Sample records for radical intermediate derived

  1. Radical SAM catalysis via an organometallic intermediate with an Fe-[5'-C]-deoxyadenosyl bond.

    PubMed

    Horitani, Masaki; Shisler, Krista; Broderick, William E; Hutcheson, Rachel U; Duschene, Kaitlin S; Marts, Amy R; Hoffman, Brian M; Broderick, Joan B

    2016-05-13

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to cleave SAM to initiate diverse radical reactions. These reactions are thought to involve the 5'-deoxyadenosyl radical intermediate, which has not yet been detected. We used rapid freeze-quenching to trap a catalytically competent intermediate in the reaction catalyzed by the radical SAM enzyme pyruvate formate-lyase activating enzyme. Characterization of the intermediate by electron paramagnetic resonance and (13)C, (57)Fe electron nuclear double-resonance spectroscopies reveals that it contains an organometallic center in which the 5' carbon of a SAM-derived deoxyadenosyl moiety forms a bond with the unique iron site of the [4Fe-4S] cluster. Discovery of this intermediate extends the list of enzymatic bioorganometallic centers to the radical SAM enzymes, the largest enzyme superfamily known, and reveals intriguing parallels to B12 radical enzymes. Copyright © 2016, American Association for the Advancement of Science.

  2. Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging.

    PubMed

    Hyodo, Fuminori; Ito, Shinji; Yasukawa, Keiji; Kobayashi, Ryoma; Utsumi, Hideo

    2014-08-05

    Redox reactions that generate free radical intermediates are essential to metabolic processes. However, their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. We report here the use of dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) to conduct redox molecular imaging. Using DNP-MRI, we obtained simultaneous images of free radical intermediates generated from the coenzyme Q10 (CoQ10), flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) involved in the mitochondrial electron transport chain as well as the radicals derived from vitamins E and K1. Each of these free radicals was imaged in real time in a phantom comprising a mixture of free radicals localized in either lipophilic or aqueous environments. Changing the frequency of electron spin resonance (ESR) irradiation also allowed each of the radical species to be distinguished in the spectroscopic images. This study is the first to report the spectroscopic DNP-MRI imaging of free radical intermediates that are derived from endogenous species involved in metabolic processes.

  3. Identification of the substrate radical intermediate derived from ethanolamine during catalysis by ethanolamine ammonia-lyase.

    PubMed

    Bender, Güneş; Poyner, Russell R; Reed, George H

    2008-10-28

    Rapid-mix freeze-quench (RMFQ) methods and electron paramagnetic resonance (EPR) spectroscopy have been used to characterize the steady-state radical in the deamination of ethanolamine catalyzed by adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL). EPR spectra of the radical intermediates formed with the substrates, [1-13C]ethanolamine, [2-13C]ethanolamine, and unlabeled ethanolamine were acquired using RMFQ trapping methods from 10 ms to completion of the reaction. Resolved 13C hyperfine splitting in EPR spectra of samples prepared with [1-13C]ethanolamine and the absence of such splitting in spectra of samples prepared with [2-13C]ethanolamine show that the unpaired electron is localized on C1 (the carbinol carbon) of the substrate. The 13C splitting from C1 persists from 10 ms throughout the time course of substrate turnover, and there was no evidence of a detectable amount of a product like radical having unpaired spin on C2. These results correct an earlier assignment for this radical intermediate [Warncke, K., et al. (1999) J. Am. Chem. Soc. 121, 10522-10528]. The EPR signals of the substrate radical intermediate are altered by electron spin coupling to the other paramagnetic species, cob(II)alamin, in the active site. The dipole-dipole and exchange interactions as well as the 1-13C hyperfine splitting tensor were analyzed via spectral simulations. The sign of the isotropic exchange interaction indicates a weak ferromagnetic coupling of the two unpaired electrons. A Co2+-radical distance of 8.7 A was obtained from the magnitude of the dipole-dipole interaction. The orientation of the principal axes of the 13C hyperfine splitting tensor shows that the long axis of the spin-bearing p orbital on C1 of the substrate radical makes an angle of approximately 98 degrees with the unique axis of the d(z2) orbital of Co2+.

  4. Relative stability of radicals derived from artemisinin: A semiempirical and DFT study

    NASA Astrophysics Data System (ADS)

    Arantes, C.; de Araujo, M. T.; Taranto, A. G.; de M. Carneiro, J. W.

    The semiempirical AM1 and PM3 methods, as well as the density functional (DFT/B3LYP) approach using the 6-31g(d) basis set, were employed to calculate the relative stability of intermediate radicals derived from artemisinin, a sesquiterpene lactone having an endoperoxide bridge that is essential for its antimalarial activity. The compounds studied have their nonperoxidic oxygen atom of the trioxane ring and/or the carbonyl group replaced by a CH2 unit. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. It was found that replacement of oxygen atoms decreases the relative stability of the anionic radical intermediates. In contrast, for compounds with inverted stereochemistry the intermediate radicals were found to be more stable than those with the artemisinin-like stereochemistry. These relative stabilities may modulate the antimalarial potency. Radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.

  5. Radicals: Reactive Intermediates with Translational Potential.

    PubMed

    Yan, Ming; Lo, Julian C; Edwards, Jacob T; Baran, Phil S

    2016-10-05

    This Perspective illustrates the defining characteristics of free radical chemistry, beginning with its rich and storied history. Studies from our laboratory are discussed along with recent developments emanating from others in this burgeoning area. The practicality and chemoselectivity of radical reactions enable rapid access to molecules of relevance to drug discovery, agrochemistry, material science, and other disciplines. Thus, these reactive intermediates possess inherent translational potential, as they can be widely used to expedite scientific endeavors for the betterment of humankind.

  6. Addition products of alpha-tocopherol with lipid-derived free radicals.

    PubMed

    Yamauchi, Ryo

    2007-01-01

    The addition products of alpha-tocopherol with lipid-derived free radicals have been reviewed. Free radical scavenging reactions of alpha-tocopherol take place via the alpha-tocopheroxyl radical as an intermediate. If a suitable free radical is present, an addition product can be formed from the coupling of the free radical with the alpha-tocopheroxyl radical. The addition products of alpha-tocopherol with lipid-peroxyl radicals are 8a-(lipid-dioxy)-alpha-tocopherones, which are hydrolyzed to alpha-tocopherylquinone. On the other hand, the carbon-centered radicals of lipids prefer to react with the phenoxyl radical of alpha-tocopherol to form 6-O-lipid-alpha-tocopherol under anaerobic conditions. The addition products of alpha-tocopherol with peroxyl radicals (epoxylinoleoyl-peroxyl radicals) produced from cholesteryl ester and phosphatidylcholine were detected in the peroxidized human plasma using a high-sensitive HPLC procedure with postcolumn reduction and electrochemical detection. Thus, the formation of these addition products provides us with much information on the antioxidant function of vitamin E in biological systems.

  7. Oxidative cyclization reactions: controlling the course of a radical cation-derived reaction with the use of a second nucleophile.

    PubMed

    Redden, Alison; Perkins, Robert J; Moeller, Kevin D

    2013-12-02

    Construction of new ring systems: Oxidative cyclizations (see picture; RVC=reticulated vitreous carbon) have been conducted that use two separate intramolecular nucleophiles to trap an enol ether-derived radical cation intermediate. The reactions provide a means for rapidly trapping the radical cation intermediate in a manner that avoids competitive decomposition reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Scavenging of free-radical metabolites of aniline xenobiotics and drugs by amino acid derivatives: toxicological implications of radical-transfer reactions.

    PubMed

    Michail, Karim; Baghdasarian, Argishti; Narwaley, Malyaj; Aljuhani, Naif; Siraki, Arno G

    2013-12-16

    We investigated a novel scavenging mechanism of arylamine free radicals by poly- and monoaminocarboxylates. Free radicals of arylamine xenobiotics and drugs did not react with oxygen in peroxidase-catalyzed reactions; however, they showed marked oxygen uptake in the presence of an aminocarboxylate. These free-radical intermediates were identified using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and electron paramagnetic resonance (EPR) spectrometry. Diethylenetriaminepentaacetic acid (DTPA), a polyaminocarboxylate, caused a concentration-dependent attenuation of N-centered radicals produced by the peroxidative metabolism of arylamines with the subsequent formation of secondary aliphatic carbon-centered radicals stemming from the cosubstrate molecule. Analogously, N,N-dimethylglycine (DMG) and N-methyliminodiacetate (MIDA), but not iminodiacetic acid (IDA), demonstrated a similar scavenging effect of arylamine-derived free radicals in a horseradish peroxidase/H2O2 system. Using human promyelocytic leukemia (HL-60) cell lysate as a model of human neutrophils, DTPA, MIDA, and DMG readily reduced anilinium cation radicals derived from the arylamines and gave rise to the corresponding carbon radicals. The rate of peroxidase-triggered polymerization of aniline was studied as a measure of nitrogen-radical scavenging. Although, IDA had no effect on the rate of aniline polymerization, this was almost nullified in the presence of DTPA and MIDA at half of the molar concentration of the aniline substrate, whereas a 20 molar excess of DMPO caused only a partial inhibition. Furthermore, the yield of formaldehyde, a specific reaction endproduct of the oxidation of aminocarboxylates by aniline free-radical metabolites, was quantitatively determined. Azobenzene, a specific reaction product of peroxidase-catalyzed free-radical dimerization of aniline, was fully abrogated in the presence of DTPA, as confirmed by GC/MS. Under aerobic conditions, a radical-transfer reaction

  9. Photogenerated radical intermediates of vitamin K 1: a time-resolved resonance Raman study

    NASA Astrophysics Data System (ADS)

    Balakrishnan, G.; Umapathy, S.

    1999-01-01

    Quinones play a vital role in the process of electron transfer in bacterial photosynthetic reaction centers. It is of interest to investigate the photochemical reactions involving quinones with a view to elucidating the structure-function relationships in the biological processes. Resonance Raman spectra of radical anions and the time-resolved resonance Raman spectra of vitamin K 1 (model compound for Q A in Rhodopseudomonas viridis, a bacterial photosynthetic reception center) are presented. The photochemical intermediates of vitamin K 1, viz. radical anion, ketyl radical and o-quinone methide have been identified. The vibrational assignments of all these intermediates are made on the basis of comparison with our earlier TR3 studies on radical anions of naphthoquinone and menaquinone.

  10. Human 2-Oxoglutarate Dehydrogenase Complex E1 Component Forms a Thiamin-derived Radical by Aerobic Oxidation of the Enamine Intermediate*

    PubMed Central

    Nemeria, Natalia S.; Ambrus, Attila; Patel, Hetalben; Gerfen, Gary; Adam-Vizi, Vera; Tretter, Laszlo; Zhou, Jieyu; Wang, Junjie; Jordan, Frank

    2014-01-01

    Herein are reported unique properties of the human 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc), a rate-limiting enzyme in the Krebs (citric acid) cycle. (a) Functionally competent 2-oxoglutarate dehydrogenase (E1o-h) and dihydrolipoyl succinyltransferase components have been expressed according to kinetic and spectroscopic evidence. (b) A stable free radical, consistent with the C2-(C2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (ThDP) cation radical was detected by electron spin resonance upon reaction of the E1o-h with 2-oxoglutarate (OG) by itself or when assembled from individual components into OGDHc. (c) An unusual stability of the E1o-h-bound C2-(2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (the “ThDP-enamine”/C2α-carbanion, the first postdecarboxylation intermediate) was observed, probably stabilized by the 5-carboxyl group of OG, not reported before. (d) The reaction of OG with the E1o-h gave rise to superoxide anion and hydrogen peroxide (reactive oxygen species (ROS)). (e) The relatively stable enzyme-bound enamine is the likely substrate for oxidation by O2, leading to the superoxide anion radical (in d) and the radical (in b). (f) The specific activity assessed for ROS formation compared with the NADH (overall complex) activity, as well as the fraction of radical intermediate occupying active centers of E1o-h are consistent with each other and indicate that radical/ROS formation is an “off-pathway” side reaction comprising less than 1% of the “on-pathway” reactivity. However, the nearly ubiquitous presence of OGDHc in human tissues, including the brain, makes these findings of considerable importance in human metabolism and perhaps disease. PMID:25210035

  11. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate

    NASA Astrophysics Data System (ADS)

    Wu, Shaofei; Wang, Wenxi; Li, Minchan; Cao, Lujie; Lyu, Fucong; Yang, Mingyang; Wang, Zhenyu; Shi, Yang; Nan, Bo; Yu, Sicen; Sun, Zhifang; Liu, Yao; Lu, Zhouguang

    2016-11-01

    It is a challenge to prepare organic electrodes for sodium-ion batteries with long cycle life and high capacity. The highly reactive radical intermediates generated during the sodiation/desodiation process could be a critical issue because of undesired side reactions. Here we present durable electrodes with a stabilized α-C radical intermediate. Through the resonance effect as well as steric effects, the excessive reactivity of the unpaired electron is successfully suppressed, thus developing an electrode with stable cycling for over 2,000 cycles with 96.8% capacity retention. In addition, the α-radical demonstrates reversible transformation between three states: C=C α-C.radical and α-C- anion. Such transformation provides additional Na+ storage equal to more than 0.83 Na+ insertion per α-C radical for the electrodes. The strategy of intermediate radical stabilization could be enlightening in the design of organic electrodes with enhanced cycling life and energy storage capability.

  12. Photodissociation dynamics and spectroscopy of free radical combustion intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, David Lewis

    1996-12-01

    The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, P(E T), and angular distribution of the recoiling fragments using a time- and position-sensitive detector. Ab initio calculationsmore » are combined with dynamical and statistical models to interpret the observed data. The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work.« less

  13. Evidence for Formation of a Radical-Mediated Flavin-N5 Covalent Intermediate.

    PubMed

    Dai, Yumin; Valentino, Hannah R; Sobrado, Pablo

    2018-05-18

    The redox-neutral reaction catalyzed by 2-haloacrylate hydratase (2-HAH) leads to the conversion of 2-chloroacrylate to pyruvate. Previous mechanistic studies demonstrated formation of a flavin-iminium ion as an important intermediate in the 2-HAH catalytic cycle. Time-resolved flavin absorbance studies were performed in this study and the data showed that the enzyme is capable of stabilizing both anionic and neutral flavin semiquinone species. The presence of a radical scavenger decreases the activity in a concentration-dependent manner. These data are consistent with the flavin iminium intermediate occurring via radical recombination. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Vinylcyclopropylacyl and polyeneacyl radicals. Intramolecular ketene alkyl radical additions in ring synthesis.

    PubMed

    De Boeck, Benoit; Herbert, Nicola M A; Harrington-Frost, Nicole M; Pattenden, Gerald

    2005-01-21

    Treatment of a variety of substituted vinylcyclopropyl selenyl esters, e.g. 11, with Bu(3)SnH-AIBN in refluxing benzene leads to the corresponding acyl radical intermediates, which undergo rearrangement and intramolecular cyclisations via their ketene alkyl radical equivalents producing cyclohexenones in 50-60% yield. By contrast, treatment of conjugated triene selenyl esters, e.g. 32, with Bu(3)SnH-AIBN produces substituted 2-cyclopentenones via intramolecular cyclisations of their ketene alkyl radical intermediates. Under the same radical-initiating conditions the selenyl esters derived from o-vinylbenzoic acid and o-vinylcinnamic acid undergo intramolecular cyclisations producing 1-indanone and 5,6-dihydrobenzocyclohepten-7-one respectively in 60-70% yields. A tandem radical cyclisation from the alpha,beta,gamma,delta-diene selenyl ester 31 provides an expeditious synthesis of the diquinane 35 in 69% yield.

  15. Interactions of short-acting, intermediate-acting and pre-mixed human insulins with free radicals--Comparative EPR examination.

    PubMed

    Olczyk, Paweł; Komosinska-Vassev, Katarzyna; Ramos, Paweł; Mencner, Łukasz; Olczyk, Krystyna; Pilawa, Barbara

    2015-07-25

    Electron paramagnetic resonance (EPR) spectroscopy was used to examine insulins interactions with free radicals. Human recombinant DNA insulins of three groups were studied: short-acting insulin (Insuman Rapid); intermediate-acting insulins (Humulin N, Insuman Basal), and pre-mixed insulins (Humulin M3, Gensulin M50, Gensulin M40, Gensulin M30). The aim of an X-band (9.3GHz) study was comparative analysis of antioxidative properties of the three groups of human insulins. DPPH was used as a stable free radical model. Amplitudes of EPR lines of DPPH as the paramagnetic free radical reference, and DPPH interacting with the individual tested insulins were compared. For all the examined insulins kinetics of their interactions with free radicals up to 60 min were obtained. The strongest interactions with free radicals were observed for the short-acting insulin - Insuman Rapid. The lowest interactions with free radicals were characteristic for intermediate-acting insulin - Insuman Basal. The pre-mixed insulins i.e. Humulin M3 and Gensulin M50 revealed the fastest interactions with free radicals. The short acting, intermediate acting and premixed insulins have been found to be effective agents in reducing free radical formation in vitro and should be further considered as potential useful tools in attenuation of oxidative stress in diabetic patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Solvent effects on the relative stability of radicals derived from artemisinin: DFT study using the PCM/COSMO approach

    NASA Astrophysics Data System (ADS)

    Araujo, M. T. De; Carneiro, J. W. De M.; Taranto, A. G.

    The PCM/COSMO approach was employed to calculate the relative stability of radicals derived from the antimalarial artemisinin. The calculations were performed in polar (water) and apolar (THF) solvent at the density functional level [B3LYP/6-31g(d)]. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. Replacement of oxygen atoms by CH2 unities was found to decrease the relative stability of the anionic radical intermediates. The degree of destabilization is reduced in the presence of solvent, being less in water than in THF. The dipole moment and the corresponding solvation free energies of these species modulate this effect. Derivatives with inverted stereochemistry are more stable than those with the artemisinin-like stereochemistry, although the solvent attenuates this stabilization effect. As was found in the in vacuo calculations, the radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.

  17. Inhibition of free radical-induced erythrocyte hemolysis by 2-O-substituted ascorbic acid derivatives.

    PubMed

    Takebayashi, Jun; Kaji, Hiroaki; Ichiyama, Kenji; Makino, Kazutaka; Gohda, Eiichi; Yamamoto, Itaru; Tai, Akihiro

    2007-10-15

    Inhibitory effects of 2-O-substituted ascorbic acid derivatives, ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S), on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative hemolysis of sheep erythrocytes were studied and were compared with those of ascorbic acid (AA) and other antioxidants. The order of the inhibition efficiency was AA-2S> or =Trolox=uric acid> or =AA-2P> or =AA-2G=AA>glutathione. Although the reactivity of the AA derivatives against AAPH-derived peroxyl radical (ROO(*)) was much lower than that of AA, the derivatives exerted equal or more potent protective effects on AAPH-induced hemolysis and membrane protein oxidation. In addition, the AA derivatives were found to react per se with ROO(*), not via AA as an intermediate. These findings suggest that secondary reactions between the AA derivative radical and ROO(*) play a part in hemolysis inhibition. Delayed addition of the AA derivatives after AAPH-induced oxidation of erythrocytes had already proceeded showed weaker inhibition of hemolysis compared to that of AA. These results suggest that the AA derivatives per se act as biologically effective antioxidants under moderate oxidative stress and that AA-2G and AA-2P may be able to act under severe oxidative stress after enzymatic conversion to AA in vivo.

  18. Effects of potassium iodide, colchicine and dapsone on the generation of polymorphonuclear leukocyte-derived oxygen intermediates.

    PubMed

    Miyachi, Y; Niwa, Y

    1982-08-01

    The effects of potassium iodide, colchicine and dapsone on the in vitro generation of polymorphonuclear leukocyte (PMN)-derived oxygen intermediates were investigated. These three drugs have beneficial effects on those conditions in which PMNs play an important pathogenetic role. Three oxygen intermediates, superoxide anion (O2-), hydrogen peroxide (H2O2), hydroxyl radical (OH.) and chemiluminescence were included in assay studies. Dose response studies were performed with therapeutic doses of the drugs (10 microM--mM). We found that both potassium iodide and dapsone significantly suppressed the generation of oxygen intermediates, except for O2-. Colchicine decreased OH. production. Our results show tha these agents to some extent exert their anti-inflammatory effects by interfering with the PMN-dependent production of oxygen intermediates, thus conferring protection from auto-oxidative tissue injury. This may account for their clinical efficacy in many PMN-mediated dermatological diseases.

  19. Palladium-Catalyzed Atom-Transfer Radical Cyclization at Remote Unactivated C(sp3 )-H Sites: Hydrogen-Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates.

    PubMed

    Ratushnyy, Maxim; Parasram, Marvin; Wang, Yang; Gevorgyan, Vladimir

    2018-03-01

    A novel mild, visible-light-induced palladium-catalyzed hydrogen atom translocation/atom-transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5-HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo- and heterocyclic structures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Diffusive confinement of free radical intermediates in the OH radical oxidation of semisolid aerosols

    DOE PAGES

    Wiegel, Aaron A.; Liu, Matthew J.; Hinsberg, William D.; ...

    2017-02-07

    Multiphase chemical reactions (gas + solid/liquid) involve a complex interplay between bulk and interface chemistry, diffusion, evaporation, and condensation. Reactions of atmospheric aerosols are an important example of this type of chemistry: the rich array of particle phase states and multiphase transformation pathways produce diverse but poorly understood interactions between chemistry and transport. Their chemistry is of intrinsic interest because of their role in controlling climate. Their characteristics also make them useful models for the study of principles of reactivity of condensed materials under confined conditions. Previously, we have reported a computational study of the oxidation chemistry of a liquidmore » aliphatic aerosol. In this study, we extend the calculations to investigate nearly the same reactions at a semisolid gas-aerosol interface. A reaction-diffusion model for heterogeneous oxidation of triacontane by hydroxyl radicals (OH) is described, and its predictions are compared to measurements of aerosol size and composition, which evolve continuously during oxidation. Our results are also explicitly compared to those obtained for the corresponding liquid system, squalane, to pinpoint salient elements controlling reactivity. The diffusive confinement of the free radical intermediates at the interface results in enhanced importance of a few specific chemical processes such as the involvement of aldehydes in fragmentation and evaporation, and a significant role of radical-radical reactions in product formation. The simulations show that under typical laboratory conditions semisolid aerosols have highly oxidized nanometer-scale interfaces that encapsulate an unreacted core and may confer distinct optical properties and enhanced hygroscopicity. This highly oxidized layer dynamically evolves with reaction, which we propose to result in plasticization. The validated model is used to predict chemistry under atmospheric conditions, where the OH

  1. Direct observation of unimolecular decay of CH 3 CH 2 CHOO Criegee intermediates to OH radical products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yi; Liu, Fang; Klippenstein, Stephen J.

    2016-07-28

    The unimolecular decay of carbonyl oxide intermediates, known as Criegee intermediates, produced in alkene ozonolysis is a significant source of OH radicals in the troposphere. Here, the rate of appearance of OH radical products is examined directly in the time-domain for a prototypical alkyl-substituted Criegee intermediate, CH3CH2CHOO, following vibrational activation under collision-free conditions. Complementary statistical Rice-Ramsperger-Kassel-Marcus calculations of the microcanonical unimolecular decay rate for CH3CH2CHOO are also carried out at energies in the vicinity of the barrier for 1,4 hydrogen atom transfer that leads to OH products. Tunneling through the barrier, derived from high level electronic structure calculations, contributes significantlymore » to the decay rate. Infrared transitions of CH3CH2CHOO are identified in the CH stretch overtone region, which are detected by ultraviolet laser-induced fluorescence of the resultant OH products. The features observed are attributed to CH vibrational excitations and conformational forms utilizing insights from theory. Both experiment and theory yield unimolecular decay rates for CH3CH2CHOO of ca. 10(7) s(-1), which are slower than those obtained for syn-CH3CHOO or (CH3)(2)COO reported previously [Fang et al., J. Chem. Phys. 144, 061102 (2016)] at similar energies. Master equation modeling is also utilized to predict the thermal decay rate of CH3CH2CHOO under atmospheric conditions, giving a rate of 279 s(-1) at 298 K.« less

  2. A paradigm shift for radical SAM reactions: The organometallic intermediate Ω is central to catalysis.

    PubMed

    Byer, Amanda S; Yang, Hao; McDaniel, Elizabeth C; Kathiresan, Venkatesan; Impano, Stella; Pagnier, Adrien; Watts, Hope; Denler, Carly; Vagstad, Anna; Piel, Jörn; Duschene, Kaitlin S; Shepard, Eric M; Shields, Thomas P; Scott, Lincoln G; Lilla, Edward A; Yokoyama, Kenichi; Broderick, William E; Hoffman, Brian M; Broderick, Joan B

    2018-06-28

    Radical S-adenosyl-L-methionine (SAM) en-zymes comprise a vast superfamily catalyzing diverse reactions essential to all life through ho-molytic SAM cleavage to liberate the highly-reactive 5-deoxyadenosyl radical (5-dAdo•). Our recent observation of a catalytically compe-tent organometallic intermediate Ω that forms dur-ing reaction of the radical SAM (RS) enzyme py-ruvate formate-lyase activating-enzyme (PFL-AE) was therefore quite surprising, and led to the question of its broad relevance in the superfamily. We now show that Ω in PFL-AE forms as an in-termediate under a variety of mixing order condi-tions, suggesting it is central to catalysis in this enzyme. We further demonstrate that Ω forms in a suite of RS enzymes chosen to span the totality of superfamily reaction types, implicating Ω as essential in catalysis across the RS superfamily. Finally, EPR and electron nuclear double reso-nance spectroscopy establish that Ω involves an Fe-C5 bond between 5-dAdo• and the [4Fe-4S] cluster. An analogous organometallic bond is found in the well-known adenosylcobalamin (co-enzyme B12) cofactor used to initiate radical reac-tions via a 5'-dAdo• intermediate. Generation of a 5'-dAdo• intermediate via homolytic metal-carbon bond cleavage thus appears to be similar for Ω and coenzyme B12. However coenzyme B12 is involved in enzymes catalyzing of only a small number (~12) of distinct reactions, while the RS superfamily has more than 100,000 distinct se-quences and over 80 reaction types character-ized to date. The appearance of Ω across the RS superfamily therefore dramatically enlarges the sphere of bio-organometallic chemistry in Nature.

  3. The scavenging reactions of nitrogen dioxide radical and carbonate radical by tea polyphenol derivatives: a pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Miao, Jin-Ling; Wang, Wen-Feng; Pan, Jing-Xi; Lu, Chang-Yuan; Li, Rong-Qun; Yao, Si-De

    2001-02-01

    The reactions of tea polyphenol derivatives, including epicatechin (EC) and epigallocatechin gallate (EGCG), with nitrogen dioxide radical (NO 2rad ) and carbonate radical (CO 3rad - ) have been studied in detail using time-resolved pulse radiolysis technique. In all the cases, the corresponding phenoxyl radical was formed through electron transfer reaction. From the build-up kinetics of the phenoxyl radicals and the decay kinetics of CO 3rad - radical, the reaction rate constants of EC, EGCG with NO 2rad and CO 3rad - were determined to be 9.0×10 7, 1.2×10 8 and 5.6×10 8, 6.6×10 8 dm 3 mol -1 s -1, respectively. Therefore, tea polyphenol derivatives proved to be efficient scavengers of NO 2rad and CO 3rad - radicals.

  4. Reassessment of the risk factors for biochemical recurrence in D'Amico intermediate-risk prostate cancer treated using radical prostatectomy.

    PubMed

    Narita, Shintaro; Mitsuzuka, Koji; Tsuchiya, Norihiko; Koie, Takuya; Kawamura, Sadafumi; Ohyama, Chikara; Tochigi, Tatsuo; Yamaguchi, Takuhiro; Arai, Yoichi; Habuchi, Tomonori

    2015-11-01

    To assess the risk factors for biochemical recurrence in D'Amico intermediate-risk prostate cancer patients treated using radical prostatectomy. We retrospectively reviewed the medical records of 1268 men with prostate cancer treated using radical prostatectomy without neoadjuvant therapy. The association between various risk factors and biochemical recurrence was then statistically evaluated. The Kaplan-Meier method, log-rank tests and Cox proportional hazards models were used for statistical analysis. In the intermediate-risk group, 96 patients (14.5%) experienced biochemical recurrence during a median follow up of 41 months. In the intermediate-risk group, preoperative prostate-specific antigen level, prostate volume and prostate-specific antigen density were significant preoperative risk factors for biochemical recurrence, whereas other factors including age, primary Gleason 4, clinical stage >T2 and percentage of positive biopsies were not. In multivariate analysis, higher preoperative prostate-specific antigen level and density, and a smaller prostate volume were independent risk factors for biochemical recurrence in the intermediate-risk group. Biochemical recurrence-free survival of patients in the intermediate-risk group with a higher prostate-specific antigen level and density (≥15 ng/mL, ≥0.6 ng/mL/cm(3), respectively), and lower prostate volume (≤10 mL) was comparable with that of high-risk group individuals (P = 0.632, 0.494 and 0.961, respectively). Preoperative prostate-specific antigen, prostate volume and prostate-specific antigen density are significant risk factors for biochemical recurrence in D'Amico intermediate-risk prostate cancer patients treated using radical prostatectomy. Using these variables, a subset of the intermediate-risk patients can be identified as having equivalent outcomes to high-risk patients. © 2015 The Japanese Urological Association.

  5. Direct observation of unimolecular decay of CH{sub 3}CH{sub 2}CHOO Criegee intermediates to OH radical products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yi; Liu, Fang; Lester, Marsha I., E-mail: milester@sas.upenn.edu

    2016-07-28

    The unimolecular decay of carbonyl oxide intermediates, known as Criegee intermediates, produced in alkene ozonolysis is a significant source of OH radicals in the troposphere. Here, the rate of appearance of OH radical products is examined directly in the time-domain for a prototypical alkyl-substituted Criegee intermediate, CH{sub 3}CH{sub 2}CHOO, following vibrational activation under collision-free conditions. Complementary statistical Rice–Ramsperger–Kassel–Marcus calculations of the microcanonical unimolecular decay rate for CH{sub 3}CH{sub 2}CHOO are also carried out at energies in the vicinity of the barrier for 1,4 hydrogen atom transfer that leads to OH products. Tunneling through the barrier, derived from high level electronicmore » structure calculations, contributes significantly to the decay rate. Infrared transitions of CH{sub 3}CH{sub 2}CHOO are identified in the CH stretch overtone region, which are detected by ultraviolet laser-induced fluorescence of the resultant OH products. The features observed are attributed to CH vibrational excitations and conformational forms utilizing insights from theory. Both experiment and theory yield unimolecular decay rates for CH{sub 3}CH{sub 2}CHOO of ca. 10{sup 7} s{sup −1}, which are slower than those obtained for syn-CH{sub 3}CHOO or (CH{sub 3}){sub 2}COO reported previously [Fang et al., J. Chem. Phys. 144, 061102 (2016)] at similar energies. Master equation modeling is also utilized to predict the thermal decay rate of CH{sub 3}CH{sub 2}CHOO under atmospheric conditions, giving a rate of 279 s{sup −1} at 298 K.« less

  6. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Amy M.; Barber, Victoria P.; Fang, Yi

    Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH 3CHOO. IR excitation of selectively deuterated syn-CD 3CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn-CD 3CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, whichmore » is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ~10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. Lastly, at 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn-CH 3CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ~50.« less

  7. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products

    DOE PAGES

    Green, Amy M.; Barber, Victoria P.; Fang, Yi; ...

    2017-11-06

    Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH 3CHOO. IR excitation of selectively deuterated syn-CD 3CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn-CD 3CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, whichmore » is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ~10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. Lastly, at 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn-CH 3CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ~50.« less

  8. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products.

    PubMed

    Green, Amy M; Barber, Victoria P; Fang, Yi; Klippenstein, Stephen J; Lester, Marsha I

    2017-11-21

    Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH 3 CHOO. IR excitation of selectively deuterated syn -CD 3 CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn -CD 3 CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, which is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ∼10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. At 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn -CH 3 CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ∼50.

  9. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products

    PubMed Central

    Green, Amy M.; Barber, Victoria P.; Fang, Yi; Klippenstein, Stephen J.; Lester, Marsha I.

    2017-01-01

    Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH3CHOO. IR excitation of selectively deuterated syn-CD3CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn-CD3CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, which is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ∼10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. At 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn-CH3CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ∼50. PMID:29109292

  10. Nature of electrogenerated intermediates in nitro-substituted nor-β-lapachones: the structure of radical species during successive electron transfer in multiredox centers.

    PubMed

    Armendáriz-Vidales, Georgina; Hernández-Muñoz, Lindsay S; González, Felipe J; de Souza, Antonio A; de Abreu, Fabiane C; Jardim, Guilherme A M; da Silva, Eufrânio N; Goulart, Marilia O F; Frontana, Carlos

    2014-06-06

    Electrochemical, spectroelectrochemical, and theoretical studies of the reduction reactions in nor-β-lapachone derivatives including a nitro redox center showed that reduction of the compounds involves the formation of several radical intermediates, including a biradical dianion resultant from the separate reduction of the quinone and nitro groups in the molecules. Theoretical descriptions of the corresponding Fukui functions f(αα)⁺ and f(ββ)⁺(r) and LUMO densities considering finite differences and frozen core approximations for describing the changes in electron and spin densities of the system allowed us to confirm these results. A description of the potential relationship with the obtained results and biological activity selectivity indexes suggests that both the formation of stable biradical dianion species and the stability of the semiquinone intermediates during further reduction are determining factors in the description of their biological activity.

  11. 4′-CyanoPLP presents better prospect for the experimental detection of elusive cyclic intermediate radical in the reaction of lysine 5,6-aminomutase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maity, Amarendra Nath; Ke, Shyue-Chu, E-mail: ke@mail.ndhu.edu.tw

    2015-02-06

    Graphical abstract: The results of our calculations suggest that the reaction of 4′-cyanoPLP with lysine 5,6-aminomutase offers better prospect for the experimental detection of elusive cyclic azacyclopropylcarbinyl radical, which is proposed to be a key intermediate in the reaction of pyridoxal-5′-phosphate dependent radical aminomutases. - Highlights: • 4′-CyanoI{sup ·} is the lowest energy radical intermediate in the reaction of 5,6-LAM. • 4′-CyanoPLP offers good prospect for the experimental observation of elusive I{sup ·}. • The calculated HFCCs would help to characterize 4′-cyanoI{sup ·} by EPR. - Abstract: The results of our calculations suggest that the reaction of 4′-cyanoPLP with lysinemore » 5,6-aminomutase offers better prospect for the experimental detection of elusive cyclic azacyclopropylcarbinyl radical (I{sup ·}), which is proposed to be a key intermediate in the reaction of pyridoxal-5′-phosphate dependent radical aminomutases. We have calculated the corresponding hyperfine coupling constants (HFCCs) for {sup 14}N and {sup 13}C of cyano group using several basis sets to help the characterization of 4′-cyanoI{sup ·}.« less

  12. Tamoxifen metabolism in rat liver microsomes: identification of a dimeric metabolite derived from free radical intermediates by liquid chromatography/mass spectrometry.

    PubMed

    Jones, R M; Yuan, Z X; Lim, C K

    1999-01-01

    Tamoxifen has been shown to be a potent liver carcinogen in rats, and generates covalent DNA adducts. On-line high performance liquid chromatography/electrospray ionisation mass spectrometry (HPLC/ESI-MS) has been used to further study the metabolites of tamoxifen formed by rat liver microsomes in the presence of NADPH with a view to identifying potential reactive metabolites which may be responsible for the formation of DNA adducts, and liver carcinogenesis. A metabolite has been detected with a protonated molecule at m/z 773. The mass of this compound is consistent with a dimer of hydroxylated tamoxifen (m/z 388). Analysis of 4-hydroxytamoxifen incubated with a rat liver microsomal preparation showed the formation of a similar metabolite with an apparent MH+ ion at m/z 773, believed to be a dimer of 4-hydroxytamoxifen formed by a free radical reaction. The retention time for this metabolite from 4-hydroxytamoxifen is identical to that of the tamoxifen metabolite, suggesting that these two compounds are the same. The levels of the dimer were higher when 4-hydroxytamoxifen was used as substrate and, in addition, two isomers were detected. It is proposed that tamoxifen was first converted to arene oxides which react with DNA or to 4-hydroxytamoxifen, either directly or via 3,4-epoxytamoxifen, which then undergoes activation via a free radical reaction to give reactive intermediates which can then react with DNA and protein, or with themselves, to give the dimers (m/z 773).

  13. Computational Study of the Thermodynamics of Atmospheric Nitration of PAHs via OH-Radical-Initiated Reaction

    NASA Astrophysics Data System (ADS)

    Jariyasopit, N.; Cheong, P.; Simonich, S. L.

    2011-12-01

    Nitrated polycyclic aromatic hydrocarbons (NPAHs) are an important class of PAH derivatives that are more toxic than their parent PAHs (1) and are emitted from direct emission and secondary emission to the atmosphere. The secondary emissions, particularly the OH-radical initiated and NO3-radical-initiated reactions, have been shown to influence the NPAH concentrations in the atmosphere. Gas-phase reactions are thought to be the major sources of NPAHs containing four or fewer rings (2). Besides NPAHs, PAHs lead to a number of other products including oxygenated, hydroxy substituted and ring-opened PAH derivatives (3). For some PAHs, the OH-initiated and NO3-initiated reactions result in the formation of different NPAH isomers, allowing the ratio of these isomers to be used in the determination of direct or secondary emission sources. Previous studies have shown that the PAH gas-phase reactions with OH radical is initiated by the addition of OH radical to the aromatic ring to form hydroxycyclohexadienyl radicals (4). In the presence of NO2, these reactive intermediates readily nitrate with the elimination of water (4). The hydroxycyclohexadienyl-type radical intermediates are also prone to react with other species in the atmosphere or revert back to the original compound (3). The objective of this study was to investigate the thermodynamics of PAH nitration through day-time OH-radical-initiated reactions. The theoretical investigation were carried out using Density Functioanl Theory (B3LYP) and the 6-31G(d) basis set, as implemented in Gaussian03. A number of different PAHs were studied including fluoranthene, pyrene, as well as the molecular weight 302 PAHs such as dibenzo[a,l]pyrene. Computations were also used to predict unknown NPAHs formed by OH-radical-initiated reaction. All intermediates for the OH-radical addition and the following nitration were computed. We have discovered that the thermodynamic stability of the intermediates involved in the PAH

  14. Lipid-derived free radical production in superantigen-induced interstitial pneumonia

    PubMed Central

    Miyakawa, Hisako; Mason, Ronald P.; Jiang, JinJie; Kadiiska, Maria B.

    2009-01-01

    We studied the free radical generation involved in the development of interstitial pneumonia (IP) in an animal model of autoimmune disease. We observed an electron spin resonance (ESR) spectrum of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) radical adducts detected in the lipid extract of lungs in autoimmune-prone mice after intratracheal instillation of staphylococcal enterotoxin B. The POBN adducts detected by ESR were paralleled by infiltration of macrophages and neutrophils in the bronchoalveolar lavage fluid. To further investigate the mechanism of free radical generation, mice were pretreated with the macrophage toxicant gadolinium chloride, which significantly suppressed the radical generation. Free radical generation was also decreased by pretreatment with the xanthine oxidase (XO) inhibitor allopurinol, the iron chelator Desferal, and the inducible nitric oxide synthase (iNOS) inhibitor 1400W. Histopathologically, these drugs significantly reduced both the cell infiltration to alveolar septal walls and the synthesis of pulmonary collagen fibers. Experiments with NADPH oxidase knockout mice showed that NADPH oxidase did not contribute to lipid radical generation. These results suggest that lipid-derived carbon-centered free radical production is important in the manifestation of IP and that a macrophage toxicant, an XO inhibitor, an iron chelator, and an iNOS inhibitor protect against both radical generation and the manifestation of IP. PMID:19376221

  15. A substrate radical intermediate in the reaction between ribonucleotide reductase from Escherichia coli and 2'-azido-2'-deoxynucleoside diphosphates.

    PubMed

    Sjöberg, B M; Gräslund, A; Eckstein, F

    1983-07-10

    The B2 subunit of ribonucleotide reductase from Escherichia coli contains a tyrosine radical which is essential for enzyme activity. In the reaction between ribonucleotide reductase and the substrate analogue 2'-azido-2'-deoxycytidine 5'-diphosphate a new transient radical is formed. The EPR characteristics of this new radical species are consistent with a localization of the unpaired electron at the sugar moiety of the nucleotide. The radical shows hyperfine couplings to a hydrogen and a nitrogen nucleus, the latter probably being part of the azide substituent. The formation of the nucleotide radical in this suicidal reaction is concomitant with the decay of the tyrosine radical of the B2 subunit. Kinetic data argue for a first (pseudosecond) order decay of the B2 radical via generation of the nucleotide radical followed by a slower first order decay of the nucleotide radical. End products in the reaction are cytosine and radical-free protein B2. In the reaction between bacteriophage T4 ribonucleotide reductase and 2'-azido-2'-deoxycytidine 5'-diphosphate an identical nucleotide radical is formed. The present results are consistent with the hypothesis that the appearance and structure of the transient radical mimic stages in the normal reaction pathway of ribonucleotide reductase, postulated to proceed via 3'-hydrogen abstraction and cation radical formation of the substrate nucleotide (Stubbe, J., and Ackles, D. (1980) J. Biol. Chem. 255, 8027-8030). The nucleotide radical described here might be equivalent to such a cation radical intermediate.

  16. p53 Mutagenesis by Benzo[a]pyrene derived Radical Cations

    PubMed Central

    Sen, Sushmita; Bhojnagarwala, Pratik; Francey, Lauren; Lu, Ding; Jeffrey Field, Trevor M. Penning

    2013-01-01

    Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9, 10-epoxide pathway (P450/ epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. Based on the B[a]P-1,6 and 3,6-dione formation, approximately 4µM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 µM to 10 µM B[a]P with no significant increase seen with further escalation to 50 µM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7–8 dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones. PMID:22768918

  17. An ab initio investigation of possible intermediates in the reaction of the hydroxyl and hydroperoxyl radicals

    NASA Technical Reports Server (NTRS)

    Jackels, C. F.

    1985-01-01

    Ab initio quantum chemical techniques are used to investigate covalently-bonded and hydrogen-bonded species that may be important intermediates in the reaction of hydroxyl and hydroperoxyl radicals. Stable structures of both types are identified. Basis sets of polarized double zeta quality and large scale configuration interaction wave functions are utilized. Based on electronic energies, the covalently bonded HOOOH species is 26.4 kcal/mol more stable than the OH and HO2 radicals. Similarly, the hydrogen bonded HO---HO2 species has an electronic energy 4.7 kcal/mol below that of the component radicals, after correction is made for the basis set superposition error. The hydrogen bonded form is planar, possesses one relatively normal hydrogen bond, and has the lowest energy 3A' and 1A' states that are essentially degenerate. The 1A" and 3A" excited states produced by rotation of the unpaired OH electron into the molecular plane are very slightly bound.

  18. Capturing the radical ion-pair intermediate in DNA guanine oxidation

    PubMed Central

    Jie, Jialong; Liu, Kunhui; Wu, Lidan; Zhao, Hongmei; Song, Di; Su, Hongmei

    2017-01-01

    Although the radical ion pair has been frequently invoked as a key intermediate in DNA oxidative damage reactions and photoinduced electron transfer processes, the unambiguous detection and characterization of this species remain formidable and unresolved due to its extremely unstable nature and low concentration. We use the strategy that, at cryogenic temperatures, the transient species could be sufficiently stabilized to be detectable spectroscopically. By coupling the two techniques (the cryogenic stabilization and the time-resolved laser flash photolysis spectroscopy) together, we are able to capture the ion-pair transient G+•⋯Cl− in the chlorine radical–initiated DNA guanine (G) oxidation reaction, and provide direct evidence to ascertain the intricate type of addition/charge separation mechanism underlying guanine oxidation. The unique spectral signature of the radical ion-pair G+•⋯Cl− is identified, revealing a markedly intense absorption feature peaking at 570 nm that is distinctive from G+• alone. Moreover, the ion-pair spectrum is found to be highly sensitive to the protonation equilibria within guanine-cytosine base pair (G:C), which splits into two resolved bands at 480 and 610 nm as the acidic proton transfers along the central hydrogen bond from G+• to C. We thus use this exquisite sensitivity to track the intrabase-pair proton transfer dynamics in the double-stranded DNA oligonucleotides, which is of critical importance for the description of the proton-coupled charge transfer mechanisms in DNA. PMID:28630924

  19. A Derivative Method with Free Radical Oxidation to Predict Resveratrol Metabolites by Tandem Mass Spectrometry

    PubMed Central

    Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin

    2015-01-01

    In this study, we demonstrated an oxidative method with free radical to generate 3,5,4′-trihydroxy-trans-stilbene (trans-resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI–MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4′-dihydroxy-trans-stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI–MS/MS can be utilized to evaluate different metabolites in various conditions. PMID:27594817

  20. A Derivative Method with Free Radical Oxidation to Predict Resveratrol Metabolites by Tandem Mass Spectrometry.

    PubMed

    Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin

    2015-10-01

    In this study, we demonstrated an oxidative method with free radical to generate 3,5,4'-trihydroxy- trans -stilbene ( trans -resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI-MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4'-dihydroxy- trans -stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI-MS/MS can be utilized to evaluate different metabolites in various conditions.

  1. Excited-state dynamics of pentacene derivatives with stable radical substituents.

    PubMed

    Ito, Akitaka; Shimizu, Akihiro; Kishida, Noriaki; Kawanaka, Yusuke; Kosumi, Daisuke; Hashimoto, Hideki; Teki, Yoshio

    2014-06-23

    The excited-state dynamics of pentacene derivatives with stable radical substituents were evaluated in detail through transient absorption measurements. The derivatives showed ultrafast formation of triplet excited state(s) in the pentacene moiety from a photoexcited singlet state through the contributions of enhanced intersystem crossing and singlet fission. Detailed kinetic analyses for the transient absorption data were conducted to quantify the excited-state characteristics of the derivatives. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity

    PubMed Central

    Li, Qing; Sun, Xueqi; Gu, Guodong

    2018-01-01

    Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating “click reaction” with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC50 < 0.01 mg mL−1) was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains. PMID:29597269

  3. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity.

    PubMed

    Li, Qing; Sun, Xueqi; Gu, Guodong; Guo, Zhanyong

    2018-03-28

    Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating "click reaction" with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC 50 < 0.01 mg mL -1 ) was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.

  4. Model studies in cytochrome P-450-mediated toxicity of halogenated compounds: radical processes involving iron porphyrins.

    PubMed Central

    Brault, D

    1985-01-01

    Haloalkane toxicity originates from attack on biological targets by reactive intermediates derived from haloalkane metabolism by a hemoprotein, cytochrome P-450. Carbon-centered radicals and their peroxyl derivatives are most likely involved. The reactions of iron porphyrin--a model for cytochrome P-450--with various carbon-centered and peroxyl radicals generated by pulse radiolysis are examined. Competition between iron porphyrin and unsaturated fatty acids for attack by peroxyl radicals is pointed out. These kinetic data are used to derive a model for toxicity of haloalkanes with particular attention to carbon tetrachloride and halothane. The importance of local oxygen concentration and structural arrangement of fatty acids around cytochrome P-450 is emphasized. PMID:3007100

  5. An Oxyferrous Heme/Protein-based Radical Intermediate Is Catalytically Competent in the Catalase Reaction of Mycobacterium tuberculosis Catalase-Peroxidase (KatG)*S⃞

    PubMed Central

    Suarez, Javier; Ranguelova, Kalina; Jarzecki, Andrzej A.; Manzerova, Julia; Krymov, Vladimir; Zhao, Xiangbo; Yu, Shengwei; Metlitsky, Leonid; Gerfen, Gary J.; Magliozzo, Richard S.

    2009-01-01

    A mechanism accounting for the robust catalase activity in catalase-peroxidases (KatG) presents a new challenge in heme protein enzymology. In Mycobacterium tuberculosis, KatG is the sole catalase and is also responsible for peroxidative activation of isoniazid, an anti-tuberculosis pro-drug. Here, optical stopped-flow spectrophotometry, rapid freeze-quench EPR spectroscopy both at the X-band and at the D-band, and mutagenesis are used to identify catalase reaction intermediates in M. tuberculosis KatG. In the presence of millimolar H2O2 at neutral pH, oxyferrous heme is formed within milliseconds from ferric (resting) KatG, whereas at pH 8.5, low spin ferric heme is formed. Using rapid freeze-quench EPR at X-band under both of these conditions, a narrow doublet radical signal with an 11 G principal hyperfine splitting was detected within the first milliseconds of turnover. The radical and the unique heme intermediates persist in wild-type KatG only during the time course of turnover of excess H2O2 (1000-fold or more). Mutation of Met255, Tyr229, or Trp107, which have covalently linked side chains in a unique distal side adduct (MYW) in wild-type KatG, abolishes this radical and the catalase activity. The D-band EPR spectrum of the radical exhibits a rhombic g tensor with dual gx values (2.00550 and 2.00606) and unique gy (2.00344) and gz values (2.00186) similar to but not typical of native tyrosyl radicals. Density functional theory calculations based on a model of an MYW adduct radical built from x-ray coordinates predict experimentally observed hyperfine interactions and a shift in g values away from the native tyrosyl radical. A catalytic role for an MYW adduct radical in the catalase mechanism of KatG is proposed. PMID:19139099

  6. Photostability enhancement of the pentacene derivative having two nitronyl nitroxide radical substituents.

    PubMed

    Shimizu, Akihiro; Ito, Akitaka; Teki, Yoshio

    2016-02-18

    Pentacene derivatives possessing nitronyl nitroxide radical substituents (1a and 1b) were synthesized, and their photochemical properties were evaluated. 1a with two radical substituents showed a remarkable enhancement of photostability compared with pentacene, 6,13-bis(triisopropylsilylethynyl)pentacene and the monoradical, 1b. This is understood due to the presence of the multiple deactivation pathways in the photoexcited states.

  7. Predicting the effect of angular momentum on the dissociation dynamics of highly rotationally excited radical intermediates.

    PubMed

    Brynteson, Matthew D; Butler, Laurie J

    2015-02-07

    kinetic energy release when the halogenated precursor is photodissociated via a repulsive excited state but does not include any adjustable parameters. Even when different conformers of the photolytic precursor are populated, weighting the prediction by a thermal conformer population gives an accurate prediction for the relative velocity vectors of the fragments from the highly rotationally excited radical intermediates.

  8. Free radical reactions of isoxazole and pyrazole derivatives of hispolon: kinetics correlated with molecular descriptors.

    PubMed

    Shaikh, Shaukat Ali M; Barik, Atanu; Singh, Beena G; Modukuri, Ramani V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Priyadarsini, K Indira

    2016-12-01

    Hispolon (HS), a natural polyphenol found in medicinal mushrooms, and its isoxazole (HI) and pyrazole (HP) derivatives have been examined for free radical reactions and in vitro antioxidant activity. Reaction of these compounds with one-electron oxidant, azide radicals ([Formula: see text]) and trichloromethyl peroxyl radicals ([Formula: see text]), model peroxyl radicals, studied by nanosecond pulse radiolysis technique, indicated formation of phenoxyl radicals absorbing at 420 nm with half life of few hundred microseconds (μs). The formation of phenoxyl radicals confirmed that the phenolic OH is the active centre for free radical reactions. Rate constant for the reaction of these radicals with these compounds were in the order k HI ≅ k HP  >   k HS . Further the compounds were examined for their ability to inhibit lipid peroxidation in model membranes and also for the scavenging of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide ([Formula: see text]) radicals. The results suggested that HP and HI are less efficient than HS towards these radical reactions. Quantum chemical calculations were performed on these compounds to understand the mechanism of reaction with different radicals. Lower values of adiabatic ionization potential (AIP) and elevated highest occupied molecular orbital (HOMO) for HI and HP compared with HS controlled their activity towards [Formula: see text] and [Formula: see text] radicals, whereas the contribution of overall anion concentration was responsible for higher activity of HS for DPPH, [Formula: see text], and lipid peroxyl radical. The results confirm the role of different structural moieties on the antioxidant activity of hispolon derivatives.

  9. Superoxide reaction with tyrosyl radicals generates para-hydroperoxy and para-hydroxy derivatives of tyrosine.

    PubMed

    Möller, Matías N; Hatch, Duane M; Kim, Hye-Young H; Porter, Ned A

    2012-10-10

    Tyrosine-derived hydroperoxides are formed in peptides and proteins exposed to enzymatic or cellular sources of superoxide and oxidizing species as a result of the nearly diffusion-limited reaction between tyrosyl radical and superoxide. However, the structure of these products, which informs their reactivity in biology, has not been unequivocally established. We report here the complete characterization of the products formed in the addition of superoxide, generated from xanthine oxidase, to several peptide-derived tyrosyl radicals, formed from horseradish peroxidase. RP-HPLC, LC-MS, and NMR experiments indicate that the primary stable products of superoxide addition to tyrosyl radical are para-hydroperoxide derivatives (para relative to the position of the OH in tyrosine) that can be reduced to the corresponding para-alcohol. In the case of glycyl-tyrosine, a stable 3-(1-hydroperoxy-4-oxocyclohexa-2,5-dien-1-yl)-L-alanine was formed. In tyrosyl-glycine and Leu-enkephalin, which have N-terminal tyrosines, bicyclic indolic para-hydroperoxide derivatives were formed ((2S,3aR,7aR)-3a-hydroperoxy-6-oxo-2,3,3a,6,7,7a-hexahydro-1H-indole-2-carboxylic acid) by the conjugate addition of the free amine to the cyclohexadienone. It was also found that significant amounts of the para-OH derivative were generated from the hydroxyl radical, formed on exposure of tyrosine-containing peptides to Fenton conditions. The para-OOH and para-OH derivatives are much more reactive than other tyrosine oxidation products and may play important roles in physiology and disease.

  10. Antioxidant vitamins and enzymatic and synthetic oxygen-derived free radical scavengers in the prevention and treatment of cardiovascular disease.

    PubMed

    Nayak, D U; Karmen, C; Frishman, W H; Vakili, B A

    2001-01-01

    Oxygen-derived free radical formation can lead to cellular injury and death. Under normal situations, the human body has a free radical scavenger system (catalase, superoxide dismutase) that can detoxify free radicals. Antioxidant vitamins and enzymatic and synthetic oxygen-derived free radical scavengers have been used clinically to prevent the formation of oxidized LDL and to prevent reperfusion injury, which is often caused by free radicals. In this article, the pathogenesis of free radical production and cell injury are discussed, and therapeutic approaches for disease prevention are presented.

  11. Radical-mediated reduction of the dithiocarbamate group under tin-free conditions.

    PubMed

    McMaster, Claire; Bream, Robert N; Grainger, Richard S

    2012-06-28

    Reductive desulfurisation of dithiocarbamates is conveniently achieved using H(3)PO(2)-Et(3)N-ACCN in refluxing dioxane. Fused and spirocyclic β-lactams, prepared through 4-exo trig carbamoyl radical cyclisation-dithiocarbamate group transfer reactions, are reduced without fragmentation of the strained 4-membered ring. Diethyl tetraacetyl-d-glucopyranosyl dithiocarbamate is selectively reduced with or without acyloxy group migration depending on reaction conditions and choice of reductant. Deuterium incorporation from D(3)PO(2)-Et(3)N is observed for a system involving a nucleophilic radical intermediate, but not in the case of the electrophilic radical obtained through acyloxy group migration on a glucose derivative.

  12. Direct production of OH radicals upon CH overtone activation of (CH{sub 3}){sub 2}COO Criegee intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fang; Beames, Joseph M.; Lester, Marsha I., E-mail: milester@sas.upenn.edu

    2014-12-21

    Ozonolysis of alkenes, a principle non-photolytic source of atmospheric OH radicals, proceeds through unimolecular decay of energized carbonyl oxide intermediates, known as Criegee intermediates. In this work, cold dimethyl-substituted Criegee intermediates are vibrationally activated in the CH stretch overtone region to drive the 1,4 hydrogen transfer reaction that leads to OH radical products. IR excitation of (CH{sub 3}){sub 2}COO reveals the vibrational states with sufficient oscillator strength, coupling to the reaction coordinate, and energy to surmount the effective barrier (≤ 16.0 kcal mol{sup −1}) to reaction. Insight on the dissociation dynamics is gleaned from homogeneous broadening of the spectral features,more » indicative of rapid intramolecular vibrational energy redistribution and/or reaction, as well as the quantum state distribution of the OH X{sup 2}Π (v = 0) products. The experimental results are compared with complementary electronic structure calculations, which provide the IR absorption spectrum and geometric changes along the intrinsic reaction coordinate. Additional theoretical analysis reveals the vibrational modes and couplings that permit (CH{sub 3}){sub 2}COO to access to the transition state region for reaction. The experimental and theoretical results are compared with an analogous recent study of the IR activation of syn-CH{sub 3}CHOO and its unimolecular decay to OH products [F. Liu, J. M. Beames, A. S. Petit, A. B. McCoy, and M. I. Lester, Science 345, 1596 (2014)].« less

  13. ESR studies on reactivity of protein-derived tyrosyl radicals formed by prostaglandin H synthase and ribonucleotide reductase.

    PubMed

    Lassmann, G; Curtis, J; Liermann, B; Mason, R P; Eling, T E

    1993-01-01

    Using ESR spectroscopy, the ability of enzyme inhibitors to quench protein-derived tyrosyl radicals was studied in two different enzymes, prostaglandin H synthase and ribonucleotide reductase. The prostaglandin H synthase inhibitors indomethacin, eugenol, and MK-410 effectively prevent the formation of tyrosyl radicals during the oxidation of arachidonic acid by prostaglandin H synthase from ram seminal vesicles. A direct reaction with preformed tyrosyl radicals was observed only with eugenol. The other prostaglandin H synthase inhibitors were ineffective. The ribonucleotide reductase inhibitors hydroxyurea and 4-hydroxyanisole, which effectively inactivate the tyrosyl radical in the active site of ribonucleotide reductase present in tumor cells, exhibit a different reactivity with tyrosyl radicals formed by prostaglandin H synthase. Hydroxyurea quenches preformed tyrosyl radicals in prostaglandin H synthase weakly, whereas 4-hydroxyanisole does not quench tyrosyl radicals in prostaglandin H synthase at all. Eugenol, which quenches preformed prostaglandin H synthase-derived tyrosyl radicals, also quenches the tyrosyl radical in ribonucleotide reductase. The results suggest that the reactivity of protein-linked tyrosyl radicals in ribonucleotide reductase and those formed during prostaglandin H synthase catalysis are very different and have unrelated roles in enzyme catalysis.

  14. RRKM and master equation kinetic analysis of parallel addition reactions of isomeric radical intermediates in hydrocarbon flames

    NASA Astrophysics Data System (ADS)

    Winter, Pierre M.; Rheaume, Michael; Cooksy, Andrew L.

    2017-08-01

    We have calculated the temperature-dependent rate coefficients of the addition reactions of butadien-2-yl (C4H5) and acroylyl (C3H3O) radicals with ethene (C2H4), carbon monoxide (CO), formaldehyde (H2CO), hydrogen cyanide (HCN), and ketene (H2CCO), in order to explore the balance between kinetic and thermodynamic control in these combustion-related reactions. For the C4H5 radical, the 1,3-diene form of the addition products is more stable than the 1,2-diene, but the 1,2-diene form of the radical intermediate is stabilized by an allylic delocalization, which may influence the relative activation energies. For the reactions combining C3H3O with C2H4, CO, and HCN, the opposite is true: the 1,2-enone form of the addition products is more stable than the 1,3-enone, whereas the 1,3-enone is the slightly more stable radical species. Optimized geometries and vibrational modes were computed with the QCISD/aug-cc-pVDZ level and basis, followed by single-point CCSD(T)-F12a/cc-pVDZ-F12 energy calculations. Our findings indicate that the kinetics in all cases favor reaction along the 1,3 pathway for both the C4H5 and C3H3O systems. The Rice-Ramsperger-Kassel-Marcus (RRKM) microcanonical rate coefficients and subsequent solution of the chemical master equation were used to predict the time-evolution of our system under conditions from 500 K to 2000 K and from 10-5 bar to 10 bars. Despite the 1,3 reaction pathway being more favorable for the C4H5 system, our results predict branching ratios of the 1,2 to 1,3 product as high as 0.48 at 1 bar. Similar results hold for the acroylyl system under these combustion conditions, suggesting that under kinetic control the branching of these reactions may be much more significant than the thermodynamics would suggest. This effect may be partly attributed to the low energy difference between 1,2 and 1,3 forms of the radical intermediate. No substantial pressure-dependence is found for the overall forward reaction rates until pressures

  15. Pyrimidine Nucleobase Radical Reactivity in DNA and RNA.

    PubMed

    Greenberg, Marc M

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  16. Pyrimidine nucleobase radical reactivity in DNA and RNA

    NASA Astrophysics Data System (ADS)

    Greenberg, Marc M.

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  17. OH Production from Reactions of Organic Peroxy Radicals with HO2 : Recent Studies on Ether-Derived Peroxy Radicals

    NASA Astrophysics Data System (ADS)

    Orlando, J. J.; Tyndall, G. S.; Kegley Owen, C. S.; Reynoldson, N.

    2013-12-01

    There is now ample evidence supporting significant formation of OH radicals in the reaction of HO2 with certain organic peroxy radicals (RO2). These reaction channels serve to promote radical propagation, and thus have the potential to alter HOx budgets and partitioning and hence tropospheric oxidative capacity. While much focus has been placed on OH production from reactions involving carbonyl-containing RO2 species, it is also the case that other oxygen- substituted peroxy species (e.g., CH3OCH2OO, HOCH2OO) likely generate OH in their reactions with HO2 (see ref. 1 and refs therein). In this work, the Cl-atom-initiated oxidation of two ethers, diethyl and diisopropyl ether, is investigated over ranges of conditions in an environmental chamber, using both FTIR and GC-FID methods for product quantification. Preliminary analysis suggests that significant OH production is occurring in the reaction of HO2 with CH3CH2OCH(OO)CH3, and also provides evidence for a rapid unimolecular reaction of diisopropyl ether-derived peroxy radicals. Details of these and other results will be described. 1. Orlando, J. J., and G. S. Tyndall, 2012: Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance, Chemical Society Reviews, 41, 6294-6317, doi: 10.1039/C2CS35166H.

  18. Characteristics of Radical Reactions, Spin Rules, and a Suggestion for the Consistent Use of a Dot on Radical Species

    ERIC Educational Resources Information Center

    Wojnarovits, Laszlo

    2011-01-01

    In many chemical reactions, reactive radicals have been shown to be transient intermediates. The free radical character of a chemical species is often, but not always, indicated by adding a superscript dot to the chemical formula. A consistent use of this radical symbol on all species that have radical character is suggested. Free radicals have a…

  19. Distribution of free radicals and intermediates during the photodegradation of polychlorinated biphenyls strongly affected by cosolvents and TiO₂ catalyst.

    PubMed

    Zhu, Xiangdong; Wang, Yujun; Qin, Wenxiu; Zhang, Shicheng; Zhou, Dongmei

    2016-02-01

    Polychlorinated biphenyls (PCBs) pose potential ecological risk because of their high toxicity and carcinogenicity. Photodegradation, which is an important process for the removal of PCBs, is greatly influenced by the cosolvent and catalyst. Hence, it is important to explore their effects on the photodegradation behavior of PCBs. In this study, 2,4,4'-trichlorobiphenyl (PCB28) was selected as a model compound, and the effects of two typical cosolvents, namely acetone and ethanol, and TiO2 catalyst on the distributions of free radicals and intermediates were investigated. Interestingly, the TiO2 catalyst did not promote PCB28 photodegradation. Moreover, the free radical distribution was greatly influenced in the presence of the TiO2 catalyst, while was only slightly affected in its absence by the cosolvent kinds. The main photodegradation pathways are proposed on the basis of the distribution of detected intermediates, which were significantly regulated by both the cosolvent and TiO2 catalyst. The results provide novel insights into the photodegradation of PCBs and may have important implications for choosing cosolvent in desorbing soil PCBs and consequently enhancing PCBs degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Deriving the Dividend Discount Model in the Intermediate Microeconomics Class

    ERIC Educational Resources Information Center

    Norman, Stephen; Schlaudraff, Jonathan; White, Karianne; Wills, Douglas

    2013-01-01

    In this article, the authors show that the dividend discount model can be derived using the basic intertemporal consumption model that is introduced in a typical intermediate microeconomics course. This result will be of use to instructors who teach microeconomics to finance students in that it demonstrates the value of utility maximization in…

  1. Thermochemical and kinetic analyses on oxidation of isobutenyl radical and 2-hydroperoxymethyl-2-propenyl radical.

    PubMed

    Zheng, X L; Sun, H Y; Law, C K

    2005-10-13

    In recognition of the importance of the isobutene oxidation reaction in the preignition chemistry associated with engine knock, the thermochemistry, chemical reaction pathways, and reaction kinetics of the isobutenyl radical oxidation at low to intermediate temperature range were computationally studied, focusing on both the first and the second O2 addition to the isobutenyl radical. The geometries of reactants, important intermediates, transition states, and products in the isobutenyl radical oxidation system were optimized at the B3LYP/6-311G(d,p) and MP2(full)/6-31G(d) levels, and the thermochemical properties were determined on the basis of ab initio, density functional theory, and statistical mechanics. Enthalpies of formation for several important intermediates were calculated using isodesmic reactions at the DFT and the CBS-QB3 levels. The kinetic analysis of the first O2 addition to the isobutenyl radical was performed using enthalpies at the CBS-QB3 and G3(MP2) levels. The reaction forms a chemically activated isobutenyl peroxy adduct which can be stabilized, dissociate back to reactants, cyclize to cyclic peroxide-alkyl radicals, and isomerize to the 2-hydroperoxymethyl-2-propenyl radical that further undergoes another O2 addition. The reaction channels for isomerization and cyclization and further dissociation on this second O2 addition were analyzed using enthalpies at the DFT level with energy corrections based on similar reaction channels for the first O2 addition. The high-pressure limit rate constants for each reaction channel were determined as functions of temperature by the canonical transition state theory for further kinetic model development.

  2. Free Radical Mechanisms of Xenobiotic Mammalian Cytotoxicities

    DTIC Science & Technology

    1991-06-30

    injury process was mediated through biotransformation of the halocarbons to a free radical intermediate, similar to what happens in the liver . However...peroxidation) of antioxidant agents - is not limited to the liver , but also occurs in vascular cells as well. Unlike the liver , where most of the injury is...frequent mechanism of xenobiotic liver toxicity is biotransformation by cytochrome P,5o-enzymes to toxic free radical intermediates. The primary objective

  3. Reaction between peroxynitrite and boronates: EPR spin-trapping, HPLC analyses, and quantum mechanical study of the free radical pathway

    PubMed Central

    Sikora, Adam; Zielonka, Jacek; Lopez, Marcos; Dybala-Defratyka, Agnieszka; Joseph, Joy; Marcinek, Andrzej; Kalyanaraman, Balaraman

    2013-01-01

    Recently we showed that peroxynitrite (ONOO−) reacts directly and rapidly with aromatic and aliphatic boronic acids (k ≈ 106 M−1s−1). Product analyses and substrate consumption data indicated that ONOO− reacts stoichiometrically with boronates, yielding the corresponding phenols as the major product (~85–90%), and the remaining products (10–15%) were proposed to originate from free radical intermediates (phenyl and phenoxyl radicals). Here we investigated in detail the minor, free radical pathway of boronate reaction with ONOO−. The electron paramagnetic resonance (EPR) spin-trapping technique was used to characterize the free radical intermediates formed from the reaction between boronates and ONOO−. Using 2-methyl-2-nitrosopropane (MNP) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps, phenyl radicals were trapped and detected. Although phenoxyl radicals were not detected, the positive effects of molecular oxygen, and inhibitory effects of hydrogen atom donors (acetonitrile, and 2-propanol) and general radical scavengers (GSH, NADH, ascorbic acid and tyrosine) on the formation of phenoxyl radical-derived nitrated product, suggest that phenoxyl radical was formed as the secondary species. We propose that the initial step of the reaction involves the addition of ONOO− to the boron atom in boronates. The anionic intermediate undergoes both heterolytic (major pathway) and homolytic (minor pathway) cleavage of the peroxy (O-O) bond to form phenol and nitrite as a major product (via a non-radical mechanism), or a radical pair PhB(OH)2O•−…•NO2 as a minor product. It is conceivable that phenyl radicals are formed by the fragmentation of PhB(OH)2O•− radical anion. According to the DFT quantum mechanical calculations, the energy barrier for the dissociation of PhB(OH)2O•− radical anion to form phenyl radicals is only a few kcal/mol, suggesting rapid and spontaneous fragmentation of PhB(OH)2O•− radical anion

  4. Effects of hydroxylated benzaldehyde derivatives on radiation-induced reactions involving various organic radicals

    NASA Astrophysics Data System (ADS)

    Ksendzova, G. A.; Samovich, S. N.; Sorokin, V. L.; Shadyro, O. I.

    2018-05-01

    In the present paper, the effects of hydroxylated benzaldehyde derivatives and gossypol - the known natural occurring compound - on formation of decomposition products resulting from radiolysis of ethanol and hexane in deaerated and oxygenated solutions were studied. The obtained data enabled the authors to make conclusions about the effects produced by the structure of the compounds under study on their reactivity towards oxygen- and carbon-centered radicals. It has been found that 2,3-dihydroxybenzaldehyde, 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde and 4,6-di-tert-butyl-3-(1,3-dioxane-2-yl)-1,2-dihydroxybenzene are not inferior in efficiency to butylated hydroxytoluene - the industrial antioxidant - as regards suppression of the radiation-induced oxidation processes occurring in hexane. The derivatives of hydroxylated benzaldehydes were shown to have a significant influence on radiation-induced reactions involving α-hydroxyalkyl radicals.

  5. Pyridine radical cation and its fluorine substituted derivatives

    USGS Publications Warehouse

    Bondybey, V.E.; English, J.H.; Shiley, R.H.

    1982-01-01

    The spectra and relaxation of the pyridine cation and of several of its fluorinated derivatives are studied in low temperature Ne matrices. The ions are generated by direct photoionization of the parent compounds. Of the compounds studied, laser induced → and → fluorescence is observed only for the 2, 6‐difluoropyridine cation. The analysis of the spectrum indicates that the ion is planar both in the and states. The large variety in the spectroscopic and relaxation behavior of fluoropyridine radical cations is explained in terms of their electronic structure and of the differential shifts of the individual electronic states caused by the fluorine substitution.

  6. Experimental and theoretical study on DPPH radical scavenging mechanism of some chalcone quinoline derivatives

    NASA Astrophysics Data System (ADS)

    Hamlaoui, Ikram; Bencheraiet, Reguia; Bensegueni, Rafik; Bencharif, Mustapha

    2018-03-01

    In this study, the antioxidant capacity of three chalcone derivatives was evaluated by DPPH free radical scavenging. Experimental data showed low antioxidant activity (IC50±SD) of these molecules in comparison with BHT. The mechanism of DPPH radical scavenging elucidated by means of density functional theory (DFT) calculations. The tested compounds and their corresponding radicals and anions were optimized using B3LYP functional with 6-31G (d,p) basis set in the gas phase. The C-PCM model was used to perform solvent medium calculations. On the basis of theoretical calculations, it was shown that HAT mechanism was predominant in the gas phase, whereas SET-PT and SPLET mechanisms were favored in the presence of the solvent. Moreover, the HOMO orbitals and spin density distribution was evaluated to predict the probable sites for free radical attack.

  7. Stabilization of Two Radicals with One Metal: A Stepwise Coupling Model for Copper-Catalyzed Radical–Radical Cross-Coupling

    PubMed Central

    Qi, Xiaotian; Zhu, Lei; Bai, Ruopeng; Lan, Yu

    2017-01-01

    Transition metal-catalyzed radical–radical cross-coupling reactions provide innovative methods for C–C and C–heteroatom bond construction. A theoretical study was performed to reveal the mechanism and selectivity of the copper-catalyzed C–N radical–radical cross-coupling reaction. The concerted coupling pathway, in which a C–N bond is formed through the direct nucleophilic addition of a carbon radical to the nitrogen atom of the Cu(II)–N species, is demonstrated to be kinetically unfavorable. The stepwise coupling pathway, which involves the combination of a carbon radical with a Cu(II)–N species before C–N bond formation, is shown to be probable. Both the Mulliken atomic spin density distribution and frontier molecular orbital analysis on the Cu(II)–N intermediate show that the Cu site is more reactive than that of N; thus, the carbon radical preferentially react with the metal center. The chemoselectivity of the cross-coupling is also explained by the differences in electron compatibility of the carbon radical, the nitrogen radical and the Cu(II)–N intermediate. The higher activation free energy for N–N radical–radical homo-coupling is attributed to the mismatch of Cu(II)–N species with the nitrogen radical because the electrophilicity for both is strong. PMID:28272407

  8. Reactivity of superoxide radical anion and hydroperoxyl radical with alpha-phenyl-N-tert-butylnitrone (PBN) derivatives.

    PubMed

    Durand, Grégory; Choteau, Fanny; Pucci, Bernard; Villamena, Frederick A

    2008-12-04

    Nitrones have exhibited pharmacological activity against radical-mediated pathophysiological conditions and as analytical reagents for the identification of transient radical species by electron paramagnetic resonance (EPR) spectroscopy. In this work, competitive spin trapping, stopped-flow kinetics, and density functional theory (DFT) were employed to assess and predict the reactivity of O(2)(*-) and HO(2)(*) with various para-substituted alpha-phenyl-N-tert-butylnitrone (PBN) spin traps. Rate constants of O(2)(*-) trapping by nitrones were determined using competitive UV-vis stopped-flow method with phenol red (PR) as probe, while HO(2)(*) trapping rate constants were calculated using competition kinetics with 5,5-dimethylpyrroline N-oxide (DMPO) by employing EPR spectroscopy. The effects of the para substitution on the charge density of the nitronyl-carbon and on the free energies of nitrone reactivity with O(2)(*-) and HO(2)(*) were computationally rationalized at the PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) level of theory. Theoretical and experimental data show that the rate of O(2)(*-) addition to PBN derivatives is not affected by the polar effect of the substituents. However, the reactivity of HO(2)(*) follows the Hammett equation and is increased as the substituent becomes more electron withdrawing. This supports the conclusion that the nature of HO(2)(*) addition to PBN derivatives is electrophilic, while the addition of O(2)(*-) to PBN-type compounds is only weakly electrophilic.

  9. NHC-catalysed benzoin condensation - is it all down to the Breslow intermediate?

    PubMed

    Rehbein, Julia; Ruser, Stephanie-M; Phan, Jenny

    2015-10-01

    The Breslow catalytic cycle describing the benzoin condensation promoted by N-heterocyclic carbenes (NHC) as proposed in the late 1950s has since then been tried by generations of physical organic chemists. Emphasis has been laid on proofing the existence of an enaminol like structure (Breslow intermediate) that explains the observed umpolung of an otherwise electrophilic aldehyde. The present study is not focusing on spectroscopic elucidation of a thiazolydene based Breslow intermediate but rather tries to clarify if this key-intermediate is indeed directly linked with the product side of the overall reaction. The here presented EPR-spectroscopic and computational data provide a fundamentally different view on how the benzoin condensation may proceed: a radical pair could be identified as a second key-intermediate that is derived from the Breslow-intermediate via an SET process. These results highlight the close relationship to the Cannizarro reaction and oxidative transformations of aldehydes under NHC catalysis.

  10. Structural modifications of human beta 2 microglobulin treated with oxygen-derived radicals.

    PubMed Central

    Capeillere-Blandin, C; Delaveau, T; Descamps-Latscha, B

    1991-01-01

    Treatment of human beta 2 microglobulin (beta 2m) with defined oxygen-derived species generated by treatment with gamma-radiation was studied. As assessed by SDS/PAGE, the hydroxyl radicals (.OH) caused the disappearance of the protein band at 12 kDa that represents beta 2m, and cross-linked the protein into protein bands stable to both SDS and reducing conditions. However, when .OH was generated under oxygen in equimolar combination with the superoxide anion radical (O2.-), the high-molecular-mass protein products were less represented, and fragmented derivatives were not obviously detectable. Exposure to .OH alone, or to .OH + O2.- in the presence of O2, induced the formation of beta 2m protein derivatives with a more acidic net electrical charge than the parent molecule. In contrast, O2.- alone had virtually no effect on molecular mass or pI. Changes in u.v. fluorescence during .OH attack indicated changes in conformation, as confirmed by c.d. spectrometry. A high concentration of radicals caused the disappearance of the beta-pleated sheet structure and the formation of a random coil structure. Loss of tryptophan and significant production of dityrosine (2,2'-biphenol type) were noted, exhibiting a clear dose-dependence with .OH alone or with .OH + O2.-. The combination of .OH + O2.- induced a pattern of changes similar to that with .OH alone, but more extensive for c.d. and tryptophan oxidation (2 Trp/beta 2m molecule), and more limited for dityrosine formation. Lower levels of these oxidative agents caused the reproducible formation of species at 18 and 25 kDa which were recognized by antibodies against native beta 2m. These findings provide a model for the protein pattern observed in beta 2m amyloidosis described in the literature. Images Fig. 4. Fig. 5. PMID:1649598

  11. Broadband Microwave Study of Reaction Intermediates and Products Through the Pyrolysis of Oxygenated Biofuels

    NASA Astrophysics Data System (ADS)

    Abeysekera, Chamara; Hernandez-Castillo, Alicia O.; Fritz, Sean; Zwier, Timothy S.

    2017-06-01

    The rapidly growing list of potential plant-derived biofuels creates a challenge for the scientific community to provide a molecular-scale understanding of their combustion. Development of accurate combustion models rests on a foundation of experimental data on the kinetics and product branching ratios of their individual reaction steps. Therefore, new spectroscopic tools are necessary to selectively detect and characterize fuel components and reactive intermediates generated by pyrolysis and combustion. Substituted furans, including furanic ethers, are considered second-generation biofuel candidates. Following the work of the Ellison group, an 8-18 GHz microwave study was carried out on the unimolecular and bimolecular decomposition of the smallest furanic ether, 2-methoxy furan, and it`s pyrolysis intermediate, the 2-furanyloxy radical, formed in a high-temperature pyrolysis source coupled to a supersonic expansion. Details of the experimental setup and analysis of the spectrum of the radical will be discussed.

  12. Properties of Intermediates in the Catalytic Cycle of Oxalate Oxidoreductase and Its Suicide Inactivation by Pyruvate

    PubMed Central

    2017-01-01

    Oxalate:ferredoxin oxidoreductase (OOR) is an unusual member of the thiamine pyrophosphate (TPP)-dependent 2-oxoacid:ferredoxin oxidoreductase (OFOR) family in that it catalyzes the coenzyme A (CoA)-independent conversion of oxalate into 2 equivalents of carbon dioxide. This reaction is surprising because binding of CoA to the acyl-TPP intermediate of other OFORs results in formation of a CoA ester, and in the case of pyruvate:ferredoxin oxidoreductase (PFOR), CoA binding generates the central metabolic intermediate acetyl-CoA and promotes a 105-fold acceleration of the rate of electron transfer. Here we describe kinetic, spectroscopic, and computational results to show that CoA has no effect on catalysis by OOR and describe the chemical rationale for why this cofactor is unnecessary in this enzymatic transformation. Our results demonstrate that, like PFOR, OOR binds pyruvate and catalyzes decarboxylation to form the same hydroxyethylidine–TPP (HE–TPP) intermediate and one-electron transfer to generate the HE–TPP radical. However, in OOR, this intermediate remains stranded at the active site as a covalent inhibitor. These and other results indicate that, like other OFOR family members, OOR generates an oxalate-derived adduct with TPP (oxalyl-TPP) that undergoes decarboxylation and one-electron transfer to form a radical intermediate remaining bound to TPP (dihydroxymethylidene–TPP). However, unlike in PFOR, where CoA binding drives formation of the product, in OOR, proton transfer and a conformational change in the “switch loop” alter the redox potential of the radical intermediate sufficiently to promote the transfer of an electron into the iron–sulfur cluster network, leading directly to a second decarboxylation and completing the catalytic cycle. PMID:28514140

  13. Thiyl radicals and induction of protein degradation

    PubMed Central

    Schöneich, Christian

    2016-01-01

    Thiyl radicals are important intermediates in the redox biology and chemistry of thiols. These radicals can react via hydrogen transfer with various C-H bonds in peptides and proteins, leading to the generation of carbon-centered radicals, and, potentially, to irreversible protein damage. This review summarizes quantitative information on reaction kinetics and product formation, and discusses the significance of these reactions for protein degradation induced by thiyl radical formation. PMID:26212409

  14. Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation.

    PubMed Central

    Hawkins, C L; Davies, M J

    1998-01-01

    Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl damages proteins by reaction with amino acid side-chains or backbone cleavage. Little information is available about the mechanisms and intermediates involved in these reactions. EPR spin trapping has been employed to identify radicals on proteins, peptides and amino acids after treatment with HOCl. Reaction with HOCl gives both high- and low-molecular-mass nitrogen-centred, protein-derived radicals; the yield of the latter increases with both higher HOCl:protein ratios and enzymic digestion. These radicals, which arise from lysine side-chain amino groups, react with ascorbate, glutathione and Trolox. Reaction of HOCl-treated proteins with excess methionine eliminates radical formation, which is consistent with lysine-derived chloramines (via homolysis of N-Cl bonds) being the radical source. Incubation of HOCl-treated proteins, after removal of excess oxidant, gives rise to both nitrogen-centred radicals, over a period of hours, and time-dependent fragmentation of the protein. Treatment with excess methionine or antioxidants (Trolox, ascorbate, glutathione) protects against fragmentation; urate and bilirubin do not. Chloramine formation and nitrogen-centred radicals are therefore key species in HOCl-induced protein fragmentation. PMID:9620862

  15. The benzylperoxyl radical as a source of hydroxyl and phenyl radicals.

    PubMed

    Sander, Wolfram; Roy, Saonli; Bravo-Rodriguez, Kenny; Grote, Dirk; Sanchez-Garcia, Elsa

    2014-09-26

    The benzyl radical (1) is a key intermediate in the combustion and tropospheric oxidation of toluene. Because of its relevance, the reaction of 1 with molecular oxygen was investigated by matrix-isolation IR and EPR spectroscopy as well as computational methods. The primary reaction product of 1 and O2 is the benzylperoxyl radical (2), which exists in several conformers that can easily interconvert even at cryogenic temperatures. Photolysis of radical 2 at 365 nm results in a formal [1,3]-H migration and subsequent cleavage of the O-O bond to produce a hydrogen-bonded complex between the hydroxyl radical and benzaldehyde (4). Prolonged photolysis produces the benzoyl radical (5) and water, which finally yield the phenyl radical (7), CO, and H2O. Thus, via a sequence of exothermic reactions 1 is transformed into radicals of even higher reactivity, such as OH and 7. Our results have implications for the development of models for the highly complicated process of combustion of aromatic compounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Formation of methemoglobin and phenoxyl radicals from p-hydroxyanisole and oxyhemoglobin.

    PubMed

    Stolze, K; Nohl, H

    1991-01-01

    The reaction of p-hydroxyanisole with oxyhemoglobin was investigated using electron spin resonance spectroscopy (ESR) and visible spectroscopy. As a reactive reaction intermediate we found the p-methoxyphenoxyl radical, the one-electron oxidation product of p-hydroxyanisole. Detection of this species required the rapid flow device elucidating the instability of this radical intermediate. The second reaction product formed is methemoglobin. Catalase or SOD had no effect upon the reaction kinetics. Accordingly, reactive oxygen species such as hydroxyl radicals or superoxide could not be observed although the spin trapping agent DMPO was used to make these short-lived species detectable. When the sulfhydryl blocking agents N-ethylmaleimide or mersalyl acid were used, an increase of the methemoglobin formation rate and of the phenoxyl radical concentration were observed. We have interpreted this observation in terms of a side reaction of free radical intermediates with thiol groups.

  17. Mechanism of the OH Radical Addition to Adenine from Quantum-Chemistry Determinations of Reaction Paths and Spectroscopic Tracking of the Intermediates.

    PubMed

    Francés-Monerris, Antonio; Merchán, Manuela; Roca-Sanjuán, Daniel

    2017-01-06

    The OH radical is a well-known mediator in the oxidation of biological structures like DNA. Over the past decades, the precise events taking place after reaction of DNA nucleobases with OH radical have been widely investigated by the scientific community. Thirty years after the proposal of the main routes for the reaction of • OH with adenine ( Vieira , A. ; Steenken , S. J. Am. Chem. Soc. 1990 , 112 , 6986 - 6994 ), the present work demonstrates that the OH radical addition to C4 position is a minor pathway. Instead, the dehydration process is mediated by the A5OH adduct. Conclusions are based on density functional theory calculations for the ground-state reactivity and highly accurate multiconfigurational computations for the excited states of the radical intermediates. The methodology has been also used to study the mechanism giving rise to the mutagens 8-oxoA and FAPyA. Taking into account the agreement between the experimental data and the theoretical results, it is concluded that addition to the C5 and C8 positions accounts for at least ∼44.5% of the total • OH reaction in water solution. Finally, the current findings suggest that hydrophobicity in the DNA/RNA surroundings facilitates the formation of 8-oxoA and FAPyA.

  18. Characterization of the radical-scavenging reaction of 2-O-substituted ascorbic acid derivatives, AA-2G, AA-2P, and AA-2S: a kinetic and stoichiometric study.

    PubMed

    Takebayashi, Jun; Tai, Akihiro; Gohda, Eiichi; Yamamoto, Itaru

    2006-04-01

    The aim of this study was to characterize the antioxidant activity of three ascorbic acid (AA) derivatives O-substituted at the C-2 position of AA: ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S). The radical-scavenging activities of these AA derivatives and some common low molecular-weight antioxidants such as uric acid or glutathione against 1,1-diphenyl-picrylhydrazyl (DPPH) radical, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+), or galvinoxyl radical were kinetically and stoichiometrically evaluated under pH-controlled conditions. Those AA derivatives slowly and continuously reacted with DPPH radical and ABTS+, but not with galvinoxyl radical. They effectively reacted with DPPH radical under acidic conditions and with ABTS+ under neutral conditions. In contrast, AA immediately quenched all species of radicals tested at all pH values investigated. The reactivity of Trolox, a water-soluble vitamin E analogue, was comparable to that of AA in terms of kinetics and stoichiometrics. Uric acid and glutathione exhibited long-lasting radical-scavenging activity against these radicals under certain pH conditions. The radical-scavenging profiles of AA derivatives were closer to those of uric acid and glutathione rather than to that of AA. The number of radicals scavenged by one molecule of AA derivatives, uric acid, or glutathione was equal to or greater than that by AA or Trolox under the appropriate conditions. These data suggest the potential usage of AA derivatives as radical scavengers.

  19. Caffeoylquinic acid derived free radicals identified during antioxidant reactions of bitter tea (Ilex latifolia and Ilex kudincha).

    PubMed

    Pirker, Katharina Franziska; Goodman, Bernard Albert

    2010-12-01

    In order to provide some insight into the chemical basis for the antioxidant behaviour of bitter tea, the Chinese medicinal beverage derived from leaves of Ilex kudincha or Ilex latifolia, free radicals generated during the oxidation of aqueous extracts of dried leaves have been investigated by electron paramagnetic resonance (EPR) spectroscopy. With both beverages, the major components in the EPR spectra after accelerated autoxidation under alkaline conditions or oxidation with the superoxide anion radical were comparable to those derived from reactions of caffeoylquinic acids. Thus these reaction products have sufficient stability for biological activity, and the present results suggest that such molecules contribute appreciably to the antioxidant chemistry of these beverages.

  20. Free-radical chemistry of sulfite.

    PubMed Central

    Neta, P; Huie, R E

    1985-01-01

    The free-radical chemistry of sulfite oxidation is reviewed. Chemical transformations of organic and biological molecules induced by sulfite oxidation are summarized. The kinetics of the free-radical oxidations of sulfite are discussed, as are the kinetics of the reactions of the sulfite-derived radicals SO3 and the peroxy derivative SO5 with organic compounds. PMID:3830699

  1. Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI.

    PubMed

    Utsumi, Hideo; Hyodo, Fuminori

    2015-01-01

    Redox reactions that generate free radical intermediates are essential to metabolic processes, and their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. The development of an in vivo electron spin resonance (ESR) spectrometer and its imaging enables us noninvasive and direct measurement of in vivo free radical reactions in living organisms. The dynamic nuclear polarization magnetic resonance imaging (DNP-MRI), also called PEDRI or OMRI, is also a new imaging method for observing free radical species in vivo. The spatiotemporal resolution of free radical imaging with DNP-MRI is comparable with that in MRI, and each of the radical species can be distinguished in the spectroscopic images by changing the frequency or magnetic field of ESR irradiation. Several kinds of stable nitroxyl radicals were used as spin probes to detect in vivo redox reactions. The signal decay of nitroxyl probes, which is determined with in vivo DNP-MRI, reflects the redox status under oxidative stress, and the signal decay is suppressed by prior administration of antioxidants. In addition, DNP-MRI can also visualize various intermediate free radicals from the intrinsic redox molecules. This noninvasive method, in vivo DNP-MRI, could become a useful tool for investigating the mechanism of oxidative injuries in animal disease models and the in vivo effects of antioxidant drugs. © 2015 Elsevier Inc. All rights reserved.

  2. Magnetic field effects on coenzyme B12- and B6-dependent lysine 5,6-aminomutase: switching of the J-resonance through a kinetically competent radical-pair intermediate.

    PubMed

    Chen, Jun-Ru; Ke, Shyue-Chu

    2018-05-09

    The environmental magnetic field is beneficial to migratory bird navigation through the radical-pair mechanism. One of the continuing challenges in understanding how magnetic fields may perturb biological processes is that only a very few field-sensitive examples have been explored despite the prevalence of radical pairs in enzymatic reactions. We show that the reaction of adenosylcobalamin- and pyridoxal-5'-phosphate-dependent lysine 5,6-aminomutase proceeds via radical-pair intermediates and is magnetic field dependent. The 5'-deoxyadenosyl radical from adenosylcobalamin abstracts a C5(H) from the substrate to yield a {cob(ii)alamin - substrate} radical pair wherein the large spin-spin interaction (2J = 8000 gauss) locks the radical pair in a triplet state, as evidenced by electron paramagnetic resonance spectroscopy. Application of an external magnetic field in the range of 6500 to 8500 gauss triggers intersystem crossing to the singlet {cob(ii)alamin - substrate} radical-pair state. Spin-conserved H back-transfer from deoxyadenosine to the substrate radical yields a singlet {cob(ii)alamin-5'-deoxyadenosyl} radical pair. Spin-selective recombination to adenosylcobalamin decreased the enzyme catalytic efficiency kcat/Km by 16% at 7600 gauss. As a mechanistic probe, observation of magnetic field effects successfully demonstrates the presence of a kinetically significant radical pair in this enzyme. The study of a pronounced high-field level-crossing characteristic through an immobilized radical pair with a constant exchange interaction deepens our understanding of how a magnetic field may interact with an enzyme.

  3. Radicals derived from acetaldehyde and vinyl alcohol.

    PubMed

    Estep, Marissa L; Morgan, W James; Winkles, Alexander T; Abbott, Adam S; Villegas-Escobar, Nery; Mullinax, J Wayne; Turner, Walter E; Wang, Xiao; Turney, Justin M; Schaefer, Henry F

    2017-10-18

    Vinyl alcohol and acetaldehyde are isoelectronic products of incomplete butanol combustion. Along with the radicals resulting from the removal of atomic hydrogen or the hydroxyl radical, these species are studied here using ab initio methods as complete as coupled cluster theory with single, double, triple, and perturbative quadruple excitations [CCSDT(Q)], with basis sets as large as cc-pV5Z. The relative energies provided herein are further refined by including corrections for relativistic effects, the frozen core approximation, and the Born-Oppenheimer approximation. The effects of anharmonic zero-point vibrational energies are also treated. The syn conformer of vinyl alcohol is predicted to be lower in energy than the anti conformer by 1.1 kcal mol -1 . The alcoholic hydrogen of syn-vinyl alcohol is found to be the easiest to remove, requiring 84.4 kcal mol -1 . Five other radicals are also carefully considered, with four conformers investigated for the 1-hydroxyvinyl radical. Beyond energetics, we have conducted an overhaul of the spectroscopic literature for these species. Our results also provide predictions for fundamental modes yet to be reported experimentally. To our knowledge, the ν 3 (3076 cm -1 ) and ν 4 (2999 cm -1 ) C-H stretches for syn-vinyl alcohol and all but one of the vibrational modes for anti-vinyl alcohol (ν 1 -ν 14 ) are yet to be observed experimentally. For the acetyl radical, ν 6 (1035 cm -1 ), ν 11 (944 cm -1 ), ν 12 (97 cm -1 ), and accounting for our changes to the assignment of the 1419.9 cm -1 experimental mode, ν 10 (1441 cm -1 ), are yet to be observed. We have predicted these unobserved fundamentals and reassigned the experimental 1419.9 cm -1 frequency in the acetyl radical to ν 4 rather than to ν 10 . Our work also strongly supports reassignment of the ν 10 and ν 11 fundamentals of the vinoxy radical. We suggest that the bands assigned to the overtones of these fundamentals were in fact combination bands. Our

  4. OH Radical Reactions with Nitroimidazole and Nitrotriazole Derivatives

    NASA Astrophysics Data System (ADS)

    Gümüş, Selçuk

    2012-04-01

    The reactions between hydroxyl radical and 5-nitro-1H-imidazole (A), 2-nitro-1H-imidazole (B), and 3-nitro-4H-1,2,4-triazole (C) were theoretically investigated using B3LYP/6-31G(d,p) level of theory. The OH radical additions to double bonds were explored in bulk solvent (water). The data presented show that the barriers to reaction were very low, 3-7 kcal/mol, indicating fast reactions. Thermodynamically, OH addition to position 2 of structure A leads to the most stable radical product. The main geometrical parameters are reported for reactants, transition states, and radical products together with some energetic data of the nitro-imidazolone-type final compounds.

  5. Diastereoselective radical addition to γ-alkyl-α-methylene-γ-butyrolactams and the synthesis of a chiral pyroglutamic acid derivative.

    PubMed

    Yajima, Tomoko; Yoshida, Eriko; Hamano, Masako

    2013-01-01

    The cis- and trans-stereoselective radical additions to α-methylene-γ-alkyl- γ-lactams were investigated and the scope and limitation of the reaction were also revealed. This stereoselective radical reaction was used for synthesis of chiral pyroglutamic acid derivatives starting from a commercially available chiral amino acid.

  6. Release of Reactive Oxygen Intermediates (Superoxide Radicals, Hydrogen Peroxide, and Hydroxyl Radicals) and Peroxidase in Germinating Radish Seeds Controlled by Light, Gibberellin, and Abscisic Acid1

    PubMed Central

    Schopfer, Peter; Plachy, Claudia; Frahry, Gitta

    2001-01-01

    Germination of radish (Raphanus sativus cv Eterna) seeds can be inhibited by far-red light (high-irradiance reaction of phytochrome) or abscisic acid (ABA). Gibberellic acid (GA3) restores full germination under far-red light. This experimental system was used to investigate the release of reactive oxygen intermediates (ROI) by seed coats and embryos during germination, utilizing the apoplastic oxidation of 2′,7′-dichlorofluorescin to fluorescent 2′,7′-dichlorofluorescein as an in vivo assay. Germination in darkness is accompanied by a steep rise in ROI release originating from the seed coat (living aleurone layer) as well as the embryo. At the same time as the inhibition of germination, far-red light and ABA inhibit ROI release in both seed parts and GA3 reverses this inhibition when initiating germination under far-red light. During the later stage of germination the seed coat also releases peroxidase with a time course affected by far-red light, ABA, and GA3. The participation of superoxide radicals, hydrogen peroxide, and hydroxyl radicals in ROI metabolism was demonstrated with specific in vivo assays. ROI production by germinating seeds represents an active, developmentally controlled physiological function, presumably for protecting the emerging seedling against attack by pathogens. PMID:11299341

  7. Wolffian duct derivative anomalies: technical considerations when encountered during robot-assisted radical prostatectomy.

    PubMed

    Acharya, Sujeet S; Gundeti, Mohan S; Zagaja, Gregory P; Shalhav, Arieh L; Zorn, Kevin C

    2009-04-01

    Although malformations of the genitourinary tract are typically identified during childhood, they can remain silent until incidental detection in evaluation and treatment of other pathologies during adulthood. The advent of the minimally invasive era in urologic surgery has given rise to unique challenges in the surgical management of anomalies of the genitourinary tract. This article reviews the embryology of anomalies of Wolffian duct (WD) derivatives with specific attention to the seminal vesicles, vas deferens, ureter, and kidneys. This is followed by a discussion of the history of the laparoscopic approach to WD derivative anomalies. Finally, we present two cases to describe technical considerations when managing these anomalies when encountered during robotic-assisted radical prostatectomy. The University of Chicago Robotic Laparoscopic Radical Prostatectomy (RLRP) database was reviewed for cases where anomalies of WD derivatives were encountered. We describe how modifications in technique allowed for completion of the procedure without difficulty. None Of the 1230 RLRP procedures performed at our institution by three surgeons, only two cases (0.16%) have been noted to have a WD anomaly. These cases were able to be completed without difficulty by making simple modifications in technique. Although uncommon, it is important for the urologist to be familiar with the origin and surgical management of WD anomalies, particularly when detected incidentally during surgery. Simple modifications in technique allow for completion of RLRP without difficulty.

  8. Diastereoselective radical addition to γ-alkyl-α-methylene-γ-butyrolactams and the synthesis of a chiral pyroglutamic acid derivative

    PubMed Central

    Yoshida, Eriko; Hamano, Masako

    2013-01-01

    Summary The cis- and trans-stereoselective radical additions to α-methylene-γ-alkyl- γ-lactams were investigated and the scope and limitation of the reaction were also revealed. This stereoselective radical reaction was used for synthesis of chiral pyroglutamic acid derivatives starting from a commercially available chiral amino acid. PMID:23946839

  9. Noncanonical Radical SAM Enzyme Chemistry Learned from Diphthamide Biosynthesis.

    PubMed

    Dong, Min; Zhang, Yugang; Lin, Hening

    2018-05-10

    Radical S-adenosylmethionine (SAM) enzymes are a superfamily of enzymes that use SAM and reduced [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical to catalyze numerous challenging reactions. We have reported a type of noncanonical radical SAM enzymes in the diphthamide biosynthesis pathway. These enzymes also use SAM and reduced [4Fe-4S] clusters, but generate a 3-amino-3-carboxypropyl (ACP) radical to modify the substrate protein, translation elongation factor 2. The regioselective cleavage of a different C-S bond of the sulfonium center of SAM in these enzymes comparing to canonical radical SAM enzymes is intriguing. Here, we highlight some recent findings in the mechanism of these types of enzymes, showing that the diphthamide biosynthetic radial SAM enzymes bound SAM with a distinct geometry. In this way, the unique iron of the [4Fe-4S] cluster in the enzyme can only attack the carbon on the ACP group to form an organometallic intermediate. The homolysis of the organometallic intermediate releases the ACP radical and generates the EF2 radial.

  10. Nitration of particle-associated PAHs and their derivatives (nitro-, oxy-, and hydroxy-PAHs) with NO 3 radicals

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Yang, Bo; Gan, Jie; Liu, Changgeng; Shu, Xi; Shu, Jinian

    2011-05-01

    The heterogeneous reactions of typical polycyclic aromatic hydrocarbons (PAHs) and their derivatives (nitro-, oxy-, and hydroxy-PAHs) adsorbed on azelaic acid particles with NO 3 radicals are investigated using a flow-tube reactor coupled to a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The mono-nitro-, di-nitro-, and poly-nitro-products from successive nitro-substitution reactions of PAHs and their derivatives are observed in real time with VUV-ATOFMS. 9-Nitroanthracene, anthraquinone, anthrone, 9,10-dinitroanthracene, 2-, 4-, and 9-nitrophenanthrene, 1-nitropyrene, 1,3-, 1,6-, and 1,8-dinitropyrene, 7-nitrobenzo[ a]anthracene, and benzo[ a]anthracene-7,12-dione are identified by GC/MS analysis of the reaction products of PAHs and their derivatives coated on the inner bottom surface of the conical flasks with NO 3 radicals. Other oxygenated products are tentatively assigned. 1-Nitropyrene is the only mono-nitrated product detected in the reaction of surface-bound pyrene with gas-phase NO 3 radicals. This phenomenon is different from what has been observed in previous studies of the gas-phase pyrene nitration, showing that 2-nitropyrene is the sole nitration product. The experimental results may reveal the discrepancies between the heterogeneous and homogeneous nitrations of pyrene.

  11. NMR spectra of 3β-hydroxy-5α-cholane derivatives, zymosterol synthesis intermediates

    NASA Astrophysics Data System (ADS)

    Baranovsky, A. V.; Bolotin, A. A.; Kiselev, V. P.

    2011-05-01

    Proton and carbon resonances in NMR spectra of a number of derivatives of 3β-hydroxy-5α-cholanes, zymosterol synthesis intermediates, have been completely assigned using 2D NMR spectroscopy methods. The stereochemistry of the chiral centers and the structures of the molecules have been confirmed.

  12. Bifurcation and extinction limit of stretched premixed flames with chain-branching intermediate kinetics and radiative loss

    NASA Astrophysics Data System (ADS)

    Zhang, Huangwei; Chen, Zheng

    2018-05-01

    Premixed counterflow flames with thermally sensitive intermediate kinetics and radiation heat loss are analysed within the framework of large activation energy. Unlike previous studies considering one-step global reaction, two-step chemistry consisting of a chain branching reaction and a recombination reaction is considered here. The correlation between the flame front location and stretch rate is derived. Based on this correlation, the extinction limit and bifurcation characteristics of the strained premixed flame are studied, and the effects of fuel and radical Lewis numbers as well as radiation heat loss are examined. Different flame regimes and their extinction characteristics can be predicted by the present theory. It is found that fuel Lewis number affects the flame bifurcation qualitatively and quantitatively, whereas radical Lewis number only has a quantitative influence. Stretch rates at the stretch and radiation extinction limits respectively decrease and increase with fuel Lewis number before the flammability limit is reached, while the radical Lewis number shows the opposite tendency. In addition, the relation between the standard flammability limit and the limit derived from the strained near stagnation flame is affected by the fuel Lewis number, but not by the radical Lewis number. Meanwhile, the flammability limit increases with decreased fuel Lewis number, but with increased radical Lewis number. Radical behaviours at flame front corresponding to flame bifurcation and extinction are also analysed in this work. It is shown that radical concentration at the flame front, under extinction stretch rate condition, increases with radical Lewis number but decreases with fuel Lewis number. It decreases with increased radiation loss.

  13. Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates

    PubMed Central

    2004-01-01

    Activated phagocytes release the haem enzyme MPO (myeloperoxidase) and also generate superoxide radicals (O2•−), and hence H2O2, via an oxidative burst. Reaction of MPO with H2O2 in the presence of chloride ions generates HOCl (the physiological mixture of hypochlorous acid and its anion present at pH 7.4). Exposure of glycosaminoglycans to a MPO–H2O2–Cl− system or reagent HOCl generates long-lived chloramides [R-NCl-C(O)-R′] derived from the glycosamine N-acetyl functions. Decomposition of these species by transition metal ions gives polymer-derived amidyl (nitrogen-centred) radicals [R-N•-C(O)-R′], polymer-derived carbon-centred radicals and site-specific strand scission. In the present study, we have shown that exposure of glycosaminoglycan chloramides to O2•− also promotes chloramide decomposition and glycosaminoglycan fragmentation. These processes are inhibited by superoxide dismutase, metal ion chelators and the metal ion-binding protein BSA, consistent with chloramide decomposition and polymer fragmentation occurring via O2•−-dependent one-electron reduction, possibly catalysed by trace metal ions. Polymer fragmentation induced by O2•− [generated by the superoxide thermal source 1, di-(4-carboxybenzyl)hyponitrite] was demonstrated to be entirely chloramide dependent as no fragmentation occurred with the native polymers or when the chloramides were quenched by prior treatment with methionine. EPR spin-trapping experiments using 5,5-dimethyl1-pyrroline-N-oxide and 2-methyl-2-nitrosopropane have provided evidence for both O2•− and polymer-derived carbon-centred radicals as intermediates. The results obtained are consistent with a mechanism involving one-electron reduction of the chloramides to yield polymer-derived amidyl radicals, which subsequently undergo intramolecular hydrogen atom abstraction reactions to give carbon-centred radicals. The latter undergo fragmentation reactions in a site-specific manner. This synergistic

  14. Synthesis of heterocyclic analogues of epibatidine via 7-azabicyclo[2.2.1]hept-2-yl radical intermediates. 1. Intermolecular reactions.

    PubMed

    Gómez-Sánchez, Elena; Soriano, Elena; Marco-Contelles, José

    2008-09-05

    The synthesis and reactivity of the 7-azabicyclo[2.2.1]hept-2-yl radical has been extensively investigated in inter- and intramolecular reaction processes for the first time. In this work we will present the preparation of the radical and its successful intermolecular reaction with radical acceptors such as tert-butylisocyanide and acrylonitrile. Computational analyses have been carried out to show and explain the mechanisms and stereochemical outcome of these transformations. Overall and from the chemical point of view, a new and convenient synthetic approach has been developed for the synthesis of exo-2-(cyano)alkyl substituted 7-azabicyclo[2.2.1]heptane derivatives, a series of compounds of wide interest for the synthesis of heterocyclic analogues of epibatidine. As a result, we describe here the synthesis of the tetrazoloepibatidines (8 and 15) and the oxadiazoloepibatidine (10).

  15. Free Radical Reactions in Food.

    ERIC Educational Resources Information Center

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  16. Spectroscopic detection, characterization and dynamics of free radicals relevant to combustion processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Terry

    2015-06-04

    Combustion chemistry is enormously complex. The chemical mechanisms involve a multitude of elementary reaction steps and a comparable number of reactive intermediates, many of which are free radicals. Computer simulations based upon these mechanisms are limited by the validity of the mechanisms and the parameters characterizing the properties of the intermediates and their reactivity. Spectroscopy can provide data for sensitive and selective diagnostics to follow their reactions. Spectroscopic analysis also provides detailed parameters characterizing the properties of these intermediates. These parameters serve as experimental gold standards to benchmark predictions of these properties from large-scale, electronic structure calculations. This work hasmore » demonstrated the unique capabilities of near-infrared cavity ringdown spectroscopy (NIR CRDS) to identify, characterize and monitor intermediates of key importance in complex chemical reactions. Our studies have focussed on the large family of organic peroxy radicals which are arguably themost important intermediates in combustion chemistry and many other reactions involving the oxidation of organic compounds. Our spectroscopic studies have shown that the NIR Ã - ˜X electronic spectra of the peroxy radicals allows one to differentiate among chemical species in the organic peroxy family and also determine their isomeric and conformic structure in many cases. We have clearly demonstrated this capability on saturated and unsaturated peroxy radicals and β-hydroxy peroxy radicals. In addition we have developed a unique dual wavelength CRDS apparatus specifically for the purpose of measuring absolute absorption cross section and following the reaction of chemical intermediates. The utility of the apparatus has been demonstrated by measuring the cross-section and self-reaction rate constant for ethyl peroxy.« less

  17. Absence of an effect of vitamin E on protein and lipid radical formation during lipoperoxidation of LDL by lipoxygenase

    PubMed Central

    Ganini, Douglas; Mason, Ronald P.

    2014-01-01

    LDL oxidation is the primary event in atherosclerosis, where LDL lipoperoxidation leads to modifications in the apolipoprotein B-100 (apo B-100) and lipids. Intermediate species of lipoperoxidation are known to be able to generate amino acid-centered radicals. Thus, we hypothesized that lipoperoxidation intermediates induce protein-derived free radical formation during LDL oxidation. Using DMPO and immuno spin-trapping, we detected the formation of protein free radicals on LDL incubated with Cu2+ or the soybean lipoxidase (LPOx)/phospholipase A2 (PLA2). With low concentrations of DMPO (1 mM), Cu2+ dose-dependently induced oxidation of LDL and easily detected apo B-100 radicals. Protein radical formation in LDL incubated with Cu2+ showed maximum yields after 30 minutes. In contrast, the yields of apo B-100-radicals formed by LPOx/PLA2 followed a typical enzyme-catalyzed kinetics that was unaffected by DMPO concentrations of up to 50 mM. Furthermore, when we analyzed the effect of antioxidants on protein radical formation during LDL oxidation, we found that ascorbate, urate and Trolox dose-dependently reduced apo B-100-free radical formation in LDL exposed to Cu2+. In contrast, Trolox was the only antioxidant that even partially protected LDL from LPOx/PLA2. We also examined the kinetics of lipid radical formation and protein radical formation induced by Cu2+ or LPOx/PLA2 for LDL supplemented with α-tocopherol. In contrast to the potent antioxidant effect of α-tocopherol on the delay of LDL oxidation induced by Cu2+, when we used the oxidizing system LPOx/PLA2, no significant protection was detected. The lack of protection of α-tocopherol on the apo B-100 and lipid free radical formation by LPOx may explain the failure of vitamin E as a cardiovascular protective agent for humans. PMID:25091900

  18. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins

    PubMed Central

    2017-01-01

    As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal–oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal–oxo species, are the basis for the various biological functions of O2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron–oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we

  19. Prostaglandin H synthase-catalyzed oxidation of all-trans- and 13-cis-retinoic acid to carbon-centered and peroxyl radical intermediates.

    PubMed

    Freyaldenhoven, M A; Lloyd, R V; Samokyszyn, V M

    1996-06-01

    Due to the importance of all-trans-retinoic acid (RA) in the treatment of various dermatological conditions and the wide distribution of prostaglandin H synthase (PGHS) in tissues, we have further examined the mechanisms involved in the hydroperoxide-dependent cooxidation of RA and its isomer, 13-cis-retinoic acid ((13Z)-RA), by PGHS. Hydroperoxide-dependent, PGHS-catalyzed oxidation of RA and (13Z)-RA was shown to form free radical adducts, using electron spin resonance (ESR) spin trapping techniques and 5-phenyl-4-penten-1-yl hydroperoxide (PPHP) or 13-hydroperoxy-9-cis-11-trans-octadecadienoic acid (13-OOH-18:2) as hydroperoxide substrates. Utilization of the spin trap alpha-phenyl-N-tert-butylnitrone (PBN) resulted in the detection of (13Z)-RA-PBN and RA-PBN adducts whose spectra were characterized by hyperfine coupling constants of aH = 4.16/aN = 15.69 and aH = 3.01/aN =15.92, respectively. Identical experiments under anaerobic conditions were carried out using the spin trap 2-methyl-2-nitrosopropane (NtB) which yielded nitroxide adducts whose spectra were characterized by a triplet of doublets with values of aH = 3.49/aN = 15.84 for the (13Z)-RA adduct and aH = 3.49/aN = 15.88 for the RA adduct. These results are indicative of secondary carbon-centered radical formation. We also used (+)-benzo[a]pyrene 7(S),8(S)-dihydrodiol ((+)-BP-7,8-diol) as a peroxyl radical probe. The results demonstrated the formation of (+)-BP-7,8-diol-derived tetrols, with the trans-anti tetrol representing the major oxidation product in systems undergoing PPHP-dependent, PGHS-catalyzed oxidation of (13Z)-RA or RA. These results are consistent with the formation of peroxyl radicals in these systems. In all experiments, the (13Z)-RA isomer appeared to be a better substrate for the enzyme compared to the all-trans isomer. Collectively these results provide further evidence to support the previously proposed mechanism for retinoid oxidation by PGHS involving the intermediacy of C4 carbon

  20. New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity.

    PubMed

    Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata

    2014-09-30

    A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.

  1. Porphyrinoids as a platform of stable radicals

    PubMed Central

    Shimizu, Daiki

    2018-01-01

    The non-innocent ligand nature of porphyrins was observed for compound I in enzymatic cycles of cytochrome P450. Such porphyrin radicals were first regarded as reactive intermediates in catabolism, but recent studies have revealed that porphyrinoids, including porphyrins, ring-contracted porphyrins, and ring-expanded porphyrins, display excellent radical-stabilizing abilities to the extent that radicals can be handled like usual closed-shell organic molecules. This review surveys four types of stable porphyrinoid radical and covers their synthetic methods and properties such as excellent redox properties, NIR absorption, and magnetic properties. The radical-stabilizing abilities of porphyrinoids stem from their unique macrocyclic conjugated systems with high electronic and structural flexibilities. PMID:29675188

  2. Oxoferryl-porphyrin radical catalytic intermediate in cytochrome bd oxidases protects cells from formation of reactive oxygen species.

    PubMed

    Paulus, Angela; Rossius, Sebastiaan Gijsbertus Hendrik; Dijk, Madelon; de Vries, Simon

    2012-03-16

    The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b(558) that donates electrons to a binuclear heme b(595)/heme d center. The reaction with O(2) and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O(2), the O-O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b(595). Compound I accumulates to 0.75-0.85 per enzyme in agreement with its much higher rate of formation (~20,000 s(-1)) compared with its rate of decay (~1,900 s(-1)). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b(558) before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O-O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O-O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species.

  3. Using a Radical-Derived Character E-Learning Platform to Increase Learner Knowledge of Chinese Characters

    ERIC Educational Resources Information Center

    Chen, Hsueh-Chih; Hsu, Chih-Chun; Chang, Li-Yun; Lin, Yu-Chi; Chang, Kuo-En; Sung, Yao-Ting

    2013-01-01

    The present study is aimed at investigating the effect of a radical-derived Chinese character teaching strategy on enhancing Chinese as a Foreign Language (CFL) learners' Chinese orthographic awareness. An e-learning teaching platform, based on statistical data from the Chinese Orthography Database Explorer (Chen, Chang, Chou, Sung, & Chang,…

  4. Free radicals in chemical carcinogenesis.

    PubMed

    Clemens, M R

    1991-12-15

    During the past decade, remarkable progress has been made in our understanding of cancer-causing agents, mechanisms of cancer formation and the behavior of cancer cells. Cancer is characterized primarily by an increase in the number of abnormal cells derived from a given normal tissue, invasion of adjacent tissues by these abnormal cells, and lymphatic or blood-borne spread of malignant cells to regional lymph nodes and to distant sites (metastasis). It has been estimated that about 75-80% of all human cancers are environmentally induced, 30-40% of them by diet. Only a small minority, possibly no more than 2% of all cases, result purely from inherent genetic changes. Several lines of evidence confirm that the fundamental molecular event or events that cause a cell to become malignant occur at the level of the DNA and a variety of studies indicate that the critical molecular event in chemical carcinogenesis is the interaction of the chemical agent with DNA. The demonstration that DNA isolated from tumor cells can transfect normal cells and render them neoplastic provides direct proof that an alteration of the DNA is responsible for cancer. The transforming genes, or oncogenes, have been identified by restriction endonuclease mapping. One of the characteristics of tumor cells generated by transformation with viruses, chemicals, or radiation is their reduced requirement for serum growth factors. A critical significance of electrophilic metabolites of carcinogenes in chemical carcinogenesis has been demonstrated. A number of "proximate" and "ultimate" metabolites, especially those of aromatic amines, were described. The "ultimate" forms of carcinogens actually interact with cellular constituents to cause neoplastic transformation and are the final metabolic products in most pathways. Recent evidence indicates that free radical derivatives of chemical carcinogens may be produced both metabolically and nonenzymatically during their metabolism. Free radicals carry no

  5. Novel origin of lamin-derived cytoplasmic intermediate filaments in tardigrades.

    PubMed

    Hering, Lars; Bouameur, Jamal-Eddine; Reichelt, Julian; Magin, Thomas M; Mayer, Georg

    2016-02-03

    Intermediate filament (IF) proteins, including nuclear lamins and cytoplasmic IF proteins, are essential cytoskeletal components of bilaterian cells. Despite their important role in protecting tissues against mechanical force, no cytoplasmic IF proteins have been convincingly identified in arthropods. Here we show that the ancestral cytoplasmic IF protein gene was lost in the entire panarthropod (onychophoran + tardigrade + arthropod) rather than arthropod lineage and that nuclear, lamin-derived proteins instead acquired new cytoplasmic roles at least three times independently in collembolans, copepods, and tardigrades. Transcriptomic and genomic data revealed three IF protein genes in the tardigrade Hypsibius dujardini, one of which (cytotardin) occurs exclusively in the cytoplasm of epidermal and foregut epithelia, where it forms belt-like filaments around each epithelial cell. These results suggest that a lamin derivative has been co-opted to enhance tissue stability in tardigrades, a function otherwise served by cytoplasmic IF proteins in all other bilaterians.

  6. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III) Reaction Intermediate Models of Peroxidase Enzymes.

    PubMed

    Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi

    2016-06-27

    The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.

  7. Effect of concentration and molecular weight of chitosan and its derivative on the free radical scavenging ability.

    PubMed

    Li, Huili; Xu, Qing; Chen, Yun; Wan, Ajun

    2014-03-01

    Chitosan is a biodegradable and biocompatible natural scaffold material, which has numerous applications in biomedical sciences. In this study, the in vitro antioxidant activity of chitosan scaffold material was investigated by the chemiluminescence signal generated from the hydroxyl radical (•OH) scavenging assay. The scavenging mechanism was also discussed. The results indicated that the free radical scavenging ability of chitosan scaffold material significantly depends on the chitosan concentration and shows interesting kinetic change. Within the experimental concentration range, the optimal concentration of chitosan was 0.2 mg/mL. The molecular weight of chitosan also attributed to the free radical scavenging ability. Comparison between chitosan and its derivative found that carboxymethyl chitosan possessed higher scavenging ability. Copyright © 2013 Society of Plastics Engineers.

  8. EPR spin trapping evidence of radical intermediates in the photo-reduction of bicarbonate/CO2 in TiO2 aqueous suspensions.

    PubMed

    Molinari, Alessandra; Samiolo, Luca; Amadelli, Rossano

    2015-05-01

    Using the EPR spin trapping technique, we prove that simultaneous reactions take place in illuminated suspensions of TiO2 in aqueous carbonate solutions (pH ≈ 7). The adsorbed HCO3(-) is reduced to formate as directly made evident by the detection of formate radicals (˙CO2(-)). In addition, the amount of OH˙ radicals from the photo-oxidation of water shows a linear dependence on the concentration of bicarbonate, indicating that electron scavenging by HCO3(-) increases the lifetime of holes. In a weakly alkaline medium, photo-oxidation of HCO3(-)/CO3(2-) to ˙CO3(-) interferes with the oxidation of water. A comparative analysis of different TiO2 samples shows that formation of ˙CO2(-) is influenced by factors related to the nature of the surface, once expected surface area effects are accounted for. Modification of the TiO2 surface with noble metal nanoparticles does not have unequivocal benefits: the overall activity improves with Pd and Rh but not with Ru, which favours HCO3(-) photo-oxidation even at pH = 7. In general, identification of radical intermediates of oxidation and reduction reactions can provide useful mechanistic information that may be used in the development of photocatalytic systems for the reduction of CO2 also stored in the form of carbonates.

  9. Potential of EPR spin-trapping to investigate in situ free radicals generation from skin allergens in reconstructed human epidermis: cumene hydroperoxide as proof of concept.

    PubMed

    Kuresepi, Salen; Vileno, Bertrand; Turek, Philippe; Lepoittevin, Jean-Pierre; Giménez-Arnau, Elena

    2018-02-01

    The first step in the development of skin sensitisation to a chemical, and in the elicitation of further allergic contact dermatitis (ACD), is the binding of the allergen to skin proteins after penetrating into the epidermis. The so-formed antigenic adduct is then recognised by the immune system as foreign to the body. Sensitising organic hydroperoxides derived from autoxidation of natural terpenes are believed to form antigens through radical-mediated mechanisms, although this has not yet been established. So far, in vitro investigations on reactive radical intermediates derived from these skin sensitisers have been conducted in solution, yet with experimental conditions being far away from real-life sensitisation. Herein, we report for the first time, the potential use of EPR spin-trapping to study the in situ generation of free radicals derived from cumene hydroperoxide CumOOH in a 3D reconstructed human epidermis (RHE) model, thus much closer to what may happen in vivo. Among the undesirable effects associated with dermal exposure to CumOOH, it is described to cause allergic and irritant dermatitis, being reported as a significant sensitiser. We considered exploiting the usage of spin-trap DEPMPO as an extensive view of all sort of radicals derived from CumOOH were observed all at once in solution. We showed that in the Episkin TM RHE model, both by incubating in the assay medium and by topical application, carbon radicals are mainly formed by redox reactions suggesting the key role of CumOOH-derived carbon radicals in the antigen formation process.

  10. Novel origin of lamin-derived cytoplasmic intermediate filaments in tardigrades

    PubMed Central

    Hering, Lars; Bouameur, Jamal-Eddine; Reichelt, Julian; Magin, Thomas M; Mayer, Georg

    2016-01-01

    Intermediate filament (IF) proteins, including nuclear lamins and cytoplasmic IF proteins, are essential cytoskeletal components of bilaterian cells. Despite their important role in protecting tissues against mechanical force, no cytoplasmic IF proteins have been convincingly identified in arthropods. Here we show that the ancestral cytoplasmic IF protein gene was lost in the entire panarthropod (onychophoran + tardigrade + arthropod) rather than arthropod lineage and that nuclear, lamin-derived proteins instead acquired new cytoplasmic roles at least three times independently in collembolans, copepods, and tardigrades. Transcriptomic and genomic data revealed three IF protein genes in the tardigrade Hypsibius dujardini, one of which (cytotardin) occurs exclusively in the cytoplasm of epidermal and foregut epithelia, where it forms belt-like filaments around each epithelial cell. These results suggest that a lamin derivative has been co-opted to enhance tissue stability in tardigrades, a function otherwise served by cytoplasmic IF proteins in all other bilaterians. DOI: http://dx.doi.org/10.7554/eLife.11117.001 PMID:26840051

  11. Oxoferryl-Porphyrin Radical Catalytic Intermediate in Cytochrome bd Oxidases Protects Cells from Formation of Reactive Oxygen Species*

    PubMed Central

    Paulus, Angela; Rossius, Sebastiaan Gijsbertus Hendrik; Dijk, Madelon; de Vries, Simon

    2012-01-01

    The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b558 that donates electrons to a binuclear heme b595/heme d center. The reaction with O2 and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O2, the O–O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b595. Compound I accumulates to 0.75–0.85 per enzyme in agreement with its much higher rate of formation (∼20,000 s−1) compared with its rate of decay (∼1,900 s−1). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b558 before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O–O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O–O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species. PMID:22287551

  12. Unusual spin-trap chemistry for the reaction of hydroxyl radical with the carcinogen N-nitrosodimethylamine

    NASA Astrophysics Data System (ADS)

    Wink, David A.; Desrosiers, Marc F.

    The reaction of the potent carcinogen N-nitrosodimethylamine (NDMA) with hydroxyl radical generated via radiolysis was studied using EPR techniques. Attempts to spin trap NDMA radical intermediates with 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) produced only unusual DBNBS radicals. One of these radicals was shown to be generated by both reaction of DBNBS with nitric oxide, and direct oxidation of DBNBS with an inorganic oxidant ( .Br -2). Another DBNBS radical was identified as a sulfite spin adduct resulting from the degradation of DBNBS by a NDMA reactive intermediate. In the absence of DBNBS, hydroxyl radical reaction with NDMA gave the dimethylnitroxide radical. Unexpectedly, addition of DBNBS to a solution containing dimethylnitroxide produced an EPR spectrum nearly identical to that of NDMA solutions with DBNBS added before radiolysis. A proposed mechanism accounting for these observations is presented.

  13. Spectral and kinetic properties of radicals derived from oxidation of quinoxalin-2-one and its methyl derivative.

    PubMed

    Skotnicki, Konrad; De la Fuente, Julio R; Cañete, Alvaro; Bobrowski, Krzysztof

    2014-11-19

    The kinetics and spectral characteristics of the transients formed in the reactions of •OH and •N3 with quinoxalin-2(1H)-one (Q), its methyl derivative, 3-methylquinoxalin-2(1H)-one (3-MeQ) and pyrazin-2-one (Pyr) were studied by pulse radiolysis in aqueous solutions at pH 7. The transient absorption spectra recorded in the reactions of •OH with Q and 3-MeQ consisted of an absorption band with λmax = 470 nm assigned to the OH-adducts on the benzene ring, and a second band with λmax = 390 nm (for Q) and 370 nm (for 3-MeQ) assigned, inter alia, to the N-centered radicals on a pyrazin-2-one ring. The rate constants of the reactions of •OH with Q and 3-MeQ were found to be in the interval (5.9-9.7) × 109 M-1·s-1 and were assigned to their addition to benzene and pyrazin-2-one rings and H-abstraction from the pyrazin-2-one nitrogen. In turn, the transient absorption spectrum observed in the reaction of •N3 exhibits an absorption band with λmax = 350 nm. This absorption was assigned to the N-centered radical on the Pyr ring formed after deprotonation of the respective radical cation resulting from one-electron oxidation of 3-MeQ. The rate constant of the reaction of •N3 with 3 MeQ was found to be (6.0 ± 0.5) × 109 M-1·s-1. Oxidation of 3-MeQ by •N3 and Pyr by •OH and •N3 confirms earlier spectral assignments. With the rate constant of the •OH radical with Pyr (k = 9.2 ± 0.2) × 109 M-1·s‒1, a primary distribution of the •OH attack was estimated nearly equal between benzene and pyrazin-2-one rings.

  14. Oxidative stress, free radicals and protein peroxides.

    PubMed

    Gebicki, Janusz M

    2016-04-01

    Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Radical Ions of 3-Styryl-quinoxalin-2-one Derivatives Studied by Pulse Radiolysis in Organic Solvents.

    PubMed

    Skotnicki, Konrad; De la Fuente, Julio R; Cañete, Álvaro; Berrios, Eduardo; Bobrowski, Krzysztof

    2018-04-12

    The absorption-spectral and kinetic behaviors of radical ions and neutral hydrogenated radicals of seven 3-styryl-quinoxalin-2(1 H)-one (3-SQ) derivatives, one without substituents in the styryl moiety, four others with electron-donating (R = -CH 3 , -OCH 3 , and -N(CH 3 ) 2 ) or electron-withdrawing (R = -OCF 3 ) substituents in the para position in their benzene ring, and remaining two with double methoxy substituents (-OCH 3 ), however, at different positions (meta/para and ortho/meta) have been studied by UV-vis spectrophotometric pulse radiolysis in neat acetonitrile saturated with argon (Ar) and oxygen (O 2 ) and in 2-propanol saturated with Ar, at room temperature. In acetonitrile solutions, the radical anions (4R-SQ •- ) are characterized by two absorption maxima located at λ max = 470-490 nm and λ max = 510-540 nm, with the respective molar absorption coefficients ε 470-490 = 8500-13 100 M -1 cm -1 and ε 510-540 = 6100-10 300 M -1 cm -1 , depending on the substituent (R). All 4R-SQ •- decay in acetonitrile via first-order kinetics, with the rate constants in the range (1.2-1.5) × 10 6 s -1 . In 2-propanol solutions, they decay predominantly through protonation by the solvent, forming neutral hydrogenated radicals (4R-SQH • ), which are characterized by weak absorption bands with λ max = 480-490 nm. Being oxygen-insensitive, the radical cations (4R-SQ •+ ) are characterized by a strong absorption with λ max = 450-630 nm, depending on the substituent (R). They are formed in a charge-transfer reaction between a radical cation derived from acetonitrile (ACN •+ ) and substituted 3-styryl-quinoxalin-2-one derivatives (4R-SQ) with a pseudo-first-order rate constant k = (2.7-4.7) × 10 5 s -1 measured in solutions containing 0.1 mM 4R-3-SQ. The Hammett equation plot gave a very small negative slope (ρ = -0.08), indicating a very weak influence of the substituents in the benzene ring on the rate of charge-transfer reaction. The decay of 4R

  16. Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water.

    PubMed

    Banaschik, Robert; Jablonowski, Helena; Bednarski, Patrick J; Kolb, Juergen F

    2018-01-15

    Seven recalcitrant pharmaceutical residues (diclofenac, 17α-ethinylestradiol, carbamazepine, ibuprofen, trimethoprim, diazepam, diatrizoate) were decomposed by pulsed corona plasma generated directly in water. The detailed degradation pathway was investigated for diclofenac and 21 intermediates could be identified in the degradation cascade. Hydroxyl radicals have been found primarily responsible for decomposition steps. By spin trap enhanced electron paramagnetic resonance spectroscopy (EPR), OH-adducts and superoxide anion radical adducts were detected and could be distinguished applying BMPO as a spin trap. The increase of concentrations of adducts follows qualitatively the increase of hydrogen peroxide concentrations. Hydrogen peroxide is eventually consumed in Fenton-like processes but the concentration is continuously increasing to about 2mM for a plasma treatment of 70min. Degradation of diclofenac is inversely following hydrogen peroxide concentrations. No qualitative differences between byproducts formed during plasma treatment or due to degradation via Fenton-induced processes were observed. Findings on degradation kinetics of diclofenac provide an instructive understanding of decomposition rates for recalcitrant pharmaceuticals with respect to their chemical structure. Accordingly, conclusions can be drawn for further development and a first risk assessment of the method which can also be applied towards other AOPs that rely on the generation of hydroxyl radicals. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An oxygen radical absorbance capacity-like assay that directly quantifies the antioxidant's scavenging capacity against AAPH-derived free radicals.

    PubMed

    Kohri, Shunji; Fujii, Hirotada; Oowada, Shigeru; Endoh, Nobuyuki; Sueishi, Yoshimi; Kusakabe, Miku; Shimmei, Masashi; Kotake, Yashige

    2009-03-15

    A new method is proposed for the evaluation of oxygen radical absorbance capacity (ORAC). The current fluorescence-based ORAC assay (ORAC-FL) is an indirect method that monitors the antioxidant's ability to protect the fluorescent probe from free radical-mediated damage, and an azo-radical initiator, AAPH (2,2-azobis(2-amidinopropane) dihydrochloride), has been used as a thermal free radical source. The new ORAC assay employs a short in situ photolysis of AAPH to generate free radicals. The electron paramagnetic resonance (EPR) spin trapping method was employed to identify and quantify AAPH radicals. In the presence of antioxidant, the level of AAPH radicals was decreased, and ORAC-EPR values were calculated following a simple kinetic formulation. Alkyl-oxy radical was identified as the sole decomposition product from AAPH; therefore, we concluded that ORAC-FL is the assay equivalent to alkyl-oxy radical scavenging capacity measurement. ORAC-EPR results for several antioxidants and human serum indicated that the overall tendency is in agreement with ORAC-FL, but absolute values showed significant discrepancies. ORAC-EPR is a rapid and simple method that is especially suitable for thermally labile biological specimens because the sample heating is not required for free radical production.

  18. Radical scavenger can scavenge lipid allyl radicals complexed with lipoxygenase at lower oxygen content.

    PubMed

    Koshiishi, Ichiro; Tsuchida, Kazunori; Takajo, Tokuko; Komatsu, Makiko

    2006-04-15

    Lipoxygenases have been proposed to be a possible factor that is responsible for the pathology of certain diseases, including ischaemic injury. In the peroxidation process of linoleic acid by lipoxygenase, the E,Z-linoleate allyl radical-lipoxygenase complex seems to be generated as an intermediate. In the present study, we evaluated whether E,Z-linoleate allyl radicals on the enzyme are scavenged by radical scavengers. Linoleic acid, the content of which was greater than the dissolved oxygen content, was treated with soya bean lipoxygenase-1 (ferric form) in the presence of radical scavenger, CmP (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl). The reaction rate between oxygen and lipid allyl radical is comparatively faster than that between CmP and lipid allyl radical. Therefore a reaction between linoleate allyl radical and CmP was not observed while the dioxygenation of linoleic acid was ongoing. After the dissolved oxygen was depleted, CmP stoichiometrically trapped linoleate-allyl radicals. Accompanied by this one-electron redox reaction, the resulting ferrous lipoxygenase was re-oxidized to the ferric form by hydroperoxylinoleate. Through the adduct assay via LC (liquid chromatography)-MS/MS (tandem MS), four E,Z-linoleate allyl radical-CmP adducts corresponding to regio- and diastereo-isomers were detected in the linoleate/lipoxygenase system, whereas E,E-linoleate allyl radical-CmP adducts were not detected at all. If E,Z-linoleate allyl radical is liberated from the enzyme, the E/Z-isomer has to reach equilibrium with the thermodynamically favoured E/E-isomer. These data suggested that the E,Z-linoleate allyl radicals were not liberated from the active site of lipoxygenase before being trapped by CmP. Consequently, we concluded that the lipid allyl radicals complexed with lipoxygenase could be scavenged by radical scavengers at lower oxygen content.

  19. Theoretical insights on the antioxidant activity of edaravone free radical scavengers derivatives

    NASA Astrophysics Data System (ADS)

    Cerón-Carrasco, José P.; Roy, Hélène M.; Cerezo, Javier; Jacquemin, Denis; Laurent, Adèle D.

    2014-04-01

    The prediction of antioxidant properties is not straightforward due to the complexity of the in vivo systems. Here, we use theoretical descriptors, including the potential of ionization, the electrodonating power and the spin density distribution, to characterize the antioxidant capacity of edaravone (EDV) derivatives. Our computations reveal the relationship between these parameters and their potential bioactivity as free radical scavengers. We conclude that more efficient antioxidants could be synthesized by tuning the R1 and R2 positions of the EDV structure, rather than modifying the R3 group. Such modifications might improve the antioxidant activity in neutral and deprotonated forms.

  20. 2-propen-1-amine derivatives and their synthetic intermediates: activity against pathogenic trypanosomatids.

    PubMed

    de Souza, A O; Hemerly, F P; Gomes-Cardoso, L; Santa-Rita, R M; Leon, L L; de Castro, S L; Durán, N

    2004-12-01

    The potential activity of three new derivatives of 3-(4'-Y-[1,1'-biphenyl]-4-yl)-3-(4-X-phenyl)-N,N-dimethyl-2-propen-1-amine (2-PAMs) was assayed against Trypanosoma cruzi and Leishmania amazonensis. They showed higher activity against trypomastigotes and epimastigotes of T. cruzi than the standard drugs, crystal violet and nifurtimox. Besides these derivatives, a series of eleven 2-PAMs derivatives and the corresponding intermediates, biphenyl methanones (BPMs) were assayed against promastigotes of L. amazonensis, showing that the 2-PAMs were remarkably more active than the BPMs. The PAMs 2c, 2e and 2j were about 2-fold more active that pentamidine isothionate and between 27.2- and 46.4-fold less toxic to V79 mammalian cells. The present results encourage further studies, especially against intracellular parasites and in experimental animals.

  1. Definition of compartment-based radical surgery in uterine cancer: modified radical hysterectomy in intermediate/high-risk endometrial cancer using peritoneal mesometrial resection (PMMR) by M Höckel translated to robotic surgery.

    PubMed

    Kimmig, Rainer; Aktas, Bahriye; Buderath, Paul; Wimberger, Pauline; Iannaccone, Antonella; Heubner, Martin

    2013-08-16

    The technique of compartment-based radical hysterectomy was originally described by M Höckel as total mesometrial resection (TMMR) for standard treatment of stage I and II cervical cancer. However, with regard to the ontogenetically-defined compartments of tumor development (Müllerian) and lymph drainage (Müllerian and mesonephric), compartments at risk may also be defined consistently in endometrial cancer. This is the first report in the literature on the compartment-based surgical approach to endometrial cancer. Peritoneal mesometrial resection (PMMR) with therapeutic lymphadenectomy (tLNE) as an ontogenetic, compartment-based oncologic surgery could be beneficial for patients in terms of surgical radicalness as well as complication rates; it can be standardized for compartment-confined tumors. Supported by M Höckel, PMMR was translated to robotic surgery (rPMMR) and described step-by-step in comparison to robotic TMMR (rTMMR). Patients (n = 42) were treated by rPMMR (n = 39) or extrafascial simple hysterectomy (n = 3) with/without bilateral pelvic and/or periaortic robotic therapeutic lymphadenectomy (rtLNE) for stage I to III endometrial cancer, according to International Federation of Gynecology and Obstetrics (FIGO) classification. Tumors were classified as intermediate/high-risk in 22 out of 40 patients (55%) and low-risk in 18 out of 40 patients (45%), and two patients showed other uterine malignancies. In 11 patients, no adjuvant external radiotherapy was performed, but chemotherapy was applied. No transition to open surgery was necessary. There were no intraoperative complications. The postoperative complication rate was 12% with venous thromboses, (n = 2), infected pelvic lymph cyst (n = 1), transient aphasia (n = 1) and transient dysfunction of micturition (n = 1). The mean difference in perioperative hemoglobin concentrations was 2.4 g/dL (± 1.2 g/dL) and one patient (2.4%) required transfusion. During follow

  2. Exploring the chemical kinetics of partially oxidized intermediates by combining experiments, theory, and kinetic modeling.

    PubMed

    Hoyermann, Karlheinz; Mauß, Fabian; Olzmann, Matthias; Welz, Oliver; Zeuch, Thomas

    2017-07-19

    Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.

  3. Direct detection of the triphenylpyrylium-derived short-lived intermediates in the photocatalyzed degradation of acetaminophen, acetamiprid, caffeine and carbamazepine.

    PubMed

    Martinez-Haya, R; Gomis, J; Arques, A; Amat, A M; Miranda, M A; Marin, M L

    2017-09-09

    Advanced oxidation processes are useful methodologies to accomplish abatement of contaminants; however, elucidation of the reaction mechanisms is hampered by the difficult detection of the short-lived primary key species involved in the photocatalytic processes. Nevertheless, herein the combined use of an organic photocatalyst such as triphenylpyrylium (TPP + ) and photophysical techniques based on emission and absorption spectroscopy allowed monitoring the photocatalyst-derived short-lived intermediates. This methodology has been applied to the photocatalyzed degradation of different pollutants, such as acetaminophen, acetamiprid, caffeine and carbamazepine. First, photocatalytic degradation of a mixture of the pollutants showed that acetaminophen was the most easily photodegraded, followed by carbamazepine and caffeine, being the abatement of acetamiprid almost negligible. This process was accompanied by mineralization, as demonstrated by trapping of carbon dioxide using barium hydroxide. Then, emission spectroscopy measurements (steady-state and time-resolved fluorescence) allowed demonstrating quenching of the singlet excited state of TPP + . Laser flash photolysis experiments with absorption detection showed that oxidation of contaminants is accompanied by TPP + reduction, with formation of a pyranyl radical (TPP), that constituted a fingerprint of the redox nature of the occurring process. The relative amounts of TPP detected was also correlated with the efficiency of the photodegradation process. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Direct detection of the triphenylpyrylium-derived short-lived intermediates in the photocatalyzed degradation of acetaminophen, acetamiprid, caffeine and carbamazepine.

    PubMed

    Martinez-Haya, R; Gomis, J; Arques, A; Amat, A M; Miranda, M A; Marin, M L

    2018-08-15

    Advanced oxidation processes are useful methodologies to accomplish abatement of contaminants; however, elucidation of the reaction mechanisms is hampered by the difficult detection of the short-lived primary key species involved in the photocatalytic processes. Nevertheless, herein the combined use of an organic photocatalyst such as triphenylpyrylium (TPP + ) and photophysical techniques based on emission and absorption spectroscopy allowed monitoring the photocatalyst-derived short-lived intermediates. This methodology has been applied to the photocatalyzed degradation of different pollutants, such as acetaminophen, acetamiprid, caffeine and carbamazepine. First, photocatalytic degradation of a mixture of the pollutants showed that acetaminophen was the most easily photodegraded, followed by carbamazepine and caffeine, being the abatement of acetamiprid almost negligible. This process was accompanied by mineralization, as demonstrated by trapping of carbon dioxide using barium hydroxide. Then, emission spectroscopy measurements (steady-state and time-resolved fluorescence) allowed demonstrating quenching of the singlet excited state of TPP + . Laser flash photolysis experiments with absorption detection showed that oxidation of contaminants is accompanied by TPP + reduction, with formation of a pyranyl radical (TPP), that constituted a fingerprint of the redox nature of the occurring process. The relative amounts of TPP detected was also correlated with the efficiency of the photodegradation process. Copyright © 2018. Published by Elsevier B.V.

  5. Hydrogen peroxide and dioxygen activation by dinuclear copper complexes in aqueous solution: hydroxyl radical production initiated by internal electron transfer.

    PubMed

    Zhu, Qing; Lian, Yuxiang; Thyagarajan, Sunita; Rokita, Steven E; Karlin, Kenneth D; Blough, Neil V

    2008-05-21

    Dinuclear Cu(II) complexes, CuII2Nn (n = 4 or 5), were recently found to specifically cleave DNA in the presence of a reducing thiol and O2 or in the presence of H2O2 alone. However, CuII2N3 and a closely related mononuclear Cu(II) complex exhibited no selective reaction under either condition. Spectroscopic studies indicate an intermediate is generated from CuII2Nn (n = 4 or 5) and mononuclear Cu(II) solutions in the presence of H2O2 or from CuI2Nn (n = 4 or 5) in the presence of O2. This intermediate decays to generate OH radicals and ligand degradation products at room temperature. The lack of reactivity of the intermediate with a series of added electron donors suggests the intermediate discharges through a rate-limiting intramolecular electron transfer from the ligand to the metal peroxo center to produce an OH radical and a ligand-based radical. These results imply that DNA cleavage does not result from direct reaction with a metal-peroxo intermediate but instead arises from reaction with either OH radicals or ligand-based radicals.

  6. [Research progress on free radicals in human body].

    PubMed

    Wang, Q B; Xu, F P; Wei, C X; Peng, J; Dong, X D

    2016-08-10

    Free radicals are the intermediates of metabolism, widely exist in the human bodies. Under normal circumstances, the free radicals play an important role in the metabolic process on human body, cell signal pathway, gene regulation, induction of cell proliferation and apoptosis, so as to maintain the normal growth and development of human body and to inhibit the growth of bacteria, virus and cancer. However, when organic lesion occurs affected by external factors or when equilibrium of the free radicals is tipped in the human body, the free radicals will respond integratedly with lipids, protein or nucleic acid which may jeopardize the health of human bodies. This paper summarizes the research progress of the free radicals conducted in recent years, in relations to the perspective of the types, origins, test methods of the free radicals and their relationship with human's health. In addition, the possible mechanisms of environmental pollutants (such as polycyclic aromatic hydrocarbons) mediating oxidative stress and free radicals scavenging in the body were also summarized.

  7. Theoretical study of the reactions of the hydroselenyl radical (HSe●) with the selenenic radical (HSeO●).

    PubMed

    Vega-Teijido, Mauricio Angel; Kieninger, Martina; Ventura, Oscar N

    2017-12-05

    The formation of selenium species in some biological processes involves the generation of ionic and radical intermediates such as RSe ● , RSe - , RSeO ● , and RSeO - , among others. We performed a theoretical study of the possible mechanisms for the reaction of the two simplest Se radicals-the hydroselenyl (HSe ● ) and selenenic (HSeO ● ) radicals, in which the possible products, intermediates, and transition-state structures were investigated. Density functional theory (DFT) was applied at the B3LYP/6-311++G(3df,3pd) level and the Ahlrichs Coulomb fitting basis sets were employed with an effective core potential (ECP) for both Se atoms. The same procedure was used to calculate the electronic density. All calculations were also performed using the M06-2X functional, which describes weaker bonds better than B3LYP does. In the reaction of interest, the so-called CR complex (HSe····SeOH) is formed initially. After passing through the transition state TS1, cis-HSeSeOH is obtained as a product. If a low barrier is then overcome (passing through the transition state TS32), the trans-HSeSeOH species is obtained. The CR complex can also rearrange into the intermediate INT after overcoming the barrier presented by the transition state TS2. Additionally, the decomposition of INT to H 2 O and 1 Se 2 is possible through another transition state. This reaction is not included in this study. We also observed a second possible route for the conversion of INT to one of the HSeSeOH species; this route occurs through two pathways (with transition states TS31 and TS32). A comparison of some of the results with those obtained for sulfur analogs along the same pathways is also presented in this work. Graphical abstract Electronic envelopes for HSeO ● and HSe ● radicals.

  8. Synthesis and Biological Evaluation of 3-Benzylidene-4-chromanone Derivatives as Free Radical Scavengers and α-Glucosidase Inhibitors.

    PubMed

    Takao, Koichi; Yamashita, Marimo; Yashiro, Aruki; Sugita, Yoshiaki

    2016-01-01

    A series of 3-benzylidene-4-chromanone derivatives (3-20) were synthesized and the structure-activity relationships for antioxidant and α-glucosidase inhibitory activities were evaluated. Among synthesized compounds, compounds 5, 13, 18, which contain catechol moiety, showed the potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity (5: EC50 13 µM; 13: EC50 14 µM; 18: EC50 13 µM). The compounds 12, 14, 18 showed higher α-glucosidase inhibitory activity (12: IC50 15 µM; 14: IC50 25 µM; 18: IC50 28 µM). The compound 18 showed both of potent DPPH radical scavenging and α-glucosidase inhibitory activities. These data suggest that 3-benzylidene-4-chromanone derivatives, such as compound 18, may serve as the lead compound for the development of novel α-glucosidase inhibitors with antioxidant activity.

  9. Deep tunneling in the unimolecular decay of CH 3CHOO Criegee intermediates to OH radical products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yi; Liu, Fang; Barber, Victoria P.

    Unimolecular decay of Criegee intermediates produced in alkene ozonolysis is known to be a significant source of OH radicals in the troposphere. In this work, unimolecular decay of the methyl-substituted Criegee intermediate, syn-CH 3CHOO, to OH products is shown to occur at energies significantly below the transition state barrier for a 1,4 hydrogen transfer that leads to these products [Y. Fang et al., J. Chem. Phys. 144, 061102 (2016)]. The rate of appearance of OH products arising from tunneling through the barrier is obtained through direct time-domain measurements following the vibrational activation of syn-CH 3CHOO. IR excitation of syn-CH 3CHOOmore » at energies nearly 2000 cm -1 below the barrier is achieved through combination bands involving CH stretch and another lower frequency mode, and the resultant OH products are detected by UV laser-induced fluorescence. The observed syn-CH 3CHOO combination bands in the 4100–4350 cm -1 region are identified by comparison with the computed IR absorption spectrum. The experimental decay rates are found to be ca. 106 s -1 in this deep tunneling regime, which is approximately 100-times slower than that in the vicinity of the barrier.The experimental results are consistent with statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations of the microcanonical decay rates with tunneling through the barrier, and notable deviations may originate from the sparsity in the density of states for syn-CH 3CHOO at lower energies. Thermal unimolecular decay of syn-CH 3CHOO is predicted to have significant contribution from microcanonical rates at energies that are much below the barrier.« less

  10. Free radical derivatives formed from cyclooxygenase-catalyzed dihomo-γ-linolenic acid peroxidation can attenuate colon cancer cell growth and enhance 5-fluorouracil's cytotoxicity.

    PubMed

    Xu, Yi; Qi, Jin; Yang, Xiaoyu; Wu, Erxi; Qian, Steven Y

    2014-01-01

    Dihomo-γ-linolenic acid (DGLA) and its downstream fatty acid arachidonic acid (AA) are both nutritionally important ω-6 polyunsaturated fatty acids (ω-6s). Evidence shows that, via COX-mediated peroxidation, DGLA and its metabolites (1-series prostaglandins) are associated with anti-tumor activity, while AA and its metabolites (2-series prostaglandins) could be tightly implicated in various cancer diseases. However, it still remains a mystery why DGLA and AA possess contrasting bioactivities. Our previous studies showed that DGLA could go through an exclusive C-8 oxygenation pathway during COX-catalyzed lipid peroxidation in addition to a C-15 oxygenation pathway shared by both DGLA and AA, and that the exclusive C-8 oxygenation could lead to the production of distinct DGLA׳s free radical derivatives that may be correlated with DGLA׳s anti-proliferation activity. In the present work, we further investigate the anti-cancer effect of DGLA׳s free radical derivatives and their associated molecular mechanisms. Our study shows that the exclusive DGLA׳s free radical derivatives from C-8 oxygenation lead to cell growth inhibition, cell cycle arrest and apoptosis in the human colon cancer cell line HCA-7 colony 29, probably by up-regulating the cancer suppressor p53 and the cell cycle inhibitor p27. In addition, these exclusive radical derivatives were also able to enhance the efficacy of 5-Fluorouracil (5-FU), a widely used chemo-drug for colon cancer. For the first time, we show how DGLA׳s radical pathway and metabolites are associated with DGLA׳s anti-cancer activities and able to sensitize colon cancer cells to chemo-drugs such as 5-FU. Our findings could be used to guide future development of a combined chemotherapy and dietary care strategy for colon cancer treatment.

  11. Radical scavenger can scavenge lipid allyl radicals complexed with lipoxygenase at lower oxygen content

    PubMed Central

    Koshiishi, Ichiro; Tsuchida, Kazunori; Takajo, Tokuko; Komatsu, Makiko

    2006-01-01

    Lipoxygenases have been proposed to be a possible factor that is responsible for the pathology of certain diseases, including ischaemic injury. In the peroxidation process of linoleic acid by lipoxygenase, the E,Z-linoleate allyl radical–lipoxygenase complex seems to be generated as an intermediate. In the present study, we evaluated whether E,Z-linoleate allyl radicals on the enzyme are scavenged by radical scavengers. Linoleic acid, the content of which was greater than the dissolved oxygen content, was treated with soya bean lipoxygenase-1 (ferric form) in the presence of radical scavenger, CmP (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl). The reaction rate between oxygen and lipid allyl radical is comparatively faster than that between CmP and lipid allyl radical. Therefore a reaction between linoleate allyl radical and CmP was not observed while the dioxygenation of linoleic acid was ongoing. After the dissolved oxygen was depleted, CmP stoichiometrically trapped linoleate-allyl radicals. Accompanied by this one-electron redox reaction, the resulting ferrous lipoxygenase was re-oxidized to the ferric form by hydroperoxylinoleate. Through the adduct assay via LC (liquid chromatography)–MS/MS (tandem MS), four E,Z-linoleate allyl radical–CmP adducts corresponding to regio- and diastereo-isomers were detected in the linoleate/lipoxygenase system, whereas E,E-linoleate allyl radical–CmP adducts were not detected at all. If E,Z-linoleate allyl radical is liberated from the enzyme, the E/Z-isomer has to reach equilibrium with the thermodynamically favoured E/E-isomer. These data suggested that the E,Z-linoleate allyl radicals were not liberated from the active site of lipoxygenase before being trapped by CmP. Consequently, we concluded that the lipid allyl radicals complexed with lipoxygenase could be scavenged by radical scavengers at lower oxygen content. PMID:16396633

  12. Excitation of photosystem I by 760 nm femtosecond laser pulses: transient absorption spectra and intermediates

    NASA Astrophysics Data System (ADS)

    Cherepanov, Dmitry A.; Shelaev, Ivan V.; Gostev, Fedor E.; Mamedov, Mahir D.; Petrova, Anastasia A.; Aybush, Arseniy V.; Shuvalov, Vladimir A.; Semenov, Alexey Yu; Nadtochenko, Victor A.

    2017-09-01

    Excitation of photosystem I (PS I) by a femtosecond 760 nm pump leads to one- and two-photon absorption. The one-photon excitation produces intermediates with transient absorption spectra similar to the spectra of the primary [{{{P}}700}+{{{A}}0}-{{A}}1] and secondary [{{{P}}700}+{{A}}0{{{A}}1}-] ion-radical pairs in the PS I reaction center. The two-photon absorption generates the upper level excited states of chlorophyll (Chl) and carotenoid molecules in the antenna. These excited states are converted into the long-lived intermediates and can be tentatively attributed to the excited and charge-transfer ion-radical states of Chl molecules and to the excited states of carotenoids in the antenna. The transient spectra of intermediates generated by two-photon excitation differ from the transient one-photon spectra of the primary and secondary ion-radical pairs.

  13. Photoisomerization and photodissociation dynamics of reactive free radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bise, Ryan T.

    2000-08-01

    The photofragmentation pathways of chemically reactive free radicals have been examined using the technique of fast beam photofragment translational spectroscopy. Measurements of the photodissociation cross-sections, product branching ratios, product state energy distributions, and angular distributions provide insight into the excited state potential energy surfaces and nonadiabatic processes involved in the dissociation mechanisms. Photodissociation spectroscopy and dynamics of the predissociativemore » $$\\tilde{A}$$ 2A 1 and $$\\tilde{B}$$ 2A 2 states of CH 3S have been investigated. At all photon energies, CH 3 + S( 3P j), was the main reaction channel. The translational energy distributions reveal resolved structure corresponding to vibrational excitation of the CH 3 umbrella mode and the S( 3P j) fine-structure distribution from which the nature of the coupled repulsive surfaces is inferred. Dissociation rates are deduced from the photofragment angular distributions, which depend intimately on the degree of vibrational excitation in the C-S stretch. Nitrogen combustion radicals, NCN, CNN and HNCN have also been studied. For all three radicals, the elimination of molecular nitrogen is the primary reaction channel. Excitation to linear excited triplet and singlet electronic states of the NCN radical generates resolved vibrational structure of the N 2 photofragment. The relatively low fragment rotational excitation suggests dissociation via a symmetric C 2V transition state. Resolved vibrational structure of the N 2 photofragment is also observed in the photodissociation of the HNCN radical. The fragment vibrational and rotational distributions broaden with increased excitation energy. Simple dissociation models suggest that the HNCN radical isomerizes to a cyclic intermediate (c-HCNN) which then dissociates via a tight cyclic transition state. In contrast to the radicals mentioned above, resolved vibrational structure was not observed for the ICNN radical

  14. Myeloperoxidase-induced Genomic DNA-centered Radicals*

    PubMed Central

    Gomez-Mejiba, Sandra E.; Zhai, Zili; Gimenez, Maria S.; Ashby, Michael T.; Chilakapati, Jaya; Kitchin, Kirk; Mason, Ronald P.; Ramirez, Dario C.

    2010-01-01

    Myeloperoxidase (MPO) released by activated neutrophils can initiate and promote carcinogenesis. MPO produces hypochlorous acid (HOCl) that oxidizes the genomic DNA in inflammatory cells as well as in surrounding epithelial cells. DNA-centered radicals are early intermediates formed during DNA oxidation. Once formed, DNA-centered radicals decay by mechanisms that are not completely understood, producing a number of oxidation products that are studied as markers of DNA oxidation. In this study we employed the 5,5-dimethyl-1-pyrroline N-oxide-based immuno-spin trapping technique to investigate the MPO-triggered formation of DNA-centered radicals in inflammatory and epithelial cells and to test whether resveratrol blocks HOCl-induced DNA-centered radical formation in these cells. We found that HOCl added exogenously or generated intracellularly by MPO that has been taken up by the cell or by MPO newly synthesized produces DNA-centered radicals inside cells. We also found that resveratrol passed across cell membranes and scavenged HOCl before it reacted with the genomic DNA, thus blocking DNA-centered radical formation. Taken together our results indicate that the formation of DNA-centered radicals by intracellular MPO may be a useful point of therapeutic intervention in inflammation-induced carcinogenesis. PMID:20406811

  15. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives

    PubMed Central

    Moses, Tessa; Papadopoulou, Kalliope K.

    2014-01-01

    Saponins are widely distributed plant natural products with vast structural and functional diversity. They are typically composed of a hydrophobic aglycone, which is extensively decorated with functional groups prior to the addition of hydrophilic sugar moieties, to result in surface-active amphipathic compounds. The saponins are broadly classified as triterpenoids, steroids or steroidal glycoalkaloids, based on the aglycone structure from which they are derived. The saponins and their biosynthetic intermediates display a variety of biological activities of interest to the pharmaceutical, cosmetic and food sectors. Although their relevance in industrial applications has long been recognized, their role in plants is underexplored. Recent research on modulating native pathway flux in saponin biosynthesis has demonstrated the roles of saponins and their biosynthetic intermediates in plant growth and development. Here, we review the literature on the effects of these molecules on plant physiology, which collectively implicate them in plant primary processes. The industrial uses and potential of saponins are discussed with respect to structure and activity, highlighting the undoubted value of these molecules as therapeutics. PMID:25286183

  16. Forming a Two-Ring Polycyclic Aromatic Hydrocarbon without a Benzene Intermediate: the Reaction of Propargyl with Acetylene

    NASA Astrophysics Data System (ADS)

    Osborn, David; Savee, John; Selby, Talitha; Welz, Oliver; Taatjes, Craig

    The reaction of acetylene (HCCH) with a resonance-stabilized free radical is a commonly invoked mechanism for the generation of polycyclic aromatic hydrocarbons (PAH), which are likely precursors of soot particles in combustion. In this work, we examine the sequential addition of acetylene to the propargyl radical (H2CCCH) at temperatures of 800 and 1000 K. Using time-resolved multiplexed photoionization mass spectrometry with tunable ionizing radiation, we identified the isomeric forms of the C5H5 and C7H7 intermediates in this reaction sequence, and confirmed that the final C9H8 product is the two-ring aromatic compound indene. We identified two different resonance-stabilized C5H5 intermediates, with different temperature dependencies. Furthermore, the C7H7 intermediate is the tropyl radical (c-C7H7) , not the benzyl radical (C6H5CH2) , as is usually assumed in combustion environments. These experimental results are in general agreement with the latest electronic structure / master equation results of da Silva et al. This work shows a pathway for PAH formation that bypasses benzene / benzyl intermediates.

  17. Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450.

    PubMed

    Jung, Christiane; Schünemann, Volker; Lendzian, Friedhelm; Trautwein, Alfred X; Contzen, Jörg; Galander, Marcus; Böttger, Lars H; Richter, Matthias; Barra, Anne-Laure

    2005-10-01

    From analogy to chloroperoxidase from Caldariomyces fumago, it is believed that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of cytochrome P450 corresponds to an iron(IV) porphyrin-pi-cation radical (compound I). However, our recent studies on P450cam revealed that after 8 ms a tyrosine radical and iron(IV) were formed in the reaction of ferric P450 with external oxidants in the shunt pathway. The present study on the heme domain of P450BM3 (P450BMP) shows a similar result. In addition to a tyrosine radical, a contribution from a tryptophan radical was found in the electron paramagnetic resonance (EPR) spectra of P450BMP. Here we present comparative multi-frequency EPR (9.6, 94 and 285 GHz) and Mössbauer spectroscopic studies on freeze-quenched intermediates produced using peroxy acetic acid as oxidant for both P450 cytochromes. After 8 ms in both systems, amino acid radicals occurred instead of the proposed iron(IV) porphyrin-pi-cation radical, which may be transiently formed on a much faster time scale. These findings are discussed with respect to other heme thiolate proteins. Our studies demonstrate that intramolecular electron transfer from aromatic amino acids is a common feature in these enzymes. The electron transfer quenches the presumably transiently formed porphyrin-pi-cation radical, which makes it extremely difficult to trap compound I.

  18. Emerging themes in radical SAM chemistry

    PubMed Central

    Shisler, Krista A; Broderick, Joan B

    2014-01-01

    Enzymes in the radical SAM (RS) superfamily catalyze a wide variety of reactions through unique radical chemistry. The characteristic markers of the superfamily include a [4Fe–4S] cluster coordinated to the protein via a cysteine triad motif, typically CX3CX2C, with the fourth iron coordinated by S-adenosylmethionine (SAM). The SAM serves as a precursor for a 5′-deoxyadenosyl radical, the central intermediate in nearly all RS enzymes studied to date. The SAM-bound [4Fe–4S] cluster is located within a partial or full triosephosphate isomerase (TIM) barrel where the radical chemistry occurs protected from the surroundings. In addition to the TIM barrel and a RS [4Fe–4S] cluster, many members of the superfamily contain additional domains and/or additional Fe–S clusters. Recently characterized superfamily members are providing new examples of the remarkable range of reactions that can be catalyzed, as well as new structural and mechanistic insights into these fascinating reactions. PMID:23141873

  19. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.

    PubMed

    Asatryan, Rubik; Bozzelli, Joseph W

    2008-04-07

    Dimethyl sulfoxide (DMSO) is the major sulfur-containing constituent of the Marine Boundary Layer. It is a significant source of H2SO4 aerosol/particles and methane sulfonic acid via atmospheric oxidation processes, where the mechanism is not established. In this study, several new, low-temperature pathways are revealed in the oxidation of DMSO using CBS-QB3 and G3MP2 multilevel and B3LYP hybrid density functional quantum chemical methods. Unlike analogous hydrocarbon peroxy radicals the chemically activated DMSO peroxy radical, [CH3S(=O)CH2OO*]*, predominantly undergoes simple dissociation to a methylsulfinyl radical CH3S*(=O) and a Criegee intermediate, CH2OO, with the barrier to dissociation 11.3 kcal mol(-1) below the energy of the CH3S(=O)CH2* + O2 reactants. The well depth for addition of O2 to the CH3S(=O)CH2 precursor radical is 29.6 kcal mol(-1) at the CBS-QB3 level of theory. We believe that this reaction may serve an important role in atmospheric photochemical and irradiated biological (oxygen-rich) media where formation of initial radicals is facilitated even at lower temperatures. The Criegee intermediate (carbonyl oxide, peroxymethylene) and sulfinyl radical can further decompose, resulting in additional chain branching. A second reaction channel important for oxidation processes includes formation (via intramolecular H atom transfer) and further decomposition of hydroperoxide methylsulfoxide radical, *CH2S(=O)CH2OOH over a low barrier of activation. The initial H-transfer reaction is similar and common in analogous hydrocarbon radical + O2 reactions; but the subsequent very low (3-6 kcal mol(-1)) barrier (14 kcal mol(-1) below the initial reagents) to beta-scission products is not common in HC systems. The low energy reaction of the hydroperoxide radical is a beta-scission elimination of *CH2S(=O)CH2OOH into the CH2=S=O + CH2O + *OH product set. This beta-scission barrier is low, because of the delocalization of the *CH2 radical center through the -S

  20. Time-Resolved Hydroxyl Radical Footprinting of RNA with X-Rays.

    PubMed

    Hao, Yumeng; Bohon, Jen; Hulscher, Ryan; Rappé, Mollie C; Gupta, Sayan; Adilakshmi, Tadepalli; Woodson, Sarah A

    2018-06-01

    RNA footprinting by hydroxyl radical cleavage provides 'snapshots' of RNA tertiary structure or protein interactions that bury the RNA backbone. Generation of hydroxyl radicals with a high-flux synchrotron X-ray beam provides analysis on a short timescale (5-100 msec), which enables the structures of folding intermediates or other transient conformational states to be determined in biochemical solutions or cells. This article provides protocols for using synchrotron beamlines for hydroxyl radical footprinting. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.

  1. Laboratory evidence for a key intermediate in the Venus atmosphere: Peroxychloroformyl radical

    PubMed Central

    Pernice, Holger; Garcia, Placido; Willner, Helge; Francisco, Joseph S.; Mills, Franklin P.; Allen, Mark; Yung, Yuk L.

    2004-01-01

    For two decades, the peroxychloroformyl radical, ClC(O)OO, has played a central role in models of the chemical stability of the Venus atmosphere. No confirmation, however, has been possible in the absence of laboratory measurements for ClC(O)OO. We report the isolation of ClC(O)OO in a cryogenic matrix and its infrared and ultraviolet spectral signatures. These experiments show that ClC(O)OO is thermally and photolytically stable in the Venus atmosphere. These experimental discoveries validate the existence of ClC(O)OO, confirm several longstanding model assumptions, and provide a basis for the astronomical search for this important radical species. PMID:15375212

  2. Laboratory Evidence for a Key Intermediate in the Venus Atmosphere: Peroxychloroformyl Radical

    NASA Technical Reports Server (NTRS)

    Pernice, Holger; Garcia, Placido; Willner, Helge; Francisco, Joseph S.; Mills, Franklin P.; Allen, Mark; Yung, Yuk L.

    2004-01-01

    For two decades, the peroxychloroformyl radical, ClC(O)OO, has played a central role in models of the chemical stability of the Venus atmosphere. No confirmation, however, has been possible in the absence of laboratory measurements for ClC(O)OO. We report the isolation of ClC(O)OO in a cryogenic matrix and its infrared and ultraviolet spectral signatures. These experiments show that ClC(O)OO is thermally and photolytically stable in the Venus atmosphere. These experimental discoveries validate the existence of ClC(O)OO, confirm several longstanding model assumptions, and provide a basis for the astronomical search for this important radical species.

  3. MELODI: Mining Enriched Literature Objects to Derive Intermediates

    PubMed Central

    Elsworth, Benjamin; Dawe, Karen; Vincent, Emma E; Langdon, Ryan; Lynch, Brigid M; Martin, Richard M; Relton, Caroline; Higgins, Julian P T; Gaunt, Tom R

    2018-01-01

    Abstract Background The scientific literature contains a wealth of information from different fields on potential disease mechanisms. However, identifying and prioritizing mechanisms for further analytical evaluation presents enormous challenges in terms of the quantity and diversity of published research. The application of data mining approaches to the literature offers the potential to identify and prioritize mechanisms for more focused and detailed analysis. Methods Here we present MELODI, a literature mining platform that can identify mechanistic pathways between any two biomedical concepts. Results Two case studies demonstrate the potential uses of MELODI and how it can generate hypotheses for further investigation. First, an analysis of ETS-related gene ERG and prostate cancer derives the intermediate transcription factor SP1, recently confirmed to be physically interacting with ERG. Second, examining the relationship between a new potential risk factor for pancreatic cancer identifies possible mechanistic insights which can be studied in vitro. Conclusions We have demonstrated the possible applications of MELODI, including two case studies. MELODI has been implemented as a Python/Django web application, and is freely available to use at [www.melodi.biocompute.org.uk]. PMID:29342271

  4. MELODI: Mining Enriched Literature Objects to Derive Intermediates.

    PubMed

    Elsworth, Benjamin; Dawe, Karen; Vincent, Emma E; Langdon, Ryan; Lynch, Brigid M; Martin, Richard M; Relton, Caroline; Higgins, Julian P T; Gaunt, Tom R

    2018-01-12

    The scientific literature contains a wealth of information from different fields on potential disease mechanisms. However, identifying and prioritizing mechanisms for further analytical evaluation presents enormous challenges in terms of the quantity and diversity of published research. The application of data mining approaches to the literature offers the potential to identify and prioritize mechanisms for more focused and detailed analysis. Here we present MELODI, a literature mining platform that can identify mechanistic pathways between any two biomedical concepts. Two case studies demonstrate the potential uses of MELODI and how it can generate hypotheses for further investigation. First, an analysis of ETS-related gene ERG and prostate cancer derives the intermediate transcription factor SP1, recently confirmed to be physically interacting with ERG. Second, examining the relationship between a new potential risk factor for pancreatic cancer identifies possible mechanistic insights which can be studied in vitro. We have demonstrated the possible applications of MELODI, including two case studies. MELODI has been implemented as a Python/Django web application, and is freely available to use at [www.melodi.biocompute.org.uk]. © The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association

  5. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals

    NASA Astrophysics Data System (ADS)

    Murphy, John J.; Bastida, David; Paria, Suva; Fagnoni, Maurizio; Melchiorre, Paolo

    2016-04-01

    An important goal of modern organic chemistry is to develop new catalytic strategies for enantioselective carbon-carbon bond formation that can be used to generate quaternary stereogenic centres. Whereas considerable advances have been achieved by exploiting polar reactivity, radical transformations have been far less successful. This is despite the fact that open-shell intermediates are intrinsically primed for connecting structurally congested carbons, as their reactivity is only marginally affected by steric factors. Here we show how the combination of photoredox and asymmetric organic catalysis enables enantioselective radical conjugate additions to β,β-disubstituted cyclic enones to obtain quaternary carbon stereocentres with high fidelity. Critical to our success was the design of a chiral organic catalyst, containing a redox-active carbazole moiety, that drives the formation of iminium ions and the stereoselective trapping of photochemically generated carbon-centred radicals by means of an electron-relay mechanism. We demonstrate the generality of this organocatalytic radical-trapping strategy with two sets of open-shell intermediates, formed through unrelated light-triggered pathways from readily available substrates and photoredox catalysts—this method represents the application of iminium ion activation (a successful catalytic strategy for enantioselective polar chemistry) within the realm of radical reactivity.

  6. One-Pot Conversion of Carbohydrates into Furan Derivatives via Furfural and 5-Hydroxylmethylfurfural as Intermediates.

    PubMed

    Liu, Bing; Zhang, Zehui

    2016-08-23

    Recently, there has been growing interest in the transformation of renewable biomass into value-added fuels and chemicals. The catalytic conversion of naturally abundant carbohydrates can generate two-important furan chemicals: 5-hydroxymethylfurfural (HMF) from C6 carbohydrates and furfural from C5 carbohydrates. Both HMF and furfural have received great interest as precursors in the synthesis of commodity chemicals and liquid fuels. In recent years, a trend has emerged to integrate sequential catalytic processes involving multistep reactions for the direct one-pot transformation of carbohydrates into the aimed fuels and chemicals. One-pot reactions have remarkably unique and environmentally friendly benefits, including the fact that isolation and purification of intermediate compounds can be avoided. Herein, the present article aims to review recent advances in the one-pot conversion of carbohydrates into furan derivatives via furfural and HMF as intermediates. Special attention will be paid to the catalytic systems, mechanistic insight, reaction pathways, and catalyst stability. It is expected that this review will guide researchers to develop effective catalytic systems for the one-pot transformation of carbohydrates into furan derivatives. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Trimethyl phosphite as a trap for alkoxy radicals formed from the ring opening of oxiranylcarbinyl radicals. Conversion to alkenes. Mechanistic applications to the study of C-C versus C-O ring cleavage.

    PubMed

    Ding, Bangwei; Bentrude, Wesley G

    2003-03-19

    Trimethyl phosphite, (MeO)(3)P, is introduced as an efficient and selective trap in oxiranylcarbinyl radical (2) systems, formed from haloepoxides 8-13 under thermal AIBN/n-Bu(3)SnH conditions at about 80 degrees C. Initially, the transformations of 8-13, in the absence of phosphite, to allyl alcohol 7 and/or vinyl ether 5 were measured quantitatively (Table 1). Structural variations in the intermediate oxiranylcarbinyl (2), allyloxy (3), and vinyloxycarbinyl (4) radicals involve influences of the thermodynamics and kinetics of the C-O (2 --> 3, k(1)) and C-C (2 --> 4, k(2)) radical scission processes and readily account for the changes in the amounts of product vinyl ether (5) and allyl alcohol (7) formed. Added (MeO)(3)P is inert to vinyloxycarbinyl radical 4 and selectively and rapidly traps allyloxy radical 3, diverting it to trimethyl phosphate and allyl radical 6. Allyl radicals (6) dimerize or are trapped by n-Bu(3)SnH to give alkenes, formed from haloepoxides 8, 9, and 13 in 69-95% yields. Intermediate vinyloxycarbinyl radicals (4), in the presence or absence of (MeO)(3)P, are trapped by n-Bu(3)SnH to give vinyl ethers (5). The concentrations of (MeO)(3)P and n-Bu(3)SnH were varied independently, and the amounts of phosphate, vinyl ether (5), and/or alkene from haloepoxides 10, 11, and 13 were carefully monitored. The results reflect readily understood influences of changes in the structures of radicals 2-4, particularly as they influence the C-O (k(1)) and C-C (k(2)) cleavages of intermediate oxiranylcarbinyl radical 2 and their reverse (k(-1), k(-2)). Diversion by (MeO)(3)P of allyloxy radicals (3) from haloepoxides 11 and 12 fulfills a prior prediction that under conditions closer to kinetic control, products of C-O scission, not just those of C-C scission, may result. Thus, for oxiranylcarbinyl radicals from haloepoxides 11, 12, and 13, C-O scission (k(1), 2 --> 3) competes readily with C-C cleavage (k(2), 2 --> 4), even though C-C scission is favored

  8. Criegee intermediates in the indoor environment. New insights

    DOE PAGES

    Shallcross, D. E.; Taatjes, C. A.; Percival, C. J.

    2014-03-25

    Criegee intermediates are formed in the ozonolysis of alkenes and play an important role in indoor chemistry, notably as a source of OH radicals. Recent studies have shown that these Criegee intermediates react very quickly with NO 2, SO 2, and carbonyls, and in this study, steady-state calculations are used to inspect the potential impact of these data on indoor chemistry. It is shown that these reactions could accelerate NO 3 formation and SO 2 removal in the indoor environment significantly. In addition, reaction between Criegee intermediates and halogenated carbonyls could provide a significant loss process indoors, where currently onemore » does not exist.« less

  9. UV + V UV double-resonance studies of autoionizing Rydberg states of the hydroxyl radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Amy M.; Liu, Fang; Lester, Marsha I., E-mail: milester@sas.upenn.edu

    2016-05-14

    The hydroxyl radical (OH) is a key oxidant in atmospheric and combustion chemistry. Recently, a sensitive and state-selective ionization method has been developed for detection of the OH radical that utilizes UV excitation on the A{sup 2}Σ{sup +}–X{sup 2}Π transition followed by fixed 118 nm vacuum ultraviolet (VUV) radiation to access autoionizing Rydberg states [J. M. Beames et al., J. Chem. Phys. 134, 241102 (2011)]. The present study uses tunable VUV radiation generated by four-wave mixing to examine the origin of the enhanced ionization efficiency observed for OH radicals prepared in specific A{sup 2}Σ{sup +} intermediate levels. The enhancement ismore » shown to arise from resonant excitation to distinct rotational and fine structure levels of two newly identified {sup 2}Π Rydberg states with an A{sup 3}Π cationic core and a 3d electron followed by ionization. Spectroscopic constants are derived and effects due to uncoupling of the Rydberg electron are revealed for the OH {sup 2}Π Rydberg states. The linewidths indicate a Rydberg state lifetime due to autoionization on the order of a picosecond.« less

  10. Radical-Mediated Enzymatic Carbon Chain Fragmentation-Recombination

    PubMed Central

    Zhang, Qi; Li, Yuxue; Chen, Dandan; Yu, Yi; Duan, Lian; Shen, Ben; Liu, Wen

    2010-01-01

    The radical S-adenosylmethionine (S-AdoMet) superfamily contains thousands of proteins that catalyze highly diverse conversions, most of which are poorly understood due to a lack of information regarding chemical products and radical-dependent transformations. We here report that NosL, involved in forming the indole side ring of the thiopeptide nosiheptide (NOS), is a radical S-AdoMet 3-methyl-2-indolic acid (MIA) synthase. NosL catalyzed an unprecedented carbon chain reconstitution of L-Trp to give MIA, showing removal of the Cα-N unit and shift of the carboxylate to the indole ring. Dissection of the enzymatic process upon the identification of products and a putative glycyl intermediate uncovered a radical-mediated, unusual fragmentation-recombination reaction. This finding unveiled a key step in radical S-AdoMet enzyme-catalyzed structural rearrangements during complex biotransformations. Additionally, NosL tolerated fluorinated L-Trps as the substrates, allowing for production of a regiospecifically halogenated thiopeptide that has not been found in over 80 entity-containing, naturally occurring thiopeptide family. PMID:21240261

  11. The rotational spectrum of the water-hydroperoxy radical (H2O-HO2) complex.

    PubMed

    Suma, Kohsuke; Sumiyoshi, Yoshihiro; Endo, Yasuki

    2006-03-03

    Peroxy radicals and their derivatives are elusive but important intermediates in a wide range of oxidation processes. We observed pure rotational transitions of the water-hydroperoxy radical complex, H2O-HO2, in a supersonic jet by means of a Fourier transform microwave spectrometer combined with a double-resonance technique. The observed rotational transitions were found to split into two components because of the internal rotation of the water moiety. The molecular constants for the two components were determined precisely, supporting a molecular structure in which HO2 acts as a proton donor to form a nearly planar five-membered ring, and one hydrogen atom of water sticks out from the ring plane. The structure and the spectral splittings due to internal rotation provide information on the nature of the bonding interaction between open- and closed-shell species, and they also provide accurate transition frequencies that are applicable to remote sensing of this complex, which may elucidate its potential roles in atmospheric and combustion chemistry.

  12. Chemical Studies of Free Radical Relocalization

    DTIC Science & Technology

    2015-01-13

    Park, NC 27709-2211 combustion intermediates, rel;ocalization, infrared spectroscopy , computational quantum chemistry REPORT DOCUMENTATION PAGE 11...organotransition metal catalysis are underway. Summary of important results: I. Laboratory Spectroscopy of Gas-phase Hydrocarbon Radicals. We have carried out line...combination of gas-phase laboratory spectroscopy , photochemical studies, and ab initio computations. (1) Spectroscopy . Survey scans between 1800 and

  13. Synthesis of Resveratrol Tetramers via a Stereoconvergent Radical Equilibrium

    PubMed Central

    Keylor, Mitchell H.; Matsuura, Bryan S.; Griesser, Markus; Chauvin, Jean-Philippe R.; Harding, Ryan A.; Kirillova, Mariia S.; Zhu, Xu; Fischer, Oliver J.; Pratt, Derek A.; Stephenson, Corey R. J.

    2017-01-01

    Persistent free radicals have become indispensable in the synthesis of organic materials by living radical polymerization. However, examples of their use in the synthesis of small molecules are rare. Herein, we report the application of persistent radical and quinone methide intermediates to the synthesis of the resveratrol tetramers nepalensinol B and vateriaphenol C. The spontaneous cleavage and reconstitution of exceptionally weak carbon-carbon bonds has enabled a stereoconvergent oxidative dimerization of racemic materials in a transformation that likely coincides with the biogenesis of these natural products. The efficient synthesis of higher-order oligomers of resveratrol will facilitate the biological studies necessary to elucidate their mechanism(s) of action. PMID:27940867

  14. Radical prostatectomy--long-term oncological outcome from a community hospital.

    PubMed

    Tol-Fakkar, Maria; Hermansson, Carl Gustaf; Hugosson, Jonas; Pedersen, Knud; Aus, Gunnar

    2003-01-01

    Radical prostatectomy has recently been shown to prolong cancer-specific survival compared to watchful waiting in patients with localized prostate cancer. Most patients who seek medical advice for this disease are treated in hospitals in which the operation is performed relatively infrequently. The aim of this study is to report the oncological outcome at intermediate- to long-term follow-up after radical prostatectomy performed in a community hospital. A total of 148 patients underwent radical prostatectomy at Ryhov County Hospital between 1985 and 1997. Patients without T3 tumours, prostate-specific antigen (PSA) >10 ng/ml or poorly differentiated tumours were judged to be in a low-risk group, those with one risk factor to be in an intermediate group and those with two or more factors to be in a high-risk group. The projected biochemical disease free- and cancer-specific survival rates were compared between these risk groups. Median follow-up was 96 months for surviving patients. Patients in the low- and intermediate risk groups had equal 10-year PSA-free survival rates of 68.8%, while that in the high-risk group was only 19.3% (9-year data). Corresponding cancer-specific survival rates were 93% and 84%, respectively. The oncological outcome seems comparable to that reported in the literature, even when the operation is performed in a low-volume community-based setting.

  15. Atmospheric Oxidation Mechanism of Furfural Initiated by Hydroxyl Radicals.

    PubMed

    Zhao, Xiaocan; Wang, Liming

    2017-05-04

    Furfural is emitted into the atmosphere because of its potential applications as an intermediate to alkane fuels from biomass, industrial usages, and biomass burning. The kinetic and mechanistic information on the furfural chemistry is necessary to assess the fate of furfural in the atmosphere and its impact on the air quality. Here we studied the atmospheric oxidation mechanisms of furfural initiated by the OH radicals using quantum chemistry and kinetic calculations. The reaction of OH and furfural was initiated mainly by OH additions to C 2 and C 5 positions, forming R2 and R5 adducts, which could undergo rapid ring-breakage to form R2B and R5B, respectively. Our calculations showed that these intermediate radicals reacted rather slowly with O 2 under the atmospheric conditions because the additions of O 2 to these radicals are only slightly exothermic and highly reversible. Alternatively, these radicals would react directly with O 3 , NO 2 , HO 2 /RO 2 , etc. Namely, the atmospheric oxidation of furfural would unlikely result in ozone formation. Under typical atmospheric conditions, the main products in OH-initiated furfural oxidation include 2-oxo-3-pentene-1,5-dialdehyde, 5-hydroxy-2(5H)-furanone, 4-oxo-2- butenoic acid, and 2,5-furandione. These compounds will likely stay in the gas phase and are subject to further photo-oxidation.

  16. Oxysterols from Free Radical Chain Oxidation of 7-Dehydrocholesterol: Product and Mechanistic Studies

    PubMed Central

    Xu, Libin; Korade, Zeljka; Porter, Ned A.

    2010-01-01

    Free radical chain oxidation of highly oxidizable 7-dehydrocholesterol (7-DHC) initiated by 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) was carried out at 37°C in benzene for 24 hours. Fifteen oxysterols derived from 7-DHC were isolated and characterized with 1D- and 2D-NMR spectroscopy and mass spectrometry. A mechanism that involves abstraction of hydrogen atoms at C-9 and/or C-14 is proposed to account for the formation of all of the oxysterols and the reaction progress profile. In either the H-9 or H-14 mechanism, a pentadienyl radical intermediate is formed after abstraction of H-9 or H-14 by a peroxyl radical. This step is followed by the well-precedented transformations observed in peroxidation reactions of polyunsaturated fatty acids such as oxygen addition, peroxyl radical 5-exo cyclization, and SHi carbon radical attack on the peroxide bond. The mechanism for peroxidation of 7-DHC also accounts for the formation of numerous oxysterol natural products isolated from fungal species, marine sponges, and cactaceous species. In a cell viability test, the oxysterol mixture from 7-DHC peroxidation was found to be cytotoxic to Neuro2a neuroblastoma cells in the micromolar concentration range. We propose that the high reactivity of 7-DHC and the oxysterols generated from its peroxidation may play important roles in the pathogenesis of Smith-Lemli-Opitz syndrome (SLOS), X-linked dominant chondrodysplasia punctata (CDPX2), and cerebrotendinous xanthomatosis (CTX), all of these being metabolic disorders having an elevated level of 7-DHC. PMID:20121089

  17. Radical chemistry of artemisinin

    NASA Astrophysics Data System (ADS)

    Denisov, Evgenii T.; Solodova, S. L.; Denisova, Taisa G.

    2010-12-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  18. Combining the Power of Irmpd with Ion-Molecule Reactions: the Structure and Reactivity of Radical Ions of Cysteine and its Derivatives

    NASA Astrophysics Data System (ADS)

    Lesslie, Michael; Osburn, Sandra; Berden, Giel; Oomens, J.; Ryzhov, Victor

    2015-06-01

    Most of the work on peptide radical cations has involved protons as the source of charge. Nonetheless, using metal ions as charge sources often offers advantages like stabilization of the structure via multidentate coordination and the elimination of the "mobile proton". Moreover, characterization of metal-bound amino acids is of general interest as the interaction of peptide side chains with metal ions in biological systems is known to occur extensively. In the current study, we generate thiyl radicals of cysteine and homocysteine in the gas phase complexed to alkali metal ions. Subsequently, we utilize infrared multiple-photon dissociation (IRMPD) and ion-molecule reactions (IMR) to characterize the structure and reactivity of these radical ions. Our group has worked extensively with the cysteine-based radical cations and anions, characterizing the gas-phase reactivity and rearrangement of the amino acid and several of its derivatives. In a continuation of this work, we are perusing the effects of metal ions as the charge bearing species on the reactivity of the sulfur radical. Our S-nitroso chemistry can easily be used in conjunction with metal ion coordination to produce initial S-based radicals in peptide radical-metal ion complexes. In all cases we have been able to achieve radical formation with significant yield to study reactivity. Ion-molecule reactions of metallated radicals with allyl iodide, dimethyl disulfide, and allyl bromide have all shown decreasing reactivity going down group 1A. Recently, we determined the experimental IR spectra for the homocysteine radical cation with Li+, Na+, and K+ as the charge bearing species at the FELIX facility. For comparison, the protonated IR spectrum of homocysteine has previously been obtained by our group. A preliminary match of the IR spectra has been confirmed. Finally, calculations are underway to determine the bond distances of all the metal adduct structures.

  19. On-line separation and characterization of hyaluronan oligosaccharides derived from radical depolymerization

    PubMed Central

    Zhao, Xue; Yang, Bo; Li, Lingyun; Zhang, Fuming; Linhardt, Robert J.

    2013-01-01

    Hydroxyl radicals are widely implicated in the oxidation of carbohydrates in biological and industrial processes and are often responsible for their structural modification resulting in functional damage. In this study, the radical depolymerization of the polysaccharide hyaluronan was studied in a reaction with hydroxyl radicals generated by Fenton Chemistry. A simple method for isolation and identification of the resulting non-sulfated oligosaccharide products of oxidative depolymerization was established. Hyaluronan oligosaccharides were analyzed using ion-pairing reversed phase high performance liquid chromotography coupled with tandem electrospray mass spectrometry. The sequence of saturated hyaluronan oligosaccharides having even- and odd-numbers of saccharide units, afforded through oxidative depolymerization, were identified. This study represents a simple, effective ‘fingerprinting’ protocol for detecting the damage done to hyaluronan by oxidative radicals. This study should help reveal the potential biological outcome of reactive-oxygen radical-mediated depolymerization of hyaluronan. PMID:23768593

  20. COLBALT-MEDIATED ACTIVATION OF PEROXYMONOSULFATE AND SULFATE RADICAL ATTACK ON PHENOLIC COMPOUNDS, IMPLICATIONS OF CHLORIDE IONS

    EPA Science Inventory

    This study reports on the sulfate radical pathway of room temperature degradation of two phenolic compounds in water. The radicals were produced by the cobalt-mediated decomposition of peroxymonosulfate (Oxone) in an aqueous homogeneous system. The major intermediates formed from...

  1. Standard Electrode Potentials Involving Radicals in Aqueous Solution: Inorganic Radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, David A.; Huie, Robert E.; Koppenol, Willem H.

    2015-12-01

    Recommendations are made for standard potentials involving select inorganic radicals in aqueous solution at 25 °C. These recommendations are based on a critical and thorough literature review and also by performing derivations from various literature reports. The recommended data are summarized in tables of standard potentials, Gibbs energies of formation, radical pK a’s, and hemicolligation equilibrium constants. In all cases, current best estimates of the uncertainties are provided. An extensive set of Data Sheets is appended that provide original literature references, summarize the experimental results, and describe the decisions and procedures leading to each of the recommendations

  2. Synthesis and Free Radical Scavenging Activity of New Hydroxybenzylidene Hydrazines.

    PubMed

    Sersen, Frantisek; Gregan, Fridrich; Kotora, Peter; Kmetova, Jarmila; Filo, Juraj; Loos, Dusan; Gregan, Juraj

    2017-05-29

    Hydroxybenzylidene hydrazines exhibit a wide spectrum of biological activities. Here, we report synthesis and free radical scavenging activity of nine new N-(hydroxybenzylidene)-N'-[2,6-dinitro-4-(trifluoromethyl)]phenylhydrazines. The chemical structures of these compounds were confirmed by 1H-NMR, 13C-NMR, 19F-NMR, IR spectroscopy, LC-MS, and elemental analysis. The prepared compounds were tested for their activity to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH), galvinoxyl radical (GOR), and 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid (ABTS) radicals. The free radical scavenging activity expressed as SC50 values of these compounds varied in a wide range, from a strong to no radical scavenging effect. The most effective radical scavengers were hydroxybenzylidene hydrazines containing three hydroxyl groups in the benzylidene part of their molecules. The prepared compounds were also tested for their activity to inhibit photosynthetic electron transport in spinach chloroplasts. IC50 values of these compounds varied in wide range, from an intermediate to no inhibitory effect.

  3. Sulfate radicals enable a non-enzymatic Krebs cycle precursor

    PubMed Central

    Keller, Markus A.; Kampjut, Domen; Harrison, Stuart A.; Ralser, Markus

    2017-01-01

    The evolutionary origins of the tricarboxylic acid cycle (TCA), or Krebs cycle, are so far unclear. Despite a few years ago, the existence of a simple non-enzymatic Krebs-cycle catalyst has been dismissed ‘as an appeal to magic’, citrate and other intermediates have meanwhile been discovered on a carbonaceous meteorite and do interconvert non-enzymatically. To identify the non-enzymatic Krebs cycle catalyst, we used combinatorial, quantitative high-throughput metabolomics to systematically screen iron and sulfate reaction milieus that orient on Archean sediment constituents. TCA cycle intermediates are found stable in water and in the presence of most iron and sulfate species, including simple iron-sulfate minerals. However, we report that TCA intermediates undergo 24 interconversion reactions in the presence of sulfate radicals that form from peroxydisulfate. The non-enzymatic reactions critically cover a topology as present in the Krebs cycle, the glyoxylate shunt and the succinic semialdehyde pathways. Assembled in a chemical network, the reactions achieve more than ninety percent carbon recovery. Our results show that a non-enzymatic precursor for the Krebs cycle is biologically sensible, efficient, and forms spontaneously in the presence of sulfate radicals. PMID:28584880

  4. Free-radical reactions induced by OH-radical attack on cytosine-related compounds: a study by a method combining ESR, spin trapping and HPLC.

    PubMed Central

    Hiraoka, W; Kuwabara, M; Sato, F; Matsuda, A; Ueda, T

    1990-01-01

    Free-radical reactions induced by OH-radical attack on cytosine-related compounds were investigated by a method combining ESR, spin trapping with 2-methyl-2-nitrosopropane and high-performance liquid chromatography (HPLC). Cytidine, 2'-deoxycytidine, cytidine 3'-monophosphate, cytidine 5'-monophosphate, 2'-deoxycytidine 5'-monophosphate and their derivatives, of which 5,6-protons at the base moiety were replaced by deuterons, and polycytidylic acid (poly(C] were employed as samples. OH radicals were generated by X-irradiating an N2O-saturated aqueous solution. Five spin adducts were separated by HPLC. Examination of them by ESR spectroscopy and UV photospectrometry showed that spin adducts assigned to C5 and C6 radicals due to OH addition to the 5,6 double-bond, a deaminated form of the spin adduct derived from a C5 radical due to the cyclization reaction between C5' of the sugar and C6 of the base, and a spin adduct assigned to the C4' radical due to H abstraction by OH radicals were produced. From these results the sites of OH-radical attack and the subsequent radical reactions in cytosine-related compounds were clarified. PMID:2157193

  5. Photodissociation of CF2ICF2I in solid para-hydrogen: infrared spectra of anti- and gauche-˙C2F4I radicals.

    PubMed

    Haupa, Karolina Anna; Lim, Manho; Lee, Yuan-Pern

    2018-05-09

    The photolysis of 1,2-diiodotetrafluoroethane (CF2ICF2I) has served as a prototypical system in ultrafast reaction dynamics. Even though the intermediates, anti- and gauche-iodotetrafluoroethyl (˙C2F4I) radicals, have been characterized with electron diffraction and X-ray diffraction, their infrared spectra are unreported. We report the formation and infrared identification of these radical intermediates upon ultraviolet photodissociation of CF2ICF2I in solid para-hydrogen (p-H2) at 3.3 K. Lines at 1364.9/1358.5, 1283.2, 1177.1, 1162.2, 1126.8, 837.3, 658.0, 574.2, and 555.2 cm-1 are assigned to anti-˙C2F4I, and lines at 1325.9, 1259.7, 1143.4, 1063.4, 921.0, and 765.3 cm-1 to gauche-˙C2F4I. A secondary photodissociation leading to C2F4 was also observed. The assignments were derived according to behavior on secondary photolysis, comparison of the vibrational wavenumbers and the IR intensities of the observed lines with values predicted with the B3PW91/aug-cc-pVTZ-pp method. This spectral identification provides valuable information for future direct spectral probes of these important intermediates.

  6. Chemical instability of graphene oxide following exposure to highly reactive radicals in advanced oxidation processes.

    PubMed

    Wang, Zhaohui; Sun, Linyan; Lou, Xiaoyi; Yang, Fei; Feng, Min; Liu, Jianshe

    2017-12-01

    The rapidly increasing and widespread use of graphene oxide (GO) as catalyst supports, requires further understanding of its chemical stability in advanced oxidation processes (AOPs). In this study, UV/H 2 O 2 and UV/persulfate (UV/PS) processes were selected to test the chemical instability of GO in terms of their performance in producing highly reactive hydroxyl radicals (OH) and sulfate radicals (SO 4 - ), respectively. The degradation intermediates were characterized using UV-visible absorption spectra (UV-vis), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Experimental data indicate that UV/PS process was more effective in enhancing GO degradation than the UV/H 2 O 2 system. The overall oxygen-containing functionalities (e.g. CO, CO and OCO groups) dramatically declined. After radical attack, sheet-like GO was destructed into lots of flakes and some low-molecular-weight molecules were detected. The results suggest GO is most vulnerable against SO 4 - radical attack, which deserves special attention while GO acts as a catalyst support or even as a catalyst itself. Therefore, stability of GO and its derivatives should be carefully assessed before they are applied to SO 4 - -based AOPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Flavonoid oxidation by the radical generator AIBN: a unified mechanism for quercetin radical scavenging.

    PubMed

    Krishnamachari, Venkat; Levine, Lanfang H; Paré, Paul W

    2002-07-17

    Four oxidized flavonoid derivatives generated from reacting quercetin (a pentahydroxylated flavone) with the peroxyl radical generator 2,2'-azobis-isobutyronitrile (AIBN) were isolated by chromatographic methods and identified by NMR and MS analyses. Compounds included 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (2); 1,3,11a-trihydroxy-9-(3,5,7-trihydroxy-4H-1-benzopyran-4-on-2-yl)-5a-(3,4-dihydroxyphenyl)-5,6,11-hexahydro-5,6,11-trioxanaphthacene-12-one (3); 2-(3,4-dihydroxybenzoyloxy)-4,6-dihydroxybenzoic acid (4); and methyl 3,4-dihydroxyphenylglyoxylate (5). Product ratios under different hydrogen ion concentrations and external nucleophiles revealed that two of the products, namely the substituted benzofuranone (2) and the depside (4), are generated from a common carbocation intermediate. Indirect evidence for the operation of a cyclic concerted mechanism in the formation of the dimeric product (3) is provided. The identification of these products supports the model that the principal site of scavenging reactive oxygen species (ROS) in quercetin is the o-dihydroxyl substituent in the B-ring, as well as the C-ring olefinic linkage.

  8. Synthesis, crystal structure, ABTS radical-scavenging activity, antimicrobial and docking studies of some novel quinoline derivatives

    NASA Astrophysics Data System (ADS)

    Tabassum, Sumaiya; Suresha Kumara, T. H.; Jasinski, Jerry P.; Millikan, Sean P.; Yathirajan, H. S.; Sujan Ganapathy, P. S.; Sowmya, H. B. V.; More, Sunil S.; Nagendrappa, Gopalpur; Kaur, Manpreet; Jose, Gilish

    2014-07-01

    In this study, a series of nine novel 2-chloroquinolin-3-yl ester derivatives have been synthesized via a two-step protocol from 2-chloroquinoline-3-carbaldehyde. The structures of all these compounds were confirmed by spectral data. The single crystal X-ray structure of two derivatives, (2-chloroquinolin-3-yl)methyl acetate [6a] and (2-chloro-6-methylquinolin-3-yl)methyl acetate [6e] have also been determined. The synthesized compounds were further evaluated for their ABTS radical-scavenging activity and antimicrobial activities. Amongst all the tested compounds, 6a exhibited maximum scavenging activity with ABTS. Concerning antibacterial and antifungal activities, compound (2-chloro-6-methoxyquinolin-3-yl)methyl 2,4-dichlorobenzoate [6i] was found to be the most active in the series against B. subtilis, S. aureus, E. coli, K. pneumonia, C. albicans and A. niger species. The structure-antimicrobial activity relationship of these derivatives were studied using Autodock.

  9. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wongnate, T.; Sliwa, D.; Ginovska, B.

    2016-05-19

    Methyl-coenzyme M reductase (MCR), the rate-limiting enzyme in methanogenesis and anaerobic methane oxidation, is responsible for the production of over one billion tons of methane per year. The mechanism of methane synthesis is unknown, with the two leading proposals involving either a methyl-nickel(III) (Mechanism I) or methyl radical/Ni(II)-thiolate (Mechanism II) intermediate(s). When the reaction between the active Ni(I) enzyme with substrates was studied by transient kinetic, spectroscopic and computational methods, formation of an EPR-silent Ni(II)-thiolate intermediate was positively identified by magnetic circular dichroism spectroscopy. There was no evidence for an EPR-active methyl-Ni(III) species. Temperature-dependent transient kinetic studies revealed that themore » activation energy for the initial catalytic step closely matched the value computed by density functional theory for Mechanism II. Thus, our results demonstrate that biological methane synthesis occurs by generation of a methyl radical.« less

  10. Formation of RNA Granule-Derived Capsid Assembly Intermediates Appears To Be Conserved between Human Immunodeficiency Virus Type 1 and the Nonprimate Lentivirus Feline Immunodeficiency Virus.

    PubMed

    Reed, Jonathan C; Westergreen, Nick; Barajas, Brook C; Ressler, Dylan T B; Phuong, Daryl J; Swain, John V; Lingappa, Vishwanath R; Lingappa, Jaisri R

    2018-05-01

    During immature capsid assembly in cells, human immunodeficiency virus type 1 (HIV-1) Gag co-opts a host RNA granule, forming a pathway of intracellular assembly intermediates containing host components, including two cellular facilitators of assembly, ABCE1 and DDX6. A similar assembly pathway has been observed for other primate lentiviruses. Here we asked whether feline immunodeficiency virus (FIV), a nonprimate lentivirus, also forms RNA granule-derived capsid assembly intermediates. First, we showed that the released FIV immature capsid and a large FIV Gag-containing intracellular complex are unstable during analysis, unlike for HIV-1. We identified harvest conditions, including in situ cross-linking, that overcame this problem, revealing a series of FIV Gag-containing complexes corresponding in size to HIV-1 assembly intermediates. Previously, we showed that assembly-defective HIV-1 Gag mutants are arrested at specific assembly intermediates; here we identified four assembly-defective FIV Gag mutants, including three not previously studied, and demonstrated that they appear to be arrested at the same intermediate as the cognate HIV-1 mutants. Further evidence that these FIV Gag-containing complexes correspond to assembly intermediates came from coimmunoprecipitations demonstrating that endogenous ABCE1 and the RNA granule protein DDX6 are associated with FIV Gag, as shown previously for HIV-1 Gag, but are not associated with a ribosomal protein, at steady state. Additionally, we showed that FIV Gag associates with another RNA granule protein, DCP2. Finally, we validated the FIV Gag-ABCE1 and FIV Gag-DCP2 interactions with proximity ligation assays demonstrating colocalization in situ Together, these data support a model in which primate and nonprimate lentiviruses form intracellular capsid assembly intermediates derived from nontranslating host RNA granules. IMPORTANCE Like HIV-1 Gag, FIV Gag assembles into immature capsids; however, it is not known whether

  11. Tunneling effects in the unimolecular decay of (CH 3) 2COO Criegee intermediates to OH radical products

    DOE PAGES

    Fang, Yi; Barber, Victoria P.; Klippenstein, Stephen J.; ...

    2017-04-04

    Unimolecular decay of the dimethyl substituted Criegee intermediate (CH 3) 2COO is observed at energies significantly below the transition state barrier associated with hydrogen atom transfer with time-resolved detection of the resultant OH radical products. (CH 3) 2COO is prepared at specific energies in the 3900-4600 cm -1 region through IR excitation of combination bands involving CH stretch and another lower frequency mode, and the OH products are detected by UV laser-induced fluorescence. OH appearance times on the order of microseconds are observed in this deep tunneling regime, which are about 100 times slower than that in the vicinity ofmore » the barrier. The experimental rates are in good accord with Rice-Ramsperger-Kassel-Marcus (RRKM) calculations of the microcanonical dissociation rates for (CH 3) 2COO that include tunneling. Master equation modeling based on these microcanonical rates is used to predict the thermal decay rate of (CH 3) 2COO to OH products under atmospheric conditions of 276 s -1 at 298 K (high pressure limit). Furthermore, thermal unimolecular decay of (CH 3) 2COO to OH products is shown to have significant contributions from tunneling at energies much below the barrier to H-atom transfer.« less

  12. Tunneling effects in the unimolecular decay of (CH 3) 2COO Criegee intermediates to OH radical products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yi; Barber, Victoria P.; Klippenstein, Stephen J.

    Unimolecular decay of the dimethyl substituted Criegee intermediate (CH 3) 2COO is observed at energies significantly below the transition state barrier associated with hydrogen atom transfer with time-resolved detection of the resultant OH radical products. (CH 3) 2COO is prepared at specific energies in the 3900-4600 cm -1 region through IR excitation of combination bands involving CH stretch and another lower frequency mode, and the OH products are detected by UV laser-induced fluorescence. OH appearance times on the order of microseconds are observed in this deep tunneling regime, which are about 100 times slower than that in the vicinity ofmore » the barrier. The experimental rates are in good accord with Rice-Ramsperger-Kassel-Marcus (RRKM) calculations of the microcanonical dissociation rates for (CH 3) 2COO that include tunneling. Master equation modeling based on these microcanonical rates is used to predict the thermal decay rate of (CH 3) 2COO to OH products under atmospheric conditions of 276 s -1 at 298 K (high pressure limit). Furthermore, thermal unimolecular decay of (CH 3) 2COO to OH products is shown to have significant contributions from tunneling at energies much below the barrier to H-atom transfer.« less

  13. Tyrosyl Radicals in Dehaloperoxidase

    PubMed Central

    Dumarieh, Rania; D'Antonio, Jennifer; Deliz-Liang, Alexandria; Smirnova, Tatyana; Svistunenko, Dimitri A.; Ghiladi, Reza A.

    2013-01-01

    Dehaloperoxidase (DHP) from Amphitrite ornata, having been shown to catalyze the hydrogen peroxide-dependent oxidation of trihalophenols to dihaloquinones, is the first oxygen binding globin that possesses a biologically relevant peroxidase activity. The catalytically competent species in DHP appears to be Compound ES, a reactive intermediate that contains both a ferryl heme and a tyrosyl radical. By simulating the EPR spectra of DHP activated by H2O2, Thompson et al. (Thompson, M. K., Franzen, S., Ghiladi, R. A., Reeder, B. J., and Svistunenko, D. A. (2010) J. Am. Chem. Soc. 132, 17501–17510) proposed that two different radicals, depending on the pH, are formed, one located on either Tyr-34 or Tyr-28 and the other on Tyr-38. To provide additional support for these simulation-based assignments and to deduce the role(s) that tyrosyl radicals play in DHP, stopped-flow UV-visible and rapid-freeze-quench EPR spectroscopic methods were employed to study radical formation in DHP when three tyrosine residues, Tyr-28, Tyr-34, and Tyr-38, were replaced either individually or in combination with phenylalanines. The results indicate that radicals form on all three tyrosines in DHP. Evidence for the formation of DHP Compound I in several tyrosine mutants was obtained. Variants that formed Compound I showed an increase in the catalytic rate for substrate oxidation but also an increase in heme bleaching, suggesting that the tyrosines are necessary for protecting the enzyme from oxidizing itself. This protective role of tyrosines is likely an evolutionary adaptation allowing DHP to avoid self-inflicted damage in the oxidative environment. PMID:24100039

  14. Characterization of the product radical structure in the Co(II)-product radical pair state of coenzyme B12-dependent ethanolamine deaminase by using three-pulse 2H ESEEM spectroscopy.

    PubMed

    Warncke, Kurt

    2005-03-08

    Molecular structural features of the product radical in the Co(II)-product radical pair catalytic intermediate state in coenzyme B(12)- (adenosylcobalamin-) dependent ethanolamine deaminase from Salmonella typhimurium have been characterized by using X-band three-pulse electron spin-echo envelope modulation (ESEEM) spectroscopy in the disordered solid state. The Co(II)-product radical pair state was prepared by cryotrapping holoenzyme during steady-state turnover on excess 1,1,2,2-(2)H(4)-aminoethanol or natural abundance, (1)H(4)-aminoethanol. Simulation of the (2)H/(1)H quotient ESEEM (obtained at two microwave frequencies, 8.9 and 10.9 GHz) from the interaction of the unpaired electron localized at C2 of the product radical with nearby (2)H nuclei requires four types of coupled (2)H, which are assigned as follows: (a) a single strongly coupled (effective dipole distance, r(eff) = 2.3 A) (2)H in the C5' methyl group of 5'-deoxyadenosine, (b) two weakly coupled (r(eff) = 4.2 A) (2)H in the C5' methyl group, (c) one (2)H coupling from a beta-(2)H bonded to C1 of the product radical (isotropic hyperfine coupling, A(iso) = 4.7 MHz), and (d) a second type of C1 beta-(2)H coupling (A(iso) = 7.7 MHz). The two beta-(2)H couplings are proposed to arise from two C1-C2 rotamer states of the product radical that are present in approximately equal proportion. A model is presented, in which C5' is positioned at a distance of 3.3 A from C2, which is comparable with the C1-C5' distance in the Co(II)-substrate radical pair intermediate. Therefore, the C5'methyl group remains in close (van der Waals) contact with the substrate and product radical species during the radical rearrangement step of the catalytic cycle, and the C5' center is the sole mediator of radical pair recombination in ethanolamine deaminase.

  15. Production of Hydroxyl Radical via the Activation of Hydrogen Peroxide by Hydroxylamine.

    PubMed

    Chen, Liwei; Li, Xuchun; Zhang, Jing; Fang, Jingyun; Huang, Yanmin; Wang, Ping; Ma, Jun

    2015-09-01

    The production of the hydroxyl radical (HO·) is important in environmental chemistry. This study reports a new source of HO· generated solely from hydrogen peroxide (H2O2) activated by hydroxylamine (HA). Electron paramagnetic resonance analysis and the oxidation of a HO· probe, benzoic acid, were used to confirm the production of HO·. The production of HO· increased with increasing concentrations of either HA or H2O2 as well as decreasing pH. The second-order rate constant for the reaction was (2.2 ± 0.2) × 10(-4) M(-1) s(-1). HO· was probably produced in two steps: the activation of H2O2 by protonated HA and then reaction between the H2O2 and the intermediate protonated aminoxyl radical generated in the first step. Such a two-step oxidation can possibly be ascribed to the ionizable hydroxyl moiety in the molecular structure of HA, as is suggested by comparing the reactivity of a series of HA derivatives in HO· production. The results shed light on a previously unknown source of HO· formation, which broadens the understanding of its role in environmental processes.

  16. Identification of combustion intermediates in low-pressure premixed pyridine/oxygen/argon flames.

    PubMed

    Tian, Zhenyu; Li, Yuyang; Zhang, Taichang; Zhu, Aiguo; Qi, Fei

    2008-12-25

    Combustion intermediates of two low-pressure premixed pyridine/oxygen flames with respective equivalence ratios of 0.56 (C/O/N = 1:4.83:0.20) and 2.10 (C/O/N = 1:1.29:0.20) have been identified with tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry techniques. About 80 intermediates in the rich flame and 60 intermediates in the lean flame, including nitrogenous, oxygenated, and hydrocarbon intermediates, have been identified by measurements of photoionization mass spectra and photoionization efficiency spectra. Some radicals and new nitrogenous intermediates are identified in the present work. The experimental results are useful for studying the conversion of volatile nitrogen compounds and understanding the formation mechanism of NO(x) in flames of nitrogenous fuels.

  17. The [C{sub 6}H{sub 10}]{sup {sm{underscore}bullet}+} hypersurface: The parent radical cation Diels-Alder reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, M.; Schaefer, H.F. III

    1999-07-21

    Various possible reaction pathways between ethene and butadiene radical cation (cis- and trans-), have been investigated at different levels of theory up to UCCSD(T)/DZP/UMP2(fc)/DZP and with density functional theory at B3LYP/DZP. A stepwise addition involving open chain intermediates and leading to the Diels-Alder product, the cyclohexene radical cation, was found to have a total activation barrier {Delta}G{sup 298{ne}} = 6.3 kcal mol{sup {minus}1} and a change in free Gibbs energy, {Delta}G{sup 298}, of {minus}33.5 kcal mol{sup {minus}1}. On the E{degree} potential energy surface, all transition states are lower in energy than separated ethene and butadiene, the exothermicity {Delta}E = -45.6more » kcal mol{sup {minus}1}. A more direct path could be characterized as stepwise with one intermediate only at the SCF level but not at electron-correlated levels and hence might actually be a concerted strongly asynchronous addition with a very small or no activation barrier (UCCSD(T)/DZP/UHF/6-31G* gives a {Delta}G{sup 298{ne}} of 0.8 kcal mol{sup {minus}1}). The critical step for another alternative, the cyclobutanation-vinylcyclobutane/cyclohexene rearrangement, is a 1,3-alkyl shift which involves a barrier ({Delta}G{sup 298{ne}}) only 1.7 kcal mol{sup {minus}1} higher than that of stop use addition for both cis-, and trans-butadiene radical cation. However, from the (ethene and trans-butadiene) reactions, ring expansion of the vinylcyclobutane radical cation intermediate, to a methylene cyclopentane radical cation, requires an activation only 1.3 kcal mol{sup {minus}1} larger than for (trans-butadiene radical). While cis/trans isomerization of free butadiene radical cation requires a high activation (24.9 kcal mol{sup {minus}1}), a reaction sequence involving addition of ethene (to stepwise give an open chain intermediate and vinyl cyclobutane radical cation) has a barrier of only 3.5 kcal mol{sup {minus}1} ({Delta}G{sup 298{ne}}). This sequence also makes ethene

  18. In situ generation of a hydroxyl radical by nanoporous activated carbon derived from rice husk for environmental applications: kinetic and thermodynamic constants.

    PubMed

    Karthikeyan, S; Sekaran, G

    2014-03-07

    The objective of this investigation is to evaluate the hydroxyl radical (˙OH) generation using nanoporous activated carbon (NPAC), derived from rice husk, and dissolved oxygen in water. The in situ production of the ˙OH radical was confirmed through the DMPO spin trapping method in EPR spectroscopy and quantitative determination by a deoxyribose assay procedure. NPAC served as a heterogeneous catalyst to degrade 2-deoxy-d-ribose (a reference compound) using hydroxyl radical generated from dissolved oxygen in water at temperatures in the range 313-373 K and pH 6, with first order rate constants (k = 9.2 × 10(-2) min(-1), k = 1.2 × 10(-1) min(-1), k = 1.3 × 10(-1) min(-1) and k = 1.68 × 10(-1) min(-1)). The thermodynamic constants for the generation of hydroxyl radicals by NPAC and dissolved oxygen in water were ΔG -1.36 kJ mol(-1) at 313 K, ΔH 17.73 kJ mol(-1) and ΔS 61.01 J mol(-1) K(-1).

  19. [Inhibiting properties of stable nitroxyl radicals in reactions of linoleic acid and linoleyl alcohol oxidation catalyzed by 5-lipoxygenase].

    PubMed

    Kharchenko, O V; Kharitonenko, A I; Vovk, A I; Kukhar', V P; Babiĭ, L V; Khil'chevskiĭ, A N; Mel'nik, A K

    2005-01-01

    The inhibiting effects of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its 4-substituted derivatives in reactions of linoleyl acid or linoleyl alcohol oxidation catalyzed by potato tuber 5-lipoxygenase were investigated. Inhibiting properties of stable nitroxyl radicals in presence of lubrol and SDS were reduced at the transition from TEMPO to 4-hydroxy-TEMPO or 4-amino-TEMPO and increased at use of adamantane-1-carboxylic or 3-methyladamantane-1-carboxylic acid 1-oxyl-2,2,6,6-tetramethylpiperidine-4-yl esters. Enzyme activity at saturating concentrations of inhibitor was not suppressed completely, and decreased up to the certain level determined by the substrate nature. The dependence of partial inhibition efficiency on rotational correlation time of stable nitroxides in model micellar systems were analysed. It was supposed that 5-lipoxygenase inhibition includes the interaction of hydrophobic nitroxide with radical intermediate formed in enzymatic process.

  20. Formation and trapping of free radicals in irradiated purines: EPR and ENDOR of hypoxanthine derivatives studied as single crystals

    NASA Astrophysics Data System (ADS)

    Tokdemir, Sibel

    Four different derivatives of hypoxanthine (hypoxanthine-HCl·H 2O, Na+·Inosine-·2.5H 2O, sodium inosine monophosphate, and calcium inosine monophosphate) were irradiated in the form of single crystals with the objective of identifying the radical products. To do so, magnetic resonance methods (EPR, ENDOR experiments and EPR spectrum simulations) were used to study radical products in crystals following x-irradiation at ˜10 K without warming, and under conditions of controlled warming. Also, computational chemistry methods were used in combination with the experimental methods to assist in identifying the radical products. Immediately following irradiation at 10 K, at least three different radicals were observed for hypoxanthine·HCl·H2O. R5.1 was identified at the product of electron addition followed by protonation of the parent at N3. R5.2 was identified as the product of electron loss followed by deprotonation at N7, and R5.3 was tentatively identified as the product of electron gain followed by protonation at 06. On warming to room temperature, three new radicals were observed: R6.1 and R6.3 were the products of net H addition to C8 and C2 respectively, while R6.2 was the product of OH addition to C8. At least four different radical products of Na+·Inosine - were detected immediately after irradiation at 10 K. R7.1 was identified as the electron-loss product of the parent hypoxanthine base, and R7.2 was identified as the product of net H-abstraction from C5 ' of the sugar. R7.3 and R7.4 were tentatively identified as the products of net H-addition to 06 (probably via electron addition followed by protonation), and the (doubly-negative) product of electron-gain, respectively. R7.5, the C8-H addition radical, was the only product detected on warming sodium inosine crystals to room temperature. Because the ENDOR spectra from sodium IMP irradiated at 10K were complex, it was possible to identify only two radicals. R8.1 was identified as the purine base

  1. Free terminal amines in DNA-binding peptides alter the product distribution from guanine radicals produced by single electron oxidation.

    PubMed

    Konigsfeld, Katie M; Lee, Melissa; Urata, Sarah M; Aguilera, Joe A; Milligan, Jamie R

    2012-03-01

    Electron deficient guanine radical species are major intermediates produced in DNA by the direct effect of ionizing irradiation. There is evidence that they react with amine groups in closely bound ligands to form covalent crosslinks. Crosslink formation is very poorly characterized in terms of quantitative rate and yield data. We sought to address this issue by using oligo-arginine ligands to model the close association of DNA and its binding proteins in chromatin. Guanine radicals were prepared in plasmid DNA by single electron oxidation. The product distribution derived from them was assayed by strand break formation after four different post-irradiation incubations. We compared the yields of DNA damage produced in the presence of four ligands in which neither, one, or both of the amino and carboxylate termini were blocked with amides. Free carboxylate groups were unreactive. Significantly higher yields of heat labile sites were observed when the amino terminus was unblocked. The rate of the reaction was characterized by diluting the unblocked amino group with its amide blocked derivative. These observations provide a means to develop quantitative estimates for the yields in which these labile sites are formed in chromatin by exposure to ionizing irradiation.

  2. The Rise of Radicals in Bioinorganic Chemistry.

    PubMed

    Gray, Harry B; Winkler, Jay R

    2016-10-01

    Prior to 1950, the consensus was that biological transformations occurred in two-electron steps, thereby avoiding the generation of free radicals. Dramatic advances in spectroscopy, biochemistry, and molecular biology have led to the realization that protein-based radicals participate in a vast array of vital biological mechanisms. Redox processes involving high-potential intermediates formed in reactions with O 2 are particularly susceptible to radical formation. Clusters of tyrosine (Tyr) and tryptophan (Trp) residues have been found in many O 2 -reactive enzymes, raising the possibility that they play an antioxidant protective role. In blue copper proteins with plastocyanin-like domains, Tyr/Trp clusters are uncommon in the low-potential single-domain electron-transfer proteins and in the two-domain copper nitrite reductases. The two-domain muticopper oxidases, however, exhibit clusters of Tyr and Trp residues near the trinuclear copper active site where O 2 is reduced. These clusters may play a protective role to ensure that reactive oxygen species are not liberated during O 2 reduction.

  3. EPR studies of the free radicals generated in gamma irradiated amino acid derivatives

    NASA Astrophysics Data System (ADS)

    Osmanoğlu, Y. Emre; Sütçü, Kerem

    2017-10-01

    Gamma irradiated powder forms of N-acetyl-DL-aspartic acid, N-carbamoyl-DL-aspartic acid and N-methyl-L-serine were investigated by electron paramagnetic resonance spectroscopy (EPR) at room temperature. In these compounds, the paramagnetic centers formed after irradiation were attributed to the HOOCCH2ĊHCOOH, COOHĊHCHNH and HOCH2ĊHCOOH radicals, respectively. The g values and the hyperfine coupling constants for the radical species are with values of g = 2.0038 ± 0.0005, aα = 2.15 mT, aβ(1) = 3.84 mT and aβ(2) = 2.15 for the first radical, g = 2.0039 ± 0.0005, aα = 1.7 mT, aß(1) = 0.62 mT, aß(2) = 0.54 mT, aγ = 0.53 mT for the second radical and g = 2.0039 ± 0.0005, aβ(1) = 2.40 mT, aβ(2) = 1.83 mT and aα = 1.83 mT for the third radical. The free radicals formed in three compounds were found to be stable for three months at room temperature. It was concluded that, spin density was concentrated predominantly in the 2pπ orbital of the carbon atom.

  4. Easy access to a cyclic key intermediate for the synthesis of trisporic acids and related compounds.

    PubMed

    González-Delgado, José A; Escobar, Gustavo; Arteaga, Jesús F; Barrero, Alejandro F

    2014-02-03

    The synthesis of a cyclohexane skeleton possessing different oxygenated functional groups at C-3, C-8 and C-9, and a D1,6-double bond has been accomplished in 10 steps with an overall 17% yield. This compound is a key intermediate for access to a wide range of compounds of the bioactive trisporoid family. The synthetic sequence consists of the preparation of a properly functionalized epoxygeraniol derivative, and its subsequent stereoselective cyclization mediated by Ti(III). This last step implies a domino process that starts with a homolytic epoxide opening followed by a radical cyclization and regioselective elimination. This concerted process gives access to the cyclohexane moiety with stereochemical control of five of its six carbon atoms.

  5. Theoretical Study on Sers of Wagging Vibrations of Benzyl Radical Adsorbed on Silver Electrodes

    NASA Astrophysics Data System (ADS)

    Wu, De-Yin; Chen, Yan-Li; Tian, Zhong-Qun

    2016-06-01

    Electrochemical surface-enhanced Raman spectroscopy (EC-SERS) has been used to characterize adsorbed species widely but reaction intermediates rarely on electrodes. In previous studies, the observed SERS signals were proposed from surface benzyl species due to the electrochemical reduction of benzyl chloride on silver electrode surfaces. In this work, we reinvestigated the vibrational assignments of benzyl chloride and benzyl radical as the reaction intermediate. On the basis of density functional theoretical (DFT) calculations and normal mode analysis, our systematical results provide more reasonable new assignments for both surface species. Further, we investigated adsorption configurations, binding energies, and vibrational frequency shifts of benzyl radical interacting with silver. Our calculated results show that the wagging vibration displays significant vibrational frequency shift, strong coupling with some intramolecular modes in the phenyl ring, and significant changes in intensity of Raman signals. The study also provides absolute Raman intensity in benzyl halides and discuss the enhancement effect mainly due to the binding interaction with respect to free benzyl radical.

  6. Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air.

    PubMed

    Zhao, Yue; Wingen, Lisa M; Perraud, Véronique; Greaves, John; Finlayson-Pitts, Barbara J

    2015-05-21

    Ozonolysis of alkenes is an important source of secondary organic aerosol (SOA) in the atmosphere. However, the mechanisms by which stabilized Criegee intermediates (SCI) react to form and grow the particles, and in particular the contributions from oligomers, are not well understood. In this study, ozonolysis of trans-3-hexene (C6H12), as a proxy for small alkenes, was investigated with an emphasis on the mechanisms of particle formation and growth. Ozonolysis experiments were carried out both in static Teflon chambers (18-20 min reaction times) and in a glass flow reactor (24 s reaction time) in the absence and presence of OH or SCI scavengers, and under different relative humidity (RH) conditions. The chemical composition of polydisperse and size-selected SOA particles was probed using different mass spectrometric techniques and infrared spectroscopy. Oligomers having SCI as the chain unit are found to be the dominant components of such SOA particles. The formation mechanism for these oligomers suggested by our results follows the sequential addition of SCI to organic peroxy (RO2) radicals, in agreement with previous studies by Moortgat and coworkers. Smaller particles are shown to have a relatively greater contribution from longer oligomers. Higher O/C ratios are observed in smaller particles and are similar to those of oligomers resulting from RO2 + nSCI, supporting a significant role for longer oligomers in particle nucleation and early growth. Under atmospherically relevant RH of 30-80%, water vapor suppresses oligomer formation through scavenging SCI, but also enhances particle nucleation. Under humid conditions, or in the presence of formic or hydrochloric acid as SCI scavengers, peroxyhemiacetals are formed by the acid-catalyzed particle phase reaction between oligomers from RO2 + nSCI and a trans-3-hexene derived carbonyl product. In contrast to the ozonolysis of trans-3-hexene, oligomerization involving RO2 + nSCI does not appear to be prevalent in the

  7. Investigation into 9(S)-HPODE-derived allene oxide to cyclopentenone cyclization mechanism via diradical oxyallyl intermediates

    PubMed Central

    Hebert, Sebastien P.; Cha, Jin K.; Brash, Alan R.; Schlegel, H. Bernhard

    2016-01-01

    The cyclopentane core is ubiquitous among a large number of biologically relevant natural products. Cyclopentenones have been shown to be versatile intermediates for the stereoselective preparation of highly substituted cyclopentane derivatives. Allene oxides are oxygenated fatty acids which are involved in the pathways of cyclopentenone biosynthesis in plants and marine invertebrates; however, their cyclization behavior is not well understood. Recent work by Brash and co-workers (J. Biol. Chem. 2013, 288, 20797) revealed an unusual cyclization property of the 9(S)-HPODE-derived allene oxides: the previously unreported 10Z-isomer cyclizes to a cis-dialkylcyclopentenone in hexane/isopropyl alcohol (100:3,v/v), but the known 10E-isomer does not yield cis-cyclopentenone under the same conditions. The mechanism for cyclization has been investigated for unsubstituted and methyl substituted vinyl allene oxide using a variety of methods including CASSCF, ωB97xD, and CCSD(T) and basis sets up to cc-pVTZ. The lowest energy pathway proceeds via homolytic cleavage of the epoxide ring, formation of an oxyallyl diradical, which closes readily to a cyclopropanone intermediate. The cyclopropanone opens to the requisite oxyallyl which closes to the experimentally observed product, cis-cyclopentenone. The calculations show that the open shell, diradical pathway is lower in energy than the closed shell reactions of allene oxide to cyclopropanone, and cyclopropanone to cyclopentenone. PMID:26976802

  8. Intermediate selectivity in the oxidation of phenols using plasmonic Au/ZnO photocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Feng; Cojocaru, Bogdan E.; Williams, Luke S.

    Tunable reaction selectivity on a single catalyst is a continual goal in chemical syntheses. Herein, we report an unexpected light-directed intermediate selectivity using well-known plasmonic photocatalysts. We observed distinct intermediate selectivity behaviors between using UV and visible light irradiations. Chemical computations and quenching experiments suggest that the radicals generated by the plasmonic excitation govern the light-directed selectivity. As a result, the broader impact of this work ranges from selective yield of desirable intermediates for subsequent syntheses without tedious separation procedures, to arousing interest in examining new opportunities for plasmonic photocatalysts.

  9. Intermediate selectivity in the oxidation of phenols using plasmonic Au/ZnO photocatalysts

    DOE PAGES

    Lin, Feng; Cojocaru, Bogdan E.; Williams, Luke S.; ...

    2017-06-20

    Tunable reaction selectivity on a single catalyst is a continual goal in chemical syntheses. Herein, we report an unexpected light-directed intermediate selectivity using well-known plasmonic photocatalysts. We observed distinct intermediate selectivity behaviors between using UV and visible light irradiations. Chemical computations and quenching experiments suggest that the radicals generated by the plasmonic excitation govern the light-directed selectivity. As a result, the broader impact of this work ranges from selective yield of desirable intermediates for subsequent syntheses without tedious separation procedures, to arousing interest in examining new opportunities for plasmonic photocatalysts.

  10. In silico modelling of thiazolidine derivatives with antioxidant potency: Models quantify the degree of contribution of molecular fragments towards the free radical scavenging ability

    NASA Astrophysics Data System (ADS)

    De, Biplab; Adhikari, Indrani; Nandy, Ashis; Saha, Achintya; Goswami, Binoy Behari

    2017-06-01

    Design and development of antioxidant supplements constitute an essential aspect of research in order to derive molecules that would help to combat the free radical invasion to the human body and curb oxidative stress related diseases. The present work deals with the development of in silico models for a series of thiazolidine derivatives having antioxidant potential. The objective of the work is to obtain models that would help to design new thazolidine derivatives based on substituent modification and thereby predict their activity profile. The QSAR model thus developed helps in quantification of the extent of contribution of the various molecular fragments towards the activity of the molecules, while the 3D pharmacophore model provides a brief idea of the essential molecular features that help the molecules to interact with the neighbouring free radicals. Both the models have been extensively validated which ensures their predictive ability as well the potential to search molecular databases for selection of thiazolidine derivatives with potent antioxidant activity. The models can thus be utilised effectively for database searching with the aim to isolate active antioxidants belonging to the thiazolidine group.

  11. Sono-activated persulfate oxidation of diclofenac: Degradation, kinetics, pathway and contribution of the different radicals involved.

    PubMed

    Monteagudo, J M; El-Taliawy, H; Durán, A; Caro, G; Bester, K

    2018-06-20

    Degradation of a diclofenac aqueous solution was performed using persulfate anions activated by ultrasound. The objective of this study was to analyze different parameters affecting the diclofenac (DCF) removal reaction by the ultrasonic persulfate (US/PS) process and to evaluate the role played by various intermediate oxidative species such as hydroxyl- and sulfate radicals, superoxide radical anion or singlet oxygen in the removal process as well as to determine a possible reaction pathway. The effects of pH, initial persulfate anion concentration, ultrasonic amplitude and temperature on DCF degradation were examined. Sulfate and hydroxyl radicals were involved in the main reaction pathway of diclofenac. Diclofenac amide and three hydroxy-diclofenac isomers (3´-hydroxy diclofenac, 4´-hydroxy diclofenac and 5-hydroxy diclofenac) were identified as reaction intermediates. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: fragmentation reactions in the intermediate radical cations.

    PubMed

    Baciocchi, Enrico; Fabbri, Claudia; Lanzalunga, Osvaldo

    2003-11-14

    The H(2)O(2)-promoted oxidations of the two nonphenolic beta-O-aryl lignin model trimers 1 and 2, catalyzed by lignin peroxidase (LiP) at pH = 3.5, have been studied. The results have been compared with those obtained in the oxidation of 1 and 2 with the genuine one-electron oxidant potassium 12-tungstocobalt(III)ate. These models present a different substitution pattern of the three aromatic rings, and by one-electron oxidation, they form radical cations with the positive charge, which is localized in the dialkoxylated ring as also evidenced by a pulse radiolysis study. Both the oxidations with the enzymatic and with the chemical systems lead to the formation of products deriving from the cleavage of C-C and C-H bonds in a beta position with respect to the radical cation with the charge residing in the dialkoxylated ring (3,4-dimethoxybenzaldehyde (5) and a trimeric ketone 6 in the oxidation of 1 and a dimeric aldehyde 8 and a trimeric ketone 9 in the oxidation of 2). These products are accompanied by a dimeric aldehyde 7 in the oxidation of 1 and 4-methoxybenzaldehyde (10) in the oxidation of 2. The unexpected formation of these two products has been explained by suggesting that 1.+ and 2.+ can also undergo an intramolecular electron transfer leading to the radical cations 1a.+ and 2a.+ with the charge residing in a monoalkoxylated ring. The fast cleavage of a C-C bond beta to this ring, leading to 7 from 1.+ and to 10 from 2.+, is the driving force of the endoergonic electron transfer. A kinetic steady-state investigation of the LiP-catalyzed oxidation of the trimer 2, the dimeric model 1-(3,4-dimethoxyphenyl)-2-phenoxy-1-ethanol (4), and 3,4-dimethoxybenzyl alcohol (3) has indicated that the turnover number (k(cat)) and the affinity for the enzyme decrease significantly by increasing the size of the model compound. In contrast, the three substrates exhibited a very similar reactivity toward a chemical oxidant [Co(III)W]. This suggests a size

  13. Thermochemistry and kinetics for 2-butanone-1-yl radical (CH2·C(═O)CH2CH3) reactions with O2.

    PubMed

    Sebbar, N; Bozzelli, J W; Bockhorn, H

    2014-01-09

    Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C(═O)CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C(═O)CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol(-1) excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice-Ramsperger-Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.

  14. Characteristics of the spin-trapping reaction of a free radical derived from AAPH: further development of the ORAC-ESR assay.

    PubMed

    Nakajima, A; Matsuda, E; Masuda, Y; Sameshima, H; Ikenoue, T

    2012-06-01

    The characteristics of the spin-trapping reaction in the oxygen radical absorbance capacity (ORAC)-electron spin resonance (ESR) assay were examined, focusing on the kind of spin traps. 2,2-Azobis(2-amidinopropane) dihydrochloride (AAPH) was used as a free radical initiator. The spin adducts of the AAPH-derived free radical were assigned as those of the alkoxyl radical, RO· (R=H(2)N(HN)C-C(CH(3))(2)). Among the spin traps tested, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 5,5-dimethyl-4-phenyl-1-pyrroline N-oxide (4PDMPO), 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO), and 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) were applicable to the ORAC-ESR assay. Optimal formation of spin-trapped radical adduct was observed with 1 mM AAPH, 10 mM spin trap, and 5 s UV irradiation. The calibration curve (the Stern-Volmer's plot) for each spin trap showed good linearity, and their slopes, k (SB)/k (ST), were estimated to be 87.7±2.3, 267±15, 228±9, and 213±16 for DMPO, 4PDMPO, CYPMPO, and DEPMPO, respectively. Though the k (SB)/k (ST) values for selected biosubstances varied with various spin traps, their ratios to Trolox (the relative ORAC values) were almost the same for all spin traps tested. The ORAC-ESR assay also had a very good reproducibility. The ORAC-ESR assay was conducted under stoichiometric experimental conditions. The present results demonstrate the superiority of the ORAC-ESR assay.

  15. Kinetics and Near-Infrared Spectroscopy of Organic Peroxy Radicals

    NASA Astrophysics Data System (ADS)

    Smarte, M. D.; Okumura, M.

    2016-12-01

    Organic peroxy radicals are important intermediates in atmospheric chemistry with fates that control the rate of radical propagation in an oxidation mechanism. Laboratory methods for detecting peroxy radicals are essential to measuring precise rate constants that constrain these fates. In this work, we discuss the use of near-infrared cavity ringdown spectroscopy to detect organic peroxy radicals for the purpose of laboratory kinetics measurements. We focus on chlorine-substituted peroxy radicals generated in the oxidation of alkenes by chlorine, a minor tropospheric oxidant found in marine and coastal regions. Previous kinetics experiments on peroxy radicals have largely used UV absorption spectroscopy via the dissociative B-X transition. However, the spectra produced are featureless and exhibit substantial overlap; determining the concentration profile of an individual peroxy radical can be an arduous task. In our work, we probe the forbidden peroxy radical A-X transition in the near-infrared. While this approach requires overcoming small cross sections ( 10-21 cm2), the A state is bound and leads to structured absorption spectra that may be useful in constraining the kinetics of mixtures of organic peroxy radicals formed in the oxidation of complex hydrocarbons. Only a few kinetics studies utilizing the A-X transition exist in the literature and they are focused on small, unsubstituted species. This presentation explores the ability of the A-X transition to unravel the kinetics of more complex peroxy radicals in laboratory experiments using several example systems: (1) Determining rate constants for the self and cross reactions of β-chloroethylperoxy and HO2. (2) Detecting the second generation of peroxy radicals formed from alkoxy radical decomposition in the chlorine-initiated oxidation of 2-butene. (3) Observing different rates of reactivity with NO across the pool of peroxy radical isomers formed in the chlorine-initiated oxidation of isoprene.

  16. IRON AND FREE RADICAL OXIDATIONS IN CELL MEMBRANES

    PubMed Central

    Schafer, Freya Q.; Yue Qian, Steven; Buettner, Garry R.

    2013-01-01

    Brain tissue being rich in polyunsaturated fatty acids, is very susceptible to lipid peroxidation. Iron is well known to be an important initiator of free radical oxidations. We propose that the principal route to iron-mediated lipid peroxidations is via iron-oxygen complexes rather than the reaction of iron with hydrogen peroxide, the Fenton reaction. To test this hypothesis, we enriched leukemia cells (K-562 and L1210 cells) with docosahexaenoic acid (DHA) as a model for brain tissue, increasing the amount of DHA from approximately 3 mole % to 32 mole %. These cells were then subjected to ferrous iron and dioxygen to initiate lipid peroxidation in the presence or absence of hydrogen peroxide. Lipid-derived radicals were detected using EPR spin trapping with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN). As expected, lipid-derived radical formation increases with increasing cellular lipid unsaturation. Experiments with Desferal demonstrate that iron is required for the formation of lipid radicals from these cells. Addition of iron to DHA-enriched L1210 cells resulted in significant amounts of radical formation; radical formation increased with increasing amount of iron. However, the exposure of cells to hydrogen peroxide before the addition of ferrous iron did not increase cellular radical formation, but actually decreased spin adduct formation. These data suggest that iron-oxygen complexes are the primary route to the initiation of biological free radical oxidations. This model proposes a mechanism to explain how catalytic iron in brain tissue can be so destructive. PMID:10872752

  17. Phenolic composition and radical scavenging activity of sweetpotato-derived shochu distillery by-products treated with koji.

    PubMed

    Yoshimoto, Makoto; Kurata-Azuma, Rie; Fujii, Makoto; Hou, De-Xing; Ikeda, Kohji; Yoshidome, Tomohisa; Osako, Miho

    2004-12-01

    Phenolic composition and radical scavenging activity in the shochu distillery by-products of sweetpotato (Ipomoea batatas L.) treated with koji (Aspergillus awamori mut.) and cellulase (Cellulosin T2) were investigated to develop new uses. Koji and Cellulosin T2 treatment of shochu distillery by-products from sweetpotatoes, rice, and barley increased phenolic content. Caffeic acid was identified as a dominant phenolic component in the shochu distillery by-products of the sweetpotato. Adding koji and/or Cellulosin T2 to the shochu distillery by-product indicated that koji was involved in caffeic acid production. Caffeic acid was not detected in raw or steamed roots of "Koganesengan", the material of sweetpotato for shochu production, suggesting that it is produced during shochu fermentation. The phenolic content and radical scavenging activity the shochu distillery by-product treated with koji and Cellulosin T2 were superior to those of commercial vinegar. These results suggest that koji treatment of sweetpotato-derived shochu distillery by-products has potential for food materials with physiological functions. Further koji treatment of sweetpotato shochu-distillery by-products may be applicable to mass production of caffeic acid.

  18. Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC Technical Report)

    DOE PAGES

    Armstrong, David A.; Huie, Robert E.; Koppenol, Willem H.; ...

    2015-01-01

    We made recommendations for standard potentials involving select inorganic radicals in aqueous solution at 25 °C. These recommendations are based on a critical and thorough literature review and also by performing derivations from various literature reports. We also summarized the data in tables of standard potentials, Gibbs energies of formation, radical pKa’s, and hemicolligation equilibrium constants. In all cases, current best estimates of the uncertainties are provided. An extensive set of Data Sheets is appended that provide original literature references, summarize the experimental results, and describe the decisions and procedures leading to each of the recommendations.

  19. Total free radical species and oxidation equivalent in polluted air.

    PubMed

    Wang, Guoying; Jia, Shiming; Niu, Xiuli; Tian, Haoqi; Liu, Yanrong; Chen, Xuefu; Li, Lan; Zhang, Yuanhang; Shi, Gaofeng

    2017-12-31

    Free radicals are the most important chemical intermediate or agent of the atmosphere and influenced by thousands of reactants. The free radicals determine the oxidizing power of the polluted air. Various gases present in smog or haze are oxidants and induce organ and cellular damage via generation of free radical species. At present, however, the high variability of total free radicals in polluted air has prevented the detection of possible trends or distributions in the concentration of those species. The total free radicals are a kind of contaminants with colorless, tasteless characteristics, and almost imperceptible by human body. Here we present total free radical detection and distribution characteristics, and analyze the effects of total free radicals in polluted air on human health. We find that the total free radical values can be described by not only a linear dependence on ozone at higher temperature period, but also a linear delay dependence on particulate matter at lower temperature period throughout the measurement period. The total free radical species distribution is decrease from west to east in Lanzhou, which closely related to the distribution of the air pollutants. The total free radical oxidation capacity in polluted air roughly matches the effects of tobacco smoke produced by the incomplete combustion of a controlled amount of tobacco in a smoke chamber. A relatively unsophisticated chromatographic fingerprint similarity is used for indicating preliminarily the effect of total free radicals in polluted air on human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The interaction of radiation-generated radicals with myoglobin in aqueous solution—V. The indirect action of 2-methyl-2-hydroxypropyl radicals on oxymyoglobin

    NASA Astrophysics Data System (ADS)

    Whitburn, Kevin D.; Hoffman, Morton Z.

    The interaction of radiation-generated 2-methyl-2-hydroxypropyl radicals (derived from t-butyl alcohol) with oxymyoglobin has been examined at pH 7.3. In N 2O-saturated solutions, oxymyoglobin is converted to the ferri and ferryl derivatives of myoglobin; the production of ferrylmyoglobin is essentially eliminated when catalase is present in solution during irradiation. In deaerated solutions containing catalase, oxymyoglobin is converted to both ferro- and ferrimyoglobin during irradiation. When added O 2 is initially present, all compositional changes occur after irradiation; the presence of catalase diminishes, but does not eliminate, the extent of these postirradiation conversions of oxymyoglobin to the ferri and ferryl derivatives. These observations are interpreted in terms of the scavenging of the 2-methyl-2-hydroxypropyl radicals by O 2 to generate their peroxy analogs, which causes a displacement of the equilibrium between oxy- and ferromyoglobin. The peroxy radicals decay to produce H 2O 2, an organic peroxide, and other products. These peroxides subsequently react with ferromyoglobin to produce the ferryl form; the rate of the reaction increases with decreasing [O 2] as [ferromyoglobin] increases. This reaction is sufficiently fast in deaerated solution that substantial conversion of ferromyoglobin to ferrylmyoglobin occurs during the time of irradiation. The formation of the ferryl derivative in the presence of unconverted ferromyoglobin drives a concurrent synproportion reaction which produces ferrimyoglobin. Overall, no direct interaction of 2-methyl-2-hydroxypropyl radicals, nor their peroxy analogs, with myoglobin is indicated; all reactivity is accountable by the peroxide products of these radicals.

  1. Weakly Bound Free Radicals in Combustion: "Prompt" Dissociation of Formyl Radicals and Its Effect on Laminar Flame Speeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labbe, Nicole J.; Sivaramakrishnan, Raghu; Goldsmith, C. Franklin

    2016-01-07

    Weakly bound free radicals have low-dissociation thresholds such that at high temperatures, timescales for dissociation and collisional relaxation become comparable, leading to significant dissociation during the vibrational-rotational relaxation process. Here we characterize this “prompt” dissociation of formyl (HCO), an important combustion radical, using direct dynamics calculations for OH + CH2O and H + CH2O (key HCO-forming reactions). For all other HCO-forming reactions, presumption of a thermal incipient HCO distribution was used to derive prompt dissociation fractions. Inclusion of these theoretically derived HCO prompt dissociation fractions into combustion kinetics models provides an additional source for H-atoms that feeds chain branching reactions.more » Simulations using these updated combustion models are therefore shown to enhance flame propagation in 1,3,5-trioxane and acetylene. The present results suggest that HCO prompt dissociation should be included when simulating flames of hydrocarbons and oxygenated molecules and that prompt dissociations of other weakly bound radicals may also impact combustion simulations« less

  2. Comparative Effectiveness of Cancer Control and Survival after Robot-Assisted versus Open Radical Prostatectomy.

    PubMed

    Hu, Jim C; O'Malley, Padraic; Chughtai, Bilal; Isaacs, Abby; Mao, Jialin; Wright, Jason D; Hershman, Dawn; Sedrakyan, Art

    2017-01-01

    Robot-assisted surgery has been rapidly adopted in the U.S. for prostate cancer. Its adoption has been driven by market forces and patient preference, and debate continues regarding whether it offers improved outcomes to justify the higher cost relative to open surgery. We examined the comparative effectiveness of robot-assisted vs open radical prostatectomy in cancer control and survival in a nationally representative population. This population based observational cohort study of patients with prostate cancer undergoing robot-assisted radical prostatectomy and open radical prostatectomy during 2003 to 2012 used data captured in the SEER (Surveillance, Epidemiology, and End Results)-Medicare linked database. Propensity score matching and time to event analysis were used to compare all cause mortality, prostate cancer specific mortality and use of additional treatment after surgery. A total of 6,430 robot-assisted radical prostatectomies and 9,161 open radical prostatectomies performed during 2003 to 2012 were identified. The use of robot-assisted radical prostatectomy increased from 13.6% in 2003 to 2004 to 72.6% in 2011 to 2012. After a median followup of 6.5 years (IQR 5.2-7.9) robot-assisted radical prostatectomy was associated with an equivalent risk of all cause mortality (HR 0.85, 0.72-1.01) and similar cancer specific mortality (HR 0.85, 0.50-1.43) vs open radical prostatectomy. Robot-assisted radical prostatectomy was also associated with less use of additional treatment (HR 0.78, 0.70-0.86). Robot-assisted radical prostatectomy has comparable intermediate cancer control as evidenced by less use of additional postoperative cancer therapies and equivalent cancer specific and overall survival. Longer term followup is needed to assess for differences in prostate cancer specific survival, which was similar during intermediate followup. Our findings have significant quality and cost implications, and provide reassurance regarding the adoption of more

  3. Standard Gibbs free energies of reactions of ozone with free radicals in aqueous solution: quantum-chemical calculations.

    PubMed

    Naumov, Sergej; von Sonntag, Clemens

    2011-11-01

    Free radicals are common intermediates in the chemistry of ozone in aqueous solution. Their reactions with ozone have been probed by calculating the standard Gibbs free energies of such reactions using density functional theory (Jaguar 7.6 program). O(2) reacts fast and irreversibly only with simple carbon-centered radicals. In contrast, ozone also reacts irreversibly with conjugated carbon-centered radicals such as bisallylic (hydroxycylohexadienyl) radicals, with conjugated carbon/oxygen-centered radicals such as phenoxyl radicals, and even with nitrogen- oxygen-, sulfur-, and halogen-centered radicals. In these reactions, further ozone-reactive radicals are generated. Chain reactions may destroy ozone without giving rise to products other than O(2). This may be of importance when ozonation is used in pollution control, and reactions of free radicals with ozone have to be taken into account in modeling such processes.

  4. EPR parameters of L-α-alanine radicals in aqueous solution: a first-principles study

    NASA Astrophysics Data System (ADS)

    Janbazi, Mehdi; T. Azar, Yavar; Ziaie, Farhood

    2018-07-01

    EPR (electron paramagnetic resonance) response for a wide range of possible alanine radicals has been analysed employing quantum chemical methods. The strong correlation between geometry and EPR parameter structure of these radicals has been shown in this research work. Significant solvent effect on EPR parameters has been shown employing both explicit and implicit solvent models. In a relatively good agreement with the experiment, stable conformation of these radicals in acidic and basic conditions was determined, and a new conformation was suggested based on possible proton transfer in the intermediate pH range. The employed methodology along with experimental results may be used for the characterisation of different radiation-induced amino acid radicals.

  5. Free radicals properties of gamma-irradiated penicillin-derived antibiotics: piperacillin, ampicillin, and crystalline penicillin.

    PubMed

    Wilczyński, Sławomir; Pilawa, Barbara; Koprowski, Robert; Wróbel, Zygmunt; Ptaszkiewicz, Marta; Swakoń, Jan; Olko, Paweł

    2014-03-01

    The aim of this work was to determine the concentrations and properties of free radicals in piperacillin, ampicillin, and crystalline penicillin after gamma irradiation. The radicals were studied by electron paramagnetic resonance (EPR) spectroscopy using an X-band spectrometer (9.3 GHz). Gamma irradiation was performed at a dose of 25 kGy. One- and two-exponential functions were fitted to the experimental data, in order to assess the influence of the antibiotics' storage time on the measured EPR lines. After gamma irradiation, complex EPR lines were recorded confirming the presence of a large number of free radicals formed during the irradiation. For all tested antibiotics, concentrations of free radicals and parameters of EPR spectra changed with storage time. The results obtained demonstrate that concentration of free radicals and other spectroscopic parameters can be used to select the optimal parameters of radiation sterilization of β-lactam antibiotics. The most important parameters are the constants τ (τ (1(A),(I)) and τ (2(A),(I))) and K (K (0(A),(I)), K (1(A),(I)), K (2(A),(I))) of the exponential functions that describe free radicals decay during samples storage.

  6. Controlling Stereoselectivity and Chemoselectivity of Cyclopropyl Ketyl Radical Anions with Visible Light Photocatalysis

    NASA Astrophysics Data System (ADS)

    Amador, Adrian Gabriel

    A defining characteristic of research in the Yoon laboratory is a focus on the formation and utilization of high-energy reactive intermediates to accomplish difficult transformations. Recent efforts have been aimed at controlling the reactivity of open-shell radical intermediates; both in terms of chemoselectivity and stereoselectivity. Transition metal photocatalysis has proven to be a particularly successful strategy for accomplishing a wide variety of transformations ranging from net redox neutral as well as net reductive and oxidative transformations. This thesis describes one such approach where the combination of a photocatalyst and a Lewis acid can be used to achieve highly selective and high yielding [3 + 2] cycloadditions between aryl cyclopropyl ketones and a wide range of unsaturated (e.g. olefin and imine) coupling partners. Key to the success of these studies was understanding and carefully optimizing both photocatalyst and Lewis acid to achieve the desired reactivity. These studies have resulted in the development of a highly enantioselective [3 + 2] cycloaddition between cyclopropyl ketones and olefins for the synthesis of cyclopentanes as well as the development of a more general redox-auxiliary approach for the [3 + 2] cycloaddition of cyclopropyl ketones and simple olefins and imine derivatives.

  7. EPR Spectroscopy of Radical Ions of a 2,3-Diamino-1,4-naphthoquinone Derivative.

    PubMed

    Tarábek, Ján; Wen, Jin; Dron, Paul I; Pospíšil, Lubomír; Michl, Josef

    2018-05-18

    We report the electron paramagnetic resonance spectra of the radical cation and radical anion of 1,2,2,3-tetramethyl-2,3-dihydro-1 H-naphtho[2,3- d]imidazole-4,9-dione (1) and its doubly 13 C labeled analogue 2, of interest for singlet fission. The hyperfine coupling constants are in excellent agreement with density functional theory calculations and establish the structures beyond doubt. Unlike the radical cation 1 •+ , the radical anion 1 •- and its parent 1 have pyramidalized nitrogen atoms and inequivalent methyl groups 15 and 16, in agreement with the calculations. The distinction is particularly clear with the labeled analogue 2 •- .

  8. Oxidation of DNA bases, deoxyribonucleosides and homopolymers by peroxyl radicals.

    PubMed Central

    Simandan, T; Sun, J; Dix, T A

    1998-01-01

    DNA base oxidation is considered to be a key event associated with disease initiation and progression in humans. Peroxyl radicals (ROO. ) are important oxidants found in cells whose ability to react with the DNA bases has not been characterized extensively. In this paper, the products resulting from ROO. oxidation of the DNA bases are determined by gas chromatography/MS in comparison with authentic standards. ROO. radicals oxidize adenine and guanine to their 8-hydroxy derivatives, which are considered biomarkers of hydroxyl radical (HO.) oxidations in cells. ROO. radicals also oxidize adenine to its hydroxylamine, a previously unidentified product. ROO. radicals oxidize cytosine and thymine to the monohydroxy and dihydroxy derivatives that are formed by oxidative damage in cells. Identical ROO. oxidation profiles are observed for each base when exposed as deoxyribonucleosides, monohomopolymers and base-paired dihomopolymers. These results have significance for the development, utilization and interpretation of DNA base-derived biomarkers of oxidative damage associated with disease initiation and propagation, and support the idea that the mutagenic potential of N-oxidized bases, when generated in cellular DNA, will require careful evaluation. Adenine hydroxylamine is proposed as a specific molecular probe for the activity of ROO. in cellular systems. PMID:9761719

  9. Free radical generation from an aniline derivative in HepG2 cells: a possible captodative effect.

    PubMed

    Horinouchi, Yuya; Summers, Fiona A; Ehrenshaft, Marilyn; Mason, Ronald P

    2015-01-01

    Xenobiotic metabolism can induce the generation of protein radicals, which are believed to play an important role in the toxicity of chemicals and drugs. It is therefore important to identify chemical structures capable of inducing macromolecular free radical formation in living cells. In this study, we evaluated the ability of four structurally related environmental chemicals, aniline, nitrosobenzene, N,N-dimethylaniline, and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase assays, and morphological changes were observed using phase contrast microscopy. Protein free radicals were detected by immuno-spin trapping using in-cell western experiments and confocal microscopy to determine the subcellular locale of free radical generation. DMNA induced free radical generation, lactate dehydrogenase release, and morphological changes in HepG2 cells, whereas aniline, nitrosobenzene, N,N-dimethylaniline did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation on subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide had no effect. These results suggest that DMNA is metabolized to reactive free radicals capable of generating protein radicals which may play a critical role in DMNA toxicity. We propose that the captodative effect, the combined action of the electron-releasing dimethylamine substituent, and the electron-withdrawing nitroso substituent, leads to a thermodynamically stabilized radical, facilitating enhanced protein radical formation by DMNA. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Radical-induced chemistry from VUV photolysis of interstellar ice analogues containing formaldehyde

    NASA Astrophysics Data System (ADS)

    Butscher, Teddy; Duvernay, Fabrice; Danger, Grégoire; Chiavassa, Thierry

    2016-09-01

    Surface processes and radical chemistry within interstellar ices are increasingly suspected to play an important role in the formation of complex organic molecules (COMs) observed in several astrophysical regions and cometary environments. We present new laboratory experiments on the low-temperature solid state formation of complex organic molecules - glycolaldehyde, ethylene glycol, and polyoxymethylene - through radical-induced reactivity from VUV photolysis of formaldehyde in water-free and water-dominated ices. Radical reactivity and endogenous formation of COMs were monitored in situ via infrared spectroscopy in the solid state and post photolysis with temperature programmed desorption (TPD) using a quadripole mass spectrometer. We show the ability of free radicals to be stored when formed at low temperature in water-dominated ices, and to react with other radicals or on double bonds of unsaturated molecules when the temperature increases. It experimentally confirms the role of thermal diffusion in radical reactivity. We propose a new pathway for formaldehyde polymerisation induced by HCO radicals that might explain some observations made by the Ptolemy instrument on board the Rosetta lander Philae. In addition, our results seem to indicate that H-atom additions on H2CO proceed preferentially through CH2OH intermediate radicals rather than the CH3O radical.

  11. Distribution of stable free radicals among amino acids of isolated soy proteins.

    PubMed

    Lei, Qingxin; Liebold, Christopher M; Boatright, William L; Shah Jahan, M

    2010-09-01

    Application of deuterium sulfide to powdered isolated soy proteins (ISP) was used to quench stable free radicals and produce a single deuterium label on amino acids where free radicals reside. The deuterium labels rendered increases of isotope ratio for the specific ions of radical-bearing amino acids. Isotope ratio measurements were achieved by gas chromatography/mass spectrometry (GC/MS) analyses after the amino acids were released by acidic hydrolysis and converted to volatile derivatives with propyl chloroformate. The isotope enrichment data showed the stable free radicals were located on Ala, Gly, Leu, Ile, Asx (Asp+Asn), Glx (Glu+Gln), and Trp but not on Val, Pro, Met, Phe, Lys, and His. Due to the low abundance of Ser, Thr, and Cys derivatives and the impossibility to accurately measure their isotope ratios, the radical bearing status for these amino acids remained undetermined even though their derivatives were positively identified from ISP hydrolysates. The relative isotope enrichment for radical-bearing amino acids Ala, Gly, Leu, Ile, Asx (Asp+Asn), Glx (Glu+Gln), and Trp were 8.67%, 2.96%, 2.90%, 3.94%, 6.03%, 3.91%, and 21.48%, respectively. Isotope ratio increase for Tyr was also observed but further investigation revealed such increase was mainly from nonspecific deuterium-hydrogen exchange not free radical quenching. The results obtained from the present study provide important information for a better understanding of the mechanisms of free radical formation and stabilization in "dry" ISP.

  12. Thermal, photonic and magnetic studies of thiazyl radicals

    NASA Astrophysics Data System (ADS)

    Beldjoudi, Yassine

    Chapter 1 provides an overview of the area of 1,2,3,5-dithiadiazolyl (DTDA) radical chemistry which is central to this thesis, including a review of the crystal engineering principles and the physical properties of DTDA radicals, focusing on structure-property relationships. The magnetic properties of the beta-polymorph of p-NCC 6F4CNSSN have been almost exhaustively studied since 1993 when it was found to exhibit the highest magnetic ordering temperature (T N = 36 K) for an organic magnet. Conversely the structure and physical properties of the alpha-polymorph have barely been explored. The conditions for the selective preparation of alpha and beta-polymorphs of this radical are investigated in Chapter 2. The relative polymorph stability is probed through detailed DSC and PXRD studies and the magnetic properties of the alpha-polymorph fully examined through dc and ac susceptibility measurements coupled with heat capacity studies. In Chapters 3 and 4, systematic structural studies on the variation of substituent groups are undertaken, comprising a series of alkoxy-functionalised perfluorophenyl DTDA radicals, p-ROC6F4CNSSN (R = Me, Et, Pr, Bu) and a comparison of the substitution pattern of the tolyl group on PhDTDA derivatives, MeC6H4C6H 4CNSSN and their polymorphs. These studies use a combination of single crystal and VT-PXRD, SQUID magnetometry and VT EPR spectroscopy combined with DSC measurements and computational studies to probe relative polymorph stabilities and magnetic properties. A new generation of DTDA radicals where the R substituent is "non-innocent" are described in Chapters 5 and 6. In Chapter 5 the synthesis and characterisation of a series of DTDA-functionalised polyaromatic hydrocarbons (PAH) are described and their polymorphism examined as well as their solution and solid state optical properties. These reveal fluorescence quantum efficiencies up to 50%. Radical stability can be enhanced through incorporation into polymer matrices (PMMA and PS

  13. Efficient depletion of ascorbate by amino acid and protein radicals under oxidative stress.

    PubMed

    Domazou, Anastasia S; Zelenay, Viviane; Koppenol, Willem H; Gebicki, Janusz M

    2012-10-15

    Ascorbate levels decrease in organisms subjected to oxidative stress, but the responsible reactions have not been identified. Our earlier studies have shown that protein C-centered radicals react rapidly with ascorbate. In aerobes, these radicals can react with oxygen to form peroxyl radicals. To estimate the relative probabilities of the reactions of ascorbate with protein C- and O-centered radicals, we measured by pulse radiolysis the rate constants of the reactions of C-centered radicals in Gly, Ala, and Pro with O₂ and of the resultant peroxyl radicals with ascorbate. Calculations based on the concentrations of ascorbate and oxygen in human tissues show that the relative probabilities of reactions of the C-centered amino acid radicals with O₂ and ascorbate vary between 1:2.6 for the pituitary gland and 1:0.02 for plasma, with intermediate ratios for other tissues. The high frequency of occurrence of Gly, Ala, and Pro in proteins and the similar reaction rate constants of their C-centered radicals with O₂ and their peroxo-radicals with ascorbate suggest that our results are also valid for proteins. Thus, the formation of protein C- or O-centered radicals in vivo can account for the loss of ascorbate in organisms under oxidative stress. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. ELECTRON SPIN RESONANCE STUDIES ON PEROXIDE RADICALS IN IRRADIATED POLYPROPYLENE (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, H.; Hellwege, K.-H.; Neudoerfl, P.

    1963-06-01

    Peroxide radicals are formed by oxidation of carbon radicals in irradiated isotactic polypropylene. An interpretation of their ESR spectra is given. The recombination of the peroxide radicals follows a chain reaction mechanism, which is derived from the reversibility of formation of peroxide radicals, the time dependence of their concentration, and from the oxygen consumption of samples containing peroxide radicals. The reactions are discussed in view of the radiation induced oxidative degradation of polypropylene. (auth)

  15. Reactions of inorganic free radicals with liver protecting drugs

    NASA Astrophysics Data System (ADS)

    György, I.; Blázovics, A.; Fehér, J.; Földiák, G.

    Liver protecting drugs, silibinin, a flavonolignane, and the dihydroquinoline derivates, CH 402 and MTDQ-DA, were shown to inhibit processes in which enzymatically or non-enzymatically generated free radicals were involved. Inorganic free radicals (N 3, (SCN) -2, OH, Trp, CO -2, O -2) produced by pulse radiolysis readily react with the compounds, which transform into exceptionally long-lived, unreactive transients. Time evolution of the UV and visible spectra indicate that oxidising radicals form a phenoxyl type radical from silibinin, while OH forms an adduct by attacking, simultaneously, at various sites of the molecule. Superoxide radicals reduce silibinin and oxidise CH 402 and MTDQ-DA. It is concluded that the drugs might exhibit antioxidant behavior in living systems.

  16. Intermediates in the reaction of substrate-free cytochrome P450cam with peroxy acetic acid.

    PubMed

    Schünemann, V; Jung, C; Trautwein, A X; Mandon, D; Weiss, R

    2000-08-18

    Freeze-quenched intermediates of substrate-free cytochrome 57Fe-P450(cam) in reaction with peroxy acetic acid as oxidizing agent have been characterized by EPR and Mossbauer spectroscopy. After 8 ms of reaction time the reaction mixture consists of approximately 90% of ferric low-spin iron with g-factors and hyperfine parameters of the starting material; the remaining approximately 10% are identified as a free radical (S' = 1/2) by its EPR and as an iron(IV) (S= 1) species by its Mossbauer signature. After 5 min of reaction time the intermediates have disappeared and the Mossbauer and EPR-spectra exhibit 100% of the starting material. We note that the spin-Hamiltonian analysis of the spectra of the 8 ms reactant clearly reveals that the two paramagnetic species, e.g. the ferryl (iron(IV)) species and the radical, are not exchanged coupled. This led to the conclusion that under the conditions used, peroxy acetic acid oxidized a tyrosine residue (probably Tyr-96) into a tyrosine radical (Tyr*-96), and the iron(III) center of substrate-free P450(cam) to iron(IV).

  17. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions.

    PubMed

    Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J

    2018-06-04

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

  18. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions

    NASA Astrophysics Data System (ADS)

    Williams, Peggy E.; Marshall, David L.; Poad, Berwyck L. J.; Narreddula, Venkateswara R.; Kirk, Benjamin B.; Trevitt, Adam J.; Blanksby, Stephen J.

    2018-06-01

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions.

  19. Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy

    PubMed Central

    Luo, Liangfeng; Tang, Xiaofeng; Wang, Wendong; Wang, Yu; Sun, Shaobo; Qi, Fei; Huang, Weixin

    2013-01-01

    Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance. PMID:23567985

  20. Stability and anti-glycation properties of intermediate moisture apple products fortified with green tea.

    PubMed

    Lavelli, Vera; Corey, Mark; Kerr, William; Vantaggi, Claudia

    2011-07-15

    Intermediate moisture products made from blanched apple flesh and green tea extract (about 6mg of monomeric flavan 3-ols added per g of dry apple) or blanched apple flesh (control) were produced, and their quality attributes were investigated over storage for two months at water activity (a(w)) levels of 0.55 and 0.75, at 30°C. Products were evaluated for colour (L(∗), a(∗), and b(∗) Hunter's parameters), phytochemical contents (flavan 3-ols, chlorogenic acid, dihydrochalcones, ascorbic acid and total polyphenols), ferric reducing antioxidant potential, 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl radical-scavenging activity and ability to inhibit formation of fructose-induced advanced glycation end-products. During storage of the fortified and unfortified intermediate moisture apples, water availability was sufficient to support various chemical reactions involving phytochemicals, which degraded at different rates: ascorbic acid>flavan 3-ols>dihydrochalcones and chlorogenic acid. Colour variations occurred at slightly slower rates after green tea addition. In the intermediate moisture apple, antioxidant and anti-glycoxidative properties decreased at similar rates (half-life was about 80d at a(w) of 0.75, 30°C). In the green tea-fortified intermediate moisture apple, the antioxidant activity decreased at a slow rate (half-life was 165d at a(w) of 0.75, 30°C) and the anti-glycoxidative properties did not change, indicating that flavan 3-ol degradation involved the formation of derivatives that retained the properties of their parent compounds. Since these properties are linked to oxidative- and advanced glycation end-product-related diseases, these results suggest that green tea fortification of intermediate moisture apple products could be a valuable means of product innovation, to address consumers' nutritional needs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Guanosine radical reactivity explored by pulse radiolysis coupled with transient electrochemistry.

    PubMed

    Latus, A; Alam, M S; Mostafavi, M; Marignier, J-L; Maisonhaute, E

    2015-06-04

    We follow the reactivity of a guanosine radical created by a radiolytic electron pulse both by spectroscopic and electrochemical methods. This original approach allows us to demonstrate that there is a competition between oxidation and reduction of these intermediates, an important result to further analyse the degradation or repair pathways of DNA bases.

  2. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus.

    PubMed

    Shellnutt, J Gregory

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra.

  3. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus

    PubMed Central

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra. PMID:29584745

  4. Intermediates in the Formation of Aromatics in Hydrocarbon Combustion

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    The formation of the first benzene ring is believed to be the rate limiting step in soot formation. Two different mechanisms have been proposed for formation of cyclic C6 species. The first involves the reaction of two acetylenes to give CH2CHCCH (vinyl acetylene), the loss of a H to give CHCHCCH (n-C41-13) or CH2CCCH (iso-C4H3), and addition of another acetylene to n-C4H3, followed by ring closure to give phenyl radical. Miller and Melius argue that only n-C4H3 leads to phenyl radical and since iso-C4H3 is more stable than n-C4H3 this mechanism is unlikely. An alternative mechanism proposed by them is formation of benzene from the dimerization of two CH2CCH (propargyl) radicals (formed by the reaction of singlet methylene with C2H2). We report reaction pathways and accurate energetics (from CASSCF/internally contracted CI calculations) for the reactions of CH(pi-2) and CH2-1 with acetylene, the reaction of vinylidene with acetylene, and the reaction of n-C4H3 and iso-C4H3 with acetylene. These calculations identify two new reactive intermediates CHCHCH ( a A"-2 ground state in Cs symmetry; spin coupling is a doublet from three singly occupied orbitals) and CHCCH (B-3 ground state in C2 symmetry) from the reaction of CH with acetylene. These species dimerize with no barrier to form benzene and para-benzyne, respectively. CHCCH is proposed as a reactive intermediate which can add to benzene to give higher polynuclear aromatic hydrocarbons or fullerenes. The addition of a C3H2 unit releases two C-C bond energies and thus the resulting addition product contains sufficient energy to break several CH bonds leading to a reduction in the H to C ratio as the cluster size increases. It is found that iso-C4H3 adds to acetylene to initially give a fulvene radical but that this species rearranges to phenyl radical. Thus, the reaction of acetylene with iso-C4H3 does lead to phenyl radical and the cyclization pathway may also contribute to formation of the initial benzene ring.

  5. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE.

    PubMed

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5'-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  6. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE

    NASA Astrophysics Data System (ADS)

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C.; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5‧-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  7. Helium Nanodroplet Isolation of the Cyclobutyl, 1-Methylallyl, and Allylcarbinyl Radicals: Infrared Spectroscopy and Ab Initio Computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Alaina R.; Franke, Peter R.; Douberly, Gary E.

    Gas-phase cyclobutyl radical (*C 4H 7) is produced via pyrolysis of cyclobutylmethyl nitrite (C 4H 7(CH 2)ONO). Other (C 4H 7)-C-center dot radicals, such as 1-methylallyl and allylcarbinyl, are similarly produced from nitrite precursors. Nascent radicals are promptly solvated in liquid He droplets, allowing for the acquisition of infrared spectra in the CH stretching region. For the cyclobutyl and 1-methylallyl radicals, anharmonic frequencies are predicted by VPT2+K simulations based upon a hybrid CCSD(T) force field with quadratic (cubic and quartic) force constants computed using the ANO1 (ANO0) basis set. A density functional theoretical method is used to compute the forcemore » field for the allylcarbinyl radical. For all *C 4H 7 radicals, resonance polyads in the 2800-3000 cm -1 region appear as a result of anharmonic coupling between the CH stretching fundamentals and CH, bend overtones and combinations. Upon pyrolysis of the cyclobutylmethyl nitrite precursor to produce the cyclobutyl radical, an approximately 2-fold increase in the source temperature leads to the appearance of spectral signatures that can be assigned to 1-methylallyl and 1,3-butadiene. On the basis of a previously reported *C 4H 7 potential energy surface, this result is interpreted as evidence for the unimolecular decomposition of the cyclobutyl radical via ring opening, prior to it being captured by helium droplets. On the *C 4H 7 potential surface, 1,3-butadiene is formed from cyclobutyl ring opening and H atom loss, and the 1-methylallyl radical is the most energetically stable intermediate along the decomposition pathway. Here, the allylcarbinyl radical is a higher-energy (C 4H 7)-C-center dot intermediate along the ring-opening path, and the spectral signatures of this radical are not observed under the same conditions that produce 1-methylallyl and 1,3-butadiene from the unimolecular decomposition of cyclobutyl.« less

  8. Helium Nanodroplet Isolation of the Cyclobutyl, 1-Methylallyl, and Allylcarbinyl Radicals: Infrared Spectroscopy and Ab Initio Computations

    DOE PAGES

    Brown, Alaina R.; Franke, Peter R.; Douberly, Gary E.

    2017-09-22

    Gas-phase cyclobutyl radical (*C 4H 7) is produced via pyrolysis of cyclobutylmethyl nitrite (C 4H 7(CH 2)ONO). Other (C 4H 7)-C-center dot radicals, such as 1-methylallyl and allylcarbinyl, are similarly produced from nitrite precursors. Nascent radicals are promptly solvated in liquid He droplets, allowing for the acquisition of infrared spectra in the CH stretching region. For the cyclobutyl and 1-methylallyl radicals, anharmonic frequencies are predicted by VPT2+K simulations based upon a hybrid CCSD(T) force field with quadratic (cubic and quartic) force constants computed using the ANO1 (ANO0) basis set. A density functional theoretical method is used to compute the forcemore » field for the allylcarbinyl radical. For all *C 4H 7 radicals, resonance polyads in the 2800-3000 cm -1 region appear as a result of anharmonic coupling between the CH stretching fundamentals and CH, bend overtones and combinations. Upon pyrolysis of the cyclobutylmethyl nitrite precursor to produce the cyclobutyl radical, an approximately 2-fold increase in the source temperature leads to the appearance of spectral signatures that can be assigned to 1-methylallyl and 1,3-butadiene. On the basis of a previously reported *C 4H 7 potential energy surface, this result is interpreted as evidence for the unimolecular decomposition of the cyclobutyl radical via ring opening, prior to it being captured by helium droplets. On the *C 4H 7 potential surface, 1,3-butadiene is formed from cyclobutyl ring opening and H atom loss, and the 1-methylallyl radical is the most energetically stable intermediate along the decomposition pathway. Here, the allylcarbinyl radical is a higher-energy (C 4H 7)-C-center dot intermediate along the ring-opening path, and the spectral signatures of this radical are not observed under the same conditions that produce 1-methylallyl and 1,3-butadiene from the unimolecular decomposition of cyclobutyl.« less

  9. Free radical generation induced by ultrasound in red wine and model wine: An EPR spin-trapping study.

    PubMed

    Zhang, Qing-An; Shen, Yuan; Fan, Xue-Hui; Martín, Juan Francisco García; Wang, Xi; Song, Yun

    2015-11-01

    Direct evidence for the formation of 1-hydroxylethyl radicals by ultrasound in red wine and air-saturated model wine is presented in this paper. Free radicals are thought to be the key intermediates in the ultrasound processing of wine, but their nature has not been established yet. Electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-l-pyrrolin N-oxide (DMPO) was used for the detection of hydroxyl free radicals and 1-hydroxylethyl free radicals. Spin adducts of hydroxyl free radicals were detected in DMPO aqueous solution after sonication while 1-hydroxylethyl free radical adducts were observed in ultrasound-processed red wine and model wine. The latter radical arose from ethanol oxidation via the hydroxyl radical generated by ultrasound in water, thus providing the first direct evidence of the formation of 1-hydroxylethyl free radical in red wine exposed to ultrasound. Finally, the effects of ultrasound frequency, ultrasound power, temperature and ultrasound exposure time were assessed on the intensity of 1-hydroxylethyl radical spin adducts in model wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Two-photon excitation cross-section in light and intermediate atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    The method of explicit summation over the intermediate states is used along with LS coupling to derive an expression for two-photon absorption cross section in light and intermediate atoms in terms of integrals over radial wave functions. Two selection rules, one exact and one approximate, are also derived. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum defect method are used. A relationship between the cross section and the oscillator strengths is derived. Cross sections due to selected transitions in nitrogen, oxygen, and chlorine are given. The expression for the cross section is useful in calculating the two-photon absorption in light and intermediate atoms.

  11. Putative anticancer potential of novel 4-thiazolidinone derivatives: cytotoxicity toward rat C6 glioma in vitro and correlation of general toxicity with the balance of free radical oxidation in rats.

    PubMed

    Коbylinska, Lesya I; Boiko, Nataliya M; Panchuk, Rostyslav R; Grytsyna, Iryna I; Klyuchivska, Olga Yu; Biletska, Liliya P; Lesyk, Roman B; Zіmenkovsky, Borys S; Stoika, Rostyslav S

    2016-04-23

    To evaluate the cytotoxic action of 4-thiazolidinone derivatives (ID 3288, ID 3882, and ID 3833) toward rat glioma C6 cells and to compare the effects of these compounds and doxorubicin on the balance of free radical oxidation (FRO) and antioxidant activity (AOA) in the serum of rats. Glioma cells were treated with ID 3882, ID 3288, ID 3833, and doxorubicin, and their cytotoxicity was studied using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and Trypan blue exclusion test, light and fluorescent microscopy, and flow cytometric study of cell cycling and apoptosis, including measuring of Annexin V-positive cells. The contents of superoxide radical, hydrogen peroxide, hydroxyl radical, malonic dialdehyde, and hydrogen sulfide were measured in the serum of rats. Enzymatic activity of superoxide dismutase (SOD), catalase (Cat), and glutathione peroxydase (GPO) was determined. Among novel 4-thiazolidinone derivatives, ID 3288 was most toxic toward rat glioma C6 cells, even compared with doxorubicin. All applied derivatives were less active than doxorubicin in inducing reactive oxygen species-related indicators in the serum of rats. A similar effect was observed when enzymatic indicators of AOA processes were measured. While doxorubicin inhibited the activity of SOD, GPO, and Cat, the effects of 4-thiazolidinone derivatives were less prominent. Novel 4-thiazolidinone derivatives differ in their antineoplastic action toward rat glioma C6 cells, and ID 3288 possesses the highest activity compared to doxorubicin. Measurement of indicators of FRO and AOA in the serum of rats treated with these compounds showed their lower general toxicity compared with doxorubicin's toxicity.

  12. [The advance in synthetic biology: towards a microbe-derived paclitaxel intermediates].

    PubMed

    Wang, Wei; Yang, Yan; Zheng, Xiao-Dong; Huang, Shu-Qiong; Guo, Lei; Kong, Jian-Qiang; Cheng, Ke-Di

    2013-02-01

    The synthetic biology matures to promote the heterologous biosynthesis of the well-known drug paclitaxel that is one of the most important and active chemotherapeutic agents for the first-line clinical treatment of cancer. This review focuses on the construction and regulation of the biosynthetic pathway of paclitaxel intermediates in both Escherichia coli and Saccharomyces cerevisiae. In particular, the review also features the early efforts to design and overproduce taxadiene and the bottleneck of scale fermentation for producing the intermediates.

  13. Radical distinction: Support for radical left and radical right parties in Europe

    PubMed Central

    Burgoon, Brian; van Elsas, Erika J; van de Werfhorst, Herman G

    2017-01-01

    Support for radical parties on both the left and right is on the rise, fueling intuition that both radicalisms have similar underpinnings. Indeed, existing studies show that radical left and right voters have overlapping positions and preferences. In this article, however, we focus on the differences in the voting bases of such parties. We show that radical left and right voters have sharply diverging ideological profiles. When it comes to the historical traditions of the ‘left’ and ‘right’, these voters differ radically from each other. Both groups express the traditions associated with their mainstream counterparts—particularly with respect to (non-)egalitarian, (non-)altruistic, and (anti-)cosmopolitan values. Such differences also explain why radical left voters tend to be more, not less, educated than mainstream or radical right voters. PMID:29187802

  14. Radical distinction: Support for radical left and radical right parties in Europe.

    PubMed

    Rooduijn, Matthijs; Burgoon, Brian; van Elsas, Erika J; van de Werfhorst, Herman G

    2017-12-01

    Support for radical parties on both the left and right is on the rise, fueling intuition that both radicalisms have similar underpinnings. Indeed, existing studies show that radical left and right voters have overlapping positions and preferences. In this article, however, we focus on the differences in the voting bases of such parties. We show that radical left and right voters have sharply diverging ideological profiles. When it comes to the historical traditions of the 'left' and 'right', these voters differ radically from each other. Both groups express the traditions associated with their mainstream counterparts-particularly with respect to (non-)egalitarian, (non-)altruistic, and (anti-)cosmopolitan values. Such differences also explain why radical left voters tend to be more, not less, educated than mainstream or radical right voters.

  15. Isolation and characterization of charge-tagged phenylperoxyl radicals in the gas phase: direct evidence for products and pathways in low temperature benzene oxidation.

    PubMed

    Kirk, Benjamin B; Harman, David G; Kenttämaa, Hilkka I; Trevitt, Adam J; Blanksby, Stephen J

    2012-12-28

    The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium)phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me(3)N(+))C(6)H(4)˙ + O(2)] = 2.8 × 10(-11) cm(3) molecule(-1) s(-1), Φ = 4.9%; k(2)[((-)O(2)C)C(6)H(4)˙ + O(2)] = 5.4 × 10(-11) cm(3) molecule(-1) s(-1), Φ = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.

  16. Radicals and molecular products from the gas-phase pyrolysis of lignin model compounds. Cinnamyl alcohol

    PubMed Central

    Khachatryan, Lavrent; Xu, Meng-xia; Wu, Ang-jian; Pechagin, Mikhail; Asatryan, Rubik

    2016-01-01

    The experimental results on detection and identification of intermediate radicals and molecular products from gas-phase pyrolysis of cinnamyl alcohol (CnA), the simplest non-phenolic lignin model compound, over the temperature range of 400–800 °C are reported. The low temperature matrix isolation – electron paramagnetic resonance (LTMI-EPR) experiments along with the theoretical calculations, provided evidences on the generation of the intermediate carbon and oxygen centered as well as oxygen-linked, conjugated radicals. A mechanistic analysis is performed based on density functional theory to explain formation of the major products from CnA pyrolysis; cinnamaldehyde, indene, styrene, benzaldehyde, 1-propynyl benzene, and 2-propenyl benzene. The evaluated bond dissociation patterns and unimolecular decomposition pathways involve dehydrogenation, dehydration, 1,3-sigmatropic H-migration, 1,2-hydrogen shift, C—O and C—C bond cleavage processes. PMID:28344372

  17. On radicalizing behaviorism: A call for cultural analysis

    PubMed Central

    Malagodi, E. F.

    1986-01-01

    Our culture at large continues many practices that work against the well-being of its members and its chances for survival. Our discipline has failed to realize its potential for contributing to the understanding of these practices and to the generation of solutions. This failure of realization is in part a consequence of the general failure of behavior analysts to view social and cultural analysis as a fundamental component of radical behaviorism. This omission is related to three prevailing practices of our discipline. First, radical behaviorism is characteristically defined as a “philosophy of science,” and its concerns are ordinarily restricted to certain epistemological issues. Second, theoretical extensions to social and cultural phenomena too often depend solely upon principles derived from the analysis of behavior. Third, little attention has been directed at examining the relationships that do, or that should, exist between our discipline and related sciences. These practices themselves are attributed to certain features of the history of our field. Two general remedies for this situation are suggested: first, that radical behaviorism be treated as a comprehensive world view in which epistemological, psychological, and cultural analyses constitute interdependent components; second, that principles derived from compatible social-science disciplines be incorporated into radical behaviorism. PMID:22478643

  18. Transition-Metal Hydride Radical Cations.

    PubMed

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  19. Free radical kinetics on irradiated fennel

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2008-09-01

    Herein, an electron spin resonance study on the behavior of organic radicals in fennel before and after irradiation is reported. The spectrum of irradiated fennel composed of the spectrum component derived from the un-irradiated sample (near g=2.005) and the spectra components derived from carbohydrates. The time decay of intensity spectral components was well explained by first-order kinetics with a variety of rate constants. Especially, the signal at near g=2.02 ascribed to stable cellulose-derivative components is expected to be a good indicator in the identification of irradiated plant samples.

  20. Halogen radicals contribute to photooxidation in coastal and estuarine waters

    PubMed Central

    Parker, Kimberly M.; Mitch, William A.

    2016-01-01

    Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl− and Br− by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335

  1. Free radical scavenging activity and neuroprotective potentials of D138, one Cu(II)/Zn(II) Schiff-base complex derived from N,N'-bis(2-hydroxynaphthylmethylidene)-1,3-propanediamine.

    PubMed

    Wang, Che; Cai, Zheng-Xu; You, Zhong-Lu; Guo, Hui-Shu; Shang, De-Jing; Wang, Xiao-Ling; Zhang, Liang; Ma, Li-Jie; Tan, Jun; Le, Wei-Dong; Li, Song

    2014-09-01

    There is increasing evidence that free radicals play an important role in neuronal damages induced by diabetes mellitus or cerebral ischemia insults. Antioxidants with free radical scavenging activities have been shown to be beneficial and neuroprotective for these pathological conditions. Here, we report free radical scavenging activity and neuroprotective potential of D138, one copper(II)/zinc(II) Schiff-base complex derived from N,N'-2(2-hydroxynaphthylmethylidene)-1,3-propanediamine. The data from three in vitro assays, 2,2-diphenyl-1-picrylhydrazyl assay, nitro blue tetrazolium assay and hydroxyl radical scavenging assay, indicated that D138 presented a potent free radical scavenging activity. The neuroprotective and antioxidative effects of D138 were further evaluated in vivo using bilateral common carotid artery occlusion (BCCAO) mouse model and streptozotocin (STZ) diabetic mouse model. Our results indicated that treatment of D138 significantly ameliorated the hippocampal neuronal damage and the oxidative stress levels in these animal models. Moreover, D138 also reversed the behavioral deficiencies induced by BCCAO or STZ, as assessed by Y-maze test and fear conditioning test. In conclusion, all these findings support that D138 exerts free radical scavenging and neuroprotective activities and has the potentials to be a potent therapeutic candidate for brain oxidative damage induced by cerebral ischemia or diabetes mellitus.

  2. Radical production from the interaction of ozone and PUFA as demonstrated by electron spin resonance spin-trapping techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, W.A.; Prier, D.G.; Church, D.F.

    1981-02-01

    There is considerable evidence that indicates that a fraction of the damage caused by ozone to cellular systems involves radical-mediated reactions. The most direct method for probing the mechanism by which ozone reacts with target molecules such as polyunsaturated fatty acids involves the use of electron spin resonance. In 1968, Goldstein et al. reported that ESR signals were observed when 40 ppM ozone in air is bubbled through linoleic acid. We have repeated this experiment and have performed several experiments modified from this design; in none of these do we observe ESR signals. We have studied the reaction of ozonemore » with PUFA at -78/sup 0/C using spin traps. Spin traps themselves react with ozone, but the following protocol avoids that reaction. (1) Ozone in air or oxygen-free ozone is allowed to bubble through the sample in Freon-11 in an ESR tube at -78/sup 0/C; no ESR absorption is observed. (2) Unreacted ozone is flushed out with argon or nitrogen. (3) The spin trap in Freon-11 is added to give a 0.1 M solution, still at -78/sup 0/C; no ESR signal is observed. (4) The tube is allowed to warm slowly. At about -45/sup 0/C, the ESR spectra of spin adducts appear. Using this method with methyl linoleate we observe spin adducts of alkoxy radicals and also a signal that is consistent with a carbon radical with one ..cap alpha..-H. We hypothesize that an intermediate is formed from the reaction of ozone with PUFA that is stable at -78/sup 0/Cbut decomposes to form radicals at about -45/sup 0/C. We tentatively identify the intermediate as a trioxide on the basis of analogies and its temperature profile for decomposition to radicals. It appears reasonable to suggest that the reaction(s) responsible for the production of radicals under these low-temperature conditions also occurs at room temperature. Although the low-temperature intermediate cannot be observed at ambient temperatures, radicals from it could be responsible for the effects on autoxidation that

  3. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter.

    PubMed

    Lomnicki, Slawo; Truong, Hieu; Vejerano, Eric; Dellinger, Barry

    2008-07-01

    We have found that environmentally persistent free radicals (PFRs) are formed by adsorption of substituted aromatic molecular precursors on the surface of cupric oxide-containing particles at temperatures between 100 and 400 degrees C. This temperature range corresponds to the conditions in the postflame, cool zone of combustion, and thermal processes. Depending upon the nature of the precursor and the adsorption temperature, both substituted phenoxyl and semiquinone radicals are formed. The PFRs are formed through a mechanism of initial physisorption, followed by chemisorption via elimination of water or hydrogen chloride, and electron transfer resulting in the simultaneous reduction of Cu(II) to Cu(I) and formation of the PFR. The PFRs are still observable by electron paramagnetic resonance (EPR) after exposure to air for more than a day. Their lifetimes under vacuum appear to be infinite. Other redox-active transition metals such as iron are expected to also mediate or catalyze the formation of PFRs. The properties of the observed radicals are consistent with radicals previously observed on airborne and combustion-generated particulate matter. We propose a catalytic biochemical cycle for both the particle-associated semiquinone and phenoxyl PFRs that result in the formation of hydroxyl radical and other reactive oxygen species (ROS). This suggests that combustion-generated, particle-associated PFRs may be responsible for the oxidative stress resulting in cardiopulmonary disease and probably cancer that has been attributed to exposure to airborne fine particles.

  4. Multicomponent kinetic analysis and theoretical studies on the phenolic intermediates in the oxidation of eugenol and isoeugenol catalyzed by laccase.

    PubMed

    Qi, Yan-Bing; Wang, Xiao-Lei; Shi, Ting; Liu, Shuchang; Xu, Zhen-Hao; Li, Xiqing; Shi, Xuling; Xu, Ping; Zhao, Yi-Lei

    2015-11-28

    Laccase catalyzes the oxidation of natural phenols and thereby is believed to initialize reactions in lignification and delignification. Numerous phenolic mediators have also been applied in laccase-mediator systems. However, reaction details after the primary O-H rupture of phenols remain obscure. In this work two types of isomeric phenols, EUG (eugenol) and ISO (trans-/cis-isoeugenol), were used as chemical probes to explore the enzymatic reaction pathways, with the combined methods of time-resolved UV-Vis absorption spectra, MCR-ALS, HPLC-MS, and quantum mechanical (QM) calculations. It has been found that the EUG-consuming rate is linear to its concentration, while the ISO not. Besides, an o-methoxy quinone methide intermediate, (E/Z)-4-allylidene-2-methoxycyclohexa-2,5-dienone, was evidenced in the case of EUG with the UV-Vis measurement, mass spectra and TD-DFT calculations; in contrast, an ISO-generating phenoxyl radical, a (E/Z)-2-methoxy-4-(prop-1-en-1-yl) phenoxyl radical, was identified in the case of ISO. Furthermore, QM calculations indicated that the EUG-generating phenoxyl radical (an O-centered radical) can easily transform into an allylic radical (a C-centered radical) by hydrogen atom transfer (HAT) with a calculated activation enthalpy of 5.3 kcal mol(-1) and then be fast oxidized to the observed eugenol quinone methide, rather than an O-radical alkene addition with barriers above 12.8 kcal mol(-1). In contrast, the ISO-generating phenoxyl radical directly undergoes a radical coupling (RC) process, with a barrier of 4.8 kcal mol(-1), while the HAT isomerization between O- and C-centered radicals has a higher reaction barrier of 8.0 kcal mol(-1). The electronic conjugation of the benzyl-type radical and the aromatic allylic radical leads to differentiation of the two pathways. These results imply that competitive reaction pathways exist for the nascent reactive intermediates generated in the laccase-catalyzed oxidation of natural phenols, which is

  5. Sulfur Radical-Induced Redox Modifications in Proteins: Analysis and Mechanistic Aspects.

    PubMed

    Schöneich, Christian

    2017-03-10

    The sulfur-containing amino acids cysteine (Cys) and methionine (Met) are prominent protein targets of redox modification during conditions of oxidative stress. Here, two-electron pathways have received widespread attention, in part due to their role in signaling processes. However, Cys and Met are equally prone to one-electron pathways, generating intermediary radicals and/or radial ions. These radicals/radical ions can generate various reaction products that are not commonly monitored in redox proteomic studies, but they may be relevant for the fate of proteins during oxidative stress. Recent Advances: Time-resolved kinetic studies and product analysis have expanded our mechanistic understanding of radical reaction pathways of sulfur-containing amino acids. These reactions are now studied in some detail for Met and Cys in proteins, and homocysteine (Hcy) chemically linked to proteins, and the role of protein radical reactions in physiological processes is evolving. Radical-derived products from Cys, Hcy, and Met can react with additional amino acids in proteins, leading to secondary protein modifications, which are potentially remote from initial points of radical attack. These products may contain intra- and intermolecular cross-links, which may lead to protein aggregation. Protein sequence and conformation will have a significant impact on the formation of such products, and a thorough understanding of reaction mechanisms and specifically how protein structure influences reaction pathways will be critical for identification and characterization of novel reaction products. Future studies must evaluate the biological significance of novel reaction products that are derived from radical reactions of sulfur-containing amino acids. Antioxid. Redox Signal. 26, 388-405.

  6. Carnivorous pitcher plant uses free radicals in the digestion of prey.

    PubMed

    Chia, Tet Fatt; Aung, Hnin Hnin; Osipov, Anatoly N; Goh, Ngoh Khang; Chia, Lian Sai

    2004-01-01

    A study of the involvement of free oxygen radicals in trapping and digestion of insects by carnivorous plants was the main goal of the present investigation. We showed that the generation of oxygen free radicals by pitcher fluid of Nepenthes is the first step of the digestion process, as seen by EPR spin trapping assay and gel-electrophoresis. The EPR spectrum of N. gracilis fluid in the presence of DMPO spin trap showed the superposition of the hydroxyl radical spin adduct signal and of the ascorbyl radical signal. Catalase addition decreased the generation of hydroxyl radicals showing that hydroxyl radicals are generated from hydrogen peroxide, which can be derived from superoxide radicals. Gel-electrophoresis data showed that myosin, an abundant protein component of insects, can be rapidly broken down by free radicals and protease inhibitors do not inhibit this process. Addition of myoglobin to the pitcher plant fluid decreased the concentration of detectable radicals. Based on these observations, we conclude that oxygen free radicals produced by the pitcher plant aid in the digestion of the insect prey.

  7. Redox mediators in visible light photocatalysis: photocatalytic radical thiol-ene additions.

    PubMed

    Tyson, Elizabeth L; Niemeyer, Zachary L; Yoon, Tehshik P

    2014-02-07

    Synthetically useful radical thiol-ene reactions can be initiated by visible light irradiation in the presence of transition metal polypyridyl photocatalysts. The success of this method relies upon the use of p-toluidine as an essential additive. Using these conditions, high-yielding thiol-ene reactions of cysteine-containing biomolecules can be accomplished using biocompatibile wavelengths of visible light, under aqueous conditions, and with the thiol component as the limiting reagent. We present evidence that p-toluidine serves as a redox mediator that is capable of catalyzing the otherwise inefficient photooxidation of thiols to the key thiyl radical intermediate. Thus, we show that co-catalytic oxidants can be important in the design of synthetic reactions involving visible light photoredox catalysis.

  8. Missing Peroxy Radical Sources Within a Rural Forest Canopy

    NASA Technical Reports Server (NTRS)

    Wolfe, G. M.; Cantrell, C.; Kim, S.; Mauldin, R. L., III; Karl, T.; Harley, P.; Turnipseed, A.; Zheng, W.; Flocke, F.; Apel, E. C.; hide

    2013-01-01

    Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptv and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Since primary reaction partners for peroxy radicals are either measured (NO) or under-predicted (HO2 and RO2, i.e. self-reaction), missing sources are the most likely explanation for this result. A close comparison of model output with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (approximately 120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within forests. We conclude that a similar mechanism may underlie many such observations.

  9. Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates

    PubMed Central

    Bajpai, Vivek K.; Mistriotis, Panagiotis; Loh, Yuin-Han; Daley, George Q.; Andreadis, Stelios T.

    2012-01-01

    Aims Smooth muscle cells (SMC) play an important role in vascular homeostasis and disease. Although adult mesenchymal stem cells (MSC) have been used as a source of contractile SMC, they suffer from limited proliferation potential and culture senescence, particularly when originating from older donors. By comparison, human induced pluripotent stem cells (hiPSC) can provide an unlimited source of functional SMC for autologous cell-based therapies and for creating models of vascular disease. Our goal was to develop an efficient strategy to derive functional, contractile SMC from hiPSC. Methods and results We developed a robust, stage-wise, feeder-free strategy for hiPSC differentiation into functional SMC through an intermediate stage of multipotent MSC, which could be coaxed to differentiate into fat, bone, cartilage, and muscle. At this stage, the cells were highly proliferative and displayed higher clonogenic potential and reduced senescence when compared with parental hair follicle mesenchymal stem cells. In addition, when exposed to differentiation medium, the myogenic proteins such as α-smooth muscle actin, calponin, and myosin heavy chain were significantly upregulated and displayed robust fibrillar organization, suggesting the development of a contractile phenotype. Indeed, tissue constructs prepared from these cells exhibited high levels of contractility in response to receptor- and non-receptor-mediated agonists. Conclusion We developed an efficient stage-wise strategy that enabled hiPSC differentiation into contractile SMC through an intermediate population of clonogenic and multipotent MSC. The high yield of MSC and SMC derivation suggests that our strategy may facilitate an acquisition of the large numbers of cells required for regenerative medicine or for studying vascular disease pathophysiology. PMID:22941255

  10. Final Technical Report: Vibrational Spectroscopy of Transient Combustion Intermediates Trapped in Helium Nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douberly, Gary Elliott

    The objective of our experimental research program is to isolate and stabilize transient intermediates and products of prototype combustion reactions. This will be accomplished by Helium Nanodroplet Isolation, a novel technique where liquid helium droplets freeze out high energy metastable configurations of a reacting system, permitting infrared spectroscopic characterizations of products and intermediates that result from hydrocarbon radical reactions with molecular oxygen and other small molecules relevant to combustion environments. The low temperature (0.4 K) and rapid cooling associated with He droplets provides a perfectly suited medium to isolate and probe a broad range of molecular radical and carbene systemsmore » important to combustion chemistry. The sequential addition of molecular species to He droplets often leads to the stabilization of high-energy, metastable cluster configurations that represent regions of the potential energy surface far from the global minimum. Single and double resonance IR laser spectroscopy techniques, along with Stark and Zeeman capabilities, are being used to probe the structural and dynamical properties of these systems.« less

  11. Iodine-catalyzed diazo activation to access radical reactivity.

    PubMed

    Li, Pan; Zhao, Jingjing; Shi, Lijun; Wang, Jin; Shi, Xiaodong; Li, Fuwei

    2018-05-17

    Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.

  12. Generation of hydroxyl radicals and singlet oxygen during oxidation of rhododendrol and rhododendrol-catechol.

    PubMed

    Miyaji, Akimitsu; Gabe, Yu; Kohno, Masahiro; Baba, Toshihide

    2017-03-01

    The generation of hydroxyl radicals and singlet oxygen during the oxidation of 4-(4-hydroxyphenyl)-2-butanol (rhododendrol) and 4-(3,4-dihydroxyphenyl)-2-butanol (rhododendrol-catechol) with mushroom tyrosinase in a phosphate buffer (pH 7.4) was examined as the model for the reactive oxygen species generation via the two rhododendrol compounds in melanocytes. The reaction was performed in the presence of 5,5-dimethyl-1-pyrroline- N -oxide (DMPO) spin trap reagents for hydroxyl radical or 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen, and their electron spin resonances were measured. An increase in the electron spin resonances signal attributable to the adduct of DMPO reacting with the hydroxyl radical and that of 4-oxo-TEMP reacting with singlet oxygen was observed during the tyrosinase-catalyzed oxidation of rhododendrol and rhododendrol-catechol, indicating the generation of hydroxyl radical and singlet oxygen. Moreover, hydroxyl radical generation was also observed in the autoxidation of rhododendrol-catechol. We show that generation of intermediates during tyrosinase-catalyzed oxidation of rhododendrol enhances oxidative stress in melanocytes.

  13. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading: Liquid Transportation Fuel Production via Biomass-derived Oxygenated Intermediates Upgrading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass to syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: 1)more » mixed alcohols over a MoS2 catalyst, 2) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and 3) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: 1) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and 2) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2,000 tonnes/day (2,205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from $3.40 to $5.04 per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Overall, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less

  14. Ground and Excited-Electronic-State Dissociations of Hydrogen-Rich and Hydrogen-Deficient Tyrosine Peptide Cation Radicals

    NASA Astrophysics Data System (ADS)

    Viglino, Emilie; Lai, Cheuk Kuen; Mu, Xiaoyan; Chu, Ivan K.; Tureček, František

    2016-09-01

    We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H]+● and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS3 dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%-94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in CuII(2,2 ':6 ',2 ″-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR]+● that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates.

  15. Semiquinone-bridged bisdithiazolyl radicals as neutral radical conductors.

    PubMed

    Yu, Xin; Mailman, Aaron; Lekin, Kristina; Assoud, Abdeljalil; Robertson, Craig M; Noll, Bruce C; Campana, Charles F; Howard, Judith A K; Dube, Paul A; Oakley, Richard T

    2012-02-01

    Semiquinone-bridged bisdithiazolyls 3 represent a new class of resonance-stabilized neutral radical for use in the design of single-component conductive materials. As such, they display electrochemical cell potentials lower than those of related pyridine-bridged bisdithiazolyls, a finding which heralds a reduced on-site Coulomb repulsion U. Crystallographic characterization of the chloro-substituted derivative 3a and its acetonitrile solvate 3a·MeCN, both of which crystallize in the polar orthorhombic space group Pna2(1), revealed the importance of intermolecular oxygen-to-sulfur (CO···SN) interactions in generating rigid, tightly packed radical π-stacks, including the structural motif found for 3a·MeCN in which radicals in neighboring π-stacks are locked into slipped-ribbon-like arrays. This architecture gives rise to strong intra- and interstack overlap and hence a large electronic bandwidth W. Variable-temperature conductivity measurements on 3a and 3a·MeCN indicated high values of σ(300 K) (>10(-3) S cm(-1)) with correspondingly low thermal activation energies E(act), reaching 0.11 eV in the case of 3a·MeCN. Overall, the strong performance of these materials as f = ½ conductors is attributed to a combination of low U and large W. Variable-temperature magnetic susceptibility measurements were performed on both 3a and 3a·MeCN. The unsolvated material 3a orders as a spin-canted antiferromagnet at 8 K, with a canting angle φ = 0.14° and a coercive field H(c) = 80 Oe at 2 K. © 2012 American Chemical Society

  16. Hydroxyl radical induced transformation of phenylurea herbicides: A theoretical study

    NASA Astrophysics Data System (ADS)

    Mile, Viktória; Harsányi, Ildikó; Kovács, Krisztina; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László

    2017-03-01

    Aromatic ring hydroxylation reactions occurring during radiolysis of aqueous solutions are studied on the example of phenylurea herbicides by Density Functional Theory calculations. The effect of the aqueous media is taken into account by using the Solvation Model Based on Density model. Hydroxyl radical adds to the ring because the activation free energies (0.4-47.2 kJ mol-1) are low and also the Gibbs free energies have high negative values ((-27.4) to (-5.9) kJ mol-1). According to the calculations in most of cases the ortho- and para-addition is preferred in agreement with the experimental results. In these reactions hydroxycyclohexadienyl type radicals form. In a second type reaction, when loss of chlorine atom takes place, OH/Cl substitution occurs without cyclohexadienyl type intermediate.

  17. Gas-Phase Ozonolysis of Cycloalkenes: Formation of Highly Oxidized RO2 Radicals and Their Reactions with NO, NO2, SO2, and Other RO2 Radicals.

    PubMed

    Berndt, Torsten; Richters, Stefanie; Kaethner, Ralf; Voigtländer, Jens; Stratmann, Frank; Sipilä, Mikko; Kulmala, Markku; Herrmann, Hartmut

    2015-10-15

    The gas-phase reaction of ozone with C5-C8 cycloalkenes has been investigated in a free-jet flow system at atmospheric pressure and a temperature of 297 ± 1 K. Highly oxidized RO2 radicals bearing at least 5 O atoms in the molecule and their subsequent reaction products were detected in most cases by means of nitrate-CI-APi-TOF mass spectrometry. Starting from a Criegee intermediate after splitting-off an OH-radical, the formation of these RO2 radicals can be explained via an autoxidation mechanism, meaning RO2 isomerization (ROO → QOOH) and subsequently O2 addition (QOOH + O2 → R'OO). Time-dependent RO2 radical measurements concerning the ozonolysis of cyclohexene indicate rate coefficients of the intramolecular H-shifts, ROO → QOOH, higher than 1 s(-1). The total molar yield of highly oxidized products (predominantly RO2 radicals) from C5-C8 cycloalkenes in air is 4.8-6.0% affected with a calibration uncertainty by a factor of about two. For the most abundant RO2 radical from cyclohexene ozonolysis, O,O-C6H7(OOH)2O2 ("O,O" stands for two O atoms arising from the ozone attack), the determination of the rate coefficients of the reaction with NO2, NO, and SO2 yielded (1.6 ± 0.5) × 10(-12), (3.4 ± 0.9) × 10(-11), and <10(-14) cm(3) molecule(-1) s(-1), respectively. The reaction of highly oxidized RO2 radicals with other peroxy radicals (R'O2) leads to detectable accretion products, RO2 + R'O2 → ROOR' + O2, which allows to acquire information on peroxy radicals not directly measurable with the nitrate ionization technique applied here. Additional experiments using acetate as the charger ion confirm conclusively the existence of highly oxidized RO2 radicals and closed-shell products. Other reaction products, detectable with this ionization technique, give a deeper insight in the reaction mechanism of cyclohexene ozonolysis.

  18. Cyclooxygenase Reaction Mechanism of PGHS ------- Evidence for a Reversible Transition between a Pentadienyl Radical and a New Tyrosyl Radical by Nitric Oxide Trapping

    PubMed Central

    Lü, Jian-Ming; Rogge, Corina E.; Wu, Gang; Kulmacz, Richard J.; van der Donk, Wilfred A.; Tsai, Ah-lim

    2011-01-01

    Incubation of prostaglandin H synthase-1 (PGHS-1) under anaerobic conditions with peroxide and arachidonic acid leads to two major radical species: a pentadienyl radical and a radical with a narrow EPR spectrum. The proportions of the two radicals are sensitive to temperature, favoring the narrow radical species at 22 °C. The EPR characteristics of this latter radical are somewhat similar to the previously reported narrow-singlet tyrosine radical NS1a and are insensitive to deuterium labeling of AA. To probe the origin and structure of this radical, we combined EPR analysis with nitric oxide (NO) trapping of tyrosine and substrate derived radicals for both PGHS-1 and -2. Formation of 3-nitrotyrosine in the proteins was analyzed by immunoblotting, whereas NO adducts to AA and AA metabolites were analyzed by mass spectrometry and by chromatography of 14C-labeled products. The results indicate that both nitrated tyrosine residues and NO-AA adducts formed upon NO trapping. The NO-AA adduct was predominantly an oxime at C11 of AA with three conjugated double bonds, as indicated by absorption at 275 nm and by mass spectral analysis. This adduct amounted to 10% and 20% of the heme concentration of PGHS-1 and -2, respectively. For PGHS-1, the yield of NO-AA adduct matched the yield of the narrow radical signal obtained in parallel EPR experiments. High frequency EPR characterization of this narrow radical, reported in an accompanying paper, supports assignment to a new tyrosyl radical, NS1c, rather than an AA-based radical. To reconcile the results from EPR and NO-trapping studies, we propose that the NS1c is in equilibrium with an AA pentadienyl radical, and that the latter reacts preferentially with NO. PMID:21403766

  19. Chemical magnetoreception in birds: The radical pair mechanism

    PubMed Central

    Rodgers, Christopher T.; Hore, P. J.

    2009-01-01

    Migratory birds travel vast distances each year, finding their way by various means, including a remarkable ability to perceive the Earth's magnetic field. Although it has been known for 40 years that birds possess a magnetic compass, avian magnetoreception is poorly understood at all levels from the primary biophysical detection events, signal transduction pathways and neurophysiology, to the processing of information in the brain. It has been proposed that the primary detector is a specialized ocular photoreceptor that plays host to magnetically sensitive photochemical reactions having radical pairs as fleeting intermediates. Here, we present a physical chemist's perspective on the “radical pair mechanism” of compass magnetoreception in birds. We outline the essential chemical requirements for detecting the direction of an Earth-strength ≈50 μT magnetic field and comment on the likelihood that these might be satisfied in a biologically plausible receptor. Our survey concludes with a discussion of cryptochrome, the photoactive protein that has been put forward as the magnetoreceptor molecule. PMID:19129499

  20. Missing Peroxy Radical Sources within a Summertime Ponderosa Pine Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, G. M.; Cantrell, Chris; Kim, S.

    2014-05-13

    Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen – Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptvmore » and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Peroxy radical sinks are unlikely to be overestimated, suggesting missing sources. A close comparison of model results with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (~120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within the forest, and we conclude that a similar mechanism may underlie many such anomalous findings.« less

  1. Sugar Radical Formation by a Proton Coupled Hole Transfer in 2′-Deoxyguanosine Radical Cation (2′-dG•+): A Theoretical Treatment

    PubMed Central

    Kumar, Anil; Sevilla, Michael D.

    2009-01-01

    Previous experimental and theoretical work has established that electronic excitation of a guanine cation radical in nucleosides or in DNA itself leads to sugar radical formation by deprotonation from the dexoxyribose sugar. In this work we investigate a ground electronic state pathway for such sugar radical formation in a hydrated one electron oxidized 2′-deoxyguanosine (dG•+ + 7H2O), using density functional theory (DFT) with the B3LYP functional and the 6-31G* basis set. We follow the stretching of the C5′-H bond in dG•+ to gain an understanding of the energy requirements to transfer the hole from the base to sugar ring and then to deprotonate to proton acceptor sites in solution and on the guanine ring. The geometries of reactant (dG•+ + 7H2O), transition state (TS) for deprotonation of C5′ site and product (dG(•C5′, N7-H+) + 7 H2O) were fully optimized. The zero point energy (ZPE) corrected activation energy (TS) for the proton transfer (PT) from C5′ is calculated to be 9.0 kcal/mol and is achieved by stretching the C5′-H bond by 0.13 Å from its equilibrium bond distance (1.099 Å). Remarkably, this small bond stretch is sufficient to transfer the “hole” (positive charge and spin) from guanine to the C5′ site on the deoxyribose group. Beyond the TS, the proton (H+) spontaneously adds to water to form a hydronium ion (H3O+) as an intermediate. The proton subsequently transfers to the N7 site of the guanine (product). The 9 kcal/mol barrier suggests slow thermal conversion of the cation radical to the sugar radical but also suggests that localized vibrational excitations would be sufficient to induce rapid sugar radical formation in DNA base cation radicals. PMID:19754084

  2. Radicalism, Marxism, and medicine.

    PubMed

    Navarro, V

    1983-01-01

    This article presents a critique of recent radical interpretations of medicine and provides an alternative explanation of such interpretations. It analyzes 1) the articulation of medical practices, knowledge, and institutions within specific modes of production and social formations; 2) the dual functions of medicine within capitalist relations of production; 3) the reproduction of power within medicine; and 4) the meaning of capitalist, socialist, and communist medicine. The political practice derived from these analyses is also elaborated.

  3. Aqueous SOA formation from radical oligomerization of methyl vinyl ketone (MVK) and methacrolein (MACR)

    NASA Astrophysics Data System (ADS)

    Renard, P.; Siekmann, F.; Ravier, S.; Temime-Roussel, B.; Clément, J.; Ervens, B.; Monod, A.

    2013-12-01

    It is now accepted that one of the important pathways of secondary organic aerosol (SOA) formation occurs through aqueous phase chemistry in the atmosphere. However, the chemical mechanisms leading to macromolecules are still not well understood. It was recently shown that oligomer production by OH radical oxidation in the aerosol aqueous phase from α-dicarbonyl precursors, such as methylglyoxal and glyoxal, is irreversible and fast. We have investigated the aqueous phase photooxidation of MACR and MVK, which are biogenic organic compounds derived from isoprene. Aqueous phase photooxidation of MVK and MACR was investigated in a photoreactor using photolysis of H2O2 as OH radical source. Electrospray high resolution mass spectrometry analysis of the solutions brought clear evidence for the formation of oligomer systems having a mass range of up to 1800 Da within less than 15 minutes of reaction. Highest oligomer formation rates were obtained under conditions of low dissolved oxygen, highest temperature (T = 298 K) and highest precursor initial concentrations ([MVK]0 = 20 mM). A radical mechanism of oligomerization is proposed to explain the formation of the high molecular weight products. Furthermore, we quantified the total amount of carbon present in oligomers. Kinetic parameters of the proposed oligomerization mechanism are constrained by means of a box model that is able to reproduce the temporal evolution of intermediates and products as observed in the laboratory experiments. Additional model simulations for atmospherically-relevant conditions will be presented that show the extent to which these radical processes contribute to SOA formation in the atmospheric multiphase system as compared to other aqueous phase as well as traditional SOA sources. MVK time profile (as measured by UV Spectroscopy) and mass spectra (obtained using UPLC-ESI-MS for the retention time range 0-5 min in the positive mode) at 5, 10 and 50 min of reaction (MVK 20 mM, 25° C, under

  4. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper

    DOE PAGES

    Bertheussen, Erlend; Verdaguer-Casadevall, Arnau; Ravasio, Davide; ...

    2015-12-21

    Oxide-derived copper (OD-Cu) electrodes exhibit unprecedented CO reduction performance towards liquid fuels, producing ethanol and acetate with >50 % Faradaic efficiency at -0.3 V (vs. RHE). By using static headspace-gas chromatography for liquid phase analysis, we identify acetaldehyde as a minor product and key intermediate in the electroreduction of CO to ethanol on OD-Cu electrodes. Acetaldehyde is produced with a Faradaic efficiency of ≈5 % at -0.33 V (vs. RHE). We show that acetaldehyde forms at low steady-state concentrations, and that free acetaldehyde is difficult to detect in alkaline solutions using NMR spectroscopy, requiring alternative methods for detection and quantification.more » Our results indicate an important step towards understanding the CO reduction mechanism on OD-Cu electrodes.« less

  5. Current technologies, economics, and perspectives for 2,5-dimethylfuran production from biomass-derived intermediates.

    PubMed

    Saha, Basudeb; Abu-Omar, Mahdi M

    2015-04-13

    Since the U.S. Department of Energy (DOE) published a perspective article that described the potential of the top ten biomass-derived platform chemicals as petroleum replacements for high-value commodity and specialty chemicals, researchers around the world have been motivated to develop technologies for the conversion of biomass and biomass-derived intermediates into chemicals and fuels. Among several biorefinery processes, the conversion of biomass carbohydrates into 2,5-dimethylfuran (DMF) has received significant attention because of its low oxygen content, high energy content, and high octane value. DMF can further serve as a petroleum-replacement, biorenewable feedstock for the production of p-xylene (pX). In this review, we aim specifically to present a concise and up-to-date analysis of DMF production technologies with a critical discussion on catalytic systems, mechanistic insight, and process economics, which includes sensitivity analysis, so that more effective catalysts can be designed. Special emphasis has been given to bifunctional catalysts that improve DMF yields and selectivity and the synergistic effect of the bifunctional sites. Process economics for the current processes and the scope for further improvement are discussed. It is anticipated that the chemistry detailed in this review will guide researchers to develop more practical catalytic processes to enable the economic production of bio-based DMF. Processes for the upgrade of DMF to pX are also described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. ESR evidence for radical production from the reaction of ozone with unsaturated lipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, D.F.; McAdams, M.L..; Pryor, W.A.

    1991-03-15

    The authors report electron spin resonance (ESR) spin trapping evidence for radical production by the reaction of ozone with unsaturated compounds. Soy and egg phosphatidylcholine liposomes, fatty acid emulsions, and homogeneous aqueous solutions of 3-hexenoic acid were treated with ozone in the presence of the spin trap {alpha}-phenyl-N-tert-butyl nitrone (PBN). Under these conditions, they observe spin adducts resulting from the trapping of both organic carbon- and oxygen-centered radicals. When the lipid-soluble antioxidant alpha-tocopherol is included in the liposomal systems, the formation of spin adducts is completely inhibited. The authors suggest that radicals giving rise to these spin adducts arise formmore » the rapid decomposition of the 1,2,3-trioxolane intermediate that is initially formed when ozone reacts with the carbon-carbon double bonds of the substrates. These free radicals are not formed by the decomposition of the Criegee ozonide, since little of the ozonide is formed in the presence of water. Although hydrogen peroxide is the predominate peroxidic product of the ozone/alkene reaction, its decomposition is not responsible for the observed radical production since neither catalase nor iron chelators significantly affect the spin adduct yield. The radical yield is approximately 1%. Since a polyunsaturated fatty acid (PUFA) such as linoleic acid produces much higher concentrations of spin trappable radicals than does the monounsaturated fatty oleic acid, the results also suggest that sites in the lung containing higher levels of PUFA may be an important target for radical formation.« less

  7. Superoxide dismutase 1-mediated production of ethanol- and DNA-derived radicals in yeasts challenged with hydrogen peroxide: molecular insights into the genome instability of peroxiredoxin-null strains.

    PubMed

    Ogusucu, Renata; Rettori, Daniel; Netto, Luis E S; Augusto, Ohara

    2009-02-27

    Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1Deltatsa2Delta) are more resistant to hydrogen peroxide than wild-type (WT) cells and consume it faster under fermentative conditions. Also, tsa1Deltatsa2Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1Deltatsa2Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu,Zn-superoxide dismutase (Sod1), whose expression and activity increased approximately 5- and 2-fold, respectively, in tsa1Deltatsa2Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1Deltatsa2Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1Deltatsa2Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.

  8. Structure, stability, and properties of the trans peroxo nitrate radical: the importance of nondynamic correlation.

    PubMed

    Dutta, Achintya Kumar; Dar, Manzoor; Vaval, Nayana; Pal, Sourav

    2014-02-27

    We report a comparative single-reference and multireference coupled-cluster investigation on the structure, potential energy surface, and IR spectroscopic properties of the trans peroxo nitrate radical, one of the key intermediates in stratospheric NOX chemistry. The previous single-reference ab initio studies predicted an unbound structure for the trans peroxo nitrate radical. However, our Fock space multireference coupled-cluster calculation confirms a bound structure for the trans peroxo nitrate radical, in accordance with the experimental results reported earlier. Further, the analysis of the potential energy surface in FSMRCC method indicates a well-behaved minima, contrary to the shallow minima predicted by the single-reference coupled-cluster method. The harmonic force field analysis, of various possible isomers of peroxo nitrate also reveals that only the trans structure leads to the experimentally observed IR peak at 1840 cm(-1). The present study highlights the critical importance of nondynamic correlation in predicting the structure and properties of high-energy stratospheric NOx radicals.

  9. Accretion Product Formation from Self- and Cross-Reactions of RO2 Radicals in the Atmosphere.

    PubMed

    Berndt, Torsten; Scholz, Wiebke; Mentler, Bernhard; Fischer, Lukas; Herrmann, Hartmut; Kulmala, Markku; Hansel, Armin

    2018-03-26

    Hydrocarbons are emitted into the Earth's atmosphere in very large quantities by human and biogenic activities. Their atmospheric oxidation processes almost exclusively yield RO 2 radicals as reactive intermediates whose atmospheric fate is not yet fully unraveled. Herein, we show that gas-phase reactions of two RO 2 radicals produce accretion products composed of the carbon backbone of both reactants. The rates for accretion product formation are very high for RO 2 radicals bearing functional groups, competing with those of the corresponding reactions with NO and HO 2 . This pathway, which has not yet been considered in the modelling of atmospheric processes, can be important, or even dominant, for the fate of RO 2 radicals in all areas of the atmosphere. Moreover, the vapor pressure of the formed accretion products can be remarkably low, characterizing them as an effective source for the secondary organic aerosol. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Theoretical insight into reaction mechanisms of 2,4-dinitroanisole with hydroxyl radicals for advanced oxidation processes.

    PubMed

    Zhou, Yang; Liu, Xiaoqiang; Jiang, Weidong; Shu, Yuanjie

    2018-01-24

    The detailed degradation mechanism of an insensitive explosive, 2,4-dinitroanisole (DNAN), in advanced oxidation processes (AOPs) was investigated computationally at the M06-2X/6-311 + G(d,p)/SMD level of theory. Results obtained show that the addition-elimination reaction is the dominant mechanism. The phenol products formed can continue to be oxidized to benzoquinone radicals that are often detected by experiments and may be the initial reactants of ring-opening reactions. The H-abstraction reaction is an unavoidable competing mechanism; the intermediate generated can also undergo the process of addition-elimination reaction. The nitro departure reaction involves not only hydroxyl radical (•OH), but also other active substances (such as •H). More importantly, we found that AOP technology can easily degrade DNAN, similar to TNT and DNT. Thus, this method is worth trying in experiments. The conclusions of this work provide theoretical support for such experimental research. Graphical abstract Possible pathways of degradation by •OH radicals in advanced oxidation processes (AOPs) of the typical insensitive explosive 2,4-dinitroanisole (DNAN) were investigated by density functional theory (DFT) methods. Based on the Gibbs free energy barriers and intermediates, the dominant reaction mechanism was determined. The conclusions will be helpful in utilizing AOP technology to remove DNAN pollution.

  11. Globins Scavenge Sulfur Trioxide Anion Radical*

    PubMed Central

    Gardner, Paul R.; Gardner, Daniel P.; Gardner, Alexander P.

    2015-01-01

    Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 106 m−1 s−1, respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 106 m−1 s−1, respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP+-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested. PMID:26381408

  12. Reaction of hydroxyl radicals with azacytosines: a pulse radiolysis and theoretical study.

    PubMed

    Pramod, G; Prasanthkumar, K P; Mohan, Hari; Manoj, V M; Manoj, P; Suresh, C H; Aravindakumar, C T

    2006-10-12

    Pulse radiolysis and density functional theory (DFT) calculations at B3LYP/6-31+G(d,p) level have been carried out to probe the reaction of the water-derived hydroxyl radicals (*OH) with 5-azacytosine (5Ac) and 5-azacytidine (5Acyd) at near neutral and basic pH. A low percentage of nitrogen-centered oxidizing radicals, and a high percentage of non-oxidizing carbon-centered radicals were identified based on the reaction of transient intermediates with 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate), ABTS2-. Theoretical calculations suggests that the N3 atom in 5Ac is the most reactive center as it is the main contributor of HOMO, whereas C5 atom is the prime donor for the HOMO of cytosine (Cyt) where the major addition site is C5. The order of stability of the adduct species were found to be C6-OH_5Ac*>C4-OH_5Ac*>N3-OH_5Ac*>N5-OH_5Ac* both in the gaseous and solution phase (using the PCM model) respectively due to the additions of *OH at C6, C4, N3, and N5 atoms. These additions occur in direct manner, without the intervention of any precursor complex formation. The possibility of a 1,2-hydrogen shift from the C6 to N5 in the nitrogen-centered C6-OH_5Ac* radical is considered in order to account for the experimental observation of the high yield of non-oxidizing radicals, and found that such a conversion requires activation energy of about 32 kcal/mol, and hence this possibility is ruled out. The hydrogen abstraction reactions were assumed to occur from precursor complexes (hydrogen bonded complexes represented as S1, S2, S3, and S4) resulted from the electrostatic interactions of the lone pairs on the N3, N5, and O8 atoms with the incoming *OH radical. It was found that the conversion of these precursor complexes to their respective transition states has ample barrier heights, and it persists even when the effect of solvent is considered. It was also found that the formation of precursor complexes itself is highly endergonic in solution phase. Hence, the

  13. Enantioselective conjugate additions of α-amino radicals via cooperative photoredox and Lewis acid catalysis.

    PubMed

    Ruiz Espelt, Laura; McPherson, Iain S; Wiensch, Eric M; Yoon, Tehshik P

    2015-02-25

    We report the highly enantioselective addition of photogenerated α-amino radicals to Michael acceptors. This method features a dual-catalyst protocol that combines transition metal photoredox catalysis with chiral Lewis acid catalysis. The combination of these two powerful modes of catalysis provides an effective, general strategy to generate and control the reactivity of photogenerated reactive intermediates.

  14. Enantioselective Conjugate Additions of α-Amino Radicals via Cooperative Photoredox and Lewis Acid Catalysis

    PubMed Central

    Espelt, Laura Ruiz; McPherson, Iain S.; Wiensch, Eric M.; Yoon, Tehshik P.

    2015-01-01

    We report the highly enantioselective addition of photogenerated α-amino radicals to Michael acceptors. This method features a dual-catalyst protocol that combines transition metal photoredox catalysis with chiral Lewis acid catalysis. The combination of these two powerful modes of catalysis provides an effective, general strategy to generate and control the reactivity of photogenerated reactive intermediates. PMID:25668687

  15. Role of alkoxyl radicals on the fluorescein-based ORAC (Oxygen Radical Absorbance Capacity) assay.

    PubMed

    Dorta, E; Atala, E; Aspee, A; Speisky, H; Lissi, E; Lopez-Alarcon, C

    2014-10-01

    During the last decades the ORAC (Oxygen Radical Absorbance Capacity) assay has been widely employed to evaluate the in vitro antioxidant capacity of polyphenol-rich fruits, vegetables and beverages. The method employs fluorescein (FLH) as target molecule and AAPH (2,2'-azo-bis(2-amidinopropane)dihydrochloride) as the source of peroxyl radicals (ROO•). The protection of FLH, afforded by antioxidants (XH), is often characterized by kinetic profiles with clear lag times (LT), which are directly associated with the stoichiometry (n) of the XH-ROO• reaction. However, even for simple phenolic compounds, the LT measured imply large n values (defined as the number of ROO• moles trapped by each antioxidant molecule) which cannot be explained by a simple reaction mechanism. Nonetheless, they can be explained when considering the formation of alkoxyl radicals (RO•) from the recombination of two AAPH-derived ROO•. In the present work, we provide kinetic data showing that, in the zero order kinetic limit of FLH consumption, there is a low reaction rate incompatible with total trapping of ROO•. Thus, the consumption of FLH should be mostly related to its reaction with RO•. In addition, we present data regarding the assumption that in competitive measurements, the LT is due to efficient trapping of the ROO• by the added phenols, leading to high n values (1.7 to 23) for mono and polyphenols. These values are not in agreement with kinetic studies of the antioxidant consumption mediated by the presence of AAPH carried out by HPLC-DAD technique, which imply a competition by RO•. The results suggest that the use of FLH as probe at low concentrations give, for several antioxidants, ORAC values mainly related to their reaction towards RO• radicals instead of primary ROO•radicals. Copyright © 2014. Published by Elsevier Inc.

  16. Double C-H activation of ethane by metal-free SO2*+ radical cations.

    PubMed

    de Petris, Giulia; Cartoni, Antonella; Troiani, Anna; Barone, Vincenzo; Cimino, Paola; Angelini, Giancarlo; Ursini, Ornella

    2010-06-01

    The room-temperature C-H activation of ethane by metal-free SO(2)(*+) radical cations has been investigated under different pressure regimes by mass spectrometric techniques. The major reaction channel is the conversion of ethane to ethylene accompanied by the formation of H(2)SO(2)(*+), the radical cation of sulfoxylic acid. The mechanism of the double C-H activation, in the absence of the single activation product HSO(2)(+), is elucidated by kinetic studies and quantum chemical calculations. Under near single-collision conditions the reaction occurs with rate constant k=1.0 x 10(-9) (+/-30%) cm(3) s(-1) molecule(-1), efficiency=90%, kinetic isotope effect k(H)/k(D)=1.1, and partial H/D scrambling. The theoretical analysis shows that the interaction of SO(2)(*+) with ethane through an oxygen atom directly leads to the C-H activation intermediate. The interaction through sulfur leads to an encounter complex that rapidly converts to the same intermediate. The double C-H activation occurs by a reaction path that lies below the reactants and involves intermediates separated by very low energy barriers, which include a complex of the ethyl cation suitable to undergo H/D scrambling. Key issues in the observed reactivity are electron-transfer processes, in which a crucial role is played by geometrical constraints. The work shows how mechanistic details disclosed by the reactions of metal-free electrophiles may contribute to the current understanding of the C-H activation of ethane.

  17. Coherent vector meson photoproduction from deuterium at intermediate energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T.C.; Strikman, M.I.; Sargsian, M.M.

    2006-04-15

    We analyze the cross section for vector meson photoproduction off a deuteron for the intermediate range of photon energies starting at a few giga-electron-volts above the threshold and higher. We reproduce the steps in the derivation of the conventional nonrelativistic Glauber expression based on an effective diagrammatic method while making corrections for Fermi motion and intermediate-energy kinematic effects. We show that, for intermediate-energy vector meson production, the usual Glauber factorization breaks down, and we derive corrections to the usual Glauber method to linear order in longitudinal nucleon momentum. The purpose of our analysis is to establish methods for probing interestingmore » physics in the production mechanism for {phi} mesons and heavier vector mesons. We demonstrate how neglecting the breakdown of Glauber factorization can lead to errors in measurements of basic cross sections extracted from nuclear data.« less

  18. [From free radicals to science of nutrition].

    PubMed

    Blázovics, Anna

    2009-01-11

    During the decades of free radical research, we came ever closer to the knowledge that the free radical-antioxidant balance of the organs is modified fundamentally by the genetic background and surroundings. Janus-face oxygen free radicals are the secondary messengers of signal transduction routes and simultaneously they are cytotoxic agents of cells. The activation of signal transduction proteins by moderate oxidation effects and metal ions is not fairly known yet. The molecular mechanism between activators and inhibitors of signal transduction is controlled in a fine way. The balance of antioxidant-prooxidant levels of the cells can go back to the concentration relation of sulfhydril groups and disulfid bridges. Essential and toxic metal ions and selenium can play an important role in the redox homeostasis. Healthy tissues have many antioxidants, hereby they ensure the protection of the organs against free radicals. Alimentary antioxidants such as vitamin A, C and E, polyphenols, anthocyanins, flavonoids, isothiocyanates and other bioactive molecules in their natural molecular structure and derivates are able to influence the redox reactions. In our days more and more molecules from foods, or their metabolites are verified to act on genes based on the results of molecular biological research.

  19. Electrochemical Behavior of Quinoxalin-2-one Derivatives at Mercury Electrodes and Its Analytical Use

    PubMed Central

    Zimpl, Milan; Skopalova, Jana; Jirovsky, David; Bartak, Petr; Navratil, Tomas; Sedonikova, Jana; Kotoucek, Milan

    2012-01-01

    Derivatives of quinoxalin-2-one are interesting compounds with potential pharmacological activity. From this point of view, understanding of their electrochemical behavior is of great importance. In the present paper, a mechanism of electrochemical reduction of quinoxalin-2-one derivatives at mercury dropping electrode was proposed. Pyrazine ring was found to be the main electroactive center undergoing a pH-dependent two-electron reduction process. The molecule protonization of nitrogen in the position 4 precedes the electron acceptance forming a semiquinone radical intermediate which is relatively stable in acidic solutions. Its further reduction is manifested by separated current signal. A positive mesomeric effect of the nonprotonized amino group in the position 7 of the derivative III accelerates the semiquinone reduction yielding a single current wave. The suggested reaction mechanism was verified by means of direct current polarography, differential pulse, cyclic and elimination voltammetry, and coulometry with subsequent GC/MS analysis. The understanding of the mechanism was applied in developing of analytical method for the determination of the studied compounds. PMID:22666117

  20. NHC-catalysed benzoin condensation – is it all down to the Breslow intermediate?† †Electronic supplementary information (ESI) available: Characterisation data of products, substrates and catalysts, EPR and NMR spectra and progress curves as well as computational details are found. See DOI: 10.1039/c5sc02186c Click here for additional data file.

    PubMed Central

    Ruser, Stephanie-M.; Phan, Jenny

    2015-01-01

    The Breslow catalytic cycle describing the benzoin condensation promoted by N-heterocyclic carbenes (NHC) as proposed in the late 1950s has since then been tried by generations of physical organic chemists. Emphasis has been laid on proofing the existence of an enaminol like structure (Breslow intermediate) that explains the observed umpolung of an otherwise electrophilic aldehyde. The present study is not focusing on spectroscopic elucidation of a thiazolydene based Breslow intermediate but rather tries to clarify if this key-intermediate is indeed directly linked with the product side of the overall reaction. The here presented EPR-spectroscopic and computational data provide a fundamentally different view on how the benzoin condensation may proceed: a radical pair could be identified as a second key-intermediate that is derived from the Breslow-intermediate via an SET process. These results highlight the close relationship to the Cannizarro reaction and oxidative transformations of aldehydes under NHC catalysis. PMID:29449915

  1. Hypochlorite-induced damage to DNA, RNA, and polynucleotides: formation of chloramines and nitrogen-centered radicals.

    PubMed

    Hawkins, Clare L; Davies, Michael J

    2002-01-01

    Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is a key bactericidal agent, but can also damage host tissue. As there is a strong link between chronic inflammation and some cancers, we have investigated HOCl damage to DNA, RNA, and polynucleotides. Reaction of HOCl with these materials is shown to yield multiple semistable chloramines (RNHCl/RR'NCl), which are the major initial products, and account for 50-95% of the added HOCl. These chloramines decay by thermal and metal-ion catalyzed processes, to give nucleoside-derived, nitrogen-centered, radicals. The latter have been characterized by EPR spin trapping. The propensity for radical formation with polynucleotides is cytidine > adenosine = guanosine > uridine = thymidine. The rates of decay, and yield of radicals formed, are dependent on the nature of the nucleobase on which they are formed, with chloramines formed from ring heterocyclic amine groups being less stable than those formed on exocyclic amines (RNH2 groups). Evidence is presented for chlorine transfer from the former, kinetically favored, sites to the more thermodynamically favored exocyclic amines. EPR experiments have also provided evidence for the rapid addition of pyrimidine-derived nitrogen-centered radicals to other nucleobases to give dimers and the oxidation of DNA by radicals derived from preformed nucleoside chloramines. Direct reaction of HOCl with plasmid DNA gives rise to single- and double-strand breaks via chloramine-mediated reactions. Preformed nucleoside chloramines also induce plasmid cleavage, though this only occurs to a significant extent with unstable thymidine- and uridine-derived chloramines, where radical formation is rapid. Overall the data rationalize the preferential formation of chlorinated 2'-deoxycytidine and 2'-deoxyadenosine in DNA and suggest that DNA damage induced by HOCl, and preformed chloramines, occurs at sequence

  2. Formation of OH radicals in the gas phase ozonolysis of alkenes: the unexpected role of carbonyl oxides

    NASA Astrophysics Data System (ADS)

    Gutbrod, Roland; Schindler, Ralph N.; Kraka, Elfi; Cremer, Dieter

    1996-04-01

    According to CCSD(T)/TZ + 2P calculations, the decomposition of carbonyl oxide, H 2COO to HCO and OH radicals is unlikely in view of an activation enthalpy ΔΔHf0(298) of 31 kcal/mol. However, for dimethylcarbonyl oxide there is a low energy rearrangement mode ( ΔΔHf0(298): 14.4 kca/mol) which involves a H atom of ghe methyl group and which leads to a hydroperoxy methyl ethene intermediate, which in turn can decompose to OH and CH 2COCH 3 radicals ( ΔΔHf0(298): 23 kcal/mol). In the gas phase ozonolysis of alkyl substituted alkenes the formation of OH radicals is the most likely process. This has important consequences for the chemistry of the atmosphere.

  3. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    PubMed Central

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  4. Free radical generation by non-equilibrium atmospheric pressure plasma in alcohol-water mixtures: an EPR-spin trapping study

    NASA Astrophysics Data System (ADS)

    Uchiyama, Hidefumi; Ishikawa, Kenji; Zhao, Qing-Li; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Krishna, Murali C.; Ishijima, Tatsuo; Matsuya, Yuji; Hori, Masaru; Noguchi, Kyo; Kondo, Takashi

    2018-03-01

    Free radical species in aqueous solution—various alcohol-water reaction mixtures—by exposure to non-equilibrium cold atmospheric pressure Ar plasma (CAP), were monitored using electron paramagnetic resonance spin-trapping techniques with 3, 5-dibromo-4-nitrosobenzene sulfonate as a water soluble nitroso spin trap. The major radical species were formed by H-abstraction from alcohol molecules due to ·OH radicals. In the ethanol-water mixture ·CH2CH2OH produced by H abstraction from CH3 group of the ethanol and ·CH3 radicals were detected. The latter was due to the decomposition of unstable CH3·CHOH to form the ·CH3 radicals and the stable formaldehyde by C-C bond fission. These intermediates are similar to those observed by reaction with ·OH radicals generation in the H2O2-UV photolysis of the reaction mixtures. The evidence of ·CH3 radical formation in the pyrolytic decomposition of the reaction mixtures by exposure to ultrasound or in methane irradiated with microwave plasma have been reported previously. However, the pyrolytic ·CH3 radicals were not found in both plasma and H2O2-UV photolysis condition. These results suggests that free radicals produced by Ar-CAP are most likely due to the reaction between abundant ·OH radicals and alcohol molecules.

  5. Synthesis of Amide and Ester Derivatives of Cinnamic Acid and Its Analogs: Evaluation of Their Free Radical Scavenging and Monoamine Oxidase and Cholinesterase Inhibitory Activities.

    PubMed

    Takao, Koichi; Toda, Kazuhiro; Saito, Takayuki; Sugita, Yoshiaki

    2017-01-01

    A series of cinnamic acid derivatives, amides (1-12) and esters (13-22), were synthesized, and structure-activity relationships for antioxidant activity, and monoamine oxidases (MAO) A and B, acetylcholinesterase, and butyrylcholinesterase (BChE) inhibitory activities were analyzed. Among the synthesized compounds, compounds 1-10, 12-18, and rosmarinic acid (23), which contained catechol, o-methoxyphenol or 5-hydroxyindole moieties, showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Compounds 9-11, 15, 17-22 showed potent and selective MAO-B inhibitory activity. Compound 20 was the most potent inhibitor of MAO-B. Compounds 18 and 21 showed moderate BChE inhibitory activity. In addition, compound 18 showed potent antioxidant activity and MAO-B inhibitory activity. In a comparison of the cinnamic acid amides and esters, the amides exhibited more potent DPPH free radical scavenging activity, while the esters showed stronger inhibitory activities against MAO-B and BChE. These results suggested that cinnamic acid derivatives such as compound 18, p-coumaric acid 3,4-dihydroxyphenethyl ester, and compound 20, p-coumaric acid phenethyl ester, may serve as lead compounds for the development of novel MAO-B inhibitors and candidate lead compounds for the prevention or treatment of Alzheimer's disease.

  6. Reaction kinetics and mechanisms of organosilicon fungicide flusilazole with sulfate and hydroxyl radicals.

    PubMed

    Mercado, D Fabio; Bracco, Larisa L B; Arques, Antonio; Gonzalez, Mónica C; Caregnato, Paula

    2018-01-01

    Flusilazole is an organosilane fungicide used for treatments in agriculture and horticulture for control of diseases. The reaction kinetics and mechanism of flusilazole with sulfate and hydroxyl radicals were studied. The rate constant of the radicals with the fungicide were determined by laser flash photolysis of peroxodisulfate and hydrogen peroxide. The results were 2.0 × 10 9 s -1 M -1 for the reaction of the fungicide with HO and 4.6 × 10 8  s -1  M -1 for the same reaction with SO 4 - radicals. The absorption spectra of organic intermediates detected by laser flash photolysis of S 2 O 8 2- with flusilazole, were identified as α-aminoalkyl and siloxyl radicals and agree very well with those estimated employing the time-dependent density functional theory with explicit account for bulk solvent effects. In the continuous photolysis experiments, performed by photo-Fenton reaction of the fungicide, the main degradation products were: (bis(4-fluorophenyl)-hydroxy-methylsilane) and the non-toxic silicic acid, diethyl bis(trimethylsilyl) ester, in ten and twenty minutes of reaction, respectively. Copyright © 2017. Published by Elsevier Ltd.

  7. The lightest organic radical cation for charge storage in redox flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jinhua; Pan, Baofei; Duan, Wentao

    2016-08-25

    Electrochemically reversible fluids of high energy density are promising materials for capturing the electrical energy generated from intermittent sources like solar and wind. To meet this technological challenge there is a need to understand the fundamental limits and interplay of electrochemical potential, stability and solubility in “lean” derivatives of redox-active molecules. Here we describe the process of molecular pruning, illustrated for 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene, a molecule known to produce a persistently stable, high-potential radical cation. By systematically shedding molecular fragments considered important for radical cation steric stabilization, we discovered a minimalistic structure that retains long-term stability in its oxidized form. Interestingly, wemore » find the tert-butyl groups are unnecessary; high stability of the radical cation and high solubility are both realized in derivatives having appropriately positioned arene methyl groups. These stability trends are rationalized by mechanistic considerations of the postulated decomposition pathways. We suggest that the molecular pruning approach will uncover lean redox active derivatives for electrochemical energy storage leading to materials with long-term stability and high intrinsic capacity.« less

  8. Improvement of the lipophilic-oxygen radical absorbance capacity (L-ORAC) method and single-laboratory validation.

    PubMed

    Watanabe, Jun; Oki, Tomoyuki; Takebayashi, Jun; Yamasaki, Koji; Takano-Ishikawa, Yuko; Hino, Akihiro; Yasui, Akemi

    2013-01-01

    We improved the procedure for lipophilic-oxygen radical absorbance capacity (L-ORAC) measurement for better repeatability and intermediate precision. A sealing film was placed on the assay plate, and glass vials and microdispensers equipped with glass capillaries were used. The antioxidant capacities of food extracts can be evaluated by this method with nearly the same precision as antioxidant solutions.

  9. Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system.

    PubMed

    Jiang, Hui; Ju, Huangxian

    2007-09-01

    This work elucidated the detailed electrochemiluminescence (ECL) process of the thioglycolic acid-capped CdSe quantum dots (QDs) film/peroxide aqueous system. The QDs were first electrochemically reduced to form electrons-injected QDs approximately -1.1 V, which then reduced hydrogen peroxide to produce OH* radical. The intermediate OH* radical was a key species for producing holes-injected QDs. The ECL emission with a peak at -1.114 V was demonstrated to come from the 1Se-1Sh transition emission. Using thiol compounds as the model molecules to annihilate the OH* radical, their quenching effects on ECL emission were studied. This effect led to a novel strategy for ECL sensing of the scavengers of hydroxyl radical. The detection results of thiol compounds showed high sensitivity, good precision, and acceptable accuracy, suggesting the promising application of the proposed method for quick detection of both scavengers and generators of hydroxyl radical in different fields.

  10. Mitigation of 3-Monochloro-1,2-propanediol Ester Formation by Radical Scavengers.

    PubMed

    Zhang, Hai; Jin, Pengwei; Zhang, Min; Cheong, Ling-Zhi; Hu, Peng; Zhao, Yue; Yu, Liangli; Wang, Yong; Jiang, Yuanrong; Xu, Xuebing

    2016-07-27

    The present study investigated the possible mechanism of free radical scavengers on mitigation of 3-monochloro-1,2-propanediol (3-MCPD) fatty acid ester formation in vegetable oils. The electron spin resonance investigation showed that the concentration of free radicals could be clearly decreased in 1,2-distearoyl-sn-glycerol (DSG) samples by all four antioxidants (l-ascorbyl palmitate, α-tocopherol, lipophilic tea polyphenols, and rosemary extract) at 120 °C for 20 min under a N2 atmosphere. Moreover, the rosemary extract exhibited the highest inhibition efficiency. The Fourier transform infrared spectroscopy examination of DSG with α-tocopherol at 25 and 120 °C revealed that α-tocopherol could prevent the involvement of an ester carbonyl group of DSG in forming the cyclic acyloxonium free radical intermediate. Furthermore, the ultraperformance liquid chromatography-quadrupole-time-of-flight mass spectrometry analysis showed that α-tocopherol could suppress the formation of 3-MCPD di- and monoesters. Finally, the four antioxidants could decrease 3-MCPD esters in the palm oil during deodorization. Particularly, the rosemary extract also showed the highest efficiency in 3-MCPD ester mitigation.

  11. Hemin-Graphene Derivatives with Increased Peroxidase Activities Restrain Protein Tyrosine Nitration.

    PubMed

    Xu, Huan; Yang, Zhen; Li, Hailing; Gao, Zhonghong

    2017-12-14

    Protein tyrosine nitration is implicated in the occurrence and progression of pathological conditions involving free radical reactions. It is well recognized that hemin can catalyze protein tyrosine nitration in the presence of nitrite and hydrogen peroxide. Generally, the catalytic efficiency is positively correlated to its peroxidase activity. In this study, however, it is found that the efficiency of hemin in catalyzing protein tyrosine nitration is largely suppressed after functionalization with graphene derivatives, even though its peroxidase-like activity is more than quadrupled. Further studies show that the oxidation of tyrosine is still observed for these composites; dityrosine formation, however, is greatly inhibited. Furthermore, these composites also exhibit strong effects on the oxidation of nitrite into nitrate. Therefore, we propose a mechanism in which hemin-graphene derivatives facilitate the oxidation of tyrosine and nitrite to produce tyrosyl radicals and nitrogen dioxide radicals in the presence of hydrogen peroxide, but graphene interlayers serve as barriers that hinder radical-radical coupling reactions; consequently, protein tyrosine nitration is restrained. This property of hemin-graphene derivatives, by which they catalyze substrate oxidation but suppress radical-radical coupling reactions, shows their great potential in selective oxidation procedures for byproduct removal. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A kinetic study of enhancing effect by phenolic compounds on the hydroxyl radical generation during ozonation.

    PubMed

    Han, Y H; Ichikawa, K; Utsumi, H

    2004-01-01

    Ozone decomposition in aqueous solution proceeds through a radical type chain mechanism. These reactions involve the very reactive and catalytic intermediates O2- radical, OH radical, HO2 radical, OH-, H2O2, etc. OH radical is proposed as an important factor in the ozonation of water among them. In the present study, the enhancing effects of several phenolic compounds; phenol, 2-, 3-, 4-monochloro, 2,4-dichloro, 2,4,6-trichlorophenol on OH radical generation were mathematically evaluated using the electron spin resonance (ESR)/spin-trapping technique. OH radical was trapped with a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a stable adduct, DMPO-OH. The initial velocities of DMPO-OH generation in ozonated water containing phenolic compounds were quantitatively measured using a combined system of ESR spectroscopy with stopped-flow apparatus, which was controlled by homemade software. The initial velocities of DMPO-OH generation increased as a function of the ozone concentration. The relation among ozone concentration, amount of phenolic compounds and the initial velocity (v0) of DMPO-OH generation was mathematically analyzed and the following equation was obtained, v0 (10(-6) M/s) = (A' x [PhOHs (10(-9) M)] + 0.0005) exp (60 x [ozone (10(-9) M)]). The equation fitted very well with the experimental results, and the correlation coefficient was larger than 0.98.

  13. Structure of Radicals from X-irradiated Guanine Derivatives: An Experimental and Computational Study of Sodium Guanosine Dihydrate Single Crystals

    PubMed Central

    Jayatilaka, Nayana; Nelson, William H.

    2008-01-01

    In sodium guanosine dihydrate single crystals, the guanine moiety is deprotonated at N1 due to growth from high-pH (>12) solutions. EPR and ENDOR study of crystals x-irradiated at 10 K detected evidence for three radical forms. Radical R1,characterized by two proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the N1-deprotonated guanine unit. R1 exhibited an unusually distorted structure leading to net positive isotropic components of the hydrogen couplings. Radical R2, characterized by one proton and one nitrogen hyperfine coupling was identified as the primary electron loss product. This product is equivalent to that of deprotonation at N1 by the guanine cation and represents the first ENDOR characterization of that product. Radical R3, characterized by a single hydrogen hyperfine coupling, was identified as the product of net dehydrogenation at C1 of the ribose moiety. The identification of radicals R1-R3 was supported by DFT calculations on several possible structures using the B3LYP/6-311G(2df,p)//6-31G(d,p) approach. Radical R4, detected after warming the crystals to room temperature, was identified as the well-known product of net hydrogenation of C8 of the (N1-deprotonated) guanine component. Radical R1, evidently formed by protonation of the primary electron addition product, was present as roughly 60% of the total radicals detected at 10 K. Radical R2 was present as roughly 27% of the total yield, and the concentration of R3 contributed the remaining 13%. R3 is evidently the product of oneelectron oxidation followed by deprotonation; thus, the balance of oxidation and reduction products is approximately equal within experimental uncertainty. PMID:17249824

  14. Serendipitous findings while researching oxygen free radicals.

    PubMed

    Floyd, Robert A

    2009-04-15

    This review is based on the honor of receiving the Discovery Award from the Society of Free Radical Biology and Medicine. The review is reflective and presents our thinking that led to experiments that yielded novel observations. Critical questioning of our understanding of oxygen free radicals in biomedical problems led us to use and develop more direct and extremely sensitive methods. This included nitrone free radical spin trapping and HPLC-electrochemical detection. This technology led to the pioneering use of salicylate to trap hydroxyl free radicals and show increased flux in ischemia/reperfused brain regions and also to first sensitively detect 8-hydroxyl-2-deoxyguanosine in oxidatively damaged DNA and help assess its role in cancer development. We demonstrated that methylene blue (MB) photoinduces formation of 8-hydroxyguanine in DNA and RNA and discovered that MB sensitively photoinactivates RNA viruses, including HIV and the West Nile virus. Studies in experimental stroke led us serendipitously to discover that alpha-phenyl-tert-butylnitrone (PBN) was neuroprotective if given after the stroke. This led to extensive commercial development of NXY-059, a PBN derivative, for the treatment of stroke. More recently we discovered that PBN nitrones have potent anti-cancer activity and are active in preventing hearing loss caused by acute acoustical trauma.

  15. [Lavoisier and radicals].

    PubMed

    Lafont, Olivier

    2007-01-01

    Lavoisier and his co-workers (Guyton de Morveau, Bertholet, Fourcroy) considered that acids were constituted of oxygen and of something else that they called radicals. These radicals were known in some cases, i.e. nitrogen for nitrous acid, carbon for carbonic acid, phosphorus for phosphoric acid. In the case of sulfur, the sulfuric radical could be associated with different quantities of oxigen leading to sulfuric or sulfurous acids. In other cases radicals remained unknown at the time i.e. muriatic radical for muriatic acid, or benzoyl radical for benzoic acid. It is interesting to notice that Lavoisier evoked the case of compound radicals constituted of different substances such as carbon and hydrogen.

  16. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate.

    PubMed

    Mendis, Eresha; Rajapakse, Niranjan; Kim, Se-Kwon

    2005-02-09

    Hoki (Johnius belengerii) skin gelatin was hydrolyzed with three commercial enzymes to identify radical-scavenging potencies of derived peptides. Peptides derived from tryptic hydrolysate exhibited the highest scavenging activities on superoxide, carbon-centered 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals assessed by ESR spectroscopy. Following consecutive chromatographic separations of tryptic hydroolysate, the peptide sequence His-Gly-Pro-Leu-Gly-Pro-Leu (797 Da) acted as a strong radical scavenger under studied conditions. Further, this peptide could act as an antioxidant against linoleic acid peroxidation and the activity was closer to the highly active synthetic antioxidant butylated hydroxytoluene (BHT). In addition, antioxidative enzyme levels in cultured human hepatoma cells were increased in the presence of this peptide and it was presumed to be the peptide involved in maintaining the redox balance in the cell environment. Present data indicate that free-radical-scavenging activities of hoki skin gelatin peptides substantially contribute to their antioxidant properties measured in different oxidative systems.

  17. Particle size-dependent radical generation from wildland fire smoke.

    PubMed

    Leonard, Stephen S; Castranova, Vince; Chen, Bean T; Schwegler-Berry, Diane; Hoover, Mark; Piacitelli, Chris; Gaughan, Denise M

    2007-07-01

    Firefighting, along with construction, mining and agriculture, ranks among the most dangerous occupations. In addition, the work environment of firefighters is unlike that of any other occupation, not only because of the obvious physical hazards but also due to the respiratory and systemic health hazards of smoke inhalation resulting from combustion. A significant amount of research has been devoted to studying municipal firefighters; however, these studies may not be useful in wildland firefighter exposures, because the two work environments are so different. Not only are wildland firefighters exposed to different combustion products, but their exposure profiles are different. The combustion products wildland firefighters are exposed to can vary greatly in characteristics due to the type and amount of material being burned, soil conditions, temperature and exposure time. Smoke inhalation is one of the greatest concerns for firefighter health and it has been shown that the smoke consists of a large number of particles. These smoke particles contain intermediates of hydrogen, carbon and oxygen free radicals, which may pose a potential health risk. Our investigation looked into the involvement of free radicals in smoke toxicity and the relationship between particle size and radical generation. Samples were collected in discrete aerodynamic particle sizes from a wildfire in Alaska, preserved and then shipped to our laboratory for analysis. Electron spin resonance was used to measure carbon-centered as well as hydroxyl radicals produced by a Fenton-like reaction with wildfire smoke. Further study of reactive oxygen species was conducted using analysis of cellular H(2)O(2) generation, lipid peroxidation of cellular membranes and DNA damage. Results demonstrate that coarse size-range particles contained more carbon radicals per unit mass than the ultrafine particles; however, the ultrafine particles generated more *OH radicals in the acellular Fenton-like reaction. The

  18. Free-radical mediated synthesis of enantiomerically pure, highly functionalized inositols from carbohydrates.

    PubMed

    Marco-Contelles, J; Pozuelo, C; de Opazo, E

    2001-06-15

    We report the synthesis, free-radical cyclization of precursors 1,2,7-trideoxy-7-iodo-3,4:5,6-di-O-isopropylidene-D-gluco-hept-1-enitol (1), methyl 7-O-acetyl-6-O-benzyl-8-bromo-2,3,8-trideoxy-4,5-O-isopropylidene-D-gluco-oct-2-enonate (2) and 5-O-acetyl-4-O-benzyl-6-bromo-6-deoxy-2,3-O-isopropylidene-D-glucose-O-benzyloxime (3), readily prepared from D-glucose, and some selected transformations of the carbocycles obtained from these intermediates. In compound 1 we have installed a terminal double bond and an iodide as radical acceptor and leaving group, respectively. Compounds 2 and 3 are epsilon-bromo aldehydes substituted with alpha,beta-unsaturated ester and oxime ether functions as radical traps, respectively. The tributyltin hydride mediated ring closure of these radical precursors have afforded a series of interesting, diverse and highly functionalized carbocycles which can be considered useful building blocks for the synthesis of branched-chain cyclitols, aminocyclitols and aminoconduritols. In these processes, a good chemical yield and high stereoselectivity has been found in the newly formed stereocenters. Particularly interesting has been the finding that the stereochemical outcome of the free-radical cyclization is independent of the ratio of isomers (E or Z) in oxime ether 3. These results show the power and the state of art of this strategy for the stereocontrolled synthesis of enantiomerically pure inositols from carbohydrates.

  19. Pilot study of radical hysterectomy versus radical trachelectomy on sexual distress.

    PubMed

    Brotto, Lori A; Smith, Kelly B; Breckon, Erin; Plante, Marie

    2013-01-01

    Radical trachelectomy, which leaves the uterus intact, has emerged as a desirable surgical option for eligible women with early-stage cervical cancer who wish to preserve fertility. The available data suggest excellent obstetrical outcomes with radical trachelectomy, and no differences in sexual responding between radical trachelectomy and radical hysterectomy. There is a need to examine the effect of radical hysterectomy on sexual distress given that it is distinct from sexual function. Participants were 34 women diagnosed with early-stage cervical cancer. The authors report 1-month postsurgery data for 29 women (radical hysterectomy group: n = 17, M age = 41.8 years; radical trachelectomy group: n = 12, M age = 31.8 years), and 6-month follow-up data on 26 women. Whereas both groups experienced an increase in sex-related distress immediately after surgery, distress continued to increase 6 months after surgery for the radical hysterectomy group but decreased in the radical trachelectomy group. There were no between-group differences in mood, anxiety, or general measures of health. The decrease in sex-related distress in the radical trachelectomy but not in the radical hysterectomy group suggests that the preservation of fertility may have attenuated sex-related distress. Care providers should counsel women exploring surgical options for cervical cancer about potential sex distress-related sequelae.

  20. Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping.

    PubMed

    Mason, Ronald Paul

    2016-08-01

    The accurate and sensitive detection of biological free radicals in a reliable manner is required to define the mechanistic roles of such species in biochemistry, medicine and toxicology. Most of the techniques currently available are either not appropriate to detect free radicals in cells and tissues due to sensitivity limitations (electron spin resonance, ESR) or subject to artifacts that make the validity of the results questionable (fluorescent probe-based analysis). The development of the immuno-spin trapping technique overcomes all these difficulties. This technique is based on the reaction of amino acid- and DNA base-derived radicals with the spin trap 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) to form protein- and DNA-DMPO nitroxide radical adducts, respectively. These adducts have limited stability and decay to produce the very stable macromolecule-DMPO-nitrone product. This stable product can be detected by mass spectrometry, NMR or immunochemistry by the use of anti-DMPO nitrone antibodies. The formation of macromolecule-DMPO-nitrone adducts is based on the selective reaction of free radical addition to the spin trap and is thus not subject to artifacts frequently encountered with other methods for free radical detection. The selectivity of spin trapping for free radicals in biological systems has been proven by ESR. Immuno-spin trapping is proving to be a potent, sensitive (a million times higher sensitivity than ESR), and easy (not quantum mechanical) method to detect low levels of macromolecule-derived radicals produced in vitro and in vivo. Anti-DMPO antibodies have been used to determine the distribution of free radicals in cells and tissues and even in living animals. In summary, the invention of the immuno-spin trapping technique has had a major impact on the ability to accurately and sensitively detect biological free radicals and, subsequently, on our understanding of the role of free radicals in biochemistry, medicine and toxicology. Published by

  1. Intermediate scattering function of an anisotropic active Brownian particle

    PubMed Central

    Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas

    2016-01-01

    Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations. PMID:27830719

  2. Intermediate scattering function of an anisotropic active Brownian particle.

    PubMed

    Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas

    2016-10-10

    Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.

  3. Intermediate scattering function of an anisotropic active Brownian particle

    NASA Astrophysics Data System (ADS)

    Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas

    2016-10-01

    Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.

  4. Anti-inflammatory, cyclooxygenase (COX)-2, COX-1 inhibitory, and free radical scavenging effects of Rumex nepalensis.

    PubMed

    Gautam, Raju; Karkhile, Kailas V; Bhutani, Kamlesh K; Jachak, Sanjay M

    2010-10-01

    Evaluation of the topical anti-inflammatory activity of chloroform and ethyl acetate extracts of RUMEX NEPALENSIS roots in a TPA-induced acute inflammation mouse model demonstrated a significant reduction in ear edema. The extracts were further tested on purified enzymes for COX-1 and COX-2 inhibition to elucidate their mechanism of action, and a strong inhibition was observed. Six anthraquinones and two naphthalene derivatives were isolated from the ethyl acetate extract. Among the isolated compounds, emodin was found to be a potent inhibitor with slight selectivity towards COX-2, and nepodin exhibited selectivity towards COX-1. Emodin, endocrocin, and nepodin also exhibited significant topical anti-inflammatory activity in mice. Interestingly, nepodin showed better radical scavenging activity than trolox and ascorbic acid against DPPH and ABTS radicals. The strong radical scavenging activity of chloroform and ethyl acetate extracts could be explained by the presence of nepodin as well as by the high phenolic content of the ethyl acetate extract. Thus, the anti-inflammatory effect of R. NEPALENSIS roots was assumed to be mediated through COX inhibition by anthraquinones and naphthalene derivatives and through the radical scavenging activities of naphthalene derivatives. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Trapping and spectroscopic characterization of an FeIII-superoxo intermediate from a nonheme mononuclear iron-containing enzyme

    PubMed Central

    Mbughuni, Michael M.; Chakrabarti, Mrinmoy; Hayden, Joshua A.; Bominaar, Emile L.; Hendrich, Michael P.; Münck, Eckard; Lipscomb, John D.

    2010-01-01

    intermediates are well known in heme enzymes, but none have been characterized in the nonheme mononuclear FeII enzyme family. Many steps in the O2 activation and reaction cycle of FeII-containing homoprotocatechuate 2,3-dioxygenase are made detectable by using the alternative substrate 4-nitrocatechol (4NC) and mutation of the active site His200 to Asn (H200N). Here, the first intermediate (Int-1) observed after adding O2 to the H200N-4NC complex is trapped and characterized using EPR and Mössbauer (MB) spectroscopies. Int-1 is a high-spin (S1 = 5/2) FeIII antiferromagnetically (AF) coupled to an S2 = 1/2 radical (J ≈ 6 cm-1 in ). It exhibits parallel-mode EPR signals at g = 8.17 from the S = 2 multiplet, and g = 8.8 and 11.6 from the S = 3 multiplet. These signals are broadened significantly by hyperfine interactions (A17O ≈ 180 MHz). Thus, Int-1 is an AF-coupled species. The experimental observations are supported by density functional theory calculations that show nearly complete transfer of spin density to the bound O2. Int-1 decays to form a second intermediate (Int-2). MB spectra show that it is also an AF-coupled FeIII-radical complex. Int-2 exhibits an EPR signal at g = 8.05 arising from an S = 2 state. The signal is only slightly broadened by (< 3% spin delocalization), suggesting that Int-2 is a peroxo-FeIII-4NC semiquinone radical species. Our results demonstrate facile electron transfer between FeII, O2, and the organic ligand, thereby supporting the proposed wild-type enzyme mechanism. PMID:20837547

  6. Radical Prostatectomy versus Observation for Localized Prostate Cancer

    PubMed Central

    Wilt, Timothy J.; Brawer, Michael K.; Jones, Karen M.; Barry, Michael J.; Aronson, William J.; Fox, Steven; Gingrich, Jeffrey R.; Wei, John T.; Gilhooly, Patricia; Grob, B. Mayer; Nsouli, Imad; Iyer, Padmini; Cartagena, Ruben; Snider, Glenn; Roehrborn, Claus; Sharifi, Roohollah; Blank, William; Pandya, Parikshit; Andriole, Gerald L.; Culkin, Daniel; Wheeler, Thomas

    2012-01-01

    BACKGROUND The effectiveness of surgery versus observation for men with localized prostate cancer detected by means of prostate-specific antigen (PSA) testing is not known. METHODS From November 1994 through January 2002, we randomly assigned 731 men with localized prostate cancer (mean age, 67 years; median PSA value, 7.8 ng per milliliter) to radical prostatectomy or observation and followed them through January 2010. The primary outcome was all-cause mortality; the secondary outcome was prostate-cancer mortality. RESULTS During the median follow-up of 10.0 years, 171 of 364 men (47.0%) assigned to radical prostatectomy died, as compared with 183 of 367 (49.9%) assigned to observation (hazard ratio, 0.88; 95% confidence interval [CI], 0.71 to 1.08; P = 0.22; absolute risk reduction, 2.9 percentage points). Among men assigned to radical prostatectomy, 21 (5.8%) died from prostate cancer or treatment, as compared with 31 men (8.4%) assigned to observation (hazard ratio, 0.63; 95% CI, 0.36 to 1.09; P = 0.09; absolute risk reduction, 2.6 percentage points). The effect of treatment on all-cause and prostate-cancer mortality did not differ according to age, race, coexisting conditions, self-reported performance status, or histologic features of the tumor. Radical prostatectomy was associated with reduced all-cause mortality among men with a PSA value greater than 10 ng per milliliter (P = 0.04 for interaction) and possibly among those with intermediate-risk or high-risk tumors (P = 0.07 for interaction). Adverse events within 30 days after surgery occurred in 21.4% of men, including one death. CONCLUSIONS Among men with localized prostate cancer detected during the early era of PSA testing, radical prostatectomy did not significantly reduce all-cause or prostate-cancer mortality, as compared with observation, through at least 12 years of follow-up. Absolute differences were less than 3 percentage points. (Funded by the Department of Veterans Affairs Cooperative Studies

  7. Singlet Fission via an Excimer-Like Intermediate in 3,6-Bis(thiophen-2-yl)diketopyrrolopyrrole Derivatives.

    PubMed

    Mauck, Catherine M; Hartnett, Patrick E; Margulies, Eric A; Ma, Lin; Miller, Claire E; Schatz, George C; Marks, Tobin J; Wasielewski, Michael R

    2016-09-14

    Singlet fission (SF) in polycrystalline thin films of four 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole (TDPP) chromophores with methyl (Me), n-hexyl (C6), triethylene glycol (TEG), and 2-ethylhexyl (EH) substituents at the 2,5-positions is found to involve an intermediate excimer-like state. The four different substituents yield four distinct intermolecular packing geometries, resulting in variable intermolecular charge transfer (CT) interactions in the solid. SF from the excimer state of Me, C6, TEG, and EH takes place in τSF = 22, 336, 195, and 1200 ps, respectively, to give triplet yields of 200%, 110%, 110%, and 70%, respectively. The transient spectra of the excimer-like state and its energetic proximity to the lowest excited singlet state in these derivatives suggests that this state may be the multiexciton (1)(T1T1) state that precedes formation of the uncorrelated triplet excitons. The excimer decay rates correlate well with the SF efficiencies and the degree of intermolecular donor-acceptor interactions resulting from π-stacking of the thiophene donor of one molecule with the DPP core acceptor in another molecule as observed in the crystal structures. Such interactions are found to also increase with the SF coupling energies, as calculated for each derivative. These structural and spectroscopic studies afford a better understanding of the electronic interactions that enhance SF in chromophores having strong intra- and intermolecular CT character.

  8. Probing Complex Free-Radical Reaction Pathways of Fuel Model Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan III, A C; Kidder, Michelle; Beste, Ariana

    2012-01-01

    Fossil (e.g. coal) and renewable (e.g. woody biomass) organic energy resources have received considerable attention as possible sources of liquid transportation fuels and commodity chemicals. Knowledge of the reactivity of these complex materials has been advanced through fundamental studies of organic compounds that model constituent substructures. In particular, an improved understanding of thermochemical reaction pathways involving free-radical intermediates has arisen from detailed experimental kinetic studies and, more recently, advanced computational investigations. In this presentation, we will discuss our recent investigations of the fundamental pyrolysis pathways of model compounds that represent key substructures in the lignin component of woody biomass withmore » a focus on molecules representative of the dominant beta-O-4 aryl ether linkages. Additional mechanistic insights gleaned from DFT calculations on the kinetics of key elementary reaction steps will also be presented, as well as a few thoughts on the significant contributions of Jim Franz to this area of free radical chemistry.« less

  9. GFP's Mechanical Intermediate States

    PubMed Central

    Saeger, John; Hytönen, Vesa P.; Klotzsch, Enrico; Vogel, Viola

    2012-01-01

    Green fluorescent protein (GFP) mutants have become the most widely used fluorescence markers in the life sciences, and although they are becoming increasingly popular as mechanical force or strain probes, there is little direct information on how their fluorescence changes when mechanically stretched. Here we derive high-resolution structural models of the mechanical intermediate states of stretched GFP using steered molecular dynamics (SMD) simulations. These structures were used to produce mutants of EGFP and EYFP that mimic GFP's different mechanical intermediates. A spectroscopic analysis revealed that a population of EGFP molecules with a missing N-terminal α-helix was significantly dimmed, while the fluorescence lifetime characteristic of the anionic chromophore state remained unaffected. This suggests a mechanism how N-terminal deletions can switch the protonation state of the chromophore, and how the fluorescence of GFP molecules in response to mechanical disturbance might be turned off. PMID:23118864

  10. Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical

    NASA Astrophysics Data System (ADS)

    Agúndez, Marcelino; Cernicharo, José; Guélin, Michel

    2015-05-01

    We conducted radioastronomical observations of 9 dark clouds with the IRAM 30 m telescope. We present the first identification in space of the ketenyl radical (HCCO) toward the starless core Lupus-1A and the molecular cloud L483 and the detection of the related molecules ketene (H2CCO) and acetaldehyde (CH3CHO) in these two sources and 3 additional dark clouds. We also report the detection of the formyl radical (HCO) in the 9 targeted sources and of propylene (CH2CHCH3) in 4 of the observed sources, which significantly extends the number of dark clouds where these molecules are known to be present. We have derived a beam-averaged column density of HCCO of ~5 × 1011 cm-2 in both Lupus-1A and L483, which means that the ketenyl radical is just ~10 times less abundant than ketene in these sources. The non-negligible abundance of HCCO found implies that there must be a powerful formation mechanism able to counterbalance the efficient destruction of this radical through reactions with neutral atoms. The column densities derived for HCO, (0.5-2.7) ×1012 cm-2, and CH2CHCH3, (1.9-4-2) ×1013 cm-2, are remarkably uniform across the sources where these species are detected, confirming their ubiquity in dark clouds. Gas phase chemical models of cold dark clouds can reproduce the observed abundances of HCO, but cannot explain the presence of HCCO in Lupus-1A and L483 and the high abundances derived for propylene. The chemistry of cold dark clouds needs to be revised in light of these new observational results. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Tables 3-6 are available in electronic form at http://www.aanda.org

  11. Biosynthetic versatility and coordinated action of 5'-deoxyadenosyl radicals in deazaflavin biosynthesis.

    PubMed

    Philmus, Benjamin; Decamps, Laure; Berteau, Olivier; Begley, Tadhg P

    2015-04-29

    Coenzyme F420 is a redox cofactor found in methanogens and in various actinobacteria. Despite the major biological importance of this cofactor, the biosynthesis of its deazaflavin core (8-hydroxy-5-deazaflavin, F(o)) is still poorly understood. F(o) synthase, the enzyme involved, is an unusual multidomain radical SAM enzyme that uses two separate 5'-deoxyadenosyl radicals to catalyze F(o) formation. In this paper, we report a detailed mechanistic study on this complex enzyme that led us to identify (1) the hydrogen atoms abstracted from the substrate by the two radical SAM domains, (2) the second tyrosine-derived product, (3) the reaction product of the CofH-catalyzed reaction, (4) the demonstration that this product is a substrate for CofG, and (5) a stereochemical study that is consistent with the formation of a p-hydroxybenzyl radical at the CofH active site. These results enable us to propose a mechanism for F(o) synthase and uncover a new catalytic motif in radical SAM enzymology involving the use of two 5'-deoxyadenosyl radicals to mediate the formation of a complex heterocycle.

  12. Combining UV photodissociation action spectroscopy with electron transfer dissociation for structure analysis of gas-phase peptide cation-radicals.

    PubMed

    Shaffer, Christopher J; Pepin, Robert; Tureček, František

    2015-12-01

    We report the first example of using ultraviolet (UV) photodissociation action spectroscopy for the investigation of gas-phase peptide cation-radicals produced by electron transfer dissociation. z-Type fragment ions (●) Gly-Gly-Lys(+), coordinated to 18-crown-6-ether (CE), are generated, selected by mass and photodissociated in the 200-400 nm region. The UVPD action spectra indicate the presence of valence-bond isomers differing in the position of the Cα radical defect, (α-Gly)-Gly-Lys(+) (CE), Gly-(α-Gly)-Lys(+) (CE) and Gly-Gly-(α-Lys(+))(CE). The isomers are readily distinguishable by UV absorption spectra obtained by time-dependent density functional theory (TD-DFT) calculations. In contrast, conformational isomers of these radical types are calculated to have similar UV spectra. UV photodissociation action spectroscopy represents a new tool for the investigation of transient intermediates of ion-electron reactions. Specifically, z-type cation radicals are shown to undergo spontaneous hydrogen atom migrations upon electron transfer dissociation. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Vibrational Spectroscopy of Ions and Radicals Present in the Interstellar Medium and in Planetary Atmospheres: A Theoretical Study

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.

    2004-01-01

    Anharmonic vibrational frequencies and intensities are calculated for OH(H2O)n and H(H2O)n radicals (that form on icy particles of the interstellar medium), HCO radical (the main intermediate in the synthesis of organic molecules in space), NH2(-) and C2H(-) anions, H5(+) cation, and other systems relevant to interstellar chemistry. In addition to pure ions and radicals, their complexes with water are studied to assess the effects of water environment on infrared spectra. The calculations are performed using the correlation-corrected vibrational self-consistent field (CC-VSCF) method with ab initio potential surfaces at the MP2 and CCSD(T) levels. Fundamental, overtone, and combination excitations are computed. The results are in good agreement with available experimental data and provide reliable predictions for vibrational excitations not yet measured in laboratory experiments. The data should be useful for interpretation of astronomically observed spectra and identification of ions and radicals present in the interstellar medium and in planetary atmospheres.

  14. Influence of anoxia on the induction of mutations by phenylalanine radicals during gamma-irradiation of plasmid DNA in aqueous solution.

    PubMed

    Kuipers, Gitta K; Slotman, Ben J; Reitsma-Wijker, Carola A; van Andel, Rob J; Poldervaart, Hester A; Lafleur, M Vincent M

    2004-12-21

    When DNA is irradiated in aqueous solution, most of the damage is inflicted by water-derived radicals. This is called the indirect effect of ionizing radiation. However in whole cells not only the primary formed water radicals play a role, because some cellular compounds form secondary radicals which can also damage DNA. It is known that the amino acid phenylalanine is able to react with water radicals, resulting in the production of secondary phenylalanine radicals which can damage and inactivate DNA. In a previous study the influence of the presence of phenylalanine during gamma-irradiation of DNA in aqueous solution under oxic conditions was studied. Under anoxic irradiation conditions different amounts and types of reactive water-derived radicals are formed compared to oxic conditions and also different phenylalanine radicals are formed. Therefore, this study examines the influence of the presence of phenylalanine under anoxic conditions on the gamma-radiation-induced mutation spectrum. The results indicate that phenylalanine radicals are damaging to DNA, but less effective compared to primary water radicals. On the mutational level, in the presence of phenylalanine radicals under anoxic conditions, the amount of mutations on G:C base pairs was significantly decreased as compared to oxic conditions. Furthermore, the results of this study indicate that nucleotide excision repair is involved in repair of both inactivating and mutagenic damage induced by phenylalanine radicals under anoxic conditions.

  15. EPR characterization of ascorbyl and sulfur dioxide anion radicals trapped during the reaction of bovine Cytochrome c Oxidase with molecular oxygen

    NASA Astrophysics Data System (ADS)

    Yu, Michelle A.; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L.; Gerfen, Gary J.

    2010-04-01

    The reaction intermediates of reduced bovine Cytochrome c Oxidase (CcO) were trapped following its reaction with oxygen at 50 μs-6 ms by innovative freeze-quenching methods and studied by EPR. When the enzyme was reduced with either ascorbate or dithionite, distinct radicals were generated; X-band (9 GHz) and D-band (130 GHz) CW-EPR measurements support the assignments of these radicals to ascorbyl and sulfur dioxide anion radical (SO2-rad), respectively. The X-band spectra show a linewidth of 12 G for the ascorbyl radical and 11 G for the SO2-rad radical and an isotropic g-value of 2.005 for both species. The D-band spectra reveal clear distinctions in the g-tensors and powder patterns of the two species. The ascorbyl radical spectrum displays approximate axial symmetry with g-values of gx = 2.0068, gy = 2.0066, and gz = 2.0023. The SO2-rad>/SUP> radical has rhombic symmetry with g-values of gx = 2.0089, gy = 2.0052, and gz = 2.0017. When the contributions from the ascorbyl and SO2-rad radicals were removed, no protein-based radical on CcO could be identified in the EPR spectra.

  16. The flash-quench technique in protein-DNA electron transfer: reduction of the guanine radical by ferrocytochrome c.

    PubMed

    Stemp, E D; Barton, J K

    2000-08-21

    Electron transfer from a protein to oxidatively damaged DNA, specifically from ferrocytochrome c to the guanine radical, was examined using the flash-quench technique. Ru(phen)2dppz2+ (dppz = dipyridophenazine) was employed as the photosensitive intercalator, and ferricytochrome c (Fe3+ cyt c), as the oxidative quencher. Using transient absorption and time-resolved luminescence spectroscopies, we examined the electron-transfer reactions following photoexcitation of the ruthenium complex in the presence of poly(dA-dT) or poly(dG-dC). The luminescence-quenching titrations of excited Ru(phen)2dppz2+ by Fe3+ cyt c are nearly identical for the two DNA polymers. However, the spectral characteristics of the long-lived transient produced by the quenching depend strongly upon the DNA. For poly(dA-dT), the transient has a spectrum consistent with formation of a [Ru(phen)2dppz3+, Fe2+ cyt c] intermediate, indicating that the system regenerates itself via electron transfer from the protein to the Ru(III) metallointercalator for this polymer. For poly(dG-dC), however, the transient has the characteristics expected for an intermediate of Fe2+ cyt c and the neutral guanine radical. The characteristics of the transient formed with the GC polymer are consistent with rapid oxidation of guanine by the Ru(III) complex, followed by slow electron transfer from Fe2+ cyt c to the guanine radical. These experiments show that electron holes on DNA can be repaired by protein and demonstrate how the flash-quench technique can be used generally in studying electron transfer from proteins to guanine radicals in duplex DNA.

  17. Serendipitous Findings While Researching Oxygen Free Radicals

    PubMed Central

    Floyd, Robert A.

    2009-01-01

    This review is based on the honor of receiving the Discovery Award from the Society of Free Radical Biology and Medicine. The review is reflective and presents our thinking which led to experiments that yielded novel observations. Critical questioning of our understanding of oxygen free radicals in biomedical problems led us to use and develop more direct and extremely sensitive methods. This included nitrone free radical spin-trapping and HPLC-electrochemical detection. This technology led to the pioneering use of salicylate to trap hydroxyl free radicals and show increased flux in ischemia/reperfused brain regions and to also first sensitively detect 8-hydroxy-droxyguanosine (8-OHdG) in oxidative-damaged DNA and help assess its role in cancer development. We demonstrated that Methylene Blue (MB) photo-induced formation of 8-hydroxy-guanine in DNA and RNA and discovered that MB sensitively photo-inactivated RNA viruses including HIV and the West Nile Virus. Studies in experimental stroke led us to serendipitously discover that α-phenyl-tert-butylnitrone (PBN) was neuroprotective if given after the stroke. This led to extensive commercial development of NXY-059, a PBN derivative, for the treatment of stroke. More recently we discovered that PBN-nitrones have potent anti-cancer activity and are active in preventing hearing loss caused by acute acoustical trauma. PMID:19439210

  18. Consumption of peptide-included and free tryptophan induced by peroxyl radicals: A kinetic study.

    PubMed

    Fuentes, E; López-Alarcón, C

    2014-10-01

    It is well-known that tryptophan residues are efficiently oxidized by peroxyl radicals, generating kynurenine, and N-formyl kynurenine as well as hydroperoxide derivatives as products. In the present work we studied the kinetic of such reaction employing free and peptide-included tryptophan. Two azocompounds were used to produce peroxyl radicals: AAPH (2,2'-Azobis(2-methylpropionamidine) dihydrochloride) and ABCVA (4,4'-Azobis(4-cyanovaleric acid)), which generate cationic and anionic peroxyl radicals, respectively. Tryptophan consumption was assessed by fluorescence spectroscopy and the reactions were carried out in phosphate buffer (75mM, pH 7.4) at 45°C. Only a slight effect of the peroxyl radical charge was evidenced on the consumption of free tryptophan and the dipeptide Gly-Trp. Employing AAPH as peroxyl radical source, at low free tryptophan concentrations (1-10µM) near 0.3 mol of tryptophan were consumed per each mol of peroxyl radicals introduced into the system. However, at high free tryptophan concentrations (100µM-1mM) such stoichiometry increased in a tryptophan concentration-way. At 1mM three moles of tryptophan were consumed per mol of AAPH-derived peroxyl radicals, evidencing the presence of chain reactions. A similar behavior was observed when di and tri-peptides (Gly-Trp, Trp-Gly, Gly-Trp-Gly, Trp-Ala, Ala-Trp-Ala) were studied. Nonetheless, at low initial concentration (5µM), the initial consumption rate of tryptophan included in the peptides was two times higher than free tryptophan. In contrast, at high concentration (1mM) free and peptide-included tryptophan showed similar initial consumption rates. These results could be explained considering a disproportionation process of tryptophanyl radicals at low free tryptophan concentrations, a process that would be inhibited when tryptophan is included in peptides. Copyright © 2014. Published by Elsevier Inc.

  19. Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues.

    PubMed

    Ji, Xinjian; Li, Yongzhen; Xie, Liqi; Lu, Haojie; Ding, Wei; Zhang, Qi

    2016-09-19

    Radical S-adenosyl-l-methionine (SAM) enzymes utilize a [4Fe-4S] cluster to bind SAM and reductively cleave its carbon-sulfur bond to produce a highly reactive 5'-deoxyadenosyl (dAdo) radical. In almost all cases, the dAdo radical abstracts a hydrogen atom from the substrates or from enzymes, thereby initiating a highly diverse array of reactions. Herein, we report a change of the dAdo radical-based chemistry from hydrogen abstraction to radical addition in the reaction of the radical SAM enzyme NosL. This change was achieved by using a substrate analogue containing an olefin moiety. We also showed that two SAM analogues containing different nucleoside functionalities initiate the radical-based reactions with high efficiencies. The radical adduct with the olefin produced in the reaction was found to undergo two divergent reactions, and the mechanistic insights into this process were investigated in detail. Our study demonstrates a promising strategy in expanding radical SAM chemistry, providing an effective way to access nucleoside-containing compounds by using radical SAM-dependent reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization.

    PubMed

    Shchepin, Roman; Möller, Matias N; Kim, Hye-young H; Hatch, Duane M; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael; Porter, Ned A

    2010-12-15

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.

  1. Tyrosine-Lipid Peroxide Adducts from Radical Termination: Para-Coupling and Intramolecular Diels-Alder Cyclization

    PubMed Central

    Shchepin, Roman; Möller, Matias N.; Kim, Hye-young H.; Hatch, Duane M.; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael

    2013-01-01

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogs of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR as well as by mass spectrometry. The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic 13C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl 13C chemical shifts at ~198 ppm. All NMR HMBC and HSQC correlations support the structure assignment of the primary and Diels-Alder adducts, as does MS collision induced dissociation. Kinetic rate constants and activation parameters for the IMDA reaction were determined and the primary adducts were reduced with cuprous ion giving a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found either in the primary or the cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein crosslinks via interprotein Michael adducts. PMID:21090613

  2. Mechanistic analysis of intramolecular free radical reactions toward synthesis of 7-azabicyclo[2.2.1]heptane derivatives.

    PubMed

    Soriano, Elena; Marco-Contelles, José

    2009-06-05

    The mechanisms for the formation of conformationally constrained epibatidine analogues by intramolecular free radical processes have been computationally addressed by means of DFT methods. The mechanism and the critical effect of the 7-nitrogen protecting group on the outcome of these radical-mediated cyclizations are discussed. Theoretical findings account for unexpected experimental results and can assist in the selection of proper precursors for a successful cyclization.

  3. Substrate-Tuned Catalysis of the Radical S-Adenosyl-L-Methionine Enzyme NosL Involved in Nosiheptide Biosynthesis.

    PubMed

    Ji, Xinjian; Li, Yongzhen; Ding, Wei; Zhang, Qi

    2015-07-27

    NosL is a radical S-adenosyl-L-methionine (SAM) enzyme that converts L-Trp to 3-methyl-2-indolic acid, a key intermediate in the biosynthesis of a thiopeptide antibiotic nosiheptide. In this work we investigated NosL catalysis by using a series of Trp analogues as the molecular probes. Using a benzofuran substrate 2-amino-3-(benzofuran-3-yl)propanoic acid (ABPA), we clearly demonstrated that the 5'-deoxyadenosyl (dAdo) radical-mediated hydrogen abstraction in NosL catalysis is not from the indole nitrogen but likely from the amino group of L-Trp. Unexpectedly, the major product of ABPA is a decarboxylated compound, indicating that NosL was transformed to a novel decarboxylase by an unnatural substrate. Furthermore, we showed that, for the first time to our knowledge, the dAdo radical-mediated hydrogen abstraction can occur from an alcohol hydroxy group. Our study demonstrates the intriguing promiscuity of NosL catalysis and highlights the potential of engineering radical SAM enzymes for novel activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis of ST7612AA1, a Novel Oral HDAC Inhibitor, via Radical 
Thioacetic Acid Addition.

    PubMed

    Battistuzzi, Gianfranco; Giannini, Giuseppe

    2016-12-01

    In the expanding field of anticancer drugs, HDAC inhibitors are playing an increasingly important role. To date, four/five HDAC inhibitors have been approved by FDA. All these compounds fit the widely accepted HDAC inhibitors pharmacophore model characterized by a cap group, a linker chain and a zinc binding group (ZBG), able to bind the Zn 2+ ion in a pocket of the HDAC active site. Romidepsin, a natural compound, is the only thiol derivative. We have selected a new class of synthetic HDAC inhibitors, the thio-ω(lactam-carboxamide) derivatives, with ST7612AA1 as drug candidate, pan-inhibitor active in the range of single- to two-digit nanomolar concentrations. Preliminary results of a synthetic optimization attempt towards a fast scale-up process are here proposed. In the four steps of synthesis, from unsaturated amino acid intermediate to the final product, we explored different synthetic conditions in order to have a transferable process for a scale-up synthetic laboratory. In the first step, isobutyl chloroformate was used and, after a simple work up with 1M HCl, 2 (96% yield) was obtained as a white solid, which was used directly in the next step. For thioacetic acid addition to the double bond of intermediate 2 , two different routes were possible, with addition reaction in the first (D') or last step (D). Reactions of 2 to give 5 or of 4 to give ST7612AA1 were both performed in dioxane. Reactions were fast and did not need the usually advised radical quenching with cyclohexene. The corresponding products were obtained in good yields (step D', 89%; step D, 81%) after a flash chromatography. , a thiol derivative prodrug of ST7464AA1 , is the first of a new generation of HDAC inhibitors, very potent, orally administered, and well tolerated. Here, we have identified a synthetic route, competitive, versatile and easily transferable to industrial processes.

  5. The near-infrared spectrum of ethynyl radical

    DOE PAGES

    Le, Anh T.; Hall, Gregory E.; Sears, Trevor J.

    2016-08-17

    We used transient diode laser absorption spectroscopy to measure three strong vibronic bands in the near infrared spectrum of the C 2H, ethynyl, radical not previously observed in the gas phase. The radical was produced by ultraviolet excimer laser photolysis of either acetylene or (1,1,1)-trifluoropropyne in a slowly flowing sample of the precursor diluted in inert gas, and the spectral resolution was Doppler-limited. The character of the upper states was determined from the rotational and fine structure in the observed spectra and assigned by measurement of ground state rotational combination differences. The upper states include a 2Σ + state atmore » 6696 cm -1, a second 2Σ + state at 7088 cm -1, and a 2Π state at 7110 cm -1. By comparison with published calculations [R. Tarroni and S. Carter, J. Chem. Phys 119, 12878 (2003); Mol. Phys. 102, 2167 (2004)], the vibronic character of these levels was also assigned. Moreover, the observed states contain both X 2Σ + and A 2Π electronic characters. Several local rotational level perturbations were observed in the excited states. Kinetic measurements of the time-evolution of the ground state populations following collisional relaxation and reactive loss of the radicals formed in a hot, non-thermal, population distribution were made using some of the strong rotational lines observed. Finally, the case of C 2H may be a good place to investigate the behavior at intermediate pressures of inert colliders, where the competition between relaxation and reaction can be tuned and observed to compare with master equation models, rather than deliberately suppressed to measure thermal rate constants.« less

  6. Gas-phase reactions of phenyl radicals with aromatic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahr, A.; Stein, S.E.

    1988-08-25

    Relative rates of reactions of phenyl radicals with a series of aromatic and polycyclic aromatic compounds are reported. Most studies were done in static reactors at 450/degrees/C using diphenyl diketone (benzil) as the phenyl radical source. Reactions with the following molecules are reported: benzene, toluene, p-xylene, 1,3,5-trimethylbenzene, phenol, bromobenzene, naphthalene, biphenyl, anthracene, 9-methylanthracene, and triphenylene. For reactions with substituted benzenes, H abstraction is the dominant reaction. Relative rates of phenylation at different sites do not closely follow established trends for rates of radical attack. It is proposed that these deviations are primarily due to a dependence of the degree ofmore » reversibility on the specific site of phenylation. These studies also show that the rates of phenyl and H-atom migration around the ring in adduct radicals are slow relative to dissociation. Also, by use of these results to link literature rate data from high and low temperatures, a rate expression for H abstraction from p-xylene by phenyl of 10/sup 9.6/ exp(-4.4 kcal/RT) M/sup /minus/1/ s/sup /minus/1/ is derived.« less

  7. Hyperoxic sheep pulmonary microvascular endothelial cells generate free radicals via mitochondrial electron transport.

    PubMed Central

    Sanders, S P; Zweier, J L; Kuppusamy, P; Harrison, S J; Bassett, D J; Gabrielson, E W; Sylvester, J T

    1993-01-01

    Free radical generation by hyperoxic endothelial cells was studied using electron paramagnetic resonance (EPR) spectroscopy and the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Studies were performed to determine the radical species produced, whether mitochondrial electron transport was involved, and the effect of the radical generation on cell mortality. Sheep pulmonary microvascular endothelial cell suspensions exposed to 100% O2 for 30 min exhibited prominent DMPO-OH and, occasionally, additional smaller DMPO-R signals thought to arise from the trapping of superoxide anion (O2-.), hydroxyl (.OH), and alkyl (.R) radicals. Superoxide dismutase (SOD) quenched both signals suggesting that the observed radicals were derived from O2-.. Studies with deferoxamine suggested that the generation of .R occurred secondary to the formation of .OH from O2-. via an iron-mediated Fenton reaction. Blocking mitochondrial electron transport with rotenone (20 microM) markedly decreased radical generation. Cell mortality increased slightly in oxygen-exposed cells. This increase was not significantly altered by SOD or deferoxamine, nor was it different from the mortality observed in air-exposed cells. These results suggest that endothelial cells exposed to hyperoxia for 30 min produce free radicals via mitochondrial electron transport, but under the conditions of these experiments, this radical generation did not appear cause cell death. PMID:8380815

  8. Ab initio evaluation of the thermodynamic and electrochemical properties of alkyl halides and radicals and their mechanistic implications for atom transfer radical polymerization.

    PubMed

    Lin, Ching Yeh; Coote, Michelle L; Gennaro, Armando; Matyjaszewski, Krzysztof

    2008-09-24

    High-level ab initio molecular orbital calculations are used to study the thermodynamics and electrochemistry relevant to the mechanism of atom transfer radical polymerization (ATRP). Homolytic bond dissociation energies (BDEs) and standard reduction potentials (SRPs) are reported for a series of alkyl halides (R-X; R = CH 2CN, CH(CH 3)CN, C(CH 3) 2CN, CH 2COOC 2H 5, CH(CH 3)COOCH 3, C(CH 3) 2COOCH 3, C(CH 3) 2COOC 2H 5, CH 2Ph, CH(CH 3)Ph, CH(CH 3)Cl, CH(CH 3)OCOCH 3, CH(Ph)COOCH 3, SO 2Ph, Ph; X = Cl, Br, I) both in the gas phase and in two common organic solvents, acetonitrile and dimethylformamide. The SRPs of the corresponding alkyl radicals, R (*), are also examined. The computational results are in a very good agreement with the experimental data. For all alkyl halides examined, it is found that, in the solution phase, one-electron reduction results in the fragmentation of the R-X bond to the corresponding alkyl radical and halide anion; hence it may be concluded that a hypothetical outer-sphere electron transfer (OSET) in ATRP should occur via concerted dissociative electron transfer rather than a two-step process with radical anion intermediates. Both the homolytic and heterolytic reactions are favored by electron-withdrawing substituents and/or those that stabilize the product alkyl radical, which explains why monomers such as acrylonitrile and styrene require less active ATRP catalysts than vinyl chloride and vinyl acetate. The rate constant of the hypothetical OSET reaction between bromoacetonitrile and Cu (I)/TPMA complex was estimated using Marcus theory for the electron-transfer processes. The estimated rate constant k OSET = approximately 10 (-11) M (-1) s (-1) is significantly smaller than the experimentally measured activation rate constant ( k ISET = approximately 82 M (-1) s (-1) at 25 degrees C in acetonitrile) for the concerted atom transfer mechanism (inner-sphere electron transfer, ISET), implying that the ISET mechanism is preferred. For

  9. Experimental and theoretical study of 2,6-difluorophenylnitrene, its radical cation, and their rearrangement products in argon matrices.

    PubMed

    Carra, Claudio; Nussbaum, Rafael; Bally, Thomas

    2006-06-12

    2,6-Difluorophenylnitrene was reinvestigated both experimentally, in Ar matrices at 10 K, and computationally, by DFT and CASSCF/CASPT2 calculations. Almost-pure samples of both neutral rearrangement products (the bicyclic azirine and the cyclic ketenimine) of a phenylnitrene were prepared and characterized for the first time. These samples were then subjected to X-irradiation in the presence of CH2Cl2 as an electron scavenger, which led to ionization of the neutral intermediates. Thereby, it was shown that only the phenylnitrene and the cyclic ketenimine yield stable radical cations, whereas the bicyclic azirine decays to both of these compounds on ionization. The cyclic ketenimine yields a novel aromatic azatropylium-type radical cation. The electronic structure of the title compound is discussed in detail, and its relation to those of the iso-pi-electronic benzyl radical and phenylcarbene is traced.

  10. Isoprene Peroxy Radical Dynamics.

    PubMed

    Teng, Alexander P; Crounse, John D; Wennberg, Paul O

    2017-04-19

    Approximately 500 Tg of 2-methyl-1,3-butadiene (isoprene) is emitted by deciduous trees each year. Isoprene oxidation in the atmosphere is initiated primarily by addition of hydroxyl radicals (OH) to C 4 or C 1 in a ratio 0.57 ± 0.03 (1σ) to produce two sets of distinct allylic radicals. Oxygen (O 2 ) adds to these allylic radicals either δ (Z or E depending on whether the allylic radical is cis or trans) or β to the OH group forming six distinct peroxy radical isomers. Due to the enhanced stability of the allylic radical, however, these peroxy radicals lose O 2 in competition with bimolecular reactions. In addition, the Z-δ hydroxy peroxy radical isomers undergo unimolecular 1,6 H-shift isomerization. Here, we use isomer-resolved measurements of the reaction products of the peroxy radicals to diagnose this complex chemistry. We find that the ratio of δ to β hydroxy peroxy radicals depends on their bimolecular lifetime (τ bimolecular ). At τ bimolecular ≈ 0.1 s, a transition occurs from a kinetically to a largely thermodynamically controlled distribution at 297 K. Thus, in nature, where τ bimolecular > 10 s, the distribution of isoprene hydroxy peroxy radicals will be controlled primarily by the difference in the relative stability of the peroxy radical isomers. In this regime, β hydroxy peroxy radical isomers comprise ∼95% of the radical pool, a much higher fraction than in the nascent (kinetic) distribution. Intramolecular 1,6 H-shift isomerization of the Z-δ hydroxy peroxy radical isomers produced from OH addition to C 4 is estimated to be ∼4 s -1 at 297 K. While the Z-δ isomer is initially produced in low yield, it is continually reformed via decomposition of the β hydroxy peroxy radicals. As a result, unimolecular chemistry from this isomer contributes about half of the atmospheric fate of the entire pool of peroxy radicals formed via addition of OH at C 4 for typical atmospheric conditions (τ bimolecular = 100 s and T = 25 C). In contrast

  11. Meta-analysis of studies comparing oncologic outcomes of radical prostatectomy and brachytherapy for localized prostate cancer

    PubMed Central

    Cozzi, Gabriele; Musi, Gennaro; Bianchi, Roberto; Bottero, Danilo; Brescia, Antonio; Cioffi, Antonio; Cordima, Giovanni; Delor, Maurizio; Di Trapani, Ettore; Ferro, Matteo; Matei, Deliu Victor; Russo, Andrea; Mistretta, Francesco Alessandro; De Cobelli, Ottavio

    2017-01-01

    Background: The aim of this study was to compare oncologic outcomes of radical prostatectomy (RP) with brachytherapy (BT). Methods: A literature review was conducted according to the ‘Preferred reporting items for systematic reviews and meta-analyses’ (PRISMA) statement. We included studies reporting comparative oncologic outcomes of RP versus BT for localized prostate cancer (PCa). From each comparative study, we extracted the study design, the number and features of the included patients, and the oncologic outcomes expressed as all-cause mortality (ACM), PCa-specific mortality (PCSM) or, when the former were unavailable, as biochemical recurrence (BCR). All of the data retrieved from the selected studies were recorded in an electronic database. Cumulative analysis was conducted using the Review Manager version 5.3 software, designed for composing Cochrane Reviews (Cochrane Collaboration, Oxford, UK). Statistical heterogeneity was tested using the Chi-square test. Results: Our cumulative analysis did not show any significant difference in terms of BCR, ACM or PCSM rates between the RP and BT cohorts. Only three studies reported risk-stratified outcomes of intermediate- and high-risk patients, which are the most prone to treatment failure. Conclusions: our analysis suggested that RP and BT may have similar oncologic outcomes. However, the analysis included a limited number of studies, and most of them were retrospective, making it impossible to derive any definitive conclusion, especially for intermediate- and high-risk patients. In this scenario, appropriate urologic counseling remains of utmost importance. PMID:29662542

  12. Meta-analysis of studies comparing oncologic outcomes of radical prostatectomy and brachytherapy for localized prostate cancer.

    PubMed

    Cozzi, Gabriele; Musi, Gennaro; Bianchi, Roberto; Bottero, Danilo; Brescia, Antonio; Cioffi, Antonio; Cordima, Giovanni; Delor, Maurizio; Di Trapani, Ettore; Ferro, Matteo; Matei, Deliu Victor; Russo, Andrea; Mistretta, Francesco Alessandro; De Cobelli, Ottavio

    2017-11-01

    The aim of this study was to compare oncologic outcomes of radical prostatectomy (RP) with brachytherapy (BT). A literature review was conducted according to the 'Preferred reporting items for systematic reviews and meta-analyses' (PRISMA) statement. We included studies reporting comparative oncologic outcomes of RP versus BT for localized prostate cancer (PCa). From each comparative study, we extracted the study design, the number and features of the included patients, and the oncologic outcomes expressed as all-cause mortality (ACM), PCa-specific mortality (PCSM) or, when the former were unavailable, as biochemical recurrence (BCR). All of the data retrieved from the selected studies were recorded in an electronic database. Cumulative analysis was conducted using the Review Manager version 5.3 software, designed for composing Cochrane Reviews (Cochrane Collaboration, Oxford, UK). Statistical heterogeneity was tested using the Chi-square test. Our cumulative analysis did not show any significant difference in terms of BCR, ACM or PCSM rates between the RP and BT cohorts. Only three studies reported risk-stratified outcomes of intermediate- and high-risk patients, which are the most prone to treatment failure. our analysis suggested that RP and BT may have similar oncologic outcomes. However, the analysis included a limited number of studies, and most of them were retrospective, making it impossible to derive any definitive conclusion, especially for intermediate- and high-risk patients. In this scenario, appropriate urologic counseling remains of utmost importance.

  13. PLA2 mediated arachidonate free radicals: PLA2 inhibition and neutralization of free radicals by anti-oxidants--a new role as anti-inflammatory molecule.

    PubMed

    Nanda, B L; Nataraju, A; Rajesh, R; Rangappa, K S; Shekar, M A; Vishwanath, B S

    2007-01-01

    PLA2 enzyme catalyses the hydrolysis of cellular phospholipids at the sn-2 position to liberate arachidonic acid and lysophospholipid to generate a family of pro-inflammatory eicosanoids and platelet activating factor. The generation of pro-inflammatory eicosanoids involves a series of free radical intermediates with simultaneous release of reactive oxygen species (superoxide and hydroxyl radicals). Reactive oxygen species formed during arachidonic acid metabolism generates lipid peroxides and the cytotoxic products such as 4-hydroxy nonenal and acrolein, which induces cellular damage. Thus PLA2 catalyzes the rate-limiting step in the production of pro-inflammatory eicosanoids and free radicals. These peroxides and reactive oxygen species in turn activates PLA2 enzyme and further attenuates the inflammatory process. Therefore scavenging these free radicals and inhibition of PLA2 enzyme simultaneously by a single molecule such as antioxidants is of great therapeutic relevance for the development of anti-inflammatory molecules. PLA2 enzymes have been classified into calcium dependent cPLA2 and sPLA2 and calcium independent iPLA2 forms. In several inflammatory diseases sPLA2 group IIA is the most abundant isoform identified. This isoform is therefore targeted for the development of anti-inflammatory molecules. Many secondary metabolites from plants and marine sponges exhibit both anti-inflammatory and antioxidant properties. Some of them include flavonoids, terpenes and alkaloids. But in terms of PLA2 inhibition and antioxidant activity, the structural aspects of flavonoids are well studied rather than terpenes and alkaloids. In this line, molecules having both anti-oxidant and PLA2 inhibitions are reviewed. A single molecule with dual activities may prove to be a powerful anti-inflammatory drug.

  14. A Free-Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds-Low Temperature Growth of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Thomas, Aaron M; Lucas, Michael; Yang, Tao; Kaiser, Ralf I; Fuentes, Luis; Belisario-Lara, Daniel; Mebel, Alexander M

    2017-08-05

    The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electron spin resonance characterization of radical components in irradiated black pepper skin and core

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2011-11-01

    Characteristics of free radical components of irradiated black pepper fruit (skin) and the pepper seed (core) were analyzed using electron spin resonance. A weak signal near g=2.005 was observed in black pepper before irradiation. Complex spectra near g=2.005 with three lines (the skin) or seven lines (the core) were observed in irradiated black pepper (both end line width; ca. 6.8 mT). The spectral intensities decreased considerably at 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of the content and the stability of radical components derived from plant constituents, including fiber, starch, polyphenol, mono- and disaccharide, were in good agreement with the observed spectra. Analysis showed that the signal intensities derived from fiber in the skin for an absorbed dose were higher, and the rates of decrease were lower, than that in the core. In particular, the cellulose radical component in the skin was highly stable.

  16. Homogeneous reduction of CO2 by photogenerated pyridinyl radicals.

    PubMed

    Riboni, Francesca; Selli, Elena; Hoffmann, M R; Colussi, A J

    2015-05-14

    We report that 1-hydropyridinyl radicals (1-PyH(•)) photogenerated in solution react with dissolved CO2 en route to its 2e(-) reduction into carboxylic acids. The 254 nm excitation of pyridine (Py) in deaerated 2-PrOH/H2O mixtures saturated with 1 atm of CO2 yields a suite of products, among which we identified Na(HCOO)2(-) (m/z(-) = 113), C5H6NCOO(-) (m/z(-) = 124), and C5H10O2NCOO(-) (m/z(-) = 160) species by electrospray ionization mass spectrometry. These products demonstrably contain carboxylate functionalities that split CO2 neutrals via collisionally induced dissociation. We infer that 1-PyH(•) [from (1) (3)Py* + 2-PrOH → 1-PyH(•) + (•)PrOH] adds to CO2, in competition with radical-radical reactions, leading to intermediates that are in turn reduced by (•)PrOH into the observed species. The formation of carboxylates in this system, which is shown to require CO2, Py, 2-PrOH, and actinic radiation, amounts to the homogeneous 2e(-) reduction of CO2 by 2-PrOH initiated by Py*. We evaluate a rate constant (2) k2(1-PyH(•) + CO2 → (•)Py-1-COOH) ≈ O (10) M(-1) s(-1) and an activation energy E2 ≥ 9 kcal mol(-1) that are compatible with thermochemical estimates for this reaction.

  17. Free radicals: properties, sources, targets, and their implication in various diseases.

    PubMed

    Phaniendra, Alugoju; Jestadi, Dinesh Babu; Periyasamy, Latha

    2015-01-01

    Free radicals and other oxidants have gained importance in the field of biology due to their central role in various physiological conditions as well as their implication in a diverse range of diseases. The free radicals, both the reactive oxygen species (ROS) and reactive nitrogen species (RNS), are derived from both endogenous sources (mitochondria, peroxisomes, endoplasmic reticulum, phagocytic cells etc.) and exogenous sources (pollution, alcohol, tobacco smoke, heavy metals, transition metals, industrial solvents, pesticides, certain drugs like halothane, paracetamol, and radiation). Free radicals can adversely affect various important classes of biological molecules such as nucleic acids, lipids, and proteins, thereby altering the normal redox status leading to increased oxidative stress. The free radicals induced oxidative stress has been reported to be involved in several diseased conditions such as diabetes mellitus, neurodegenerative disorders (Parkinson's disease-PD, Alzheimer's disease-AD and Multiple sclerosis-MS), cardiovascular diseases (atherosclerosis and hypertension), respiratory diseases (asthma), cataract development, rheumatoid arthritis and in various cancers (colorectal, prostate, breast, lung, bladder cancers). This review deals with chemistry, formation and sources, and molecular targets of free radicals and it provides a brief overview on the pathogenesis of various diseased conditions caused by ROS/RNS.

  18. Hydroxylated chalcones with dual properties: xanthine oxidase inhibitors and radical scavengers

    PubMed Central

    Hofmann, Emily; Webster, Jonathan; Do, Thuy; Kline, Reid; Snider, Lindsey; Hauser, Quintin; Higginbottom, Grace; Campbell, Austin; Ma, Lili; Paula, Stefan

    2016-01-01

    In this study, we evaluated the abilities of a series of chalcones to inhibit the activity of the enzyme xanthine oxidase (XO) and to scavenge radicals. 20 mono- and polyhydroxylated chalcone derivatives were synthesized by Claisen-Schmidt condensation reactions and then tested for inhibitory potency against XO, a known generator of reactive oxygen species (ROS). In parallel, the ability of the synthesized chalcones to scavenge a stable radical was determined. Structure-activity relationship analysis in conjunction with molecular docking indicated that the most active XO inhibitors carried a minimum of three hydroxyl groups. Moreover, the most effective radical scavengers had two neighboring hydroxyl groups on at least one of the two phenyl rings. Since it has been proposed previously that XO inhibition and radical scavenging could be useful properties for reduction of ROS-levels in tissue, we determined the chalcones’ effects to rescue neurons subjected to ROS-induced stress created by the addition of β-amyloid peptide. Best protection was provided by chalcones that combined good inhibitory potency with high radical scavenging ability in a single molecule, an observation that points to a potential therapeutic value of this compound class. PMID:26762836

  19. Storage stability and improvement of intermediate moisture foods

    NASA Technical Reports Server (NTRS)

    Labuza, T. P.

    1973-01-01

    The rates of chemical reactions which deteriorate foods prepared to an intermediate moisture content and water activity (A sub w 0.6 to 0.9) were studied. The phenomenon of sorption hysteresis was used to prepare model systems and foods to similar A sub w's but different moisture levels so that the separate effects of water binding and water content could be elucidated. It was found that water content is the controlling factor for lipid oxidation in model systems comprised of a solid support and an oxidizable liquid. It was proposed that metal chelating agents like EDTA should give good protection to oxidation. EDTA exhibited the highest efficacy, about 10-15 times better than BHA which is a radical scavenger when studied in the model systems.

  20. Iminium salts and their derivatives as models for catalytic water oxidation

    NASA Astrophysics Data System (ADS)

    Khatmullin, Renat R.

    The solar energy utilization is one of the most promising strategies for catering the ever-increasing energy demand in a renewable manner. For this reason, several approaches are pursued for solar energy storage, one of which involves the photocatalytic splitting of water. Over recent years, much research has been directed towards the design of transition-metal based water oxidation catalysts to obtain oxygen based on transition metal complexes. The major drawback of most of these catalysts is the cost of transition- metal complexes. For these reasons, the main focus of our research is based on the design of a fully organic catalyst suitable for water oxidation. Our group recently discovered that a flavinium ion performs electrode-mediated electrocatalytic water oxidation at large overpotentials. It was found that catalysis occurs only in the presence of the electrodes that produce active oxides on their surfaces. The mechanism of the catalysis by the flavinium ions was proposed to involve the coupling reaction two oxygen-centered radicals, one of which is derived from to the flavin moiety and the other one is formed at the electrode surface. The electrochemical oxidation of the formed peroxide species then proposed to release the oxygen molecule and recover the catalyst. However, it is important to note, that the detailed study of the mechanism is limited due the fact that electrode participates in the catalytic cycle. For these reasons, it is crucial to develop a fully homogeneous system to study the mechanism of the catalysis. One approach towards a fully molecular catalysis involves a system composed of two- iminium ion moieties joined covalently by a suitable linker. The mechanism of a catalysis is proposed to involve four individual steps: (i) pseudobase formation via a reaction of flavinium ions with water; (ii) proton-coupled oxidation of pseudobases to generate alkoxyl radicals; (iii) coupling of alkoxyl radicals to generate the peroxide intermediate; (iv

  1. Laser studies of the photodissociation dynamics of cometary radicals

    NASA Technical Reports Server (NTRS)

    Jackson, William M.

    1991-01-01

    In the past year, it was shown that in the 193 nm photolysis of C2H, the C2 radical is produced in a variety of electronic, vibrational, and rotational states. The relative population of the vibrational and rotational states of C2(A 1 Pi u), C2(B 1 Sigma g +), and C2(A 3 Pi u) were determined in a static gas cell and in a pulsed molecular beam. It seems as though the original angular momentum of the C2H molecule appears as part of the angular momentum of the C2 radical. A attempt is being made to discover the mathematical relationship that governs this mapping. New information about the bond dissociation energy of the C2 radical was produces. C2(b 3 Sigma g -) and C2( 1 Delta g) were detected in the photolysis of C2H via time resolved infrared emission spectroscopy. In the former case, vibrational excitation up to v'' = 4 is observed. All of the results suggest that the C2 models in comets need to consider the presence of vibrationally excited C2 radicals in comets. The laser induced fluorescence spectra of the C3 was observed as a product of the 193 nm photolysis of allene and propyne. The populations of the rotational levels are identical in both cases. This result has led us to conclude that an isomerization reaction occurs in the photolysis of propyne which leads to the same C3H2 intermediate that is formed in the photolysis of C3H4. Since the former molecule is one of the most abundant in the interstellar medium it is also likely that its precursor is also present in comets. This would explain why C3 is observed in comets.

  2. Radicalization and Radical Catalysis of Biomass Sugars: Insights from First-principles Studies

    PubMed Central

    Yang, Gang; Zhu, Chang; Zou, Xianli; Zhou, Lijun

    2016-01-01

    Ab initio and density functional calculations are conducted to investigate the radicalization processes and radical catalysis of biomass sugars. Structural alterations due to radicalization generally focus on the radicalized sites, and radicalization affects H-bonds in D-fructofuranose more than in D-glucopyranose, potentially with outcome of new H-bonds. Performances of different functionals and basis sets are evaluated for all radicalization processes, and enthalpy changes and Gibbs free energies for these processes are presented with high accuracy, which can be referenced for subsequent experimental and theoretical studies. It shows that radicalization can be utilized for direct transformation of biomass sugars, and for each sugar, C rather than O sites are always preferred for radicalization, thus suggesting the possibility to activate C-H bonds of biomass sugars. Radical catalysis is further combined with Brønsted acids, and it clearly states that functionalization fundamentally regulates the catalytic effects of biomass sugars. In presence of explicit water molecules, functionalization significantly affects the activation barriers and reaction energies of protonation rather than dehydration steps. Tertiary butyl and phenyl groups with large steric hindrances or hydroxyl and amino groups resulting in high stabilities for protonation products drive the protonation steps to occur facilely at ambient conditions. PMID:27405843

  3. Radicalization and Radical Catalysis of Biomass Sugars: Insights from First-principles Studies.

    PubMed

    Yang, Gang; Zhu, Chang; Zou, Xianli; Zhou, Lijun

    2016-07-13

    Ab initio and density functional calculations are conducted to investigate the radicalization processes and radical catalysis of biomass sugars. Structural alterations due to radicalization generally focus on the radicalized sites, and radicalization affects H-bonds in D-fructofuranose more than in D-glucopyranose, potentially with outcome of new H-bonds. Performances of different functionals and basis sets are evaluated for all radicalization processes, and enthalpy changes and Gibbs free energies for these processes are presented with high accuracy, which can be referenced for subsequent experimental and theoretical studies. It shows that radicalization can be utilized for direct transformation of biomass sugars, and for each sugar, C rather than O sites are always preferred for radicalization, thus suggesting the possibility to activate C-H bonds of biomass sugars. Radical catalysis is further combined with Brønsted acids, and it clearly states that functionalization fundamentally regulates the catalytic effects of biomass sugars. In presence of explicit water molecules, functionalization significantly affects the activation barriers and reaction energies of protonation rather than dehydration steps. Tertiary butyl and phenyl groups with large steric hindrances or hydroxyl and amino groups resulting in high stabilities for protonation products drive the protonation steps to occur facilely at ambient conditions.

  4. Measurement of interferences associated with the detection of the hydroperoxy radical in the atmosphere using laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Lew, Michelle M.; Dusanter, Sebastien; Stevens, Philip S.

    2018-01-01

    One technique used to measure concentrations of the hydroperoxy radical (HO2) in the atmosphere involves chemically converting it to OH by addition of NO and subsequent detection of OH. However, some organic peroxy radicals (RO2) can also be rapidly converted to HO2 (and subsequently OH) in the presence of NO, interfering with measurements of ambient HO2 radical concentrations. This interference must be characterized for each instrument to determine to what extent various RO2 radicals interfere with measurements of HO2 and to assess the impact of this interference on past measurements. The efficiency of RO2-to-HO2 conversion for the Indiana University laser-induced fluorescence-fluorescence assay by gas expansion (IU-FAGE) instrument was measured for a variety of RO2 radicals. Known quantities of OH and HO2 radicals were produced from the photolysis of water vapor at 184.9 nm, and RO2 radicals were produced by the reaction of several volatile organic compounds (VOCs) with OH. The conversion efficiency of RO2 radicals to HO2 was measured when NO was added to the sampling cell for conditions employed during several previous field campaigns. For these conditions, approximately 80 % of alkene-derived RO2 radicals and 20 % of alkane-derived RO2 radicals were converted to HO2. Based on these measurements, interferences from various RO2 radicals contributed to approximately 35 % of the measured HO2 signal during the Mexico City Metropolitan Area (MCMA) 2006 campaign (MCMA-2006), where the measured VOCs consisted of a mixture of saturated and unsaturated species. However, this interference can contribute more significantly to the measured HO2 signal in forested environments dominated by unsaturated biogenic emissions such as isoprene.

  5. Asymptotic aspect of derivations in Banach algebras.

    PubMed

    Roh, Jaiok; Chang, Ick-Soon

    2017-01-01

    We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.

  6. Damage of polyesters by the atmospheric free radical oxidant NO3 •: a product study involving model systems

    PubMed Central

    Goeschen, Catrin

    2013-01-01

    Summary Manufactured polymer materials are used in increasingly demanding applications, but their lifetime is strongly influenced by environmental conditions. In particular, weathering and ageing leads to dramatic changes in the properties of the polymers, which results in decreased service life and limited usage. Despite the heavy reliance of our society on polymers, the mechanism of their degradation upon exposure to environmental oxidants is barely understood. In this work, model systems of important structural motifs in commercial high-performing polyesters were used to study the reaction with the night-time free radical oxidant NO3 • in the absence and presence of other radical and non-radical oxidants. Identification of the products revealed ‘hot spots’ in polyesters that are particularly vulnerable to attack by NO3 • and insight into the mechanism of oxidative damage by this environmentally important radical. It is suggested that both intermediates as well as products of these reactions are potentially capable of promoting further degradation processes in polyesters under environmental conditions. PMID:24204400

  7. A stable Fe{sup III}-Fe{sup IV} replacement of tyrosyl radical in a class I ribonucleotide reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voevodskaya, N.; Lendzian, F.; Graeslund, A.

    2005-05-20

    Ribonucleotide reductase (RNR) of Chlamydia trachomatis is a class I RNR enzyme composed of two homodimeric components, proteins R1 and R2. In class I RNR, R1 has the substrate binding site, whereas R2 has a diferric site and normally in its active form a stable tyrosyl free radical. C. trachomatis RNR is unusual, because its R2 component has a phenylalanine in the place of the radical carrier tyrosine. Replacing the tyrosyl radical, a paramagnetic Fe{sup III}-Fe{sup IV} species (species X, normally a transient intermediate in the process leading to radical formation) may provide the oxidation equivalent needed to start themore » catalytic process via long range electron transfer from the active site in R1. Here EPR spectroscopy shows that in C. trachomatis RNR, species X can become essentially stable when formed in a complete RNR (R1/R2/substrate) complex, adding further weight to the possible role of this species X in the catalytic reaction.« less

  8. From a remarkable manifestation of polar effects in a radical fragmentation to the convergent synthesis of highly functionalized ketones.

    PubMed

    Debien, Laurent; Zard, Samir Z

    2013-03-13

    A new radical addition/C-C bond fragmentation process is reported. Vinyl carbinols derived from 2-methyl-2-phenylpropanal react with radicals generated from xanthates to give the corresponding ketones. The radical cleavage reaction proceeds under mild conditions, in good to high yield, and in the presence of the unprotected carbinol. Highly functionalized 1,5-diketones and pyridines are readily available using this approach.

  9. Specific Function of the Met-Tyr-Trp Adduct Radical and Residues Arg-418 and Asp-137 in the Atypical Catalase Reaction of Catalase-Peroxidase KatG*

    PubMed Central

    Zhao, Xiangbo; Khajo, Abdelahad; Jarrett, Sanchez; Suarez, Javier; Levitsky, Yan; Burger, Richard M.; Jarzecki, Andrzej A.; Magliozzo, Richard S.

    2012-01-01

    Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H2O2, the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H2O2 consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction. PMID:22918833

  10. Understanding the stability of pyrolysis tars from biomass in a view point of free radicals.

    PubMed

    He, Wenjing; Liu, Qingya; Shi, Lei; Liu, Zhenyu; Ci, Donghui; Lievens, Caroline; Guo, Xiaofen; Liu, Muxin

    2014-03-01

    Fast pyrolysis of biomass has attracted increasing attention worldwide to produce bio-tars that can be upgraded into liquid fuels and chemicals. However, the bio-tars are usually poor in quality and stability and are difficult to be upgraded. To better understand the nature of the bio-tars, this work reveals radical concentration of tars derived from pyrolysis of two kinds of biomass. The tars were obtained by condensing the pyrolysis volatiles in 3s. It shows that the tars contain large amounts of radicals, at a level of 10(16)spins/g, and are able to generate more radicals at temperatures of 573K or higher, reaching a level of 10(19)spins/g at 673K in less than 30min. The radical generation in the tar samples is attributed to the formation of THF insoluble matters (coke), which also contain radicals. The radical concentrations of the aqueous liquids obtained in pyrolysis are also studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Two tyrosyl radicals stabilize high oxidation states in cytochrome c oxidase for efficient energy conservation and proton translocation

    NASA Astrophysics Data System (ADS)

    Rousseau, Denis

    2012-02-01

    The reaction of hydrogen peroxide (H2O2) with oxidized bovine cytochrome c oxidase (bCcO) was studied by electron paramagnetic resonance (EPR) to determine the properties of radical intermediates. Two distinct radicals with widths of 12 and 46 G are directly observed by X-band CW-EPR in the reaction of bCcO with H2O2 at pH 6 and pH 8. High-frequency EPR (D-band) provides assignments to tyrosine for both radicals based on well-resolved g-tensors. The 46 G wide radical has extensive hyperfine structure and can be fit with parameters consistent with Y129. However, the 12 G wide radical has minimal hyperfine structure and can be fit using parameters unique to the post-translationally modified Y244 in CcO. The results are supported by mixed quantum mechanics and molecular mechanics calculations. This study reports spectroscopic evidence of a radical formed on the modified tyrosine in CcO and resolves the much debated controversy of whether the wide radical seen at low pH in the bovine system is a tyrosine or tryptophan. A model is presented showing how radical formation and migration may play an essential role in proton translocation. This work was done in collaboration with Michelle A. Yu, Tsuyoshi Egawa, Syun-Ru Yeh and Gary J. Gerfen from Albert Einstein College of Medicine; Kyoko Shinzawa-Itoh and Shinya Yoshikawa from the University of Hyogo; and Victor Guallar from the Barcelona Supercomputing Center.

  12. Seasonal and spatial variabilities in the water chemistry of prairie pothole wetlands influence the photoproduction of reactive intermediates.

    PubMed

    McCabe, Andrew J; Arnold, William A

    2016-07-01

    The hydrology and water chemistry of prairie pothole wetlands vary spatially and temporally, on annual and decadal timescales. Pesticide contamination of wetlands arising from agricultural activities is a foremost concern. Photochemical reactions are important in the natural attenuation of pesticides and may be important in limiting ecological and human exposure. Little is known, however, about the variable influence of wetland water chemistry on indirect photochemistry. In this study, seasonal water samples were collected from seven sites throughout the prairie pothole region over three years to understand the spatiotemporal dynamics of reactive intermediate photoproduction. Samples were classified by the season in which they were collected (spring, summer, or fall) and the typical hydroperiod of the wetland surface water (temporary or semi-permanent). Under photostable conditions, steady-state concentrations and apparent quantum yields or quantum yield coefficients were measured for triplet excited states of dissolved organic matter, singlet oxygen, hydroxyl radical, and carbonate radical under simulated sunlight. Steady-state concentrations and quantum yields increased on average by 15% and 40% from spring to fall, respectively. Temporary wetlands had 40% higher steady-state concentrations of reactive intermediates than semi-permanent wetlands, but 50% lower quantum yields. Computed quantum yields for reactive intermediate formation were used to predict the indirect photochemical half-lives of seven pesticides in average temporary and semi-permanent prairie pothole wetlands. As a first approximation, the predictions agree to within two orders of magnitude of previously reported half-lives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Imaging spectroscopy of the missing REMPI bands of methyl radicals: Final touches on all vibrational frequencies of the 3p Rydberg states

    NASA Astrophysics Data System (ADS)

    Pan, Huilin; Liu, Kopin

    2018-01-01

    (2 + 1) resonance-enhanced multiphoton ionization (REMPI) detection of methyl radicals, in particular that via the intermediate 3p Rydberg states, has shown to be a powerful method and thus enjoyed a wide range of applications. Methyl has six vibrational modes. Among them—including partially and fully deuterated isotopologs—four out of twenty vibrational frequencies in the intermediate 3p states have so far eluded direct spectroscopic determination. Here, by exploiting the imaging spectroscopy approach to a few judiciously selected chemical reactions, the four long-sought REMPI bands—CHD2(611), CH2D(311), CH2D(511), and CH2D(611)—are discovered, which complete the REMPI identification for probing any vibrational mode of excitation of methyl radical and its isotopologs. These results, in conjunction with those previously reported yet scattered in the literature, are summarized here for ready reference, which should provide all necessary information for further spectral assignments and future studies of chemical dynamics using this versatile REMPI scheme.

  14. The near-infrared spectrum of ethynyl radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Anh T., E-mail: anhle@bnl.gov; Hall, Gregory E., E-mail: gehall@bnl.gov; Sears, Trevor J., E-mail: sears@bnl.gov, E-mail: trevor.sears@stonybrook.edu

    2016-08-21

    Transient diode laser absorption spectroscopy has been used to measure three strong vibronic bands in the near infrared spectrum of the C{sub 2}H, ethynyl, radical not previously observed in the gas phase. The radical was produced by ultraviolet excimer laser photolysis of either acetylene or (1,1,1)-trifluoropropyne in a slowly flowing sample of the precursor diluted in inert gas, and the spectral resolution was Doppler-limited. The character of the upper states was determined from the rotational and fine structure in the observed spectra and assigned by measurement of ground state rotational combination differences. The upper states include a {sup 2}Σ{sup +}more » state at 6696 cm{sup −1}, a second {sup 2}Σ{sup +} state at 7088 cm{sup −1}, and a {sup 2}Π state at 7110 cm{sup −1}. By comparison with published calculations [R. Tarroni and S. Carter, J. Chem. Phys 119, 12878 (2003); Mol. Phys. 102, 2167 (2004)], the vibronic character of these levels was also assigned. The observed states contain both X{sup 2}Σ{sup +} and A{sup 2}Π electronic characters. Several local rotational level perturbations were observed in the excited states. Kinetic measurements of the time-evolution of the ground state populations following collisional relaxation and reactive loss of the radicals formed in a hot, non-thermal, population distribution were made using some of the strong rotational lines observed. The case of C{sub 2}H may be a good place to investigate the behavior at intermediate pressures of inert colliders, where the competition between relaxation and reaction can be tuned and observed to compare with master equation models, rather than deliberately suppressed to measure thermal rate constants.« less

  15. 77 FR 14022 - Guidance for Industry on Chemistry, Manufacturing, and Controls Information-Fermentation-Derived...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ...] Guidance for Industry on Chemistry, Manufacturing, and Controls Information--Fermentation-Derived... (CMC) Information-- Fermentation-Derived Intermediates, Drug Substances, and Related Drug Products for... to submit to support the CMC information for fermentation-derived intermediates, drug substances, and...

  16. The preparation and antioxidant activity of the sulfanilamide derivatives of chitosan and chitosan sulfates.

    PubMed

    Zhong, Zhimei; Ji, Xia; Xing, Ronge; Liu, Song; Guo, Zhanyong; Chen, Xiaolin; Li, Pengcheng

    2007-06-01

    Chitosan (CS) and chitosan sulfates (CSS) with different molecular weight (Mw) were reacted with 4-acetamidobenzene sulfonyl chloride to obtain sulfanilamide derivatives of chitosan and chitosan sulfates (LSACS, HSACS, LSACSS, HSACSS). The preparation conditions such as different reaction time, temperature, solvent, and the molar ratio of reaction materials are discussed in this paper. Their structures were characterized by FTIR spectroscopy and elemental analyses. The antioxidant activities of the derivatives were investigated employing various established in vitro systems, such as hydroxyl-radical ((*)OH) superoxide anion (O2(*-)) scavenging and reducing power. All kinds of the compounds (HCS, LCS, HCSS, LCSS, HSACS, LSACS, HSACSS, LSACSS) showed stronger scavenging activity on hydroxyl radical than ascorbic acid (Vc). The inhibitory activities of the derivatives toward superoxide radical by the PMS-NADH system were obvious. The experiment showed that the superoxide radical scavenging effect of sulfanilamide derivatives of chitosan and chitosan sulfates was stronger than that of original CS and CSS. All of the derivatives were efficient in the reducing power. The results indicated that the sulfanilamide group were grafted on CS and CSS increased the reducing power of them obviously.

  17. Cytoplasmic peptidoglycan intermediate levels in Staphylococcus aureus.

    PubMed

    Vemula, Harika; Ayon, Navid J; Gutheil, William G

    2016-02-01

    Intracellular cytoplasmic peptidoglycan (PG) intermediate levels were determined in Staphylococcus aureus during log-phase growth in enriched media. Levels of UDP-linked intermediates were quantitatively determined using ion pairing LC-MS/MS in negative mode, and amine intermediates were quantitatively determined stereospecifically as their Marfey's reagent derivatives in positive mode. Levels of UDP-linked intermediates in S. aureus varied from 1.4 μM for UDP-GlcNAc-Enolpyruvyate to 1200 μM for UDP-MurNAc. Levels of amine intermediates (L-Ala, D-Ala, D-Ala-D-Ala, L-Glu, D-Glu, and L-Lys) varied over a range of from 860 μM for D-Ala-D-Ala to 30-260 mM for the others. Total PG was determined from the D-Glu content of isolated PG, and used to estimate the rate of PG synthesis (in terms of cytoplasmic metabolite flux) as 690 μM/min. The total UDP-linked intermediates pool (2490 μM) is therefore sufficient to sustain growth for 3.6 min. Comparison of UDP-linked metabolite levels with published pathway enzyme characteristics demonstrates that enzymes on the UDP-branch range from >80% saturation for MurA, Z, and C, to <5% saturation for MurB. Metabolite levels were compared with literature values for Escherichia coli, with the major difference in UDP-intermediates being the level of UDP-MurNAc, which was high in S. aureus (1200 μM) and low in E. coli (45 μM). Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    PubMed Central

    Popolan-Vaida, Denisia M.; Chen, Bingjie; Moshammer, Kai; Mohamed, Samah Y.; Wang, Heng; Sioud, Salim; Raji, Misjudeen A.; Kohse-Höinghaus, Katharina; Hansen, Nils; Dagaut, Philippe; Leone, Stephen R.

    2017-01-01

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels. PMID:29183984

  19. Risk Prediction Models of Locoregional Failure After Radical Cystectomy for Urothelial Carcinoma: External Validation in a Cohort of Korean Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, Ja Hyeon; Kim, Myong; Jeong, Chang Wook

    2014-08-01

    Purpose: To evaluate the predictive accuracy and general applicability of the locoregional failure model in a different cohort of patients treated with radical cystectomy. Methods and Materials: A total of 398 patients were included in the analysis. Death and isolated distant metastasis were considered competing events, and patients without any events were censored at the time of last follow-up. The model included the 3 variables pT classification, the number of lymph nodes identified, and margin status, as follows: low risk (≤pT2), intermediate risk (≥pT3 with ≥10 nodes removed and negative margins), and high risk (≥pT3 with <10 nodes removed ormore » positive margins). Results: The bootstrap-corrected concordance index of the model 5 years after radical cystectomy was 66.2%. When the risk stratification was applied to the validation cohort, the 5-year locoregional failure estimates were 8.3%, 21.2%, and 46.3% for the low-risk, intermediate-risk, and high-risk groups, respectively. The risk of locoregional failure differed significantly between the low-risk and intermediate-risk groups (subhazard ratio [SHR], 2.63; 95% confidence interval [CI], 1.35-5.11; P<.001) and between the low-risk and high-risk groups (SHR, 4.28; 95% CI, 2.17-8.45; P<.001). Although decision curves were appropriately affected by the incidence of the competing risk, decisions about the value of the models are not likely to be affected because the model remains of value over a wide range of threshold probabilities. Conclusions: The model is not completely accurate, but it demonstrates a modest level of discrimination, adequate calibration, and meaningful net benefit gain for prediction of locoregional failure after radical cystectomy.« less

  20. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.

    PubMed

    Matsuzaki, Satoshi; Kotake, Yashige; Humphries, Kenneth M

    2011-12-20

    The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.

  1. Determination of Combustion Product Radicals in a Hydrocarbon Fueled Rocket Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Langford, Lester A.; Allgood, Daniel C.; Junell, Justin C.

    2007-01-01

    The identification of metallic effluent materials in a rocket engine exhaust plume indicates the health of the engine. Since 1989, emission spectroscopy of the plume of the Space Shuttle Main Engine (SSME) has been used for ground testing at NASA's Stennis Space Center (SSC). This technique allows the identification and quantification of alloys from the metallic elements observed in the plume. With the prospect of hydrocarbon-fueled rocket engines, such as Rocket Propellant 1 (RP-1) or methane (CH4) fueled engines being considered for use in future space flight systems, the contributions of intermediate or final combustion products resulting from the hydrocarbon fuels are of great interest. The effect of several diatomic molecular radicals, such as Carbon Dioxide , Carbon Monoxide, Molecular Carbon, Methylene Radical, Cyanide or Cyano Radical, and Nitric Oxide, needs to be identified and the effects of their band systems on the spectral region from 300 nm to 850 nm determined. Hydrocarbon-fueled rocket engines will play a prominent role in future space exploration programs. Although hydrogen fuel provides for higher engine performance, hydrocarbon fuels are denser, safer to handle, and less costly. For hydrocarbon-fueled engines using RP-1 or CH4 , the plume is different from a hydrogen fueled engine due to the presence of several other species, such as CO2, C2, CO, CH, CN, and NO, in the exhaust plume, in addition to the standard H2O and OH. These species occur as intermediate or final combustion products or as a result of mixing of the hot plume with the atmosphere. Exhaust plume emission spectroscopy has emerged as a comprehensive non-intrusive sensing technology which can be applied to a wide variety of engine performance conditions with a high degree of sensitivity and specificity. Stennis Space Center researchers have been in the forefront of advancing experimental techniques and developing theoretical approaches in order to bring this technology to a more

  2. Performance characteristics of prostate-specific antigen density and biopsy core details to predict oncological outcome in patients with intermediate to high-risk prostate cancer underwent robot-assisted radical prostatectomy.

    PubMed

    Yashi, Masahiro; Nukui, Akinori; Tokura, Yuumi; Takei, Kohei; Suzuki, Issei; Sakamoto, Kazumasa; Yuki, Hideo; Kambara, Tsunehito; Betsunoh, Hironori; Abe, Hideyuki; Fukabori, Yoshitatsu; Nakazato, Yoshimasa; Kaji, Yasushi; Kamai, Takao

    2017-06-23

    Many urologic surgeons refer to biopsy core details for decision making in cases of localized prostate cancer (PCa) to determine whether an extended resection and/or lymph node dissection should be performed. Furthermore, recent reports emphasize the predictive value of prostate-specific antigen density (PSAD) for further risk stratification, not only for low-risk PCa, but also for intermediate- and high-risk PCa. This study focused on these parameters and compared respective predictive impact on oncologic outcomes in Japanese PCa patients. Two-hundred and fifty patients with intermediate- and high-risk PCa according to the National Comprehensive Cancer Network (NCCN) classification, that underwent robot-assisted radical prostatectomy at a single institution, and with observation periods of longer than 6 months were enrolled. None of the patients received hormonal treatments including antiandrogens, luteinizing hormone-releasing hormone analogues, or 5-alpha reductase inhibitors preoperatively. PSAD and biopsy core details, including the percentage of positive cores and the maximum percentage of cancer extent in each positive core, were analyzed in association with unfavorable pathologic results of prostatectomy specimens, and further with biochemical recurrence. The cut-off values of potential predictive factors were set through receiver-operating characteristic curve analyses. In the entire cohort, a higher PSAD, the percentage of positive cores, and maximum percentage of cancer extent in each positive core were independently associated with advanced tumor stage ≥ pT3 and an increased index tumor volume > 0.718 ml. NCCN classification showed an association with a tumor stage ≥ pT3 and a Gleason score ≥8, and the attribution of biochemical recurrence was also sustained. In each NCCN risk group, these preoperative factors showed various associations with unfavorable pathological results. In the intermediate-risk group, the percentage of positive cores showed

  3. Dispersed-Fluorescence Spectroscopy of Jet-Cooled Calcium Ethoxide Radical (CaOC_2H_5)

    NASA Astrophysics Data System (ADS)

    Paul, Anam C.; Reza, Md Asmaul; Liu, Jinjun

    2016-06-01

    Metal-containing free radicals are important intermediates in metal-surface reactions and in the interaction between metals and organic molecules. In the present work, dispersed fluorescence (DF) spectra of the calcium ethoxide radical (CaOC_2H_5) have been obtained by pumping the {tilde A^2}{A}' ← {tilde X^2}{A}' and the {tilde B^2}{A}'' ← {tilde X^2}{A}' origin bands in its laser-induced fluorescence (LIF) spectrum. CaOC_2H_5 radicals were produced by 1064 nm laser ablation of calcium grains in the presence of ethanol under jet-cooled conditions. Dominant transitions in the vibrationally resolved DF spectra are well reproduced using Franck-Condon factors predicted by complete active space self-consistent (CASSCF) calculations. Differences in transition intensities between the {tilde A^2}{A}' → {tilde X^2}{A}' and the {tilde B^2}{A}'' → {tilde X^2}{A}' DF spectra are attributed to the pseudo-Jahn-Teller interaction between the tilde A ^2 A' and the tilde B ^2 A'' states. Collision-induced population transfer between these two excited electronic states results in additional peaks in the DF spectra.

  4. Electrografting of alkyl films at low driving force by diverting the reactivity of aryl radicals derived from diazonium salts.

    PubMed

    Hetemi, Dardan; Kanoufi, Frédéric; Combellas, Catherine; Pinson, Jean; Podvorica, Fetah I

    2014-11-25

    Alkyl and partial perfluoroalkyl groups are strongly attached to carbon surfaces through (i) the abstraction of the iodine atom from an iodoalkane by the sterically hindered 2,6-dimethylphenyl radical and (ii) the reaction of the ensuing alkyl radical with the carbon surface. Since the 2,6-dimethylphenyl radical is obtained at -0.25 V/Ag/AgCl by reducing the corresponding diazonium salt, the electrografting reaction is facilitated by ∼1.7 V by comparison with the direct electrografting of the iodo compounds. Layers of various thicknesses, including monolayers, are obtained by controlling the time duration of the electrolysis. The grafted films are characterized by electrochemistry, IR, XPS, ellipsometry, and water contact angles.

  5. Structure and energetics of vinoxide and the X({sup 2}A{double{underscore}prime}) and A({sup 2}A{prime}) vinoxy radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alconcel, L.S.; Deyerl, H.J.; Zengin, V.

    1999-11-18

    Enolate anions are intermediates in many organic reactions that involve carbon-carbon or carbon-oxygen food formation. They also play a key role in the development of stereoselective and stereocontrolled syntheses of complex compounds. Enolate radicals are important intermediates in combustion and photochemical smog cycles. In particular, the vinoxy radical, C{sub 2}H{sub 3}O{sup {sm{underscore}bullet}} is a major product of the reaction of odd oxygen and ethylene. The photoelectron spectrum of binoxide, C{sub 2}H{sub 3}O{sup {minus}}, at 355 nm is reported, showing photodetachment to both the X({sup 2}A{double{underscore}prime}) ground and first excited A({sup 2}A{prime}) states of the vinoxy radical. Both direct interpretations andmore » Franck-Condon simulations of the photoelectron spectrum of this simple enolate anion have been used to obtain insights into the energetics and structures of the anion and the ground and first excited state of the neutral radical. Franck-Condon simulations were generated from ab initio geometry and frequency calculations using the CASSCF method and showed good agreement with the vibrational structure visible in the experimental spectrum. The electron affinity (E.A.{sub exp} = 1.795 {+-} 0.015 eV; E.A.{sub calc} = 1.82 eV) and separation energy of the ground and first excited states (T{sub 0,exp} = 1.015 {+-} 0.015 eV; T{sub 0,calc} = 0.92 eV) obtained from the ab initio calculations are in good accord with the experimental values.« less

  6. Photochemical key steps in the synthesis of surfactants from furfural-derived intermediates.

    PubMed

    Gassama, Abdoulaye; Ernenwein, Cédric; Hoffmann, Norbert

    2009-01-01

    Furfural is oxidized to 2[5H]-furanone by using hydrogen peroxide or to 5-hydroxy-2[5H]-furanone by using photo-oxygenation. An amine function is introduced by photochemically induced radical addition of tertiairy amines, some of which carry an n-alkyl side chain as hydrophobic moiety. These amines are produced from fatty aldehydes and cyclic secondary amines. The resulting adducts are transformed into amphoteric surfactants possessing an ammonium and a carboxylate function. Amphoteric (pK(N) and isoelectric point) and surfactant properties such as the critical micelle concentration and the adsorption efficiency are determined.

  7. Direct Structural and Chemical Characterization of the Photolytic Intermediates of Methylcobalamin Using Time-Resolved X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Ganesh; Zhang, Xiaoyi; Kodis, Gerdenis

    Cobalt-carbon bond cleavage is crucial to most natural and synthetic applications of the cobalamin class of compounds, and here we present the first direct electronic and geometric structural characteristics of intermediates formed following photoexcitation of methylcobalamin (MeCbl) using time-resolved X-ray absorption spectroscopy (XAS). We catch transients corresponding to two intermediates, in the hundreds of picoseconds and a few microseconds. Highlights of the picosecond intermediate, which is reduced in comparison to the ground state, are elongation of the upper axial Co-C bond and relaxation of the corrin ring. This is not so with the recombining photocleaved products captured at a fewmore » microseconds, where the Co-C bond almost (yet not entirely) reverts to its ground state configuration and a substantially elongated lower axial Co-NIm bond is observed. The reduced cobalt site here confirms formation of methyl radical as the photoproduct.« less

  8. A new method for measuring oxidative stress in claudicants during strenuous exercise using free radical derivatives of antipyrine as indicators: a pilot study.

    PubMed

    Coolen, Stefan A J; Wijnen, Marc H W A; Reijenga, Jetse C; Vader, Huib L; Roumen, Rudi M H; Huf, Fred A

    2002-01-01

    Patients with intermittent claudication disease suffer from temporary lack of oxygen in the legs, caused by narrowing of arteries, resulting in ischemia and followed by reperfusion. The degree of oxidative stress present in 16 patients during strenuous exercise was determined using several indicators. Two derivatives of an exogenous marker, antipyrine (AP), (ie, p-hydroxyantipyrine, p-APOH, and o-hydroxyantipyrine, o-APOH), were assayed in plasma using HPLC-tandem-MS. Plasma malondialdehyde (assayed as thiobarbituric acid reactive species, TBARS) was also determined. The branchial/ankle blood pressure index (b-a index) was used to assess the severity of intermittent claudication disease, and plasma lactate concentration was also measured as an indicator of the ischemic situation. Plasma TBARS level did not change significantly after exercise. During the ischemic situation as well as during reperfusion, both free radical derivatives of antipyrine increased significantly in plasma (p < 0.01). Because p-APOH is also formed enzymatically in humans, the plasma ratio of o-APOH to AP appeared to be the most specific marker for oxidative stress in patients with intermittent claudication.

  9. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals. Final Performance Report, August 1, 1985--July 31, 1994

    DOE R&D Accomplishments Database

    Curl, R. F.; Glass, G. P.

    1995-06-01

    This research was directed at the detection, monitoring, and study (by infrared absorption spectroscopy) of the chemical kinetic behavior of small free radical species thought to be important intermediates in combustion. The work typically progressed from the detection and analysis of the infrared spectrum of combustion radical to the utilization of the infrared spectrum thus obtained in the investigation of chemical kinetics of the radical species. The methodology employed was infrared kinetic spectroscopy. In this technique the radical is produced by UV flash photolysis using an excimer laser and then its transient infrared absorption is observed using a single frequency cw laser as the source of the infrared probe light. When the probe laser frequency is near the center of an absorption line of the radical produced by the flash, the transient infrared absorption rises rapidly and then decays as the radical reacts with the precursor or with substances introduced for the purpose of studying the reaction kinetics or with itself. The decay times observed in these studies varied from less than one microsecond to more than one millisecond. By choosing appropriate time windows after the flash and the average infrared detector signal in a window as data channels, the infrared spectrum of the radical may be obtained. By locking the infrared probe laser to the center of the absorption line and measuring the rate of decay of the transient infrared absorption signal as the chemical composition of the gas mixture is varied, the chemical kinetics of the radical may be investigated. In what follows the systems investigated and the results obtained are outlined.

  10. Asymmetric radical alkylation of N-sulfinimines under visible light photocatalytic conditions.

    PubMed

    Garrido-Castro, Alberto F; Choubane, Houcine; Daaou, Mortada; Maestro, M Carmen; Alemán, José

    2017-07-06

    In this communication, a new photocatalytic strategy for the addition of alkyl-radical derivatives to N-sulfinimines with complete diastereoselectivity and moderate to good yields is presented. This is the first asymmetric photocatalytic addition to N-sulfinimines under visible light irradiation with smooth conditions and functional group tolerance.

  11. Oxidation of spin-traps by chlorine dioxide (ClO2) radical in aqueous solutions: first ESR evidence of formation of new nitroxide radicals.

    PubMed

    Ozawa, T; Miura, Y; Ueda, J

    1996-01-01

    The reactivities of the chlorine dioxide (ClO2), which is a stable free radical towards some water-soluble spin-traps were investigated in aqueous solutions by an electron spin resonance (ESR) spectroscopy. The ClO2 radical was generated from the redox reaction of Ti3+ with potassium chlorate (KClO3) in aqueous solutions. When one of the spin-traps, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), was included in the Ti3+-KClO3 reaction system, ESR spectrum due to the ClO2 radical completely disappeared and a new ESR spectrum [aN(1) = 0.72 mT, aH(2) = 0.41 mT], which is different from that of DMPO-ClO2 adduct, was observed. The ESR parameters of this new ESR signal was identical to those of 5,5-dimethylpyrrolidone-(2)-oxyl-(1) (DMPOX), suggesting the radical species giving the new ESR spectrum is assignable to DMPOX. The similar ESR spectrum consisting of a triplet [aN(1) = 0.69 mT] was observed when the derivative of DMPO, 3,3,5,5-tetramethyl-1-pyrroline N-oxide (M4PO) was included in the Ti3+-KClO3 reaction system. This radical species is attributed to the oxidation product of M4PO, 3,3,5,5-tetramethylpyrrolidone-(2)-oxyl-(1) (M4POX). When another nitrone spin-trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN) was used as a spin-trap, the ESR signal intensity due to the ClO2 radical decreased and a new ESR signal consisting of a triplet [aN(1) = 0.76 mT] was observed. The similar ESR spectrum was observed when N-t-butyl-alpha- nitrone (PBN) was used as a spin-trap. This ESR parameter [a(N)(1) = 0.85 mT] was identical to the oxidation product of PBN, PBNX. Thus, the new ESR signal observed from POBN may be assigned to the oxidation product of POBN, POBNX. These results suggest that the ClO2, radical does not form the stable spin adducts with nitrone spin-traps, but oxidizes these spin-traps to give the corresponding nitroxyl radicals. On the other hand, nitroso spin-traps, 5,5-dibromo-4-nitrosobenzenesulfonate (DBNBS), and 2-methyl-2-nitrosopropane (MNP) did not trap

  12. Analysis of the kinetics and yields of OH radical production from the CH3OCH2 + O2 reaction in the temperature range 195-650 K: an experimental and computational study.

    PubMed

    Eskola, A J; Carr, S A; Shannon, R J; Wang, B; Blitz, M A; Pilling, M J; Seakins, P W; Robertson, S H

    2014-08-28

    The methoxymethyl radical, CH3OCH2, is an important intermediate in the low temperature combustion of dimethyl ether. The kinetics and yields of OH from the reaction of the methoxymethyl radical with O2 have been measured over the temperature and pressure ranges of 195-650 K and 5-500 Torr by detecting the hydroxyl radical using laser-induced fluorescence following the excimer laser photolysis (248 nm) of CH3OCH2Br. The reaction proceeds via the formation of an energized CH3OCH2O2 adduct, which either dissociates to OH + 2 H2CO or is collisionally stabilized by the buffer gas. At temperatures above 550 K, a secondary source of OH was observed consistent with thermal decomposition of stabilized CH3OCH2O2 radicals. In order to quantify OH production from the CH3OCH2 + O2 reaction, extensive relative and absolute OH yield measurements were performed over the same (T, P) conditions as the kinetic experiments. The reaction was studied at sufficiently low radical concentrations (∼10(11) cm(-3)) that secondary (radical + radical) reactions were unimportant and the rate coefficients could be extracted from simple bi- or triexponential analysis. Ab initio (CBS-GB3)/master equation calculations (using the program MESMER) of the CH3OCH2 + O2 system were also performed to better understand this combustion-related reaction as well as be able to extrapolate experimental results to higher temperatures and pressures. To obtain agreement with experimental results (both kinetics and yield data), energies of the key transition states were substantially reduced (by 20-40 kJ mol(-1)) from their ab initio values and the effect of hindered rotations in the CH3OCH2 and CH3OCH2OO intermediates were taken into account. The optimized master equation model was used to generate a set of pressure and temperature dependent rate coefficients for the component nine phenomenological reactions that describe the CH3OCH2 + O2 system, including four well-skipping reactions. The rate coefficients were

  13. Photocrystallographic observation of halide-bridged intermediates in halogen photoeliminations.

    PubMed

    Powers, David C; Anderson, Bryce L; Hwang, Seung Jun; Powers, Tamara M; Pérez, Lisa M; Hall, Michael B; Zheng, Shao-Liang; Chen, Yu-Sheng; Nocera, Daniel G

    2014-10-29

    Polynuclear transition metal complexes, which frequently constitute the active sites of both biological and chemical catalysts, provide access to unique chemical transformations that are derived from metal-metal cooperation. Reductive elimination via ligand-bridged binuclear intermediates from bimetallic cores is one mechanism by which metals may cooperate during catalysis. We have established families of Rh2 complexes that participate in HX-splitting photocatalysis in which metal-metal cooperation is credited with the ability to achieve multielectron photochemical reactions in preference to single-electron transformations. Nanosecond-resolved transient absorption spectroscopy, steady-state photocrystallography, and computational modeling have allowed direct observation and characterization of Cl-bridged intermediates (intramolecular analogues of classical ligand-bridged intermediates in binuclear eliminations) in halogen elimination reactions. On the basis of these observations, a new class of Rh2 complexes, supported by CO ligands, has been prepared, allowing for the isolation and independent characterization of the proposed halide-bridged intermediates. Direct observation of halide-bridged structures establishes binuclear reductive elimination as a viable mechanism for photogenerating energetic bonds.

  14. Mining the human phenome using allelic scores that index biological intermediates.

    PubMed

    Evans, David M; Brion, Marie Jo A; Paternoster, Lavinia; Kemp, John P; McMahon, George; Munafò, Marcus; Whitfield, John B; Medland, Sarah E; Montgomery, Grant W; Timpson, Nicholas J; St Pourcain, Beate; Lawlor, Debbie A; Martin, Nicholas G; Dehghan, Abbas; Hirschhorn, Joel; Smith, George Davey

    2013-10-01

    It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure

  15. Intermediate boundary conditions for LOD, ADI and approximate factorization methods

    NASA Technical Reports Server (NTRS)

    Leveque, R. J.

    1985-01-01

    A general approach to determining the correct intermediate boundary conditions for dimensional splitting methods is presented. The intermediate solution U is viewed as a second order accurate approximation to a modified equation. Deriving the modified equation and using the relationship between this equation and the original equation allows us to determine the correct boundary conditions for U*. This technique is illustrated by applying it to locally one dimensional (LOD) and alternating direction implicit (ADI) methods for the heat equation in two and three space dimensions. The approximate factorization method is considered in slightly more generality.

  16. Development of a new free radical absorption capacity assay method for antioxidants: aroxyl radical absorption capacity (ARAC).

    PubMed

    Nagaoka, Shin-ichi; Nagai, Kanae; Fujii, Yuko; Ouchi, Aya; Mukai, Kazuo

    2013-10-23

    A new free radical absorption capacity assay method is proposed with use of an aroxyl radical (2,6-di-tert-butyl-4-(4'-methoxyphenyl)phenoxyl radical) and stopped-flow spectroscopy and is named the aroxyl radical absorption capacity (ARAC) assay method. The free radical absorption capacity (ARAC value) of each tocopherol was determined through measurement of the radical-scavenging rate constant in ethanol. The ARAC value could also be evaluated through measurement of the half-life of the aroxyl radical during the scavenging reaction. For the estimation of the free radical absorption capacity, the aroxyl radical was more suitable than the DPPH radical, galvinoxyl, and p-nitrophenyl nitronyl nitroxide. The ARAC value in tocopherols showed the same tendency as the free radical absorption capacities reported previously, and the tendency was independent of an oxygen radical participating in the scavenging reaction and of a medium surrounding the tocopherol and oxygen radical. The ARAC value can be directly connected to the free radical-scavenging rate constant, and the ARAC method has the advantage of treating a stable and isolable radical (aroxyl radical) in a user-friendly organic solvent (ethanol). The ARAC method was also successfully applied to a palm oil extract. Accordingly, the ARAC method would be useful in free radical absorption capacity assay of antioxidative reagents and foods.

  17. 9-Substituted acridine derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors possessing antioxidant activity for Alzheimer's disease treatment.

    PubMed

    Makhaeva, Galina F; Lushchekina, Sofya V; Boltneva, Natalia P; Serebryakova, Olga G; Rudakova, Elena V; Ustyugov, Alexey A; Bachurin, Sergey O; Shchepochkin, Alexander V; Chupakhin, Oleg N; Charushin, Valery N; Richardson, Rudy J

    2017-11-01

    We investigated the inhibitory activity of 4 groups of novel acridine derivatives against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterase (CaE) using the methods of enzyme kinetics and molecular docking. Antioxidant activity of the compounds was determined using the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS + ) radical decolorization assay as their ability to scavenge free radicals. Analysis of the esterase profiles and antiradical activities of the acridine derivatives showed that 9-aryl(heteroaryl)-N-methyl-9,10-dihydroacridines have a high radical-scavenging activity but low potency as AChE and BChE inhibitors, whereas 9-aryl(heteroaryl)-N-methyl-acridinium tetrafluoroborates effectively inhibit cholinesterases but do not exhibit antiradical activity. In contrast, a group of derivatives of 9-heterocyclic amino-N-methyl-9,10-dihydroacridine has been found that combine effective inhibition of AChE and BChE with rather high radical-scavenging activity. The results of molecular docking well explain the observed features in the efficacy, selectivity, and mechanism of cholinesterase inhibition by the acridine derivatives. Thus, in a series of acridine derivatives we have found compounds possessing dual properties of effective and selective cholinesterase inhibition together with free radical scavenging, which makes promising the use of the acridine scaffold to create multifunctional drugs for the therapy of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Adenine radicals generated in alternating AT duplexes by direct absorption of low-energy UV radiation.

    PubMed

    Banyasz, Akos; Ketola, Tiia; Martínez-Fernández, Lara; Improta, Roberto; Markovitsi, Dimitra

    2018-04-17

    There is increasing evidence that the direct absorption of photons with energies that are lower than the ionization potential of nucleobases may result in oxidative damage to DNA. The present work, which combines nanosecond transient absorption spectroscopy and quantum mechanical calculations, studies this process in alternating adenine-thymine duplexes (AT)n. We show that the one-photon ionization quantum yield of (AT)10 at 266 nm (4.66 eV) is (1.5 ± 0.3) × 10-3. According to our PCM/TD-DFT calculations carried out on model duplexes composed of two base pairs, (AT)1 and (TA)1, simultaneous base pairing and stacking does not induce important changes in the absorption spectra of the adenine radical cation and deprotonated radical. The adenine radicals, thus identified in the time-resolved spectra, disappear with a lifetime of 2.5 ms, giving rise to a reaction product that absorbs at 350 nm. In parallel, the fingerprint of reaction intermediates other than radicals, formed directly from singlet excited states and assigned to AT/TA dimers, is detected at shorter wavelengths. PCM/TD-DFT calculations are carried out to map the pathways leading to such species and to characterize their absorption spectra; we find that, in addition to the path leading to the well-known TA* photoproduct, an AT photo-dimerization path may be operative in duplexes.

  19. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds.

    PubMed

    Wang, Zhandong; Popolan-Vaida, Denisia M; Chen, Bingjie; Moshammer, Kai; Mohamed, Samah Y; Wang, Heng; Sioud, Salim; Raji, Misjudeen A; Kohse-Höinghaus, Katharina; Hansen, Nils; Dagaut, Philippe; Leone, Stephen R; Sarathy, S Mani

    2017-12-12

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500-600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound's molecular structure ( n -alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels. Copyright © 2017 the Author(s). Published by PNAS.

  20. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhandong; Popolan-Vaida, Denisia M.; Chen, Bingjie

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability ofmore » liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. In conclusion, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.« less

  1. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    DOE PAGES

    Wang, Zhandong; Popolan-Vaida, Denisia M.; Chen, Bingjie; ...

    2017-11-28

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability ofmore » liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. In conclusion, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.« less

  2. Powering up the future: radical polymers for battery applications.

    PubMed

    Janoschka, Tobias; Hager, Martin D; Schubert, Ulrich S

    2012-12-18

    Our society's dependency on portable electric energy, i.e., rechargeable batteries, which permit power consumption at any place and in any time, will eventually culminate in resource wars on limited commodities like lithium, cobalt, and rare earth metals. The substitution of conventional metals as means of electric charge storage by organic and polymeric materials, which may ultimately be derived from renewable resources, appears to be the only feasible way out. In this context, the novel class of organic radical batteries (ORBs) excelling in rate capability (i.e., charging speed) and cycling stability (>1000 cycles) sets new standards in battery research. This review examines stable nitroxide radical bearing polymers, their processing to battery systems, and their promising performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Engineering a horseradish peroxidase C stable to radical attacks by mutating multiple radical coupling sites.

    PubMed

    Kim, Su Jin; Joo, Jeong Chan; Song, Bong Keun; Yoo, Young Je; Kim, Yong Hwan

    2015-04-01

    Peroxidases have great potential as industrial biocatalysts. In particular, the oxidative polymerization of phenolic compounds catalyzed by peroxidases has been extensively examined because of the advantage of this method over other conventional chemical methods. However, the industrial application of peroxidases is often limited because of their rapid inactivation by phenoxyl radicals during oxidative polymerization. In this work, we report a novel protein engineering approach to improve the radical stability of horseradish peroxidase isozyme C (HRPC). Phenylalanine residues that are vulnerable to modification by the phenoxyl radicals were identified using mass spectrometry analysis. UV-Vis and CD spectra showed that radical coupling did not change the secondary structure or the active site of HRPC. Four phenylalanine (Phe) residues (F68, F142, F143, and F179) were each mutated to alanine residues to generate single mutants to examine the role of these sites in radical coupling. Despite marginal improvement of radical stability, each single mutant still exhibited rapid radical inactivation. To further reduce inactivation by radical coupling, the four substitution mutations were combined in F68A/F142A/F143A/F179A. This mutant demonstrated dramatic enhancement of radical stability by retaining 41% of its initial activity compared to the wild-type, which was completely inactivated. Structure and sequence alignment revealed that radical-vulnerable Phe residues of HPRC are conserved in homologous peroxidases, which showed the same rapid inactivation tendency as HRPC. Based on our site-directed mutagenesis and biochemical characterization, we have shown that engineering radical-vulnerable residues to eliminate multiple radical coupling can be a good strategy to improve the stability of peroxidases against radical attack. © 2014 Wiley Periodicals, Inc.

  4. Antioxidant activity of the giant jellyfish Nemopilema nomurai measured by the oxygen radical absorbance capacity and hydroxyl radical averting capacity methods.

    PubMed

    Harada, Kazuki; Maeda, Toshimichi; Hasegawa, Yoshiro; Tokunaga, Takushi; Ogawa, Shinya; Fukuda, Kyoko; Nagatsuka, Norie; Nagao, Keiko; Ueno, Shunshiro

    2011-01-01

    The giant jellyfish Nemopilema nomurai (reaching sizes of up to 2 m diameter and 150 kg), which forms dense blooms, has caused extensive damage to fisheries by overloading trawl nets, while its toxic nematocysts cause dermatological symptoms. Giant jellyfish are currently discarded on the grounds of pest control. However, the giant jellyfish is considered to be edible and is part of Chinese cuisine. Therefore, we investigated whether any benefits for human health may be derived from consumption of the jellyfish in order to formulate medicated diets. Antioxidant activity of Nemopilema nomurai was measured using the oxygen radical absorbance capacity (ORAC) and hydroxyl radical averting capacity (HORAC) methods. Based on the results, the ORAC value of the giant jellyfish freeze-dried sample was 541 µmol trolox equivalent (TE)/100 g and the HORAC value was 3,687 µmol gallic acid equivalent (GAE)/100 g. On the other hand, the IC50 value of hydroxyl radical scavenging activity measured by using the electron spin resonance method was 3.3%. In conclusion, the results suggest that the freeze-dried powder of the giant jellyfish Nemopilema nomurai is a potentially beneficial food for humans.

  5. Gamma and Ion-Beam Irradiation of DNA: Free Radical Mechanisms, Electron Effects, and Radiation Chemical Track Structure

    PubMed Central

    Sevilla, Michael D.; Becker, David; Kumar, Anil; Adhikary, Amitava

    2016-01-01

    The focus of our laboratory’s investigation is to study the direct-type DNA damage mechanisms resulting from γ-ray and ion-beam radiation-induced free radical processes in DNA which lead to molecular damage important to cellular survival. This work compares the results of low LET (γ−) and high LET (ion-beam) radiation to develop a chemical track structure model for ion-beam radiation damage to DNA. Recent studies on protonation states of cytosine cation radicals in the N1-substituted cytosine derivatives in their ground state and 5-methylcytosine cation radicals in ground as well as in excited state are described. Our results exhibit a radical signature of excitations in 5-methylcytosine cation radical. Moreover, our recent theoretical studies elucidate the role of electron-induced reactions (low energy electrons (LEE), presolvated electrons (epre−), and aqueous (or, solvated) electrons (eaq−)). Finally DFT calculations of the ionization potentials of various sugar radicals show the relative reactivity of these species. PMID:27695205

  6. Gamma and ion-beam irradiation of DNA: Free radical mechanisms, electron effects, and radiation chemical track structure

    NASA Astrophysics Data System (ADS)

    Sevilla, Michael D.; Becker, David; Kumar, Anil; Adhikary, Amitava

    2016-11-01

    The focus of our laboratory's investigation is to study the direct-type DNA damage mechanisms resulting from γ-ray and ion-beam radiation-induced free radical processes in DNA which lead to molecular damage important to cellular survival. This work compares the results of low LET (γ-) and high LET (ion-beam) radiation to develop a chemical track structure model for ion-beam radiation damage to DNA. Recent studies on protonation states of cytosine cation radicals in the N1-substituted cytosine derivatives in their ground state and 5-methylcytosine cation radicals in ground as well as in excited state are described. Our results exhibit a radical signature of excitations in 5-methylcytosine cation radical. Moreover, our recent theoretical studies elucidate the role of electron-induced reactions (low energy electrons (LEE), presolvated electrons (epre-), and aqueous (or, solvated) electrons (eaq-)). Finally DFT calculations of the ionization potentials of various sugar radicals show the relative reactivity of these species.

  7. Vibrational Spectroscopy of CO2- Radical Anion in Water

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2016-06-01

    The reductive conversion of CO2 into industrial products (e.g., oxalic acid, formic acid, and methanol) can occur via aqueous CO2- as a transient intermediate. While the formation, structure and reaction pathways of this radical anion have been modelled for decades using various spectroscopic and theoretical approaches, we present here, for the first time, a vibrational spectroscopic investigation in liquid water, using pulse radiolysis time-resolved resonance Raman spectroscopy for its preparation and observation. Excitation of the radical in resonance with its 235 nm absorption displays a transient Raman band at 1298 wn, attributed to the symmetric CO stretch, which is at 45 wn higher frequency than in inert matrices. Isotopic substitution at C (13CO2-) shifts the frequency downwards by 22 wn which confirms its origin and the assignment. A Raman band of moderate intensity compared to the stronger 1298 wn band also appears at 742 wn, and is assignable to the OCO bending mode. A reasonable resonance enhancement of this mode is possible only in a bent CO2-(C2v/Cs) geometry. These resonance Raman features suggest a strong solute-solvent interaction, the water molecules acting as constituents of the radical structure, rather than exerting a minor solvent perturbation. However, there is no evidence of the non-equivalence (Cs) of the two CO bonds. A surprising resonance Raman feature is the lack of overtones of the symmetric CO stretch, which we interpret due to the detachment of the electron from the CO2- moiety towards the solvation shell. Electron detachment occurs at the energies of 0.28+/-0.03 eV or higher with respect to the zero point energy of the ground electronic state. The issue of acid-base equilibrium of the radical which has been in contention for decades, as reflected in a wide variation in the reported pKa (-0.2 to 3.9), has been resolved. A value of 3.4+/-0.2 measured in this work is consistent with the vibrational properties, bond structure and charge

  8. Cu-catalyzed aerobic oxidative cyclizations of 3-N-hydroxyamino-1,2-propadienes with alcohols, thiols, and amines to form α-O-, S-, and N-substituted 4-methylquinoline derivatives.

    PubMed

    Sharma, Pankaj; Liu, Rai-Shung

    2015-03-16

    A one-pot, two-step synthesis of α-O-, S-, and N-substituted 4-methylquinoline derivatives through Cu-catalyzed aerobic oxidations of N-hydroxyaminoallenes with alcohols, thiols, and amines is described. This reaction sequence involves an initial oxidation of N-hydroxyaminoallenes with NuH (Nu = OH, OR, NHR, and SR) to form 3-substituted 2-en-1-ones, followed by Brønsted acid catalyzed intramolecular cyclizations of the resulting products. Our mechanistic analysis suggests that the reactions proceed through a radical-type mechanism rather than a typical nitrone-intermediate route. The utility of this new Cu-catalyzed reaction is shown by its applicability to the synthesis of several 2-amino-4-methylquinoline derivatives, which are known to be key precursors to several bioactive molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. First observation of a negative elastic constant in intermediate valent TmSe

    NASA Astrophysics Data System (ADS)

    Boppart, H.; Treindl, A.; Wachter, P.; Roth, S.

    1980-08-01

    The sound velocities v L, v T 1 and v T 2 have been measured at 15 MHz on Tm 3+0.87Se and Tm 2.8+0.99Se between 300 K and 4.2 K and the elastic constants c ij have been derived. In intermediate valent Tm 2.8+0.99Se c 12 turned out to be negative. This sign is interpreted as being typical for intermediate valent compounds. Also for the first time experimental evidence is given for crystal field effects in Tm 3+0.87Se. Strong elastic nonlinearities are observed in intermediate valent Tm 2.8+0.99Se with uniaxial pressure.

  10. Hydroxyl radical mediated degradation of phenylarsonic acid.

    PubMed

    Xu, Tielian; Kamat, Prashant V; Joshi, Sachin; Mebel, Alexander M; Cai, Yong; O'Shea, Kevin E

    2007-08-16

    Phenyl-substituted arsonic acids have been widely used as feed additives in the poultry industry. While very few studies have been reported on the environmental impact of these compounds, they have been introduced into the environment through land application of poultry litter in large quantities (about 10(6) kg/year). Phenylarsonic acid (PA) was used as a model for problematic arsonic acids. Dilute aqueous solutions of PA were subjected to gamma radiolysis under hydroxyl radical generating conditions, which showed rapid degradation of PA. Product studies indicate addition of (.)OH to the phenyl ring forms the corresponding phenols as the primary products. Arsenite, H3As(III)O3, and arsenate, H3As(V)O4, were also identified as products. The optimized structures and relative calculated energies (using GAUSSIAN 98, the B3LYP/6-31G(d) method) of the various transient intermediates are consistent with the product studies. Pulse radiolysis was used to determine the rate constants of PA with (.)OH (k = 3.2 x 10(9) M(-1) s(-1)) and SO4(.-) (k = 1.0 x 10(9) M(-1) s(-1)). PA reacts slower toward O(.-) (k = 1.9 x 10(7) M(-1) s(-1)) and N3(.) (no detectable transient), due to the lower oxidation potential of these two radicals. Our results indicate advanced oxidative processes employing (.)OH and SO4(.-) can be effective for the remediation of phenyl-substituted arsonic acids.

  11. Serum Hydroxyl Radical Scavenging Capacity as Quantified with Iron-Free Hydroxyl Radical Source

    PubMed Central

    Endo, Nobuyuki; Oowada, Shigeru; Sueishi, Yoshimi; Shimmei, Masashi; Makino, Keisuke; Fujii, Hirotada; Kotake, Yashige

    2009-01-01

    We have developed a simple ESR spin trapping based method for hydroxyl (OH) radical scavenging-capacity determination, using iron-free OH radical source. Instead of the widely used Fenton reaction, a short (typically 5 seconds) in situ UV-photolysis of a dilute hydrogen peroxide aqueous solution was employed to generate reproducible amounts of OH radicals. ESR spin trapping was applied to quantify OH radicals; the decrease in the OH radical level due to the specimen’s scavenging activity was converted into the OH radical scavenging capacity (rate). The validity of the method was confirmed in pure antioxidants, and the agreement with the previous data was satisfactory. In the second half of this work, the new method was applied to the sera of chronic renal failure (CRF) patients. We show for the first time that after hemodialysis, OH radical scavenging capacity of the CRF serum was restored to the level of healthy control. This method is simple and rapid, and the low concentration hydrogen peroxide is the only chemical added to the system, that could eliminate the complexity of iron-involved Fenton reactions or the use of the pulse-radiolysis system. PMID:19794928

  12. Radical scavenging ability of some compounds isolated from Piper cubeba towards free radicals.

    PubMed

    Aboul-Enein, Hassan Y; Kładna, Aleksandra; Kruk, Irena

    2011-01-01

    The purpose of this study was to identify the antioxidant activity of 16 compounds isolated from Piper cubeba (CNCs) through the extent of their capacities to scavenge free radicals, hydroxyl radical (HO(•)), superoxide anion radical O•(2)(-) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•)), in different systems. Electron paramagnetic resonance (EPR) and 5,5-dimethyl-1-pyrroline-N-oxide, DMPO, as the spin trap, and chemiluminescence techniques were applied. Using the Fenton-like reaction [Fe(II) + H(2)O(2)], CNCs were found to inhibit DMPO-OH radical formation ranging from 5 to 57% at 1.25 mmol L(-1) concentration. The examined CNCs also showed a high DPPH antiradical activity (ranging from 15 to 99% at 5 mmol L(-1) concentration). Furthermore, the results indicated that seven of the 16 tested compounds may catalyse the conversion of superoxide radicals generated in the potassium superoxide/18-crown-6 ether system, thus showing superoxide dismutase-like activity. The data obtained suggest that radical scavenging properties of CNCs might have potential application in many plant medicines. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Lifetimes and reaction pathways of guanine radical cations and neutral guanine radicals in an oligonucleotide in aqueous solutions.

    PubMed

    Rokhlenko, Yekaterina; Geacintov, Nicholas E; Shafirovich, Vladimir

    2012-03-14

    The exposure of guanine in the oligonucleotide 5'-d(TCGCT) to one-electron oxidants leads initially to the formation of the guanine radical cation G(•+), its deptotonation product G(-H)(•), and, ultimately, various two- and four-electron oxidation products via pathways that depend on the oxidants and reaction conditions. We utilized single or successive multiple laser pulses (308 nm, 1 Hz rate) to generate the oxidants CO(3)(•-) and SO(4)(•-) (via the photolysis of S(2)O(8)(2-) in aqueous solutions in the presence and absence of bicarbonate, respectively) at concentrations/pulse that were ∼20-fold lower than the concentration of 5'-d(TCGCT). Time-resolved absorption spectroscopy measurements following single-pulse excitation show that the G(•+) radical (pK(a) = 3.9) can be observed only at low pH and is hydrated within 3 ms at pH 2.5, thus forming the two-electron oxidation product 8-oxo-7,8-dihydroguanosine (8-oxoG). At neutral pH, and single pulse excitation, the principal reactive intermediate is G(-H)(•), which, at best, reacts only slowly with H(2)O and lives for ∼70 ms in the absence of oxidants/other radicals to form base sequence-dependent intrastrand cross-links via the nucleophilic addition of N3-thymidine to C8-guanine (5'-G*CT* and 5'-T*CG*). Alternatively, G(-H)(•) can be oxidized further by reaction with CO(3)(•-), generating the two-electron oxidation products 8-oxoG (C8 addition) and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih, by C5 addition). The four-electron oxidation products, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), appear only after a second (or more) laser pulse. The levels of all products, except 8-oxoG, which remains at a low constant value, increase with the number of laser pulses.

  14. DFT and ENDOR Study of Bixin Radical Cations and Neutral Radicals on Silica-Alumina.

    PubMed

    Tay-Agbozo, Sefadzi S; Krzyaniak, Matthew D; Bowman, Michael K; Street, Shane; Kispert, Lowell D

    2015-06-18

    Bixin, a carotenoid found in annatto (Bixa orellana), is unique among natural carotenoids by being water-soluble. We stabilized free radicals from bixin on the surface of silica-alumina (Si-Al) and characterized them by pulsed electron-nuclear double resonance (ENDOR). DFT calculations of unpaired electron spin distribution for various bixin radicals predict the EPR hyperfine couplings. Least-square fitting of experimental ENDOR spectra by spectra calculated from DFT hyperfine couplings characterized the radicals trapped on Si-Al. DFT predicts that the trans bixin radical cation is more stable than the cis bixin radical cation by 1.26 kcal/mol. This small energy difference is consistent with the 26% trans and 23% cis radical cations in the ENDOR spectrum. The remainder of the ENDOR spectrum is due to several neutral radicals formed by loss of a H(+) ion from the 9, 9', 13, or 13' methyl group, a common occurrence in all water-insoluble carotenoids previously studied. Although carboxyl groups of bixin strongly affect its solubility relative to other natural carotenoids, they do not alter properties of its free radicals based on DFT calculations and EPR measurements which remain similar to typical water-insoluble carotenoids.

  15. Photoredox Catalysis for the Generation of Carbon Centered Radicals.

    PubMed

    Goddard, Jean-Philippe; Ollivier, Cyril; Fensterbank, Louis

    2016-09-20

    Radical chemistry has witnessed over the last decades important advances that have positioned it as a methodology of choice in synthetic chemistry. A number of great attributes such as specific reactivities, the knowledge of the kinetics of most elementary processes, the functional group tolerance, and the possibility to operate cascade sequences are clearly responsible for this craze. Nevertheless, at the end of the last century, radical chemistry appeared plagued by several hurdles to overcome such as the use of environmentally problematic mediators or the impossibility of scale up. While the concept of photocatalysis was firmly established in the coordination chemistry community, its diffusion in organic synthetic chemistry remained sporadic for decades until the end of the 2000s with the breakthrough merging of organocatalysis and photocatalysis by the MacMillan group and contemporary reports by the groups of Yoon and Stephenson. Since then, photoredox catalysis has enjoyed particularly active and intense developments. It is now the topic of a still increasing number of publications featuring various applications from asymmetric synthesis, total synthesis of natural products, and polymerization to process (flow) chemistry. In this Account, we survey our own efforts in this domain, focusing on the elaboration of new photocatalytic pathways that could lead to the efficient generation of C-centered functionalized alkyl and aryl radicals. Both reductive and oxidative manifolds are accessible through photoredox catalysis, which has guided us along these lines in our projects. Thus, we studied the photocatalytic reduction of onium salts such as sulfoniums and iodoniums for the production of the elusive aryl radical intermediates. Progressing to more relevant chemistry for synthesis, we examined the cleavage of C-O and the C-Br bonds for the generation of alkyl C-centered radicals. Activated epoxides could serve as valuable substrates of a photocatalyzed variant of

  16. Reaction Paths and Chemical Activation Reactions of 2-Methyl-5-Furanyl Radical with 3O2.

    PubMed

    Hudzik, Jason M; Bozzelli, Joseph W

    2017-10-05

    Interest in high-energy substituted furans has been increasing due to their occurrence in biofuel production and their versatility in conversion to other useful products. Methylfurans are the simplest substituted furans and understanding their reaction pathways, thermochemical properties, including intermediate species stability, and chemical kinetics would aid in the study of larger furans. Furan ring C-H bonds have been shown to be extremely strong, approximately 120 kcal mol -1 , due in part to the placement of the oxygen atom and aromatic-like resonance, both within the ring. The thermochemistry and kinetics of the oxidation of 2-methyfuran radical at position 5 of the furan ring, 2-methyl-5-furanyl radical (2MF5j), is analyzed. The resulting chemically activated species, 2MF5OOj radical, has a well depth of 51 kcal mol -1 below the 2MF5j + O 2 reactants; this is 4-5 kcal mol -1 deeper than that of phenyl and vinyl radical plus O 2 , with both of these reactions known to undergo chain branching. Important, low-energy reaction pathways include chain branching dissociations, intramolecular abstractions, group transfers, and radical oxygen additions. Enthalpies of formation, entropies, and heat capacities for the stable molecules, radicals, and transition-state species are analyzed using computational methods. Calculated ΔH ° f 298 values were determined using an isodesmic work reaction from the CBS-QB3 composite method. Elementary rate parameters are from saddle point transition-state structures and compared to variational transition-state analysis for the barrierless reactions. Temperature- and pressure-dependent rate constants which are calculated using QRRK and master equation analysis is used for falloff and stabilization.

  17. Synthesis of the (N2)3- radical from Y2+ and its protonolysis reactivity to form (N2H2)2- via the Y[N(SiMe3)2]3/KC8 reduction system.

    PubMed

    Fang, Ming; Lee, David S; Ziller, Joseph W; Doedens, Robert J; Bates, Jefferson E; Furche, Filipp; Evans, William J

    2011-03-23

    Examination of the Y[N(SiMe(3))(2)](3)/KC(8) reduction system that allowed isolation of the (N(2))(3-) radical has led to the first evidence of Y(2+) in solution. The deep-blue solutions obtained from Y[N(SiMe(3))(2)](3) and KC(8) in THF at -35 °C under argon have EPR spectra containing a doublet at g(iso) = 1.976 with a 110 G hyperfine coupling constant. The solutions react with N(2) to generate (N(2))(2-) and (N(2))(3-) complexes {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)) (1) and {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)] (2), respectively, and demonstrate that the Y[N(SiMe(3))(2)](3)/KC(8) reaction can proceed through an Y(2+) intermediate. The reactivity of (N(2))(3-) radical with proton sources was probed for the first time for comparison with the (N(2))(2-) and (N(2))(4-) chemistry. Complex 2 reacts with [Et(3)NH][BPh(4)] to form {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-N(2)H(2)), the first lanthanide (N(2)H(2))(2-) complex derived from dinitrogen, as well as 1 as a byproduct, consistent with radical disproportionation reactivity.

  18. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.

    PubMed

    Staveness, Daryl; Bosque, Irene; Stephenson, Corey R J

    2016-10-18

    Harnessing visible light as the driving force for chemical transformations generally offers a more environmentally friendly alternative compared with classical synthetic methodology. The transition metal-based photocatalysts commonly employed in photoredox catalysis absorb efficiently in the visible spectrum, unlike most organic substrates, allowing for orthogonal excitation. The subsequent excited states are both more reducing and more oxidizing than the ground state catalyst and are competitive with some of the more powerful single-electron oxidants or reductants available to organic chemists yet are simply accessed via irradiation. The benefits of this strategy have proven particularly useful in radical chemistry, a field that traditionally employs rather toxic and hazardous reagents to generate the desired intermediates. In this Account, we discuss our efforts to leverage visible light photoredox catalysis in radical-based bond-forming and bond-cleaving events for which few, if any, environmentally benign alternatives exist. Mechanistic investigations have driven our contributions in this field, for both facilitating desired transformations and offering new, unexpected opportunities. In fact, our total synthesis of (+)-gliocladin C was only possible upon elucidating the propensity for various trialkylamine additives to elicit a dual behavior as both a reductive quencher and a H-atom donor. Importantly, while natural product synthesis was central to our initial motivations to explore these photochemical processes, we have since demonstrated applicability within other subfields of chemistry, and our evaluation of flow technologies demonstrates the potential to translate these results from the bench to pilot scale. Our forays into photoredox catalysis began with fundamental methodology, providing a tin-free reductive dehalogenation that exchanged the gamut of hazardous reagents previously employed for such a transformation for visible light-mediated, ambient

  19. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer

    PubMed Central

    2016-01-01

    Conspectus Harnessing visible light as the driving force for chemical transformations generally offers a more environmentally friendly alternative compared with classical synthetic methodology. The transition metal-based photocatalysts commonly employed in photoredox catalysis absorb efficiently in the visible spectrum, unlike most organic substrates, allowing for orthogonal excitation. The subsequent excited states are both more reducing and more oxidizing than the ground state catalyst and are competitive with some of the more powerful single-electron oxidants or reductants available to organic chemists yet are simply accessed via irradiation. The benefits of this strategy have proven particularly useful in radical chemistry, a field that traditionally employs rather toxic and hazardous reagents to generate the desired intermediates. In this Account, we discuss our efforts to leverage visible light photoredox catalysis in radical-based bond-forming and bond-cleaving events for which few, if any, environmentally benign alternatives exist. Mechanistic investigations have driven our contributions in this field, for both facilitating desired transformations and offering new, unexpected opportunities. In fact, our total synthesis of (+)-gliocladin C was only possible upon elucidating the propensity for various trialkylamine additives to elicit a dual behavior as both a reductive quencher and a H-atom donor. Importantly, while natural product synthesis was central to our initial motivations to explore these photochemical processes, we have since demonstrated applicability within other subfields of chemistry, and our evaluation of flow technologies demonstrates the potential to translate these results from the bench to pilot scale. Our forays into photoredox catalysis began with fundamental methodology, providing a tin-free reductive dehalogenation that exchanged the gamut of hazardous reagents previously employed for such a transformation for visible light

  20. Highly sensitive free radical detection by nitrone-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Du, Libo; Huang, Saipeng; Zhuang, Qianfen; Jia, Hongying; Rockenbauer, Antal; Liu, Yangping; Liu, Ke Jian; Liu, Yang

    2014-01-01

    The detection of free radicals and related species has attracted significant attention in recent years because of their critical roles in physiological and pathological processes. Among the methods for the detection of free radicals, electron spin resonance (ESR) coupled with the use of the spin trapping technique has been an effective approach for characterization and quantification of these species due to its high specificity. However, its application in biological systems, especially in in vivo systems, has been greatly limited partially due to the low reaction rate between the currently available spin traps with biological radicals. To overcome this drawback, we herein report the first example of nitrone functionalized gold nanoparticles (Au@EMPO) as highly efficient spin traps in which the thiolated EMPO (2-(ethoxycarbonyl)-2-methyl-3,4-dihydro-2H-pyrrole 1-oxide) derivative was self-assembled on gold nanoparticles. Kinetic studies showed that Au@EMPO has a 137-fold higher reaction rate constant with &z.rad;OH than PBN (N-tert-butyl-α-phenylnitrone). Owing to the high rate of trapping &z.rad;OH by Au@EMPO as well as the high stability of the resulting spin adduct (t1/2 ~ 56 min), Au@EMPO affords 124-fold higher sensitivity for &z.rad;OH than EMPO. Thus, this new nanospin trap shows great potential in trapping the important radicals such as &z.rad;OH in various biological systems and provides a novel strategy to design spin traps with much improved properties.The detection of free radicals and related species has attracted significant attention in recent years because of their critical roles in physiological and pathological processes. Among the methods for the detection of free radicals, electron spin resonance (ESR) coupled with the use of the spin trapping technique has been an effective approach for characterization and quantification of these species due to its high specificity. However, its application in biological systems, especially in in vivo systems

  1. Tandem SN2' nucleophilic substitution/oxidative radical cyclization of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds.

    PubMed

    Zhang, Zhen; Li, Cheng; Wang, Shao-Hua; Zhang, Fu-Min; Han, Xue; Tu, Yong-Qiang; Zhang, Xiao-Ming

    2017-04-11

    A novel and efficient tandem S N 2' nucleophilic substitution/oxidative radical cyclization reaction of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds has been developed by using Mn(OAc) 3 as an oxidant, which enables the expeditious synthesis of polysubstituted dihydrofuran (DHF) derivatives in moderate to high yields. The use of weakly acidic hexafluoroisopropanol (HFIP) as the solvent rather than AcOH has successfully improved the yields and expanded the substrate scope of this type of radical cyclization reactions. Mechanistic studies confirmed the cascade reaction process involving a final radical cyclization.

  2. Contemporary Radical Economics.

    ERIC Educational Resources Information Center

    Sherman, Howard J.

    1984-01-01

    The origins of contemporary radical economics are examined. Applications of radical economics to price and value theory, labor segmentation theory, business cycles, industrial organization, government and business, imperialism and development, and comparative systems are reviewed. (Author/RM)

  3. Synthetic use of the primary kinetic isotope effect in hydrogen atom transfer 2: generation of captodatively stabilised radicals.

    PubMed

    Wood, Mark E; Bissiriou, Sabine; Lowe, Christopher; Windeatt, Kim M

    2013-04-28

    Using C-3 di-deuterated morpholin-2-ones bearing N-2-iodobenzyl and N-3-bromobut-3-enyl radical generating groups, only products derived from the more stabilised C-3, rather than the less stabilised C-5 translocated radicals, were formed after intramolecular 1,5-hydrogen atom transfer, suggesting that any kinetic isotope effect present was not sufficient to offset captodative stabilisation.

  4. On the Radicalization Process.

    PubMed

    Leistedt, Samuel J

    2016-11-01

    This study aimed to provide an in-depth description of the radicalization process, which is a very important step in terrorist activities. The author proposes a translational analysis that is first based on the author's experience in the psychological evaluation of terrorist behavior and second on an exhaustive review of the current literature. The search terms "terrorism," "radicalization," "social psychology," and "psychopathology" were used to identify relevant studies in the following databases: Scopus, Medline, PubCentral, and Science Direct. Because of its importance, understanding radicalization process should be one of the priorities of behavioral scientists. International studies should be performed with a focus on several aspects, such as radicalization risk factors, brainwashing, the role of the media, and finally, in de-radicalization programs. © 2016 American Academy of Forensic Sciences.

  5. Mineralization of aniline using hydroxyl/sulfate radical-based technology in a waterfall reactor.

    PubMed

    Durán, A; Monteagudo, J M; San Martín, I; Amunategui, F J; Patterson, D A

    2017-11-01

    The aim of this work is to study the applicability of a UV/H 2 O 2 process intensified with persulfate (PS) as a source of SO 4 - radicals to efficiently mineralize a synthetic effluent containing aniline in a glass reactor arranged in a cascade configuration. pH conditions were studied and the concentration of PS was optimized. The synergism for aniline mineralization between the UV/H 2 O 2 process and the combined UV/H 2 O 2 /PS process was quantified in 10.1%. Aniline degradation reached 100% under the UV/H2O2/PS process after 20 min. Its mineralization is favored under acidic conditions and with the presence of persulfate (optimal conditions: 49% in 90 min; pH = 4; [PS] = 250 ppm). On the contrary, the worst conditions were found at pH = 11, since hydrogen peroxide decomposes and carbonates were formed increasing the scavenging effect. The different mechanisms involved (formulated from intermediates identified by mass spectrometry) confirm these results. Aniline was found to follow a degradation pathway where phenol is the main intermediate. The presence of sulfate radicals increases phenol degradation rate leading to a higher mineralization extent. Benzoquinone was identified as the main aromatic oxidation product of phenol, whereas succinic, 4-oxo-pentanoic, fumaric and oxalic acids were detected as aliphatic oxidation products for both UV/H2O2 and UV/H2O2/PS oxidation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Hydrogen Bond Network between Amino Acid Radical Intermediates on the Proton-Coupled Electron Transfer Pathway of E. coli α2 Ribonucleotide Reductase

    PubMed Central

    2015-01-01

    Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides in all organisms. In all Class Ia RNRs, initiation of nucleotide diphosphate (NDP) reduction requires a reversible oxidation over 35 Å by a tyrosyl radical (Y122•, Escherichia coli) in subunit β of a cysteine (C439) in the active site of subunit α. This radical transfer (RT) occurs by a specific pathway involving redox active tyrosines (Y122 ⇆ Y356 in β to Y731 ⇆ Y730 ⇆ C439 in α); each oxidation necessitates loss of a proton coupled to loss of an electron (PCET). To study these steps, 3-aminotyrosine was site-specifically incorporated in place of Y356-β, Y731- and Y730-α, and each protein was incubated with the appropriate second subunit β(α), CDP and effector ATP to trap an amino tyrosyl radical (NH2Y•) in the active α2β2 complex. High-frequency (263 GHz) pulse electron paramagnetic resonance (EPR) of the NH2Y•s reported the gx values with unprecedented resolution and revealed strong electrostatic effects caused by the protein environment. 2H electron–nuclear double resonance (ENDOR) spectroscopy accompanied by quantum chemical calculations provided spectroscopic evidence for hydrogen bond interactions at the radical sites, i.e., two exchangeable H bonds to NH2Y730•, one to NH2Y731• and none to NH2Y356•. Similar experiments with double mutants α-NH2Y730/C439A and α-NH2Y731/Y730F allowed assignment of the H bonding partner(s) to a pathway residue(s) providing direct evidence for colinear PCET within α. The implications of these observations for the PCET process within α and at the interface are discussed. PMID:25516424

  7. Characterization of intermediate products of solar photocatalytic degradation of ranitidine at pilot-scale.

    PubMed

    Radjenović, Jelena; Sirtori, Carla; Petrović, Mira; Barceló, Damià; Malato, Sixto

    2010-04-01

    In the present study the mechanisms of solar photodegradation of H(2)-receptor antagonist ranitidine (RNTD) were studied in a well-defined system of a pilot plant scale Compound Parabolic Collector (CPC) reactor. Two types of heterogeneous photocatalytic experiments were performed: catalysed by titanium-dioxide (TiO(2)) semiconductor and by Fenton reagent (Fe(2+)/H(2)O(2)), each one with distilled water and synthetic wastewater effluent matrix. Complete disappearance of the parent compounds and discreet mineralization were attained in all experiments. Furthermore, kinetic parameters, main intermediate products, release of heteroatoms and formation of carboxylic acids are discussed. The main intermediate products of photocatalytic degradation of RNTD have been structurally elucidated by tandem mass spectrometry (MS(2)) experiments performed at quadrupole-time of flight (QqToF) mass analyzer coupled to ultra-performance liquid chromatograph (UPLC). RNTD displayed high reactivity towards OH radicals, although a product of conduction band electrons reduction was also present in the experiment with TiO(2). In the absence of standards, quantification of intermediates was not possible and only qualitative profiles of their evolution could be determined. The proposed TiO(2) and photo-Fenton degradation routes of RNTD are reported for the first time. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Laparoscopic Radical Trachelectomy

    PubMed Central

    Rendón, Gabriel J.; Ramirez, Pedro T.; Frumovitz, Michael; Schmeler, Kathleen M.

    2012-01-01

    Introduction: The standard treatment for patients with early-stage cervical cancer has been radical hysterectomy. However, for women interested in future fertility, radical trachelectomy is now considered a safe and feasible option. The use of minimally invasive surgical techniques to perform this procedure has recently been reported. Case Description: We report the first case of a laparoscopic radical trachelectomy performed in a developing country. The patient is a nulligravid, 30-y-old female with stage IB1 adenocarcinoma of the cervix who desired future fertility. She underwent a laparoscopic radical trachelectomy and bilateral pelvic lymph node dissection. The operative time was 340 min, and the estimated blood loss was 100mL. There were no intraoperative or postoperative complications. The final pathology showed no evidence of residual disease, and all pelvic lymph nodes were negative. At 20 mo of follow-up, the patient is having regular menses but has not yet attempted to become pregnant. There is no evidence of recurrence. Conclusion: Laparoscopic radical trachelectomy with pelvic lymphadenectomy in a young woman who desires future fertility may also be an alternative technique in the treatment of early cervical cancer in developing countries. PMID:23318085

  9. Laparoscopic radical trachelectomy.

    PubMed

    Rendón, Gabriel J; Ramirez, Pedro T; Frumovitz, Michael; Schmeler, Kathleen M; Pareja, Rene

    2012-01-01

    The standard treatment for patients with early-stage cervical cancer has been radical hysterectomy. However, for women interested in future fertility, radical trachelectomy is now considered a safe and feasible option. The use of minimally invasive surgical techniques to perform this procedure has recently been reported. We report the first case of a laparoscopic radical trachelectomy performed in a developing country. The patient is a nulligravid, 30-y-old female with stage IB1 adenocarcinoma of the cervix who desired future fertility. She underwent a laparoscopic radical trachelectomy and bilateral pelvic lymph node dissection. The operative time was 340 min, and the estimated blood loss was 100mL. There were no intraoperative or postoperative complications. The final pathology showed no evidence of residual disease, and all pelvic lymph nodes were negative. At 20 mo of follow-up, the patient is having regular menses but has not yet attempted to become pregnant. There is no evidence of recurrence. Laparoscopic radical trachelectomy with pelvic lymphadenectomy in a young woman who desires future fertility may also be an alternative technique in the treatment of early cervical cancer in developing countries.

  10. Epigenetic Marks Define the Lineage and Differentiation Potential of Two Distinct Neural Crest-Derived Intermediate Odontogenic Progenitor Populations

    PubMed Central

    Gopinathan, Gokul; Kolokythas, Antonia

    2013-01-01

    Epigenetic mechanisms, such as histone modifications, play an active role in the differentiation and lineage commitment of mesenchymal stem cells. In the present study, epigenetic states and differentiation profiles of two odontogenic neural crest-derived intermediate progenitor populations were compared: dental pulp (DP) and dental follicle (DF). ChIP on chip assays revealed substantial H3K27me3-mediated repression of odontoblast lineage genes DSPP and dentin matrix protein 1 (DMP1) in DF cells, but not in DP cells. Mineralization inductive conditions caused steep increases of mineralization and patterning gene expression levels in DP cells when compared to DF cells. In contrast, mineralization induction resulted in a highly dynamic histone modification response in DF cells, while there was only a subdued effect in DP cells. Both DF and DP progenitors featured H3K4me3-active marks on the promoters of early mineralization genes RUNX2, MSX2, and DLX5, while OSX, IBSP, and BGLAP promoters were enriched for H3K9me3 or H3K27me3. Compared to DF cells, DP cells expressed higher levels of three pluripotency-associated genes, OCT4, NANOG, and SOX2. Finally, gene ontology comparison of bivalent marks unique for DP and DF cells highlighted cell–cell attachment genes in DP cells and neurogenesis genes in DF cells. In conclusion, the present study indicates that the DF intermediate odontogenic neural crest lineage is distinguished from its DP counterpart by epigenetic repression of DSPP and DMP1 genes and through dynamic histone enrichment responses to mineralization induction. Findings presented here highlight the crucial role of epigenetic regulatory mechanisms in the terminal differentiation of odontogenic neural crest lineages. PMID:23379639

  11. Growing up Radical: Investigation of Benzyl-Like Radicals with Increasing Chain Lengths

    NASA Astrophysics Data System (ADS)

    Korn, Joseph A.; Jawad, Khadija M.; Hewett, Daniel M.; Zwier, Timothy S.

    2015-06-01

    Combustion processes involve complex chemistry including pathways leading to polyaromatic hydrocarbons (PAHs) from small molecule precursors. Resonance stabilized radicals (RSRs) likely play an important role in the pathways to PAHs due to their unusual stability. Benzyl radical is a prototypical RSR that is stabilized by conjugation with the phenyl ring. Earlier work on α-methyl benzyl radical showed perturbations to the spectroscopy due to a hindered methyl rotor. If the alkyl chain is lengthened then multiple conformations become possible. This talk will discuss the jet-cooled spectroscopy of α-ethyl benzyl radical and α-propyl benzyl radical produced from the discharge of 1-phenyl propanol and 1-phenyl butanol respectively. Electronic spectra were obtained via resonant two-photon ionization, and IR spectra were obtained by resonant ion-dip infrared spectroscopy. Kidwell, N. M.; Reilly, N. J.; Nebgen, B.; Mehta-Hurt, D. N.; Hoehn, R. D.; Kokkin, D. L.; McCarthy, M. C.; Slipchenko, L. V.; Zwier, T. S. The Journal of Physical Chemistry A 2013, 117, 13465.

  12. Influence of oxidative and nitrosative stress on accumulation of diphosphate intermediates of the non-mevalonate pathway of isoprenoid biosynthesis in corynebacteria and mycobacteria.

    PubMed

    Artsatbanov, V Yu; Vostroknutova, G N; Shleeva, M O; Goncharenko, A V; Zinin, A I; Ostrovsky, D N; Kapreliants, A S

    2012-04-01

    Artificial generation of oxygen superoxide radicals in actively growing cultures of Mycobacterium tuberculosis, Myc. smegmatis, and Corynebacterium ammoniagenes is followed by accumulation in the bacterial cells of substantial amounts of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (MEcDP) - an intermediate of the non-mevalonate pathway of isoprenoid biosynthesis (MEP) - most possibly due to the interaction of the oxygen radicals with the 4Fe-4S group in the active center and inhibition of the enzyme (E)-4-oxy-3-methylbut-2-enyl diphosphate synthase (IspG). Cadmium ions known to inhibit IspG enzyme in chloroplasts (Rivasseau, C., Seemann, M., Boisson, A. M., Streb, P., Gout, E., Douce, R., Rohmer, M., and Bligny, R. (2009) Plant Cell Environ., 32, 82-92), when added to culture of Myc. smegmatis, substantially increase accumulation of MEcDP induced by oxidative stress with no accumulation of other organic phosphate intermediates in the cell. Corynebacterium ammoniagenes'', well-known for its ability to synthesize large amounts of MEcDP, was also shown to accumulate this unique cyclodiphosphate in actively growing culture when NO at low concentration is artificially generated in the medium. A possible role of the MEP-pathway of isoprenoid biosynthesis and a role of its central intermediate MEcDP in bacterial response to nitrosative and oxidative stress is discussed.

  13. Reaction mechanisms of DNT with hydroxyl radicals for advanced oxidation processes-a DFT study.

    PubMed

    Zhou, Yang; Yang, Zhilin; Yang, Hong; Zhang, Chaoyang; Liu, Xiaoqiang

    2017-04-01

    In advanced oxidation processes (AOPs), the detailed degradation mechanisms of a typical explosive of 2,4-dinitrotoluene (DNT) can be investigated by the density function theory (DFT) method at the SMD/M062X/6-311+G(d) level. Several possible degradation routes for DNT were explored in the current study. The results show that, for oxidation of the methyl group, the dominant degradation mechanism of DNT by hydroxyl radicals (•OH) is a series of sequential H-abstraction reactions, and the intermediates obtained are in good agreement with experimental findings. The highest activation energy barrier is less than 20 kcal mol -1 . Other routes are dominated by an addition-elimination mechanism, which is also found in 2,4,6-trinitrotoluene, although the experiment did not find the corresponding products. In addition, we also eliminate several impossible mechanisms, such as dehydration, HNO 3 elimination, the simultaneous addition of two •OH radials, and so on. The information gained about these degradation pathways is helpful in elucidating the detailed reaction mechanism between nitroaromatic explosives and hydroxyl radicals for AOPs. Graphical Abstract The degradation mechanism of an important explosive, 2,6-dinitrotoluene (DNT), by the hydroxyl radical for advanced oxidation progresses.

  14. Photoproduction of One-Electron Reducing Intermediates by Chromophoric Dissolved Organic Matter (CDOM): Relation to O2- and H2O2 Photoproduction and CDOM Photooxidation.

    PubMed

    Zhang, Yi; Blough, Neil V

    2016-10-06

    A molecular probe, 3-amino-2,2,5,5,-tetramethy-1-pyrrolydinyloxy (3ap), was employed to determine the formation rates of one-electron reducing intermediates generated photochemically from both untreated and borohydride-reduced Suwanee River fulvic and humic acids (SRFA and SRHA, respectively). This stable nitroxyl radical reacts rapidly with reducing radicals and other one-electron reductants to produce a relatively stable product, the hydroxylamine, which can be derivatized with fluorescamine, separated by HPLC and quantified fluorimetrically. We provide evidence that O 2 and 3ap compete for the same pool(s) of photoproduced reducing intermediates, and that under appropriate experimental conditions, the initial rate of hydroxylamine formation (R H ) can provide an estimate of the initial rate of superoxide (O 2 - ) formation. However, comparison of the initial rates of H 2 O 2 formation (R H2O2 ) to that of R H show far larger ratios of R H /R H2O2 (∼6-13) than be accounted for by simple O 2 - dismutation (R H /R H2O2 = 2), implying a significant oxidative sink of O 2 - (∼67-85%). Because of their high reactivity with O 2 - and their likely importance in the photochemistry of CDOM, we suggest that coproduced phenoxy radicals could represent a viable oxidative sink. Because O 2 - /phenoxy radical reactions can lead to more highly oxidized products, O 2 - could be playing a far more significant role in the photooxidation of CDOM than has been previously recognized.

  15. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. Themore » high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.« less

  16. The temperature dependence of the rate constant for the reaction of hydroxyl radicals with nitric acid

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; Cornett, K. D.; Murphy, J. L.

    1982-01-01

    The rate constant for the reaction of hydroxyl radicals with nitric acid in the 225-443 K temperature range has been measured by means of the flash photolysis resonance fluorescence technique. Above 300 K, the rate constant levels off in a way that can only be explained by the occurrence of two reaction channels, of which one, operative at low temperatures, proceeds through the formation of an adduct intermediate. The implications of these rate constant values for stratospheric reaction constants is discussed.

  17. Evaluation of Both Free Radical Scavenging Capacity and Antioxidative Damage Effect of Polydatin.

    PubMed

    Jin, Ju; Li, Yan; Zhang, Xiuli; Chen, Tongsheng; Wang, Yifei; Wang, Zhiping

    Cellular damage such as oxidation and lipid peroxidation, and DNA damage induced by free-radicals like reactive oxygen species, has been implicated in several diseases. Radicals generated by 2,2-azobis (2-amidino-propane) dihydrochloride (AAPH) are similar to physiologically active ones. In this study we found that polydatin, a resveratrol natural precursor derived from many sources, has the capacity of free radical scavenging and antioxidative damage. Using free radical scavenging assays, the IC50 values of polydatin were 19.25 and 5.29 μg/ml with the DPPH and the ABTS assay, respectively, and 0.125 mg ferrous sulfate/1 mg polydatin with the FRAP assay. With the AAPH-induced oxidative injury cell model assay, polydatin showed a strong protective effect against the human liver tumor HepG2 cell oxidative stress damage. These results indicate that the antioxidant properties of polydatin have great potential for use as an alternative to more toxic synthetic antioxidants as an additive in food, cosmetics and pharmaceutical preparations for the treatment of oxidative diseases.

  18. Absolute rate constants of alkoxyl radical reactions in aqueous solution. [Tert-butyl hydroperoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erben-Russ, M.; Michel, C.; Bors, W.

    1987-04-23

    The pulse radiolysis technique was used to generate the alkoxyl radical derived from tert-butyl hydroperoxide (/sup t/BuOOH) in aqueous solution. The reactions of this radical with 2,2'-azinobis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) and promethazine were monitored by kinetic spectroscopy. The unimolecular decay rate constant of the tert-butoxyl radical (/sup t/BuO) was determined to be 1.4 x 10/sup 6/ s/sup -1/. On the basis of this value, the rate constants for /sup t/BuO attack on quercetin, crocin, crocetin, ascorbate, isoascorbate, trolox c, glutathione, thymidine, adenosine, guanosine, and unsaturated fatty acids were determined. In addition, the reaction of /sup t/BuO with the polyunsaturated fatty acids (PUFA)more » was observed by directly monitoring the formation of the fatty acid pentadienyl radicals. Interestingly, the attack of /sup t/BuO on PUFA was found to be faster by about one order of magnitude as compared to the same reaction in a nonpolar solvent.« less

  19. Radiation Protection Using Carbon Nanotube Derivatives

    NASA Technical Reports Server (NTRS)

    Conyers, Jodie L., Jr.; Moore, Valerie C.; Casscells, S. Ward

    2010-01-01

    BHA and BHT are well-known food preservatives that are excellent radical scavengers. These compounds, attached to single-walled carbon nanotubes (SWNTs), could serve as excellent radical traps. The amino-BHT groups can be associated with SWNTs that have carbolyxic acid groups via acid-base association or via covalent association. The material can be used as a means of radiation protection or cellular stress mitigation via a sequence of quenching radical species using nano-engineered scaffolds of SWNTs and their derivatives. It works by reducing the number of free radicals within or nearby a cell, tissue, organ, or living organism. This reduces the risk of damage to DNA and other cellular components that can lead to chronic and/or acute pathologies, including (but not limited to) cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. These derivatives can show an unusually high scavenging ability, which could prove efficacious in protecting living systems from radical-induced decay. This technique could be used to protect healthy cells in a living biological system from the effects of radiation therapy. It could also be used as a prophylactic or antidote for radiation exposure due to accidental, terrorist, or wartime use of radiation- containing weapons; high-altitude or space travel (where radiation exposure is generally higher than desired); or in any scenario where exposure to radiation is expected or anticipated. This invention s ultimate use will be dependent on the utility in an overall biological system where many levels of toxicity have to be evaluated. This can only be assessed at a later stage. In vitro toxicity will first be assessed, followed by in vivo non-mammalian screening in zebra fish for toxicity and therapeutic efficacy.

  20. Vibronic Analysis for widetilde{B} - widetilde{X} Transition of Isopropoxy Radical

    NASA Astrophysics Data System (ADS)

    Chhantyal-Pun, Rabi; Miller, Terry A.

    2013-06-01

    Alkoxy radicals are important intermediates in combustion and atmospheric chemistry. Alkoxy radicals are also of significant spectroscopic interest for the study of Jahn Teller and pseudo Jahn Teller effects, involving the widetilde{X} and widetilde{A} states. The Jahn Teller effect has been studied in methoxy. Substitution of one or two hydrogens by methyl groups transforms the interaction to a pseudo Jahn Teller effect in ethoxy and isopropoxy. Previously, moderate resolution scans have been obtained for widetilde{B} - widetilde{X} and widetilde{B} - widetilde{A} transition systems, the latter observable at higher temperature. These measurements have shown that the widetilde{X} and widetilde{A} states of isopropoxy are separated by only 60.7(7) cm^{-1} which indicates a strong pseudo Jahn Teller effect in the widetilde{X} state. Such pseduo Jahn Teller coupling should also introduce additional bands into the widetilde{B} - widetilde{X} spectrum and a number of weaker transitions have been observed which may be caused by such effects. In this talk we present a vibronic analysis for the widetilde{B} - widetilde{X} transition based on the experimental results and also the results from recent quantum chemistry calculations.

  1. Platinum anti-cancer drugs: Free radical mechanism of Pt-DNA adduct formation and anti-neoplastic effect.

    PubMed

    Fong, Clifford W

    2016-06-01

    The literature on the anti-neoplastic effects of Pt drugs provides substantial evidence that free radical may be involved in the formation of Pt-DNA adducts and other cytotoxic effects. The conditions specific to cancerous tumours are more conducive to free radical mechanisms than the commonly accepted hydrolysis nucleophilic-electrophilic mechanism of Pt-DNA adduct formation. Molecular orbital studies of the adiabatic attachment of hydrated electrons to Pt drugs reveal that there is a significant lengthening of the Pt-X bond (where X is Cl, O in cisplatin, carboplatin and some pyrophosphate-Pt drugs but not oxaliplatin) in the anion radical species. This observation is consistent with a dissociative electron transfer (DET) mechanism for the formation of Pt-DNA adducts. A DET reaction mechanism is proposed for the reaction of Pt drugs with guanine which involves a quasi-inner sphere 2 electron transfer process involving a transient intermediate 5 co-ordinated activated anion radical species {R2Pt---Cl(G)(Cl)•}*(-) (where R is an ammine group, and G is guanine) and the complex has an elongated Pt---Cl (or Pt---O) bond. A DET mechanism is also proposed when Pt drugs are activated by reaction with free radicals such as HO•, CO3•(-), O2•(-) but do not react with DNA bases to form adducts, but form Pt-protein adducts with proteins such ezrin, FAS, DR5, TNFR1 etc. The DET mechanism may not occur with oxaliplatin. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Synthesized TiO2/ZSM-5 composites used for the photocatalytic degradation of azo dye: Intermediates, reaction pathway, mechanism and bio-toxicity

    NASA Astrophysics Data System (ADS)

    Zhou, Kefu; Hu, Xin-Yan; Chen, Bor-Yann; Hsueh, Chung-Chuan; Zhang, Qian; Wang, Jiajie; Lin, Yu-Jung; Chang, Chang-Tang

    2016-10-01

    In this study, a one-step solid dispersion method was used to synthesize titanium dioxide (TiO2)/Zeolite Socony Mobil-5 (ZSM-5) composites with substantially reduced time and energy consumption. A degradation efficiency of more than 95% was achieved within 10 min using 50% PTZ (synthesized TiO2/ZSM-5 composites with TiO2 contents of 50 wt% loaded on ZSM-5) at pH 7 and 25 °C. The possible degradation pathway of azo-dye Reactive Black 5 (RB5) was investigated using gas chromatography-mass spectrometry and ion chromatography (IC). The bonds between the N atoms and naphthalene groups are likely attacked first and cleaved by hydroxyl radicals, ultimately resulting in the decolorization and mineralization of the azo dye. A comparative assessment of the characteristics of abiotic and biotic dye decolorization was completed. In addition, the toxicity effects of the degradation intermediates of azo-dye RB5 on cellular respiratory activity were analyzed. The bio-toxicity results showed that the decay rate constants of CO2 production from the azo-dye RB5 samples at different degradation times increased initially and subsequently decreased, indicating that intermediates of higher toxicity could adhere to the catalyst surface and gradually destroyed by further photocatalytic oxidation. Additionally, EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the hydroxyl radicals are the main oxidation species in the photocatalytic process.

  3. Oxidation of carbon monoxide, hydrogen peroxide and water at a boron doped diamond electrode: the competition for hydroxyl radicals.

    PubMed

    Kisacik, Izzet; Stefanova, Ana; Ernst, Siegfried; Baltruschat, Helmut

    2013-04-07

    Boron doped diamond (BDD) electrodes have an extremely high over-voltage for oxygen evolution from water, which favours its use in oxidation processes of other compounds at high potentials. We used a rotating ring disc (RRDE) assembly and differential electrochemical mass spectrometry (DEMS) in order to monitor the consumption or the production of species in the course of the electrode processes. By intercepting the intermediate of the electrochemical water oxidation with chemical reactions we demonstrate clearly, albeit indirectly, that in the water oxidation process at BDD above 2.5 V the first step is the formation of ˙OH radicals. The electro-oxidation of CO to CO2 at BDD electrodes proceeds only via a first attack by ˙OH radicals followed by a further electron transfer to the electrode. At potentials below the onset of oxygen evolution from water, H2O2 is oxidised by a direct electron transfer to the BDD electrode, while at higher potentials, two different reactions paths compete for the ˙OH radicals formed in the first electron transfer from water: one, where these ˙OH radicals react with each other followed by further electron transfers leading to O2 on the one hand and one, where ˙OH radicals react with other species like H2O2 or CO with subsequent electron transfers on the other hand.

  4. Radical constructivism: Between realism and solipsism

    NASA Astrophysics Data System (ADS)

    Martínez-Delgado, Alberto

    2002-11-01

    This paper criticizes radical constructivism of the Glasersfeld type, pointing out some contradictions between the declared radical principles and their theoretical and practical development. These contradictions manifest themselves in a frequent oscillation between solipsism and realism, despite constructivist claims to be an anti-realist theory. The paper also points out the contradiction between the relativism of the radical constructivist principles and the constructivist exclusion of other epistemological or educational paradigms. It also disputes the originality and importance of the radical constructivist paradigm, suggesting the idea of an isomorphism between radical constructivist theory and contemplative realism. In addition, some pedagogical and scientific methodological aspects of the radical constructivist model are examined. Although radical constructivism claims to be a rational theory and advocates deductive thinking, it is argued that there is no logical deductive connection between the radical principles of constructivism and the radical constructivist ideas about scientific research and learning. The paper suggests the possibility of an ideological substratum in the construction and hegemonic success of subjective constructivism and, finally, briefly advances an alternative realist model to epistemological and educational radical constructivism.

  5. The formation of DNA sugar radicals from photoexcitation of guanine cation radicals.

    PubMed

    Shukla, Lata I; Pazdro, Robert; Huang, James; DeVreugd, Christopher; Becker, David; Sevilla, Michael D

    2004-05-01

    In this investigation of radical formation and reaction in gamma- irradiated DNA and model compounds, we report the conversion of the guanine cation radical (one-electron oxidized guanine, G(.+)) to the C1' sugar radical and another sugar radical at the C3' or C4' position (designated C3'(.)/C4'(.)) by visible and UV photolysis. Electron spin resonance (ESR) spectroscopic investigations were performed on salmon testes DNA as well as 5'-dGMP, 3'-dGMP, 2'-deoxyguanosine and other nucleosides/nucleotides as model systems. DNA samples (25- 150 mg/ml D(2)O) were prepared with Tl(3+) or Fe(CN)(3-)(6) as electron scavengers. Upon gamma irradiation of such samples at 77 K, the electron-gain path in the DNA is strongly suppressed and predominantly G(.+) is found; after UV or visible photolysis, the fraction of the C1' sugar radical increases with a concomitant reduction in the fraction of G(.+). In model systems, 3'- dGMP(+.) and 5'-dGMP(+.) were produced by attack of Cl(.-)(2) on the parent nucleotide in 7 M LiCl glass. Subsequent visible photolysis of the 3'-dGMP(+.) (77 K) results predominantly in formation of C1'(.) whereas photolysis of 5'-dGMP(+.) results predominantly in formation of C3'(.)/C4'(.). We propose that sugar radical formation is a result of delocalization of the hole in the electronically excited base cation radical into the sugar ring, followed by deprotonation at specific sites on the sugar.

  6. Experimental demonstration of radicaloid character in a RuV=O intermediate in catalytic water oxidation

    PubMed Central

    Moonshiram, Dooshaye; Alperovich, Igor; Concepcion, Javier J.; Meyer, Thomas J.; Pushkar, Yulia

    2013-01-01

    Water oxidation is the key half reaction in artificial photosynthesis. An absence of detailed mechanistic insight impedes design of new catalysts that are more reactive and more robust. A proposed paradigm leading to enhanced reactivity is the existence of oxyl radical intermediates capable of rapid water activation, but there is a dearth of experimental validation. Here, we show the radicaloid nature of an intermediate reactive toward formation of the O-O bond by assessing the spin density on the oxyl group by Electron Paramagnetic Resonance (EPR). In the study, an 17O-labeled form of a highly oxidized, short-lived intermediate in the catalytic cycle of the water oxidation catalyst cis,cis-[(2,2-bipyridine)2(H2O)RuIIIORuIII(OH2)(bpy)2]4+ was investigated. It contains Ru centers in oxidation states [4,5], has at least one RuV = O unit, and shows |Axx| = 60G 17O hyperfine splittings (hfs) consistent with the high spin density of a radicaloid. Destabilization of π-bonding in the d3 RuV = O fragment is responsible for the high spin density on the oxygen and its high reactivity. PMID:23417296

  7. A B12-dependent radical SAM enzyme involved in Oxetanocin-A biosynthesis

    PubMed Central

    Bridwell-Rabb, Jennifer; Zhong, Aoshu; Sun, He G.; Drennan, Catherine L.; Liu, Hung-wen

    2017-01-01

    Summary Oxetanocin-A (OXT-A, 1) is a potent antitumor, antiviral, and antibacterial compound. Biosynthesis of OXT-A has been linked to a plasmid-borne, Bacillus megaterium gene cluster that contains four genes, oxsA, oxsB, oxrA, and oxrB. Here, we show that the oxsA and oxsB genes are both required for the production of OXT-A. Biochemical analysis of the encoded proteins, a cobalamin (Cbl)-dependent S-adenosylmethionine (AdoMet) radical enzyme, OxsB, and an HD-domain phosphohydrolase, OxsA, revealed that OXT-A is derived from 2′-deoxyadenosine phosphate in an OxsB-catalyzed ring contraction reaction initiated by H-atom abstraction from C2′. Hence, OxsB represents the first biochemically characterized non-methylating Cbl-dependent AdoMet radical enzyme. X-ray analysis of OxsB reveals the fold of a Cbl-dependent AdoMet radical enzyme for which there are an estimated 7000 members. Overall, this work provides a framework for understanding the interplay of AdoMet and Cbl cofactors and expands the catalytic repertoire of Cbl-dependent AdoMet radical enzymes. PMID:28346939

  8. Antioxidative properties of hydroxycinnamic acid derivatives and a phenylpropanoid glycoside. A pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Lin, Weizhen; Navaratnam, Suppiah; Yao, Side; Lin, Nianyun

    1998-10-01

    Spectral and redox properties of the phenoxyl radicals from hydroxycinnamic acid derivatives and one selected component of phenylpropanoid glycosides, verbascoside, were studied using pulse radiolysis techniques. On the basis of the pH dependence of phenoxyl radical absorptions, the p Ka values for deprotonation of sinapic acid radical and ferulic acid radical are 4.9 and 5.2. The rate constants of one electron oxidation of those antioxidants by azide radical and bromide radical ion were determined at pH 7. The redox potentials of those antioxidants were determined as 0.59-0.71 V vs NHE at pH 7 with reference standard 4-methoxyphenol and resorcinol.

  9. Interaction of aromatic alcohols, aldehydes and acids with α-hydroxyl-containing carbon-centered radicals: A steady state radiolysis study

    NASA Astrophysics Data System (ADS)

    Samovich, S. N.; Brinkevich, S. D.; Shadyro, O. I.

    2013-01-01

    Benzaldehyde and its derivatives efficaciously oxidize in aqueous solutions α-hydroxyl-containing carbon-centered radicals (α-HCR) of various structures, suppressing thereby the radical recombination and fragmentation reactions. The compounds containing cinnamic moieties are capable of adding α-hydroxyethyl radicals (α-HER) to the carbon-carbon double bonds conjugated with the aromatic system to form molecular products identifiable by mass spectrometry. On radiolysis of aqueous ethanol solutions, reduction of α-HER by aromatic alcohols and acids has been shown to proceed via formation of their adducts with hydrated electron species.

  10. [Study of scavenging activity of sorghum pigment to hydroxyl free radicals by fluorimetry].

    PubMed

    Zhang, Hai-rong; Wang, Wen-yan

    2007-03-01

    A natural product, sorghum pigment, consists of a number of important flavonoid derivatives, occurrs on the seed capsules or in the stems of many sorghums, and is widely applied in different fields of food, cosmetic and dyeing industries, It is important for scavenging hydroxyl free radicals and protection of human healthiness. Scavenging capacities of hydroxyl free radicals with sodium nitrite, quercetin and sorghum pigment were comparatively researched by fluorimetry, and the model of hydroxyl free radicals produced is based on the reaction of Cu2+ -catalyzed oxidation of ascorbic acid in the presence of hydrogen peroxide. The hydroxyl radicals react with benzoic acid, forming a fluorescent product, and the fluorescence intensity was determined by the concentration of hydroxybenzoic acid. The experimental results show that the sodium nitrite, quercetin and sorghum pigment have a quantity-effect relationship for scavenging hydroxyl free radicals, and sodium nitrite and quercetin in comparison with sorghum pigment have high antioxidant capacity. Finally, the quenching mechanisms were explored with sodium nitrite, sorghum pigment, and quercetin respectively. The sorghum pigment and sodium nitrite feature a dynamic quenching processes, while quercetin shows a static quenching processes. A reference method was provided for reasonable exploitation and utilization of sorghum pigment.

  11. Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions

    USGS Publications Warehouse

    Orem, William H.; Voytek, Mary A.; Jones, Elizabeth J.; Lerch, Harry E.; Bates, Anne L.; Corum, Margo D.; Warwick, Peter D.; Clark, Arthur C.

    2010-01-01

    Organic intermediates in coal fluids produced by anaerobic biodegradation of geopolymers in coal play a key role in the production of methane in natural gas reservoirs. Laboratory biodegradation experiments on sub-bituminous coal from Texas, USA, were conducted using bioreactors to examine the organic intermediates relevant to methane production. Production of methane in the bioreactors was linked to acetate accumulation in bioreactor fluid. Long chain fatty acids, alkanes (C19–C36) and various low molecular weight aromatics, including phenols, also accumulated in the bioreactor fluid and appear to be the primary intermediates in the biodegradation pathway from coal-derived geopolymers to acetate and methane.

  12. Adolescent Radicalism and Family Socialization

    ERIC Educational Resources Information Center

    Christiansen, Niels; And Others

    1976-01-01

    Intention was to see if tendencies toward political and cultural radicalism could be identified as two separate dimensions of radicalism among adolescents and to study family characteristics which might explain a tendency toward radicalism. (Author/RK)

  13. ESR study of molecular orientation and dynamics of nitronyl nitroxide radicals in CLPOT 1D nanochannels.

    PubMed

    Kobayashi, Hirokazu; Morinaga, Yuka; Fujimori, Etsuko; Asaji, Tetsuo

    2014-07-10

    New inclusion compounds (ICs) were prepared using the organic 1D nanochannels of 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine (CLPOT) as a nanosized template and nitronyl nitroxide (NN) radicals such as phenylnitronylnitroxide (PhNN) and p-nitrophenylnitronylnitroxide (p-NPNN). ESR measurements below 255 K for the CLPOT ICs diluted with spacer molecules gave rigid limit spectra similar to that for PhNN molecules in a glassy ethanol matrix at low temperature, which suggests isolation of the radical molecules. ESR measurements for them in the range of 290-400 K gave a modulated quintet ESR signal, which suggested uniaxial rotational diffusion of NN radicals in the nanochannels approximately around the principal y-axis of the g-tensors. In the ESR measurements to 430 K for the [(CLPOT)2-(p-NPNN)0.07] IC without spacers, the broader line width than the case in dilution was observed by inter-radical dipolar interaction. In every case, the rotational diffusion activation energies of NN radicals in the CLPOT nanochannels were several times larger than those of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical derivatives (4-X-TEMPO) in CLPOT nanochannels. This is expected due to the larger molecular size of NN radicals than 4-X-TEMPO or stronger interaction between NN radicals and the surrounding host or guest molecules.

  14. Formation of tryptophan radicals in irradiated aqueous solutions of hexachloroplatinate(IV): a flash photolysis study.

    PubMed

    Zang, L; Rodgers, M A

    1999-10-01

    The oxidation of tryptophan photosensitized by PtCl6(2-) has been investigated in aqueous solutions at different pH using nanosecond laser flash photolysis. Cationic and neutral radicals of tryptophan were detected at pH 2.8 and 8.5, respectively. The generation of the radical was attributed to oxidation by Cl2- that was formed from the homolytic bond cleavage in the excited state of PtCl6(2-). The bimolecular rate constant derived from the kinetics analysis, 2.8 +/- 0.2 x 10(9) M-1 s-1, is in good agreement with the value obtained in earlier pulse radiolysis studies. Both the cationic and neutral radicals decayed by second-order kinetics, consistent with the dimerization process.

  15. Muoniated acyl and thioacyl radicals

    NASA Astrophysics Data System (ADS)

    McKenzie, Iain; Brodovitch, Jean-Claude; Ghandi, Khashayar; Percival, Paul W.

    2006-03-01

    The product of the reaction of muonium with tert-butylisocyanate was previously assigned as the muoniated tert-butylaminyl radical (I. McKenzie, J.-C. Brodovitch, K. Ghandi, S. Kecman, P. W. Percival, Physica B 326 (2003) 76). This assignment is incorrect since the muon and 14N hyperfine-coupling constants (hfcc) of this radical would have the opposite sign, which is in conflict with the experimental results. The radical is now reassigned as the muoniated N-tert-butylcarbamoyl radical, based on the similarities between the experimental muon and 14N hfcc and hfcc calculated at the UB3LYP/6-311G(d,p)//UB3LYP/EPR-III level. The large zero-point energy in the N-Mu bond results in the dissociation barrier of the muoniated N-tert-butylcarbamoyl radical being above the combined energy of the reactants, in contrast to the N-tert-butylcarbamoyl radical where the dissociation barrier lies below the combined energy of the reactants. The reaction of muonium with tert-butylisothiocyanate produced both conformers of the muoniated N-tert-butylthiocarbamoyl radical and their assignment was based on the similarities between the experimental and calculated muon hfcc. These are the first acyl and thioacyl radicals to be directly detected by muon spin spectroscopy.

  16. Redox-Active Nitroxide Radical Polymers: From Green Catalysts to Energy Storage Devices

    NASA Astrophysics Data System (ADS)

    Waskitoaji, Wihatmoko; Suga, Takeo; Nishide, Hiroyuki

    2009-09-01

    Robust but redox-active radical polymers bearing 2, 2, 6, 6-tetramethylpiperidin-N-oxy (TEMPO) were investigated as a metal-free, green mediator/catalyst for the oxidation of alcohol derivatives, and as a new electrode-active and charge-storage material. The TEMPO-mediated oxidation of the primary alcohol group of the natural cellulose improved the water-dispersivity of cellulose, and the polymer-supported catalysts or redox resins allow facile removal of catalysts from products by simple filtration. Other radical molecule (e.g. galvinoxyl) was also used as a mediator, which is coupled with the molecular oxygen. A reversible one-electron redox reaction of TEMPO allowed its application as an electrode-active material featuring high cyclability (>500 cycles), relatively high battery electrode capacity (100-135 mAh/g), and fast electrode kinetics, leading to the high power rate capability of the battery. The radical polymer-based electrodes also provided good processability and shape flexibility, which promised the paper-like and wearable energy-storage devices.

  17. Inhibition of radical-induced DNA strand breaks by water-soluble constituents of coffee: phenolics and caffeine metabolites.

    PubMed

    Rathod, M A; Patel, D; Das, A; Tipparaju, S R; Shinde, S S; Anderson, R F

    2013-07-01

    Epidemiological studies have associated coffee consumption with an inverse risk of developing Parkinson's disease, hepatocellular carcinoma and cirrhosis. The molecular mechanisms by which low concentrations of the constituents of coffee measured in human plasma can reduce the incidence of such diseases are not clear. Using an in vitro plasmid DNA system and radiolytically generated reactive oxygen species under constant radical scavenging conditions, we have shown that coffee chlorogenic acid, its derivatives and certain metabolites of caffeine reduce some of the free radical damage sustained to the DNA. A reduction in the amount of prompt DNA single-strand breaks (SSBs) was observed for all compounds whose radical one-electron reduction potential is < 1.0 V. However, except for chlorogenic acid, the compounds were found to be inactive in reducing the amount of radical damage to the DNA bases. These results support a limited antioxidant role for such compounds in their interaction with DNA radicals.

  18. Tunneling in hydrogen-transfer isomerization of n-alkyl radicals.

    PubMed

    Sirjean, Baptiste; Dames, Enoch; Wang, Hai; Tsang, Wing

    2012-01-12

    The role of quantum tunneling in hydrogen shift in linear heptyl radicals is explored using multidimensional, small-curvature tunneling method for the transmission coefficients and a potential energy surface computed at the CBS-QB3 level of theory. Several one-dimensional approximations (Wigner, Skodje and Truhlar, and Eckart methods) were compared to the multidimensional results. The Eckart method was found to be sufficiently accurate in comparison to the small-curvature tunneling results for a wide range of temperature, but this agreement is in fact fortuitous and caused by error cancellations. High-pressure limit rate constants were calculated using the transition state theory with treatment of hindered rotations and Eckart transmission coefficients for all hydrogen-transfer isomerizations in n-pentyl to n-octyl radicals. Rate constants are found in good agreement with experimental kinetic data available for n-pentyl and n-hexyl radicals. In the case of n-heptyl and n-octyl, our calculated rates agree well with limited experimentally derived data. Several conclusions made in the experimental studies of Tsang et al. (Tsang, W.; McGivern, W. S.; Manion, J. A. Proc. Combust. Inst. 2009, 32, 131-138) are confirmed theoretically: older low-temperature experimental data, characterized by small pre-exponential factors and activation energies, can be reconciled with high-temperature data by taking into account tunneling; at low temperatures, transmission coefficients are substantially larger for H-atom transfers through a five-membered ring transition state than those with six-membered rings; channels with transition ring structures involving greater than 8 atoms can be neglected because of entropic effects that inhibit such transitions. The set of computational kinetic rates were used to derive a general rate rule that explicitly accounts for tunneling. The rate rule is shown to reproduce closely the theoretical rate constants.

  19. Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions?

    PubMed

    Khachatryan, Lavrent; Dellinger, Barry

    2011-11-01

    A chemical spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), in conjunction with electron paramagnetic resonance (EPR) spectroscopy was employed to measure the production of hydroxyl radical (·OH) in aqueous suspensions of 5% Cu(II)O/silica (3.9% Cu) particles containing environmentally persistent free radicals (EPFRs) of 2-monochlorophenol (2-MCP). The results indicate: (1) a significant differences in accumulated DMPO-OH adducts between EPFR containing particles and non-EPFR control samples, (2) a strong correlation between the concentration of DMPO-OH adducts and EPFRs per gram of particles, and (3) a slow, constant growth of DMPO-OH concentration over a period of days in solution containing 50 μg/mL EPFRs particles + DMPO (150 mM) + reagent balanced by 200 μL phosphate buffered (pH = 7.4) saline. However, failure to form secondary radicals using standard scavengers, such as ethanol, dimethylsulfoxide, sodium formate, and sodium azide, suggests free hydroxyl radicals may not have been generated in solution. This suggests surface-bound, rather than free, hydroxyl radicals were generated by a surface catalyzed-redox cycle involving both the EPFRs and Cu(II)O. Toxicological studies clearly indicate these bound free radicals promote various types of cardiovascular and pulmonary disease normally attributed to unbound free radicals; however, the exact chemical mechanism deserves further study in light of the implication of formation of bound, rather than free, hydroxyl radicals.

  20. Gas Phase Molecular Spectroscopy: Electronic Spectroscopy of Combustion Intermediates, Chlorine Azide kinetics, and Rovibrational Energy Transfer in Acetylene

    NASA Astrophysics Data System (ADS)

    Freel, Keith A.

    This dissertation is composed of three sections. The first deals with the electronic spectroscopy of combustion intermediates that are related to the formation of polycyclic aromatic hydrocarbons. Absorption spectra for phenyl, phenoxy, benzyl, and phenyl peroxy radicals were recorded using the technique of cavity ring-down spectroscopy. When possible, molecular constants, vibrational frequencies, and excited state lifetimes for these radicals were derived from these data. The results were supported by theoretical predictions. The second section presents a study of electron attachment to chlorine azide (ClN3) using a flowing-afterglow Langmuir-probe apparatus. Electron attachment rates were measured to be 3.5x10-8 and 4.5x10-8 cm3s-1 at 298 and 400 K respectively. The reactions of ClN3 with eighteen cations and seventeen anions were characterized. Rate constants were measured using a selected ion flow tube. The ionization energy (>9.6eV), proton affinity (713+/-41 kJ mol-1), and electron affinity (2.48+/-0.2 eV) for ClN 3 were determined from these data. The third section demonstrates the use of double resonance spectroscopy to observe state-selected rovibrational energy transfer from the first overtone asymmetric stretch of acetylene. The total population removal rate constants from various rotational levels of the (1,0,1,00,00) vibrational state were determined to be in the range of (9-17) x 10 -10 cm3s-1. Rotational energy transfer accounted for approximately 90% of the total removal rate from each state. Therefore, the upper limit of vibrational energy transfer from the (1,0,1,0 0,00) state was 10%.

  1. A novel property of gold nanoparticles: Free radical generation under microwave irradiation.

    PubMed

    Paudel, Nava Raj; Shvydka, Diana; Parsai, E Ishmael

    2016-04-01

    Gold nanoparticles (GNPs) are known to be effective mediators in microwave hyperthermia. Interaction with an electromagnetic field, large surface to volume ratio, and size quantization of nanoparticles (NPs) can lead to increased cell killing beyond pure heating effects. The purpose of this study is to explore the possibility of free radical generation by GNPs in aqueous media when they are exposed to a microwave field. A number of samples with 500 mM 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in 20 ppm GNP colloidal suspensions were scanned with an electron paramagnetic resonance (EPR)/electron spin resonance spectrometer to generate and detect free radicals. A fixed (9.68 GHz) frequency microwave from the spectrometer has served for both generation and detection of radicals. EPR spectra obtained as first derivatives of intensity with the spectrometer were double integrated to get the free radical signal intensities. Power dependence of radical intensity was studied by applying various levels of microwave power (12.5, 49.7, and 125 mW) while keeping all other scan parameters the same. Free radical signal intensities from initial and final scans, acquired at the same power levels, were compared. Hydroxyl radical (OH⋅) signal was found to be generated due to the exposure of GNP-DMPO colloidal samples to a microwave field. Intensity of OH⋅ signal thus generated at 12.5 mW microwave power for 2.8 min was close to the intensity of OH⋅ signal obtained from a water-DMPO sample exposed to 1.5 Gy ionizing radiation dose. For repeated scans, higher OH⋅ intensities were observed in the final scan for higher power levels applied between the initial and the final scans. Final intensities were higher also for a shorter time interval between the initial and the final scans. Our results observed for the first time demonstrate that GNPs generate OH⋅ radicals in aqueous media when they are exposed to a microwave field. If OH⋅ radicals can be generated close to

  2. Development of the radical-stable Coprinus cinereus peroxidase (CiP) by blocking the radical attack.

    PubMed

    Kim, Su Jin; Joo, Jeong Chan; Kim, Han Sang; Kwon, Inchan; Song, Bong Keun; Yoo, Young Je; Kim, Yong Hwan

    2014-11-10

    Despite the potential use of peroxidases as industrial biocatalysts, their practical application is often impeded due to suicide inactivation by radicals generated in oxidative reactions. Using a peroxidase from Coprinus cinereus (CiP) as a model enzyme, we revealed a dominant factor for peroxidase inactivation during phenol oxidation, and we engineered radical-stable mutants by site-directed mutagenesis of an amino acid residue susceptible to modification by phenoxyl radical. Mass spectrometry analysis of inactivated CiP identified an adduct between F230 and a phenoxyl radical, and subsequently, the F230 residue was mutated to amino acids that resisted radical coupling. Of the F230 mutants, the F230A mutant showed the highest stability against radical inactivation, retaining 80% of its initial activity, while the wild-type protein was almost completely inactivated. The F230A mutant also exhibited a 16-fold higher turnover of the phenol substrate compared with the wild-type enzyme. Furthermore, the F230A mutant was stable during the oxidation of other phenolic compounds, including m-cresol and 3-methoxyphenol. No structural changes were observed by UV-vis and CD spectra of CiP after radical coupling, implying that the F230-phenol radical adduct inactivated CiP by blocking substrate access to the active site. Our novel strategy can be used to improve the stability of other peroxidases inactivated by radicals. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2011-06-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008) proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM-10 mM) was oxidized by OH radical. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  4. Intermediate treatments

    Treesearch

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    Intermediate treatments are those applied after a new stand is successfully established and before the final harvest. These include not only intermediate cuttings - primarily thinning - but also fertilization, irrigation, and protection of the stand from damaging agents.

  5. Development of atomic radical monitoring probe and its application to spatial distribution measurements of H and O atomic radical densities in radical-based plasma processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Shunji; Katagiri Engineering Co., Ltd., 3-5-34 Shitte Tsurumi-ku, Yokohama 230-0003; Takashima, Seigo

    2009-09-01

    Atomic radicals such as hydrogen (H) and oxygen (O) play important roles in process plasmas. In a previous study, we developed a system for measuring the absolute density of H, O, nitrogen, and carbon atoms in plasmas using vacuum ultraviolet absorption spectroscopy (VUVAS) with a compact light source using an atmospheric pressure microplasma [microdischarge hollow cathode lamp (MHCL)]. In this study, we developed a monitoring probe for atomic radicals employing the VUVAS with the MHCL. The probe size was 2.7 mm in diameter. Using this probe, only a single port needs to be accessed for radical density measurements. We successfullymore » measured the spatial distribution of the absolute densities of H and O atomic radicals in a radical-based plasma processing system by moving the probe along the radial direction of the chamber. This probe allows convenient analysis of atomic radical densities to be carried out for any type of process plasma at any time. We refer to this probe as a ubiquitous monitoring probe for atomic radicals.« less

  6. Silica hydride intermediate for octadecylsilica and phenyl bonded phase preparation via heterogeneous hydrosilation in supercritical carbon dioxide.

    PubMed

    Scully, N M; Ashu-Arrah, B A; Nagle, A P; Omamogho, J O; O'Sullivan, G P; Friebolin, V; Dietrich, B; Albert, K; Glennon, J D

    2011-04-15

    Investigations into the preparation of silica hydride intermediate in supercritical carbon dioxide (sc-CO(2)) that avoids the use of organic solvents such as toluene or dioxane are described. The effects of reaction temperature, pressure and time on the surface coverage of the supercritical fluid generated silica hydride intermediate were studied. Under optimised supercritical conditions of 120°C, 483 bar and 3 h reaction time, silica hydride (Si-H) conversion efficiencies of ca. 40% were achieved for the hydride intermediate prepared from a monofunctional silane reagent (dimethylmethoxysilane). Si-H conversion efficiencies (as determined from (29)Si CP-MAS NMR spectral analysis) for the hydride intermediate prepared from triethoxysilane (TES) in sc-CO(2) were found to be comparable to those obtained using a TES silanisation approach in an organic solvent. (13)C and (29)Si CP-MAS-NMR spectroscopy was employed to provide a complete structural assignment of the silica hydride intermediates. Furthermore, supercritical CO(2) was subsequently employed as a reaction medium for the heterogenous hydrosilation of silica hydride with octadecene and with styrene, in the presence of a free radical initiator. These supercritical fluid generated reversed-phase materials were prepared in a substantially reduced reaction time (3 h) compared to organic solvent based methods (100 h reaction time). Silica functionalisation in sc-CO(2) presents an efficient and clean alternative to organic solvent based methods for the preparation of important silica hydride intermediate and silica bonded stationary phases via a hydrosilation approach. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Multiple free-radical scavenging capacity in serum

    PubMed Central

    Oowada, Shigeru; Endo, Nobuyuki; Kameya, Hiromi; Shimmei, Masashi; Kotake, Yashige

    2012-01-01

    We have developed a method to determine serum scavenging-capacity profile against multiple free radical species, namely hydroxyl radical, superoxide radical, alkoxyl radical, alkylperoxyl radical, alkyl radical, and singlet oxygen. This method was applied to a cohort of chronic kidney disease patients. Each free radical species was produced with a common experimental procedure; i.e., uv/visible-light photolysis of free-radical precursor/sensitizer. The decrease in free-radical concentration by the presence of serum was quantified with electron spin resonance spin trapping method, from which the scavenging capacity was calculated. There was a significant capacity change in the disease group (n = 45) as compared with the healthy control group (n = 30). The percent values of disease’s scavenging capacity with respect to control group indicated statistically significant differences in all free-radical species except alkylperoxyl radical, i.e., hydroxyl radical, 73 ± 12% (p = 0.001); superoxide radical, 158 ± 50% (p = 0.001); alkoxyl radical, 121 ± 30% (p = 0.005); alkylperoxyl radical, 123 ± 32% (p>0.1); alkyl radical, 26 ± 14% (p = 0.001); and singlet oxygen, 57 ± 18% (p = 0.001). The scavenging capacity profile was illustrated using a radar chart, clearly demonstrating the characteristic change in the disease group. Although the cause of the scavenging capacity change by the disease state is not completely understood, the profile of multiple radical scavenging capacities may become a useful diagnostic tool. PMID:22962529

  8. Site reactivity in the free radicals induced damage to leucine residues: a theoretical study.

    PubMed

    Medina, M E; Galano, A; Alvarez-Idaboy, J R

    2015-02-21

    Several recent computational studies have tried to explain the observed selectivity in radical damage to proteins. In this work we use Density Functional Theory and Transition State Theory including tunnelling corrections, reaction path degeneracy, the effect of diffusion, and the role of free radicals to get further insights into this important topic. The reaction between a leucine derivative and free radicals of biological significance, in aqueous and lipid media, has been investigated. Both thermochemical and kinetic analyses, in both hydrophilic and hydrophobic environments, have been carried out. DPPH, ˙OOH, ˙OOCH3, ˙OOCH2Cl, ˙OOCHCl2 and ˙OOCHCH2 radicals do not react with the target molecule. The reactions are proposed to be kinetically controlled. The leucine gamma site was the most reactive for the reactions with ˙N3, ˙OOCCl3, ˙OCH3, ˙OCH2Cl, and ˙OCHCl2 radicals, with rate constants equal to 1.97 × 10(5), 3.24 × 10(4), 6.68 × 10(5), 5.98 × 10(6) and 8.87 × 10(8) M(-1) s(-1), respectively, in aqueous solution. The ˙Cl, ˙OH and ˙OCCl3 radicals react with leucine at the beta, gamma, and delta positions at rates close to the diffusion limit with the alpha position which is the slowest path and the most thermodynamically favored. The presented results confirm that the Bell-Evans-Polanyi principle does not apply for the reactions between amino acid residues and free radicals. Regarding the influence of the environment on the reactivity of the studied series of free radicals towards leucine residues, it is concluded that hydrophilic media slightly lower the reactivity of the studied radicals, compared to hydrophobic ones, albeit the trends in reactivity are very similar.

  9. Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources

    NASA Astrophysics Data System (ADS)

    Waring, Michael S.; Wells, J. Raymond

    2015-04-01

    Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for residences to predict O3, OH, and NO3 concentrations and their impacts on conversion of typical residential VOC profiles, within a Monte Carlo framework that varied inputs probabilistically. We accounted for established oxidant sources, as well as explored the importance of two newly realized indoor sources: (i) the photolysis of nitrous acid (HONO) indoors to generate OH and (ii) the reaction of stabilized Criegee intermediates (SCI) with NO2 to generate NO3. We found total VOC conversion to be dominated by reactions both with O3, which almost solely reacted with D-limonene, and also with OH, which reacted with D-limonene, other terpenes, alcohols, aldehydes, and aromatics. VOC oxidation rates increased with air exchange, outdoor O3, NO2 and D-limonene sources, and indoor photolysis rates; and they decreased with O3 deposition and nitric oxide (NO) sources. Photolysis was a strong OH formation mechanism for high NO, NO2, and HONO settings, but SCI/NO2 reactions weakly generated NO3 except for only a few cases.

  10. Picosecond Control of Photogenerated Radical Pair Lifetimes Using a Stable Third Radical.

    PubMed

    Horwitz, Noah E; Phelan, Brian T; Nelson, Jordan N; Krzyaniak, Matthew D; Wasielewski, Michael R

    2016-05-12

    Photoinduced electron transfer reactions in organic donor-acceptor systems leading to long-lived radical ion pairs (RPs) have attracted broad interest for their potential applications in fields as diverse as solar energy conversion and spintronics. We present the photophysics and spin dynamics of an electron donor - electron acceptor - stable radical system consisting of a meta-phenylenediamine (mPD) donor covalently linked to a 4-aminonaphthalene-1,8-dicarboximide (ANI) electron-accepting chromophore as well as an α,γ-bisdiphenylene-β-phenylallyl (BDPA) stable radical. Selective photoexcitation of ANI produces the BDPA-mPD(+•)-ANI(-•) triradical in which the mPD(+•)-ANI(-•) RP spins are strongly exchange coupled. The presence of BDPA is found to greatly increase the RP intersystem crossing rate from the initially photogenerated BDPA-(1)(mPD(+•)-ANI(-•)) to BDPA-(3)(mPD(+•)-ANI(-•)), resulting in accelerated RP recombination via the triplet channel to produce BDPA-mPD-(3*)ANI as compared to a reference molecule lacking the BDPA radical. The RP recombination rates observed are much faster than those previously reported for weakly coupled triradical systems. Time-resolved EPR spectroscopy shows that this process is also associated with strong spin polarization of the stable radical. Overall, these results show that RP intersystem crossing rates can be strongly influenced by stable radicals nearby strongly coupled RP systems, making it possible to use a third spin to control RP lifetimes down to a picosecond time scale.

  11. Pluripotent stem cell-derived radial glia-like cells as stable intermediate for efficient generation of human oligodendrocytes.

    PubMed

    Gorris, Raphaela; Fischer, Julia; Erwes, Kim Lina; Kesavan, Jaideep; Peterson, Daniel A; Alexander, Michael; Nöthen, Markus M; Peitz, Michael; Quandel, Tamara; Karus, Michael; Brüstle, Oliver

    2015-12-01

    Neural precursor cells (NPCs) derived from human pluripotent stem cells (hPSCs) represent an attractive tool for the in vitro generation of various neural cell types. However, the developmentally early NPCs emerging during hPSC differentiation typically show a strong propensity for neuronal differentiation, with more limited potential for generating astrocytes and, in particular, for generating oligodendrocytes. This phenomenon corresponds well to the consecutive and protracted generation of neurons and GLIA during normal human development. To obtain a more gliogenic NPC type, we combined growth factor-mediated expansion with pre-exposure to the differentiation-inducing agent retinoic acid and subsequent immunoisolation of CD133-positive cells. This protocol yields an adherent and self-renewing population of hindbrain/spinal cord radial glia (RG)-like neural precursor cells (RGL-NPCs) expressing typical neural stem cell markers such as nestin, ASCL1, SOX2, and PAX6 as well as RG markers BLBP, GLAST, vimentin, and GFAP. While RGL-NPCs maintain the ability for tripotential differentiation into neurons, astrocytes, and oligodendrocytes, they exhibit greatly enhanced propensity for oligodendrocyte generation. Under defined differentiation conditions promoting the expression of the major oligodendrocyte fate-determinants OLIG1/2, NKX6.2, NKX2.2, and SOX10, RGL-NPCs efficiently convert into NG2-positive oligodendroglial progenitor cells (OPCs) and are subsequently capable of in vivo myelination. Representing a stable intermediate between PSCs and OPCs, RGL-NPCs expedite the generation of PSC-derived oligodendrocytes with O4-, 4860-, and myelin basic protein (MBP)-positive cells that already appear within 7 weeks following growth factor withdrawal-induced differentiation. Thus, RGL-NPCs may serve as robust tool for time-efficient generation of human oligodendrocytes from embryonic and induced pluripotent stem cells. © 2015 Wiley Periodicals, Inc.

  12. Criegee intermediates and their impacts on the troposphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M. A. H.; Percival, C. J.; Caravan, R. L.

    We report Criegee intermediates (CIs), carbonyl oxides formed in ozonolysis of alkenes, play key roles in the troposphere. The decomposition of CIs can be a significant source of OH to the tropospheric oxidation cycle especially during nighttime and winter months. A variety of model-measurement studies have estimated surface-level stabilized Criegee intermediate (sCI) concentrations on the order of 1 × 10 4 cm -3 to 1 × 10 5 cm -3, which makes a non-negligible contribution to the oxidising capacity in the terrestrial boundary layer. The reactions of sCI with the water monomer and the water dimer have been found tomore » be the most important bimolecular reactions to the tropospheric sCI loss rate, at least for the smallest carbonyl oxides; the products from these reactions (e.g. hydroxymethyl hydroperoxide, HMHP) are also of importance to the atmospheric oxidation cycle. The sCI can oxidise SO 2 to form SO 3, which can go on to form a significant amount of H 2SO 4 which is a key atmospheric nucleation species and therefore vital to the formation of clouds. Lastly, the sCI can also react with carboxylic acids, carbonyl compounds, alcohols, peroxy radicals and hydroperoxides, and the products of these reactions are likely to be highly oxygenated species, with low vapour pressures, that can lead to nucleation and SOA formation over terrestrial regions.« less

  13. Criegee intermediates and their impacts on the troposphere

    DOE PAGES

    Khan, M. A. H.; Percival, C. J.; Caravan, R. L.; ...

    2018-02-15

    We report Criegee intermediates (CIs), carbonyl oxides formed in ozonolysis of alkenes, play key roles in the troposphere. The decomposition of CIs can be a significant source of OH to the tropospheric oxidation cycle especially during nighttime and winter months. A variety of model-measurement studies have estimated surface-level stabilized Criegee intermediate (sCI) concentrations on the order of 1 × 10 4 cm -3 to 1 × 10 5 cm -3, which makes a non-negligible contribution to the oxidising capacity in the terrestrial boundary layer. The reactions of sCI with the water monomer and the water dimer have been found tomore » be the most important bimolecular reactions to the tropospheric sCI loss rate, at least for the smallest carbonyl oxides; the products from these reactions (e.g. hydroxymethyl hydroperoxide, HMHP) are also of importance to the atmospheric oxidation cycle. The sCI can oxidise SO 2 to form SO 3, which can go on to form a significant amount of H 2SO 4 which is a key atmospheric nucleation species and therefore vital to the formation of clouds. Lastly, the sCI can also react with carboxylic acids, carbonyl compounds, alcohols, peroxy radicals and hydroperoxides, and the products of these reactions are likely to be highly oxygenated species, with low vapour pressures, that can lead to nucleation and SOA formation over terrestrial regions.« less

  14. Spectroscopic evidence for an engineered, catalytically active Trp radical that creates the unique reactivity of lignin peroxidase.

    PubMed

    Smith, Andrew T; Doyle, Wendy A; Dorlet, Pierre; Ivancich, Anabella

    2009-09-22

    The surface oxidation site (Trp-171) in lignin peroxidase (LiP) required for the reaction with veratryl alcohol a high-redox-potential (1.4 V) substrate, was engineered into Coprinus cinereus peroxidase (CiP) by introducing a Trp residue into a heme peroxidase that has similar protein fold but lacks this activity. To create the catalytic activity toward veratryl alcohol in CiP, it was necessary to reproduce the Trp site and its negatively charged microenvironment by means of a triple mutation. The resulting D179W+R258E+R272D variant was characterized by multifrequency EPR spectroscopy. The spectra unequivocally showed that a new Trp radical [g values of g(x) = 2.0035(5), g(y) = 2.0027(5), and g(z) = 2.0022(1)] was formed after the [Fe(IV)=O Por(*+)] intermediate, as a result of intramolecular electron transfer between Trp-179 and the porphyrin. Also, the EPR characterization crucially showed that [Fe(IV)=O Trp-179(*)] was the reactive intermediate with veratryl alcohol. Accordingly, our work shows that it is necessary to take into account the physicochemical properties of the radical, fine-tuned by the microenvironment, as well as those of the preceding [Fe(IV)=O Por(*+)] intermediate to engineer a catalytically competent Trp site for a given substrate. Manipulation of the microenvironment of the Trp-171 site in LiP allowed the detection by EPR spectroscopy of the Trp-171(*), for which direct evidence has been missing so far. Our work also highlights the role of Trp residues as tunable redox-active cofactors for enzyme catalysis in the context of peroxidases with a unique reactivity toward recalcitrant substrates that require oxidation potentials not realized at the heme site.

  15. Mechanism insight of PFOA degradation by ZnO assisted-photocatalytic ozonation: Efficiency and intermediates.

    PubMed

    Wu, Dan; Li, Xukai; Tang, Yiming; Lu, Ping; Chen, Weirui; Xu, Xiaoting; Li, Laisheng

    2017-08-01

    Zinc oxide (ZnO) nanorods were prepared by a directly pyrolysis method and employed as catalyst for perfluorooctanoic acid (PFOA) degradation. Comparative experiments were conducted to discuss the catalytic activity and flexibility of ZnO. After ZnO addition, the best PFOA degradation efficiency (70.5%) was achieved by ZnO/UV/O 3 system, only 9.5% by sole ozonation and 18.2% by UV 254 light irradiation. PFOA degradation was sensitive with pH value and temperature. The better PFOA removal efficiency was achieved at acidic condition. A novel relationship was found among PFOA degradation efficiency with hydroxyl radicals and photo-generated holes. Hydroxyl radicals generated on the surfaces of ZnO nanorods played dominant roles in PFOA degradation. PFOA degradation was found to follow the photo-Kolbe reaction mechanism. C 2 -C 7 shorter-chain perfluorocarboxylic acids and fluoride ion were detected as main intermediates during PFOA degradation process. Based on the results, a proposal degradation pathway was raised. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals].

    PubMed

    Gałecka, Elzbieta; Mrowicka, Małgorzata; Malinowska, Katarzyna; Gałecki, Piotr

    2008-09-01

    Free radicals are substantial elements that take part in proper function of metabolic pathways of human cells and tissues in hydrophobic as well as in hydrophilic environment. Nevertheless overproduction of above molecules causes oxidative stress, a process which is very harmful for lipids, proteins, and others molecules what reduces their normal function. To protect against adverse effects of free radicals and theirs derivatives to human body there is a group of antioxidants divided into enzymatic and non-enzymatic substances. Enzymatic antioxidants are represented mainly by enzymes such as: copper-zinc superoxide dismutase (CuZnSOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR). Glutathione (GSH), thioredoxin (Trx), vitamins, melatonin, polyphenols, trace elements, albumin, and others function as non-enzymatic free radicals scavengers. This work in a brief way describes properties of chosen representants of non-enzymatic antioxidant system.

  17. Spin-correlated doublet pairs as intermediate states in charge separation processes

    NASA Astrophysics Data System (ADS)

    Kraffert, Felix; Behrends, Jan

    2017-10-01

    Spin-correlated charge-carrier pairs play a crucial role as intermediate states in charge separation both in natural photosynthesis as well as in solar cells. Using transient electron paramagnetic resonance (trEPR) spectroscopy in combination with spectral simulations, we study spin-correlated polaron pairs in polymer:fullerene blends as organic solar cells materials. The semi-analytical simulations presented here are based on the well-established theoretical description of spin-correlated radical pairs in biological systems, however, explicitly considering the disordered nature of polymer:fullerene blends. The large degree of disorder leads to the fact that many different relative orientations between both polarons forming the spin-correlated pairs have to be taken into account. This has important implications for the spectra, which differ significantly from those of spin-correlated radical pairs with a fixed relative orientation. We systematically study the influence of exchange and dipolar couplings on the trEPR spectra and compare the simulation results to measured X- and Q-band trEPR spectra. Our results demonstrate that assuming dipolar couplings alone does not allow us to reproduce the experimental spectra. Due to the rather delocalised nature of polarons in conjugated organic semiconductors, a significant isotropic exchange coupling needs to be included to achieve good agreement between experiments and simulations.

  18. High-intensity focused ultrasound (HIFU) in prostate cancer: a single centre experience in patients with low, intermediate or high-risk of progression.

    PubMed

    Callea, Andrea; Piccinni, Roberto; Zizzi, Vito; Sblendorio, Domenico; Berardi, Bartolomeo; Tempesta, Antonio; Gala, Francesco Giuseppe; Traficante, Antonio

    2010-12-01

    High-intensity focused ultrasound (HIFU) is a minimally invasive treatment based on thermal ablation of tissues which are warmed up to 85 degrees C in the focal area. Clinical studies have shown such treatment modality to be safe and effective in the management of localised prostate cancer as well as of local recurrences after radical prostatectomy or radiotherapy. From May 2002 to June 2010, 171 patients with no previous treatment for prostate cancer, aged 44 to 86 years (mean 74.7) underwent 197 HIFU treatments; 22 patients needed a second treatment as the first was incomplete (4 patients) or because of recurrence (18 patients). The prognosis subgroups were defined as low-risk in 29 patients (clinical stage T1-T2a, PSA < or = 10 ng/mL and Gleason score lower than 7), intermediate-risk in 47 patients (clinical stage T2b or PSA 10 - 20 ng/mL or Gleason score of 7), and high-risk in 95 patients (clinical stage > or = T2c or PSA > 20 ng/mL or Gleason score higher than 7). At a mean follow-up of 67.9 months, biochemical success rate (PSA constantly < 0.5 ng/ml) was obtained in 84.2% of low and intermediate risk patients and in 43.1% of high risk patients; post-treatment biopsies (6 months after treatment) revealed no residual tumour in 93.4% of low or intermediate risk patients and in 63.1% of high risk patients. Radical prostatectomy remains the "gold standard" for localised prostate cancer. However, HIFU seems to be a promising alternative and less invasive treatment modality with an encouraging success rate, at least in the short-term, in patients with low and medium risk of progression, not candidates for radical surgery; in cancers with clinical stage > or = T2c, or PSA > 20 ng/mL, or Gleason score higher than 7 seems to get good results in about half of patients.

  19. Radical Abstraction Reactions with Concerted Fragmentation in the Chain Decay of Nitroalkanes

    NASA Astrophysics Data System (ADS)

    Denisov, E. T.; Shestakov, A. F.

    2018-05-01

    Reactions of the type X• + HCR2CH2NO2 → XH + R2C=CH2 + N•O2 are exothermic, due to the breaking of weak C-N bonds and the formation of energy-intensive C=C bonds. Quantum chemistry calculations of the transition state using the reactions of Et• and EtO• with 2-nitrobutane shows that such reactions can be categorized as one-step, due to the extreme instability of the intermediate nitrobutyl radical toward decay with the formation of N•O2. Kinetic parameters that allow us to calculate the energy of activation and rate constant of such a reaction from its enthalpy are estimated using a model of intersecting parabolas. Enthalpies, energies of activation, and rate constants are calculated for a series of reactions with the participation of Et•, EtO•, RO•2, N•O2 radicals on the one hand and a series of nitroalkanes on the other. A new kinetic scheme of the chain decay of nitroalkanes with the participation of abstraction reactions with concerted fragmentation is proposed on the basis of the obtained data.

  20. Characterization of a Cross-Linked Protein–Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    PubMed Central

    2015-01-01

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate to detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl-13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process. PMID:24806349

  1. Characterization of a Cross-Linked Protein-Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silakov, Alexey; Grove, Tyler L.; Radle, Matthew I.

    2014-08-14

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate tomore » detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl- 13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process« less

  2. Characterization of Free Radicals Formed from COX-Catalyzed DGLA Peroxidation

    PubMed Central

    Xiao, Ying; Gu, Yan; Purwaha, Preeti; Ni, Kunyi; Law, Benedict; Mallik, Sanku; Qian, Steven Y.

    2011-01-01

    Like arachidonic acid (AA), dihomo-γ-linolenic acid (DGLA) is a 20-carbon ω-6 polyunsaturated fatty acid and a substrate of cyclooxygenase (COX). Through free radical reactions, COX metabolizes DGLA and AA to form well-known bioactive metabolites, namely, the 1- and 2-series of prostaglandins (PGs1 and PGs2), respectively. Unlike PGs2, which are viewed as pro-inflammatory, PGs1 possess anti-inflammatory and anticancer activities. However, the mechanisms linking the PGs to their bioactivities are still unclear, and radicals generated in COX-DGLA have not been detected. In order to better understand PGs biology and determine whether different reactions occur in COX-DGLA than in COX-AA, we have used LC/ESR/MS with a spin trap, α-[4-pyridyl-1-oxide]-N-tert-butyl nitrone (POBN), to characterize the carbon-centered radicals formed from COX-DGLA in vitro, including cellular peroxidation. A total of five types of DGLA-derived radicals were characterized as POBN adducts: m/z 266, m/z 296 and m/z 550 (same as and/or similar to COX-AA), and m/z 324 and m/z 354 (exclusively from COX-DGLA). Our results suggested that C-15 oxygenation to form PGGs occurs in both COX-DGLA and COX-AA; however, C-8 oxygenation occurs exclusively in COX-DGLA. This new finding will be further investigated for its association with different bioactivities of PGs, with potential implications for inflammatory diseases. PMID:21310230

  3. Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health.

    PubMed

    Kehrer, James P; Klotz, Lars-Oliver

    2015-01-01

    A radical is any molecule that contains one or more unpaired electrons. Radicals are normal products of many metabolic pathways. Some exist in a controlled (caged) form as they perform essential functions. Others exist in a free form and interact with various tissue components. Such interactions can cause both acute and chronic dysfunction, but can also provide essential control of redox regulated signaling pathways. The potential roles of endogenous or xenobiotic-derived free radicals in several human pathologies have stimulated extensive research linking the toxicity of numerous xenobiotics and disease processes to a free radical mechanism. In recent years, improvements in analytical methodologies, as well as the realization that subtle effects induced by free radicals and oxidants are important in modulating cellular signaling, have greatly improved our understanding of the roles of these reactive species in toxic mechanisms and disease processes. However, because free radical-mediated changes are pervasive, and a consequence as well as a cause of injury, whether such species are a major cause of tissue injury and human disease remains unclear. This concern is supported by the fact that the bulk of antioxidant defenses are enzymatic and the findings of numerous studies showing that exogenously administered small molecule antioxidants are unable to affect the course of most toxicities and diseases purported to have a free radical mechanism. This review discusses cellular sources of various radical species and their reactions with vital cellular constituents, and provides examples of selected disease processes that may have a free radical component.

  4. Application of EPR spectroscopy to examine free radicals evolution during storage of the thermally sterilized Ungentum ophthalmicum.

    PubMed

    Ramos, Paweł; Pilawa, Barbara

    2016-06-24

    Free radicals formed during thermal sterilization of the Ungentum ophthalmicum were examined by an X-band EPR spectroscopy. The influence of storage time (15 min; 1, 2 and 3 days after heating) on free radical properties and concentrations in this sample was determined. Thermal sterilization was done according to the pharmaceutical norms. The first-derivative EPR spectra with g-values about 2 were measured with magnetic modulation of 100 kHz in the range of microwave power 2.2-70 mW. The changes of amplitudes (A) and linewidths (ΔB pp ) with microwave powers were evaluated. Free radicals in concentration ∼10 17 spin/g were formed during heating of the tested Ungentum. Free radical concentration decreased with increase in storage time, and reached values ∼10 17 spin/g after 3 days from sterilization. The tested U. ophthalmicum should not be sterilized at a temperature of 160 °C because of the free radicals formation, or it should be used 3 days after heating, when free radicals were considerably quenched. Free radical properties remain unchanged during storage of the Ungentum. The EPR lines of the U. ophthalmicum were homogeneously broadened and their linewidths (ΔB pp ) increased with increase in microwave power. EPR spectroscopy is useful to examine free radicals to optimize sterilization process and storage conditions of ophthalmologic samples.

  5. A Deep Insight into the Details of the Interisomerization and Decomposition Mechanism of o-Quinolyl and o-Isoquinolyl Radicals. Quantum Chemical Calculations and Computer Modeling.

    PubMed

    Dubnikova, Faina; Tamburu, Carmen; Lifshitz, Assa

    2016-09-29

    The isomerization of o-quinolyl ↔ o-isoquinolyl radicals and their thermal decomposition were studied by quantum chemical methods, where potential energy surfaces of the reaction channels and their kinetics rate parameters were determined. A detailed kinetics scheme containing 40 elementary steps was constructed. Computer simulations were carried out to determine the isomerization mechanism and the distribution of reaction products in the decomposition. The calculated mole percent of the stable products was compared to the experimental values that were obtained in this laboratory in the past, using the single pulse shock tube. The agreement between the experimental and the calculated mole percents was very good. A map of the figures containing the mole percent's of eight stable products of the decomposition plotted vs T are presented. The fast isomerization of o-quinolyl → o-isoquinolyl radicals via the intermediate indene imine radical and the attainment of fast equilibrium between these two radicals is the reason for the identical product distribution regardless whether the reactant radical is o-quinolyl or o-isoquinolyl. Three of the main decomposition products of o-quinolyl radical, are those containing the benzene ring, namely, phenyl, benzonitrile, and phenylacetylene radicals. They undergo further decomposition mainly at high temperatures via two types of reactions: (1) Opening of the benzene ring in the radicals, followed by splitting into fragments. (2) Dissociative attachment of benzonitrile and phenyl acetylene by hydrogen atoms to form hydrogen cyanide and acetylene.

  6. Electrophoretic analysis of quinone anion radicals in acetonitrile solutions using an on-line radical generator.

    PubMed

    Esaka, Yukihiro; Okumura, Noriko; Uno, Bunji; Goto, Masashi

    2003-05-01

    We have investigated analysis of anion radicals of phenanthrenequinone (PhQ) and anthraquinone (AQ) using acetonitrile-capillary electrophoresis (CE) under anaerobic conditions. PhQ and AQ have relatively high negative reduction potentials meaning that their anion radicals are re-oxidized quite readily by the surrounding O(2) to disappear during analysis and we failed to detect them with our previous system. In this work, we have developed an on-line system combining a unique electrolysis cell for generation of the radicals and a CE unit to keep the analysis system free from external O(2) molecules and to reduce analysis time remarkably. As a result, electrophoretic detection of the anion radicals of PhQ and AQ has been achieved. Furthermore, we have observed hydrogen-bonding interaction between the anion radicals and dimethylurea (DMU) using the present system and have indicated a characteristic interaction of the anion radical of PhQ as an ortho-quinone with DMU.

  7. Antioxidative and myocardial protective effects of L-arginine in oxygen radical-induced injury of isolated perfused rat hearts.

    PubMed

    Suessenbacher, Astrid; Lass, Achim; Mayer, Bernd; Brunner, Friedrich

    2002-04-01

    Oxygen-derived free radicals and oxidants (reactive oxygen intermediates, ROI) have been implicated in cardiovascular diseases. The protective role of nitric oxide (NO) against ROI-mediated tissue injury is not resolved. We tested the effects of exogenous NO, L- and D-arginine and a NO synthase inhibitor on electrolysis-induced cardiac injury and the generation of ROI by electrolysis. Superoxide dismutase (SOD) and catalase were used for comparison. Hearts ( n=7) from male rats (350+/-30 g) were perfused in vitro at 10 ml min(-1) g(-1), ROI generated by electrolysis of the perfusion medium (15 mA, 10 s), and cardiac function and the level of isoluminol-derived chemiluminescence in electrolysed perfusion medium documented for 15 min ( n=4). The ROI-induced maximal reduction of left ventricular developed pressure to 55+/-5% of baseline, and a 2.2+/-0.1-fold rise in coronary perfusion pressure 3 min after electrolysis, were prevented by SOD (50 U ml(-1)), catalase (100 U ml(-1)), S-nitroso- N-acetyl- D,L-penicillamine (SNAP, 100 nmol l(-1)); L-arginine (1 mmol l(-1)), N(G)-nitro- L-arginine (L-NNA, 200 micromol l(-1)) or D-arginine (1 mmol l(-1)). The effect of L-arginine was concentration dependent. In all cases, the beneficial effects were closely matched by a near-total reduction of ROI in the perfusion medium.We conclude that, besides mimicking or enhancing NO activity, L-arginine and donor-derived exogenous NO are cardioprotective by reducing ROI-mediated tissue injury. The protective effect of L-NNA and D-arginine implies that the protection results from a direct chemical interaction between the drug and the oxidizing species.

  8. Roles of free radicals in type 1 phototherapeutic agents: aromatic amines, sulfenamides, and sulfenates.

    PubMed

    Lin, Tien-Sung; Rajagopalan, Raghavan; Shen, Yuefei; Park, Sungho; Poreddy, Amruta R; Asmelash, Bethel; Karwa, Amolkumar S; Taylor, John-Stephen A

    2013-07-03

    Detailed analyses of the electron spin resonance (ESR) spectra, cell viability, and DNA degradation studies are presented for the photolyzed Type I phototherapeutic agents: aromatic amines, sulfenamides, and sulfenates. The ESR studies provided evidence that copious free radicals can be generated from these N-H, N-S, and S-O containing compounds upon photoirradiation with UV/visible light. The analyses of spectral data allowed us to identify the free radical species. The cell viability studies showed that these agents after exposure to light exert cytotoxicity to kill cancer cells (U937 leukemia cell lines HTC11, KB, and HT29 cell lines) in a dosage- and time-dependent manner. We examined a possible pathway of cell death via DNA degradation by a plasmid cleavage assay for several compounds. The effects of photosensitization with benzophenone in the presence of oxygen were examined. The studies indicate that planar tricyclic amines and sulfenamides tend to form π-electron delocalized aminyl radicals, whereas nonplanar ones tend to yield nitroxide radicals resulting from the recombination of aminyl radicals with oxygen. The ESR studies coupled with the results of cell viability measurements and DNA degradation reveal that planar N-centered radicals can provide higher potency in cell death and allow us to provide some insights on the reaction mechanisms. We also found the formation of azatropylium cations possessing high aromaticity derived from azepines can facilitate secondary electron transfer to form toxic O2(•-) radicals, which can further exert oxidative stress and cause cell death.

  9. Conversion of 3-imidazoline-3-oxide nitroxyl radicals into nitronylnitroxyl radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigor'ev, I.A.; Shchukin, G.I.; Khramtsov, V.V.

    1986-04-20

    Continuing the studies of the effect of the pH of the medium on the EPR spectra of nitroxyl radicals (NR) containing acid-base functional groups at a distance of 2-3 sigma-bonds from the radical center, they have examined the EPR spectra of NR, which contain OH groups in the 2-position of the heterocycle. It is assumed that deprotonation of the OH group is accompanied by changes in the hfc constant a/sub N//sup 1/ and the g-factor. At pH values greater than or equal to 12, however, the EPR spectra of aqueous solutions of radicals undergo irreversible changes from a triplet tomore » a more complex multiplet, similar to the spectra of nitronylnitroxyl radicals. The EPR spectra of these solutions remain unchanged over periods of several days. The spectra have a quintet structure, with further splitting into four or three components. When similar experiments are carried out in D/sub 2/O, the additional hfs disappear as a result of deuterium exchange in the CH/sub 2/ and CH/sub 3/ groups of the radicals. A simulation of the EPR spectra was carried out, assuming splitting into two N nuclei (a/sub N//sup 1/ and a/sub N//sup 3/), with three or two equivalent H. This resulted in complete agreement between the calculated and experimental spectra. In order to assign the nitrogen hfc constants, they synthesized radicals containing the N/sup 15/ isotope in the 3-position of the imidazole ring. Comparison of the results of simulations of the EPR spectra enabled unambiguous assignments of the hfc constants a/sub N//sup 1/ and a/sub N//sup 3/ to be made.« less

  10. Interactions of coffee and bread crust melanoidins with hydroxycinnamic and hydroxybenzoic acids in aqueous radical environment.

    PubMed

    Çelik, Ecem Evrim; Rubio, Jose Manuel Amigo; Andersen, Mogens Larsen; Gökmen, Vural

    2018-06-01

    The interactions of coffee and bread crust melanoidins with hydroxycinnamic and hydroxybenzoic acids (HCA/HBA) containing different numbers of -OH and -OCH₃ groups localized at different positions on the aromatic ring were investigated. By doing so, mechanism of the interactions was intended to be explained with a structural approach. Experimental studies were carried out in DPPH radical medium. Chemometric methods were used for experimental design and multivariate data analysis. Area under the curve (AUC) values calculated from the plots of time versus inhibition (%) for coffee and bread crust melanoidins and HCA/HBA derivatives were ranged between 6532 ± 97-19,106 ± 85, 3997 ± 102-7565 ± 159 and - 1678 ± 81-22,486 ± 119, respectively. Synergistic interactions were revealed for both coffee and bread crust melanoidins and HCA/HBA derivatives. The significance of the concentrations of coffee and bread crust melanoidins on radical scavenging activity was clearly centered from the scores plots obtained via Principal component analysis (PCA). Phases of radical scavenging reactions were also revealed from the loadings plots. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Measuring sunscreen protection against solar-simulated radiation-induced structural radical damage to skin using ESR/spin trapping: development of an ex vivo test method.

    PubMed

    Haywood, Rachel; Volkov, Arsen; Andrady, Carima; Sayer, Robert

    2012-03-01

    The in vitro star system used for sunscreen UVA-testing is not an absolute measure of skin protection being a ratio of the total integrated UVA/UVB absorption. The in vivo persistent-pigment-darkening method requires human volunteers. We investigated the use of the ESR-detectable DMPO protein radical-adduct in solar-simulator-irradiated skin substitutes for sunscreen testing. Sunscreens SPF rated 20+ with UVA protection, reduced this adduct by 40-65% when applied at 2 mg/cm(2). SPF 15 Organic UVA-UVB (BMDBM-OMC) and TiO(2)-UVB filters and a novel UVA-TiO(2) filter reduced it by 21, 31 and 70% respectively. Conventional broad-spectrum sunscreens do not fully protect against protein radical-damage in skin due to possible visible-light contributions to damage or UVA-filter degradation. Anisotropic spectra of DMPO-trapped oxygen-centred radicals, proposed intermediates of lipid-oxidation, were detected in irradiated sunscreen and DMPO. Sunscreen protection might be improved by the consideration of visible-light protection and the design of filters to minimise radical leakage and lipid-oxidation.

  12. Chemical Probes for the Functionalization of Polyketide Intermediates**

    PubMed Central

    Riva, Elena; Wilkening, Ina; Gazzola, Silvia; Li, W M Ariel; Smith, Luke; Leadlay, Peter F; Tosin, Manuela

    2014-01-01

    A library of functionalized chemical probes capable of reacting with ketosynthase-bound biosynthetic intermediates was prepared and utilized to explore in vivo polyketide diversification. Fermentation of ACP mutants of S. lasaliensis in the presence of the probes generated a range of unnatural polyketide derivatives, including novel putative lasalocid A derivatives characterized by variable aryl ketone moieties and linear polyketide chains (bearing alkyne/azide handles and fluorine) flanking the polyether scaffold. By providing direct information on microorganism tolerance and enzyme processing of unnatural malonyl-ACP analogues, as well as on the amenability of unnatural polyketides to further structural modifications, the chemical probes constitute invaluable tools for the development of novel mutasynthesis and synthetic biology. PMID:25212788

  13. Synthesis of antiviral tetrahydrocarbazole derivatives by photochemical and acid-catalyzed C-H functionalization via intermediate peroxides (CHIPS).

    PubMed

    Gulzar, Naeem; Klussmann, Martin

    2014-06-20

    The direct functionalization of C-H bonds is an important and long standing goal in organic chemistry. Such transformations can be very powerful in order to streamline synthesis by saving steps, time and material compared to conventional methods that require the introduction and removal of activating or directing groups. Therefore, the functionalization of C-H bonds is also attractive for green chemistry. Under oxidative conditions, two C-H bonds or one C-H and one heteroatom-H bond can be transformed to C-C and C-heteroatom bonds, respectively. Often these oxidative coupling reactions require synthetic oxidants, expensive catalysts or high temperatures. Here, we describe a two-step procedure to functionalize indole derivatives, more specifically tetrahydrocarbazoles, by C-H amination using only elemental oxygen as oxidant. The reaction uses the principle of C-H functionalization via Intermediate PeroxideS (CHIPS). In the first step, a hydroperoxide is generated oxidatively using visible light, a photosensitizer and elemental oxygen. In the second step, the N-nucleophile, an aniline, is introduced by Brønsted-acid catalyzed activation of the hydroperoxide leaving group. The products of the first and second step often precipitate and can be conveniently filtered off. The synthesis of a biologically active compound is shown.

  14. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (PHB) from a Process Relevant Lignocellulosic Derived Sugar (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, W.; Mittal, A.; Mohagheghi, A.

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose,more » glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.« less

  15. Ultraviolet photodissociation dynamics of the benzyl radical.

    PubMed

    Song, Yu; Zheng, Xianfeng; Lucas, Michael; Zhang, Jingsong

    2011-05-14

    Ultraviolet (UV) photodissociation dynamics of jet-cooled benzyl radical via the 4(2)B(2) electronically excited state is studied in the photolysis wavelength region of 228 to 270 nm using high-n Rydberg atom time-of-flight (HRTOF) and resonance enhanced multiphoton ionization (REMPI) techniques. In this wavelength region, H-atom photofragment yield (PFY) spectra are obtained using ethylbenzene and benzyl chloride as the precursors of benzyl radical, and they have a broad peak centered around 254 nm and are in a good agreement with the previous UV absorption spectra of benzyl. The H + C(7)H(6) product translational energy distributions, P(E(T))s, are derived from the H-atom TOF spectra. The P(E(T)) distributions peak near 5.5 kcal mol(-1), and the fraction of average translational energy in the total excess energy, , is ∼0.3. The P(E(T))s indicate the production of fulvenallene + H, which was suggested by recent theoretical studies. The H-atom product angular distribution is isotropic, with the anisotropy parameter β ≈ 0. The H/D product ratios from isotope labeling studies using C(6)H(5)CD(2) and C(6)D(5)CH(2) are reasonably close to the statistical H/D ratios, suggesting that the H/D atoms are scrambled in the photodissociation of benzyl. The dissociation mechanism is consistent with internal conversion of the electronically excited benzyl followed by unimolecular decomposition of the hot benzyl radical on the ground state.

  16. Peroxyl radical reactions with carotenoids in microemulsions: Influence of microemulsion composition and the nature of peroxyl radical precursor.

    PubMed

    El-Agamey, Ali; McGarvey, David J

    2016-01-01

    The reactions of acetylperoxyl radicals with different carotenoids (7,7'-dihydro-β-carotene and ζ-carotene) in SDS and CTAC microemulsions of different compositions were investigated using laser flash photolysis (LFP) coupled with kinetic absorption spectroscopy. The primary objective of this study was to explore the influence of microemulsion composition and the type of surfactant used on the yields and kinetics of various transients formed from the reaction of acetylperoxyl radicals with carotenoids. Also, the influence of the site (hydrocarbon phases or aqueous phase) of generation of the peroxyl radical precursor was examined by using 4-acetyl-4-phenylpiperidine hydrochloride (APPHCl) and 1,1-diphenylacetone (11DPA) as water-soluble and lipid-soluble peroxyl radical precursors, respectively. LFP of peroxyl radical precursors with 7,7'-dihydro-β-carotene (77DH) in different microemulsions gives rise to the formation of three distinct transients namely addition radical (λmax=460 nm), near infrared transient1 (NIR, λmax=700 nm) and 7,7'-dihydro-β-carotene radical cation (77DH(•+), λmax=770 nm). In addition, for ζ-carotene (ZETA) two transients (near infrared transient1 (NIR1, λmax=660 nm) and ζ-carotene radical cation (ZETA(•+), λmax=730-740 nm)) are generated following LFP of peroxyl radical precursors in the presence of ζ-carotene (ZETA) in different microemulsions. The results show that the composition of the microemulsion strongly influences the observed yield and kinetics of the transients formed from the reactions of peroxyl radicals (acetylperoxyl radicals) with carotenoids (77DH and ZETA). Also, the type of surfactant used in the microemulsions influences the yield of the transients formed. The dependence of the transient yields and kinetics on microemulsion composition (or the type of surfactant used in the microemulsion) can be attributed to the change of the polarity of the microenvironment of the carotenoid. Furthermore, the nature of

  17. Taking a Radical Position: Evidence for Position-Specific Radical Representations in Chinese Character Recognition Using Masked Priming ERP

    PubMed Central

    Su, I.-Fan; Mak, Sin-Ching Cassie; Cheung, Lai-Ying Milly; Law, Sam-Po

    2012-01-01

    In the investigation of orthographic representation of Chinese characters, one question that has stimulated much research is whether radicals (character components) are specified for spatial position in a character (e.g., Ding et al., 2004; Tsang and Chen, 2009). Differing from previous work, component or radical position information in this study is conceived in terms of relative frequency across different positions of characters containing it. A lexical decision task in a masked priming paradigm focusing on radicals with preferred position of occurrence was conducted. A radical position that encompasses more characters than other positions was identified to be the preferred position of a particular radical. The prime that was exposed for 96 ms might share a radical with the target in the same or different positions. Moreover, the shared radical appeared either in its preferred or non-preferred position in the target. While response latencies only revealed the effect of graphical similarity, both effects of graphical similarity and radical position preference were found in the event-related potential (ERP) results. The former effect was reflected in greater positivity in occipital P1 and greater negativity in N400 for radicals in different positions in prime and target characters. The latter effect manifested as greater negativity in occipital N170 and greater positivity in frontal P200 in the same time window elicited by radicals in their non-preferred position. Equally interesting was the reversal of the effect of radical position preference in N400 with greater negativity associated with radicals in preferred position. These findings identify the early ERP components associated with activation of position-specific radical representations in the orthographic lexicon, and reveal the change in the nature of competition from processing at the radical level to the lexical level. PMID:23024634

  18. Nature and kinetic analysis of carbon-carbon bond fragmentation reactions of cation radicals derived from SET-oxidation of lignin model compounds.

    PubMed

    Cho, Dae Won; Parthasarathi, Ramakrishnan; Pimentel, Adam S; Maestas, Gabriel D; Park, Hea Jung; Yoon, Ung Chan; Dunaway-Mariano, Debra; Gnanakaran, S; Langan, Paul; Mariano, Patrick S

    2010-10-01

    Features of the oxidative cleavage reactions of diastereomers of dimeric lignin model compounds, which are models of the major types of structural units found in the lignin backbone, were examined. Cation radicals of these substances were generated by using SET-sensitized photochemical and Ce(IV) and lignin peroxidase promoted oxidative processes, and the nature and kinetics of their C-C bond cleavage reactions were determined. The results show that significant differences exist between the rates of cation radical C1-C2 bond cleavage reactions of 1,2-diaryl-(β-1) and 1-aryl-2-aryloxy-(β-O-4) propan-1,3-diol structural units found in lignins. Specifically, under all conditions C1-C2 bond cleavage reactions of cation radicals of the β-1 models take place more rapidly than those of the β-O-4 counterparts. The results of DFT calculations on cation radicals of the model compounds show that the C1-C2 bond dissociation energies of the β-1 lignin model compounds are significantly lower than those of the β-O-4 models, providing clear evidence for the source of the rate differences.

  19. Thioperoxy derivative generated by UV-induced transformation of N-hydroxypyridine-2(1H)-thione isolated in low-temperature matrixes.

    PubMed

    Lapinski, Leszek; Gerega, Anna; Sobolewski, Andrzej L; Nowak, Maciej J

    2008-01-17

    Photochemical transformations of N-hydroxypyridine-2(1H)-thione and its deuterated isotopologue were studied using the matrix-isolation technique. Low-temperature Ar and N2 matrixes containing monomers of this compound were irradiated with continuous-wave near-UV light. Photogeneration of two products was observed in these experiments. The relative population of these photogenerated species was found to be dependent on the wavelength of the UV light used for irradiation. By comparison of the IR spectra of the photoproducts with the spectra simulated theoretically at the DFT(B3LYP)/6-311++G(d, p) level, the final and the intermediate products were identified as rotameric forms of 2-hydroxysulfanyl-pyridine. This is the first report on generation of this thioperoxy derivative of pyridine. The mechanism of photogeneration of 2-hydroxysulfanyl-pyridine involves a photoinduced cleavage of the N-O bond in N-hydroxypyridine-2(1H)-thione, generation of the .OH radical weakly bound with the remaining pyridylthiyl radical, and recombination of these two radicals by formation of the new -S-O- bond. A theoretical model supporting this interpretation was constructed on the basis of approximate coupled cluster (CC2) calculations of the potential energy surfaces of the ground and first excited singlet electronic states of the system. After electronic excitation of the monomeric N-hydroxypyridine-2(1H)-thione, the molecule evolves to the conical intersection with the potential energy surface of the ground state and then to the global minimum corresponding to 2-hydroxysulfanyl-pyridine.

  20. Age-related endothelial dysfunction in human skeletal muscle feed arteries: the role of free radicals derived from mitochondria in the vasculature.

    PubMed

    Park, S-Y; Kwon, O S; Andtbacka, R H I; Hyngstrom, J R; Reese, V; Murphy, M P; Richardson, R S

    2018-01-01

    This study sought to determine the role of free radicals derived from mitochondria in the vasculature in the recognized age-related endothelial dysfunction of human skeletal muscle feed arteries (SMFAs). A total of 44 SMFAs were studied with and without acute exposure to the mitochondria-targeted antioxidant MitoQ and nitric oxide synthase (NOS) blockade. The relative abundance of proteins from the electron transport chain, phosphorylated (p-) to endothelial (e) NOS ratio, manganese superoxide dismutase (MnSOD) and the mitochondria-derived superoxide (O2-) levels were assessed in SMFA. Endothelium-dependent and endothelium-independent SMFA vasodilation was assessed in response to flow-induced shear stress, acetylcholine (ACh) and sodium nitroprusside (SNP). MitoQ restored endothelium-dependent vasodilation in the old to that of the young when stimulated by both flow (young: 68 ± 5; old: 25 ± 7; old + MitoQ 65 ± 9%) and ACh (young: 97 ± 4; old: 59 ± 10; old + MitoQ: 98 ± 5%), but did not alter the initially uncompromised, endothelium-independent vasodilation (SNP). Compared to the young, MitoQ in the old diminished the initially elevated mitochondria-derived O2- levels and appeared to attenuate the breakdown of MnSOD. Furthermore, MitoQ increased the ratio of p-eNOS to NOS and the restoration of endothelium-dependent vasodilation in the old by MitoQ was ablated by NOS blockade. This study demonstrated that MitoQ reverses age-related vascular dysfunction by what appears to be an NO-dependent mechanism in human SMFAs. These findings suggest that mitochondria-targeted antioxidants may have utility in terms of counteracting the attenuated blood flow and vascular dysfunction associated with advancing age. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  1. Ni-Catalyzed Regioselective 1,2-Dicarbofunctionalization of Olefins by Intercepting Heck Intermediates as Imine-Stabilized Transient Metallacycles

    DOE PAGES

    Shrestha, Bijay; Basnet, Prakash; Dhungana, Roshan K.; ...

    2017-07-24

    We disclose a strategy for Ni-catalyzed regioselective dicarbofunctionalization of olefins in styrene derivatives by intercepting Heck C(sp 3)-NiX intermediates with arylzinc reagents. This approach utilizes a readily removable imine as a coordinating group that plays a dual role of intercepting oxidative addition species derived from aryl halides and triflates to promote Heck carbometallation, and stabilizing the Heck C(sp 3)-NiX intermediates as transient metallacycles to suppress β-hydride elimination and facilitate transmetalation/reductive elimination steps. This method affords diversely-substituted 1,1,2-riarylethyl products that occur as structural motifs in various natural products.

  2. Modification of Cys-418 of pyruvate formate-lyase by methacrylic acid, based on its radical mechanism.

    PubMed

    Plaga, W; Vielhaber, G; Wallach, J; Knappe, J

    2000-01-21

    The recently determined crystal structure of pyruvate formate-lyase (PFL) suggested a new view of the mechanism of this glycyl radical enzyme, namely that intermediary thiyl radicals of Cys-418 and Cys-419 participate in different ways [Becker, A. et al. (1999) Nat. Struct. Biol. 6, 969-975]. We report here a suicide reaction of PFL that occurs with the substrate-analog methacrylate with retention of the protein radical (K(I)=0.42 mM, k(i)=0.14 min(-1)). Using [1-(14)C]methacrylate (synthesized via acetone cyanhydrin), the reaction end-product was identified by peptide mapping and cocrystallization experiments as S-(2-carboxy-(2S)-propyl) substituted Cys-418. The stereoselectivity of the observed Michael addition reaction is compatible with a radical mechanism that involves Cys-418 thiyl as nucleophile and Cys-419 as H-atom donor, thus supporting the functional assignments of these catalytic amino acid residues derived from the protein structure.

  3. Genomic, Transcriptomic and Metabolomic Studies of Two Well-Characterized, Laboratory-Derived Vancomycin-Intermediate Staphylococcus aureus Strains Derived from the Same Parent Strain

    PubMed Central

    Hattangady, Dipti S.; Singh, Atul K.; Muthaiyan, Arun; Jayaswal, Radheshyam K.; Gustafson, John E.; Ulanov, Alexander V.; Li, Zhong; Wilkinson, Brian J.; Pfeltz, Richard F.

    2015-01-01

    Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA) derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with more in strain 13136p−m+V20 (vancomycin MIC = 16 µg/mL) than strain 13136p−m+V5 (MIC = 8 µg/mL). Most of the mutations have not previously been associated with the VISA phenotype; some were associated with cell wall metabolism and many with stress responses, notably relating to DNA damage. The genomes and transcriptomes of the two VISA support the importance of gene expression regulation to the VISA phenotype. Similarities in overall transcriptomic and metabolomic data indicated that the VISA physiologic state includes elements of the stringent response, such as downregulation of protein and nucleotide synthesis, the pentose phosphate pathway and nutrient transport systems. Gene expression for secreted virulence determinants was generally downregulated, but was more variable for surface-associated virulence determinants, although capsule formation was clearly inhibited. The importance of activated stress response elements could be seen across all three analyses, as in the accumulation of osmoprotectant metabolites such as proline and glutamate. Concentrations of potential cell wall precursor amino acids and glucosamine were increased in the VISA strains. Polyamines were decreased in the VISA, which may facilitate the accrual of mutations. Overall, the studies confirm the wide variability in mutations and gene expression patterns that can lead to the VISA phenotype. PMID:27025616

  4. Feminism and Political Radicalism.

    PubMed

    Fowler, Marguerite Gilbert; Fowler, Robert L; Van De Riet, Hani

    1973-03-01

    The political attitudes of 50 feminist women in relation to "feminism" as a dimension were examined and contrasted with those of 50 of their contemporary female peers. They were administered the Attitudes Toward Feminism Belief-Pattern Scale (3), the Conservatism-Radicalism Opinionnaire (4), and a questionnaire providing biographical information and personal opinions regarding various timely political and feminine issues. The feminist women and their peers were found to differ significantly in the attitudinal dimensions of feminism and political conservatism-radicalism. The feminist women manifested more feminism than their peers, as well as being more politically radical. Feminism as a dimension was also found to be positively correlated with political radicalism. Both goups were also compared in their sentiments and opinions on several noteworthy issues; e.g., the potential influence of the women's vote in en- hancing the status of women. Surprisingly, the feminist women and their peers failed to differ on some of the more salient of these. In order to understand and appreciate the feminist personality, the forces potentiating the Women's movement, and the apparent similarities and differences between the feminist women and their peers, the variables of feminism, political conservatism-radicalism, and activism seem to deserve consideration.

  5. The Development, Implementation and Application of Accurate Quantum Chemical Methods for Molecular Structure, Spectra and Reaction Paths

    DTIC Science & Technology

    2016-02-02

    Bartlett, Nigel G. J. Richards, Robert W. Molt, Alison M. Lecher. Facile Csp2 Csp2 bond cleavage in oxalic acid -derived radicals: Implications for...sway a strong bond link in oxalate can be broken by manganese containing enzymes. The intermediate steps involved the formation of either a radical or...catalysis by oxalate decarboxylase, Journal of the American Chemical Society, (03 2015): 3248. doi: 10.1021/ja510666r Erik Deumens, Victor F. Lotrich

  6. Food and Nutrition (Intermediate). Performance Objectives and Criterion-Referenced Test Items.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This document contains competencies and criterion-referenced test items for the Intermediate Food and Nutrition semester course in Missouri that were derived from the duties and tasks of the Missouri homemaker and identified and validated by home economics teachers and subject matter specialists. The guide is designed to assist home economics…

  7. EVALUATION OF FREEZE DRIED ALOE VERA AND NOPAL CACTUS FOR POSSIBLE HEALTH TREATMENTS BY COMPARISON OF ANTIOXIDANT PROPERTIES AND FREE RADICAL INHIBITION.

    PubMed

    Rodriguez, Kenneth R; Jones, Anthony E; Belmont, Barbara

    2014-01-01

    The goal of this project was to characterize the antioxidant powers of lyophilized Aloe Vera ( Aloe barbadensis ) and Nopal Cactus (Opuntia ficus-indica) by quantifying the phenolics content and radical scavenging abilities of preparations derived from these plants. Extracts of these lyophylized succulents were assayed for phenolic compounds by the Folin Ciocalteau method and compared for free radical scavenging capability by the DPPH method. We found that even though the Aloe lyophilizate extract contained more phenolic content, the Nopal lyophilizate exhibited better free radical scavenging ability. Aloe Vera extract contained 0.278 g/L of phenolic content and exhibited 11.1% free radical inhibition, with a free radical scavenging rate constant of 0.177±0.015 min -1 . Nopal Cactus extract contained 0.174 g/L of phenolic content and exhibited 13.2% free radical inhibition, with a free radical scavenging rate constant of 0.155±0.009 min -1 . These results showed Nopal to have greater antioxidant potency than Aloe.

  8. EVALUATION OF FREEZE DRIED ALOE VERA AND NOPAL CACTUS FOR POSSIBLE HEALTH TREATMENTS BY COMPARISON OF ANTIOXIDANT PROPERTIES AND FREE RADICAL INHIBITION

    PubMed Central

    Jones, Anthony E.; Belmont, Barbara

    2016-01-01

    The goal of this project was to characterize the antioxidant powers of lyophilized Aloe Vera (Aloe barbadensis) and Nopal Cactus (Opuntia ficus-indica) by quantifying the phenolics content and radical scavenging abilities of preparations derived from these plants. Extracts of these lyophylized succulents were assayed for phenolic compounds by the Folin Ciocalteau method and compared for free radical scavenging capability by the DPPH method. We found that even though the Aloe lyophilizate extract contained more phenolic content, the Nopal lyophilizate exhibited better free radical scavenging ability. Aloe Vera extract contained 0.278 g/L of phenolic content and exhibited 11.1% free radical inhibition, with a free radical scavenging rate constant of 0.177±0.015 min−1. Nopal Cactus extract contained 0.174 g/L of phenolic content and exhibited 13.2% free radical inhibition, with a free radical scavenging rate constant of 0.155±0.009 min−1. These results showed Nopal to have greater antioxidant potency than Aloe. PMID:27284273

  9. OKN-007 decreases free radical levels in a preclinical F98 rat glioma model.

    PubMed

    Coutinho de Souza, Patricia; Smith, Nataliya; Atolagbe, Oluwatomisin; Ziegler, Jadith; Njoku, Charity; Lerner, Megan; Ehrenshaft, Marilyn; Mason, Ronald P; Meek, Bill; Plafker, Scott M; Saunders, Debra; Mamedova, Nadezda; Towner, Rheal A

    2015-10-01

    Free radicals are associated with glioma tumors. Here, we report on the ability of an anticancer nitrone compound, OKN-007 [Oklahoma Nitrone 007; a disulfonyl derivative of α-phenyl-tert-butyl nitrone (PBN)] to decrease free radical levels in F98 rat gliomas using combined molecular magnetic resonance imaging (mMRI) and immunospin-trapping (IST) methodologies. Free radicals are trapped with the spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), to form DMPO macromolecule radical adducts, and then further tagged by immunospin trapping by an antibody against DMPO adducts. In this study, we combined mMRI with a biotin-Gd-DTPA-albumin-based contrast agent for signal detection with the specificity of an antibody for DMPO nitrone adducts (anti-DMPO probe), to detect in vivo free radicals in OKN-007-treated rat F98 gliomas. OKN-007 was found to significantly decrease (P < 0.05) free radical levels detected with an anti-DMPO probe in treated animals compared to untreated rats. Immunoelectron microscopy was used with gold-labeled antibiotin to detect the anti-DMPO probe within the plasma membrane of F98 tumor cells from rats administered anti-DMPO in vivo. OKN-007 was also found to decrease nuclear factor erythroid 2-related factor 2, inducible nitric oxide synthase, 3-nitrotyrosine, and malondialdehyde in ex vivo F98 glioma tissues via immunohistochemistry, as well as decrease 3-nitrotyrosine and malondialdehyde adducts in vitro in F98 cells via ELISA. The results indicate that OKN-007 effectively decreases free radicals associated with glioma tumor growth. Furthermore, this method can potentially be applied toward other types of cancers for the in vivo detection of macromolecular free radicals and the assessment of antioxidants. Copyright © 2015. Published by Elsevier Inc.

  10. Tuning spin-spin interactions in radical dendrimers.

    PubMed

    Vidal-Gancedo, José; Lloveras, Vega; Liko, Flonja; Pinto, Luiz F; Muñoz-Gómez, Jose L

    2018-05-10

    Two generations of phosphorous dendrimers were synthesized and fully functionalized with TEMPO radicals via acrylamido or imino group linkers to evaluate the impact of the linker substitution on the radical-radical interactions. A drastic change in the way that the radicals interacted among them was observed by EPR and CV studies: while radicals in Gn-imino-TEMPO dendrimers presented a strong spin-spin interaction, in the Gn-acrylamido-TEMPO ones they acted mainly as independent radicals. This shows that these interactions could be tuned by the solely substitution of the radical linker, opening the perspective of controlling and modulating the extension of these interactions depending on each application. The chemical properties of the linker strongly influence the spin-spin exchange between pendant radicals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Photoredox Generated Radicals in Csp2-Csp3 Bond Construction

    NASA Astrophysics Data System (ADS)

    Primer, David Neal

    The routine application of Csp3-hybridized nucleophiles in cross-coupling has been an ongoing pursuit in the agrochemical, pharmaceutical, and materials science industries for over 40 years. Unfortunately, despite numerous attempts to circumvent the problems associated with alkyl nucleophiles, application of these reagents in transition metal-catalyzed C-C bond-forming reactions has remained largely restricted. In recent years, many chemists have noted the lack of reliable, turnkey reactions that exist for the installation of Csp3-hybridized centers--reactions that would be useful for delivering molecules with enhanced three-dimensional topology and altered chemical properties. As such, a general method for alkyl nucleophile activation in cross-coupling would offer access to a host of compounds inaccessible by other means. From a mechanistic standpoint, the continued failure of alkylmetallics is inherent to the high energy intermediates associated with a traditional transmetalation. To overcome this problem, we have pioneered an alternate, single-electron pathway involving 1) initial oxidation of an alkylmetallic reagent, 2) oxidative alkyl radical capture at a metal center, and 3) subsequent reduction of the metal center to return its initial oxidation state. This series of steps constitutes a formal transmetalation that avoids the energy-demanding steps that plague a traditional anionic approach. Under this enabling paradigm, a host of alkyl precursors (alkyl-trifluoroborates and -silicates) have been generally used in cross-coupling for the first time. In summary, the synergistic use of an Ir photoredox catalyst and a Ni cross-coupling catalyst to mediate the cross-coupling of (hetero)aryl bromides with diverse alkyl radical precursors will be discussed. Methods for coupling various trifluoroborate classes (alpha-alkoxy, alpha-trifluoromethyl, secondary and tertiary alkyl) will be covered, focusing on their complementarity to traditional protocols. Finally, a

  12. Molecular weight growth in Titan's atmosphere: Branching pathways for the reaction of 1-propynyl radical (H 3CC≡C˙) with small alkenes and alkynes

    DOE PAGES

    Kirk, Benjamin B.; Savee, John D.; Trevitt, Adam J.; ...

    2015-07-16

    The reaction of small hydrocarbon radicals (i.e. ˙CN, ˙C 2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C 2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC≡C˙), a likely product frommore » the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d 4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (–H = 27%, –CH 3 = 73%) and (–H = 14%, –CH 3 = 86%), respectively. Altogether, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.« less

  13. Molecular weight growth in Titan's atmosphere: branching pathways for the reaction of 1-propynyl radical (H3CC≡C˙) with small alkenes and alkynes.

    PubMed

    Kirk, Benjamin B; Savee, John D; Trevitt, Adam J; Osborn, David L; Wilson, Kevin R

    2015-08-28

    The reaction of small hydrocarbon radicals (i.e.˙CN, ˙C2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC[triple bond, length as m-dash]C˙), a likely product from the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (-H = 27%, -CH3 = 73%) and (-H = 14%, -CH3 = 86%), respectively. Together, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.

  14. Molecular weight growth in Titan's atmosphere: Branching pathways for the reaction of 1-propynyl radical (H 3CC≡C˙) with small alkenes and alkynes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Benjamin B.; Savee, John D.; Trevitt, Adam J.

    The reaction of small hydrocarbon radicals (i.e. ˙CN, ˙C 2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C 2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC≡C˙), a likely product frommore » the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d 4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (–H = 27%, –CH 3 = 73%) and (–H = 14%, –CH 3 = 86%), respectively. Altogether, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.« less

  15. Cone beam computed tomography-derived adaptive radiotherapy for radical treatment of esophageal cancer.

    PubMed

    Hawkins, Maria A; Brooks, Corrinne; Hansen, Vibeke N; Aitken, Alexandra; Tait, Diana M

    2010-06-01

    To investigate the potential for reduction in normal tissue irradiation by creating a patient specific planning target volume (PTV) using cone beam computed tomography (CBCT) imaging acquired in the first week of radiotherapy for patients receiving radical radiotherapy. Patients receiving radical RT for carcinoma of the esophagus were investigated. The PTV is defined as CTV(tumor, nodes) plus esophagus outlined 3 to 5 cm cranio-caudally and a 1.5-cm circumferential margin is added (clinical plan). Prefraction CBCT are acquired on Days 1 to 4, then weekly. No correction for setup error made. The images are imported into the planning system. The tumor and esophagus for the length of the PTV are contoured on each CBCT and 5 mm margin is added. A composite volume (PTV1) is created using Week 1 composite CBCT volumes. The same process is repeated using CBCT Week 2 to 6 (PTV2). A new plan is created using PTV1 (adaptive plan). The coverage of the 95% isodose of PTV1 is evaluated on PTV2. Dose-volume histograms (DVH) for lungs, heart, and cord for two plans are compared. A total of 139 CBCT for 14 cases were analyzed. For the adaptive plan the coverage of the 95% prescription isodose for PTV1 = 95.6% +/- 4% and the PTV2 = 96.8% +/- 4.1% (t test, 0.19). Lungs V20 (15.6 Gy vs. 10.2 Gy) and heart mean dose (26.9 Gy vs. 20.7 Gy) were significantly smaller for the adaptive plan. A reduced planning volume can be constructed within the first week of treatment using CBCT. A single plan modification can be performed within the second week of treatment with considerable reduction in organ at risk dose. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy

    NASA Astrophysics Data System (ADS)

    Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P.; Nguyen, Huong T. H.; Dang, Andy; Tureček, František

    2018-01-01

    Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z4 + H]+● fragment ion-radicals of the R-C●H-CONH- type, initially formed by N-Cα bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [●DAAR + H]+ isomers and used to assign structures to the action spectra. The potential energy surface of [●DAAR + H]+ isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [●XAAR + H]+ ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone Cα positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H]●-ETD fragments containing Asp, Asn, Glu, and Gln residues. [Figure not available: see fulltext.

  17. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy.

    PubMed

    Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P; Nguyen, Huong T H; Dang, Andy; Tureček, František

    2018-01-16

    Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z 4 + H] +● fragment ion-radicals of the R-C ● H-CONH- type, initially formed by N-C α bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [ ● DAAR + H] + isomers and used to assign structures to the action spectra. The potential energy surface of [ ● DAAR + H] + isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [ ● XAAR + H] + ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone C α positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H] ● -ETD fragments containing Asp, Asn, Glu, and Gln residues. Graphical Abstract ᅟ.

  18. Metal-Diazo Radicals of α-Carbonyl Diazomethanes

    PubMed Central

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-01-01

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [RhICl(cod)]2, [CoII(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [RhICl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N∙ (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C∙, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C∙, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals. PMID:26960916

  19. Metal-Diazo Radicals of α-Carbonyl Diazomethanes

    NASA Astrophysics Data System (ADS)

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-03-01

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [RhICl(cod)]2, [CoII(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [RhICl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N• (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C•, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C•, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals.

  20. Metal-Diazo Radicals of α-Carbonyl Diazomethanes.

    PubMed

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-03-10

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [Rh(I)Cl(cod)]2, [Co(II)(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [Rh(I)Cl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N∙ (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C∙, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C∙, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals.