents. This study investigates the mechanism of in situ granulation-induced crystanule formation using ibuprofen (Ibu) and Ddex. Laboratory scale batch aqueous crystallization system containing in situ monitoring probes for particle vision measurement (PVM), UV-vis measurement and focused beam reflectance measurements (FBRM) was adapted using pre-defined formulation and process parameters. Pure ibuprofen showed nucleation domain between 25 and 64°C, producing minicrystals with onset of melting at 76°C and enthalpy of fusion (ΔH) of 26.22kJ/mol. On the other hand Ibu-Ddex crystanules showed heterogeneous nucleation which produced spherical core-shell structure. PVM images suggest that internalization of ibuprofen in Ddex corona occurred during the melting phase (before nucleation) which inhibited crystal growth inside the Ddex corona. The remarkable decrease in ΔH of the crystanules from 26.22 to 11.96kJ/mol and the presence of broad overlapping DSC thermogram suggests formation of ibuprofen-Ddex complex and crystalline-amorphous transformation. However Raman and FTIR spectra did not show any significant chemical interaction between ibuprofen and Ddex. A significant increase in dissolution efficiency from 45 to 81% within 24h and reduced burst release provide evidence for potential application of crystanules in controlled drug delivery systems. It was evident that in situ granulation of ibuprofen inhibited the aqueous crystallization process. It was concluded that in situ granulation-aqueous crystallization technique is a novel unit operation with potential application in continuous pharmaceutical processing. PMID:27260131

  19. Photo-irradiation of Aloe vera by UVA--formation of free radicals, singlet oxygen, superoxide, and induction of lipid peroxidation.

    PubMed

    Xia, Qingsu; Yin, Jun Jie; Fu, Peter P; Boudreau, Mary D

    2007-01-30

    Aloe vera whole leaf extracts are incorporated into a wide variety of topically applied commercial products. Aloe vera whole leaf extracts may contain anthraquinones, which have been shown to generate reactive oxygen species in the presence of ultraviolet A (UVA) light. Exposure to UVA light alone can also generate reactive oxygen species and is associated with photo-damaged and photo-aged skin in humans. This paper examines the photochemical properties of two Aloe vera whole leaf extracts that differed in their anthraquinone content. In the presence of methyl linoleate, the UVA irradiation of Aloe vera leaf extracts induced lipid peroxidation. The amounts of lipid peroxides formed were higher in the Aloe vera leaf extract that contained lower amounts of anthraquinones. Superoxide dismutase and sodium azide inhibited and deuterium oxide enhanced the formation of lipid peroxides, suggesting that singlet oxygen and superoxide were involved in the mechanism. Spin trapping electron spin resonance (ESR) spectroscopy was used to investigate the generation of free radicals by the UVA photo-irradiated Aloe vera plant extracts. ESR measurements indicated that the UVA photo-irradiation of Aloe vera plant extracts produced carbon-centered free radicals. These results suggest that humans exposed to products that contain Aloe vera whole leaf extracts may have enhanced sensitivity to ultraviolet light. PMID:17197137

  20. Radical formation in the FMN-photosensitized reactions of unsaturated fatty acids bearing double bonds at different positions.

    PubMed

    Nishihama, Nao; Iwahashi, Hideo

    2016-08-15

    -carboxybutyl, 7-carboxyheptyl and 9-carboxynonyl radicals formed in the control reaction mixtures of (z)-6-octadecenoic acid, (z)-9-octadecenoic acid {or (z, z)-9,12-octadecadienoic acid} and (z)-11-octadecenoic acid, respectively. The 4-carboxybutyl, 7-carboxyheptyl and 9-carboxynonyl radicals are all generated through β-scission of alkoxy radicals formed on carboxyl ends of the double bonds of the unsaturated fatty acids. Thus, we could reveal reactive sites of unsaturated fatty acids in the photosensitized reaction of flavin mononucleotide with unsaturated fatty acids bearing a double bond at different positions. PMID:27372435

  1. Secondary organic aerosol formation from the gas phase reaction of hydroxyl radicals with m-, o- and p-cresol

    NASA Astrophysics Data System (ADS)

    Henry, Françoise; Coeur-Tourneur, Cecile; Ledoux, Frédéric; Tomas, Alexandre; Menu, Dominique

    Secondary organic aerosol (SOA) formation during the atmospheric oxidation of cresols was investigated using a large smog chamber (8000 L), at atmospheric pressure, 294±2 K and low relative humidity (6-10%). Cresol oxidation was initiated by irradiation of cresol/CH 3ONO/NO/air mixtures. The cresol loss was measured by gas chromatography with a flame ionization detector (GC-FID) and the temporal evolution of the aerosol was monitored using a scanning mobility particle sizer (SMPS). The overall organic aerosol yield ( Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses ( Mo) to the total reacted cresol concentrations assuming a particle density of 1.4 g cm -3. Analysis of the data clearly show that Y is a strong function of Mo and that SOA formation can be expressed by a one-product gas/particle partitioning absorption model. The aerosol formation is affected by the initial cresol concentration, which leads to aerosol yields from 9% to 42%. These results are in good agreement with a recent study performed on SOA formation from the photo-oxidation of o-cresol in a smog chamber. To our knowledge, the present work represents the first investigation of SOA formation from OH reaction with m- and p-cresol.

  2. The PqqD homologous domain of the radical SAM enzyme ThnB is required for thioether bond formation during thurincin H maturation.

    PubMed

    Wieckowski, Beata M; Hegemann, Julian D; Mielcarek, Andreas; Boss, Linda; Burghaus, Olaf; Marahiel, Mohamed A

    2015-07-01

    Thurincin H is a 31-residue, ribosomally synthesized bacteriocin originating from the thn operon of Bacillus thuringiensis SF361. It is the only known sactipeptide carrying four thioether bridges between four cysteines and the α-carbons of a serine, an asparagine and two threonine residues. By analysis of the thn operon and use of in vitro studies we now reveal that ThnB is a radical S-adenosylmethionine (SAM) enzyme containing two [4Fe-4S] clusters. Furthermore, we confirm the involvement of ThnB in the formation of the thioether bonds present within the structure of thurincin H. Finally, we show that the PqqD homologous N-terminal domain of ThnB is essential for maturation of the thurincin H precursor peptide, but not for the SAM cleavage activity of ThnB. PMID:26026269

  3. Photochemical Formation of Hydroxyl Radical, Hydrogen Peroxide and Fe(II) in the Sea Surface Microlayer (SML) Collected in Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Higaonna, Y.; Tachibana, C.; Kasaba, T.; Ishikawa, R.; Arakaki, T.

    2014-12-01

    The sea surface microlayer (SML) covers upper 1 to 1000 μm deep boundary layer of the ocean, where important biogeochemical processes take place. Photo-chemical reactions are activated by sunlight, so it is assumed that more photo-chemical reactions occur in SML than underlying bulk seawater (bulk). We initiated a study to understand chemical changes occurring in the SML by studying photochemical formation of oxidants such as hydrogen peroxide and hydroxyl radical (OH), both of which react with various organic substances and determine their lifetimes. Since OH can be formed by reaction between hydrogen peroxide and Fe(II), Fe(II) photoformation was also studied. We collected SML samples using a widely-used glass plate method and bulk samples by using a polyethylene bottles near the coast of Okinawa Island, Japan. Results showed that dissolved organic carbon (DOC) concentrations in the SML were about twice those of bulk seawater samples. Hydrogen peroxide formation in the SML samples was ca. 2.8 times faster than the bulk seawater samples. On the other hand, Fe(II) and OH photoformation kinetics was similar for both SML and bulk samples. Although it was predicted that more OH could be formed from reaction between hydrogen peroxide and Fe(II), OH formation kinetics was similar in both SML and bulk, suggesting that either Fe(II) did not react with hydrogen peroxide or reaction is very slow, possibly by forming a complex with organic compounds in the SML and bulk.

  4. Direct Formation of the C5′-Radical in the Sugar-Phosphate Backbone of DNA by High Energy Radiation

    PubMed Central

    Adhikary, Amitava; Becker, David; Palmer, Brian J.; Heizer, Alicia N.; Sevilla, Michael D.

    2012-01-01

    Neutral sugar radicals formed in DNA sugar-phosphate backbone are well-established as precursors of biologically important damage such as DNA-strand scission and crosslinking. In this work, we present electron spin resonance (ESR) evidence showing that the sugar radical at C5′ (C5′•) is one of the most abundant (ca. 30%) sugar radicals formed by γ- and Ar ion-beam irradiated hydrated DNA samples. Taking dimethyl phosphate as a model of sugar-phosphate backbone, ESR and theoretical (DFT) studies of γ-irradiated dimethyl phosphate were carried out. CH3OP(O2−)OCH2• is formed via deprotonation from the methyl group of directly ionized dimethyl phosphate at 77 K. Formation of CH3OP(O2−)OCH2• is independent of dimethyl phosphate concentration (neat or in aqueous solution) or pH. ESR spectra of C5′• found in DNA and of CH3OP(O2−)OCH2• do not show an observable β-phosphorous hyperfine coupling (HFC). Further, C5′• found in DNA does not show a significant C4′-H β–proton HFC. Applying the DFT/B3LYP/6-31G(d) method, a study of conformational dependence of the phosphorous HFC in CH3OP(O2−)OCH2• shows that in its minimum energy conformation, CH3OP(O2−)OCH2• has a negligible β-phosphorous HFC. Based on these results, formation of radiation-induced C5′• is proposed to occur via a very rapid deprotonation from the directly ionized sugar-phosphate backbone and rate of this deprotonation must be faster than that of energetically downhill transfer of the unpaired spin (hole) from ionized sugar-phosphate backbone to the DNA bases. Moreover, C5′• in irradiated DNA is found to be in a conformation that does not exhibit β proton or β phosphorous HFCs. PMID:22553971

  5. S-OO bond dissociation energies and enthalpies of formation of the thiomethyl peroxyl radicals CH{sub 3}S(O){sub n}OO (n=0,1,2)

    SciTech Connect

    Salta, Zoi; Kosmas, Agnie Mylona; Lesar, Antonija

    2014-10-06

    Optimized geometries, S-OO bond dissociation energies and enthalpies of formation for a series of thiomethyl peroxyl radicals are investigated using high level ab initio and density functional theory methods. The results show that the S-OO bond dissociation energy is largest in the methylsulfonyl peroxyl radical, CH{sub 3}S(O){sub 2}OO, which contains two sulfonic type oxygen atoms followed by the methylthiyl peroxyl radical, CH{sub 3}SOO. The methylsulfinyl peroxyl radical, CH{sub 3}S(O)OO, which contains only one sulfonic type oxygen shows the least stability with regard to dissociation to CH{sub 3}S(O)+O{sub 2}. This stabilization trend is nicely reflected in the variations of the S-OO bond distance which is found to be shortest in CH{sub 3}S(O){sub 2}OO and longest in CH{sub 3}S(O)OO.

  6. Combining the Power of Irmpd with Ion-Molecule Reactions: the Structure and Reactivity of Radical Ions of Cysteine and its Derivatives

    NASA Astrophysics Data System (ADS)

    Lesslie, Michael; Osburn, Sandra; Berden, Giel; Oomens, J.; Ryzhov, Victor

    2015-06-01

    Most of the work on peptide radical cations has involved protons as the source of charge. Nonetheless, using metal ions as charge sources often offers advantages like stabilization of the structure via multidentate coordination and the elimination of the "mobile proton". Moreover, characterization of metal-bound amino acids is of general interest as the interaction of peptide side chains with metal ions in biological systems is known to occur extensively. In the current study, we generate thiyl radicals of cysteine and homocysteine in the gas phase complexed to alkali metal ions. Subsequently, we utilize infrared multiple-photon dissociation (IRMPD) and ion-molecule reactions (IMR) to characterize the structure and reactivity of these radical ions. Our group has worked extensively with the cysteine-based radical cations and anions, characterizing the gas-phase reactivity and rearrangement of the amino acid and several of its derivatives. In a continuation of this work, we are perusing the effects of metal ions as the charge bearing species on the reactivity of the sulfur radical. Our S-nitroso chemistry can easily be used in conjunction with metal ion coordination to produce initial S-based radicals in peptide radical-metal ion complexes. In all cases we have been able to achieve radical formation with significant yield to study reactivity. Ion-molecule reactions of metallated radicals with allyl iodide, dimethyl disulfide, and allyl bromide have all shown decreasing reactivity going down group 1A. Recently, we determined the experimental IR spectra for the homocysteine radical cation with Li+, Na+, and K+ as the charge bearing species at the FELIX facility. For comparison, the protonated IR spectrum of homocysteine has previously been obtained by our group. A preliminary match of the IR spectra has been confirmed. Finally, calculations are underway to determine the bond distances of all the metal adduct structures.

  7. Retinol induces morphological alterations and proliferative focus formation through free radical-mediated activation of multiple signaling pathways

    PubMed Central

    Gelain, Daniel Pens; Pasquali, Matheus Augusto de Bittencourt; Caregnato, Fernanda Freitas; Castro, Mauro Antonio Alves; Moreira, José Claudio Fonseca

    2012-01-01

    Aim: Toxicity of retinol (vitamin A) has been previously associated with apoptosis and/or cell malignant transformation. Thus, we investigated the pathways involved in the induction of proliferation, deformation and proliferative focus formation by retinol in cultured Sertoli cells of rats. Methods: Sertoli cells were isolated from immature rats and cultured. The cells were subjected to a 24-h treatment with different concentrations of retinol. Parameters of oxidative stress and cytotoxicity were analyzed. The effects of the p38 inhibitor SB203580 (10 μmol/L), the JNK inhibitor SP600125 (10 μmol/L), the Akt inhibitor LY294002 (10 μmol/L), the ERK inhibitor U0126 (10 μmol/L) the pan-PKC inhibitor Gö6983 (10 μmol/L) and the PKA inhibitor H89 (1 μmol/L) on morphological and proliferative/transformation-associated modifications were studied. Results: Retinol (7 and 14 μmol/L) significantly increases the reactive species production in Sertoli cells. Inhibition of p38, JNK, ERK1/2, Akt, and PKA suppressed retinol-induced [3H]dT incorporation into the cells, while PKC inhibition had no effect. ERK1/2 and p38 inhibition also blocked retinol-induced proliferative focus formation in the cells, while Akt and JNK inhibition partially decreased focus formation. ERK1/2 and p38 inhibition hindered transformation-associated deformation in retinol-treated cells, while other treatments had no effect. Conclusion: Our results suggest that activation of multiple kinases is responsible for morphological and proliferative changes associated to malignancy development in Sertoli cells by retinol at the concentrations higher than physiological level. PMID:22426700

  8. One-Electron Oxidation of Gemcitabine and Analogs: Mechanism of Formation of C3′ and C2′ Sugar Radicals

    PubMed Central

    2015-01-01

    Gemcitabine is a modified cytidine analog having two fluorine atoms at the 2′-position of the ribose ring. It has been proposed that gemcitabine inhibits RNR activity by producing a C3′• intermediate via direct H3′-atom abstraction followed by loss of HF to yield a C2′• with 3′-keto moiety. Direct detection of C3′• and C2′• during RNR inactivation by gemcitabine still remains elusive. To test the influence of 2′- substitution on radical site formation, electron spin resonance (ESR) studies are carried out on one-electron oxidized gemcitabine and other 2′-modified analogs, i.e., 2′-deoxy-2′-fluoro-2′-C-methylcytidine (MeFdC) and 2′-fluoro-2′-deoxycytidine (2′-FdC). ESR line components from two anisotropic β-2′-F-atom hyperfine couplings identify the C3′• formation in one-electron oxidized gemcitabine, but no further reaction to C2′• is found. One-electron oxidized 2′-FdC is unreactive toward C3′• or C2′• formation. In one-electron oxidized MeFdC, ESR studies show C2′• production presumably from a very unstable C3′• precursor. The experimentally observed hyperfine couplings for C2′• and C3′• match well with the theoretically predicted ones. C3′• to C2′• conversion in one-electron oxidized gemcitabine and MeFdC has theoretically been modeled by first considering the C3′• and H3O+ formation via H3′-proton deprotonation and the subsequent C2′• formation via HF loss induced by this proximate H3O+. Theoretical calculations show that in gemcitabine, C3′• to C2′• conversion in the presence of a proximate H3O+ has a barrier in agreement with the experimentally observed lack of C3′• to C2′• conversion. In contrast, in MeFdC, the loss of HF from C3′• in the presence of a proximate H3O+ is barrierless resulting in C2′• formation which agrees with the experimentally observed rapid C2′• formation. PMID:25296262

  9. Radical Hysterectomy

    MedlinePlus

    ... the base of her partner’s penis during intercourse. Orgasm after radical hysterectomy Women who have had a ... the surgery will affect their ability to have orgasms. This has not been studied a great deal, ...

  10. Novel Nitro-PAH Formation from Heterogeneous Reactions of PAHs with NO2, NO3/N2O5, and OH Radicals: Prediction, Laboratory Studies and Mutagenicity

    PubMed Central

    JARIYASOPIT, NARUMOL; INTOSH, MELISSA MC; ZIMMERMANN, KATHRYN; AREY, JANET; ATKINSON, ROGER; CHEONG, PAUL HA-YEON; CARTER, RICH G.; YU, TIAN-WEI; DASHWOOD, RODERICK H.; SIMONICH, STACI L. MASSEY

    2014-01-01

    The heterogeneous reactions of benzo[a]pyrene-d12 (BaP-d12), benzo[k]fluoranthene-d12 (BkF-d12), benzo[ghi]perylene-d12 (BghiP-d12), dibenzo[a,i]pyrene-d14 (DaiP-d14), and dibenzo[a,l]pyrene (DalP) with NO2, NO3/N2O5, and OH radicals were investigated at room temperature and atmospheric pressure in an indoor Teflon chamber and novel mono NO2-DaiP, and mono NO2-DalP products were identified. Quartz fiber filters (QFF) were used as a reaction surface and the filter extracts were analyzed by GC/MS for nitrated-PAHs (NPAHs) and tested in the Salmonella mutagenicity assay, using Salmonella typhimurium strain TA98 (with and without metabolic activation). In parallel to the laboratory experiments, a theoretical study was conducted to rationalize the formation of NPAH isomers based on the thermodynamic stability of OH-PAH intermediates, formed from OH-radical-initiated reactions. NO2 and NO3/N2O5 were effective oxidizing agents in transforming PAHs to NPAHs, with BaP-d12 being the most readily nitrated. Reaction of BaP-d12, BkF-d12 and BghiP-d12 with NO2 and NO3/N2O5 resulted in the formation of more than one mono-nitro isomer product, while the reaction of DaiP-d14 and DalP resulted in the formation of only one mono-nitro isomer product. The direct-acting mutagenicity increased the most after NO3/N2O5 exposure, particularly for BkF-d12 in which di-NO2-BkF-d10 isomers were measured. The deuterium isotope effect study suggested that substitution of deuterium for hydrogen lowered both the direct and indirect acting mutagenicity of NPAHs and may result in an underestimation of the mutagencity of the novel NPAHs identified in this study. PMID:24350894

  11. Role of OH radicals in the formation of oxygen molecules following vacuum ultraviolet photodissociation of amorphous solid water

    SciTech Connect

    Hama, Tetsuya; Yokoyama, Masaaki; Yabushita, Akihiro; Kawasaki, Masahiro

    2010-09-14

    Photodesorption of O{sub 2}(X {sup 3}{Sigma}{sub g}{sup -}) and O{sub 2}(a {sup 1}{Delta}{sub g}) from amorphous solid water at 90 K has been studied following photoexcitation within the first absorption band at 157 nm. Time-of-flight and rotational spectra of O{sub 2} reveal the translational and internal energy distributions, from which production mechanisms are deduced. Exothermic and endothermic reactions of OH+O({sup 3}P) are proposed as plausible formation mechanisms for O{sub 2}(X {sup 3}{Sigma}{sub g}{sup -} and a {sup 1}{Delta}{sub g}). To examine the contribution of the O({sup 3}P)+O({sup 3}P) recombination reaction to the O{sub 2} formation following 157 nm photolysis of amorphous solid water, O{sub 2} products following 193 nm photodissociation of SO{sub 2} adsorbed on amorphous solid water were also investigated.

  12. Ortho- and meta-tyrosine formation from phenylalanine in human saliva as a marker of hydroxyl radical generation during betel quid chewing.

    PubMed

    Nair, U J; Nair, J; Friesen, M D; Bartsch, H; Ohshima, H

    1995-05-01

    The habit of betel quid chewing, common in South-East Asia and the South Pacific islands, is causally associated with an increased risk of oral cancer. Reactive oxygen species formed from polyphenolic betel quid ingredients and lime at alkaline pH have been implicated as the agents responsible for DNA and tissue damage. To determine whether hydroxyl radical (HO.) is generated in the human oral cavity during chewing of betel quid, the formation of o- and m-tyrosine from L-phenylalanine was measured. Both o- and m-tyrosine were formed in vitro in the presence of extracts of areca nut and/or catechu, transition metal ions such as Cu2+ and Fe2+ and lime or sodium carbonate (alkaline pH). Omission of any of these ingredients from the reaction mixture significantly reduced the yield of tyrosines. Hydroxyl radical scavengers such as ethanol, D-mannitol and dimethylsulfoxide inhibited the phenylalanine oxidation in a dose-dependent fashion. Five volunteers chewed betel quid consisting of betel leaf, areca nut, catechu and slaked lime (without tobacco). Their saliva, collected after chewing betel quid, contained high concentrations of p-tyrosine, but no appreciable amounts of o- or m-tyrosine. Saliva samples from the same subjects after chewing betel quid to which 20 mg phenylalanine had been added contained o- and m-tyrosine at concentrations ranging from 1010 to 3000 nM and from 1110 to 3140 nM respectively. These levels were significantly higher (P < 0.005) than those of subjects who kept phenylalanine in the oral cavity without betel quid, which ranged from 14 to 70 nM for o-tyrosine and from 10 to 35 nM for m-tyrosine. These studies clearly demonstrate that the HO. radical is formed in the human oral cavity during betel quid chewing and is probably implicated in the genetic damage that has been observed in oral epithelial cells of chewers. PMID:7767985

  13. P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice.

    PubMed

    Chatterjee, Saurabh; Rana, Ritu; Corbett, Jean; Kadiiska, Maria B; Goldstein, Joyce; Mason, Ronald P

    2012-05-01

    While some studies show that carbon tetrachloride-mediated metabolic oxidative stress exacerbates steatohepatitic-like lesions in obese mice, the redox mechanisms that trigger the innate immune system and accentuate the inflammatory cascade remain unclear. Here we have explored the role of the purinergic receptor P2X7-NADPH oxidase axis as a primary event in recognizing the heightened release of extracellular ATP from CCl(4)-treated hepatocytes and generating redox-mediated Kupffer cell activation in obese mice. We found that an underlying condition of obesity led to the formation of protein radicals and posttranslational nitration, primarily in Kupffer cells, at 24h post-CCl(4) administration. The free radical-mediated oxidation of cellular macromolecules, which was NADPH oxidase and P2X7 receptor-dependent, correlated well with the release of TNF-α and MCP-2 from Kupffer cells. The Kupffer cells in CCl(4)-treated mice exhibited increased expression of MHC Class II proteins and showed an activated phenotype. Increased expression of MHC Class II was inhibited by the NADPH oxidase inhibitor apocynin , P2X7 receptor antagonist A438709 hydrochloride, and genetic deletions of the NADPH oxidase p47 phox subunit or the P2X7 receptor. The P2X7 receptor acted upstream of NADPH oxidase activation by up-regulating the expression of the p47 phox subunit and p47 phox binding to the membrane subunit, gp91 phox. We conclude that the P2X7 receptor is a primary mediator of oxidative stress-induced exacerbation of inflammatory liver injury in obese mice via NADPH oxidase-dependent mechanisms. PMID:22343416

  14. π-Radical to σ-Radical Tautomerization in One-Electron-Oxidized 1-Methylcytosine and Its Analogs.

    PubMed

    Adhikary, Amitava; Kumar, Anil; Bishop, Casandra T; Wiegand, Tyler J; Hindi, Ragda M; Adhikary, Ananya; Sevilla, Michael D

    2015-09-01

    In this work, iminyl σ-radical formation in several one-electron-oxidized cytosine analogs, including 1-MeC, cidofovir, 2'-deoxycytidine (dCyd), and 2'-deoxycytidine 5'-monophosphate (5'-dCMP), were investigated in homogeneous, aqueous (D2O or H2O) glassy solutions at low temperatures by employing electron spin resonance (ESR) spectroscopy. Upon employing density functional theory (DFT) (DFT/B3LYP/6-31G* method), the calculated hyperfine coupling constant (HFCC) values of iminyl σ-radical agree quite well with the experimentally observed ones, thus confirming its assignment. ESR and DFT studies show that the cytosine iminyl σ-radical is a tautomer of the deprotonated cytosine π-cation radical [cytosine π-aminyl radical, C(N4-H)(•)]. Employing 1-MeC samples at various pHs ranging from ca. 8 to 11, ESR studies show that the tautomeric equilibrium between C(N4-H)(•) and the iminyl σ-radical at low temperature is too slow to be established without added base. ESR and DFT studies agree that, in the iminyl σ-radical, the unpaired spin is localized on the exocyclic nitrogen (N4) in an in-plane pure p-orbital. This gives rise to an anisotropic nitrogen hyperfine coupling (Azz = 40 G) from N4 and a near isotropic β-nitrogen coupling of 9.7 G from the cytosine ring nitrogen at N3. Iminyl σ-radical should exist in its N3-protonated form, as the N3-protonated iminyl σ-radical is stabilized in solution by over 30 kcal/mol (ΔG = -32 kcal/mol) over its conjugate base, the N3-deprotonated form. This is the first observation of an isotropic β-hyperfine ring nitrogen coupling in an N-centered DNA radical. Our theoretical calculations predict that the cytosine iminyl σ-radical can be formed in double-stranded DNA by a radiation-induced ionization-deprotonation process that is only 10 kcal/mol above the lowest energy path. PMID:26237072

  15. Chemoselective Radical Dehalogenation and C-C Bond Formation on Aryl Halide Substrates Using Organic Photoredox Catalysts.

    PubMed

    Poelma, Saemi O; Burnett, G Leslie; Discekici, Emre H; Mattson, Kaila M; Treat, Nicolas J; Luo, Yingdong; Hudson, Zachary M; Shankel, Shelby L; Clark, Paul G; Kramer, John W; Hawker, Craig J; Read de Alaniz, Javier

    2016-08-19

    Despite the number of methods available for dehalogenation and carbon-carbon bond formation using aryl halides, strategies that provide chemoselectivity for systems bearing multiple carbon-halogen bonds are still needed. Herein, we report the ability to tune the reduction potential of metal-free phenothiazine-based photoredox catalysts and demonstrate the application of these catalysts for chemoselective carbon-halogen bond activation to achieve C-C cross-coupling reactions as well as reductive dehalogenations. This procedure works both for conjugated polyhalides as well as unconjugated substrates. We further illustrate the usefulness of this protocol by intramolecular cyclization of a pyrrole substrate, an advanced building block for a family of natural products known to exhibit biological activity. PMID:27276418

  16. Roaming radical pathways for the decomposition of alkanes.

    SciTech Connect

    Harding, L. B.; Klippenstein, S. J.

    2010-01-01

    CASPT2 calculations predict the existence of roaming radical pathways for the decomposition of propane, n-butane, isobutane and neopentane. The roaming radical paths lead to the formation of an alkane and an alkene instead of the expected radical products. The predicted barriers for the roaming radical paths lie {approx}1 kcal/mol below the corresponding radical asymptotes.

  17. Laboratory experiments for Titan's ionosphere : the photoionisation of hydrocarbon radicals CxHy.

    NASA Astrophysics Data System (ADS)

    Alcaraz, C.; Fischer, I.; Schussler, T.; Deyerl, H.-J.; Roth, W.; Elhan