Science.gov

Sample records for radio astronomy project

  1. The Radio JOVE Project - Shoestring Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  2. The IAU Early French Radio Astronomy Project

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Boischot, A.; Delannoy, J.; Kundu, M.; Lequeux, J.; Pick, M.; Steinberg, J.

    2011-01-01

    In 2006 an ambitious project was launched under the auspices of the IAU Working Group on Historic Radio Astronomy to document important developments in French radio astronomy from 1901 through to the 1960s, in a series of papers published, in English, in the Journal of Astronomical History and Heritage. This successful project has now come to an end with the sixth and final paper in the series about to be published (and a new WG project, on the history of early Japanese radio astronomy, has just been launched). In this paper we discuss Nordmann's abortive attempt to detect solar radio emission in 1901, and the important roles played by staff from the École Normale Supérieure and the Institut d'Astrophysique in Paris during the 1940s through 60s in developing new radio astronomy instrumentation and pursuing a range of solar and non-solar research projects in Paris itself and at field stations established at Marcoussis, Nançay and the Haute Provence Observatory.

  3. The Radio JOVE Project: Inexpensive Radio Astronomy for the Classroom

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Higgins, C. A.; Pine, W.

    2000-12-01

    Radio JOVE is an interactive, hands-on educational activity for learning the scientific method through the medium of radio astronomy observations of Jupiter and the sun. Students build a radio telescope from a relatively inexpensive non-profit kit (about \\$125) and use it to record data, analyze the data, and share the results with others. Alternatively, for no cost, the students can record and analyze data from remote radio telescopes connected to the Web. The project is a useful adjunct to activities in optical astronomy since students should recognize that we learn about the Universe through more than just the optical spectrum. In addition to supplementing knowledge of Jupiter and the sun, the project teaches about charged particles and magnetic fields. Building of the kit is also a mini-course in electronics. The Radio JOVE website (http://radiojove.gsfc.nasa.gov) contains science information, instruction manuals, observing guides, software, and education resources for students and teachers.

  4. The Radio JOVE Project - An Inexpensive Introduction to Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Higgins, C.

    2004-12-01

    The Radio JOVE project began over six years ago as an education-centered program to inspire secondary school students' interest in space science through hands-on radio astronomy. The project was begun on small grants from the Goddard Space Flight Center Director's Discretionary Fund, the Initiative to Develop Education through Astronomy and Space Science (IDEAS) program, and the American Astronomical Society. Students build a radio receiver and antenna kit capable of receiving Jovian, solar, and galactic emissions at a frequency of 20.1 MHz. More than 600 of these kits have been distributed to students and interested observers (ages 10 through adult) in over 30 countries. For those who are not comfortable building their own kit, the Radio JOVE project has made it possible to monitor real-time data and streaming audio online from professional radio telescopes in Florida (http://jupiter.kochi-ct.jp) and Hawaii http://jupiter.wcc.hawaii.edu/newradiojove/main.html). Freely downloadable software called Radio-Skypipe (http://radiosky.com) emulates a chart recorder to monitor ones own radio telescope or the telescopes of other observers worldwide who send out their data over the Internet. Inexpensive spectrographs have been developed for the professional telescopes in Hawaii and Florida and freely downloadable spectrograph display software is available to receive this research-quality data. We believe the amateur network data to be of value to the research community and would like to have students more directly connected to ongoing research projects to enhance their interest in participating. Results of the project and plans for the future will be highlighted.

  5. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  6. Radio Astronomy Software Defined Receiver Project

    SciTech Connect

    Vacaliuc, Bogdan; Leech, Marcus; Oxley, Paul; Flagg, Richard; Fields, David

    2011-01-01

    The paper describes a Radio Astronomy Software Defined Receiver (RASDR) that is currently under development. RASDR is targeted for use by amateurs and small institutions where cost is a primary consideration. The receiver will operate from HF thru 2.8 GHz. Front-end components such as preamps, block down-converters and pre-select bandpass filters are outside the scope of this development and will be provided by the user. The receiver includes RF amplifiers and attenuators, synthesized LOs, quadrature down converters, dual 8 bit ADCs and a Signal Processor that provides firmware processing of the digital bit stream. RASDR will interface to a user s PC via a USB or higher speed Ethernet LAN connection. The PC will run software that provides processing of the bit stream, a graphical user interface, as well as data analysis and storage. Software should support MAC OS, Windows and Linux platforms and will focus on such radio astronomy applications as total power measurements, pulsar detection, and spectral line studies.

  7. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Niell, A. E.

    1981-01-01

    The activities of the DSN in support of Radio and Radar Astronomy Operations during September through December 1980 are described. Emphasis is on a report of an experiment selected for use of the DSN by the radio Astronomy Experiment Selection Panel: that of VLBI observations of the energetic galactic object SS-433.

  8. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Schaffer, R. D.; Gorenstein, M. V.

    1981-01-01

    The activities of the Deep Space Network in support of Radio Astronomy Operations during April and May 1981 are reported. Work in progres in support of an experiment selected for use of the DSN by the Radio Astronomy Experiment Selection Panel, Twin Quasi-Stellar Object VLBI, is reported.

  9. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Gulkis, S.

    1981-01-01

    The activities of the Deep Space Network in support of radio astronomy operations during the first quarter of 1981 are reported. Results of the use of a low noise maser are presented, as well as updates in DSN support of experiments sanctioned by the Radio Astronomy Experiment Selection Panel.

  10. The IAU Early Japanese Radio Astronomy Project: A Progress Report

    NASA Astrophysics Data System (ADS)

    Ishiguro, Masato; Orchiston, Wayne; Akabane, Kenji; Stewart, Ron

    2012-09-01

    Japan was one of those nations that make an early start in radio astronomy, when solar observations began at both the Tokyo Astronomical Observatory (TAO) and at Osaka University in 1949. The research at the TAO accelerated during the 1950s and 1960s under the capable direction of Professor Hatanaka, while an equally-vibrant program was developed independently at Toyokawa by Professor Tanaka from Nagoya University. In this paper, after briefly describing the Osaka University initiative we will outline the instruments developed at Toyokawa and Mitaka, review the research programs carried out with them and introduce the scientific staff who played so important a role in the early development of Japanese radio astronomy. Following the success of the WG's Early French Radio Astronomy Project (seven papers were published), an ambitious IAU project to systematically document early developments in Japanese radio astronomy and publish the results in a series of research papers in the Journal of Astronomical History and Heritage was launched in December 2010. Further research visits to Tokyo were made by the second author in 2011 and 2012, and two papers have now been completed and a start made on a third.

  11. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  12. Torun Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Torun Center for Astronomy is located at Piwnice, 15 km north of Torun, Poland. A part of the Faculty of Physics and Astronomy of the Nicolaus Copernicus University, it was created by the union of Torun Radio Astronomy Observatory (TRAO) and the Institute of Astronomy on 1 January 1997....

  13. Division X: Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Nan, Ren-Dong; Taylor, Russ; Rodriguez, Luis F.; Chapman, Jessica; Dubner, Gloria; Garrett, Michael; Goss, W. Miller; Torrelles, Jose M.; Hirabayashi, Hisashi; Carilli, Chris; Hills, Richard; Shastri, Prajval

    2010-05-01

    The business meeting of Division X in the IAU 2009GA took place in three sessions during the day of August 6, 2009. The meeting, being well attended, started with the approval for the meeting agenda. Then the triennium reports were made in the first session by the president of Division X, Ren-Dong Nan, and by the chairs of three working groups: Historic Radio Astronomy WG by Wayne Orchiston, Astrophysically Important Lines WG by Masatoshi Ohishi, and Global VLBI WG by Tasso Tzioumis (proxy chair appointed by Steven Tingay). Afterwards, a dozen reports from observatories and worldwide significant projects have been presented in the second session. Business meeting of Interference Mitigation WG was located in the third session.

  14. Project PARAS: Phased array radio astronomy from space

    NASA Technical Reports Server (NTRS)

    Nuss, Kenneth; Hoffmann, Christopher; Dungan, Michael; Madden, Michael; Bendakhlia, Monia

    1992-01-01

    An orbiting radio telescope is proposed which, when operated in a very long baseline interferometry (VLBI) scheme, would allow higher than currently available angular resolution and dynamic range in the maps and the ability to observe rapidly changing astronomical sources. Using passive phased array technology, the proposed design consists of 656 hexagonal modules forming a 150-m diameter antenna dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data are transmitted to telemetry stations on the ground. The truss frame supporting each observatory panel is a novel hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and the bottom triangle. Attitude control and station keeping functions will be performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and four hydrazine arcjets, the latter supported by either a photovoltaic array or a radioisotope thermoelectric generator. The total mass of the spacecraft is about 20,500 kg.

  15. Radio astronomy with microspacecraft

    NASA Technical Reports Server (NTRS)

    Collins, D.

    2001-01-01

    A dynamic constellation of microspacecraft in lunar orbit can carry out valuable radio astronomy investigations in the frequency range of 30kHz--30MHz, a range that is difficult to explore from Earth. In contrast to the radio astronomy ivestigations that have flown on individual spacecraft, the four microspacecraft together with a carrier spacecraft, which transported them to lunar orbit, form an interferometer with far superior angular resolution. Use of microspacecraft allows the entire constellation to be launched with a Taurus-class vehicle. Also distinguishing this approach is that the Moon is used as needed to shield the constellation from RF interference from the Earth and Sun.

  16. Pulsars in a Box: A Radio Astronomy Exercise for Windows from PROJECT CLEA

    NASA Astrophysics Data System (ADS)

    Marschall, L. A.; Snyder, G. A.; Good, R. F.; Hayden, M. B.; Cooper, P. R.

    1996-12-01

    The latest astronomy laboratory exercise from PROJECT CLEA, "Radio Astronomy of Pulsars", is designed for use in introductory astronomy classes, but contains options and features that make it usable by upperclass astronomy students as well. The heart of the exercise is a simulated radio telescope, whose aperture, location, and beamwidth can be set by the instructor. It is steered by pushing buttons, but instead of seeing a star field on the field monitor,students see a projection of the sky showing, with a colored dot,where the beam is pointing. Large LED-like readouts display time and telescope coordinates. The telescope can be operated in either a tracking or transit mode. Using the telescope, students point to several pulsars suggested by the write-up (from an on-line catalog of over 500). Students can then use a multi-channel tunable receiver, with multiple oscilloscope displays, to view the incoming signal vs. time. The signal received is a combination of random receiver and background noise plus the pulsar signal (if it is in the beam) Receivers are tunable from 400 to 1400 MHz, and both the time and frequency behavior of signals can be studied. By measuring the dispersion delay at a number of different frequencies, students can determine the pulsar's distance. Data can be stored, displayed, and printed using a versatile measuring window. Though we provide a manual for a 2-3 hour lab exercise involving dispersion measures, the database and receivers can be used for a wide variety of other exercises, for instance the measurement of pulsar spin-down rates. We welcome suggestions for improvements and applications.

  17. Record-Breaking Radio Astronomy Project to Measure Sky with Extreme Precision

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Astronomers will tie together the largest collection of the world's radio telescopes ever assembled to work as a single observing tool in a project aimed at improving the precision of the reference frame scientists use to measure positions in the sky. The National Science Foundation's Very Long Baseline Array (VLBA) will be a key part of the project, which is coordinated by the International VLBI Service for Geodesy and Astrometry. For 24 hours, starting Wednesday, November 18, and ending Thursday, November 19, 35 radio telescopes located on seven continents will observe 243 distant quasars. The quasars, galaxies with supermassive black holes at their cores, are profuse emitters of radio waves, and also are so distant that, despite their actual motions in space, they appear stationary as seen from Earth. This lack of apparent motion makes them ideal celestial landmarks for anchoring a grid system, similar to earthly latitude and longitude, used to mark the positions of celestial objects. Data from all the radio telescopes will be combined to make them work together as a system capable of measuring celestial positions with extremely high precision. The technique used, called very long baseline interferometry (VLBI), has been used for decades for both astronomical and geodetic research. However, no previous position-measuring observation has used as many radio telescopes or observed as many objects in a single session. The previous record was a 23-telescope observation. At a meeting in Brazil last August, the International Astronomical Union adopted a new reference frame for celestial positions that will be used starting on January 1. This new reference frame uses a set of 295 quasars to define positions, much like surveyor's benchmarks in a surburban subdivision. Because even with 35 radio telescopes around the world, there are some gaps in sky coverage, the upcoming observation will observe 243 of the 295. By observing so many quasars in a single observing session, problems of linking positions from one observing session to another can be avoided, the astronomers say. The result will be a much stronger, more precise, reference grid. Telescopes in Asia, Australia, Europe, North America, South America, Antarctica, and in the Pacific will participate. Improving the celestial positional grid will allow astronomers better to pinpoint the locations and measure the motions of objects in the sky. As astronomers increasingly study objects using multiple telescopes observing at different wavelengths, such as visible light, radio, infrared, etc., the improved positional grid will allow more accurate overlaying of the different images. The improved celestial reference frame also strengthens a terrestrial reference frame used for radio-telescope measurements that contribute to geophysical research. The precise geodetic measurements help geophysicists understand phenomena such as plate tectonics, earth tides, and processes that affect our planet's orientation in space. The VLBA is a continent-wide radio telescope system with 10, 240-ton dish antennas ranging from Hawaii to the Virgin Islands. Operated from the National Radio Astronomy Observatory's Pete V. Domenici Science Operations Center in Socorro, New Mexico, the VLBA offers the greatest resolving power, or ability to see fine detail, of any telescope in astronomy. The multi-telescope observation will be accompanied by public-outreach activities in celebration of the International Year of Astronomy. A public web page devoted to the observation will be hosted at Bordeaux Observatory, and some of the participating telescopes will have webcams available.

  18. A Radio Astronomy Curriculum for STARLAB

    NASA Astrophysics Data System (ADS)

    Boltuch, D.; Hund, L.; Buck, S.; Fultz, C.; Smith, T.; Harris, R.; Castelaz, M. W.; Moffett, D.; LaFratta, M.; Walsh, L.

    2005-12-01

    We present elements of a curriculum that will accompany the STARLAB module "Sensing the Radio Sky" a portable planetarium program and projection of the radio sky. The curriculum will serve to familiarize high school students to a set of topics in radio astronomy. The curriculum includes lessons and activities addressing several topics related to radio astronomy and the Milky Way that consists of two main resources: a manual and a multimedia website. It is designed to accommodate a wide variety of possible uses and time constraints. The manufacturer of STARLAB, Learning Technologies, Inc. produces a short manual to accompany each presentation for the STARLAB. The "Sensing the Radio Sky" manual we have created includes the mandatory, minimum background information that students need to understand radio astronomy. It briefly discusses waves and electromagnetic radiation, similarities and differences between optical and radio astronomy, probable misconceptions about radio astronomy, how radio images are produced, synchrotron radiation in the Milky Way, and galactic coordinates. It also includes a script that presenters can choose to follow inside the STARLAB, a lesson plan for teachers, and activities for students to complete before and after the STARLAB experience that mirror the scientific method. The multimedia website includes more detailed information about electromagnetic radiation and a more detailed comparison of optical and radio astronomy. It also discusses the life cycles of stars, radiation from a variety of specific sources, and pulsars, as each relates to radio astronomy. The five highly detailed lessons are pulled together in sixth "overview lesson", intended for use by teachers who want to present more than the basic material in the manual, but do not have the classroom time to teach all five of the in-depth lessons. . We acknowledge support from the NSF Internship in Public Science Education Program grant number 0324729.

  19. Technical foundations of radio astronomy

    NASA Astrophysics Data System (ADS)

    Hachenberg, O.; Vowinkel, B.

    Selected topics in microwave technology with application to radio astronomy are presented in a handbook for advanced physics and engineering students. The history of radio astronomy is briefly reviewed, and the basic principles of transmission-line theory, waveguides, microwave components, and oscillators are introduced. Microwave radiometers, spectrometers, antennas, and interferometers are treated in separate chapters, and the most important observation techniques for point and extended sources and broad fields are explained. Graphs, diagrams, drawings, and photographs are provided.

  20. Planetary radio astronomy from Voyager

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.

    1983-01-01

    The technique of radio astronomy makes it possible for a remote observer to detect the presence of magnetic fields and plasmas in planetary environments. Prior to the flights of the Voyager spacecraft, radio astronomical studies of Jupiter from earth and from earth orbit had correctly predicted the strength and orientation of Jupiter's magnetic field and trapped radiation belts. The Voyager Planetary Radio Astronomy investigations have now provided measurements of the complete spectrum of low frequency radio emissions from both planets. Each Voyager instrument consists of a pair of orthogonal, 10-m, electric monopole antennas which are connected to a step-tuned, superheterodyne receiver operating over the frequency range from 1.2 kHz to 40.5 MHz. The Voyager trajectory provided observations from above both the sunlit and nightside hemispheres of Jupiter. Saturn's nonthermal radio emission has been observed at frequencies as low as 3 kHz and as high as 1.2 MHz.

  1. Radio Astronomy for Amateurs

    NASA Astrophysics Data System (ADS)

    Quinn, N.; Murdin, P.

    2003-04-01

    Karl Jansky is considered the father of RADIOASTRONOMY. During the 1930s, Jansky worked for the Bell Telephone Laboratories studying the origin of static noise from thunderstorms. During the course of this work he discovered that some signals had an extraterrestrial origin. However, it was Grote Reber, a professional radio engineer and radio amateur, who carried out further investigations. In 1937...

  2. The Helios radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Kayser, S.; Stone, R.

    1984-01-01

    Radio bursts traveling between the Sun and the Earth were tracked by radio astronomy experiments on Helios 1 and 2. A relatively short dipole antenna with a well-defined toroidal reception pattern was flown. The antenna spins in the ecliptic at 60.3 rpm and 2 frequencies are measured in each revolution. The signal analysis determines the strength of the signal, the direction of the source in the ecliptic, and the degree of modulation, and estimates source size. The experiments provide three-dimensional direction finding in space. They extend the radio frequency window beyond what is observable on Earth, and offer a long triangulation baseline.

  3. Radio Frequency Interference: Radio Astronomy's Biggest Enemy

    NASA Astrophysics Data System (ADS)

    Acevedo, F.; Ghosh, Tapasi

    1997-12-01

    As technology progresses, the demand for the usage of the electromagnetic spectrum increases with it. The development is so fast and prolific that clean band space for passive users such as Radio Astronomy is becoming ever so scarce. Even though, several spectral bands have been protected for Radio Astronomy by Federal Communication Commission (in the USA) under the recommendations of the International Telecommunication Union (ITU), pressure for making more spectral space commercially usable is extreme. Although these commercial usages make our modern living at all possible, often the extreme vulnerability of passive users are are not fully appreciated, resulting in unwanted emissions (RFI) in the Radio Astronomy Bands. Another source of RFI is the fact that many of the electronic devices used in the observatories themselves generate radio waves. If proper precautions are not taken, these can be received back through the Radio Telescope itself. This problem is referred to as internal RFI. The focus of this paper is the search and diminution of internal RFI in the Arecibo Observatory in Arecibo, Puerto Rico. Using a simple setup of a log-periodic antenna and a Spectrum Analyzer, spectra spanning a frequency range of 100 - 1800 MHZ were recorded in some areas of the Observatory and the new Visitor Center (AOVEF). The measurements disclosed sources of radio emission among some of the digital electronic equipment in the Equipment room and a few displays in the AOVEF. Most prominent of these was a 2.5 MHz comb spanning the entire range of the measurements emitted from the SRENDIP and AOFTM machines. The respective groups were informed and corrective shielding & isolations were implemented immediately. In AOVEF, three displays, some audio-visual equipment, and video/digital cameras used by the visitors were found to be "leaky". In future, the use of such cameras will be prohibited and the exhibits will be screened appropriately.

  4. Voyager planetary radio astronomy studies

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Eikenberry, Stephen S.

    1993-01-01

    Analysis of nonthermal radio emission data obtained by the Planetary Radio Astronomy (PRA) spectrometers on the Voyager 1 and 2 spacecraft was performed. This PRA data provided unique insights into the radio emission characteristics of the outer planets because of PRA's unique spectral response below the terrestrial ionospheric plasma frequency and its unprecedented proximity to the source. Of those results which were documented or published, this final report surveys only the highlights and cites references for more complete discussions. Unpublished results for Uranus, Neptune, and theoretical Ionian current distributions are presented at greater length. The most important conclusion to be drawn from these observations is that banded spectral emission is common to the radio emission below 1-2 MHz observed from all four Jovian planets. In every case multiple spectral features evolve on time scales of seconds to minutes. To the extent these features drift in frequency, they appear never to cross one another. The Neptunian spectral features appear to drift little or not at all, their evolution consisting principally of waxing and waning. Since other evidence strongly suggests that most or all of this radio emission is occurring near the local magnetospheric electron cyclotron frequency, this implies that this emission preferentially occurs at certain continually changing planetary radii. It remains unknown why certain radii might be favored, unless radial electric field components or other means serve to differentiate radially the magnetospheric plasma density, particle energy vectors, or particle coherence. Calculation of the spatial distribution and intensity of the Io-generated magnetospheric currents are also presented; these currents may be limited principally by wave impedance and local field strengths.

  5. Large Instrument Development for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Fisher, J. Richard; Warnick, Karl F.; Jeffs, Brian D.; Norrod, Roger D.; Lockman, Felix J.; Cordes, James M.; Giovanelli, Riccardo

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  6. The Golden Years of Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Kellermann, Kenneth I.

    2016-01-01

    The 1960s were the Golden Years of Radio Astronomy. During this decade a new generation of young scientists discovered quasars, pulsars, the cosmic microwave background, cosmic masers, giant molecular clouds, radio source variability, superluminal motion, radio recombination lines, the rotation of Mercury and Venus, the Venus Greenhouse effect, Jupiter's radiation belts, and opened up the high redshift Universe. On the technical side, the 1960s saw the completion of the NRAO 140-ft and 300-ft radio telescopes, the Haystack, Arecibo and Parkes antennas, the Owens Valley Interferometer, the first practical demonstrations of aperture synthesis, VLBI, and CLEAN, the Cambridge 1-mile radio telescope, the most precise tests of GR light bending, and the introduction of the 4th test of GR. Following sessions at the recent IAU 29th General Assembly on the "Golden Years of Radio Astronomy," we will discuss the circumstances surrounding these transformational discoveries which changed the course of modern astronomy.

  7. New vistas in planetary radio astronomy

    NASA Technical Reports Server (NTRS)

    Alexander, J. K., Jr.

    1976-01-01

    Recent progress in planetary radio astronomy is reviewed, where the most significant advances have come from spacecraft observations. The low-frequency radio spectra of the earth, Jupiter, and Saturn are compared, and the striking similarity in shapes is noted. New radio data are examined which provide a way to compare the magnetic field strengths of the planets. More detailed information on the radio structures of Jupiter and Saturn, and possibly on Uranus, is expected from the 1977 Mariner Jupiter-Saturn mission.

  8. The Radio JOVE Project

    NASA Astrophysics Data System (ADS)

    Garcia, L.; Thieman, J.; Higgins, C.

    1999-09-01

    Radio JOVE is an interactive educational activity which brings the radio sounds of Jupiter and the Sun to students, teachers, and the general public. This is accomplished through the construction of a simple radio telescope kit and the use of a real-time radio observatory on the Internet. Our website (http://radiojove.gsfc.nasa.gov/) will contain science information, instruction manuals, observing guides, and education resources for students and teachers. Our target audience is high school science classes, but subjects can be tailored to college undergraduate physics and astronomy courses or even to middle school science classes. The goals of the project are: 1) Educate people about planetary and solar radio astronomy, space physics, and the scientific method 2) Provide teachers and students with a hands-on radio astronomy exercise as a science curriculum support activity by building and using a simple radio telescope receiver/antenna kit 3) Create the first ever online radio observatory which provides real-time data for those with internet access 4) Allow interactions among participating schools by facilitating exchanges of ideas, data, and observing experiences. Our current funding will allow us to impact 100 schools by partially subsidizing their participation in the program. We expect to expand well beyond this number as publicity and general interest increase. Additional schools are welcome to fully participate, but we will not be able to subsidize their kit purchases. We hope to make a wide impact among the schools by advertising through appropriate newsletters, space grant consortia, the INSPIRE project (http://image.gsfc.nasa.gov/poetry/inspire/), electronic links, and science and education meetings. We would like to acknoledge support from the NASA/GSFC Director's Discretionary Fund, the STScI IDEAS grant program and the NASA/GSFC Space Science Data Operations Office.

  9. A Teaching Lab in Radio Astronomy

    ERIC Educational Resources Information Center

    Smith, Kirk R.; Cudaback, David D.

    1976-01-01

    Describes a study in which participants in a summer institute for secondary science teachers performed a series of experiments with a radio telescope. Concludes that a radio astronomy teaching facility would encourage students to use their own initiative and strategy in working with the scientific concepts involved. (MLH)

  10. The Radio Jove Project

    NASA Technical Reports Server (NTRS)

    Thieman, J. R.

    2010-01-01

    The Radio love Project is a hands-on education and outreach project in which students, or any other interested individuals or groups build a radio telescope from a kit, operate the radio telescope, transmit the resulting signals through the internet if desired, analyze the results, and share the results with others through archives or general discussions among the observers. Radio love is intended to provide an introduction to radio astronomy for the observer. The equipment allows the user to observe radio signals from Jupiter, the Sun, the galaxy, and Earth-based radiation both natural and man-made. The project was started through a NASA Director's Discretionary Fund grant more than ten years ago. it has continued to be carried out through the dedicated efforts of a group of mainly volunteers. Dearly 1500 kits have been distributed throughout the world. Participation can also be done without building a kit. Pre-built kits are available. Users can also monitor remote radio telescopes through the internet using free downloadable software available through the radiosky.com website. There have been many stories of prize-winning projects, inspirational results, collaborative efforts, etc. We continue to build the community of observers and are always open to new thoughts about how to inspire the observers to still greater involvement in the science and technology associated with Radio Jove.

  11. Technology Advances for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Russell, Damon Stuart

    The field of radio astronomy continues to provide fundamental contributions to the understanding of the evolution, and inner workings of, our universe. It has done so from its humble beginnings, where single antennas and receivers were used for observation, to today's focal plane arrays and interferometers. The number of receiving elements (pixels) in these instruments is quickly growing, currently approaching one hundred. For the instruments of tomorrow, the number of receiving elements will be in the thousands. Such instruments will enable researchers to peer deeper into the fabric of our universe and do so at faster survey speeds. They will provide enormous capability, both for unraveling today's mysteries as well as for the discovery of new phenomena. Among other challenges, producing the large numbers of low-noise amplifiers required for these instruments will be no easy task. The work described in this thesis advances the state of the art in three critical areas, technological advancements necessary for the future design and manufacturing of thousands of low-noise amplifiers. These areas being: the automated, cryogenic, probing of diameter100 mm indium phosphide wafers; a system for measuring the noise parameters of devices at cryogenic temperatures; and the development of low-noise, silicon germanium amplifiers for terahertz mixer receivers. The four chapters that comprise the body of this work detail the background, design, assembly, and testing involved in these contributions. Also included is a brief survey of noise parameters, the knowledge of which is fundamental to the design of low-noise amplifiers and the optimization of the system noise temperature for large, dense, interferometers.

  12. Grote Reber, Radio Astronomy Pioneer, Dies

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Grote Reber, one of the earliest pioneers of radio astronomy, died in Tasmania on December 20, just two days shy of his 91st birthday. Reber was the first person to build a radio telescope dedicated to astronomy, opening up a whole new "window" on the Universe that eventually produced such landmark discoveries as quasars, pulsars and the remnant "afterglow" of the Big Bang. His self- financed experiments laid the foundation for today's advanced radio-astronomy facilities. Grote Reber Grote Reber NRAO/AUI photo "Radio astronomy has changed profoundly our understanding of the Universe and has earned the Nobel Prize for several major contributions. All radio astronomers who have followed him owe Grote Reber a deep debt for his pioneering work," said Dr. Fred Lo, director of the National Radio Astronomy Observatory (NRAO). "Reber was the first to systematically study the sky by observing something other than visible light. This gave astronomy a whole new view of the Universe. The continuing importance of new ways of looking at the Universe is emphasized by this year's Nobel Prizes in physics, which recognized scientists who pioneered X-ray and neutrino observations," Lo added. Reber was a radio engineer and avid amateur "ham" radio operator in Wheaton, Illinois, in the 1930s when he read about Karl Jansky's 1932 discovery of natural radio emissions coming from outer space. As an amateur operator, Reber had won awards and communicated with other amateurs around the world, and later wrote that he had concluded "there were no more worlds to conquer" in radio. Learning of Jansky's discovery gave Reber a whole new challenge that he attacked with vigor. Analyzing the problem as an engineer, Reber concluded that what he needed was a parabolic-dish antenna, something quite uncommon in the 1930s. In 1937, using his own funds, he constructed a 31.4-foot-diameter dish antenna in his back yard. The strange contraption attracted curious attention from his neighbors and became something of a minor tourist attraction, he later recalled. Using electronics he designed and built that pushed the technical capabilities of the era, Reber succeeded in detecting "cosmic static" in 1939. In 1941, Reber produced the first radio map of the sky, based on a series of systematic observations. His radio-astronomy work continued over the next several years. Though not a professional scientist, his research results were published in a number of prestigious technical journals, including Nature, the Astrophysical Journal, the Proceedings of the Institute of Radio Engineers and the Journal of Geophysical Research. Reber also received a number of honors normally reserved for scientists professionally trained in astronomy, including the American Astronomical Society's Henry Norris Russell Lectureship and the Astronomical Society of the Pacific's Bruce Medal in 1962, the National Radio Astronomy Observatory's Jansky Lectureship in 1975, and the Royal Astronomical Society's Jackson-Gwilt Medal in 1983. Reber's original dish antenna now is on display at the National Radio Astronomy Observatory's site in Green Bank, West Virginia, where Reber worked in the late 1950s. All of his scientific papers and records as well as his personal and scientific correspondence are held by the NRAO, and will be exhibited in the observatory's planned new library in Charlottesville, Virginia. Reber's amateur-radio callsign, W9GFZ, is held by the NRAO Amateur Radio Club. This callsign was used on the air for the first time since the 1930s on August 25, 2000, to mark the dedication of the Robert C. Byrd Green Bank Telescope. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  13. Forty Years of Radio Astronomy at Hartebeesthoek

    NASA Astrophysics Data System (ADS)

    Gaylard, M. J.; Nicolson, G. D.

    2007-07-01

    In 1961 an 85-foot (26-metre) diameter radio antenna was erected at Hartebeesthoek near Johannesburg, as NASA's Deep Space Instrumentation Facility 51. A young South African engineer employed there soon initiated a radio astronomy research programme to use free time between tracking spacecraft. On the closure of the facility by NASA in 1974, it was re-constituted as a radio astronomy observatory operated by the CSIR. In this paper, we highlight various strands of the forty year history of radio astronomy at Hartebeesthoek. We also cover some of the perhaps surprising spinoffs that it has generated, both scientifically and practically. Some of these hark back to measurements taken by the Abbé de la Caille at the Cape in the 1750's, and to the reasons for establishing a Royal Observatory there in the 1820's.

  14. Radio Jove: Jupiter Radio Astronomy for Citizens

    NASA Astrophysics Data System (ADS)

    Higgins, Charles; Thieman, J. R.; Flagg, R.; Reyes, F. J.; Sky, J.; Greenman, W.; Brown, J.; Typinski, D.; Ashcraft, T.; Mount, A.

    2014-01-01

    Radio JOVE is a hands-on educational activity that brings the radio sounds of the Sun, Jupiter, the Milky Way Galaxy, and terrestrial radio noise to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with professional radio observatories in real-time over the Internet. Our website (http://radiojove.gsfc.nasa.gov) includes science information, construction manuals, observing guides, and education resources for teachers and students. Radio Jove is continually expanding its participants with over 1800 kits sold to more than 70 countries worldwide. Recently some of our most dedicated observers have upgraded their Radio Jove antennas to semi-professional observatories. We have spectrographs and wide band antennas, some with 8 MHz bandwidth and some with dual polarization capabilities. In an effort to add to the science literature, these observers are coordinating their efforts to pursue some basic questions about Jupiters radio emissions (radio source locations, spectral structure, long term changes, etc.). We can compare signal and ionosphere variations using the many Radio Jove observers at different locations. Observers are also working with members of the Long Wavelength Array Station 1 (LWA1) radio telescope to coordinate observations of Jupiter; Radio Jove is planning to make coordinated observations while the Juno Mission is active beginning in 2015. The Radio Jove program is overviewed, its hardware and software are highlighted, recent sample observations are shown, and we demonstrate that we are capable of real citizen science.

  15. Highlighting the History of French Radio Astronomy. 7: The Genesis of the Institute of Astronomy at Millimeter Wavelengths (IRAM)

    NASA Astrophysics Data System (ADS)

    Encrenaz, Pierre; Gmez Gonzlez, Jess; Lequeux, James; Orchiston, Wayne

    2011-07-01

    Radio astronomy in France and in Germany started around 1950. France was then building interferometers and Germany large single dishes, so it was not unexpected that their first projects involving millimetre radio astronomy were respectively with an interferometer and a single dish. In this paper, we explain in detail how these two projects finally merged in 1979 with the formation of the Institute of Radio Astronomy at Millimetre Wavelengths (IRAM), after a long process with many ups and downs. We also describe how Spain started radio astronomy by joining IRAM. Presently, IRAM is the most powerful facility worldwide for millimetre radio astronomy. We wish to dedicate our paper to the memory of mile-Jacques Blum (1923-2009), who played a major role in the construction of IRAM but died before he could participate in the writing of this paper. An interview made one month before his death was very useful in the preparation of this paper.

  16. "Radio Astronomy, Whatever That May Be." The Marginalization of Early Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Jarrell, Richard

    2005-01-01

    Today we see radio astronomy as a fully-integrated part of astronomy; it is now just one of several available wavelength regimes and many astrophysicists who use radio data are not radio astronomers themselves. At the beginning, it was very different. Between 1946 and 1960, radio astronomy emerged as an important speciality but it was an area little understood by mainstream astronomers. Radio astronomers rarely published in astronomical journals, gave papers at astronomical conferences or were accorded much notice. The pioneers in the field were not astronomers themselves and had little in common with astronomers. In this paper I note the various ways in which radio astronomy was alienated from the mainstream in its first decade and some of the reasons this alienation occurred. I will also speculate on when and how the integration began to occur.

  17. Teaching radio astronomy with Affordable Small Radio Telescope (ASRT)

    NASA Astrophysics Data System (ADS)

    Joshi, Bhal Chandra

    A simple, easy to build and portable radio telescope, called Affordable Small Radio Telescope (ASRT), has been developed by the Radio Physics Laboratory (RPL), a radio astronomy teaching unit associated with the National Centre for Radio Astrophysics (TIFR) and Inter-University Centre for Astronomy and Astrophysics (IUCAA), which are two premier astronomy institutes in India. ASRT consists of off-the-shelf available Direct to Home television dishes and is easy to assemble. Our design is scalable from simple very low cost telescope to more complex yet moderately costing instrument. ASRT provides a platform for demonstrating radio physics concepts through simple hands-on experiment as well as for carrying out solar monitoring by college/University students. The presentation will highlight the concept of ASRT and the different experiments that can be carried out using it. The solar monitoring observations will be discussed along-with details of methods for calibrating these measurements. The pedagogical usefulness of ASRT in introducing undergraduatephysics students to astrophysics, measurements and analysis methods used in radio astronomy will also be discussed. Use of ASRT in the last three years in the programs of RPL, namely the annual Radio Astronomy Winter School for College students (RAWSC) and Pulsar Observing for Students (POS) is also presented. This year a new program was initiated to form a virtual group of an ASRT community, which will not only share their measurements, but also think of improving the pedagogical usefulness of ASRT by innovative experiments. This initiative is presented with the best practices drawn from our experience in using ASRT as a tool for student training in space sciences. The talk will also point out future ideas in involving a larger body of students in simple radio astronomy experiments with the ASRT, which RPL is likely to nucleate as part of its mandate.

  18. The Timbuktu Astronomy Project

    NASA Astrophysics Data System (ADS)

    Medupe, Rodney Thebe; Warner, Brian; Jeppie, Shamil; Sanogo, Salikou; Maiga, Mohammed; Maiga, Ahmed; Dembele, Mamadou; Diakite, Drissa; Tembely, Laya; Kanoute, Mamadou; Traore, Sibiri; Sodio, Bernard; Hawkes, Sharron

    The ancient city of Timbuktu was the main centre for commerce and scholarship in West Africa from the 13th century until the 17th century. Books were bought from North Africa and other centres of Islamic learning, and local scholars also wrote many books on astronomy, medicine, mathematics, literature, law and islam. Scholarship peaked during the 16th and 17th century but declined gradually until the 19th century. Our project aims to study the ancient manuscripts from Timbuktu in order to search for astronomy in them. The main aim of the project is to document our research and use it to attract African youth into science and technology by appealing to their heritage. This paper outlines progress made since the inception of the project in 2006.

  19. National Radio Astronomy International Exchange Program (NINE)

    NASA Astrophysics Data System (ADS)

    Wingate, Lory Mitchell

    2016-01-01

    NINE aims to create synergistic partnerships between NRAO and its US-Based NINE partner institutions and universities, with astronomy-related institutions in other countries. We seek to create a vibrant exchange of students that are interested in learning about activities associated with the radio astronomy field, and to create enduring partnerships that will help train a global, collaborative Science, Technology, Engineering, and Mathematics (STEM) knowledgeable workforce.

  20. The Virtual Astronomy Multimedia Project

    NASA Astrophysics Data System (ADS)

    Gauthier, A.; Christensen, L. L.; Hurt, R. L.; Wyatt, R.

    2008-06-01

    The Virtual Astronomy Multimedia Project (VAMP) will enable access to, and vastly multiply the use of, astronomy image resources. VAMP will enable future innovative exploitation of all kinds of outreach media by systematically linking resource archives worldwide.

  1. Solar system radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1987-01-01

    The planetary radio-astronomy observations obtained with the two Voyager spacecraft since their launch in 1977 are briefly characterized and illustrated with graphs, diagrams, and sample spectra. Topics addressed include the spacecraft designs and trajectories, the wavelength coverage of the radio instruments, the Io-controlled LF emission of Jupiter, the solar-wind effect on the Saturn kilometric radiation, the Saturn electrostatic discharges, and the use of the clocklike feature of the Uranus emission to measure the planet's rotation period.

  2. International Agreement Will Advance Radio Astronomy

    NASA Astrophysics Data System (ADS)

    2007-12-01

    Two of the world's leading astronomical institutions have formalized an agreement to cooperate on joint efforts for the technical and scientific advancement of radio astronomy. The National Radio Astronomy Observatory (NRAO) in the United States and the Max-Planck Institute for Radioastronomy (MPIfR) in Germany concluded a Memorandum of Understanding outlining planned collaborative efforts to enhance the capabilities of each other's telescopes and to expand their cooperation in scientific research. The VLBA The VLBA CREDIT: NRAO/AUI/NSF In the first project pursued under this agreement, the MPIfR will contribute $299,000 to upgrade the continent-wide Very Long Baseline Array's (VLBA) capability to receive radio emissions at a frequency of 22 GHz. This improvement will enhance the VLBA's scientific productivity and will be particularly important for cutting-edge research in cosmology and enigmatic cosmic objects such as gamma-ray blazars. "This agreement follows many years of cooperation between our institutions and recognizes the importance of international collaboration for the future of astronomical research," said Fred K.Y. Lo, NRAO Director. "Our two institutions have many common research goals, and joining forces to keep all our telescopes at the forefront of technology will be highly beneficial for the science," said Anton Zensus, Director at MPIfR. In addition to the VLBA, the NRAO operates the Very Large Array (VLA) in New Mexico and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The MPIfR operates the 100-meter Effelsberg Radio Telescope in Germany and the 12-meter APEX submillimeter telescope in 5100 m altitude in the Cilean Atacama desert (together with the European Southern Observatory and the Swedish Onsala Space Observatory). With the 100-meter telescope, it is part of the VLBA network in providing transatlantic baselines. Both institutions are members of a global network of telescopes (the Global VLBI Network) that uses simultaneous observations to produce extremely high-resolution images, and another network (the High Sensitivity Array) that uses the same technique with large telescopes to observe particularly faint celestial objects. With this technique, NRAO telescopes work with MPIfR's Effelsberg telescope to produce images hundreds of times more detailed than those from the Hubble Space Telescope. Both institutions also are part of the international collaboration building the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile and of the international planning effort to build a Square Kilometer Array. The VLBA is a system of ten antennas, each with a dish 25 meters in diameter. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 8000 kilometers. Under the new agreement, the two institutions will continue their previous observational collaborations, and in addition will share resources to improve the technical capabilities of each other's telescopes, particularly at short wavelengths, They also will collaborate in the peer-reviewed process each uses to allocate observing time, and agree to mutually maintain an "open skies" policy allowing open access to each other's telescopes on a peer-reviewed basis. The agreement notes the report of the U.S. National Science Foundation's (NSF) Senior Review committee, which called upon the NRAO to seek partners to contribute to the operation of the VLBA. The MPIfR affirms its strong interest in maintaining the VLBA's unique scientific capabilities, and its monetary contribution toward the 22 GHz upgrade of the VLBA is a solid sign of that commitment. "The VLBA provides the greatest resolving power of any instrument in astronomy, and the MPIfR's contribution to enhancing its capabilities is an important validation of the VLBA's importance to frontier astrophysics," Lo said. The joint VLBA project calls for the MPIfR to fund the receiving-system upgrades and the NRAO to perform the work. The project is scheduled to be complete, with all 10 VLBA antennas upgraded, in August of 2008. The upgrade will make the VLBA's receiving system for 22 GHz 30 percent more sensitive. This will enhance the VLBA's capability to advance a key area of science using rotating disks of water molecules at the cores of distant galaxies to make precise measurements of the distances to those galaxies. This technique, first used in the late 1990s, can measure large cosmic distances directly, without relying on various assumptions required for more indirect techniques. The improved precision is important to resolving a number of frontier astrophysical problems, including the nature of the mysterious "dark energy" that appears to be accelerating the expansion of the Universe. This research project involves scientists from both MPIfR and NRAO, and, in addition to the VLBA, the Effelsberg telescope, the GBT and the VLA. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The Max Planck Institute for Radio Astronomy is one of about 80 research institutes of the Max Planck Society for the Promotion of Research in Germany.

  3. Radio astronomy. [principles and observations

    NASA Technical Reports Server (NTRS)

    Alexander, J.; Clark, T.

    1974-01-01

    The origins, generation, detection, and interpretation of radio signals are discussed for signals with an assumed random polarization. After defining the basic parameters, the discussion moves to such topics as synchrotron radiation, plasma effects, changes in the electron energy spectrum in the radiating regions, energy loss to ionization, bremsstrahlung, radio astronomical observations of high-energy particles, emission by energetic particles, observation of supernova remnants and pulsars, galactic background continuum radiation, and others.

  4. Goldstone Apple Valley Radio Telescope Project.

    ERIC Educational Resources Information Center

    Ibe, Mary; MacLaren, Dave

    2003-01-01

    Describes the Goldstone Apple Valley Radio Telescope (GAVRT) project as a way of teaching astronomy concepts to middle school students. The project provides students opportunities to work with professional scientists. (SOE)

  5. Astronomy Science Fair Projects

    NASA Astrophysics Data System (ADS)

    Pittichová, J.; Kadooka, M.-A.; Meech, K. J.

    2004-12-01

    ``Extrasolar Planet Transit", ``Lightcurve of a Variable Star", and ``Retrograde Motion of Mars" are some of the titles of high school students' projects entered in the Hawaii State Science Fair. TOPS (Toward Other Planetary Systems) teachers who participated in the University of Hawaii Institute for Astronomy summer outreach program under the direction of professor Karen J. Meech mentored their students. After attending the 3-week National Science Foundation Institute for several summers since 1999, these teachers in the summer of 2003 were trained to do observing plans to obtain images from telescopes, use image processing software MIRA for photometry, and produce light curves of variable stars and extrasolar planet transits. Others used the software ``Astrometrica" to do astrometry of Kuiper Belt Objects. Using Compaq laptop computers on long term loan, our teachers mentored students for astronomy projects during the 2003-2004 school year. These students made observing plans for images from the 31inch Lowell Telescope in Arizona and/or from the 2.2m University of Hawaii Telescope at Mauna Kea Observatory. Learning about filters, exposure time, magnitude, frequency of taking CCD images, and ephemeris required many iterations between students, teachers, and astronomers and graduate students who were assisting. Poor weather conditions and other frustrations exposed the students to the realities of research. However, they were rewarded with projects that impressed the judges and that will be described.

  6. The African Cultural Astronomy Project

    NASA Astrophysics Data System (ADS)

    Urama, Johnson O.; Holbrook, Jarita C.

    2011-06-01

    Indigenous, endogenous, traditional, or cultural astronomy focuses on the many ways that people and cultures interact with celestial bodies. In most parts of Africa, there is very little or no awareness about modern astronomy. However, like ancient people everywhere, Africans wondered at the sky and struggled to make sense of it. The African Cultural Astronomy Project aims to unearth the body of traditional knowledge of astronomy possessed by peoples of the different ethnic groups in Africa and to consider scientific interpretations when appropriate for cosmogonies and ancient astronomical practices. Regardless of scientific validity, every scientist can relate to the process of making observations and creating theoretical mechanisms for explaining what is observed. Through linking the traditional and the scientific, it is believed that this would be used to create awareness and interest in astronomy in most parts of Africa. This paper discusses the vision, challenges and prospects of the African Cultural Astronomy Project in her quest to popularize astronomy in Africa.

  7. Advances in solar radio astronomy

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1982-01-01

    The status of the observations and interpretations of the sun's radio emission covering the entire radio spectrum from millimeter wavelengths to hectometer and kilometer wavelengths is reviewed. Emphasis is given to the progress made in solar radio physics as a result of recent advances in plasma and radiation theory. It is noted that the capability now exists of observing the sun with a spatial resolution of approximately a second of arc and a temporal resolution of about a millisecond at centimeter wavelengths and of obtaining fast multifrequency two-dimensional pictures of the sun at meter and decameter wavelengths. A summary is given of the properties of nonflaring active regions at millimeter, centimeter, and meter-decameter wavelengths. The properties of centimeter wave bursts are discussed in connection with the high spatial resolution observations. The observations of the preflare build-up of an active region are reviewed. High spatial resolution observations (a few seconds of arc to approximately 1 arcsec) are discussed, with particular attention given to the one- and two-dimensional maps of centimeter-wavelength burst sources.

  8. Need a Classroom Stimulus? Introduce Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Derman, Samuel

    2010-04-01

    Silently, invisibly, ceaselessly, our planet Earth is showered by radio waves from every direction and from every region of space. This radio energy originates in our solar system, throughout the Milky Way galaxy, and far beyond, out to the remotest reaches of the universe. Detecting and unraveling the origins of these invisible signals is what radio astronomy is all about. This ever-present radiation provides astronomers with an alternate, non-optical window to the universe, revealing exotic and unfamiliar phenomena previously undetected by even the most powerful optical telescopes. For physics teachers, a classroom discussion of these radio discoveries, however brief, offers an opportunity for igniting interest (and possibly a career option) in even the most apathetic of students. This paper describes, first, the background of some of these events, and second (in the appendixes), a selection of numerical problems so that students can derive for themselves the truly mind-stretching features of these celestial objects.

  9. Radio astronomy Explorer B antenna aspect processor

    NASA Technical Reports Server (NTRS)

    Miller, W. H.; Novello, J.; Reeves, C. C.

    1972-01-01

    The antenna aspect system used on the Radio Astronomy Explorer B spacecraft is described. This system consists of two facsimile cameras, a data encoder, and a data processor. Emphasis is placed on the discussion of the data processor, which contains a data compressor and a source encoder. With this compression scheme a compression ratio of 8 is achieved on a typical line of camera data. These compressed data are then convolutionally encoded.

  10. The beginnings of Australian radio astronomy

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T.

    2005-06-01

    The early stages of Australian radio astronomy, especially the first decade after World War II, are described in detail. These include the transition of the CSIRO Radiophysics Laboratory, under the leadership of Joseph Pawsey and Taffy Bowen, from a wartime laboratory in 1945 to, by 1950, the largest and one of the two most important radio astronomy groups in the world (with the Cavendish Laboratory at Cambridge University). The initial solar investigations are described, including discovery of the hot corona and development of the sea-cliff interferometer. During this same period painstaking `radio star' observations by John Bolton and colleagues led to the first suggested optical identifications of Taurus-A (the Crab Nebula), Centaurus-A (NGC 5128), and Virgo-A (M87). The factors that led to the extraordinary early success of the Radiophysics Laboratory are analyzed in detail, followed by discussion of how the situation changed significantly in the second decade of 1955-1965. Finally, the development of major Australian instruments, from the Parkes Radio Telescope (1961) to the Australia Telescope (1988), is briefly presented.

  11. Auto-Adaptive Radio Astronomy Instruments

    NASA Astrophysics Data System (ADS)

    Pankratius, Victor; Lonsdale, C. J.

    2014-04-01

    Progress in the field of radio astronomy depends heavily on advances in instrumental capabilities, characterized by properties such as collecting area, resolution in the angular, spectral and temporal domains, field of view, and spatial aperture sampling. Generally, such advances in capability represent increases in the formal quantity of astronomical information that is received and processed by the instrument. The current generation of radio astronomy arrays can generate antenna voltage data at rates of Tbits per second, and forthcoming instruments will quickly expand these rates by multiple orders of magnitude. Future Exascale systems will have to make many choices on how to process subsets of big data. As human capacity will be overwhelmed at this scale, part of the discovery process will have to be handled by algorithms and machines. A key challenge will be to identify patterns of scientific significance in massive data sets and adjust instruments to become more sensitive to such patterns. As a step towards realization, we will revisit the current data collection and analysis pipelines from a fresh perspective that treats them as one system. In this system, multicore parallelism reduces big data accumulation by moving fragments of analysis and filtering closer to the data acquisition. MIT Haystack is pursuing approaches that enable future scientists to shift their interaction with bare metal instruments to steering search algorithms. Our vision is to create auto-adaptive instruments that can automatically adjust to identify and characterize interesting data patterns and properties, to optimize signal to noise ratios, and balance the search process depending on environmental changes. Bios Victor Pankratius is a principal investigator and computer scientist at MIT Haystack Observatory, where he advances new directions of computing in astronomy. Contact him at [pankrat at mit dot edu], victorpankratius.com, or Twitter @vpankratius. Colin Lonsdale is Director of the MIT Haystack Observatory, and has a 30-year background in observational radio astronomy and interferometric imaging. His email is [cjl at haystack dot mit dot edu].

  12. An Optical Pointing Telescope for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Assawaworrarit, Sidhi; Padin, Stephen

    2012-03-01

    Design details are given for a stable optical pointing telescope for radio astronomy. The telescope is a 100 mm f/15 refractor with the objective glued to a ring of three blade flexures, an insulated and vented Invar tube mounted on flexures, and an axially symmetric camera mount. For a pair of identical telescopes, the rms differential pointing stability is 0.1" hr-1 over 2 hr, 0.05" day-1 over 3 days, 0.03" K-1, and 0.1" after a 90 change in elevation.

  13. The first radio astronomy from space - RAE

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.

    1987-01-01

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed.

  14. The Importance of Site Selection for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Zainal Abidin, Zamri; Abidin Ibrahim, Zainol

    2014-10-01

    Radio sources are very weak since this object travel very far from outer space. Radio astronomy studies are limited due to radio frequency interference (RFI) that is made by man. If the harassment is not stopped, it will provide critical problems in their radio astronomy scientists research. The purpose of this study is to provide RFI map Peninsular Malaysia with a minimum mapping techniques RFI interference. RFI mapping technique using GIS is proposed as a tool in mapping techniques. Decision-making process for the selection requires gathering information from a variety of parameters. These factors affecting the selection process are also taken account. In this study, various factors or parameters involved such as availability of telecommunications transmission (including radio and television), rainfall, water line and human activity. This study will benefit radio astronomy research especially in the RFI profile in Malaysia. Keywords: Radio Astronomy, Radio Frequency Interference (RFI), RFI mapping technique : GIS.

  15. Teaching Astronomy at Columbus State University using Small Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Webster, Zodiac T.

    2006-12-01

    Astronomy is inherently fascinating to students but dark skies and good weather are not often scheduled during the school day. Radio telescopes provide an all-weather, all-day opportunity for astronomical observations. Columbus State University (CSU) has installed two Small Radio Telescopes for use by undergraduate students to pursue extra-curricular research in introductory astronomy. These telescopes are relatively affordable and are designed to be remotely operated through a Windows, Linux, or Macintosh environment. They are capable of diffraction-limited observations of the Sun and galactic Hydrogen in the L-band. A comprehensive website of projects suitable for high-school students and undergraduates is maintained by a group at MIT. This website ensures users are not left to explore the telescopes abilities blindly. Students with varied interests learn about the nature of science by using an instrument that doesnt lend itself to pretty pictures. Radio telescopes also provide a slight engineering flavor drawing in students who might not otherwise be interested in astronomy. This poster will provide a summary of installation, calibration, and future plans, and will share some observations by undergraduates at CSU.

  16. Radio astronomy - Quest for the invisible

    NASA Astrophysics Data System (ADS)

    Atkinson, B.

    The 46-meter reflector of the Algonquin Radio Observatory (ARO) scans the heavens 24 hours a day, almost all year round to receive a stream of stellar photons. The antenna's paraboloid reflective surface is checked using a technique called satellite holography to determine its sensitivity to these photons, and therefore its ability to operate at shorter wavelengths. Although the dish operates at a wavelength of 3 cm, studies are underway to resurface it and enable it to focus to millimeter wavelengths. NRC research teams have made discoveries such as molecular gas within the spiral arms of the Galaxy and extended atmospheres of carbon stars. At the Dominion Radio Astrophysical Observatory near Vancouver, B.C., astronomers are using supernova blast waves to examine the interstellar medium, theorizing that stellar winds are the outflow of physical particles from stars and that the sun has a mild wind which is probably responsible for the polar auroras. In the past fifty years, new objects such as quasars, pulsars and giant molecular clouds have been discovered by means of radio astronomy. Faint radio emissions from these objects, which were once invisible to instruments on earth, can now be detected.

  17. Radio Astronomy: A Strong Link between Undergraduate Education and Research.

    ERIC Educational Resources Information Center

    Pratap, Preethi; Salah, Joseph E.

    2001-01-01

    Describes a successful pilot program to develop and test a program that facilitates the linking of undergraduate research and education through radio astronomy. Based on the pilot experiences, students everywhere should be able to exploit the opportunity to strengthen their education through practical research using radio astronomy. (Author/SAH)

  18. JPL Big Data Technologies for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.; D'Addario, L. R.; De Jong, E. M.; Mattmann, C. A.; Rebbapragada, U. D.; Thompson, D. R.; Wagstaff, K.

    2014-04-01

    During the past three years the Jet Propulsion Laboratory has been working on several technologies to deal with big data challenges facing next-generation radio arrays, among other applications. This program has focused on the following four areas: 1) We are investigating high-level ASIC architectures that reduce power consumption for cross-correlation of data from large interferometer arrays by one to two orders of magnitude. The cost of operations for the Square Kilometre Array (SKA), which may be dominated by the cost of power for data processing, is a serious concern. A large improvement in correlator power efficiency could have a major positive impact. 2) Data-adaptive algorithms (machine learning) for real-time detection and classification of fast transient signals in high volume data streams are being developed and demonstrated. Studies of the dynamic universe, particularly searches for fast (<< 1 second) transient events, require that data be analyzed rapidly and with robust RFI rejection. JPL, in collaboration with the International Center for Radio Astronomy Research in Australia, has developed a fast transient search system for eventual deployment on ASKAP. In addition, a real-time transient detection experiment is now running continuously and commensally on NRAO's Very Long Baseline Array. 3) Scalable frameworks for data archiving, mining, and distribution are being applied to radio astronomy. A set of powerful open-source Object Oriented Data Technology (OODT) tools is now available through Apache. OODT was developed at JPL for Earth science data archives, but it is proving to be useful for radio astronomy, planetary science, health care, Earth climate, and other large-scale archives. 4) We are creating automated, event-driven data visualization tools that can be used to extract information from a wide range of complex data sets. Visualization of complex data can be improved through algorithms that detect events or features of interest and autonomously generate images or video to display those features. This work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  19. Radio Astronomy in Malaysia: Current Status and Outreach Activities

    NASA Astrophysics Data System (ADS)

    Hashim, N.; Abidin, Z. Z.; Ibrahim, U. F. S. U.; Umar, R.; Hassan, M. S. R.; Rosli, Z.; Hamidi, Z. S.; Ibrahim, Z. A.

    2011-12-01

    In this paper, we will present the current status of radio astronomical research and outreach in Malaysia. We will also present a short history of our research group, which is currently the only radio astronomical facility in Malaysia. Our group is called the Radio Cosmology Research Lab and was established in 2005 by Dr Zamri Zainal Abidin and Prof Dr Zainol Abidin Ibrahim. We will discuss the future plans for this group including our keen interest in being part of a more global network of radio astronomers. We are already an active member of the South-East Asia Astronomy Network (SEAAN) and aims to have a radio astronomical facility in order to join the Global Very Long Baseline Interferometer (VLBI) as well becoming a research hub for the future Square Kilometer Array (SKA) project. We will also present some of the scientific goals of our group including providing a platform for radio astronomers to be able to do observations of weak and high red-shifted radio objects such as galaxy clusters and supernovae.

  20. Radio astronomy with very large arrray.

    PubMed

    Hjellming, R M; Bignell, R C

    1982-06-18

    The construction of the Very Large Array of radio telescopes has been completed, and this new research instrument is now being used to make radio images of astronomical objects with a resolution comparable to or better than that of ground-based optical telescopes. The role of the Very Large Array in current and future research is discussed both in principle and in terms of a sample of observing projects. PMID:17750599

  1. Highlighting the History of Japanese Radio Astronomy: 1: An Introduction

    NASA Astrophysics Data System (ADS)

    Ishiguro, Masato; Orchiston, Wayne; Akabane, Kenji; Kaifu, Norio; Hayashi, Masa; Nakamura, Tsuko; Stewart, Ronald; Yokoo, Hiromitsu

    2012-11-01

    Japan was one of a number of nations that made important contributions in the fledgling field of radio astronomy in the years immediately following WWII. In this paper we discuss the invention of the Yagi-Uda antenna and the detection of solar radio emission in 1938, before reviewing radio astronomical developments that occurred between 1948 and 1961 in Osaka, Nagoya, Tokyo and Hiraiso. In order to place these early Japanese experiments in a national and international context we briefly review the world-wide development of radio astronomy in the immediate post-War years before discussing the growth of optical astronomy in Japan at this time.

  2. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Radio astronomy station notification. 2.107 Section 2.107 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Allocation, Assignment, and Use of Radio Frequencies §...

  3. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Radio astronomy station notification. 2.107 Section 2.107 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Allocation, Assignment, and Use of Radio Frequencies §...

  4. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Radio astronomy station notification. 2.107 Section 2.107 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Allocation, Assignment, and Use of Radio Frequencies §...

  5. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Radio astronomy station notification. 2.107 Section 2.107 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Allocation, Assignment, and Use of Radio Frequencies §...

  6. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Radio astronomy station notification. 2.107 Section 2.107 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Allocation, Assignment, and Use of Radio Frequencies §...

  7. The Deep Space Network: An instrument for radio astronomy research

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.; Levy, G. S.; Kuiper, T. B. H.; Walken, P. R.; Chandlee, R. C.

    1988-01-01

    The NASA Deep Space Network operates and maintains the Earth-based two-way communications link for unmanned spacecraft exploring the solar system. It is NASA's policy to also make the Network's facilities available for radio astronomy observations. The Network's microwave communication systems and facilities are being continually upgraded. This revised document, first published in 1982, describes the Network's current radio astronomy capabilities and future capabilities that will be made available by the ongoing Network upgrade. The Bibliography, which includes published papers and articles resulting from radio astronomy observations conducted with Network facilities, has been updated to include papers to May 1987.

  8. Sixty Years in radio astronomy: A tribute to Bruce Slee

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne

    2005-06-01

    Bruce Slee is one of the pioneers of radio astronomy. After recording solar emission during World War II, he joined what was then the Council of Scientific and Industrial Research's Division of Radiophysics in Sydney, Australia, and went on to make important contributions to Solar System, Galactic and extra-galactic astronomy. Since his retirement, in 1989, he has continued his research as an Honorary Fellow of the Australia Telescope National Facility. Now in his early 80s, Bruce Slee is one of the few radio astronomy pioneers of the 1940s who is still actively contributing to astrophysics. This issue of the Journal of Astronomical History and Heritage (JAH2), and the two that will follow it, are a tribute to this quietly-spoken scientist and his remarkable 60-year involvement in radio astronomy.

  9. Communicating radio astronomy with the public: Another point of view

    NASA Astrophysics Data System (ADS)

    Varano, S.

    2008-06-01

    Radio waves cannot be sensed directly, but they are used in daily life by almost everybody. Even so, the majority of the general public do not even know that celestial bodies emit radio waves. Presenting invisible radiation to a general audience with little or no background knowledge in physics is a difficult task. In addition, much important technology now commonplace in many other scientific fields was pioneered by radio observatories in their efforts to detect and process radio signals from the Universe. Radio astronomy outreach does not have such a well-established background as optical astronomy outreach. In order to make radio astronomy accessible to the public, it is necessary either to add more scientific detail or to find a different way of communicating. In this paper we present examples from our work at the Visitor Centre "Marcello Ceccarelli", which is part of the Medicina Radio Observatory, operated by the Institute of Radio Astronomy (IRA) in Bologna, which in turn is part of the National Institute for Astrophysics (INAF).

  10. World War II Radar and Early Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Smith, G.

    2005-08-01

    The pattern of radio astronomy which developed in Europe and Australia followed closely the development of metre wave radar in World War II. The leading pioneers, Ryle, Lovell, Hey and Pawsey, were all in radar research establishments in the UK and Australia. They returned to universities, recruited their colleagues into research groups and immediately started on some basic observations of solar radio waves, meteor echoes, and the galactic background. There was at first little contact with conventional astronomers. This paper traces the influence of the radar scientists and of several types of radar equipment developed during WW II, notably the German Wurzburg, which was adapted for radio research in several countries. The techniques of phased arrays and antenna switching were used in radar and aircraft installations. The influence of WW II radar can be traced at least up to 10 years after the War, when radio astronomy became accepted as a natural discipline within astronomy.

  11. Radio astronomy aspects of the NASA SETI Sky Survey

    NASA Technical Reports Server (NTRS)

    Klein, Michael J.

    1986-01-01

    The application of SETI data to radio astronomy is studied. The number of continuum radio sources in the 1-10 GHz region to be counted and cataloged is predicted. The radio luminosity functions for steep and flat spectrum sources at 2, 8, and 22 GHz are derived using the model of Peacock and Gull (1981). The relation between source number and flux density is analyzed and the sensitivity of the system is evaluated.

  12. Planetary radio astronomy observations from Voyager 1 near Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Evans, D. R.; Carr, T. D.; Schauble, J. J.; Alexander, J. K.; Kaiser, M. L.; Desch, M. D.; Pedersen, M.; Lecacheux, A.

    1981-01-01

    The Voyager 1 planetary radio astronomy experiment detected two distinct kinds of radio emissions from Saturn. The first, Saturn kilometric radiation, is strongly polarized, bursty, tightly correlated with Saturn's rotation, and exhibits complex dynamic spectral features somewhat reminiscent of those in Jupiter's radio emission. It appears in radio frequencies below about 1.2 megahertz. The second kind of radio emission, Saturn electrostatic discharge, is unpolarized, extremely impulsive, loosely correlated with Saturn's rotation, and very broadband, appearing throughout the observing range of the experiment (20.4 kilohertz to 40.2 megahertz). Its sources appear to lie in the planetary rings.

  13. Planetary radio astronomy observations from voyager 1 near saturn.

    PubMed

    Warwick, J W; Pearce, J B; Evans, D R; Carr, T D; Schauble, J J; Alexander, J K; Kaiser, M L; Desch, M D; Pedersen, M; Lecacheux, A; Daigne, G; Boischot, A; Barrow, C H

    1981-04-10

    The Voyager 1 planetary radio astronomy experiment detected two distinct kinds of radio emissions from Saturn. The first, Saturn kilometric radiation, is strongly polarized, bursty, tightly correlated with Saturn's rotation, and exhibits complex dynamic spectral features somewhat reminiscent of those in Jupiter's radio emission. It appears in radio frequencies below about 1.2 megahertz. The second kind of radio emission, Saturn electrostatic discharge, is unpolarized, extremely impulsive, loosely correlated with Saturn's rotation, and very broadband, appearing throughout the observing range of the experiment (20.4 kilohertz to 40.2 megahertz). Its sources appear to lie in the planetary rings. PMID:17783837

  14. Astronomy research at the Aerospace Corporation. [research projects - NASA programs

    NASA Technical Reports Server (NTRS)

    Paulikas, G. A.

    1974-01-01

    This report reviews the astronomy research carried out at The Aerospace Corporation during 1974. The report describes the activities of the San Fernando Observatory, the research in millimeter wave radio astronomy as well as the space astronomy research.

  15. Observing Projects in Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Taylor, M. Suzanne

    2016-01-01

    Introductory astronomy classes without laboratory components face a unique challenge of how to expose students to the process of science in the framework of a lecture course. As a solution to this problem small group observing projects are incorporated into a 40 student introductory astronomy class composed primarily of non-science majors. Students may choose from 8 observing projects such as graphing the motion of the moon or a planet, measuring daily and seasonal motions of stars, and determining the rotation rate of the Sun from sunspots. Each group completes two projects, requiring the students to spend several hours outside of class making astronomical observations. Clear instructions and a check-list style observing log help students with minimal observing experience to take accurate data without direct instructor assistance. Students report their findings in a lab report-style paper, as well as in a formal oral or poster presentation. The projects serve a double purpose of allowing students to directly experience concepts covered in class as well as providing students with experience collecting, analyzing, and presenting astronomical data.

  16. A Mathematical Review of Polyphase Filterbank Implementations for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Harris, Christopher; Haines, Karen

    2011-10-01

    The technique of polyphase filterbanks is commonly used for signal processing in radio astronomy. The rapid and ongoing evolution of parallel hardware architectures requires optimised implementations of such techniques to be redeveloped. However, much of the published research regarding polyphase filterbanks refers the reader to signal processing books with a more general scope. Furthermore, these references tend to focus on the design of filters, rather than their implementation. For this reason, this work presents a mathematical background for the implementation of a polyphase filterbank specific to radio astronomy. It also addresses the advantages and disadvantages of polyphase filterbanks in comparison with more commonly used techniques.

  17. Need a Classroom Stimulus? Introduce Radio Astronomy

    ERIC Educational Resources Information Center

    Derman, Samuel

    2010-01-01

    Silently, invisibly, ceaselessly, our planet Earth is showered by radio waves from every direction and from every region of space. This radio energy originates in our solar system, throughout the Milky Way galaxy, and far beyond, out to the remotest reaches of the universe. Detecting and unraveling the origins of these invisible signals is what

  18. Need a Classroom Stimulus? Introduce Radio Astronomy

    ERIC Educational Resources Information Center

    Derman, Samuel

    2010-01-01

    Silently, invisibly, ceaselessly, our planet Earth is showered by radio waves from every direction and from every region of space. This radio energy originates in our solar system, throughout the Milky Way galaxy, and far beyond, out to the remotest reaches of the universe. Detecting and unraveling the origins of these invisible signals is what…

  19. Lunar Farside Radio Astronomy Base Facilitated by Lunar Elevator

    NASA Astrophysics Data System (ADS)

    Eubanks, T. M.; Maccone, C.; Radley, C. F.

    2015-10-01

    Dr. JD-Wrner, DG of ESA intends to align ESA to develop a Moon Village on the far side for radio astronomy and other purposes. This would encourage new infrastructure reducing transport costs. A lunar lift greatly facilitates this vision.

  20. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  1. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Mahoney, M. J.; Jacobson, A. R.; Knowles, S. H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities.

  2. Planetary radio astronomy observations during the Voyager 1 Titan flyby

    NASA Technical Reports Server (NTRS)

    Daigne, G.; Pedersen, B. M.; Kaiser, M. L.; Desch, M. D.

    1982-01-01

    During the Voyager 1 Titan flyby, unusual radio emissions were observed by the planetary radio astronomy experiment in the 20- to 97-kHz frequency range. It is shown that Titan itself is not the source of the observed radio emission. The emission features are attributed to modification of the normal Saturn kilometric radiation by propagation effects in enhanced density structures within the Titan wake. Furthermore, spiky emissions observed in the magnetic wake of Titan are interpreted in terms of local electrostatic instabilities at the electron plasma frequency. From these measurements a range of electron densities in the wake region is derived, and the consistency of the results is discussed.

  3. The Effelsberg 100-m Radio Telescope: Construction and Forty Years of Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Junkes, Norbert; Grahl, Berndt H.

    2011-03-01

    The Effelsberg 100-m dish represents a major breakthrough in the technology of radio telescope construction. Using new methods of computation a big step in the direction of improved surface accuracy for large structures was achieved. In conjunction with the decision to build the 100-m radio telescope the Max-Planck-Gesellschaft (MPG) founded the Max-Planck-Institute for Radio Astronomy (MPIfR) in Bonn. The MPIfR grew out of the Bonn University Astronomy Department to become one of the leading institutes for radio astronomy in the world. This new institute received strong support from the MPG in the form of new positions and operating funds. As a result, the 100-m radio telescope could be quickly opened up for astronomical observations. The technical divisions provided state-of-the-art receivers and astronomical software. Teams of astronomical researchers made inroads in several important directions of astronomical research. Over the years virtually all the observing methods of radio astronomy were implemented at Effelsberg. In later years the MPIfR became involved in mm, sub-mm and infrared astronomy research. However, the 100-m radio telescope remained the `work horse' of the Institute. The Effelsberg Radio Telescope will celebrate its 40th anniversary of operations in May 2011 and is still going strong. The observations with the 100-m radio telescope have resulted in thousands of publications. It has served several generations of radio astronomers and has given hundreds of students the opportunity to complete doctoral degrees. The 100-m radio telescope has been upgraded continuously, is in excellent condition and can look to a further period as an important research instrument.

  4. Solar radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Dulk, George A.

    1990-01-01

    The characteristics of solar radio emissions at decametric to kilometric wavelengths are reviewed. Special attention is given to the radiation of the quiet sun at several metric and decametric wavelengths and to nonthermal radiation from the active sun, including radio bursts of type III (electron beams), type-III bursts from behind the sun, storms of type III bursts, the flare-associated radio bursts, type II bursts (shock waves), and shock-associated bursts. It is pointed out that almost no observations have been made so far of solar radiation between about 20 MHz and about 2 MHz. Below about 2 MHz, dynamic spectra of flux densities of solar burst have been recorded in space and observations were made of the directions of centroids and characteristic sizes of the emitting sources.

  5. Using Group Research Projects to Stimulate Undergraduate Astronomy Major Learning

    NASA Astrophysics Data System (ADS)

    McGraw, Allison M.; Hardegree-Ullman, K. K.; Turner, J. D.; Shirley, Y. L.; Walker-LaFollette, A. M.; Robertson, A. N.; Carleton, T. M.; Smart, B. M.; Towner, A. P. M.; Wallace, S. C.; Smith, C. W.; Small, L. C.; Daugherty, M. J.; Guvenen, B. C.; Crawford, B. E.; Austin, C. L.; Schlingman, W. M.

    2012-05-01

    The University of Arizona Astronomy Club has been working on two large group research projects since 2009. One research project is a transiting extrasolar planet project that is fully student led and run. We observed the transiting exoplanets, TrES-3b and TrES-4b, with the 1.55 meter Kupier Telescope in near-UV and optical filters in order to detect any asymmetries between filters. The second project is a radio astronomy survey utilizing the Arizona Radio Observatory 12m telescope on Kitt Peak to study molecular gas in cold cores identified by the Planck all sky survey. This project provides a unique opportunity for a large group of students to get hands-on experience observing with a world-class radio observatory. These projects involve students in every single step of the process including: proposal writing to obtain telescope time on various Southern Arizona telescopes, observing at these telescopes, data reduction and analysis, managing large data sets, and presenting results at scientific meetings and in journal publications. The primary goal of these projects is to involve students in cutting-edge research early on in their undergraduate studies. The projects are designed to be continuous long term projects so that new students can easily join. As of January 2012 the extrasolar planet project became an official independent study class. New students learn from the more experienced students on the projects creating a learner-centered environment.

  6. Hartebeesthoek Radio Astronomy Observatory (HartRAO)

    NASA Technical Reports Server (NTRS)

    Nickola, Marisa; Gaylard, Mike; Quick, Jonathan; Combrinck, Ludwig

    2013-01-01

    HartRAO provides the only fiducial geodetic site in Africa, and it participates in global networks for VLBI, GNSS, SLR, and DORIS. This report provides an overview of geodetic VLBI activities at HartRAO during 2012, including the conversion of a 15-m alt-az radio telescope to an operational geodetic VLBI antenna.

  7. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations....

  8. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations....

  9. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations....

  10. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations....

  11. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations....

  12. Communicating astronomy in a small island state: The unique role of the Mauritius Radio Telescope

    NASA Astrophysics Data System (ADS)

    Saddul-Hauzaree, S.

    2008-06-01

    The Mauritius Radio Telescope (MRT) is a 2 km x 1 km T-shaped aperture synthesis array that can generate radio images of the southern sky at 151.6 MHz. The sky surveyed can be in the declination range of -70o to -10o. It is located at Bras d'Eau, northeast of Mauritius at latitude 20oS and longitude 60oE. The MRT is a joint project of the University of Mauritius, the Indian Institute of Astrophysics and the Raman Research Institute. One of the main objectives of the MRT is to generate public interest in astronomy. Thus, it is involved in a wide range of onsite outreach activities for young school children. More mature students visiting the telescope learn about sky observation with a radio telescope, get to explore some sets of data, interact with the scientific personnel, get the opportunity to have hands-on experience with image manipulation and can ask a lot of questions on astronomy. This poster gives an overview of the Mauritius Radio Telescope and the attempts of MRT ito communicate astronomy to students as a process and not just as a vast expanse of knowledge. The challenges and dilemmas faced by MRT in conveying astronomy to the general public in a small island state are investigated and presented.

  13. Olof Rydbeck and Early Swedish Radio Astronomy: A Personal Perspective

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, V.

    2006-12-01

    The spectacular development of radio astronomy in Europe and Australia in the period soon after World War II was mostly propelled by amateur scientists motivated by a spirit of adventure. Totally untrained in astronomy, these pioneers were necessarily courageous and highly individualistic. Each of the leaders was a character, and often larger than life. And among these personalities there was none bigger than Olof Rydbeck of Sweden. He was already well known for his studies of electromagnetic theory and the invention and fabrication of devices for ever higher frequencies. He was one of the pioneers in the study of the ionosphere, and had built powerful sounders and also detectors for meteor trails. The creation of the Onsala Radio Observatory was entirely due to his efforts.

  14. Leiden University "astronomy for development" projects

    NASA Astrophysics Data System (ADS)

    Miley, George; Russo, Pedro

    2015-08-01

    We shall describe the projects being coordinated by Leiden Observatory to use astronomy for education and human capacity buiding and discuss how they relate to the IAU Strategic Plan. Some of these are being funded by the European Commission.

  15. Radio astronomy Explorer-B postlaunch attitude operations analysis

    NASA Technical Reports Server (NTRS)

    Werking, R. D.; Berg, R.; Brokke, K.; Hattox, T.; Lerner, G.; Stewart, D.; Williams, R.

    1974-01-01

    The attitude support activities of the Radio Astronomy Explorer-B are reported. The performance of the spacecraft hardware and software are discussed along with details of the mission events, from launch through main boom deployment. Reproductions of displays are presented which were used during support activities. The interactive graphics proved the support function by providing the quality control necessary to ensure mission success in an environment where flight simulated ground testing of spacecraft hardware cannot be performed.

  16. Planetary radio astronomy: Earth, giant planets, and beyond

    NASA Astrophysics Data System (ADS)

    Rucker, H. O.; Panchenko, M.; Weber, C.

    2014-11-01

    The magnetospheric phenomenon of non-thermal radio emission is known since the serendipitous discovery of Jupiter as radio planet in 1955, opening the new field of "Planetary Radio Astronomy". Continuous ground-based observations and, in particular, space-borne measurements have meanwhile produced a comprehensive picture of a fascinating research area. Space missions as the Voyagers to the Giant Planets, specifically Voyager 2 further to Uranus and Neptune, Galileo orbiting Jupiter, and now Cassini in orbit around Saturn since July 2004, provide a huge amount of radio data, well embedded in other experiments monitoring space plasmas and magnetic fields. The present paper as a condensation of a presentation at the Kleinheubacher Tagung 2013 in honour of the 100th anniversary of Prof. Karl Rawer, provides an introduction into the generation mechanism of non-thermal planetary radio waves and highlights some new features of planetary radio emission detected in the recent past. As one of the most sophisticated spacecraft, Cassini, now in space for more than 16 years and still in excellent health, enabled for the first time a seasonal overview of the magnetospheric variations and their implications for the generation of radio emission. Presently most puzzling is the seasonally variable rotational modulation of Saturn kilometric radio emission (SKR) as seen by Cassini, compared with early Voyager observations. The cyclotron maser instability is the fundamental mechanism under which generation and sufficient amplification of non-thermal radio emission is most likely. Considering these physical processes, further theoretical investigations have been started to investigate the conditions and possibilities of non-thermal radio emission from exoplanets, from potential radio planets in extrasolar systems.

  17. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  18. Acousto-optic spectrometer for radio astronomy

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1980-01-01

    Recent developments in acousto-optic techniques and in photodetector arrays have made feasible a new type of RF spectrometer, offering the advantages of wide bandwidth, high resolution, large number of channels in compact, lightweight, energy efficient, and relatively low cost systems. Such a system employs an acousto-optic diffraction cell which serves the key role of converting RF signals to ultrasonic traveling-waves modulating the optical index of the cell. The cell is illuminated across its aperture by a monochromatic laser beam. A fraction of the light is diffracted by the acoustic waves. A focusing lens follows the cell and essentially performs a Fourier transform of the RF signal into a far-field intensity pattern. CSIRO in Australia and the Tokyo Astronomical Observatory in Japan have taken the lead in using acousto-optic techniques in astronomical applications. The first practical device was successfully made at CSIRO for obtaining dynamical spectrographs of solar radio emission.

  19. The Lunar Observer Radio Astronomy Experiment (LORAE)

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.

    1990-01-01

    The paper proposes to place a simple low-frequency dipole antenna on board the Lunar Observer (LO) satellite. LO will orbit the moon in the mid-1990's, mapping the surface at high resolution and gathering new geophysical data. In its modest concept, LORAE will collect crucial data on the radio interference environment while on the near-side (to aid in planning future arrays) and will monitor bursts of emission from the sun and the Jovian planets. LORAE will also be capable of lunar occultation studies of greater than 100 of the brightest sources, gathering arcminute resolution data on sizes and measuring source fluxes. A low resolution all-sky map below 10 MHz, when combined with data from the Gamma-Ray Observatory, will uniquely determine the density of Galactic cosmic ray electrons and the strength of the Galaxy's magnetic field. LORAE also will be able to measure the density of the moon's ionosphere.

  20. A Collaborative Astronomy Project Between Multimedia and Physics Undergraduate Majors

    NASA Astrophysics Data System (ADS)

    Castelaz, M. W.; Walsh, L.; LaFratta, M.; Moffett, D. A.

    2004-12-01

    During the summer of 2004, faculty and undergraduate multimedia and physics interns from the University of North Carolina at Asheville and nearby Furman University joined together at the Pisgah Astronomical Research Institute to develop a new education and public outreach program of radio astronomy by utilizing the StarLab portable planetarium system. The program consists of three components: the StarLab cylinder for projection of the radio sky; display of a pulsar on the radio sky; and teaching and learning materials accessible through the Internet and CD-ROM. The multimedia and physics interns worked together to articulate and communicate aspects of their disciplines as they related to the development of the cylinder, the depiction of the pulsars and pulsar projector, and classroom activities for teachers and students. As a result, the cylinder shows both the radio sky and illustrates five distinct types of radio sources. The cylinder is augmented further through the use of an audio-visual pulsar projector, which emits pulses with sound for the audio-visually challenged. The activities present teachers with lesson plans related to radio astronomy topics. We discuss the unique development by this team needed to accomplish the program's first year goals. We acknowledge support from the NSF Internship in Public Science Education Program grant number 0324729.

  1. Accurate Weather Forecasting for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Maddalena, Ronald J.

    2010-01-01

    The NRAO Green Bank Telescope routinely observes at wavelengths from 3 mm to 1 m. As with all mm-wave telescopes, observing conditions depend upon the variable atmospheric water content. The site provides over 100 days/yr when opacities are low enough for good observing at 3 mm, but winds on the open-air structure reduce the time suitable for 3-mm observing where pointing is critical. Thus, to maximum productivity the observing wavelength needs to match weather conditions. For 6 years the telescope has used a dynamic scheduling system (recently upgraded; www.gb.nrao.edu/DSS) that requires accurate multi-day forecasts for winds and opacities. Since opacity forecasts are not provided by the National Weather Services (NWS), I have developed an automated system that takes available forecasts, derives forecasted opacities, and deploys the results on the web in user-friendly graphical overviews (www.gb.nrao.edu/ rmaddale/Weather). The system relies on the "North American Mesoscale" models, which are updated by the NWS every 6 hrs, have a 12 km horizontal resolution, 1 hr temporal resolution, run to 84 hrs, and have 60 vertical layers that extend to 20 km. Each forecast consists of a time series of ground conditions, cloud coverage, etc, and, most importantly, temperature, pressure, humidity as a function of height. I use the Liebe's MWP model (Radio Science, 20, 1069, 1985) to determine the absorption in each layer for each hour for 30 observing wavelengths. Radiative transfer provides, for each hour and wavelength, the total opacity and the radio brightness of the atmosphere, which contributes substantially at some wavelengths to Tsys and the observational noise. Comparisons of measured and forecasted Tsys at 22.2 and 44 GHz imply that the forecasted opacities are good to about 0.01 Nepers, which is sufficient for forecasting and accurate calibration. Reliability is high out to 2 days and degrades slowly for longer-range forecasts.

  2. Probing the field of radio astronomy with the SKA and the Hartebeesthoek Radio observatory: an engineer's perspective

    NASA Astrophysics Data System (ADS)

    Otto, Sunelle

    2011-07-01

    The Square Kilometre Array (SKA) is an international project to build the world's largest and most sensitive radio telescope interferometer. It will consist of thousands of antennas distributed over many kilometers, with the hosting country being either South Africa or Australia. This talk will give some background on the SKA technologies, pathfinders and Key Science Projects and also consider the system design options for the SKA Pulsar science case. The Hartebeesthoek Radio Astronomy Observatory (HartRAO) is the only major radio astronomy observatory in Africa; with KAT-7 in testing and the MeerKAT still in it's design phase. Some of my research work at HartRAO is presented, which includes data analysis of the pointing model for the 26m radio telescope and evaluating the performance of the GPS-disciplined Rubidium and Hydrogen Maser frequency standards. I will also talk about our project to build a 1.4GHz receiver for a commercial satellite TV antenna as well as calibrating data at 22GHz for observing water masers in Orion.

  3. On the Development of Radio Astronomy and Protected Astronomy Reserves in South Africa

    NASA Astrophysics Data System (ADS)

    Tiplady, Adrian John

    2015-08-01

    Recent initiatives to take advantage of various geographic locations in South Africa that exhibit excellent conditions for astronomical observations (optical and radio) has resulted in the establishment of a number of world class astronomical facilities. This includes the 10m class Southern African Large Telescope, the 64 dish MeerKAT radio telescope (under construction), and future Square Kilometre Array.To preserve these areas that exhibit natural astronomical advantage, unique legislation was promulgated to establish 'astronomy reserves'. These reserves are protected through a unique set of regulations that enable protection of astronomical facilities located in declared areas from any current, and future, sources of potential interference. This paper will look at the development and implementation of a protection regime, and review some of practical implications of the construction and operation of a radio telescope in what has become to be known as a 'radio quiet zone'.

  4. Enhancing Astronomy Major Learning Through Group Research Projects

    NASA Astrophysics Data System (ADS)

    McGraw, Allison M.; Hardegree-Ullman, K.; Turner, J.; Shirley, Y. L.; Walker-Lafollette, A.; Scott, A.; Guvenen, B.; Raphael, B.; Sanford, B.; Smart, B.; Nguyen, C.; Jones, C.; Smith, C.; Cates, I.; Romine, J.; Cook, K.; Pearson, K.; Biddle, L.; Small, L.; Donnels, M.; Nieberding, M.; Kwon, M.; Thompson, R.; De La Rosa, R.; Hofmann, R.; Tombleson, R.; Smith, T.; Towner, A. P.; Wallace, S.

    2013-01-01

    The University of Arizona Astronomy Club has been using group research projects to enhance the learning experience of undergraduates in astronomy and related fields. Students work on two projects that employ a peer-mentoring system so they can learn crucial skills and concepts necessary in research environments. Students work on a transiting exoplanet project using the 1.55-meter Kuiper Telescope on Mt. Bigelow in Southern Arizona to collect near-UV and optical wavelength data. The goal of the project is to refine planetary parameters and to attempt to detect exoplanet magnetic fields by searching for near-UV light curve asymmetries. The other project is a survey that utilizes the 12-meter Arizona Radio Observatory on Kitt Peak to search for the spectroscopic signature of infall in nearby starless cores. These are unique projects because students are involved throughout the entire research process, including writing proposals for telescope time, observing at the telescopes, data reduction and analysis, writing papers for publication in journals, and presenting research at scientific conferences. Exoplanet project members are able to receive independent study credit for participating in the research, which helps keep the project on track. Both projects allow students to work on professional research and prepare for several astronomy courses early in their academic career. They also encourage teamwork and mentor-style peer teaching, and can help students identify their own research projects as they expand their knowledge.

  5. Space situational awareness applications for radio astronomy assets

    NASA Astrophysics Data System (ADS)

    Watts, Galen; Ford, John M.; Ford, H. Alyson

    2015-05-01

    The National Radio Astronomy Observatory (NRAO) builds, operates, and maintains a suite of premier radio antennas, including the 100m aperture Green Bank Telescope, the largest fully-steerable antenna in the world. For more than five decades the NRAO has focused on astrophysics, providing researchers with the most advanced instruments possible: large apertures, extremely low-noise receivers, and signal processors with high frequency and time resolution. These instruments are adaptable to Space Situational Awareness (SSA) tasks such as radar detection of objects in near-Earth and cis-Lunar space, high accuracy orbit determination, object surveillance with passive methods, and uplink and downlink communications. We present the capabilities of antennas and infrastructure at the NRAO Green Bank Observatory in the context of SSA tasks, and discuss what additions and modifications would be necessary to achieve SSA goals while preserving existing radio astronomy performance. We also discuss how the Green Bank Observatory's surrounding topography and location within the National Radio Quiet Zone will enhance SSA endeavors.

  6. Radio Astronomy Explorer (RAE) 1 observations of terrestrial radio noise

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Caruso, J. A.

    1971-01-01

    Radio Astonomy Explorer (RAE) 1 data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 or more db higher than cosmic noise background. Maximum terrestrial noise is observed when RAE is over the dark side of the Earth in the neighborhood of equatorial continental land masses where thunderstorms occur most frequently. The observed noise level is 30-40 db lower with RAE over oceans.

  7. 47 CFR 5.91 - Notification to the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Notification to the National Radio Astronomy Observatory. 5.91 Section 5.91 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE Applications and Licenses § 5.91 Notification to the National Radio Astronomy Observatory....

  8. 47 CFR 5.91 - Notification to the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Notification to the National Radio Astronomy Observatory. 5.91 Section 5.91 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE Applications and Licenses § 5.91 Notification to the National Radio Astronomy Observatory....

  9. Voyager planetary radio astronomy at Neptune

    NASA Technical Reports Server (NTRS)

    Warwick, James W.; Evans, David R.; Peltzer, Gerard R.; Peltzer, Robert G.; Romig, Joseph H.; Sawyer, Constance B.; Riddle, Anthony C.; Schweitzer, Andrea E.; Desch, Michael D.; Kaiser, Michael L.

    1989-01-01

    Detection of very intense short radio bursts from Neptune was possible as early as 30 days before closest approach and at least 22 days after closest approach. The bursts lay at frequencies in the range 100 to 1300 kilohertz, were narrowband and strongly polarized, and presumably originated in southern polar regions of the planet. Episodes of smooth emissions in the frequency range from 20 to 865 kilohertz were detected during an interval of at least 10 days around closest approach. The bursts and the smooth emissions can be described in terms of rotation in a period of 16.11 + or - 0.05 hours. The bursts came at regular intervals throughout the encounter, including episodes both before and after closest approach. The smooth emissions showed a half-cycle phase shift between the five episodes before and after closest approach. This experiment detected the foreshock of Neptune's magnetosphere and the impacts of dust at the times of ring-plane crossings and also near the time of closest approach. Finally, there is no evidence for Neptunian electrostatic discharges.

  10. Problems and Projects from Astronomy.

    ERIC Educational Resources Information Center

    Mills, H. R.

    1991-01-01

    Describes activities to stimulate school astronomy programs. Topics include: counting stars; the Earth's centripetal force; defining astronomical time; three types of sundials; perceptions of star brightness; sunspots and solar radiation; stellar spectroscopy; number-crunching and the molecular structure of the atmosphere; the Earth-Moon common

  11. Reflections on the Radio Astronomy Explorer program of the 1960s and 70s

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.

    1990-01-01

    The Radio Astronomy Explorer (RAE) program of the late 1960s and early 1970s is, to date, the only totally dedicated radio astronomy mission to have flown. However, only some of the prelaunch goals were achieved due to the unexpectedly high levels of interference from the earth in the form of both naturally occurring and man-made noise. Some important lessons in receiver design were learned which could and should be applied to any future radio astronomy missions.

  12. The Nicaragua Radio Mathematics Project.

    ERIC Educational Resources Information Center

    Searle, Barbara

    The Radio Mathematics Project was funded by the Agency for International Development to design, implement, and evaluate, in conjunction with personnel of a developing country, a system for teaching primary-grade mathematics by radio. In July 1974, a project in Nicaragua began with a series of radio presentations, each followed by 20 minutes of

  13. An evolutionary sequence of low frequency radio astronomy missions

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.

    1990-01-01

    Many concepts for space-based low frequency radio astronomy missions are being developed, ranging from simple single-satellite experiments to large arrays on the far side of the moon. Each concept involves a different tradeoff between the range of scientific questions it can answer and the technical complexity of the experiment. Since complexity largely determines the development time, risk, launch vehicle requirements, cost, and probability of approval, it is important to see where the ability to expand the scientific return justifies a major increase in complexity. An evolutionary series of increasingly capable missions, similar to the series of missions for infrared or X-ray astronomy, is advocated. These would range from inexpensive 'piggy-back' experiments on near-future missions to a dedicated low frequency array in earth orbit (or possibly on the lunar nearside) and eventually to an array on the lunar farside.

  14. Ionospheric Phenomena and Low-Frequency Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Herne, D.; Kennewell, J.; Lynch, M.; Carrano, C.

    2014-05-01

    The Murchison Widefield Array radio telescope (MWA), situated on the Murchison Radio Observatory (MRO) in Western Australia, has recently commenced operations. This instrument operates over the frequency range 80-300 MHz. Further, the MRO is also the site chosen to host the low-frequency component of the Square Kilometre Array, radio telescope (SKA). Each instrument is susceptible to scintillation caused by fluctuations in ionospheric plasma density and Faraday rotation of incoming signals caused by the interaction of low-frequency radio waves with dissociated electrons in the ionosphere. Observations of these parameters over several years, across periods of both subdued and elevated solar activity have demonstrated markedly differing regimes. High-precision GPS systems, combined with purpose-written data acquisition software (SCINDA), have enabled investigation of various phenomena including the effect of solar storms on the ionosphere at highly resolved time-scales. We report on aspects of phenomena observed and their significance to low-frequency radio astronomy and note that conditions of very low scintillation encountered support the decision to site world-leading instruments on the MRO.

  15. RASDR: Benchtop Demonstration of SDR for Radio Astronomy

    SciTech Connect

    Vacaliuc, Bogdan; Oxley, Paul; Fields, David; Kurtz, Dr. Stan; Leech, Marcus

    2012-01-01

    The Society of Amateur Radio Astronomers (SARA) members present the benchtop version of RASDR, a Software Defined Radio (SDR) that is optimized for Radio Astronomy. RASDR has the potential to be a common digital receiver interface useful to many SARA members. This document describes the RASDR 0.0 , which provides digitized radio data to a backend computer through a USB 2.0 interface. A primary component of RASDR is the Lime Microsystems Femtocell chip which tunes from a 0.4-4 GHz center frequency with several selectable bandwidths from 0.75 MHz to 14 MHz. A second component is a board with a Complex Programmable Logic Device (CPLD) chip that connects to the Femtocell and provides two USB connections to the backend computer. A third component is an analog balanced mixer up conversion section. Together these three components enable RASDR to tune from 0.015 MHz thru 3.8GHz of the radio frequency (RF) spectrum. We will demonstrate and discuss capabilities of the breadboard system and SARA members will be able to operate the unit hands-on throughout the workshop.

  16. A review of decametric radio astronomy - Instruments and science

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Cane, H. V.

    1987-01-01

    The techniques and instruments used in Galactic and extragalactic radio astronomy at dkm wavelengths are surveyed, and typical results are summarized. Consideration is given to the large specialized phased arrays used for early surveys, the use of wideband elements to increase frequency agility, experimental VLBI observations, and limitations on ground-based observations below about 10 MHz (where the proposed LF Space Array, with resolution 0.5-5 arcmin, could make a major contribution). Observations discussed cover the Galactic center, the Galactic background radiation, SNRs, compact Galactic sources, the ISM, and large extragalactic sources.

  17. Planetary radio astronomy receiver. [experiment on Voyager spacecraft

    NASA Technical Reports Server (NTRS)

    Lang, G. J.; Peltzer, R. G.

    1977-01-01

    The planetary radio astronomy (PRA) experiment on the Voyager spacecraft will measure the amplitude, spectrum, time variations, and polarization of radio emissions over a frequency range of 1.2 kHz to 40.5 MHz with the aid of the PRA receiver (PRAR) and two 10-m orthogonal monopoles. Sensitivity and dynamic range will allow observation of a wide range of Jovian emissions from near earth to encounter. This paper describes the system elements, including the preamp/attenuator/calibrator, the LF polarization discriminator, the four LF-IF amplifier stages, the HF polarization discriminator, the translation LO, the log-IF and detector, the frequency synthesizer, the data processor, control system, power supply, and antennas.

  18. Large-N correlator systems for low frequency radio astronomy

    NASA Astrophysics Data System (ADS)

    Foster, Griffin

    Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the development of larger correlator systems, which in turn allows for improvements in sensitivity and resolution. This requires new calibration techniques which account for a broad range of systematic effects.

  19. A Pilot Astronomy Outreach Project in Bangladesh

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipen; Mridha, Shahjahan; Afroz, Maqsuda

    2015-08-01

    In its strategic planning for the "Astronomy for Development Project," the International Astronomical Union (IAU) has ecognized, among other important missions, the role of astronomy in understanding the far-reaching possibilities for promoting global tolerance and citizenship. Furthermore, astronomy is deemed inspirational for careers in science and technology. The "Pilot Astronomy Outreach Project in Bangladesh"--the first of its kind in the country--aspires to fulfill these missions. As Bangladesh lacks resources to promote astronomy education in universities and schools, the role of disseminating astronomy education to the greater community falls on citizen science organizations. One such group, Anushandhitshu Chokro (AChokro) Science Organization, has been carrying out a successful public outreach program since 1975. Among its documented public events, AChokro organized a total solar eclipse campaign in Bangladesh in 2009, at which 15,000 people were assembled in a single open venue for the eclipse observation. The organization has actively pursued astronomy outreach to dispel public misconceptions about astronomical phenomena and to promote science. AChokro is currently working to build an observatory and Science Outreach Center around a recently-acquired 14-inch Scmidt-Cassegrain telescope and a soon-to-be-acquired new 16-inch reflector, all funded by private donations. The telescopes will be fitted with photometers, spectrometers, and digital and CCD cameras to pursue observations that would include sun spot and solar magnetic fields, planetary surfaces, asteroid search, variable stars and supernovae. The Center will be integrated with schools, colleges, and community groups for regular observation and small-scale research. Special educational and observing sessions for adults will also be organized. Updates on the development of the Center, which is expected to be functioning by the end of 2015, will be shared and feedback invited on the fostering of international collaboration.

  20. Introducing the Virtual Astronomy Multimedia Project

    NASA Astrophysics Data System (ADS)

    Wyatt, Ryan; Christensen, L. L.; Gauthier, A.; Hurt, R.

    2008-05-01

    The goal of the Virtual Astronomy Multimedia Project (VAMP) is to promote and vastly multiply the use of astronomy multimedia resources—from images and illustrations to animations, movies, and podcasts—and enable innovative future exploitation of a wide variety of outreach media by systematically linking resource archives worldwide. High-quality astronomical images, accompanied by rich caption and background information, abound on the web and yet prove notoriously difficult to locate efficiently using existing search tools. The Virtual Astronomy Multimedia Project offers a solution via the Astronomy Visualization Metadata (AVM) standard. Due to roll out in time for IYA2009, VAMP manages the design, implementation, and dissemination of the AVM standard for the education and public outreach astronomical imagery that observatories publish. VAMP will support implementations in World Wide Telescope, Google Sky, Portal to the Universe, and 365 Days of Astronomy, as well as Uniview and DigitalSky software designed specifically for planetariums. The VAMP workshop will introduce the AVM standard and describe its features, highlighting sample image tagging processes using diverse tools—the critical first step in getting media into VAMP. Participants with laptops will have an opportunity to experiment first hand, and workshop organizers will update a web page with system requirements and software options in advance of the conference (see http://virtualastronomy.org/ASP2008/ for links to resources). The workshop will also engage participants in a discussion and review of the innovative AVM image hierarchy taxonomy, which will soon be extended to other types of media.

  1. UniBoard: generic hardware for radio astronomy signal processing

    NASA Astrophysics Data System (ADS)

    Hargreaves, J. E.

    2012-09-01

    UniBoard is a generic high-performance computing platform for radio astronomy, developed as a Joint Research Activity in the RadioNet FP7 Programme. The hardware comprises eight Altera Stratix IV Field Programmable Gate Arrays (FPGAs) interconnected by a high speed transceiver mesh. Each FPGA is connected to two DDR3 memory modules and three external 10Gbps ports. In addition, a total of 128 low voltage differential input lines permit connection to external ADC cards. The DSP capability of the board exceeds 644E9 complex multiply-accumulate operations per second. The first production run of eight boards was distributed to partners in The Netherlands, France, Italy, UK, China and Korea in May 2011, with a further production runs completed in December 2011 and early 2012. The function of the board is determined by the firmware loaded into its FPGAs. Current applications include beamformers, correlators, digital receivers, RFI mitigation for pulsar astronomy, and pulsar gating and search machines The new UniBoard based correlator for the European VLBI network (EVN) uses an FX architecture with half the resources of the board devoted to station based processing: delay and phase correction and channelization, and half to the correlation function. A single UniBoard can process a 64MHz band from 32 stations, 2 polarizations, sampled at 8 bit. Adding more UniBoards can expand the total bandwidth of the correlator. The design is able to process both prerecorded and real time (eVLBI) data.

  2. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Notifications concerning interference to radio... COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1030 Notifications concerning interference to radio astronomy, research...

  3. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Notifications concerning interference to radio... COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1030 Notifications concerning interference to radio astronomy, research...

  4. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Notifications concerning interference to radio... COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1030 Notifications concerning interference to radio astronomy, research...

  5. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Notifications concerning interference to radio... COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1030 Notifications concerning interference to radio astronomy, research...

  6. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Notifications concerning interference to radio... COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1030 Notifications concerning interference to radio astronomy, research...

  7. Embracing the Wave: Using the Very Small Radio Telescope to Teach Students about Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Fish, Vincent L.; Needles, M. M.; Rogers, A. E. E.; Doherty, M.; Minnigh, S.; Arndt, M. B.; Pratap, P.

    2010-01-01

    The Very Small Radio Telescope (VSRT) is a low-cost educational tool appropriate for laboratory demonstrations of the nature of radio waves and the principles of interferometry for use in both high school and undergraduate physics/astronomy classes. The system consists of small direct broadcast antenna dishes and other commercially available parts and can be assembled for under $500. Complete teaching units have been developed and tested by high school physics teachers to demonstrate radio wave transmission and exponential absorption though materials (Beer's law), the polarization of electromagnetic waves (Malus' law), the inverse square law, and interferometry. These units can be used to explore the properties of electromagnetic waves, including similarities and differences between radio and visible light, while challenging students' misconceptions about a wavelength regime that is important to both astronomy and everyday life. In addition, the VSRT can be used as a radio astronomical interferometer to measure the diameter of the Sun at 12 GHz. Full details, including a parts list, comprehensive assembly instructions, informational memos, teaching units, software, and conformance to national and Massachusetts educational standards, are available on the web at http://www.haystack.mit.edu/edu/undergrad/VSRT/index.html . Development of the VSRT at MIT Haystack Observatory is made possible through funding provided by the National Science Foundation.

  8. Optimising Impact in Astronomy for Development Projects

    NASA Astrophysics Data System (ADS)

    Grant, Eli

    2015-08-01

    Positive outcomes in the fields of science education and international development are notoriously difficult to achieve. Among the challenges facing projects that use astronomy to improve education and socio-economic development is how to optimise project design in order to achieve the greatest possible benefits. Over the past century, medical scientists along with statisticians and economists have progressed an increasingly sophisticated and scientific approach to designing, testing and improving social intervention and public health education strategies. This talk offers a brief review of the history and current state of `intervention science'. A similar framework is then proposed for astronomy outreach and education projects, with applied examples given of how existing evidence can be used to inform project design, predict and estimate cost-effectiveness, minimise the risk of unintended negative consequences and increase the likelihood of target outcomes being achieved.

  9. DSP-Enabled Radio Astronomy: Towards IIIZW35 Reconquest

    NASA Astrophysics Data System (ADS)

    Weber, Rodolphe; Viou, Cédric; Coffre, Andrée; Denis, Laurent; Zarka, Philippe; Lecacheux, Alain

    2005-12-01

    In radio astronomy, the radio spectrum is used to detect weak emission from celestial sources. By spectral averaging, observation noise is reduced and weak sources can be detected. However, more and more observations are polluted by man-made radio frequency interferences (RFI). The impact of these RFIs on power spectral measurement ranges from total saturation to subtle distortions of the data. To some extent, elimination of artefacts can be achieved by blanking polluted channels in real time. With this aim in view, a complete real-time digital system has been implemented on a set of FPGA and DSP. The current functionalities of the digital system have high dynamic range of 70 dB, bandwidth selection facilities ranging from 875 kHz to 14 MHz, high spectral resolution through a polyphase filter bank with up to 8192 channels with 49 152 coefficients and real-time time-frequency blanking with a robust threshold detector. This receiver has been used to reobserve the IIIWZ35 astronomical source which has been scrambled by a strong satellite RFI for several years.

  10. The Astronomy Genealogy Project: A Progress Report

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2016-01-01

    Although it is not yet visible, much progress has been made on the Astronomy Genealogy Project (AstroGen) since it was accepted as a project of the Historical Astronomy Division (HAD) three years ago. AstroGen will list the world's astronomers with information about their highest degrees and advisors. (In academic genealogy, your thesis advisor is your parent.) A small group (the AstroGen Team) has compiled a database of approximately 12,000 individuals who have earned doctorates with theses (dissertations) on topics in astronomy, astrophysics, cosmology, or planetary science. These include nearly all those submitted in Australia, Canada, the Netherlands, and New Zealand, and most of those in the United States (all through 2014 for most universities and all through 1990 for all). We are compiling more information than is maintained by the Mathematics Genealogy Project (MGP). In addition to name, degree, university, year of degree, and thesis advisor(s), all provided by MGP as well, we are including years of birth and death when available, mentors in addition to advisors, and links to the thesis when it is online and to the person's web page or obituary, when we can find it. We are still struggling with some questions, such as the boundaries of inclusion and whether or not to include subfields of astronomy. We believe that AstroGen will be a valuable resource for historians of science as well as a source of entertainment for those who like to look up their academic family trees. A dedicated researcher following links from AstroGen will be able to learn quite a lot about the careers of astronomy graduates of a particular university, country, or era. We are still seeking volunteers to enter the graduates of one or more universities.

  11. Improving Astronomy Achievement and Attitude through Astronomy Summer Project: A Design, Implementation and Assessment

    ERIC Educational Resources Information Center

    Türk, Cumhur; Kalkan, Hüseyin; Iskeleli', Nazan Ocak; Kiroglu, Kasim

    2016-01-01

    The purpose of this study is to examine the effects of an astronomy summer project implemented in different learning activities on elementary school students, pre-service elementary teachers and in-service teachers' astronomy achievement and their attitudes to astronomy field. This study is the result of a five-day, three-stage, science school,…

  12. Found: The Original 1945 Records of Australian Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Goss, Miller; Ekers, Ron; Sim, Helen

    2015-08-01

    In July 2014, we found the original records of the first published Australian radio astronomy observations. These were obtained by Joseph L. Pawsey and Ruby Payne-Scott in early October 1945. The observations gave strong evidence of a million degree corona as well as frequent radio bursts.These observations followed earlier detections of the radio sun by Stanley Hey, George Southworth, Grote Reber and Elizabeth Alexander. The latter observations (the "Norfolk Island Effect" of March 1945) were the immediate motivation for the campaign carried out by Pawsey and Payne-Scott.These observations formed the basis for a number of pioneering publications: the 9 February 1946 Nature paper of Pawsey, Payne-Scott and McCready which was submitted on the last date on which data was obtained on 23 October 1945, the major publication of the initial Australian radio solar publication in the Proceedings of the Royal Society of London in August 1947 and Pawsey's presentation of the radio properties of the million degree corona in the Nature of 2 November 1946. Contemporaneously with these publications, D. F.Martyn was involved in an independent theoretical study of the properties of the solar corona.(Ginzburg and Shklovsky were also involved in this era in a study of the properties of the corona.) The back-to-back Martyn and Pawsey Nature papers were the first that described the radio properties of the hot corona, due to free-free emission. The division of the observed emission into "bursting" and "quiet" modes was challenging for the novice radio astronomers.These historical records had been recognized by Paul Wild in 1968, who instructed the CSIRO Division of Radiophysics secretary to E.("Taffy") G. Bowen, Ms. Sally Atkinson, to submit these to the Australian Academy of Science. Wild characterized these documents as "of considerable historical interest". Apparently the transmission of the documents was not done; a thorough search of the Australian Academy Library in August 2014 failed to locate them. The original papers were only found in Ms. Atkinson's files after her death on 13 November 2012 in Sydney.

  13. Analysis of Zeeman effect data in radio astronomy

    NASA Astrophysics Data System (ADS)

    Sault, R. J.; Killeen, N. E. B.; Zmuidzinas, J.; Loushin, R.

    1990-10-01

    The analysis of Zeeman effect data in radio astronomy is discussed; in particular, previous techniques are extended to include the case of low signal-to-noise ratios. Three statistical techniques for estimating the line-of-sight magnetic field are considered: maximum likelihood, least-squares, and Wiener filters. For high signal-to-noise ratios, all three estimators are essentially unbiased. It is concluded that, in the poor to moderate signal-to-noise ratio regime, all three estimators are biased; the maximum likelihood technique yields results that are, in general, substantially less biased than least-squares and Wiener filters. However, it is possible to 'debias' the least-squares results and obtain estimates that are as good as maximum likelihood under a restricted set of conditions.

  14. Planetary radio astronomy observations from Voyager 2 near Jupiter

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Riddle, A. C.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Thieman, J. R.; Carr, T. D.; Gulkis, S.; Boischot, A.

    1979-01-01

    The Voyager 2 Planetary Radio Astronomy experiment to Jupiter has confirmed and extended to higher zenomagnetic latitudes results from the identical experiment carried by Voyager 1. The kilometric emissions discovered by Voyager 1 often extended to 1 megahertz or higher on Voyager 2 and often consisted of negatively, or less frequently, positively drifting narrowband bursts. On the basis of tentative identification of plasma wave emissions similar to those detected by Voyager 1, the plasma torus associated with Io appeared somewhat denser to Voyager 2 than it did to Voyager 1. The paper reports on quasi-periodic sinusoidal or impulsive bursts in the broadcast band range of wavelengths (800 to 1800 kHz). A Faraday effect appears at decametric frequencies, which probably results from propagation of the radiation near its sources on Jupiter. Finally, the occurrence of decametric emission in homologous arc families is discussed.

  15. Matched wideband low-noise amplifiers for radio astronomy

    NASA Astrophysics Data System (ADS)

    Weinreb, S.; Bardin, J.; Mani, H.; Jones, G.

    2009-04-01

    Two packaged low noise amplifiers for the 0.3-4 GHz frequency range are described. The amplifiers can be operated at temperatures of 300-4 K and achieve noise temperatures in the 5 K range (<0.1 dB noise figure) at 15 K physical temperature. One amplifier utilizes commercially available, plastic-packaged SiGe transistors for first and second stages; the second amplifier is identical except it utilizes an experimental chip transistor as the first stage. Both amplifiers use resistive feedback to provide input reflection coefficient S11<-10 dB over a decade bandwidth with gain over 30 dB. The amplifiers can be used as rf amplifiers in very low noise radio astronomy systems or as i.f. amplifiers following superconducting mixers operating in the millimeter and submillimeter frequency range.

  16. Matched wideband low-noise amplifiers for radio astronomy.

    PubMed

    Weinreb, S; Bardin, J; Mani, H; Jones, G

    2009-04-01

    Two packaged low noise amplifiers for the 0.3-4 GHz frequency range are described. The amplifiers can be operated at temperatures of 300-4 K and achieve noise temperatures in the 5 K range (<0.1 dB noise figure) at 15 K physical temperature. One amplifier utilizes commercially available, plastic-packaged SiGe transistors for first and second stages; the second amplifier is identical except it utilizes an experimental chip transistor as the first stage. Both amplifiers use resistive feedback to provide input reflection coefficient S11<-10 dB over a decade bandwidth with gain over 30 dB. The amplifiers can be used as rf amplifiers in very low noise radio astronomy systems or as i.f. amplifiers following superconducting mixers operating in the millimeter and submillimeter frequency range. PMID:19405681

  17. User friendly database for Neptune planetary radio astronomy observations

    NASA Technical Reports Server (NTRS)

    Evans, David R.

    1993-01-01

    Planetary Radio Astronomy (PRA) data from the Voyager Neptune encounter were cleaned and reformatted in a variety of formats. Most of these formats are new and have been specifically designed to provide easy access and use of the data without the need to understand esoteric characteristics of the PRA instrument or the Voyager spacecraft. Several data sets were submitted to the Planetary Data System (PDS) and have either appeared already on peer reviewed CDROM's or are in the process of being reviewed for inclusion in forthcoming CD-ROM's. Many of the data sets are also available online electronically through computer networks; it is anticipated that as time permits, the PDS will make all the data sets that were a part of this contract available both online and on CD-ROM's.

  18. U.S.-Canadian Partnership in Radio Astronomy Valuable for Science, NRAO Director Says

    NASA Astrophysics Data System (ADS)

    2001-10-01

    The United States and Canada intend to collaborate on two of the most important radio astronomy projects of the new century - the Atacama Large Millimeter Array (ALMA) and the Expanded Very Large Array (EVLA), astronomers from both countries announced today. "This cooperative program - the North American Partnership in Radio Astronomy - involves the key projects that will dominate radio astronomy world-wide," said Paul Vanden Bout, director of the National Radio Astronomy Observatory (NRAO). "This partnership will multiply the efforts of both nations' astronomers for the benefit of science. It builds on a long tradition of cooperative efforts in radio astronomy, and will ensure that we continue that tradition into the new millennium," Vanden Bout said. The U.S.-Canada radio astronomy partnership is outlined in two letters of intent signed recently. The first, between the U.S. National Science Foundation (NSF) and Canada's National Research Council (NRC), states that both agencies will use their best efforts to obtain the necessary funding for construction and operation of ALMA. The second, between the National Radio Astronomy Observatory, funded by the NSF, and the Herzberg Institute of Astrophysics, funded by the NRC, forms a partnership in the EVLA. The VLA Expansion Project is a two-phase program designed to improve the scientific capabilities of the VLA tenfold by replacing 1970s-vintage equipment with modern technologies and adding new radio-telescope antennas to the existing 27-antenna array. Dedicated in 1980, the VLA has been used for more than 10,000 observing projects covering nearly every area of astrophysics. It is the most powerful, flexible and widely-used radio telescope in the world. The Expanded VLA will provide the improved observational capabilities needed to meet the research challenges of the coming years. In addition to the participation by Canada, funds have been pledged by Mexico. Both Mexico and Germany have funded VLA improvements in the past. A proposal to the NSF requesting U.S. funds for the EVLA is currently under review by the National Science Foundation. The agreement between the NRAO and the Herzberg Institute of Astrophysics (HIA) calls for HIA to build a new correlator - the digital "heart" that combines the received signals from multiple antennas to make those antennas work as a single, powerful telescope - for the EVLA. The new correlator will represent a contribution of 10 million (US). The full EVLA project will cost about 150 million, to be done in two phases, the first costing 75 million. "Canada has a strong program of radio astronomy, and in particular a skilled team of specialists in designing correlators, and we are pleased to have their talents directed toward building a new machine for the VLA," Vanden Bout said. ALMA will consist of 64 12-meter-diameter dish antennas comprising a single imaging telescope to study the universe at millimeter and submillimeter wavelengths - the region between radio waves and infrared waves. An international project being designed and developed by the U.S. and European nations, ALMA will be located on a high-altitude site in the Atacama desert of Chile. "ALMA will give scientists an unprecedented look at the structure of the early universe and revolutionary insights on how stars and planets form, among many other contributions," Vanden Bout said. "The EVLA will bring unmatched power and versatility to the study of objects as close as the Sun and planets and as far as primeval galaxies at the edge of the observable universe. Together, these two instruments will be at the forefront of 21st Century astrophysics," he added. "ALMA has been a bilateral project involving the United States and Europe. These new agreements with Canada turn ALMA into a partnership between Europe and North America," Vanden Bout said. Design and development work on ALMA has been ongoing since 1998, funded by the NSF and European organizations. Canadians already have participated in this work. ALMA is pla

  19. An Overview of W.N. Christiansen's Contribution to Australian Radio Astronomy, 1948-1960

    NASA Astrophysics Data System (ADS)

    Wendt, Harry; Orchiston, Wayne; Slee, Bruce

    In 1948, an accomplished industrial physicist who had harboured a long-term ambition to become an astronomer joined the newly-formed Radio Astronomy Group in the CSIR's Division of Radiophysics in Sydney, Australia. Thus, W.N. (`Chris') Christiansen (1913-2007) began a new career in the fledgling field of radio astronomy. This paper reviews Christiansen's contribution to both instrumentation development and scientific research during the first phase of his career in radio astronomy, covering his work at the Potts Hill and Fleurs field stations prior to his resignation from the Division of Radiophysics in 1960.

  20. GALAXY: Real-Time VLBI for Radio Astronomy Observations

    NASA Astrophysics Data System (ADS)

    Fujisawa, Kenta; Kawaguchi, Noriyuki; Kobayashi, Hideyuki; Iguchi, Satoru; Miyaji, Takeshi; Sorai, Kazuo; Kondo, Tetsuro; Koyama, Yasuhiro; Nakajima, Junichi

    2001-03-01

    GALAXY is a research project on advanced VLBI technology, jointly conducted by CRL, NAO, and NTT. The testbed of the project is a 2.5-Gb/s ultra-high speed network using Asynchronous Transfer Mode (ATM). One of the aims of this project is to achieve high-sensitivity VLBI observation with this gigabit class network. GALAXY network consists of KSP and OLIVE networks provided by NTT and spans 200km range. The sensitivity achieved in our current observation system is comparable to the world-highest class (approx. 10mJy) using conventional VLBI samplers. This short baseline and high sensitivity make GALAXY a unique VLBI network for astronomy in the world. Here we describe the properties of GALAXY network and observations focusing on some unique results that can be achieved with the capability of GALAXY. Developments of new networking technology such as Internet Protocol UP) with GALAXY network are also presented,

  1. GALAXY: Real-Time VLBI for Radio Astronomy Observations

    NASA Astrophysics Data System (ADS)

    Fujisawa, Kenta; Kawaguchi, Noriyuki; Kobayashi, Hideyuki; Iguchi, Satoru; Miyaji, Takeshi; Sorai, Kazuo; Kondo, Tetsuro; Koyama, Yasuhiro; Nakajima, Junichi; Sekido, Mamoru

    2001-03-01

    GALAXY is a research project on advanced VLBI technology, jointly conducted by CRL, NAO, and NTT. The testbed of the project is a 2.5-Gb/s ultra-high speed network using Asynchronous Transfer Mode (ATM). One of the aims of this project is to achieve high-sensitivity VLBI observation with this gigabit class network. GALAXY network consists of KSP and OLIVE networks provided by NTT and spans 200 km range. The sensitivity achieved in our current observation system is comparable to the world-highest class (approx. 10mJy) using conventional VLBI samplers. This short baseline and high-sensitivity make GALAXY a unique VLBI network for astronomy in the world. Here we describe the properties of GALAXY network and observations focusing on some unique results that can be achieved with the capability of GALAXY. Developments of new networking technology such as Internet Protocol (IP) with GALAXY network are also presented.

  2. Gordon James Stanley and the Early Development of Radio Astronomy in Australia and the United States

    NASA Astrophysics Data System (ADS)

    Kellermann, Ken I.; Orchiston, Wayne; Slee, Bruce

    Following the end of the Second World War, the CSIRO Radiophysics Laboratory applied the expertise and surplus radar equipment acquired during the war to problems of astronomy. Gordon Stanley was among the first group of scientists and engineers to work in the exciting new field of radio astronomy. Like many of his contemporaries, he had a strong background in radio and electronics but none in astronomy. At the Radiophysics Laboratory, and later at Caltech, Stanley developed innovative new radio telescopes and sophisticated instrumentation which resulted in important new discoveries that changed, in a fundamental way, our understanding of the Universe. He was one of those who played a key role in the early development of radio astronomy both in Australia and the United States.

  3. Thunderstorms and ground-based radio noise as observed by radio astronomy Explorer 1

    NASA Technical Reports Server (NTRS)

    Caruso, J. A.; Herman, J. R.

    1973-01-01

    Radio Astronomy Explorer (RAE) data were analyzed to determine the frequency dependence of HF terrestrial radio noise power. RAE observations of individual thunderstorms, mid-ocean areas, and specific geographic regions for which concommitant ground based measurements are available indicate that noise power is a monotonically decreasing function of frequency which conforms to expectations over the geographic locations and time periods investigated. In all cases investigated, active thunderstorm regions emit slightly higher power as contrasted to RAE observations of the region during meteorologically quiet periods. Noise levels are some 15 db higher than predicted values over mid-ocean, while in locations where ground based measurements are available a maximum deviation of 5 db occurs. Worldwide contour mapping of the noise power at 6000 km for five individual months and four observing frequencies, examples of which are given, indicate high noise levels over continental land masses with corresponding lower levels over ocean regions.

  4. Radio Jupiter after Voyager: An overview of the Planetary Radio Astronomy observations

    NASA Technical Reports Server (NTRS)

    Boischot, A.; Lecacheux, A.; Kaiser, M. L.; Desch, M. D.; Alexander, J. K.; Warwick, J. W.

    1980-01-01

    Jupiter's low frequency radio emission morphology as observed by the Planetary Radio Astronomy (PRA) instrument onboard the Voyager spacecraft is reviewed. The PRA measurement capabilities and limitations are summarized following over two years of experience with the instrument. As a direct consequence of the PRA spacecraft observations, unprecedented in terms of their sensitivity and frequency coverage, at least three previous unrecognized emission components were discovered: broadband and narrow band kilometric emission and the lesser arc decametric emission. Their properties are reviewed. In addition, the fundamental structure of the decameter and hectometer wavelength emission, which is believed to be almost exclusively in the form of complex but repeating arc structures in the frequency time domain, is described. Dramatic changes in the emission morphology of some components as a function of Sun-Jupiter-spacecraft angle (local time) are described. Finally, the PRA in suit measurements of the Io plasma torus hot to cold electron density and temperature ratios are summarized.

  5. Tonantzintla's Observatory Astronomy Teaching Laboratory project

    NASA Astrophysics Data System (ADS)

    Garfias, F.; Bernal, A.; Martnez, L. A.; Snchez, L.; Hernndez, H.; Langarica, R.; Iriarte, A.; Pea, J. H.; Tinoco, S.; ngeles, F.

    2008-07-01

    In the last two years the National Observatory at Tonantzintla Puebla, Mxico (OAN Tonantzintla), has been undergoing several facilities upgrades in order to bring to the observatory suitable conditions to operate as a modern Observational Astronomy Teaching Laboratory. In this paper, we present the management, requirement definition and project advances. We made a quantitative diagnosis about of the functionality of the Tonantzintla Observatory (mainly based in the 1m f/15 telescope) to take aim to educational objectives. Through this project we are taking the steps to correct, to actualize and to optimize the observatory astronomical instrumentation according to modern techniques of observation. We present the design and the first actions in order to get a better and efficient use of the main astronomical instrumentation, as well as, the telescope itself, for the undergraduate, postgraduate levels Observacional Astronomy students and outreach publics programs for elementary school. The project includes the development of software and hardware components based in as a common framework for the project management. The Observatory is located at 150 km away from the headquarters at the Instituto de Astronoma, Universidad Nacional Autnoma de Mxico (IAUNAM), and one of the goals is use this infrastructure for a Remote Observatory System.

  6. Under the Radar: The First Woman in Radio Astronomy, Ruby Payne-Scott

    NASA Astrophysics Data System (ADS)

    Miller Goss, W.

    2012-05-01

    Under the Radar, the First Woman in Radio Astronomy, Ruby Payne-Scott W. Miller Goss, NRAO Socorro NM Ruby Payne-Scott (1912-1981) was an eminent Australian scientist who made major contributions to the WWII radar effort (CSIR) from 1941 to 1945. In late 1945, she pioneered radio astronomy efforts at Dover Heights in Sydney, Australia at a beautiful cliff top overlooking the Tasman Sea. Again at Dover Heights, Payne-Scott carried out the first interferometry in radio astronomy using an Australian Army radar antenna as a radio telescope at sun-rise, 26 January 1946. She continued these ground breaking activities until 1951. Ruby Payne-Scott played a major role in discovering and elucidating the properties of Type III bursts from the sun, the most common of the five classes of transient phenomena from the solar corona. These bursts are one of the most intensively studied forms of radio emission in all of astronomy. She is also one of the inventors of aperture synthesis in radio astronomy. I examine her career at the University of Sydney and her conflicts with the CSIR hierarchy concerning the rights of women in the work place, specifically equal wages and the lack of permanent status for married women. I also explore her membership in the Communist Party of Australia as well as her partially released Australian Scientific Intelligence Organization file. Payne-Scott’s role as a major participant in the flourishing radio astronomy research of the post war era remains a remarkable story. She had a number of strong collaborations with the pioneers of early radio astronomy in Australia: Pawsey, Mills, Christiansen, Bolton and Little. I am currently working on a popular version of the Payne-Scott story; “Making Waves, The Story of Ruby Payne-Scott: Australian Pioneer Radio Astronomer” will be published in 2013 by Springer in the Astronomers’ Universe Series.

  7. Planetary radio astronomy observations from Voyager-2 near Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Evans, D. R.; Romig, J. H.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Aubier, M.; Leblanc, Y.; Lecacheux, A.; Pedersen, B. M.

    1981-01-01

    Voyager-2 planetry radio astronomy measurements obtained near Saturn are discussed. They indicate that Saturnian kilometric radiation is emitted by a strong, dayside source at auroral latitudes in the northern hemisphere and by a weaker (by more than an order of magnitude) source at complementary latitudes in the southern hemisphere. These emissions are variable both due to Saturn's rotation and, on longer time scales, probably due to influences of the solar wind and the satellite Dione. The Saturn electrostatic discharge bursts first discovered by Voyager-1 and attributed to emissions from the B-ring were again observed with the same broadband spectral properties and a 10(h)11(m) + or - 5(m) episodic recurrence period but with an occurrence frequency of only of about 30 percent of that detected with Voyager-1. During the crossing of the ring plane at a distance of 2.88 R sub S, an intense noise event is interpreted to be consequence of the impact/vaporization/ionization of charged micron-size G-ring particles distributed over a total vertical thickness of about 1500 km.

  8. Planetary radio astronomy observations from Voyager 2 near Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Evans, D. R.; Romig, J. H.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Aubier, M.; Leblanc, Y.; Lecacheux, A.; Pedersen, B. M.

    1982-01-01

    Planetary radio astronomy measurements obtained by Voyager 2 near Saturn have added further evidence that Saturnian kilometric radiation is emitted by a strong dayside source at auroral latitudes in the northern hemisphere and by a weaker source at complementary latitudes in the southern hemisphere. These emissions are variable because of Saturn's rotation and, on longer time scales, probably because of influences of the solar wind and Dione. The electrostatic discharge bursts first discovered by Voyager 1 and attributed to emissions from the B ring were again observed with the same broadband spectral properties and an episodic recurrence period of about 10 hours, but their occurrence frequency was only about 30 percent of that detected by Voyager 1. While crossing the ring plane at a distance of 2.88 Saturn radii, the spacecraft detected an intense noise event extending to above 1 megahertz and lasting about 150 seconds. The event is interpreted to be a consequence of the impact, vaporization, and ionization of charged, micrometer-size G ring particles distributed over a vertical thickness of about 1500 kilometers.

  9. Trans-Pacific Astronomy Experiment Project Status

    NASA Technical Reports Server (NTRS)

    Hsu, Eddie

    2000-01-01

    The Trans-Pacific Astronomy Experiment is Phase 2 of the Trans-Pacific High Data Rate Satcom Experiments following the Trans-Pacific High Definition Video Experiment. It is a part of the Global Information Infrastructure-Global Interoperability for Broadband Networks Project (GII-GIBN). Provides global information infrastructure involving broadband satellites and terrestrial networks and access to information by anyone, anywhere, at any time. Collaboration of government, industry, and academic organizations demonstrate the use of broadband satellite links in a global information infrastructure with emphasis on astronomical observations, collaborative discussions and distance learning.

  10. Research on Haystack radiometer, 20-24 GHz maser, and radio astronomy programs

    NASA Technical Reports Server (NTRS)

    1973-01-01

    During the first half of 1973, the Haystack antenna was utilized 76% of the time. Of this useful time, 72% was devoted to radio astronomy observing, 5% was spent on radar-related research and 23% went into maintenance and system improvements. Twenty-eight new radio astronomy programs were accepted, eight of which were completed during the period. One new radar program, topographic observations of Mars, was started in June and will be completed early in 1974. Fourteen programs continued from the previous period were also defined as complete. As of 1 July, 28 ratio observing programs were in a continuing status on the Haystack books. Four radar projects were also continuing. The 20-24 GHz maser development described in the preceding report progressed very well during an on-antenna test phase which began early in the year, but which terminated unfortunately in June with the complete loss of gain in the maser. Investigation of this problem is in progress. During this on-antenna test phase, the most sensitive water vapor observing capability which has yet become available was demonstrated.

  11. New Book Recounts Exciting, Colorful History Of Radio Astronomy in Green Bank, West Virginia

    NASA Astrophysics Data System (ADS)

    2007-07-01

    A new book published by the National Radio Astronomy Observatory (NRAO) tells the story of the founding and early years of the Observatory at Green Bank, West Virginia. But it was Fun: the first forty years of radio astronomy at Green Bank, is not a formal history, but rather a scrapbook of early memos, recollections, anecdotes and reports. But it was Fun... is liberally illustrated with archival photographs. It includes historical and scientific papers from symposia held in 1987 and 1995 to celebrate the birthdays of two of the radio telescopes at the Observatory. Book cover The National Radio Astronomy Observatory was formed in 1956 after the National Science Foundation decided to establish an observatory in the eastern United States for the study of faint radio signals from distant objects in the Universe. But it was Fun... reprints early memos from the group of scientists who searched the mountains for a suitable site -- an area free from radio transmitters and other sources of radio interference -- "in a valley surrounded by as many ranges of high mountains in as many directions as possible," which was "at least 50 miles distant from any city or other concentration of people." The committee settled on Green Bank, a small village in West Virginia, and the book documents the struggles that followed to create a world-class scientific facility in an isolated area more accustomed to cows than computers. Groundbreaking at the Observatory, then a patchwork of farms and fields, took place in October 1957, only a few days after the launch of Sputnik by the Soviet Union. A year later, Green Bank's first telescope was dedicated, and the book contains a transcription of speeches given at that ceremony, when the Cold War, the space race and America's scientific stature were issues of the hour. The centerpiece of the new Observatory was to be a highly-precise radio telescope 140 feet in diameter, but it was expected that it would soon be surpassed by dishes of much greater size. The book reprints internal memos, reports, and recollections of astronomers who were there, as the initial elation turned to frustration when the 140 Foot Telescope project became mired in technical difficulties, plans for larger dishes were put on hold, and the scientific staff of the fledgling Observatory struggled to create a National Observatory with inadequate equipment in a very remote location. Articles by David Heeschen and John Findlay tell the story of the creation of the 300 Foot Telescope, at that time the largest in the world, which went from initial concept to full operation in only 23 months, and began a rich life of research that put the NRAO on the world scientific map. The 300 Foot Telescope was originally intended to be an interim instrument, but as documented in the book, demand for its use was so high that it was kept in operation long after its initial planned retirement, with regular upgrades and new generations of electronics. The sudden collapse of the 300 Foot Telescope on a calm evening after 26 years of operation shocked the astronomical community. But it was Fun... features dramatic first-hand accounts by the people who were there that night: the telescope operator who found himself under a falling structure; the Observatory staff who at first could not believe what happened, and those who worked during the night and into the next day to secure the area, preserve information on what happened, and deal with the rush of publicity. The book includes extensive photographs and the Executive Summary Report of the panel which was commissioned to investigate the collapse and its implication for the design of other large radio telescopes. But it was Fun... will appeal to a variety of audiences. Historians of science will be interested in the articles by David Heeschen, Gerald Tape, and Hugh van Horn, on the evolution of the concept of a National Observatory, and the difficulties of putting the concepts into practice in Green Bank. Those interested in astronomical discovery will find fascinating and highly personal accounts by Peter Mezger on observations of radio recombination lines, by Lewis Snyder and Barry Turner on the early days of astrochemistry, by Don Backer and David Nice on observations of pulsars, and by David Shaffer, James Moran, Ken Kellermann and Barry Clark on aspects of the development of long baseline interferometric techniques. Today's generation of scientists will find interesting reminiscences by Patrick Palmer, Thomas Wilson, and Nobel Laureate Joseph Taylor on their experiences as graduate students doing thesis research at Green Bank, and from Sebastian von Hoerner and Jaap Baars on their work in telescope development. The volume also relates the entry of computers into radio astronomy, and reprints the one-page memo from 1960 which laid out the protocol for use of the new "single roll of magnetic tape" just acquired by the Observatory. A major portion of the book describes some singular events associated with this singular place: the first search for radio signals from extraterrestrial civilizations -- Project Ozma -- conducted by Dr. Frank Drake in 1960. But it was Fun... documents how this routine project thrust the NRAO into the national spotlight to the discomfort of its director, a distinguished astronomer of the old school. The book also recounts a few episodes in the amazing life of Grote Reber, the engineer who built the first-ever radio dish in his backyard and was a regular visitor to Green Bank. The NRAO Green Bank Observatory is an international center for research, and in two unique and frequently hilarious articles, Ken Kellermann and Barry Clark tell their stories of the first cooperative radio astronomical projects between the Soviet Union and the U.S., which involved transporting an atomic clock from Green Bank to a Soviet Observatory on the Black Sea at a time when international tensions were high, and it was impossible to make a phone call from the USSR to Green Bank. But it was Fun... includes a historical introduction which summarizes the early development of radio astronomy and events at the NRAO in Green Bank, a list of science highlights from the 300 Foot and 140 Foot Telescope research programs, chronologies of technical developments and lists of the early users. But it was Fun: the first 40 years of radio astronomy at Green Bank is a unique book which offers insight on the workings of a major scientific institution and the "overabundance of interesting people" who have populated it. The book is available from the NRAO. For information on ordering, see: http://www.gb.nrao.edu/epo/itwasfun.html The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  12. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Notification of the National Radio Astronomy Observatory. 5.91 Section 5.91 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST) Applications and Licenses § 5.91 Notification of the National...

  13. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Notification of the National Radio Astronomy Observatory. 5.91 Section 5.91 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST) Applications and Licenses § 5.91 Notification of the National...

  14. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Notification of the National Radio Astronomy Observatory. 5.91 Section 5.91 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST) Applications and Licenses § 5.91 Notification of the National...

  15. Low Frequency Radio Astronomy from the Lunar Surface

    NASA Astrophysics Data System (ADS)

    MacDowall, R. J.; Lazio, T. J. W.; Burns, J. O.

    2015-10-01

    A low frequency lunar radio observatory is a desirable scientific investment. The stable surface offers advantages for antenna array deployment to image radio emission using aperture synthesis. A far-side array avoids terrestrial radio interference.

  16. Spectrum protection for radio astronomy: details, successes, failures, challenges and convergence

    NASA Astrophysics Data System (ADS)

    Liszt, Harvey Steven

    2015-08-01

    This talk will give an overview of the mechanisms that have evolved to provide statutory protection for radio astronomy observing, stopping along the way to note some cm-wave successes (the 21cm H I line and recent agreement not to point 9.6 GHz high-power orbiting radars at radio telescopes), defeats (the 1612 and 1720 MHz OH lines), and challenges (the near-term viablility of 68 - 90 GHz mm-wave spectrum). I'll discuss why ground-based radio and OIR astronomy historically went their separate ways and why there is increasing motivation for convergence of spectrum protection across the various wavebands.

  17. Infrared Submillimeter and Radio Astronomy Research and Analysis Program

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    2000-01-01

    This program entitled "Infrared Submillimeter and Radio Astronomy Research and Analysis Program" with NASA-Ames Research Center (ARC) was proposed by the Smithsonian Astrophysical Observatory (SAO) to cover three years. Due to funding constraints only the first year installment of $18,436 was funded, but this funding was spread out over two years to try to maximize the benefit to the program. During the tenure of this contact, the investigators at the SAO, Drs. Wesley A. Traub and Nathaniel P. Carleton, worked with the investigators at ARC, Drs. Jesse Bregman and Fred Wittebom, on the following three main areas: 1. Rapid scanning SAO and ARC collaborated on purchasing and constructing a Rapid Scan Platform for the delay arm of the Infrared-Optical Telescope Array (IOTA) interferometer on Mt. Hopkins, Arizona. The Rapid Scan Platform was tested and improved by the addition of stiffening plates which eliminated a very small but noticeable bending of the metal platform at the micro-meter level. 2. Star tracking Bregman and Wittebom conducted a study of the IOTA CCD-based star tracker system, by constructing a device to simulate star motion having a specified frequency and amplitude of motion, and by examining the response of the tracker to this simulated star input. 3. Fringe tracking. ARC, and in particular Dr. Robert Mah, developed a fringe-packet tracking algorithm, based on data that Bregman and Witteborn obtained on IOTA. The algorithm was tested in the laboratory at ARC, and found to work well for both strong and weak fringes.

  18. Cosmic Noise: The Pioneers of Early Radio Astronomy and Their Discoveries

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T., III

    2012-01-01

    Extraterrestrial radio waves (the galactic background), often referred to as "cosmic noise", were first detected accidentally by Karl Jansky at a frequency of 20 MHz in 1932, with significant followup by Grote Reber. Yet after World War II it was England and Australia that dominated the field. An entirely different sky from that of visual astronomy was revealed by the discoveries of solar noise, "radio stars” (discrete sources such as Cas A, Tau A, Cyg A, Cen A and Vir A), galactic noise, lunar and meteor radar experiments, the detection of the 21 cm hydrogen line, and eventually optical identifications such as the Crab Nebula and M87. Key players included wartime radar experts such as Stanley Hey (the British Army's Operational Research Group), Martin Ryle (Cambridge University), Bernard Lovell (Jodrell Bank) and Joe Pawsey (Radiophysics Lab, Sydney). Younger leaders also emerged such as Graham Smith, Tony Hewish, John Davies, "Chris" Christiansen, Bernie Mills, Paul Wild, and John Bolton. Some optical astronomers (Jan Oort, Henk van de Hulst, Jesse Greenstein, Rudolph Minkowski, and Walter Baade) were also extremely supportive. By the end of the postwar decade, radio astronomy was firmly established within the gamut of astronomy, although very few of its practitioners had been trained as astronomers. I will also trace the technical and social aspects of this wholly new type of astronomy, with special attention on military and national influences. I argue that radio astronomy represents one of the key developments in twentieth century astronomy not only because of its own discoveries, but also its pathfinding for the further opening the electromagnetic spectrum. This study is based on exhaustive archival research and over one hundred interviews with pioneering radio astronomers. Full details are available in the book "Cosmic Noise: A History of Early Radio Astronomy" (Cambridge Univ. Pr.).

  19. ITEMS Project: An online sequence for teaching mathematics and astronomy

    NASA Astrophysics Data System (ADS)

    Martnez, Bernat; Prez, Josep

    2010-10-01

    This work describes an elearning sequence for teaching geometry and astronomy in lower secondary school created inside the ITEMS (Improving Teacher Education in Mathematics and Science) project. It is based on results from the astronomy education research about students difficulties in understanding elementary astronomical observations and models. The sequence consists of a set of computer animations embedded in an elearning environment aimed at supporting students in learning about astronomy ideas that require the use of geometrical concepts and visual-spatial reasoning.

  20. Radio Jupiter after Voyager - An overview of the planetary radio astronomy observations

    NASA Technical Reports Server (NTRS)

    Boischot, A.; Lecacheux, A.; Kaiser, M. L.; Desch, M. D.; Alexander, J. K.; Warwick, J. W.

    1981-01-01

    An overview of Jupiter's low-frequency radio emission morphology as observed by the planetary radio astronomy (PRA) instrument onboard the Voyager spacecraft is presented. The PRA measurement capabilities and limitations are summarized, based on over two years of experience with the instrument. As a direct consequence of the PRA spacecraft observations, unprecedented in terms of their sensitivity and frequency coverage, at least three previously-unrecognized emission components have been discovered: broadband and narrow-band kilometric emission, and the lesser-arc decametric emission. Their properties are reviewed. In addition, the fundamental structure of the decameter wavelength and hectometer wavelength emission, now believed to be almost exclusively in the form of complex but repeating arc structures in the frequencytime domain, is described. Dramatic changes in the emission morphology of some components as a function of the sun-Jupiter-spacecraft angle (local time) are described. Finally, the PRA in situ measurements of the Io plasma torus hot-to-cold electron density and temperature ratios are summarized.

  1. New Astronomy from the Moon: a Lunar Based Very-Low Frequency Radio Array

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuki D.

    2002-01-01

    Setting up an observatory on the Moon could not only give us new views of the universe, but also inspire the billions of people who look at the Moon. Such a project will utilize the same transportation, communication, and power systems required for further exploration of the Moon. The lunar surface provides unique advantages for astronomy, even compared to orbits or Lagrange points. It is a large and stable platform that can shield unwanted radiation and that will be easily accessible once a lunar base is established. Astronomy from the Moon has been advocated since at least the mid-1960s. The most seriously investigated concept has always been a very-low- frequency (VLF) array on the lunar far side for mainly three reasons. First, the very low frequencies below ~30 MHz is the last window in the electromagnetic spectrum yet to be explored in astronomy, giving us good reasons to anticipate unexpected discoveries. Second, because of E a r t h ' s significant radio interference, the lunar far side may well be the only site accessible that enables sensitive galactic / extra-galactic VLF observations. Finally, an array of short dipole antennas is one the most technologically feasible observatories to be placed and operated on the Moon. The motivations for a lunar based VLF array is detailed in the first section. The second section provides a review of the foregoing effort and a summary of the consensus to date. To make this dream into a reality, we identify the next required steps in the third section. We must f i r s t address any unresolved issues, especially concerning the lunar environmental factors like the ionosphere density. We should make the most out of the upcoming lunar missions by proposing relevant measurements. Most importantly, we should begin proposing our first array now. C o n s i d e r i n g the limited budget, the first realistic surface array will be deployed as a piggyback payload to early landers on the lunar south pole. The side of the Malapert Mountain that is facing away from Earth may be a good radio-quiet site. To address issues relevant to the lunar VLF array project, we have developed a general tool to simulate the propagation of radio waves in the lunar environment. In this study, we investigated (1) how well the Moon shields long-wavelength radio interference, (2) how the Malapert Mountain at the lunar south pole shields terrestrial radio interference, and (3) how the lunar surface environment i n f l u e n c e interferometric observations. These radio wave simulation studies and their results are presented in the fourth section. Finally, in the last section, we make recommendations for future missions and propose the first surface array to be deployed on the far side of the Malapert Mountain near the lunar south pole. To finalize the site and the design of the observatory, recommendations are presented for specific m e a s u r e m e n t s to be made by upcoming missions including SMART-1, LunarSat, and SELENE. It is especially critical to obtain detailed topology at candidate sites and to determine the electron d e n s i t y profile above the lunar surface at various times of the lunar month. Suggestions are given for a precursor orbiting array around 2010, a surface array on the lunar south pole around 2015, and ultimately a far side array around 2020. To realize the dream of gaining new views of the universe f r o m the Moon, it is time for an international team to begin seriously proposing these missions.

  2. Enhancing the Radio Astronomy Capabilities at NASA's Deep Space Network

    NASA Astrophysics Data System (ADS)

    Lazio, Joseph; Teitelbaum, Lawrence; Franco, Manuel M.; Garcia-Miro, Cristina; Horiuchi, Shinji; Jacobs, Christopher; Kuiper, Thomas; Majid, Walid

    2015-08-01

    NASA's Deep Space Network (DSN) is well known for its role in commanding and communicating with spacecraft across the solar system that produce a steady stream of new discoveries in Astrophysics, Heliophysics, and Planetary Science. Equipped with a number of large antennas distributed across the world, the DSN also has a history of contributing to a number of leading radio astronomical projects. This paper summarizes a number of enhancements that are being implemented currently and that are aimed at increasing its capabilities to engage in a wide range of science observations. These enhancements include* A dual-beam system operating between 18 and 27 GHz (~ 1 cm) capable of conducting a variety of molecular line observations, searches for pulsars in the Galactic center, and continuum flux density (photometry) of objects such as nearby protoplanetary disks* Enhanced spectroscopy and pulsar processing backends for use at 1.4--1.9 GHz (20 cm), 18--27 GHz (1 cm), and 38--50 GHz (0.7 cm)* The DSN Transient Observatory (DTN), an automated, non-invasive backend for transient searching* Larger bandwidths (>= 0.5 GHz) for pulsar searching and timing; and* Improved data rates (2048 Mbps) and better instrumental response for very long baseline interferometric (VLBI) observations with the new DSN VLBI processor (DVP), which is providing unprecedented sensitivity for maintenance of the International Celestial Reference Frame (ICRF) and development of future versions.One of the results of these improvements is that the 70~m Deep Space Station 43 (DSS-43, Tidbinbilla antenna) is now the most sensitive radio antenna in the southern hemisphere. Proposals to use these systems are accepted from the international community.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics & Space Administration.

  3. Analysis of radio astronomy bands using CALLISTO spectrometer at Malaysia-UKM station

    NASA Astrophysics Data System (ADS)

    Zavvari, Azam; Islam, Mohammad Tariqul; Anwar, Radial; Abidin, Zamri Zainal; Asillam, Mhd Fairos; Monstein, Christian

    2015-10-01

    The e-CALLISTO system is a worldwide network that aims to observe solar radio emission for astronomical science. CALLISTO instruments have been deployed worldwide in various locations that together can provide continuous observation of the solar radio spectrum for 24 h per day year-round. Malaysia-UKM is a strategic equatorial location and can observe the Sun 12 h per day. This paper gives an overview of the spectrum allocation for radio astronomy, which falls in the specified operating frequency band of the CALLISTO spectrometer. The radio astronomy bands are analyzed at the Malaysia-UKM station according to the International Telecommunication Union recommendations. Some observational results are also presented in this paper.

  4. Analysis of radio astronomy bands using CALLISTO spectrometer at Malaysia-UKM station

    NASA Astrophysics Data System (ADS)

    Zavvari, Azam; Islam, Mohammad Tariqul; Anwar, Radial; Abidin, Zamri Zainal; Asillam, Mhd Fairos; Monstein, Christian

    2016-02-01

    The e-CALLISTO system is a worldwide network that aims to observe solar radio emission for astronomical science. CALLISTO instruments have been deployed worldwide in various locations that together can provide continuous observation of the solar radio spectrum for 24 h per day year-round. Malaysia-UKM is a strategic equatorial location and can observe the Sun 12 h per day. This paper gives an overview of the spectrum allocation for radio astronomy, which falls in the specified operating frequency band of the CALLISTO spectrometer. The radio astronomy bands are analyzed at the Malaysia-UKM station according to the International Telecommunication Union recommendations. Some observational results are also presented in this paper.

  5. Outer planets grand tours: Planetary radio astronomy team report

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.

    1972-01-01

    Requirements related to scientific observations of planetary radio emissions during outer planets grand tours are discussed. Observations at low frequencies where non-thermal cooperative plasma phenomena play a major role are considered for determining dynamical processes and magnetic fields near a planet. Magnetic field measurements by spacecraft magnetometers, and by radio receivers in their harmonic modes are proposed for interpretation of planetary radio emission.

  6. Millimeter wavelength spectroscopy of trace atmospheric constituents from the Five College Radio Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    Huguenin, G. R.; Irvine, W. M.

    1978-01-01

    The Five College Radio Astronomy Observatory system, located in western Massachusetts, is described. It is suggested that high sensitivity in the three-millimeter wavelength band facilitates detection and monitoring of a number of trace molecules in the earth's atmosphere as well as astonomical observation at radio wavelengths. Line formation and radiative transfer in the earth's atmosphere are discussed, and the receiver sensitivity is considered.

  7. New Mexico Fiber-Optic Link Marks Giant Leap Toward Future of Radio Astronomy

    NASA Astrophysics Data System (ADS)

    1998-12-01

    SOCORRO, NM -- Scientists and engineers at the National Radio Astronomy Observatory (NRAO) have made a giant leap toward the future of radio astronomy by successfully utilizing the Very Large Array (VLA) radio telescope in conjunction with an antenna of the continent-wide Very Long Baseline Array (VLBA) using the longest fiber-optic data link ever demonstrated in radio astronomy. The 65-mile fiber link will allow scientists to use the two National Science Foundation (NSF) facilities together in real time, and is the first step toward expanding the VLA to include eight proposed new radio-telescope antennas throughout New Mexico. LEFT: Miller Goss, NRAO's director of VLA/VLBA Operations, unveils graphic showing success of the Pie Town-VLA fiber link. The project, funded by the NSF and Associated Universities, Inc. (AUI), which operates NRAO for the NSF, links the VLA and the VLBA antenna in Pie Town, NM, using a Western New Mexico Telephone Co. fiber-optic cable. The successful hookup was announced at a ceremony that also marked the 10th anniversary of NRAO's Operations Center in Socorro. "Linking the Pie Town antenna to the VLA quadruples the VLA's ability to make detailed images of astronomical objects," said Paul Vanden Bout, NRAO's Director. "This alone makes the link an advance for science, but its greater importance is that it clearly demonstrates the technology for improving the VLA's capabilities even more in the future." "Clearly, the big skies and wide open spaces in New Mexico create near perfect conditions for the incredible astronomical assets located in our state. This new fiber-optic link paves the way for multiplying the already breathtaking scientific capabilities of the VLA," Senator Pete Domenici (R-NM) said. The VLA is a system of 27 radio-telescope antennas distributed over the high desert west of Socorro, NM, in the shape of a giant "Y." Made famous in movies, commercials and numerous published photos, the VLA has been one of the most productive and versatile astronomical observatories in the world since its dedication in 1980. The VLBA is a continent-wide system of 10 radio telescopes distributed across the continental United States, Hawaii and St. Croix in the Caribbean. In both the VLA and VLBA, the cosmic radio waves received by each antenna are combined with those received from every other antenna in the system to produce images with extremely great resolving power, or ability to see fine detail. The more widely separated the antennas, the greater the resolving power. The greatest separation between antennas of the VLA is 20 miles; in the VLBA, 5,000 miles. If your eyes could see the same level of detail as the VLA, you could, at the distance from New York to Los Angeles, make out an object the size of a small car. With the resolving power of the VLBA, you could read the owner's manual. The VLBA can make images hundreds of times more detailed than those available from the Hubble Space Telescope. However, because of the way in which such multi-antenna radio telescopes, called interferometers, work, there is a gap between the levels of detail obtainable with the VLA and the VLBA. Linking the VLA to the VLBA Pie Town antenna is the first step toward filling in that gap and allowing astronomers to see all scales of structure -- small, medium-sized, and large -- in objects such as stars, galaxies and quasars. Additional antennas, distributed throughout New Mexico, would fully fill that gap. Adding the new antennas to the VLA "would provide the capability to image astronomical objects on all spatial scales, from the very largest to the very smallest. The combination of the VLA and VLBA then would be the only single instrument in astronomy covering such a range of spatial scales, and thus a tool of great and unique value to science," said Vanden Bout. LEFT: NRAO Director Paul Vanden Bout, left, speaks with U.S. Senator Pete Domenici, right, following the ceremony at the Array Operations Center in Socorro Dec. 15. Nobel Laureate Robert Wilson is in the background. The added antennas are part of a comprehensive plan that the NRAO has developed for upgrading the VLA. The existing array of antennas was authorized by Congress in 1972 and built from 1974 to 1980. The upgrade plan also includes replacing the original electronic and digital equipment from the 1970s with modern technology. Such refurbishment will improve the VLA's scientific capabilities from tenfold to a hundredfold in all research areas, and for a modest investment would provide an enhanced facility many times more powerful than the original VLA. "Though the VLA today is hundreds of times more capable than its original design, some of the technologies of the 1970s that still are in use threaten the instrument with premature obsolescence," said Miller Goss, NRAO's director of VLA/VLBA operations. "Replacing those with today's technology will assure the VLA's continued role as one of the world's premier astronomical research facilities. The success of the Pie Town-VLA link shows one way this can happen." "We are enthusiastic and excited about this development, not only because of the scientific value of the Pie Town link itself, but more importantly because it proves the concept of expanding the VLA," said Robert Dickman, of the NSF's Division of Astronomical Sciences. "The AUI Board of Trustees, in providing 30 percent of the support for the optical fiber link from its corporate reserves, recognizes the scientific importance of making this connection between the VLA and the VLBA," said Martha P. Haynes, AUI's Interim President. Referring to the scientific phenomenon of forming images using the arrays to produce "interferometric fringes," Haynes, a radio astronomer herself, remarked that "We view the provision of corporate matching funds for this project as a 'fringe benefit' for NRAO." Work on the Pie Town-VLA link began in late 1997. Project engineer Ron Beresford, who came from the Australia Telescope National Facility to work on the link, said "This is the longest fiber-optic link yet demonstrated in radio astronomy. Radio telescopes in Australia and elsewhere are connected by a few miles of fiber, but the link between Pie Town and the VLA is more than 20 times longer than any other such fiber link." The project involved designing, building and testing specialized electronic equipment to connect both the VLA and the Pie Town antenna to the fiber-optic cable. In addition, both hardware and software at the VLA had to be modified to allow using the Pie Town antenna as an integral part of the VLA. "This was an extremely complex undertaking, and it succeeded because of an outstanding team effort involving scientists, engineers and technicians," Goss said. The VLA and VLBA are facilities of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  8. The TENPLA Project: Communicating Astronomy with the Public in Japan

    NASA Astrophysics Data System (ADS)

    Takanashi, Naohiro; Hiramatsu, Masaaki

    2011-06-01

    The TENPLA project (pronounced as ``ten-pla'', like a famous Japanese food ``Tempura'') is designed to communicate Astronomy with the public in Japan. We have been working to suggest various ways to enjoy astronomy. We have organised star gazing parties, science cafs, and lectures. We have made many goodies which make people interested in astronomy (e.g. ``Astronomical Toilet Paper''). We have also provided opportunities to communicate with each other for people who have interests in such activities. In this paper we present a broad overview of the TENPLA project.

  9. Astronomy Legacy Project - Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, Michael W.; Rottler, Lee; Cline, J. Donald

    2016-01-01

    Pisgah Astronomical Research Institute (PARI) is a not-for-profit public foundation in North Carolina dedicated to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines. In November 2007 a Workshop on a National Plan for Preserving Astronomical Photographic Data (2009ASPC,410,33O, Osborn, W. & Robbins, L) was held at PARI. The result was the establishment of the Astronomical Photographic Data Archive (APDA) at PARI. In late 2013 PARI began ALP (Astronomy Legacy Project). ALP's purpose is to digitize an extensive set of twentieth century photographic astronomical data housed in APDA. Because of the wide range of types of plates, plate dimensions and emulsions found among the 40+ collections, plate digitization will require a versatile set of scanners and digitizing instruments. Internet crowdfunding was used to assist in the purchase of additional digitization equipment that were described at AstroPlate2014 Plate Preservation Workshop (www.astroplate.cz) held in Prague, CZ, March, 2014. Equipment purchased included an Epson Expression 11000XL scanner and two Nikon D800E cameras. These digital instruments will compliment a STScI GAMMA scanner now located in APDA. GAMMA will be adapted to use an electroluminescence light source and a digital camera with a telecentric lens to achieve high-speed high-resolution scanning. The 1μm precision XY stage of GAMMA will allow very precise positioning of the plate stage. Multiple overlapping CCD images of small sections of each plate, tiles, will be combined using a photo-mosaic process similar to one used in Harvard's DASCH project. Implementation of a software pipeline for the creation of a SQL database containing plate images and metadata will be based upon APPLAUSE as described by Tuvikene at AstroPlate2014 (www.astroplate.cz/programs/).

  10. Voyager 1 planetary radio astronomy observations near Jupiter

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Riddle, A. C.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Thieman, J. R.; Carr, T. D.; Gulkis, S.; Boischot, A.

    1979-01-01

    Results from the first low-frequency radio receiver to be transported into the Jupiter magnetosphere are reported. Dramatic new information was obtained, both because Voyager was near or in Jupiter's radio emission sources and because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio spectral arcs, from above 30 to about 1 MHz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Detailed studies are in progress and are outlined briefly.

  11. Voyager 1 Planetary Radio Astronomy Observations Near Jupiter

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Riddle, A. C.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Thieman, J. R.; Carr, T. B.; Gulkis, S.; Boischot, A.

    1979-01-01

    Results are reported from the first low frequency radio receiver to be transported into the Jupiter magnetosphere. Dramatic new information was obtained both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio arcs, from above 30 MHz to about 1 MHz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Studies in progress are outlined briefly.

  12. Voyager 1 planetary radio astronomy observations near jupiter.

    PubMed

    Warwick, J W; Pearce, J B; Riddle, A C; Alexander, J K; Desch, M D; Kaiser, M L; Thieman, J R; Carr, T D; Gulkis, S; Boischot, A; Harvey, C C; Pedersen, B M

    1979-06-01

    We report results from the first low-frequency radio receiver to be transported into the Jupiter magnetosphere. We obtained dramatic new information, both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio spectral arcs, from above 30 to about 1 megahertz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Detailed studies are in progress and are out-lined briefly. PMID:17800438

  13. Highlighting the History of Japanese Radio Astronomy. 2: Koichi Shimoda and the 1948 Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Shimoda, Koichi; Orchiston, Wayne; Akabane, Kenji; Ishiguro, Masato

    2013-07-01

    Just two years after Dicke carried out the first radio observations of a solar eclipse, a young Japanese physics graduate, Koichi Shimoda, attempted to observe 3,000 MHz emission during the 9 May 1948 partial solar eclipse. In so doing he unwittingly became the 'founding father' of Japanese radio astronomy. In this paper as our mark of respect for him, we list Shimoda as the lead author of the paper so that his observations can finally be placed on record for the international radio astronomical community.

  14. Radio Astronomy in the Early Twenty-First Century (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Baars, Jacob W. M.; D'Addario, Larry R.; Thompson, A. Richard

    2009-08-01

    This paper serves as an introduction to the contributions in this Special Issue on "Advances in Radio Telescopes." After a very short historical view of the emergence of Radio Astronomy, we refer to earlier IEEE special issues on this subject and mention recent instruments in the domain of millimeter wavelength radio telescopes, developments in very long baseline interferometry and the planned Square Kilometre Array (SKA). After a short discussion of site selection aspects for the new telescopes we conclude with a summary of the major astronomical and astrophysical problems which will be studied by the new instruments described in the following papers.

  15. Radio Astronomy Working Group for SEAAN and RFI Survey in INSTUN, Perak

    NASA Astrophysics Data System (ADS)

    Abidin, Zamri Zainal; Ibrahim, Zainol Abidin; Rosli, Zulfazli; Malim, Siti Fatin Fathinah; Anim, Norsuzian Mohd

    2010-07-01

    The South East Asia Astronomy Network (SEAAN) was established in 2006 at the Special Session of Astronomy for Developing World during the IAU General Assembly in Prague. It held its first meeting in 2007 at the Thai National Astronomy Meeting in Bangkok, Thailand. It aims to establish effective mechanisms for nurturing and sharing the development and experiences in astronomy research and education among SEA countries. This working group has a main objective of putting South East Asia on the map of the global radio astronomy community. This paper will discuss the working group's short-term and long-term goals. This paper will also discuss the results of the latest Radio Frequency Interference (RFI) study in Malaysia, particularly the survey at Institut Tanah dan Ukur Negara (INSTUN) in Perak. The RFI level at that site is measured at -94.312 (+/-0.999) dBm or 11.065 (+/-1.505) ?V on average, which is considered quite well when compared to the best site in Malaysia, which is Langkawi (-100.352 +/-0.036) dBm or 2.192 lp+/-0.019) ?V on average).

  16. Scientific instrumentation of the Radio-Astronomy-Explorer-2 satellite

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Kaiser, M. L.; Novaco, J. C.; Grena, F. R.; Weber, R. R.

    1975-01-01

    The instrumentation of the RAE-2 spacecraft is described. The instruments include a pair of long travelling-wave antennas, a 37-m dipole, two radiometers making one frequency scan every 144 sec, and two rapid-sampling total-power burst receivers which cover the range from 0.025 to 13.1 MHz in 32 discrete steps. Effects of terrestrial noise on RAE-1 and RAE-2 observations are discussed, and it is noted that RAE-2 is uniquely capable of observing repeated lunar occultations of strong radio sources at very low frequencies. Some observational programs are briefly noted, including observations of the galactic background distribution, measurements of lunar occultations of solar radio bursts, and searches for more radio sources among the planets, galactic objects, and extragalactic sources.

  17. The radio astronomy explorer satellite, a low-frequency observatory.

    NASA Technical Reports Server (NTRS)

    Weber, R. R.; Alexander, J. K.; Stone, R. G.

    1971-01-01

    The RAE-1 is the first spacecraft designed exclusively for radio astronomical studies. It is a small, but relatively complex, observatory including two 229-meter antennas, several radiometer systems covering a frequency range of 0.2 to 9.2 MHz, and a variety of supporting experiments such as antenna impedance probes and TV cameras to monitor antenna shape. Since its launch in July, 1968, RAE-1 has sent back some 10 billion data bits per year on measurements of long-wavelength radio phenomena in the magnetosphere, the solar corona, and the Galaxy. In this paper we describe the design, calibration, and performance of the RAE-1 experiments in detail.

  18. Scientific instrumentation of the Radio-Astronomy-Explorer-2 satellite

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Kaiser, M. L.; Novaco, J. C.; Grena, F. R.; Weber, R. R.

    1974-01-01

    The RAE-2 spacecraft has been collecting radio astronomical measurements in the 25 kHz to 13 MHz frequency range from lunar orbit since June, 1973. A summary is given of the technical aspects of the program including the calibration, instrumentation and operation of the RAE-2 experiments. Performance of the experiments over the first 18 months of the flight is summarized and illustrated. Among the unique features of the RAE-2 is the capability to observe repeated lunar occultations of strong radio sources at very low frequencies.

  19. The Radio Language Arts Project: adapting the radio mathematics model.

    PubMed

    Christensen, P R

    1985-01-01

    Kenya's Radio Language Arts Project, directed by the Academy for Educational Development in cooperation with the Kenya Institute of Education in 1980-85, sought to teach English to rural school children in grades 1-3 through use of an intensive, radio-based instructional system. Daily 1/2 hour lessons are broadcast throughout the school year and supported by teachers and print materials. The project further was aimed at testing the feasibility of adaptation of the successful Nicaraguan Radio Math Project to a new subject area. Difficulties were encountered in articulating a language curriculum with the precision required for a media-based instructional system. Also a challenge was defining the acceptable regional standard for pronunciation and grammar; British English was finally selected. An important modification of the Radio Math model concerned the role of the teacher. While Radio Math sought to reduce the teacher's responsibilities during the broadcast, Radio Language Arts teachers played an important instructional role during the English lesson broadcasts by providing translation and checks on work. Evaluations of the Radio language Arts Project suggest significant gains in speaking, listening, and reading skills as well as high levels of satisfaction on the part of parents and teachers. PMID:12341671

  20. Applications of Microwave Photonics in Radio Astronomy and Space Communication

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry R.; Shillue, William P.

    2006-01-01

    An overview of narrow band vs wide band signals is given. Topics discussed included signal transmission, reference distribution and photonic antenna metrology. Examples of VLA, ALMA, ATA and DSN arrays are given. . Arrays of small antennas have become more cost-effective than large antennas for achieving large total aperture or gain, both for astronomy and for communication. It is concluded that emerging applications involving arrays of many antennas require low-cost optical communication of both wide bandwidth and narrow bandwidth; development of round-trip correction schemes enables timing precision; and free-space laser beams with microwave modulation allow structural metrology with approx 100 micrometer precision over distances of 200 meters.

  1. Space-based aperture array for ultra-long wavelength radio astronomy

    NASA Astrophysics Data System (ADS)

    Rajan, Raj Thilak; Boonstra, Albert-Jan; Bentum, Mark; Klein-Wolt, Marc; Belien, Frederik; Arts, Michel; Saks, Noah; van der Veen, Alle-Jan

    2015-12-01

    The past decade has seen the advent of various radio astronomy arrays, particularly for low-frequency observations below 100 MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21 cm line emission. However, Earth-based radio astronomy observations at frequencies below 30 MHz are severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10 MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. In the past, such space-based radio astronomy studies were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. Furthermore, successful space-based missions which mapped the sky in this frequency regime, such as the lunar orbiter RAE-2, were restricted by very poor spatial resolution. Recently concluded studies, such as DARIS (Disturbuted Aperture Array for Radio Astronomy In Space) have shown the ready feasibility of a 9 satellite constellation using off the shelf components. The aim of this article is to discuss the current trends and technologies towards the feasibility of a space-based aperture array for astronomical observations in the Ultra-Long Wavelength (ULW) regime of greater than 10 m i.e., below 30 MHz. We briefly present the achievable science cases, and discuss the system design for selected scenarios such as extra-galactic surveys. An extensive discussion is presented on various sub-systems of the potential satellite array, such as radio astronomical antenna design, the on-board signal processing, communication architectures and joint space-time estimation of the satellite network. In light of a scalable array and to avert single point of failure, we propose both centralized and distributed solutions for the ULW space-based array. We highlight the benefits of various deployment locations and summarize the technological challenges for future space-based radio arrays.

  2. Space-based aperture array for ultra-long wavelength radio astronomy

    NASA Astrophysics Data System (ADS)

    Rajan, Raj Thilak; Boonstra, Albert-Jan; Bentum, Mark; Klein-Wolt, Marc; Belien, Frederik; Arts, Michel; Saks, Noah; van der Veen, Alle-Jan

    2016-02-01

    The past decade has seen the advent of various radio astronomy arrays, particularly for low-frequency observations below 100 MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21 cm line emission. However, Earth-based radio astronomy observations at frequencies below 30 MHz are severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10 MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. In the past, such space-based radio astronomy studies were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. Furthermore, successful space-based missions which mapped the sky in this frequency regime, such as the lunar orbiter RAE-2, were restricted by very poor spatial resolution. Recently concluded studies, such as DARIS (Disturbuted Aperture Array for Radio Astronomy In Space) have shown the ready feasibility of a 9 satellite constellation using off the shelf components. The aim of this article is to discuss the current trends and technologies towards the feasibility of a space-based aperture array for astronomical observations in the Ultra-Long Wavelength (ULW) regime of greater than 10 m i.e., below 30 MHz. We briefly present the achievable science cases, and discuss the system design for selected scenarios such as extra-galactic surveys. An extensive discussion is presented on various sub-systems of the potential satellite array, such as radio astronomical antenna design, the on-board signal processing, communication architectures and joint space-time estimation of the satellite network. In light of a scalable array and to avert single point of failure, we propose both centralized and distributed solutions for the ULW space-based array. We highlight the benefits of various deployment locations and summarize the technological challenges for future space-based radio arrays.

  3. A very low frequency radio astronomy observatory on the Moon

    NASA Technical Reports Server (NTRS)

    Douglas, James N.; Smith, Harlan J.

    1988-01-01

    Because of terrestrial ionospheric absorption, very little is known of the radio sky beyond 10 m wavelength. An extremely simple, low cost very low frequency radio telescope is proposed, consisting of a large array of short wires laid on the lunar surface, each wire equipped with an amplifier and a digitizer, and connected to a common computer. The telescope could do simultaneous multifrequency observations of much of the visible sky with high resolution in the 10 to 100 m wavelength range, and with lower resolution in the 100 to 1000 m range. It would explore structure and spectra of galactic and extragalactic point sources, objects, and clouds, and would produce detailed quasi-three-dimensional mapping of interstellar matter within several thousand parsecs of the Sun.

  4. Multiphase Turbulent Interstellar Medium: Some Recent Results from Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Roy, Nirupam

    2015-06-01

    The radio frequency 1.4 GHz transition of the atomic hydrogen is one of the important tracers of the diffuse neutral interstellar medium. Radio astronomical observations of this transition, using either a single dish telescope or an array interferometer, reveal different properties of the interstellar medium. Such observations are particularly useful to study the multiphase nature and turbulence in the interstellar gas. Observations with multiple radio telescopes have recently been used to study these two closely related aspects in greater detail. This review article presents a brief outline of some of the basic ideas of radio astronomical observations and data analysis, summarizes the results from these recent observations, and discusses possible implications of the results. Using various observational techniques, the density and the velocity fluctuations in the Galactic interstellar medium was found to have a Kolmogorov-like power law power spectra. The observed power law scaling of the turbulent velocity dispersion with the length scale can be used to derive the true temperature distribution of the medium. Observations from a large ongoing atomic hydrogen absorption line survey have also been used to study the distribution of gas at different temperature. The thermal steady state model predicts that the multiphase neutral gas will exist in cold and warm phase with temperature below 200 K and above 5000 K respectively. However, these observations clearly show the presence of a large fraction of gas in the intermediate unstable phase. These results raise serious doubt about the validity of the standard model, and highlight the necessity of alternative theoretical models. Interestingly, numerical simulations suggest that some of the observational results can be explained consistently by including the effects of turbulence in the models of the multiphase medium.

  5. Interstellar Scattering and Scintillation as Tools in Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Rickett, B. J.

    1998-05-01

    In recent years Interstellar Scintillation (ISS) has been identified as causing variations in flux density in a variety of radio astronomical observations. Although this ``Galactic seeing'' effect is in some ways a nuisance, ISS is also a valuable tool that provides information on radio source structure at angular scales well beyond the reach of all current interferometers. In addition to ISS, angular and temporal broadening have been measured on many lines of sight in the Galaxy. Such measurements also provide a probe for the fine scale structure in the ionized interstellar plasma. The session will explore the science that can be done using these tools to probe both very compact radio sources and the interstellar plasma. Examples include: ISS provides an explanation of rapid (hours to days - intraday) flux variations at centimeter wavelengths from compact cores of AGNs, reducing the implied brightness temperature by up to six orders of magnitude. ISS has beeen recognised as causing the flux variations from the radio afterglow of the gamma-ray burst observed on May 8 1997, from which a diameter of a few microarcseconds has been estimated for the expanding fireball. A study of the interstellar speckle pattern of the Vela pulsar has achieved nanoarcsecond angular resolution of the pulsar magnetosphere. The Galaxy is permeated by irregular density structures, whose wavenumber spectrum is like a turbulent fluid over at least six and as many as ten orders of magnitude in length scale. However, the local strength of turbulence is itself non-uniform, with localized enhancemnents by more than six orders of magnitude, whose physical origin is still obscure.

  6. The time resolution domain of stellar radio astronomy

    NASA Technical Reports Server (NTRS)

    Bookbinder, J.

    1985-01-01

    The high time resolution (HTR) radio observation of late-type stars and RS CVn systems is discussed. Some examples of these sources are addressed, identifying what information HTR observations can provide. HTR can provide important information on flares in late-type stars, and can be used to study coronal structure and the particle acceleration mechanism in these stars. The possible use of HTR to establish the nature of quiescent emission form RS CVn systems is discussed.

  7. A New Approach to Interference Excision in Radio Astronomy: Real-Time Adaptive Cancellation

    NASA Astrophysics Data System (ADS)

    Barnbaum, Cecilia; Bradley, Richard F.

    1998-11-01

    Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have built a prototype adaptive canceler that consists of two receivers: the primary channel (input from the main beam of the telescope) and a separate reference channel. The primary channel receives the desired astronomical signal corrupted by RFI (radio-frequency interference) coming in the sidelobes of the main beam. A separate reference antenna is designed to receive only the RFI. The reference channel input is processed using a digital adaptive filter and then subtracted from the primary channel input, producing the system output. The weighting coefficients of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the canceler locks onto the RFI, and the filter adjusts itself to minimize the effect of the RFI at the system output. We have designed the adaptive canceler with an intermediate frequency (IF) of 40 MHz. This prototype system will ultimately be functional with a variety of radio astronomy receivers in the microwave band. We have also built a prototype receiver centered at 100 MHz (in the FM broadcast band) to test the adaptive canceler with actual interferers, which are well characterized. The initial laboratory tests of the adaptive canceler are encouraging, with attenuation of strong frequency-modulated (FM) interference to 72 dB (a factor of more than 10 million), which is at the performance limit of our measurements. We also consider requirements of the system and the RFI environment for effective adaptive canceling.

  8. Radio Synthesis Imaging - A High Performance Computing and Communications Project

    NASA Astrophysics Data System (ADS)

    Crutcher, Richard M.

    The National Science Foundation has funded a five-year High Performance Computing and Communications project at the National Center for Supercomputing Applications (NCSA) for the direct implementation of several of the computing recommendations of the Astronomy and Astrophysics Survey Committee (the "Bahcall report"). This paper is a summary of the project goals and a progress report. The project will implement a prototype of the next generation of astronomical telescope systems - remotely located telescopes connected by high-speed networks to very high performance, scalable architecture computers and on-line data archives, which are accessed by astronomers over Gbit/sec networks. Specifically, a data link has been installed between the BIMA millimeter-wave synthesis array at Hat Creek, California and NCSA at Urbana, Illinois for real-time transmission of data to NCSA. Data are automatically archived, and may be browsed and retrieved by astronomers using the NCSA Mosaic software. In addition, an on-line digital library of processed images will be established. BIMA data will be processed on a very high performance distributed computing system, with I/O, user interface, and most of the software system running on the NCSA Convex C3880 supercomputer or Silicon Graphics Onyx workstations connected by HiPPI to the high performance, massively parallel Thinking Machines Corporation CM-5. The very computationally intensive algorithms for calibration and imaging of radio synthesis array observations will be optimized for the CM-5 and new algorithms which utilize the massively parallel architecture will be developed. Code running simultaneously on the distributed computers will communicate using the Data Transport Mechanism developed by NCSA. The project will also use the BLANCA Gbit/s testbed network between Urbana and Madison, Wisconsin to connect an Onyx workstation in the University of Wisconsin Astronomy Department to the NCSA CM-5, for development of long-distance distributed computing. Finally, the project is developing 2D and 3D visualization software as part of the international AIPS++ project. This research and development project is being carried out by a team of experts in radio astronomy, algorithm development for massively parallel architectures, high-speed networking, database management, and Thinking Machines Corporation personnel. The development of this complete software, distributed computing, and data archive and library solution to the radio astronomy computing problem will advance our expertise in high performance computing and communications technology and the application of these techniques to astronomical data processing.

  9. The history of early low frequency radio astronomy in Australia. 2: Tasmania

    NASA Astrophysics Data System (ADS)

    George, Martin; Orchiston, Wayne; Slee, Bruce; Wielebinski, Richard

    2015-03-01

    Significant contributions to low frequency radio astronomy were made in the Australian state of Tasmania after the arrival of Grote Reber in 1954. Initially, Reber teamed with Graeme Ellis, who was then working with the Ionospheric Prediction Service, and they carried out observations as low as 0.52 MHz during the 1955 period of exceptionally low sunspot activity. In the early 1960s, Reber established a 2.085 MHz array in the southern central region of the State and used this to make the first map of the southern sky at this frequency. In addition, in the 1960s the University of Tasmania constructed several low frequency arrays near Hobart, including a 609m 609m array designed for operation between about 2 MHz and 20 MHz. In this paper we present an overview of the history of low frequency radio astronomy in Tasmania.

  10. Workshop on Satellite Power Systems (SPS) effects on optical and radio astronomy

    SciTech Connect

    Stokes, G.M.; Ekstrom, P.A.

    1980-04-01

    The impacts of the SPS on astronomy were concluded to be: increased sky brightness, reducing the effective aperture of terrestrial telescopes; microwave leakage radiation causing erroneous radioastronomical signals; direct overload of radioastronomical receivers at centimeter wavelengths; and unintentional radio emissions associated with massive amounts of microwave power or with the presence of large, warm structures in orbit causing the satellites to appear as individual stationary radio sources; finally, the fixed location of the geostationary satellite orbits would result in fixed regions of the sky being unusable for observations. (GHT)

  11. The history of early low frequency radio astronomy in Australia. 1: The CSIRO Division of Radiophysics

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; George, Martin; Slee, Bruce; Wielebinski, Richard

    2015-03-01

    During the 1950s and 1960s Australia was a world leader in the specialised field of low frequency radio astronomy, with two geographically-distinct areas of activity. One was in the Sydney region and the other in the island of Tasmania to the south of the Australian mainland. Research in the Sydney region began in 1949 through the CSIRO's Division of Radiophysics, and initially was carried out at the Hornsby Valley field station before later transferring to the Fleurs field station. In this paper we summarise the low frequency radio telescopes and research programs associated with the historic Hornsby Valley and Fleurs sites.

  12. Scalable desktop visualisation of very large radio astronomy data cubes

    NASA Astrophysics Data System (ADS)

    Perkins, Simon; Questiaux, Jacques; Finniss, Stephen; Tyler, Robin; Blyth, Sarah; Kuttel, Michelle M.

    2014-07-01

    Observation data from radio telescopes is typically stored in three (or higher) dimensional data cubes, the resolution, coverage and size of which continues to grow as ever larger radio telescopes come online. The Square Kilometre Array, tabled to be the largest radio telescope in the world, will generate multi-terabyte data cubes - several orders of magnitude larger than the current norm. Despite this imminent data deluge, scalable approaches to file access in Astronomical visualisation software are rare: most current software packages cannot read astronomical data cubes that do not fit into computer system memory, or else provide access only at a serious performance cost. In addition, there is little support for interactive exploration of 3D data. We describe a scalable, hierarchical approach to 3D visualisation of very large spectral data cubes to enable rapid visualisation of large data files on standard desktop hardware. Our hierarchical approach, embodied in the AstroVis prototype, aims to provide a means of viewing large datasets that do not fit into system memory. The focus is on rapid initial response: our system initially rapidly presents a reduced, coarse-grained 3D view of the data cube selected, which is gradually refined. The user may select sub-regions of the cube to be explored in more detail, or extracted for use in applications that do not support large files. We thus shift the focus from data analysis informed by narrow slices of detailed information, to analysis informed by overview information, with details on demand. Our hierarchical solution to the rendering of large data cubes reduces the overall time to complete file reading, provides user feedback during file processing and is memory efficient. This solution does not require high performance computing hardware and can be implemented on any platform supporting the OpenGL rendering library.

  13. Low-Power Architectures for Large Radio Astronomy Correlators

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry R.

    2011-01-01

    The architecture of a cross-correlator for a synthesis radio telescope with N greater than 1000 antennas is studied with the objective of minimizing power consumption. It is found that the optimum architecture minimizes memory operations, and this implies preference for a matrix structure over a pipeline structure and avoiding the use of memory banks as accumulation registers when sharing multiply-accumulators among baselines. A straw-man design for N = 2000 and bandwidth of 1 GHz, based on ASICs fabricated in a 90 nm CMOS process, is presented. The cross-correlator proper (excluding per-antenna processing) is estimated to consume less than 35 kW.

  14. Instrumentation for Kinetic-Inductance-Detector-Based Submillimeter Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Duan, Ran

    A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

  15. Characterising the Venezuelan Troposphere for Radio-Astronomy Studies

    NASA Astrophysics Data System (ADS)

    Pacheco, R.; Muoz, A. G.; Brito, A.; Cubilln, N.

    2009-05-01

    Venezuela possesses a very useful geographical location for doing Radioastronomy. Recently, the Venezuelan Government (via FIDETEL-Ministerio de Ciencia y Tecnologa) has aproved to the Laboratorio de Astronoma y Fsica Terica (LAFT) of La Universidad del Zulia (Venezuela) the adquisition of four 3 meter diameter parabolic dishes that will be set as a radio-interferometer receiver and that can be used for certain Radioastronomy purposes. The specifications of the instrument will be treated elsewhere (Muoz and Hernndez 2007). To this aim, as ussually, the first step is to characterize the losses due to the atmosphere, and their evolution over time. In previous works (Muoz et al. 2004, Memoires of V RIAO/VIII OPTILAS, M10-5 Modelling Tropospheric Radio-Attenuation Parameters for Venezuela, 359; Muoz et al. 2006, CIENCIA, Vol. 14, 4, 428) we have studied some relevant electromagnetic (e-m) attenuation parameters dueto hydrometeors and absortion gases in the lower atmosphere, focused in local telecommunication applications (surface e-m trajectories). In this work we extend our results to include the cenital and quasi-cenital e-m trajectories, characterizing thus the medium losses in the 0.4-4.0 GHz spectral window for several Venezuelan locations. We report refractivity values and their gradients, tropospheric indexes, extinction coefficients and the total rain attenuation for the whole territory under study.

  16. New results and techniques in space radio astronomy.

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.

    1971-01-01

    The methods and results of early space radioastronomy experiments are reviewed, with emphasis on the RAE 1 spacecraft which was designed specifically and exclusively for radio astronomical studies. The RAE 1 carries two gravity-gradient-stabilized 229-m traveling-wave V-antennas, a 37-m dipole antenna, and a number of radiometer systems to provide measurements over the 0.2 to 9.2 MHz frequency range with a time resolution of 0.5 sec and an absolute accuracy of plus or minus 25%. Observations of solar bursts at frequencies down to 0.2 MHz provide new information on the density, plasma velocity, and dynamics of coronal streamers out to distances greater than 50 solar radii. New information on the distribution of the ionized component of the interstellar medium is being obtained from galactic continuum background maps at frequencies around 4 MHz. Cosmic noise background spectra measured down to 0.5 MHz produce new estimates on the interstellar flux of cosmic rays, on magnetic fields in the galactic halo, and on distant extragalactic radio sources.

  17. Scientific Visualization of Radio Astronomy Data using Gesture Interaction

    NASA Astrophysics Data System (ADS)

    Mulumba, P.; Gain, J.; Marais, P.; Woudt, P.

    2015-09-01

    MeerKAT in South Africa (Meer = More Karoo Array Telescope) will require software to help visualize, interpret and interact with multidimensional data. While visualization of multi-dimensional data is a well explored topic, little work has been published on the design of intuitive interfaces to such systems. More specifically, the use of non-traditional interfaces (such as motion tracking and multi-touch) has not been widely investigated within the context of visualizing astronomy data. We hypothesize that a natural user interface would allow for easier data exploration which would in turn lead to certain kinds of visualizations (volumetric, multidimensional). To this end, we have developed a multi-platform scientific visualization system for FITS spectral data cubes using VTK (Visualization Toolkit) and a natural user interface to explore the interaction between a gesture input device and multidimensional data space. Our system supports visual transformations (translation, rotation and scaling) as well as sub-volume extraction and arbitrary slicing of 3D volumetric data. These tasks were implemented across three prototypes aimed at exploring different interaction strategies: standard (mouse/keyboard) interaction, volumetric gesture tracking (Leap Motion controller) and multi-touch interaction (multi-touch monitor). A Heuristic Evaluation revealed that the volumetric gesture tracking prototype shows great promise for interfacing with the depth component (z-axis) of 3D volumetric space across multiple transformations. However, this is limited by users needing to remember the required gestures. In comparison, the touch-based gesture navigation is typically more familiar to users as these gestures were engineered from standard multi-touch actions. Future work will address a complete usability test to evaluate and compare the different interaction modalities against the different visualization tasks.

  18. Fast pulsars, strange stars: An opportunity in radio astronomy

    SciTech Connect

    Glendenning, N.K.

    1990-07-15

    The world's data on radio pulsars is not expected to represent the underlying pulsar population because of a search bias against detection of short periods, especially below 1 ms. Yet pulsars in increasing numbers with periods right down to this limit have been discovered suggesting that there may be even shorter ones. If pulsars with periods below 1/2 ms were found, the conclusion that the confined hadronic phase of nucleons and nuclei is only metastable would be almost inescapable. The plausible ground state in that event is the deconfined phase of (3-flavor) strange-quark-matter. From the QCD energy scale this is as likely a ground state as the confined phase. We show that strange matter as the ground state is not ruled out by any known fact, and most especially not by the fact that the universe is in the confined phase. 136 refs.

  19. Enriching Cross Cirriculum Projects with Astronomy for Gifted Students

    NASA Astrophysics Data System (ADS)

    Burris, Debra L.

    2016-01-01

    The aim of many GT (Gifted and Talented) teachers is to provide comprehesive and long term projects to enrich cirriculum for their students rather than shorter "worksheet based" activities. Atkins Middle School has collaborated with faculty from the University of Central Arkansas over the past 9 years to create projects which span the academic year and enrich learning while emphasizing the goals of the science standards. An overview of those projects and Astronomy's role within them will be presented.

  20. Supporting the Outdoor Classroom: An Archaeo-Astronomy Project

    ERIC Educational Resources Information Center

    Brown, Daniel; Francis, Robert; Alder, Andy

    2013-01-01

    Field trips and the outdoor classroom are a vital part of many areas of education. Ideally, the content should be taught within a realistic environment rather than just by providing a single field trip at the end of a course. The archaeo-astronomy project located at Nottingham Trent University envisages the development of a virtual environment…

  1. SOFIA Project: SOFIA-Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Tseng, Ting

    2007-01-01

    A viewgraph presentation on the SOFIA project is shown. The topics include: 1) Aircraft Information; 2) Major Components of SOFIA; 3) Aircraft External View; 4) Airborne Observatory Layout; 5) Telescope Assembly; 6) Uncoated Primary Mirror; 7) Airborne Astronomy; 8) Requirements & Specifications; 9) Technical Challenges; 10) Observatory Operation; and 11) SOFIA Flight Test.

  2. Supporting the Outdoor Classroom: An Archaeo-Astronomy Project

    ERIC Educational Resources Information Center

    Brown, Daniel; Francis, Robert; Alder, Andy

    2013-01-01

    Field trips and the outdoor classroom are a vital part of many areas of education. Ideally, the content should be taught within a realistic environment rather than just by providing a single field trip at the end of a course. The archaeo-astronomy project located at Nottingham Trent University envisages the development of a virtual environment

  3. PARAS program: Phased array radio astronomy from space

    NASA Technical Reports Server (NTRS)

    Jakubowski, Antoni K.; Haynes, David A.; Nuss, Ken; Hoffmann, Chris; Madden, Michael; Dungan, Michael

    1992-01-01

    An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg.

  4. Accelerating radio astronomy cross-correlation with graphics processing units

    NASA Astrophysics Data System (ADS)

    Clark, M. A.; LaPlante, P. C.; Greenhill, L. J.

    2013-05-01

    We present a highly parallel implementation of the cross-correlation of time-series data using graphics processing units (GPUs), which is scalable to hundreds of independent inputs and suitable for the processing of signals from 'large-Formula' arrays of many radio antennas. The computational part of the algorithm, the X-engine, is implemented efficiently on NVIDIA's Fermi architecture, sustaining up to 79% of the peak single-precision floating-point throughput. We compare performance obtained for hardware- and software-managed caches, observing significantly better performance for the latter. The high performance reported involves use of a multi-level data tiling strategy in memory and use of a pipelined algorithm with simultaneous computation and transfer of data from host to device memory. The speed of code development, flexibility, and low cost of the GPU implementations compared with application-specific integrated circuit (ASIC) and field programmable gate array (FPGA) implementations have the potential to greatly shorten the cycle of correlator development and deployment, for cases where some power-consumption penalty can be tolerated.

  5. Get the Picture: The Virtual Astronomy Multimedia Project

    NASA Astrophysics Data System (ADS)

    Hurt, Robert L.; Christensen, L. L.; Gauthier, A.; Wyatt, R.; Berriman, B.

    2007-05-01

    High quality astronomical images, accompanied by rich caption and background information, abound on the web and yet are notoriously difficult to locate efficiently using common search engines. "Flat" searches can return dozens of hits for a single popular image but miss equally important related images from other observatories. The Virtual Astronomy Multimedia Project (VAMP) is developing the architecture for an online index of astronomical imagery and video that will simplify access and provide a service around which innovative applications can be developed (e.g. digital planetariums). Current progress includes design prototyping around existing Astronomy Visualization Metadata (AVM) standards. Growing VAMP partnerships include a cross section of observatories, data centers, and planetariums.

  6. The Inwood Astronomy Project: Ready for IYA 2009

    NASA Astrophysics Data System (ADS)

    Shilling Kendall, Jason

    2009-01-01

    The Inwood Astronomy Project begins its mission of "100 Nights of Astronomy", an outreach program for the IYA 2009 in New York City. While the city lights may at first glance be a major deterrent to amateur and educational night-sky viewing, the author describes numerous community-based initiatives designed to fit into a racially and ethnically diverse neighborhood of Northern Manhattan and the Bronx, which all give a deeper understanding and appreciation of and for the night sky. The author presents ways for professional astronomers to use their light-polluted cities and towns for the same purpose.

  7. Astronomy.

    ERIC Educational Resources Information Center

    Greenstone, Sid; Smith, Murray

    Selected materials needed to teach an astronomy unit as well as suggested procedures, activities, ideas, and astronomy fact sheets published by the Manitoba Planetarium are provided. Subjects of the fact sheets include: publications and classroom picture sets available from the National Aeronautics and Space Administration and facts and statistics…

  8. Astronomy.

    ERIC Educational Resources Information Center

    Greenstone, Sid; Smith, Murray

    Selected materials needed to teach an astronomy unit as well as suggested procedures, activities, ideas, and astronomy fact sheets published by the Manitoba Planetarium are provided. Subjects of the fact sheets include: publications and classroom picture sets available from the National Aeronautics and Space Administration and facts and statistics

  9. Highlighting the History of French Radio Astronomy. 6: The Multi-element Grating Arrays

    NASA Astrophysics Data System (ADS)

    Pick, Monique; Steinberg, Jean-Louis; Orchiston, Wayne; Boischot, Andre

    2011-03-01

    After constructing a number of simple antennas for solar work at Nangay field station, during the second half of the 1950s and through into the 1960s radio astronomers from the Paris Observatory (Meudon) erected five different innovative multi-element arrays. Three of these operated at 169 MHz, a fourth at 408 MHz and the fifth array at 9,300 MHz. While all of these radio telescopes were used for solar research, one of the 169 MHz arrays was used mainly for galactic and extra-galactic research. In this paper we discuss these arrays and summarise the science that was achieved with them during this important period in the development of French radio astronomy.

  10. National Radio Astronomy Observatory Announces Closure of Millimeter-Wave Telescope

    NASA Astrophysics Data System (ADS)

    2000-02-01

    The National Radio Astronomy Observatory (NRAO) will close down its millimeter-wavelength telescope on Kitt Peak, Arizona, in July 2000, Director Paul Vanden Bout announced today. The closure will affect the activities of 24 NRAO employees. The Arizona telescope, known as the 12 Meter Telescope because of the diameter of its dish antenna, is the only millimeter-wavelength instrument in the U.S. that is operated full-time as a national facility, open to all scientists. The action was made necessary by the current and anticipated budget for the Observatory, Vanden Bout said. "We are forced to reduce the scope of our activities," Vanden Bout said. The NRAO also operates the Very Large Array and Very Long Baseline Array from its facilities in New Mexico and is completing construction of the Green Bank Telescope in West Virginia. The 12 Meter Telescope is used to observe electromagnetic radiation with wavelengths of a few millimeters down to one millimeter, a region that lies between what is traditionally considered radio waves and infrared radiation. The NRAO is currently participating in an international partnership to develop the Atacama Large Millimeter Array (ALMA), an array of 64 antennas to observe at millimeter wavelengths from a 16,500-foot-high location in northern Chile. "We understood that ALMA eventually would replace the 12 Meter Telescope, but we had hoped to continue operating the 12 Meter until ALMA began interim operations, probably sometime in 2005. That is not possible, and we are forced to close the 12 Meter this year," Vanden Bout said. More than 150 scientists use the 12 Meter Telescope for their research every year. The NRAO's Tucson-based employees have been notified of the Observatory's decision. Some of the NRAO employees in Tucson already are working on the ALMA project. Over the next few months, the NRAO will seek to transfer 12 Meter staff to the ALMA project or to other positions within the Observatory, where that is possible. Where necessary, the Observatory will assist staff members in finding other employment, Vanden Bout said. "In the next few weeks, the Observatory will complete plans for disposing of the 12 Meter Telescope and its associated equipment. In addition, the NRAO will consult with the operators of other millimeter wavelength telescopes in an attempt to ensure that astronomers whose research depends upon such observations can obtain observing time elsewhere. We want to mitigate the effect of this closure upon the scientific community as much as possible," Vanden Bout said. The 12 Meter Telescope has a long and distinguished history of scientific achievement. Built in 1967, it was first known as the 36 Foot Telescope. It was responsible for the birth of millimeter-wavelength molecular astronomy, a field of research in which scientists seek to detect the characteristic "fingerprints" of molecules in space. Dozens of the different molecular species comprising the tenuous material between the stars were first detected by the 36 Foot Telescope. The most significant of these molecular discoveries was carbon monoxide, whose spectral lines are the primary signpost of the formation of new stars in galaxies. In 1984, the telescope was refurbished with a new reflecting surface and support structure. At that time, it was re-christened the 12 Meter Telescope. It continued to make landmark studies of the composition of the interstellar gas clouds and of star formation. In addition, the research program was expanded to include studies of celestial objects such as comets, evolved stars, and external galaxies. Throughout its history, the NRAO Tucson staff has continued to improve the technical capabilities of the 12 Meter Telescope, making it a more useful tool for a wider range of scientific studies. "When ALMA becomes operational, it will produce dramatic advancements in astronomy, and we look forward to those discoveries. However, the success of ALMA will be built in large part on a foundation of millimeter-wavelength expertise and achievement that came from the 12 Meter Telescope and the dedicated people who worked on it for many years. We are sorry that the 12 Meter has to be closed now, but its place in astronomical history is secure and all those who built, maintained, operated, and observed with it can be proud of their accomplishments," Vanden Bout said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  11. Global projects and Astronomy awareness activities in Nepal

    NASA Astrophysics Data System (ADS)

    Gautam, Suman

    2015-08-01

    Modern astronomy is a crowning achievement of human civilization which inspires teenagers to choose career in science and technology and is a stable of adult education. It is a unique and cost effective tool for furthering sustainable global development because of its technological, scientific and cultural dimensions which allow us to reach with the large portion of the community interact with children and inspire with our wonderful cosmos.Using astronomy to stimulate quality and inspiring education for disadvantaged children is an important goal of Nepal Astronomical Society (NASO) since its inception. NASO is carrying out various awareness activities on its own and in collaboration with national and international organizations like Central Department of Physics Tribhuvan University (TU), International astronomical Union (IAU), Department of Physics Prithvi Narayan Campus Pokhara, Nepal academy of science and technology (NAST), Global Hands on Universe (GHOU), EU- UNAWE and Pokhara Astronomical Society (PAS) to disseminate those activities for the school children and teachers in Nepal. Our experiences working with kids, students, teachers and public in the field of universe Awareness Activities for the school children to minimize the abstruse concept of astronomy through some practical approach and the project like Astronomy for the visually impaired students, Galileo Teacher Training program and International School for young astronomers (ISYA) outskirts will be explained which is believed to play vital role in promoting astronomy and space science activities in Nepal.

  12. Virtual reality and project management for astronomy

    NASA Astrophysics Data System (ADS)

    Martnez, L. A.; Villarreal, J. L.; Angeles, F.; Bernal, A.; Bribiesca, E.; Flores, R.

    2010-07-01

    Over the years astronomical instrumentation projects are becoming increasingly complex making necessary to find efficient ways for project communication management. While all projects share the need to communicate project information, the required information and the methods of distribution vary widely between projects and project staff. A particular problem experienced on many projects regardless of their size, is related to the amount of design, planning information and how that is distributed among the project stakeholders. One way to improve project communications management is to use a workflow that offers a predefined way to share information in a project. Virtual Reality (VR) offers the possibility to get a visual feedback of designed components without the expenses of prototype building, giving an experience that mimics real life situations using a computer. In this contribution we explore VR as a communication technology that helps to manage instrumentation projects by means of a workflow implemented on a software package called Discut designed at Universidad Nacional Autnoma de Mexico (UNAM). The workflow can integrate VR environments generated as CAD models.

  13. Radio astronomy with the European Lunar Lander: Opening up the last unexplored frequency regime

    NASA Astrophysics Data System (ADS)

    Klein Wolt, Marc; Aminaei, Amin; Zarka, Philippe; Schrader, Jan-Rutger; Boonstra, Albert-Jan; Falcke, Heino

    2012-12-01

    The Moon is a unique location in our solar system and provides important information regarding the exposure to free space that is essential for future human space exploration to mars and beyond. The active broadband (100 kHz-100 MHz) tripole antenna now envisaged to be placed on the European Lunar Lander located at the Lunar South Pole allows for sensitive measurements of the exosphere and ionosphere, and their interaction with the Earths magnetosphere, solar particles, wind and CMEs and studies of radio communication on the Moon, that are essential for future lunar human and science exploration. In addition, the Lunar South Pole provides an excellent opportunity for radio astronomy. Placing a single radio antenna in an eternally dark crater or behind a mountain at the South (or North) pole would potentially provide perfect shielding from man-made radio interference (RFI), absence of ionospheric distortions, and high temperature and antenna gain stability that allows detection of the 21 cm wave emission from pristine hydrogen formed after the Big Bang and into the period where the first stars formed. A detection of the 21 cm line from the Moon at these frequencies would allow for the first time a clue on the distribution and evolution on mass in the early universe between the Epoch of Recombination and Epoch of Reionization (EoR). Next to providing a cosmological breakthrough, a single lunar radio antenna would allow for studies of the effect of solar flares and coronal mass ejections (CMEs) on the solar wind at distances close to Earth (space weather) and would open up the study of low frequency radio events (flares and pulses) from planets such as Jupiter and Saturn, which are known to emit bright (kJy-MJy) radio emission below 30 MHz (Jester and Falcke, 2009). Finally, a single radio antenna on the lunar lander would pave the way for a future large lunar radio interferometer; not only will it demonstrate the possibilities for lunar radio science and open up the last unexplored radio regime, but it will also allow a determination of the limitations of lunar radio science by measuring the local radio background noise.

  14. Characterization of a Low-Frequency Radio Astronomy Prototype Array in Western Australia

    NASA Astrophysics Data System (ADS)

    Sutinjo, A. T.; Colegate, T. M.; Wayth, R. B.; Hall, P. J.; de Lera Acedo, E.; Booler, T.; Faulkner, A. J.; Feng, L.; Hurley-Walker, N.; Juswardy, B.; Padhi, S. K.; Razavi-Ghods, N.; Sokolowski, M.; Tingay, S. J.; Bij de Vaate, J. G.

    2015-12-01

    We report characterization results for an engineering prototype of a next-generation low-frequency radio astronomy array. This prototype, which we refer to as the Aperture Array Verification System 0.5 (AAVS0.5), is a sparse pseudo-random array of 16 log-periodic antennas designed for 70-450 MHz. It is co-located with the Murchison Widefield Array (MWA) at the Murchison Radioastronomy Observatory (MRO) near the Australian Square Kilometre Array (SKA) core site. We characterize the AAVS0.5 using two methods: in-situ radio interferometry with astronomical sources and an engineering approach based on detailed full-wave simulation. In-situ measurement of the small prototype array is challenging due to the dominance of the Galactic noise and the relatively weaker calibration sources easily accessible in the southern sky. The MWA, with its 128 "tiles" and up to 3 km baselines, enabled in-situ measurement via radio interferometry. We present array sensitivity and beam pattern characterization results and compare to detailed full-wave simulation. We discuss areas where differences between the two methods exist and offer possibilities for improvement. Our work demonstrates the value of the dual astronomy-simulation approach in upcoming SKA design work.

  15. DSN radio science system description and requirements. [for satellite radio astronomy experiments

    NASA Technical Reports Server (NTRS)

    Mulhall, B. D. L.

    1977-01-01

    The data system created to collect the functions performed by the Deep Space Network in support of spacecraft radio science experiments is described. Some of the major functional requirements presently being considered for the system are delineated.

  16. HI STAR Student Astronomy Research Projects

    NASA Astrophysics Data System (ADS)

    Kadooka, M. M.; Armstrong, J. D.

    2010-04-01

    HI STAR program promotes pre-college students conducting authentic research. Projects entered in science fairs will be highlighted. Does research experience influence students to select STEM college majors?

  17. Astronomy Remote Observing Research Projects of US High School Students

    NASA Astrophysics Data System (ADS)

    Kadooka, M.; Meech, K. J.

    2006-08-01

    In order to address the challenging climate for promoting astronomy education in the high schools we have used astronomy projects to give students authentic research experiences in order to encourage their pursuit of science and technology careers. Initially, we conducted teacher workshops to develop a cadre of teachers who have been instrumental in recruiting students to work on projects. Once identified, these students have been motivated to conduct astronomy research projects with appropriate guidance. Some have worked on these projects during non-school hours and others through a research course. The goal has been for students to meet the objectives of inquiry-based learning, a major US National Science Standard. Case studies will be described using event-based learning with the NASA Deep Impact mission. Hawaii students became active participants investigating comet properties through the NASA Deep Impact mission. The Deep Impact Education and Public Outreach group developed materials which were used by our students. After learning how to use image processing software, these students obtained Comet 9P/ Tempel 1 images in real time from the remote observing Faulkes Telescope North located on Haleakala, Maui for their projects. Besides conducting event-based projects which are time critical, Oregon students have worked on galaxies and sunspots projects. For variable star research, they used images obtained from the remote observing offline mode of Lowell Telescope located in Flagstaff, Arizona. Essential to these projects has been consistent follow-up required for honing skills in observing, image processing, analysis, and communication of project results through Science Fair entries. Key to our success has been the network of professional and amateur astronomers and educators collaborating in a multiplicity of ways to mentor our students. This work-in-progress and process will be shared on how to inspire students to pursue careers in science and technology with these projects.

  18. Radio astronomy Explorer-B in-flight mission control system development effort

    NASA Technical Reports Server (NTRS)

    Lutsky, D. A.; Bjorkman, W. S.; Uphoff, C.

    1973-01-01

    A description is given of the development for the Mission Analysis Evaluation and Space Trajectory Operations (MAESTRO) program to be used for the in-flight decision making process during the translunar and lunar orbit adjustment phases of the flight of the Radio Astronomy Explorer-B. THe program serves two functions: performance and evaluation of preflight mission analysis, and in-flight support for the midcourse and lunar insertion command decisions that must be made by the flight director. The topics discussed include: analysis of program and midcourse guidance capabilities; methods for on-line control; printed displays of the MAESTRO program; and in-flight operational logistics and testing.

  19. Tectonic motion site survey of the National Radio Astronomy Observatory, Green Bank, West Virginia

    NASA Technical Reports Server (NTRS)

    Webster, W. J., Jr.; Allenby, R. J.; Hutton, L. K.; Lowman, P. D., Jr.; Tiedemann, H. A.

    1979-01-01

    A geological and geophysical site survey was made of the area around the National Radio Astronomy Observatory (NRAO) to determine whether there are at present local tectonic movements that could introduce significant errors to Very Long Baseline Interferometry (VLBI) geodetic measurements. The site survey consisted of a literature search, photogeologic mapping with Landsat and Skylab photographs, a field reconnaissance, and installation of a seismometer at the NRAO. It is concluded that local tectonic movement will not contribute significantly to VLBI errors. It is recommended that similar site surveys be made of all locations used for VLBI or laser ranging.

  20. BYU Radio Astronomy System for Imaging Galactic H1 and OH MASERs

    NASA Astrophysics Data System (ADS)

    Blakley, Daniel; Migenes, Victor

    2011-10-01

    We have built a radio astronomy system initially designed to image galactic H1 (Hydrogen Spin-Flip) [at 1.42 GHz] and OH MASERS [ 1.66 GHz ] in star forming regions. Initial system architecture includes one 4-meter dish antenna, 0.38dB noise figure LNA and conventional super-heterodyne block down-conversion. Enhancements underway include baseline extensions for these wavelengths, CASPER based digital correlation / spectrometer design activity including Linux server, additional imaging wavelengths, rubidium clocks, and lock-in amplifiers.

  1. Ambient and Cryogenic, Decade Bandwidth, Low Noise Receiving System for Radio Astronomy Using Sinuous Antenna

    NASA Astrophysics Data System (ADS)

    Gawande, Rohit Sudhir

    Traditionally, radio astronomy receivers have been limited to bandwidths less than an octave, and as a result multiple feeds and receivers are necessary to observe over a wide bandwidth. Next generation of instruments for radio astronomy will benefit greatly from reflector antenna feeds that demonstrate very wide instantaneous bandwidth, and exhibit low noise behavior. There is an increasing interest in wideband systems from both the cost and science point of view. A wideband feed will allow simultaneous observations or sweeps over a decade or more bandwidth. Instantaneous wide bandwidth is necessary for detection of short duration pulses. Future telescopes like square kilometer array (SKA), consisting of 2000 to 3000 coherently connected antennas and covering a frequency range of 70 MHz to 30 GHz, will need decade bandwidth single pixel feeds (SPFs) along with integrated LNAs to achieve the scientific objectives in a cost effective way. This dissertation focuses on the design and measurement of a novel decade bandwidth sinuous-type, dual linear polarized, fixed phase center, low loss feed with an integrated LNA. A decade bandwidth, low noise amplifier is specially designed for noise match to the higher terminal impedance encountered by this antenna yielding an improved sensitivity over what is possible with conventional 50 O amplifiers. The self-complementary, frequency independent nature of the planar sinuous geometry results in a nearly constant beam pattern and fixed phase center over more than a 10:1 operating frequency range. In order to eliminate the back-lobe response over such a wide frequency range, we have projected the sinuous pattern onto a cone, and a ground plane is placed directly behind the cone's apex. This inverted, conical geometry assures wide bandwidth operation by locating each sinuous resonator a quarter wavelength above the ground plane. The presence of a ground plane near a self complementary antenna destroys the self complementary nature of the composite structure resulting in frequency dependent impedance variations. We demonstrate, using simulations and measurements, how the return loss can be improved by modifying the sinuous geometry. The feed-LNA combination is characterized for important properties such as return loss, system noise, far field beam patterns including cross-polarization over a wide frequency range. The system is developed as a feed for a parabolic reflector. The overall system performance is calculated in terms of the A/Tsys ratio. A cryogenic version would have a direct impact on specialized observing applications requiring large instantaneous bandwidths with high sensitivity. A novel cryogenic implementation of this system is demonstrated using a Stirling cycle, one-stage refrigerator. The cryocooler offers advantages like low cost, light weight, small size, low power consumption, and does not require routine maintenance. The higher antenna input impedance and a balanced feeding method for the sinuous antenna offers a unique set of challenges when developing a cryogenic system.

  2. Image Reconstruction in Radio Astronomy with Non-Coplanar Synthesis Arrays

    NASA Astrophysics Data System (ADS)

    Goodrick, L.

    2015-03-01

    Traditional radio astronomy imaging techniques assume that the interferometric array is coplanar, with a small field of view, and that the two-dimensional Fourier relationship between brightness and visibility remains valid, allowing the Fast Fourier Transform to be used. In practice, to acquire more accurate data, the non-coplanar baseline effects need to be incorporated, as small height variations in the array plane introduces the w spatial frequency component. This component adds an additional phase shift to the incoming signals. There are two approaches to account for the non-coplanar baseline effects: either the full three-dimensional brightness and visibility model can be used to reconstruct an image, or the non-coplanar effects can be removed, reducing the three dimensional relationship to that of the two-dimensional one. This thesis describes and implements the w-projection and w-stacking algorithms. The aim of these algorithms is to account for the phase error introduced by non-coplanar synthesis arrays configurations, making the recovered visibilities more true to the actual brightness distribution model. This is done by reducing the 3D visibilities to a 2D visibility model. The algorithms also have the added benefit of wide-field imaging, although w-stacking supports a wider field of view at the cost of more FFT bin support. For w-projection, the w-term is accounted for in the visibility domain by convolving it out of the problem with a convolution kernel, allowing the use of the two-dimensional Fast Fourier Transform. Similarly, the w-Stacking algorithm applies a phase correction in the image domain to image layers to produce an intensity model that accounts for the non-coplanar baseline effects. This project considers the KAT7 array for simulation and analysis of the limitations and advantages of both the algorithms. Additionally, a variant of the Hgbom CLEAN algorithm was used which employs contour trimming for extended source emission flagging. The CLEAN algorithm is an iterative two-dimensional deconvolution method that can further improve image fidelity by removing the effects of the point spread function which can obscure source data.

  3. An Image Revolution: The Virtual Astronomy Multimedia Project

    NASA Astrophysics Data System (ADS)

    Hurt, Robert L.; Christensen, L. L.; Gauthier, A.; Wyatt, R.

    2007-12-01

    The Virtual Astronomy Multimedia Project (VAMP) represents a groundbreaking new resource for sharing and utilizing outreach imagery. Publication-quality imagery can be tagged following the Astronomy Visualization Metadata (AVM) standard for encapsulating all of the key contextual information about each image (title, caption, image colors/composition, observatories, WCS projection, etc.). AVM-tagged imagery can be registered with the VAMP Archive, now in developoment at the Infrared Science Archive (IRSA) at IPAC. The VAMP Archive, will allow imagery to be found in fundamentally more useful manners than is currently possible. It will also enable a new generation of innovative applications (e.g. desktop planetarium software) to dynamically draw upon the lastest graphics as soon as they become available. The tools now exist to tag existing image libraries in preparation for inclusion in the VAMP Archive.

  4. Applications of the focus plane array or the multi-beam feed system in radio astronomy

    NASA Astrophysics Data System (ADS)

    Wu, Shengyin; Nan, Rendong

    2001-12-01

    The technique of the focus plane array (FPA) or the multi-beam feed system has been more and more widely applied in radio astronomy. Much more information of electric and magnetic field collected at the focus plane could be used to fasten the obervational procedure several or even several tens times by scanning the telescope over the extended sources. The image quality observed can be improved by subtracting or removing effects of fluctuation or irregularity in the atmosphere or the ionosphere, and by monitoring or controlling the accuracy of the main reflector, the subreflector and the pointing of the telescope. Costs and requirements for the accuracy of huge radio telescopes or space radio telescopes might be much reduced by introducing the FPA in monitoring and adjusting telescopes in the future. The FPAs have been equipped widely on millimeter and sub-millimeter radio telescopes and main bands of large radio telescopes in the world. The paper will review the situation of that by listing operating feeds for the latter and describing briefly the FPAs equipped on the former. The restriction of applying the FPAs on telescopes and corresponding phase errors will be briefly analyzed in this paper. Consideration of the cost and prospect of application of the FPA are also shortly given. Finally tentative valuation and suggestion of applying the FPA on the FAST, a planned huge spherical radio telescope with active main reflector, are followed. Arrangement of frequencies, beams, LNAs and corresponding system temperature suggested by experts from China and Jodrell Bank Radio Observatory is listed at last.

  5. The impact of JPEG2000 lossy compression on the scientific quality of radio astronomy imagery

    NASA Astrophysics Data System (ADS)

    Peters, S. M.; Kitaeff, V. V.

    2014-10-01

    The sheer volume of data anticipated to be captured by future radio telescopes, such as, the Square Kilometer Array (SKA) and its precursors present new data challenges, including the cost and technical feasibility of data transport and storage. Image and data compression are going to be important techniques to reduce the data size. We provide a quantitative analysis of the effects of JPEG2000's lossy wavelet image compression algorithm on the quality of the radio astronomy imagery data. This analysis is completed by evaluating the completeness, soundness and source parameterisation of the Duchamp source finder using compressed data. Here we found the JPEG2000 image compression has the potential to denoise image cubes, however this effect is only significant at high compression rates where the accuracy of source parameterisation is decreased.

  6. Kenya's Radio Language Arts Project: evaluation results.

    PubMed

    Oxford, R L

    1985-01-01

    The Kenya Radio Language Arts Project (RLAP), which has just been completed, documents the effectiveness of interactive radio-based educational instruction. Analyses in the areas of listening, reading, speaking, and writing show that children in radio classrooms consistently scored better than children in nonradio classrooms in every test. An evaluation of the project was conducted with the assistance of the Center for Applied Linguistics (CAL). Evaluation results came from a variety of sources, including language tests, observations, interviews, demographic and administrative records, and an attitude survey. A large proportion of the project's students were considerably transient. Only 22% of the total student population of 3908 were "normal progression" students -- that is, they advanced regularly through their education during the life of the project. Students who moved from the area, failed a standard (grade), dropped out, or were otherwise untrackable, comprised the remaining 78% of the total. 7 districts were included in the project. Tests were developed for listening and reading in Standards 1, 2, and 3 and in speaking and writing in Standards 2 and 3. The achievement tests were based on the official Kenya curriculum for those standards, so as to measure achievement against the curriculum. Nearly all the differences were highly significant statistically, with a probability of less than 1 in 1000 that the findings could have occurred by chance. Standard 1 radio students scored nearly 8 points higher than did their counterparts in the control group. Standard 2 and 3 radio students outperformed the control students by 4 points. The radio group consistently outperformed the control group in reading, writing, and speaking. Unstructured interviews and observations were conducted by the RLAP field staff. Overwhelmingly positive attitudes about the project prevailed among project teachers and headmasters. The data demonstrate that RLAP works. In fact, it works so well in all 4 languages skill areas, particularly in listening comprehension, that instructors wanted to see the radio lessons continue after the experiment ended. PMID:12340539

  7. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Mccluskey, J. T.; Gulkis, S.; Klein, M.; Kuiper, T.

    1981-01-01

    A K-band reflected-wave ruby maser was used on the 64-meter (DSS-43) antenna at the Tidbinbilla Tracking Station, near Canberra, Australia. Spectral line observations were carried out near 22 GHz for water vapor sources and near 24 GHz for ammonia sources. The water vapor observations were made in the direction of known southern OH and H2O maser sources. All of the previously detected water line sources examined were detected. In addition, two new water vapor maser sources were discovered, G301.1+1.1and G308.9+0.1. The spectrum of G301.0+1.1 is presented six ammonia sources were found: G291.3-0.7, G305.4+0.2, G322.2+0.6, G327.3-0.5, G333.6-0.2, and G268.4-0.8. Spectra of two of these sources, G291.3-0.7 (RCW 57) and G305.4+0.2, are presented. Both show clearly the presence of the quadrupole splitting satellite lines that will allow the determination of NH3 optical depths in these clouds.

  8. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Gulkis, S.

    1982-01-01

    Use of the Tidbinbilla Interferometer to refine the source positions in the Parkes 2.7 GHz survey of the southern sky is described. A result of the first phase of this work was the identification of a quasi-stellar object which appears to be the most remote object yet observed. This object has a red shift of 3.78 (PKS 2000-330, and a velocity of recession equal to 91% of that light. Based on Hubble's law, PKS 2000-330 appears to be 12 billion light years away.

  9. Building information models for astronomy projects

    NASA Astrophysics Data System (ADS)

    Ario, Javier; Murga, Gaizka; Campo, Ramn; Eletxigerra, Iigo; Ampuero, Pedro

    2012-09-01

    A Building Information Model is a digital representation of physical and functional characteristics of a building. BIMs represent the geometrical characteristics of the Building, but also properties like bills of quantities, definition of COTS components, status of material in the different stages of the project, project economic data, etc. The BIM methodology, which is well established in the Architecture Engineering and Construction (AEC) domain for conventional buildings, has been brought one step forward in its application for Astronomical/Scientific facilities. In these facilities steel/concrete structures have high dynamic and seismic requirements, M&E installations are complex and there is a large amount of special equipment and mechanisms involved as a fundamental part of the facility. The detail design definition is typically implemented by different design teams in specialized design software packages. In order to allow the coordinated work of different engineering teams, the overall model, and its associated engineering database, is progressively integrated using a coordination and roaming software which can be used before starting construction phase for checking interferences, planning the construction sequence, studying maintenance operation, reporting to the project office, etc. This integrated design & construction approach will allow to efficiently plan construction sequence (4D). This is a powerful tool to study and analyze in detail alternative construction sequences and ideally coordinate the work of different construction teams. In addition engineering, construction and operational database can be linked to the virtual model (6D), what gives to the end users a invaluable tool for the lifecycle management, as all the facility information can be easily accessed, added or replaced. This paper presents the BIM methodology as implemented by IDOM with the E-ELT and ATST Enclosures as application examples.

  10. A New Geodetic Research Data Management System at the Hartebeesthoek Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Coetzer, G. L.; Botha, R. C.; Combrinck, L.; Fourie, S. C.

    2015-04-01

    The Hartebeesthoek Radio Astronomy Observatory (HartRAO) hosts two research programmes: radio astronomy and space geodesy. The Space Geodesy programme has four main co-located space geodetic techniques, making HartRAO a true fiducial site. The HartRAO Space Geodesy Programme is expanding its geodetic techniques to include Lunar Laser Ranging (LLR) as well as a network of seismometers, accelerometers, tide gauges, and gravimeters. These instruments will be installed across the southern African region and will generate large volumes of data that will be streamed to and stored at HartRAO. Our objective is to implement a complete Geodetic Research Data Management System (GRDMS) to handle all HartRAO's geodetic data on-site in terms of archiving, indexing, processing, and extraction. These datasets and subsequent data products will be accessible to both the scientific community and general public through an intuitive and easy to use web-based front-end. As the first step in this process, we are currently working on establishing a new data centre. This opens up the possibility for the librarian to provide data services and support by working together with researchers and information technology staff. We discuss the rationale, role players and top-level system design of this GRDMS, as well as the current status and planned products thereof.

  11. Development of a Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA)

    NASA Astrophysics Data System (ADS)

    Ingala, Dominique Guelord Kumamputu

    2015-03-01

    This dissertation describes the development and construction of the Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA) at the Durban University of Technology. The MITRA station consists of 2 antenna arrays separated by a baseline distance of 8 m. Each array consists of 8 Log-Periodic Dipole Antennas (LPDAs) operating from 200 MHz to 800 MHz. The design and construction of the LPDA antenna and receiver system is described. The receiver topology provides an equivalent noise temperature of 113.1 K and 55.1 dB of gain. The Intermediate Frequency (IF) stage was designed to produce a fixed IF frequency of 800 MHz. The digital Back-End and correlator were implemented using a low cost Software Defined Radio (SDR) platform and Gnu-Radio software. Gnu-Octave was used for data analysis to generate the relevant received signal parameters including total power, real, and imaginary, magnitude and phase components. Measured results show that interference fringes were successfully detected within the bandwidth of the receiver using a Radio Frequency (RF) generator as a simulated source. This research was presented at the IEEE Africon 2013 / URSI Session Mauritius, and published in the proceedings.

  12. ASTRONOMY.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THIS TEACHER'S GUIDE FOR A UNIT ON ASTRONOMY ESTABLISHES (1) UNDERSTANDINGS AND ATTITUDES, (2) SKILLS, AND (3) CONCEPTS TO BE GAINED IN THE STUDY. THE OVERVIEW EXPLAINS THE ORGANIZATION AND OBJECTIVES OF THE UNIT. TOPICAL DIVISIONS ARE (1) THE EARTH, (2) THE MOON, (3) THE SUN, (4) THE SOLAR SYSTEM, (5) THE STARS, (6) THE UNIVERSE, AND (7) SPACE…

  13. Indexing data cubes for content-based searches in radio astronomy

    NASA Astrophysics Data System (ADS)

    Araya, M.; Candia, G.; Gregorio, R.; Mendoza, M.; Solar, M.

    2016-01-01

    Methods for observing space have changed profoundly in the past few decades. The methods needed to detect and record astronomical objects have shifted from conventional observations in the optical range to more sophisticated methods which permit the detection of not only the shape of an object but also the velocity and frequency of emissions in the millimeter-scale wavelength range and the chemical substances from which they originate. The consolidation of radio astronomy through a range of global-scale projects such as the Very Long Baseline Array (VLBA) and the Atacama Large Millimeter/submillimeter Array (ALMA) reinforces the need to develop better methods of data processing that can automatically detect regions of interest (ROIs) within data cubes (position-position-velocity), index them and facilitate subsequent searches via methods based on queries using spatial coordinates and/or velocity ranges. In this article, we present the development of an automatic system for indexing ROIs in data cubes that is capable of automatically detecting and recording ROIs while reducing the necessary storage space. The system is able to process data cubes containing megabytes of data in fractions of a second without human supervision, thus allowing it to be incorporated into a production line for displaying objects in a virtual observatory. We conducted a set of comprehensive experiments to illustrate how our system works. As a result, an index of 3% of the input size was stored in a spatial database, representing a compression ratio equal to 33:1 over an input of 20.875 GB, achieving an index of 773 MB approximately. On the other hand, a single query can be evaluated over our system in a fraction of second, showing that the indexing step works as a shock-absorber of the computational time involved in data cube processing. The system forms part of the Chilean Virtual Observatory (ChiVO), an initiative which belongs to the International Virtual Observatory Alliance (IVOA) that seeks to provide the capability of content-based searches on data cubes to the astronomical community.

  14. Thinking Big for 25 Years: Astronomy Camp Research Projects

    NASA Astrophysics Data System (ADS)

    Hooper, Eric Jon; McCarthy, D. W.; Benecchi, S. D.; Henry, T. J.; Kirkpatrick, J. D.; Kulesa, C.; Oey, M. S.; Regester, J.; Schlingman, W. M.; Camp Staff, Astronomy

    2013-01-01

    Astronomy Camp is a deep immersion educational adventure for teenagers and adults in southern Arizona that is entering its 25th year of existence. The Camp Director (McCarthy) is the winner of the 2012 AAS Education Prize. A general overview of the program is given in an accompanying contribution (McCarthy et al.). In this presentation we describe some of the research projects conducted by Astronomy Camp participants over the years. Many of the Camps contain a strong project-oriented emphasis, which reaches its pinnacle in the Advanced Camps for teenagers. High school students from around the world participate in a microcosm of the full arc of astronomy research. They plan their own projects before the start of Camp, and the staff provide a series of "key projects." Early in the Camp the students submit observing proposals to utilize time on telescopes. (The block of observing time is secured in advance by the staff.) The participants collect, reduce and analyze astronomical data with the help of staff, and they present the results to their peers on the last night of Camp, all in a span of eight days. The Camps provide research grade telescopes and instruments, in addition to amateur telescopes. Some of the Camps occur on Kitt Peak, where we use an ensemble of telescopes: the 2.3-meter (University of Arizona) with a spectrograph; the WIYN 0.9-meter; the McMath-Pierce Solar Telescope; and the 12-meter millimeter wave telescope. Additionally the Camp has one night on the 10-meter Submillimeter Telescope on Mt. Graham. Campers use these resources to study stars, galaxies, AGN, transiting planets, molecular clouds, etc. Some of the camper-initiated projects have led to very high level performances in prestigious international competitions, such as the Intel International Science and Engineering Fair. The key projects often contribute to published astronomical research (e.g., Benecchi et al. 2010, Icarus, 207, 978). Many former Campers have received Ph.D. degrees in astronomy and other sciences and are now faculty members, a current Hubble Fellow, the PI of a facility class instrument on an 11-meter telescope (SALT), etc.

  15. Radio frequency overview of the high explosive radio telemetry project

    SciTech Connect

    Bracht, R.; Dimsdle, J.; Rich, D.; Smith, F.

    1998-12-31

    High explosive radio telemetry (HERT) is a project that is being developed jointly by Los Alamos National Laboratory and AlliedSignal Federal Manufacturing and Technologies. The ultimate goal is to develop a small, modular telemetry system capable of high-speed detection of explosive events, with an accuracy on the order of 10 nanoseconds. The reliable telemetry of this data, from a high-speed missile trajectory, is a very challenging opportunity. All captured data must be transmitted in less than 20 microseconds of time duration. This requires a high bits/Hertz microwave telemetry modulation code to insure transmission of the data with the limited time interval available.

  16. Calibration of a cylindrical RF capacitance probe. [for ionospheric plasma effects on Radio Astronomy Explorer 1 antenna

    NASA Technical Reports Server (NTRS)

    Mosier, S. R.; Kaiser, M. L.

    1975-01-01

    Ambient electron concentrations derived from observations with the Radio Astronomy Explorer 1 antenna capacitance probe have been compared with upper hybrid resonance measurements from the same spacecraft. From this comparison an empirical correction factor for the capacitance probe measurements has been derived. The differences between the two types of measurements is attributed to sheath effects.

  17. Probing Strongly-Scattered Compact Objects Using Ultra-High-Resolution Techniques in Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Johnson, Michael Douglas

    This dissertation explores fundamental limits in radio astronomy and develops techniques that utilize the scintillation of compact objects to probe detailed properties of their emission regions and of the scattering material. I develop a statistical framework for observations with spectral resolution at or near the Nyquist limit, suitable for describing the observed statistics of strongly-scattered sources. I demonstrate that these statistics can effectively isolate the signature of an extended emission region, requiring no assumptions about the nature or distribution of the scattering material. Then, using observations of the Vela pulsar at 760 MHz with the Green Bank Telescope, I thereby achieve a spatial resolution of 4 km at the pulsar. Finally, I explore the signature of refractive scintillation on the interferometric visibility measured on long baselines, and I derive optimal correlation estimators for quantized data.

  18. Thunderstorms observed by radio astronomy Explorer 1 over regions of low man made noise

    NASA Technical Reports Server (NTRS)

    Caruso, J. A.; Herman, J. R.

    1974-01-01

    Radio Astronomy Explorer (RAE) I observations of thunderstorms over regions of low man-made noise levels are analyzed to assess the satellite's capability for noise source differentiation. The investigation of storms over Australia indicates that RAE can resolve noise generation due to thunderstorms from the general noise background over areas of low man-made noise activity. Noise temperatures observed by RAE over stormy regions are on the average 10DB higher than noise temperatures over the same regions in the absence of thunderstorms. In order to determine the extent of noise contamination due to distant transmitters comprehensive three dimensional computer ray tracings were generated. The results indicate that generally, distant transmitters contribute negligibly to the total noise power, being 30DB or more below contributions arriving from an area immediately below the satellite.

  19. Next Generation Very Large Array: Centimeter Radio Astronomy in the 2020s

    NASA Astrophysics Data System (ADS)

    Hughes, A. Meredith; Beasley, Anthony; Carilli, Christopher

    2015-08-01

    We discuss the future scientific discovery and technical challenges for cm radio studies, presenting calculations and simulations of the science of a next generation VLA (ngVLA), an array with vastly improved resolution and sensitivity relative to ALMA and JVLA, operating from ~1 GHz to 115 GHz, with an enhanced ability to image thermal objects on milliarcsecond scales, spanning thermal and non-thermal radio astronomy and bridging SKA and ALMA capabilities.Key areas of astrophysics where ngVLA can make new contributions include:- Probing deep into dusty protoplanetary disks, revealing terrestrial planet formation on AU-scales — regions that are opaque at shorter wavelengths. Observations in this wavelength range are critically required to study the poorly understood growth of dust into rocks.- Providing a census and imaging at kpc-scale resolution, of the cool molecular gas in distant galaxies. The ngVLA will be able to observe the lower order molecular transitions in high redshift, normal star forming galaxies, a key diagnostic for understanding the fuel driving the star formation history of the Universe.- Enabling an unprecedented, wide field imaging capability for nearby galaxies, over the cm frequency range covering key astrochemical tracers, including both thermal/non-thermal radio continuum emission.- Exploring the otherwise-unobservable deep atmospheres of the giant planets. In addition, the subsurfaces of other solar system bodies (e.g. icy satellites, TNOs, comets, asteroids) can be probed via thermal emission and radar remote sensing.- Allowing major improvements in synoptic, astrometric and transient/time-domain measurements at cm wavelengths of a wide variety of active sources, including Fast Radio Bursts, AGNs, pulsars and x-ray binaries.Led by NRAO, work to address the technical challenges for the ngVLA is underway. Areas currently under investigation include: low cost antennas, ultra-wide band feeds and receivers, broad band data transmission, and large N correlators. Minimizing operations costs is also being incorporated into the fundamental design of the array.

  20. PULSE@Parkes, Engaging Students through Hands-On Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Hollow, Robert; Hobbs, George; Shannon, Ryan M.; Kerr, Matthew

    2015-08-01

    PULSE@Parkes is an innovative, free educational program run by CSIRO Astronomy and Space Science (CASS) in which high school students use the 64m Parkes radio telescope remotely in real time to observe pulsars then analyse their data. The program caters for a range of student ability and introduces students to hands-on observing and radio astronomy. Students are guided by professional astronomers, educators and PhD students during an observing session. They have ample time to interact with the scientists and discuss astronomy, careers and general scientific questions. Students use a web-based module to analyse pulsar properties. All data from the program are streamed via a web browser and are freely available from the online archive and may be used for open-ended student investigations. The data are also used by the team for ongoing pulsar studies with two scientific papers published to date.Over 100 sessions have been held so far. Most sessions are held at CASS headquarters in Sydney, Australia but other sessions are regularly held in other states with partner institutions. The flexibility of the program means that it is also possible to run sessions in other countries. This aspect of the program is useful for demonstrating capability, engaging students in diverse settings and fostering collaborations. The use of Twitter (@pulseatparkes) during allows followers worldwide to participate and ask questions.Two tours of Japan plus sessions in the UK, Netherlands and Canada have reached a wide audience. Plans for collaborations in China are well underway with the possibility of use with other countries also being explored. The program has also been successfully used in helping to train international graduate students via the International Pulsar Timing Array Schools. We have identified strong demand and need for programs such as this for training undergraduate students in Asia and the North America in observing and data analysis techniques so one area of planned development is teaching materials and a package for students at this level. The program has also been used to inform the development of educational programs for new telescopes such as the Australian SKA Pathfinder (ASKAP) and the SKA.http://pulseatparkes.atnf.csiro.au/

  1. Designing a new Geodetic Research Data Management System for the Hartebeesthoek Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Coetzer, Glend Lorraine

    2015-08-01

    The Hartebeesthoek Radio Astronomy Observatory (HartRAO) participates in astronomic, astrometric and geodetic Very Long Baseline Interferometry (VLBI) observations using both 26- and 15-m diameter radio telescopes. Geodetic data from a Satellite Laser Ranger (SLR), Global Navigation Satellite System (GNSS), Met4 weather stations and a new seismic vault network must be stored at HartRAO and made available to the scientific community. Some data are e-transferred to correlators, analysis centres and space geodesy data providers, while some data are processed locally to produce basic data products. The new South African co-located seismology network of seismic and GNSS instrumentation will generate large volumes of raw data to be stored and archived at HartRAO. The current data storage systems are distributed and outdated, and management systems currently being used will also not be able to handle the additional large volumes of data. This necessitates the design and implementation of a new, modern research data management system which combines all the datasets into one database, as well as cater for current and future data volume requirements. The librarian’s expertise and knowledge will be used in the design and implementation of the new HartRAO Geodetic Research Data Management System (GRDMS). The librarian’s role and involvement in the design and implementation of the new GRDMS are presented here. Progress to date will also be discussed.

  2. Panoramic Radio Astronomy: Wide-field 1-2 GHz research on galaxy evolution

    NASA Astrophysics Data System (ADS)

    In a burst of renewed vigor enabled by recent technological advancements, radio astronomers around the world are now developing a number of new telescopes and instruments. Within the coming few years, a major improvement will be achieved over current facilities. Interferometers such as ASKAP, MeerKAT and WSRT+APERTIF will provide a combination of larger field of view and increased simultaneous bandwidth, while maintaining good collecting area and angular resolution. They will achieve a survey speed 10-50 times larger at 1-2 GHz than what is currently possible, allowing for the first time optical-like all-sky extragalactic surveys at these frequencies. The way that radio astronomical research is carried out will change profoundly, marking a major step towards the capabilities sought after for the coming decades. Significant progress will be made in many fields of radio astronomy. One of the areas that will benefit most is research into the evolution of galaxies over the past few Gyr. In particular, wide-field observations at 1-2 GHz will provide an unprecedented panoramic view of the gas properties and star formation in galaxies, embedded in their environment, from z~0.2-0.5 to the present. We aim to bring together researchers in this field to discuss the optimal exploitation of the new radio observatories for future science programs. Within the framework of our current knowledge of the galaxy population at z<0.5, we will address: the key science questions that the new telescopes will permit us to answer in combination with complimentary work at other wavelengths; the observing/analysis modes/strategies which will allow us to most efficiently exploit the data; and the techniques for most effectively coping with the huge volume of survey products, so far unusual for the radio community. In keeping with the forward-looking spirit of this conference, we encourage potential speakers to present and discuss their plans for the instruments of the near future. The key points that the conference will address are: * Scope, depth and design of HI wide area surveys * Evolution of the HI mass function and its dependence on morphological type and environment * Evolution of galaxy scaling relations out to z~0.2 * The evolution of star formation and its relation to gas content in galaxies * Wide field-of-view deep HI observations of individual fields - nearby clusters, groups and galaxies * Continuum surveys: star-forming-galaxies and the role of AGN activity * Polarisation and magnetic fields in nearby galaxies

  3. Popularization of Astronomy under Cooperation between Students and Educators in Japan: the TENPLA project (2)

    NASA Astrophysics Data System (ADS)

    Kamegai, K.; Hiramatsu, M.; Takanashi, N.; Tsukada, K.

    2006-08-01

    The Tenpla project is a Japanese unique activity in popularization of astronomy under cooperation between students of astronomy, young astronomers, and social education facilities such as science museums (see also poster by M. Hiramatsu). In this paper, we report our individual activities for public in detail. Our aim is to provide bridges between astronomy and public, especially people who are unfamiliar with astronomy, directly by students and young astronomers at many scene of life such as in schools, cafs, or hospitals. Examples of our activities are as follows (1) Learning astronomy with local people, by local people, for local people. (2) Science cafs about astronomy at book stores, small restaurants and local airport. (3) Traveling lecture of astronomy for hospitalized children.

  4. Kothmale Community Radio Interorg Project: True Community Radio or Feel-Good Propaganda?

    ERIC Educational Resources Information Center

    Harvey-Carter, Liz

    2009-01-01

    The Kothmale Community Radio and Interorg project in Sri Lanka has been hailed as an example of how a community radio initiative should function in a developing nation. However, there is some question about whether the Kothmale Community Interorg Project is a true community radio initiative that empowers local communities to access ICT services…

  5. Prototyping scalable digital signal processing systems for radio astronomy using dataflow models

    NASA Astrophysics Data System (ADS)

    Sane, N.; Ford, J.; Harris, A. I.; Bhattacharyya, S. S.

    2012-05-01

    There is a growing trend toward using high-level tools for design and implementation of radio astronomy digital signal processing (DSP) systems. Such tools, for example, those from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER), are usually platform-specific, and lack high-level, platform-independent, portable, scalable application specifications. This limits the designer's ability to experiment with designs at a high-level of abstraction and early in the development cycle. We address some of these issues using a model-based design approach employing dataflow models. We demonstrate this approach by applying it to the design of a tunable digital downconverter (TDD) used for narrow-bandwidth spectroscopy. Our design is targeted toward an FPGA platform, called the Interconnect Break-out Board (IBOB), that is available from the CASPER. We use the term TDD to refer to a digital downconverter for which the decimation factor and center frequency can be reconfigured without the need for regenerating the hardware code. Such a design is currently not available in the CASPER DSP library. The work presented in this paper focuses on two aspects. First, we introduce and demonstrate a dataflow-based design approach using the dataflow interchange format (DIF) tool for high-level application specification, and we integrate this approach with the CASPER tool flow. Secondly, we explore the trade-off between the flexibility of TDD designs and the low hardware cost of fixed-configuration digital downconverter (FDD) designs that use the available CASPER DSP library. We further explore this trade-off in the context of a two-stage downconversion scheme employing a combination of TDD or FDD designs.

  6. The PACA Project : Pro-Am Collaborative Astronomy

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2014-04-01

    The Pro-Am Collaborative Astronomy (PACA) project is the next stage of evolution of the paradigm developed for the observational campaign of C/2012 S1 or C/ISON. Four different phases of collaboration are identified, and illustrate the integration of scientific investigations with amateur astronomer community via observations, and models; and the rapid dissemination of the results via a multitude of social media for rapid global access. The success of the paradigm shift in scientific research is now implemented in other comet observing campaigns. Both communities (scientific and amateur astronomers) benefit from these collective, collaborative partnerships; while outreach is the instantaneous deliverable that provides both a framework for future data analyses and the dissemination of the results. While PACA identifies a collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed.

  7. Bringing science into schools through astronomy. Project ASTRO, Tucson

    NASA Astrophysics Data System (ADS)

    Barban, C.; Dole, H.

    2005-11-01

    We report our experience in bringing science into US and French classrooms. We participated in the US scientific educational program Project ASTRO. It is based on a partnership between a school teacher and an astronomer. They together design and realize simple and interesting scientific activities for the children to learn and enjoy science. We present four hands-on activities we realized in a 4th-grade class (10 yr-old kids) in Tucson (USA) in 2002-2003. Among the covered topics were: the Solar System, the Sun (helioseismology) and the Galaxies. We also present a similar experience done in two classrooms in 2005, in Chatenay-Malabry (France) in partnership with an amateur astronomy association (Aphlie), and discuss future activities. This is a pleasant and rewarding activity, extremely well appreciated by the children and the school teachers. It furthermore promotes already at a young age the excitement of science, and provides concrete examples of the scientific methodology.

  8. The radio astronomy experiment on Helios A and B /E 5c/. [using dipole antenna-preamplifier-radiometer system

    NASA Technical Reports Server (NTRS)

    Weber, R. R.

    1975-01-01

    The NASA Goddard Space Flight Center radio astronomy experiment on Helios, identified as Experiment 5c, has sixteen observing frequencies over the range of 26.5 to 3000 kHz. The antenna consists of two extendible 15-m booms, forming an electric dipole, two high-impedance preamplifiers located at the root of the booms, and the 16-channel radiometer. Important information about propagation conditions, such as absorption, scattering and refraction, are expected from observations of radio emission regions at distances between 1 and 0,3 AU.

  9. The beginnings of decameter radio astronomy: pioneering works of Semen Ya. Braude and his followers in Ukraine

    NASA Astrophysics Data System (ADS)

    Vavilova, I. B.; Konovalenko, A. A.; Megn, A. V.

    2007-06-01

    S.Ya. Braude (1911-2003) was the well-known radio astronomer, one of the founders of low-frequency astronomical research in the world, in particular in the former Soviet Union. He began to work in this field of science in 1957, in Kharkiv city (Ukraine), from the design and manufacturing small decameter interferometer ID-1 and ID-2. Since that time Braude and his team have developed more sophisticated radio decameter telescopes as UTR-1 and UTR-2 (the largest in the world till now) as well as the first decameter VLBI network URAN. They have obtained some important pioneering results about low-frequency radio emission of objects in our Solar system, Galaxy and Metagalaxy by means of these telescopes. In this paper the key events of early history of decameter radio astronomy research in the former USSR are mentioned with emphasizing the role of S. Braude. For the period of 1957-1962, the quotations of Braude's Personal Diary (2003) are first laying open to the public. The most important results obtained by S.Ya. Braude and his followers as well as perspectives of decameter radio astronomy in Ukraine and in the world are highlighted briefly.

  10. A Collision of Interests - Protecting Radio Astronomy from Interference in a Free-Market Environment

    NASA Astrophysics Data System (ADS)

    Vanden Bout, P. A.

    2004-05-01

    The protection of radio astronomy (RA) from radio frequency interference (RFI) is becoming increasingly difficult. Established mechanisms for the management of spectrum in the United States and throughout the world have provided a degree of protection from RFI by assigning certain bands to RA on an exclusive or shared use basis. Explosive growth in commercial spectrum use has created spectrum crowding outside the RA bands, especially at lower frequencies below 3 GHz. Constellations of low-earth-orbit satellites are a particular problem to RA in that they always have transmitters above the horizon and these transmitters can spill unwanted emissions into the RA bands from their adjacent operating bands. The desire to study the early Universe presents a new challenge for RA with respect to RFI. The RA protected bands were selected for frequencies of important spectral lines. For objects in the distant, redshifted Universe, these lines can appear at all frequencies below the rest frequency and observations may be needed where the RA bands offer no protection. The growing needs of RA occur at the same time that commercial demand for spectrum is driving the Federal Communications Commission and the International Telecommuncations Union to consider entirely new approaches to spectrum management. These approaches would favor intensive commercial use of spectrum over scientific use in that decisions would be largely based on economic and efficient use considerations. It has even been proposed by some proponents of change in spectrum management policy that the entire spectrum be sold to the highest bidders in one global auction. While this is unlikely to happen, it is indicative of the climate in which RA spectrum managers currently work.

  11. FANATIC: An SIS Radiometer for Radio Astronomy in the 660-690 GHz Band

    NASA Astrophysics Data System (ADS)

    Harris, A. I.; Schuster, K.-F.; Gundlach, K.-H.; Plathner, B.

    1994-05-01

    FANATIC is a compact radiometer optimized for radio astronomy from about 660 to 690 GHz (455-435 micron). We observed a large number of molecular and atomic spectral lines from galactic and extragalactic sources during FANATIC's first run on the James Clerk Maxwell Telescope in early March 1994. Double sideband receiver temperatures during observations were about 800 K (25 hv/k). The heart of the receiver is a two-junction Nb/AlOx/Nb SIS array fed by a sandwiched V-Antenna. The junction array and antenna are fabricated together at IRAM's Grenoble SIS laboratory. Each junction has a normal resistance of Rn~10 ohm, an area of ~2 um^2 , an individual radial stub circuit to resonate the capacitance, and a 1/4-wavelength transformer to match to the antenna. The solid-state local oscillator is a mm-wave Gunn oscillator followed by a doubler and tripler. The LO diplexer is a Martin-Puplett interferometer, which insures that there is always abundant LO power for operation and speedy tuning. The receiver and telescope coupling optics, LO, dewar, and calibration system fit on an 0.6 x 0.8 m optical breadboard.

  12. FANATIC: an SIS radiometer for radio astronomy from 660 to 695 GHz

    NASA Astrophysics Data System (ADS)

    Harris, A. I.; Schuster, K.-F.; Genzel, R.; Plathner, B.; Gundlach, K.-H.

    1994-09-01

    FANATIC is a compact radiometer optimized for radio astronomy from about 660 to 695 GHz (lambda 455 - 432 micron). We observed a large number of molecular and atomic spectral lines from galactic and extragalactic sources during FANATIC's first run on the James Clerk Maxwell Telescope in early March 1994. Double sideband receiver temperatures during observations were about 800 K (25 h nu/k). The heart of the receiver is a two-junction Nb/AlO(x)/Nb SIS array fed by a sandwiched V-antenna. The junction array and antenna are fabricated together at IRAM's Grenoble SIS laboratory. Each junction has a normal resistance of Rn approximately 10 Ohm, an area of approximately 2 sq micron, an individual radial stub circuit to resonate the capacitance, and a lambda/4 transformer to match to the antenna. The solid-state local oscillator is a mm-wave Gunn oscillator followed by a doubler and tripler. The LO diplexer is a Martin-Puplett interferometer, which insures that there is always abundant LO power for operation and speedy tuning. The receiver and telescope coupling optics, LO, dewar, and calibration system fit on an 0.6 x 0.8 m optical breadboard.

  13. The Evolution of the National Radio Astronomy Observatory into a User Based Observatory

    NASA Astrophysics Data System (ADS)

    Kellerman, Kenneth I.; Bouton, E.

    2006-12-01

    The NRAO was conceived in the mid 1950s as a state-of-the-art facility to allow the United States to compete in the exciting radio astronomy discoveries then taking place in the U.K., the Netherlands and Australia. Otto Struve, the first NRAO director in Green Bank, was chosen to lead the Observatory research program. During Struve's tenure as director, nearly all of the research was carried out by NRAO staff members resident at the Green Bank Observatory. However, under Dave Heeschen, who served as NRAO Director from 1961 to 1978, the number of visitor programs gradually increased; the NRAO scientific staff become more involved in visitor support than in doing their own research, and users became more dependent on instruments and techniques developed by NRAO, often not even coming to the Observatory for their observations. Currently, about half of the observing time on NRAO facilities is allocated to observers from foreign institutions -institutions with which NRAO was built to compete.

  14. Detection of dust impacts by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Evans, David R.

    1993-01-01

    The Planetary Radio Astronomy (PRA) instrument detected large numbers of dust particles during the Voyager 2 encounter with Neptune. The signatures of these impacts are analyzed in some detail. The major conclusions are described. PRA detects impacts from all over the spacecraft body, not just the PRA antennas. The signatures of individual impacts last substantially longer than was expected from complementary Plasma Wave Subsystem (PWS) data acquired by another Voyager experiment. The signatures of individual impacts demonstrate very rapid fluctuations in signal strength, so fast that the data are limited by the speed of response of the instrument. The PRA detects events at a rate consistently lower than does the Plasma Wave subsystem. Even so, the impact rate is so great near the inbound crossing of the ring plane that no reliable estimate of impact rate can be made for this period. The data are consistent with the presence of electrons accelerated by ions within an expanding plasma cloud from the point of impact. An ancillary conclusion is that the anomalous appearance of data acquired at 900 kHz appears to be due to an error in processing the PRA data prior to their delivery rather than due to overload of the PRA instrument.

  15. Radio Telescopes Extend Astronomy's Best "Yardstick," Provide Vital Tool for Unraveling Dark Energy Mystery

    NASA Astrophysics Data System (ADS)

    2009-06-01

    Radio astronomers have directly measured the distance to a faraway galaxy, providing a valuable "yardstick" for calibrating large astronomical distances and demonstrating a vital method that could help determine the elusive nature of the mysterious Dark Energy that pervades the Universe. Galaxy UGC 3789 Visible-light image of UGC 3789 CREDIT: STScI "We measured a direct, geometric distance to the galaxy, independent of the complications and assumptions inherent in other techniques. The measurement highlights a valuable method that can be used to determine the local expansion rate of the Universe, which is essential in our quest to find the nature of Dark Energy," said James Braatz, of the National Radio Astronomy Observatory (NRAO), who presented the work to the American Astronomical Society's meeting in Pasadena, California. Braatz and his colleagues used the National Science Foundation's Very Long Baseline Array (VLBA) and Robert C. Byrd Green Bank Telescope (GBT), and the Effelsberg Radio Telescope of the Max Planck Institute for Radioastronomy (MPIfR) in Germany to determine that a galaxy dubbed UGC 3789 is 160 million light-years from Earth. To do this, they precisely measured both the linear and angular size of a disk of material orbiting the galaxy's central black hole. Water molecules in the disk act as masers to amplify, or strengthen, radio waves the way lasers amplify light waves. The observation is a key element of a major effort to measure the expansion rate of the Universe, known as the Hubble Constant, with greatly improved precision. That effort, cosmologists say, is the best way to narrow down possible explanations for the nature of Dark Energy. "The new measurement is important because it demonstrates a one-step, geometric technique for measuring distances to galaxies far enough to infer the expansion rate of the Universe," said Braatz. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF The VLBA Very Long Baseline Array CREDIT: NRAO/AUI/NSF Dark Energy was discovered in 1998 with the observation that the expansion of the Universe is accelerating. It constitutes 70 percent of the matter and energy in the Universe, but its nature remains unknown. Determining its nature is one of the most important problems in astrophysics. "Measuring precise distances is one of the oldest problems in astronomy, and applying a relatively new radio-astronomy technique to this old problem is vital to solving one of the greatest challenges of 21st Century astrophysics," said team member Mark Reid of the Harvard-Smithsonian Center for Astrophysics (CfA). The work on UGC 3789 follows a landmark measurement done with the VLBA in 1999, in which the distance to the galaxy NGC 4258 -- 23 million light-years -- was directly measured by observing water masers in a disk of material orbiting its central black hole. That measurement allowed refinement of other, indirect distance-measuring techniques using variable stars as "standard candles." The measurement to UGC 3789 adds a new milepost seven times more distant than NGC 4258, which itself is too close to measure the Hubble Constant directly. The speed at which NGC 4258 is receding from the Milky Way can be influenced by local effects. "UGC 3789 is far enough that the speed at which it is moving away from the Milky Way is more indicative of the expansion of the Universe," said team member Elizabeth Humphreys of the CfA. Following the achievement with NGC 4258, astronomers used the highly-sensitive GBT to search for other galaxies with similar water-molecule masers in disks orbiting their central black holes. Once candidates were found, astronomers then used the VLBA and the GBT together with the Effelsberg telescope to make images of the disks and measure their detailed rotational structure, needed for the distance measurements. This effort requires multi-year observations of each galaxy. UGC 3789 is the first galaxy in the program to yield such a precise distance. Team member Cheng-Yu Kuo of the University of V

  16. Making an International Impact: A Joint International Astronomy Project

    ERIC Educational Resources Information Center

    Scott, Robert; Shen, Xinrong; Mulley, Ian

    2012-01-01

    Early in 2010, a group of year 11 students (age 15-16) studying GCSE (General Certificate of Secondary Education) Astronomy at The Radclyffe School, Oldham, in the UK, teamed up with a similar age group from Tianyi High School, Wuxi City, in China, to undertake a joint astronomy investigation. This article outlines the outcome of the first stage

  17. Seeing the Sky: 100 Projects, Activities, and Explorations in Astronomy.

    ERIC Educational Resources Information Center

    Schaaf, Fred

    1990-01-01

    Fourteen astronomy activities are presented including classroom procedures and questions. Topics include different investigations of the moon, planets, stars, sunsets, light pollution, and rainbows and halos. Additional information on measurements used for observations in astronomy, and rainbow characteristics is included. (CW)

  18. Making an International Impact: A Joint International Astronomy Project

    ERIC Educational Resources Information Center

    Scott, Robert; Shen, Xinrong; Mulley, Ian

    2012-01-01

    Early in 2010, a group of year 11 students (age 15-16) studying GCSE (General Certificate of Secondary Education) Astronomy at The Radclyffe School, Oldham, in the UK, teamed up with a similar age group from Tianyi High School, Wuxi City, in China, to undertake a joint astronomy investigation. This article outlines the outcome of the first stage…

  19. Engaging students in astronomy and spectroscopy through Project SPECTRA!

    NASA Astrophysics Data System (ADS)

    Wood, E. L.

    2011-12-01

    Computer simulations for minds-on learning with "Project Spectra!" How do we gain information about the Sun? How do we know Mars has CO2 or that Enceladus has H2O geysers? How do we use light in astronomy? These concepts are something students and educators struggle with because they are abstract. Using simulations and computer interactives (games) where students experience and manipulate the information makes concepts accessible. Visualizing lessons with multi-media solidifies understanding and retention of knowledge and is completely unlike its paper-and-pencil counterpart. Visualizations also enable teachers to forgo purchasing expensive laboratory equipment. "Project Spectra!" is a science and engineering program that uses computer-based Flash interactives to expose students to astronomical spectroscopy and actual data in a way that is not possible with traditional in-class activities. To engage students in "Project Spectra!", students are given a mission, which connects them with the research at hand. Missions range from exploring remote planetary atmospheres and surfaces, experimenting with the Sun using different filters, or analyzing the soil of a remote planet. Additionally, students have an opportunity to learn about NASA missions, view movies, and see images connected with their mission, which is something that is not practical to do during a typical paper-and-pencil activity. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. These interactives complement in-class Project SPECTRA! activities exploring applications of the electromagnetic spectrum.

  20. Investigation of radio astronomy image processing techniques for use in the passive millimetre-wave security screening environment

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher T.; Hutchinson, Simon; Salmon, Neil A.; Wilkinson, Peter N.; Cameron, Colin D.

    2014-06-01

    Image processing techniques can be used to improve the cost-effectiveness of future interferometric Passive MilliMetre Wave (PMMW) imagers. The implementation of such techniques will allow for a reduction in the number of collecting elements whilst ensuring adequate image fidelity is maintained. Various techniques have been developed by the radio astronomy community to enhance the imaging capability of sparse interferometric arrays. The most prominent are Multi- Frequency Synthesis (MFS) and non-linear deconvolution algorithms, such as the Maximum Entropy Method (MEM) and variations of the CLEAN algorithm. This investigation focuses on the implementation of these methods in the defacto standard for radio astronomy image processing, the Common Astronomy Software Applications (CASA) package, building upon the discussion presented in Taylor et al., SPIE 8362-0F. We describe the image conversion process into a CASA suitable format, followed by a series of simulations that exploit the highlighted deconvolution and MFS algorithms assuming far-field imagery. The primary target application used for this investigation is an outdoor security scanner for soft-sided Heavy Goods Vehicles. A quantitative analysis of the effectiveness of the aforementioned image processing techniques is presented, with thoughts on the potential cost-savings such an approach could yield. Consideration is also given to how the implementation of these techniques in CASA might be adapted to operate in a near-field target environment. This may enable a much wider usability by the imaging community outside of radio astronomy and thus would be directly relevant to portal screening security systems in the microwave and millimetre wave bands.

  1. Highlighting the history of French radio astronomy. 4: Early solar research at the cole Normale Suprieure, Narcoussis and Nanay

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Steinberg, Jean-Louis; Kundu, Mukul; Arsac, Jacques; Blum, mile-Jacques; Boischot, Andr

    2009-11-01

    The first tentative steps in solar radio astronomy took place during the 1940s and early 1950s as physicists and engineers in a number of countries used recycled World War II equipment to investigate the flux levels and polarisation of solar bursts and emission from the quiet Sun, and sought to understand the connection between this emission and optical features in the solar photosphere and chromosphere. There was also an abiding interest in the terrestrial effects of this solar radio emission. Among these solar pioneers were French radio astronomers from the cole Normale Suprieure in Paris. In this paper we review the early solar observations made by them from Paris, Marcoussis and Nanay prior to the construction of a number of innovative multi-element solar interferometers at the Nanay field station in the mid-1950s.

  2. Multi-messenger Astronomy of Gravitational-wave Sources with Flexible Wide-area Radio Transient Surveys

    NASA Astrophysics Data System (ADS)

    Yancey, Cregg C.; Bear, Brandon E.; Akukwe, Bernadine; Chen, Kevin; Dowell, Jayce; Gough, Jonathan D.; Kanner, Jonah; Kavic, Michael; Obenberger, Kenneth; Shawhan, Peter; Simonetti, John H.; -Wei Tsai, Gregory B. Taylor, Jr.

    2015-10-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg2 sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.

  3. Multi-messenger astronomy of gravitational-wave sources with flexible wide-area radio transient surveys

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Cregg C. Yancey, Brandon E. Bear, Bernadine Akukwe, Kevin Chen, Jayce Dowell, Jonathan D. Gough, Jonah Kanner, Kenneth Obenberger, Peter Shawhan, John H. Simonetti , Gregory B. Taylor , Jr-Wei Tsai

    2016-01-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg(2) sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.

  4. Popularization of Astronomy under Cooperation between Students and Educators in Japan: the TENPLA project (1)

    NASA Astrophysics Data System (ADS)

    Hiramatsu, M.; Takanashi, N.; Kamegai, K.; Tsukada, K.

    2006-08-01

    We present the concepts and products of the Tenpla project, a unique activity in popularization of astronomy under cooperation between students of astronomy and educators in Japan. The goal of the project is to show the true, latest and exciting results of astronomy, and to let more people be familiar with and find pleasure in astronomy, as they enjoy sports and fine arts. Our mailing list has about 200 participants, including 80 university students. The members share information and exchange views on various educational activities. Derived from the discussions, we have proposed some innovative materials for popularization of astronomy. Our "Astronomical Toilet Paper (ATP)" is a novel tool which enables public people to get close to astronomy. We have also developed a typing game "Sora-Uchi" and a Japanese card game "Astro-Karuta". These products have won a lot of coverage in the mass media and this helps to awake people's interest in astronomy. In this paper, we show the details of our projects and responses of the public.

  5. The Radio JOVE Project: A New Multi-channel Spectrum Analyzer

    NASA Astrophysics Data System (ADS)

    Flagg, D.; Sky, J.; Reyes, F.; Thieman, J.; Higgins, C.

    2004-05-01

    A new radio spectrograph is now operational at the University of Florida Radio Observatory (UFRO) via the education and public outreach project called the Radio JOVE project(http://radiojove.gsfc.nasa.gov). The UFRO telescope is a 16-element 10-40 MHz log spiral array which is sensitive to both right-hand and left-hand circular polarization. Another spectrograph is connected to a 17-30 MHz log-periodic antenna located at Windward Community College in Hawaii (http://jupiter.wcc.hawaii.edu). Freely available software from Radio-Sky Publishing (http://www.radiosky.com) allows students, teachers, and radio astronomy enthusiasts to view the spectral data in real time via the Internet. Ultimately team members will be able to log on to the telescope and control the antenna and spectrometer's total sweep range, polarization, and calibrations. The software and telescope controls are discussed, and recent data results are shown. These data are of high quality and can lead to research applications.

  6. The history of early low frequency radio astronomy in Australia. 3: Ellis, Reber and the Cambridge field station near Hobart

    NASA Astrophysics Data System (ADS)

    George, Martin; Orchiston, Wayne; Slee, Bruce; Wielebinski, Richard

    2015-07-01

    Low frequency radio astronomy in Tasmania began with the arrival of Grote Reber to the State in 1954. After analysing ionospheric data from around the world, he concluded that Tasmania would be a very suitable place to carry out low frequency observations. Communications with Graeme Ellis in Tasmania, who had spent several years studying the ionosphere, led to a collaboration between the two in 1955 during which year they made observations at Cambridge, near Hobart. Their observations took place at four frequencies between 2.13 MHz and 0.52 MHz inclusive, with the results at the higher frequencies revealing a clear celestial component

  7. Finding the Forest Amid the Trees: Tools for Evaluating Astronomy Education and Public Outreach Projects

    ERIC Educational Resources Information Center

    Bailey, Janelle M.; Slater, Timothy F.

    2004-01-01

    The effective evaluation of educational projects is becoming increasingly important to funding agencies and to the individuals and organizations involved in the projects. This brief "how-to" guide provides an introductory description of the purpose and basic ideas of project evaluation, and uses authentic examples from four different astronomy and

  8. Everything You Wanted to Know about Evaluating Your Astronomy Education Project But Were Afraid to Ask

    NASA Astrophysics Data System (ADS)

    Slater, T. F.; Skala, C.; Meech, K. J.; Adams, J. P.

    1999-12-01

    It is becoming common for research astronomers to become involved with, and often lead, astronomy education projects for K-18 levels and outreach to the general public. Typically, these projects have three principle goals: (i) increase the general astronomy background knowledge of participants; (ii) enhance the participants' life-long attitudes toward astronomy, and science in general; and (iii) increase participants' skills toward using astronomy (high quality teaching by teachers, advanced observing by amateurs, science-positive voting by legislators, etc.). As many financially sponsoring foundations or agencies now require a project evaluation, research astronomers are being asked to document the effectiveness and impact of their activities. Evaluation plans are often presented in proposals as a matrix with rows indicating the specific project goals and outcomes with columns showing project activities, assessment data sources and analysis strategies, and performance indicators of success. Astronomy knowledge increases are commonly measured by pre- and posttests, enhanced attitudes with pre- and posttest Likert scale surveys with responses ranging from "(1) strongly agree" to "(5) strongly disagree," and improved skills by clinical interviews or observation checklists. Quantitative data can be validated qualitatively using individual or group interviews with participants; however, the evaluation results that are often the most convincing employ a triangulated, multi-data source approach to assessing stated project goals which use a combination both quantitative and qualitative data. This work supported in part by NSF TE 9731083 and NASA #NAG5-4576.

  9. The Radio Language Arts Project: Teaching by Radio in Rural Kenyan Primary Schools.

    ERIC Educational Resources Information Center

    Christensen, Philip R.

    The Radio Language Arts Project, a five-year research and development effort funded by the U.S. Agency for International Development in cooperation with the Kenya government to systematically assess the costs and benefits of intensive use of radio as the principal vehicle for primary level English instruction in rural areas of Kenya, is described

  10. Development of Radio Astronomy at Centre for Basic Space Science Observatory, Nsukka Nigeria

    NASA Astrophysics Data System (ADS)

    Aliyu, Nasiru; Okere, Bonaventure I.; Lanre, Daniyan O.; Ezechi, Nwachukwu E.

    2015-08-01

    Radio telescopes for research, teaching and learning at Centre for Basic Space Science (CBSS) observatory are currently in place of development. A small parabolic radio telescope with diameter of 3.0 m working at 1420 MHz is already available for general purpose of radio astronomical observations. In addition, a Radio Jove telescope with dual dipole antenna working at 20 MHz and Sudden Ionospheric Disturbance (SID) monitor working at 24 KHz are also available. It is suitable to monitor daily solar burst, solar flares as well as Jupiter decametric emission. More over, CBSS radio interferometers are now under construction. It consists of non-tracking Radio Jove array and SID monitor as well as two radio telescope tracking interferometers. The latter is planned to utilize up to 4 antennas. Multi frequency receivers are made available at 24 KHz, 20 and 1420 MHz and will be used for VLBI in the near future.

  11. ESO Signs Largest-Ever European Industrial Contract For Ground-Based Astronomy Project ALMA

    NASA Astrophysics Data System (ADS)

    2005-12-01

    ESO, the European Organisation for Astronomical Research in the Southern Hemisphere, announced today that it has signed a contract with the consortium led by Alcatel Alenia Space and composed also of European Industrial Engineering (Italy) and MT Aerospace (Germany), to supply 25 antennas for the Atacama Large Millimeter Array (ALMA) project, along with an option for another seven antennas. The contract, worth 147 million euros, covers the design, manufacture, transport and on-site integration of the antennas. It is the largest contract ever signed in ground-based astronomy in Europe. The ALMA antennas present difficult technical challenges, since the antenna surface accuracy must be within 25 microns, the pointing accuracy within 0.6 arc seconds, and the antennas must be able to be moved between various stations on the ALMA site. This is especially remarkable since the antennas will be located outdoor in all weather conditions, without any protection. Moreover, the ALMA antennas can be pointed directly at the Sun. ALMA will have a collecting area of more than 5,600 square meters, allowing for unprecedented measurements of extremely faint objects. The signing ceremony took place on December 6, 2005 at ESO Headquarters in Garching, Germany. "This contract represents a major milestone. It allows us to move forward, together with our American and Japanese colleagues, in this very ambitious and unique project," said ESO's Director General, Dr. Catherine Cesarsky. "By building ALMA, we are giving European astronomers access to the world's leading submillimetre facility at the beginning of the next decade, thereby fulfilling Europe's desire to play a major role in this field of fundamental research." Pascale Sourisse, Chairman and CEO of Alcatel Alenia Space, said: "We would like to thank ESO for trusting us to take on this new challenge. We are bringing to the table not only our recognized expertise in antenna development, but also our long-standing experience in coordinating consortiums in charge of complex, high-performance ground systems." ALMA is an international astronomy facility. It is a partnership between Europe, North America and Japan, in cooperation with the Republic of Chile. The European contribution is funded by ESO and Spain, with the construction and operations being managed by ESO. A matching contribution is being made by the USA and Canada, who will also provide 25 antennas. Japan will provide additional antennas, thus making this a truly worldwide endeavour. ALMA will be located on the 5,000m high Llano de Chajnantor site in the Atacama Desert of Northern Chile. ALMA will consist of a giant array of 12-m antennas separated by baselines of up to 18 km and is expected to start partial operation by 2010-2011. The excellent site, the most sensitive receivers developed so far, and the large number of antennas will allow ALMA to have a sensitivity that is many times better than any other comparable instrument. "ALMA will bring to sub-millimetre astronomy the aperture synthesis techniques of radio astronomy, enabling precision imaging to be done on sub-arcsecond angular scales, and will nicely complement the ESO VLT/VLTI observatory", said Dr. Hans Rykaczewski, the ALMA European Project Manager. Millimetre-wave astronomy is the study of the universe in the spectral region between what is traditionally considered radio waves and infrared radiation. In this realm, ALMA will study the evolution of galaxies, including very early stages, gather crucial data on the formation of stars, proto-planetary discs, and planets, and provide new insights on the familiar objects of our own solar system. A prototype antenna had already been built by Alcatel Alenia Space and European Industrial Engineering and thoroughly tested along with prototypes antennas from Vertex/LSI and Mitsubishi at the ALMA Antenna Test Facility located at the Very Large Array site in Socorro, New Mexico. For more information on the ALMA project, please go to http://www.eso.org/projects/alma/.

  12. The General Education Astronomy Source (GEAS) Project: Extending the Reach of Astronomy Education

    NASA Astrophysics Data System (ADS)

    Vogt, N. P.; Muise, A. S.

    2014-07-01

    We present a set of NASA and NSF sponsored resources to aid in teaching astronomy remotely and in the classroom at the college level, with usage results for pilot groups of students. Our goal is to increase the accessibility of general education science coursework to underserved populations nationwide. Our materials are available for use without charge, and we are actively looking for pilot instructors. Primary components of our program include an interactive online tutorial program with over 12,000 questions, an instructor review interface, a set of hands-on and imaging- and spectra-driven laboratory exercises, including video tutorials, and interviews with diverse individuals working in STEM fields to help combat stereotypes. We discuss learning strategies often employed by students without substantial scientific training and suggest ways to incorporate them into a framework based on the scientific method and techniques for data analysis, and we compare cohorts of in-class and distance-education students.

  13. Inquiry-Based Educational Design for Large-Scale High School Astronomy Projects Using Real Telescopes

    ERIC Educational Resources Information Center

    Fitzgerald, Michael; McKinnon, David H.; Danaia, Lena

    2015-01-01

    In this paper, we outline the theory behind the educational design used to implement a large-scale high school astronomy education project. This design was created in response to the realization of ineffective educational design in the initial early stages of the project. The new design follows an iterative improvement model where the materials

  14. Inquiry-Based Educational Design for Large-Scale High School Astronomy Projects Using Real Telescopes

    ERIC Educational Resources Information Center

    Fitzgerald, Michael; McKinnon, David H.; Danaia, Lena

    2015-01-01

    In this paper, we outline the theory behind the educational design used to implement a large-scale high school astronomy education project. This design was created in response to the realization of ineffective educational design in the initial early stages of the project. The new design follows an iterative improvement model where the materials…

  15. Multiverso: Rock'n'Astronomy

    NASA Astrophysics Data System (ADS)

    Caballero, J. A.

    2012-05-01

    In the last few years, there have been several projects involving astronomy and classical music. But have a rock band ever appeared at a science conference or an astronomer at a rock concert? We present a project, Multiverso, in which we mix rock and astronomy, together with poetry and video art (Caballero, 2010). The project started in late 2009 and has already reached tens of thousands people in Spain through the release of an album, several concert-talks, television, radio, newspapers and the internet.

  16. The history of early low frequency radio astronomy in Australia. 4: Kerr, Shain, Higgins and the Hornsby Valley field station near Sydney

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Slee, Bruce; George, Martin; Wielebinski, Richard

    2015-11-01

    Between 1949 and 1952 the CSIR's Division of Radiophysics was a world leader in low frequency radio astronomy, through research conducted mainly by Alex Shain and Charlie Higgins at their Hornsby Valley field station near Sydney. In this paper we discuss the personnel, radio telescopes and research programs (mainly conducted at 9.15 and 18.3 MHz) associated with the Hornsby Valley site.

  17. The Spectrum of Citizen Science Projects in Astronomy and Space Science

    NASA Astrophysics Data System (ADS)

    Mndez, B. J. H.; Day, B.; Gay, P. L.; Jacoby, S. H.; Raddick, M. J.; Walker, C. E.; Pompea, S. M.

    2010-08-01

    Citizen science projects are gaining in popularity and are seen by some as a paradigm shift that will benefit participants, extend scientific research, and improve public understanding of how science is done. All projects engage nonspecialists in observations, measurements, or classifications that further some aspect of scientific activity. In astronomy and space science, there is a range of involvement from passive to active, and differences in how necessary the citizen scientists are to the scientific goals of the project. Some projects are dealing with scientific questions that could not be investigated effectively and efficiently without the aid of large numbers of human volunteers. We will conduct a panel discussion of the lessons learned from several current citizen science projects in astronomy and space science. We will also engage session participants in round table discussions of future citizen science projects, especially in light of the large data sets becoming available online and access to educational telescopes.

  18. Radio Astronomy Tools in Python: Spectral-cube, pvextractor, and more

    NASA Astrophysics Data System (ADS)

    Ginsburg, A.; Robitaille, T.; Beaumont, C.; Rosolowsky, E.; Leroy, A.; Brogan, C.; Hunter, T.; Teuben, P.; Brisbin, D.

    2015-12-01

    The radio-astro-tools organization has been established to facilitate development of radio and millimeter analysis tools by the scientific community. The first packages developed under its umbrella are: • The spectral-cube package, for reading, writing, and analyzing spectral data cubes • The pvextractor package for extracting position-velocity slices from position-position-velocity cubes along aribitrary paths • The radio-beam package to handle gaussian beams in the context of the astropy quantity and unit framework • casa-python to enable installation of these packages - and any other - into users' CASA environments without conflicting with the underlying CASA package. Community input in the form of code contributions, suggestions, questions and commments is welcome on all of these tools. They can all be found at http://radio-astro-tools.github.io.

  19. The Astronomical Low Frequency Array: A Proposed Explorer Mission for Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Jones, D.; Allen, R.; Basart, J.; Bastian, T.; Bougeret, J. L.; Dennison, B.; Desch, M.; Dwarakanath, K.; Erickson, W.; Finley, D.; Kaiser, M.; Kassim, N.; Kuiper, T.; MacDowall, R.; Mahoney, M.; Perley, R.; Preston, R.; Reiner, M.; Rodriguez, P.; Stone, R.; Unwin, S.; Weiler, K.; Woan, G.; Woo, R.

    1999-01-01

    A radio interferometer array in space providing high dynamic range images with unprecedented angular resolution over the broad frequency range from 0.030 - 30 MHz will open new vistas in solar, terrestial, galactic, and extragalactic astrophysics.

  20. Discovering astronomy

    NASA Technical Reports Server (NTRS)

    Chapman, R. D.

    1978-01-01

    An overview of basic astronomical knowledge is presented with attention to the structure and dynamics of the stars and planets. Also dealt with are techniques of astronomical measurement, e.g., stellar spectrometry, radio astronomy, star catalogs, etc. Basic physical principles as they pertain to astronomy are reviewed, including the nature of light, gravitation, and electromagnetism. Finally, stellar evolution and cosmology are discussed with reference to the possibility of life elsewhere in the universe.

  1. Source counts at 5 gigahertz from the MG survey. [radio astronomy

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Lawrence, C. R.; Burke, B. F.

    1985-01-01

    The MIT-Green Bank (MG) radio survey (reported by Bennett and colleagues in 1984 and 1985) is the largest 5 GHz survey to date. In this paper the source counts from the MG survey are examined. They are consistent with past measurements, but due to the large size of the MG survey the Poisson errors have been reduced. Radio source evolution models (such as that reported by Condon in 1984) are consistent with these new measurements.

  2. Small Explorer project: Submillimeter Wave Astronomy Satellite (SWAS). Mission operations and data analysis plan

    NASA Technical Reports Server (NTRS)

    Melnick, Gary J.

    1990-01-01

    The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.

  3. Communicating Astronomy in a Metropolis and Disaster Area - Activities of the Tenpla Project

    NASA Astrophysics Data System (ADS)

    Kamegai, K.; Takanashi, N.; Hiramatsu, M.; Naito, S.

    2015-03-01

    We present recent activities delivering astronomy to the public by the Tenpla project in Japan. One is voluntary activities in the disaster area of the Great East Japan Earthquake. The other is holding tens of star parties and public lectures in the central area of Tokyo.

  4. Learning Approaches, Course Experience, and Astronomy Understanding in The Oklahoma Project.

    ERIC Educational Resources Information Center

    Mann, Jennifer; Williams, Karen; Rutledge, Carl

    1998-01-01

    Details a project designed to bolster the quality of astronomy education through teacher workshops. Workshop topics include the solar system, stars, stellar evolution, galaxies, and cosmology. The Learning Approach Questionnaire (LAQ) is used to determine the effects of the workshops. (DDR)

  5. Managing Astronomy Research Data: Case Studies of Big and Small Research Projects

    NASA Astrophysics Data System (ADS)

    Sands, Ashley E.

    2015-01-01

    Astronomy data management refers to all actions taken upon data over the course of the entire research process. It includes activities involving the collection, organization, analysis, release, storage, archiving, preservation, and curation of research data. Astronomers have cultivated data management tools, infrastructures, and local practices to ensure the use and future reuse of their data. However, new sky surveys will soon amass petabytes of data requiring new data management strategies.The goal of this dissertation, to be completed in 2015, is to identify and understand data management practices and the infrastructure and expertise required to support best practices. This will benefit the astronomy community in efforts toward an integrated scholarly communication framework.This dissertation employs qualitative, social science research methods (including interviews, observations, and document analysis) to conduct case studies of data management practices, covering the entire data lifecycle, amongst three populations: Sloan Digital Sky Survey (SDSS) collaboration team members; Individual and small-group users of SDSS data; and Large Synoptic Survey Telescope (LSST) collaboration team members. I have been observing the collection, release, and archiving of data by the SDSS collaboration, the data practices of individuals and small groups using SDSS data in journal articles, and the LSST collaboration's planning and building of infrastructure to produce data.Preliminary results demonstrate that current data management practices in astronomy are complex, situational, and heterogeneous. Astronomers often have different management repertoires for working on sky surveys and for their own data collections, varying their data practices as they move between projects. The multitude of practices complicates coordinated efforts to maintain data.While astronomy expertise proves critical to managing astronomy data in the short, medium, and long term, the larger astronomy data workforce encompasses a greater breadth of educational backgrounds. Results show that teams of individuals with distinct expertise are key to ensuring the long-term preservation and usability of astronomy datasets.

  6. Smart Images in a Web 2.0 World: The Virtual Astronomy Multimedia Project (VAMP)

    NASA Astrophysics Data System (ADS)

    Hurt, R. L.; Christensen, L. L.; Gauthier, A.; Wyatt, R.

    2008-06-01

    High quality astronomical images, accompanied by rich caption and background information, abound on the web and yet are notoriously difficult to locate efficiently using common search engines. ``Flat'' searches can return dozens of hits for a single popular image but miss equally important related images from other observatories. The Virtual Astronomy Multimedia Project (VAMP) is developing the architecture for an online index of astronomical imagery and video that will simplify access and provide a service around which innovative applications can be developed (e.g. digital planetariums). Current progress includes design prototyping around existing Astronomy Visualization Metadata (AVM) standards. Growing VAMP partnerships include a cross-section of observatories, data centers, and planetariums.

  7. A 5 Giga Samples Per Second 8-Bit Analog to Digital Printed Circuit Board for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Jiang, Homin; Liu, Howard; Guzzino, Kim; Kubo, Derek; Li, Chao-Te; Chang, Ray; Chen, Ming-Tang

    2014-09-01

    We have designed, manufactured, and characterized an 8-bit 5 Giga samples per second (Gsps) ADC printed circuit board assembly (PCBA). An e2v EV8AQ160 ADC chip was used in the design and the board is plug compatible with the field programmable gate array (FPGA) board developed by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) community. Astronomical interference fringes were demonstrated across a single baseline pair of antennas using two ADC boards on the Yuan Tseh Lee Array for Microwave Background Anisotropy (AMiBA) telescope. Several radio interferometers are using this board for bandwidth expansion, such as Submillimeter Array; also, several experimental telescopes are building new spectrometers using the same board. The ADC boards were attached directly to the Reconfigurable Open Architecture Computing Hardware (ROACH-2) FPGA board for processing of the digital output signals. This ADC board provides the capability of digitizing radio frequency signals from DC to 2 GHz (3 dB bandwidth), and to an extended bandwidth of 2.5 GHz (5 dB) with derated performance. The following worst-case performance parameters were obtained over 2 GHz: spur free dynamic range (SFDR) of 44 dB, signal-to-noise and distortion (SINAD) of 35 dB, and effective number of bits (ENOB) of 5.5.

  8. Characterizing Interference in Radio Astronomy Observations through Active and Unsupervised Learning

    NASA Technical Reports Server (NTRS)

    Doran, G.

    2013-01-01

    In the process of observing signals from astronomical sources, radio astronomers must mitigate the effects of manmade radio sources such as cell phones, satellites, aircraft, and observatory equipment. Radio frequency interference (RFI) often occurs as short bursts (< 1 ms) across a broad range of frequencies, and can be confused with signals from sources of interest such as pulsars. With ever-increasing volumes of data being produced by observatories, automated strategies are required to detect, classify, and characterize these short "transient" RFI events. We investigate an active learning approach in which an astronomer labels events that are most confusing to a classifier, minimizing the human effort required for classification. We also explore the use of unsupervised clustering techniques, which automatically group events into classes without user input. We apply these techniques to data from the Parkes Multibeam Pulsar Survey to characterize several million detected RFI events from over a thousand hours of observation.

  9. The wideband backend at the MDSCC in Robledo. A new facility for radio astronomy at Q- and K-bands

    NASA Astrophysics Data System (ADS)

    Rizzo, J. R.; Pedreira, A.; Gutiérrez Bustos, M.; Sotuela, I.; Larrañaga, J. R.; Ojalvo, L.; Franco, M.; Cernicharo, J.; García-Miró, C.; Castro Cerón, J. M.; Kuiper, T. B. H.; Vázquez, M.; Calvo, J.; Baquero, A.

    2012-06-01

    Context. The antennas of NASA's Madrid Deep Space Communications Complex (MDSCC) in Robledo de Chavela are available as single-dish radio astronomical facilities during a significant percentage of their operational time. Current instrumentation includes two antennas of 70 and 34 m in diameter, equipped with dual-polarization receivers in K (18-26 GHz) and Q (38-50 GHz) bands, respectively. Until mid-2011, the only backend available in MDSCC was a single spectral autocorrelator, which provides bandwidths from 2 to 16 MHz. The limited bandwidth available with this autocorrelator seriously limited the science one could carry out at Robledo. Aims: We have developed and built a new wideband backend for the Robledo antennas, with the objectives (1) to optimize the available time and enhance the efficiency of radio astronomy in MDSCC; and (2) to tackle new scientific cases that were impossible to investigate with the existing autocorrelator. Methods: The features required for the new backend include (1) a broad instantaneous bandwidth of at least 1.5 GHz; (2) high-quality and stable baselines, with small variations in frequency along the whole band; (3) easy upgradability; and (4) usability for at least the antennas that host the K- and Q-band receivers. Results: The backend consists of an intermediate frequency (IF) processor, a fast Fourier transform spectrometer (FFTS), and the software that interfaces and manages the events among the observing program, antenna control, the IF processor, the FFTS operation, and data recording. The whole system was end-to-end assembled in August 2011, at the start of commissioning activities, and the results are reported in this paper. Frequency tunings and line intensities are stable over hours, even when using different synthesizers and IF channels; no aliasing effects have been measured, and the rejection of the image sideband was characterized. Conclusions: The new wideband backend fulfills the requirements and makes better use of the available time for radio astronomy, which opens new possibilities to potential users. The first setup provides 1.5 GHz of instantaneous bandwidth in a single polarization, using 8192 channels and a frequency resolution of 212 kHz; upgrades under way include a second FFTS card, and two high-resolution cores providing 100 MHz and 500 MHz of bandwidth, and 16 384 channels. These upgrades will permit simultaneous observations of the two polarizations with instantaneous bandwidths from 100 MHz to 3 GHz, and spectral resolutions from 7 to 212 kHz.

  10. Analysis of the Capability and Limitations of Relativistic Gravity Measurements Using Radio Astronomy Methods

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.; Counselman, C. C., III

    1975-01-01

    The uses of radar observations of planets and very-long-baseline radio interferometric observations of extragalactic objects to test theories of gravitation are described in detail with special emphasis on sources of error. The accuracy achievable in these tests with data already obtained, can be summarized in terms of: retardation of signal propagation (radar), deflection of radio waves (interferometry), advance of planetary perihelia (radar), gravitational quadrupole moment of sun (radar), and time variation of gravitational constant (radar). The analyses completed to date have yielded no significant disagreement with the predictions of general relativity.

  11. Inferential statistics for transient signal detection in radio astronomy phased arrays

    NASA Astrophysics Data System (ADS)

    Schmid, Natalia A.; Prestage, Richard M.; Alkhweldi, Marwan

    2015-05-01

    In this paper we develop two statistical rules for the purpose of detecting pulsars and transients using signals from phased array feeds installed on a radio telescope in place of a traditional horn receiver. We assume a known response of the antenna arrays and known coupling among array elements. We briefly summarize a set of pre-processing steps applied to raw array data prior to signal detection and then derive two detection statistics assuming two models for the unknown radio source astronomical signal: (1) the signal is deterministic and (2) the signal is a random process. The performance of both detectors is analyzed using both real and simulated data.

  12. Development of Astronomy at the Planetarium of Havana. Project

    NASA Astrophysics Data System (ADS)

    Alvarez, Oscar

    2015-08-01

    In December 2009 to celebrate the International Year of Astronomy was inaugurated in Havana with a great constructive effort the only Planetarium in regular public service, currently serving in Cuba.After 5 years of operation open to the public is time to propose a series of activities that raise its level of activity as a Cultural Center of Science and Technology.The establishment of a cathedra of Astronomy and Astrophysics attached to a center of Higher Education once the staff acquire sufficient capacity and experience to conduct research programs is proposed, and also, to provide scientific expertise to educators in supporting the national system of education and outreach of the Cultural Center.In addition to becoming a member of the International Association of Planetariums, its active members will participate to international and national events, will increase our national membership in the International Astronomical Union and its commissions, an also to the Red Pop UNESCO and other related groups of IberoamericaIn order to ensure the scientific life of its main technical staff, efforts will be made to establish agreements with Higher Education related centers such as the Faculty of Physics at the University of Havana, the Higher Institute of Applied Science and Technology and other schools allowing professional activities of staff in these institutions to the Cultural Centre as university extension. This includes the maintenance of university students of all specialties covering fixed shifts as guides / aids in attention to visitors.The Cultural Center is designed as a modern concept embedded in a Colonial architecture and traditional external environment. Exhibitions, shows the space and other facilities - will provide visitors a set of tools to bring back home, concepts and information about the universe before it was too remote and too complex for the average citizen. It is undoubtedly a unique educational opportunity in the country to demystify the universe, bringing the latest available scientific data and understanding of learners of all ages, who have all this information is available images.

  13. The MEGA Project for Medium Energy Gamma-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Bloser, P. F.; Ryan, J. M.; McConnell, M. L.; Macri, J. R.; Bravar, U.; Kanbach, G.; Andritschke, R.; Ajello, M.; Zoglauer, A.; Hunter, S. D.; Phlips, B. F.; Wulf, E. A.; Hartmann, D. H.; Miller, R. S.; Paciesas, W. S.; Zych, A. D.; Kippen, R. M.; Vestrand, T.; Cherry, M. L.; Guzik, T. G.; Stacy, J. G.; Wefel, J. P.; Reglero, V.; Di Cocco, G.; Cravens, J. P.

    2006-12-01

    The Medium Energy Gamma-ray Astronomy (MEGA) telescope concept will soon be proposed as a MIDEX mission. This mission would enable a sensitive all-sky survey of the medium-energy gamma-ray sky (0.4 50 MeV) and bridge the huge sensitivity gap between the COMPTEL and OSSE experiments on the Compton Gamma Ray Observatory and the visionary Advanced Compton Telescope (ACT) mission. The scientific goals include compiling a much larger catalog of sources in this energy range, performing far deeper searches for supernovae, better measuring the galactic continuum and line emissions, and identifying the components of the cosmic diffuse gamma-ray emission. MEGA records and images gamma rays by completely tracking Compton and pair creation events in a stack of double-sided Si strip detectors surrounded by a pixellated CsI calorimeter. A prototype instrument has been developed and calibrated in the laboratory and at a gamma-ray beam facility. We present calibration results from the prototype and describe the proposed satellite mission.

  14. A Planetary System Exploration Project for Introductory Astronomy and Astrobiology Courses

    NASA Astrophysics Data System (ADS)

    Rees, Richard F.

    2015-01-01

    I have created three-part projects for the introductory astronomy and astrobiology courses at Westfield State University which simulate the exploration of a fictional planetary system. The introductory astronomy project is an initial reconnaissance of the system by a robotic spacecraft, culminating in close flybys of two or three planets. The astrobiology project is a follow-up mission concluding with the landing of a roving lander on a planet or moon. Student responses in earlier parts of each project can be used to determine which planets are targeted for closer study in later parts. Highly realistic views of the planets from space and from their surfaces can be created using programs such as Celestia and Terragen; images and video returned by the spacecraft are thus a highlight of the project. Although designed around the particular needs and mechanics of the introductory astronomy and astrobiology courses for non-majors at WSU, these projects could be adapted for use in courses at many different levels.

  15. Project Explorer GAS #007: Marshall Amateur Radio Club Experiment (MARCE)

    NASA Technical Reports Server (NTRS)

    Stluka, E. F.

    1986-01-01

    Polls were taken at the Project Explorer meetings regarding flying without the radio experiment transmitting. The radio downlinks require extra coordination and are sensitive to certain payloads. The poll results were unanimous. The radio downlinks are vital in providing data on the health and status of the total experiments package, in real time, during the flight. The amateur radio operators, prepared to receive the downlinks and OSCAR-10 relays, revealed that there was enormous interest throughout the world, to participate. This sets the stage for the reflight opportunities which the GAS program has provided. Major activities, pertinent to the STS-41G flight preparations by the GAS #007 team and support group, are listed.

  16. Low noise, 0.4-3 GHz cryogenic receiver for radio astronomy

    NASA Astrophysics Data System (ADS)

    Gawande, R.; Bradley, R.; Langston, G.

    2014-10-01

    We present the design and measurement of a radio telescope receiver front end cooled to 100 K physical temperature, and working over 400 MHz to 3 GHz frequency band. The system uses a frequency independent feed developed for operation as a feed for parabola using sinuous elements and integrated with an ultra-wideband low noise amplifier. The ambient temperature system is tested on the 43 m radio telescope in Green Bank, WV and the system verification results on the sky are presented. The cryogenic receiver is developed using a Stirling cycle, one stage cryocooler. The measured far field patterns and the system noise less than 80 K over a 5:1 bandwidth are presented.

  17. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    NASA Astrophysics Data System (ADS)

    Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.

    2016-02-01

    We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.

  18. Low noise, 0.4-3 GHz cryogenic receiver for radio astronomy.

    PubMed

    Gawande, R; Bradley, R; Langston, G

    2014-10-01

    We present the design and measurement of a radio telescope receiver front end cooled to 100 K physical temperature, and working over 400 MHz to 3 GHz frequency band. The system uses a frequency independent feed developed for operation as a feed for parabola using sinuous elements and integrated with an ultra-wideband low noise amplifier. The ambient temperature system is tested on the 43 m radio telescope in Green Bank, WV and the system verification results on the sky are presented. The cryogenic receiver is developed using a Stirling cycle, one stage cryocooler. The measured far field patterns and the system noise less than 80 K over a 5:1 bandwidth are presented. PMID:25362437

  19. Development of educational CD-ROMs in astronomy: Information on a collaborative project

    NASA Astrophysics Data System (ADS)

    Frede, Valerie

    The observatory of Paris and the institute of teacher training (IUFM) in Toulouse have collaborated to develop multimedia support for astronomy lessons. The goal of this project is to provide additional didactical material such as CD-ROMs to elementary and high school teachers which will be used by children in the classroom. In this paper, we present the aims of the project and describe briefly the contents that have been developed so far. The project is a part of “Astrophysique sur Mesure”, a broader project led by the observatory of Paris which encourages the involvement of astronomers in the development of pedagogical tools.

  20. The antenna DSA 3 and its potential use for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Benaglia, P.; Casco, N.; Cichowolski, S.; Cillis, A.; Garca, B.; Ravignani, D.; Reynoso, E. M.; de la Vega, G.

    The European Space Agency (ESA) will inaugurate its third Deep Space Antenna (DSA 3) by the end of 2012. DSA 3 will be located in Argentina near the city of Malarge in the Mendoza province. While the instrument will be primarily dedicated to communications with interplanetary mis- sions, the characteristics of its antenna and receivers will also enable stan- dalone leading scientific contributions, with a high scientific-technological return. We outline here scientific proposals for a radio astronomical use of DSA 3.

  1. Europe and US to Collaborate on the Design and Development of a Giant Radio Telescope Project in Chile

    NASA Astrophysics Data System (ADS)

    1999-06-01

    High Goals for the Atacama Large Millimeter Array (ALMA) Representatives from the U.S. and Europe signed an agreement today in Washington to continue collaboration on the first phase of a giant new telescope project. The telescope will image the Universe with unprecedented sensitivity and sharpness at millimeter wavelengths (between the radio and infrared spectral regions). It will be a major step for astronomy, making it possible to study the origins of galaxies, stars and planets. This project is a prime example of a truly global project, an essential development in view of the ever-increasing complexity and cost of front-line astronomical facilities. The U.S. side of the project is run by the National Radio Astronomy Observatory (NRAO) , operated by Associated Universities, Inc. (AUI) under a cooperative agreement with the National Science Foundation (NSF). The European side of the project is a collaboration between the European Southern Observatory (ESO) , the Centre National de la Recherche Scientifique (CNRS) , the Max-Planck-Gesellschaft (MPG) , the Netherlands Foundation for Research in Astronomy (NFRA) and Nederlandse Onderzoekschool Voor Astronomie (NOVA) , and the United Kingdom Particle Physics and Astronomy Research Council (PPARC). The Europe-U.S. agreement signed today may be formally extended in the very near future to include Japan, following an already existing tripartite declaration of intent. Dr. Robert Eisenstein, NSF's Assistant Director Mathematical and Physical Sciences, called the project "a path-breaking international partnership that will open far-reaching opportunities for astronomical observations. This array would enable astronomers to explore the detailed processes through which the stars and planets form and give us a vastly improved understanding of the formation of the first galaxies in the very early universe." Eisenstein welcomed the collaboration with Europe and Japan's interest in becoming a major partner. Speaking on behalf of the European Signatories, Prof. Riccardo Giacconi, Director General of the European Southern Observatory (ESO) , one of the signatories to the new astronomy project, described the new project as "absolutely fantastic and farsighted - a major ground-based astronomical observatory for the 21st century. It will open up a key region of the electromagnetic spectrum to study the very early universe and the interstellar clouds where the stars and planets are born". The new telescope will be located in the Atacama desert of northern Chile, and has been given the name ALMA, for "Atacama Large Millimeter Array". This land has been given in concession to CONICYT (The Chilean National Commission for Science and Technology) last year by the "Ministerio de Bienes Nacionales" (Ministry of National Assets). It has also been declared a national reserve for science by President Frei because of its unique capabilities for astronomical research. ALMA will be a revolutionary telescope, operating at millimeter and submillimeter wavelengths and comprised of an array of individual antennas each 12 meters in diameter that work together to make precision images of astronomical objects. The goal of the ALMA Project is an array of 64 antennas that can be positioned as needed over an area 10 km in diameter so as to give the array a zoom-lens capability. Dr. Paul Vanden Bout, Director of the U.S. National Radio Astronomy Observatory , emphasized the technical capabilities needed for the array: "The ALMA Project involves development of a variety of fundamental technologies including amplification of faint cosmic signals using superconducting receivers and ultrafast digital data processing, technologies that will enhance many related areas of scientific research". This MOU commits the Signatories to collaborate in a three-year Design and Development Phase 1 for a joint project. In the U.S., an amount of US $26 million has been approved for this phase, and in Europe, DM 28 million (15 million EURO). Two prototype 12-meter antennas will be cons

  2. Radio science

    NASA Astrophysics Data System (ADS)

    1984-10-01

    Radio science experiments use electromagnetic waves to probe or study the solar system. Three major research areas were identified within this discipline: radio astronomy, radar astronomy, and celestial mechanics. Radio astronomy (or radiometry) is the detection and measurement of naturally produced radio frequency emissions. Sources include surfaces, atmospheres, rings, and plasmas. Radar astronomy is the observation of man-made signals after their interaction with a target. Both imaging and non-imaging results. Celestial mechanics includes all studies related to the motions of (and gravity fields of) bodies within the solar system. These should not be considered rigid separations, but aid in the discussion of the data sets.

  3. Science operations management. [with Infrared Astronomy Satellite project

    NASA Technical Reports Server (NTRS)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  4. Astronomy Looks Different When You Listen to It.

    ERIC Educational Resources Information Center

    Jones, Richard C.

    1994-01-01

    Describes the use of a radio telescope to arouse new interest among students. The article partitions into the following sections: (1) Radio Astronomy--Which Level; (2) First Steps: The Site--The Antenna; (3) The Electronics: Do It Yourself, or Store Bought; (4) Field Test: Music of the Spheres; (5) Getting Started: Entry Level Projects; and (6)…

  5. Astronomy Looks Different When You Listen to It.

    ERIC Educational Resources Information Center

    Jones, Richard C.

    1994-01-01

    Describes the use of a radio telescope to arouse new interest among students. The article partitions into the following sections: (1) Radio Astronomy--Which Level; (2) First Steps: The Site--The Antenna; (3) The Electronics: Do It Yourself, or Store Bought; (4) Field Test: Music of the Spheres; (5) Getting Started: Entry Level Projects; and (6)

  6. On the optimal frequency of observation of Cherenkov radiation in the radio astronomy method for measuring superhigh-energy cosmic-ray particle flux

    NASA Astrophysics Data System (ADS)

    Filonenko, A. D.

    2008-09-01

    Possible reasons for the absence of direct observations of individual events in measuring the super-high-energy particle flux by the radio astronomy technique are considered. One of these reasons is probably associated with the choice of extremely high frequencies (1.5 GHz) for detecting radio pulses. Calculations show that the radiation intensity attains its peak value at frequencies 500 600 MHz and then sharply decreases so that it becomes three orders of magnitude lower even at a frequency of 1.5 GHz. The effectiveness of particle detection in the range of high (600 MHz) and low (60 MHz) frequencies is analyzed.

  7. Strategies for Creating Cornerstone Education Projects for the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Isbell, D.

    2008-12-01

    The General Assembly of the United Nations has designated 2009 as the International Year of Astronomy (IYA2009), a year-long global education program to commemorates the 400th anniversary of Galileo's first astronomical observations through a telescope. IYA2009 has an importance well beyond what can be accomplished in just one year. The main goal is to use this year to build sustainable, long-term education programs for measurable changes in science literacy in school children and in the public at large. The National Optical Astronomy Observatory (NOAO) with headquarters in Tucson and the American Astronomical Society (AAS) with headquarters in Washington D.C. are leading the coordination of IYA2009 activities in the United States under a grant from the National Science Foundation. NASA is also playing a large role. NOAO and AAS are working closely with United Nations Educational, Scientific and Cultural Organization (UNESCO), the International Astronomical Union (IAU), Astronomical Society of the Pacific (ASP), American Association of Variable Star Observers (AAVSO), The International Dark-Sky Association (IDA), and other trusted astronomy partners worldwide. Through collaboration and coordination, the participating partners will convey the excitement of personal discovery, the merits of the scientific process, and the pleasure of sharing new and fundamental knowledge about the Universe. This talk will describe the goals of the major cornerstone projects led by the United States including the Galileoscope education kit, dark skies education, image exhibition, and Galileo teacher training project. This work was supported by a grant from the National Science Foundation Astronomy Division. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  8. The magnetic field of Jupiter - A comparison of radio astronomy and spacecraft observations

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Gulkis, S.

    1979-01-01

    The inner magnetic field of Jupiter is characterized on the basis of Pioneer 10 and 11 measurements and earth-based decimetric radio observations. The dipole parameters derived from the two data sets are in good agreement. Problems in reconciling asymmetries observed in the earth-based data and the spacecraft data are discussed. Models of synchrotron emission from arbitrary magnetic field configurations and high-resolution maps of the Jovian radiation belts in all polarizations are needed to further understanding of Jupiter's magnetic field

  9. A planetary radio astronomy discussion of the 1.55 cm microwave emission of the earth

    NASA Technical Reports Server (NTRS)

    Webster, W. J., Jr.; Chang, T. C.; Darby, L. T.; Finkelstein, H. M.

    1975-01-01

    Using 1.55 cm observations of the earth made by the Electrically Scanned Microwave Radiometer (ESMR) experiment on Nimbus 5, the appearance of the earth from Venus is simulated. A single antenna unable to resolve the earth's disk would give a time-averaged disk temperature of 183 K. In one rotation, the disk temperature would vary from 194 K to 172 K. During the 1973 inferior conjunction, a radio telescope with 1 arc sec resolution would resolve most of the major surface features of the earth.

  10. Controller-area-network bus control and monitor system for a radio astronomy interferometer.

    PubMed

    Woody, David P; Wiitala, Bradley; Scott, Stephen L; Lamb, James W; Lawrence, Ronald P; Giovanine, Curt; Fredsti, Sancar J; Beard, Andrew; Pryke, Clem; Loh, Michael; Greer, Christopher H; Cartwright, John K; Gutierrez-Kraybill, Colby; Bolatto, Alberto D; Muchovej, Stephen J C

    2007-09-01

    We describe the design and implementation of a controller-area-network bus (CANbus) monitor and control system for a millimeter wave interferometer. The Combined Array for Research in Millimeter-wave Astronomy (CARMA) is a 15-antenna connected-element interferometer for astronomical imaging, created by the merger of two university observatories. Its new control system relies on a central computer supervising a variety of subsystem computers, many of which control distributed intelligent nodes over CANbus. Subsystems are located in the control building and in individual antennas and communicate with the central computer via Ethernet. Each of the CAN modules has a very specific function, such as reading an antenna encoder or tuning an oscillator. Hardware for the modules was based on a core design including a commercial CANbus-enabled single-board computer and some standard circuitry for interfacing to peripherals. Hardware elements were added or changed as necessary for the specific module types. Similarly, a base set of embedded code was implemented for essential common functions such as CAN message handling and time keeping and extended to implement the required functionality for the different hardware. Using a standard CAN messaging protocol designed to fit the requirements of CARMA and a well-defined interface to the high-level software allowed separate development of high-level code and embedded code with minimal integration problems. Over 30 module types have been implemented and successfully deployed in CARMA, which is now delivering excellent new science data. PMID:17902962

  11. Controller-area-network bus control and monitor system for a radio astronomy interferometer

    NASA Astrophysics Data System (ADS)

    Woody, David P.; Wiitala, Bradley; Scott, Stephen L.; Lamb, James W.; Lawrence, Ronald P.; Giovanine, Curt; Fredsti, Sancar J.; Beard, Andrew; Pryke, Clem; Loh, Michael; Greer, Christopher H.; Cartwright, John K.; Gutierrez-Kraybill, Colby; Bolatto, Alberto D.; Muchovej, Stephen J. C.

    2007-09-01

    We describe the design and implementation of a controller-area-network bus (CANbus) monitor and control system for a millimeter wave interferometer. The Combined Array for Research in Millimeter-wave Astronomy (CARMA) is a 15-antenna connected-element interferometer for astronomical imaging, created by the merger of two university observatories. Its new control system relies on a central computer supervising a variety of subsystem computers, many of which control distributed intelligent nodes over CANbus. Subsystems are located in the control building and in individual antennas and communicate with the central computer via Ethernet. Each of the CAN modules has a very specific function, such as reading an antenna encoder or tuning an oscillator. Hardware for the modules was based on a core design including a commercial CANbus-enabled single-board computer and some standard circuitry for interfacing to peripherals. Hardware elements were added or changed as necessary for the specific module types. Similarly, a base set of embedded code was implemented for essential common functions such as CAN message handling and time keeping and extended to implement the required functionality for the different hardware. Using a standard CAN messaging protocol designed to fit the requirements of CARMA and a well-defined interface to the high-level software allowed separate development of high-level code and embedded code with minimal integration problems. Over 30 module types have been implemented and successfully deployed in CARMA, which is now delivering excellent new science data.

  12. Past, Present and Future of Chinese Astronomy

    NASA Astrophysics Data System (ADS)

    Fang, Cheng

    2015-03-01

    Through out the ancient history, Chinese astronomers had made tremendous achievements. Since the main purpose of the ancient Chinese astronomy was to study the correlation between man and the universe, all the Emperors made ancient Chinese astronomy the highly regarded science throughout the history. After a brief introduction of the achievement of ancient Chinese astronomy, I describe the beginnings of modern astronomy research in China in the 20th century. Benefiting from the fast development of Chinese economy, the research in astronomy in China has made remarkable progress in recent years. The number of astronomers has doubled in the past ten years, and the number of graduate students has grown over 1300. The current budget for astronomy research is ten times larger than that ten years ago. The research covers all fields in astronomy, from galaxies to the Sun. The recent progress in both the instruments, such as the Guo Shoujing's telescope, a Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), and the theoretical research will be briefly presented. The ongoing and future projects on the space- and ground-based facilities will be described, including the Five Hundred Meter Aperture Spherical Radio Telescope (FAST), ``Chang E'' (Lunar mission) project, Hard X-ray Modulate Telescope (HXMT), DArk Matter Particle Explorer (DAMPE), Deep Space Solar Observatory (DSO), Chinese Antarctic Observatory (CAO), 65m steerable radio telescope, Chinese Spectral Radioheliogaph (CSRH) etc.

  13. Solar maximum mission: Ground support programs at the Harvard Radio Astronomy Station

    NASA Technical Reports Server (NTRS)

    Maxwell, A.

    1983-01-01

    Observations of the spectral characteristics of solar radio bursts were made with new dynamic spectrum analyzers of high sensitivity and high reliability, over the frequency range 25-580 MHz. The observations also covered the maximum period of the current solar cycle and the period of international cooperative programs designated as the Solar Maximum Year. Radio data on shock waves generated by solar flares were combined with optical data on coronal transients, taken with equipment on the SMM and other satellites, and then incorporated into computer models for the outward passage of fast-mode MHD shocks through the solar corona. The MHD models are non-linear, time-dependent and for the most recent models, quasi-three-dimensional. They examine the global response of the corona for different types of input pulses (thermal, magnetic, etc.) and for different magnetic topologies (for example, open and closed fields). Data on coronal shocks and high-velocity material ejected from solar flares have been interpreted in terms of a model consisting of three main velocity regimes.

  14. MOLECULAR CLOUDS AND CLUMPS IN THE BOSTON UNIVERSITY-FIVE COLLEGE RADIO ASTRONOMY OBSERVATORY GALACTIC RING SURVEY

    SciTech Connect

    Rathborne, J. M.; Johnson, A. M.; Jackson, J. M.; Shah, R. Y.; Simon, R. E-mail: alexj@bu.edu E-mail: ronak@bu.edu

    2009-05-15

    The Boston University-Five College Radio Astronomy Observatory (BU-FCRAO) Galactic Ring Survey (GRS) of {sup 13}CO J = 1 {yields} 0 emission covers Galactic longitudes 18{sup 0} < l < 55.{sup 0}7 and Galactic latitudes |b| {<=} 1{sup 0}. Using the SEQUOIA array on the FCRAO 14 m telescope, the GRS fully sampled the {sup 13}CO Galactic emission (46'' angular resolution on a 22'' grid) and achieved a spectral resolution of 0.21 km s{sup -1}. Because the GRS uses {sup 13}CO, an optically thin tracer, rather than {sup 12}CO, an optically thick tracer, the GRS allows a much better determination of column density and also a cleaner separation of velocity components along a line of sight. With this homogeneous, fully sampled survey of {sup 13}CO emission, we have identified 829 molecular clouds and 6124 clumps throughout the inner Galaxy using the CLUMPFIND algorithm. Here we present details of the catalog and a preliminary analysis of the properties of the molecular clouds and their clumps. Moreover, we compare clouds inside and outside of the 5 kpc ring and find that clouds within the ring typically have warmer temperatures, higher column densities, larger areas, and more clumps compared with clouds located outside the ring. This is expected if these clouds are actively forming stars. This catalog provides a useful tool for the study of molecular clouds and their embedded young stellar objects.

  15. Observations of electron gyroharmonic waves and the structure of the Io torus. [jupiter 1 spacecraft radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Alexander, J. K.; Desch, M. D.; Hubbard, R. F.; Pedersen, B. M.

    1980-01-01

    Narrow-banded emissions were observed by the Planetary Radio Astronomy experiment on the Voyager 1 spacecraft as it traversed the Io plasma torus. These waves occur between harmonics of the electron gyrofrequency and are the Jovian analogue of electrostatic emissions observed and theoretically studied for the terrestrial magnetosphere. The observed frequencies always include the component near the upper hybrid resonant frequency, (fuhr) but the distribution of the other observed emissions varies in a systematic way with position in the torus. A refined model of the electron density variation, based on identification of the fuhr line, is included. Spectra of the observed waves are analyzed in terms of the linear instability of an electron distribution function consisting of isotropic cold electrons and hot losscone electrons. The positioning of the observed auxiliary harmonics with respect to fuhr is shown to be an indicator of the cold to hot temperature ratio. It is concluded that this ratio increases systematically by an overall factor of perhaps 4 or 5 between the inner and outer portions of the torus.

  16. De-mystifying earned value management for ground based astronomy projects, large and small

    NASA Astrophysics Data System (ADS)

    Norton, Timothy; Brennan, Patricia; Mueller, Mark

    2014-08-01

    The scale and complexity of today's ground based astronomy projects have justifiably required Principal Investigator's and their project teams to adopt more disciplined management processes and tools in order to achieve timely and accurate quantification of the progress and relative health of their projects. Earned Value Management (EVM) is one such tool. Developed decades ago and used extensively in the defense and construction industries, and now a requirement of NASA projects greater than $20M; EVM has gained a foothold in ground-based astronomy projects. The intent of this paper is to de-mystify EVM by discussing the fundamentals of project management, explaining how EVM fits with existing principles, and describing key concepts every project can use to implement their own EVM system. This paper also discusses pitfalls to avoid during implementation and obstacles to its success. The authors report on their organization's most recent experience implementing EVM for the GMT-Consortium Large Earth Finder (G-CLEF) project. G-CLEF is a fiber-fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT), planned for construction at the Las Campanas Observatory in Chile's Atacama Desert region.

  17. Astronomy and development: a multidisciplinary project in the Mexican countryside

    NASA Astrophysics Data System (ADS)

    Bravo Alfaro, Hector; Caretta, César; Brito, Elcia M. S.

    2015-08-01

    We outline a long term project focused on children and young students living in rural places of the Mexican State of Guanajuato. This multidisciplinary project includes astronomers, environment engineers, biologists and sociologists of Universidad de Guanajuato. One part of the activities are done in situ, at the villages, and other is currently proposed to be held at the Public Astronomical Observatory of Universidad de Guanajuato. Organizing the trips and the activities for scholar groups at the observatory (where telescopes, computers and microscopes are available) would fit very well within several of the IAU-OAD strategies. We expect that, attending the FM20 of the IAU and presenting our results there will help us to develop regionalcollaborations and showing the many opportunities for new possible volunteers.

  18. VLA observations of stellar planetary nebulae. [using Very Large Array at National Radio Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.; Balick, B.; Thompson, A. R.

    1979-01-01

    Coordinates, dimensions, 4885-MHz flux densities, and brightness temperatures of K3-2, NGC 6833, Ps 1, II 5117, Me 2-2, Hb 12, Vy 1-1, and M1-5 are reported. In two other cases, H3-29 and H3-75, confused extended structure was detected in which the nebula could not be identified with certainty. He 2-467, M1-2, and Peterson's H-alpha object in M15 were also included in the observations but not detected with an upper limit of less than 10 mJy. The observations are compared with some of the previous optical and radio data, such as log S(H-beta). Distances are computed from the present data with standard assumptions. Corresponding linear radii range below 0.1 pc, among the smallest in previous distributions of radius.

  19. A scientific program for infrared, submillimeter and radio astronomy from space: A report by the Management Operations Working Group

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Important and fundamental scientific progress can be attained through space observations in the wavelengths longward of 1 micron. The formation of galaxies, stars, and planets, the origin of quasars and the nature of active galactic nuclei, the large scale structure of the Universe, and the problem of the missing mass, are among the major scientific issues that can be addressed by these observations. Significant advances in many areas of astrophysics can be made over the next 20 years by implementing the outlined program. This program combines large observatories with smaller projects to create an overall scheme that emphasized complementarity and synergy, advanced technology, community support and development, and the training of the next generation of scientists. Key aspects of the program include: the Space Infrared Telescope Facility; the Stratospheric Observatory for Infrared Astronomy; a robust program of small missions; and the creation of the technology base for future major observatories.

  20. The Astronomy Collections: From the Project to the Laboratory

    NASA Astrophysics Data System (ADS)

    Bobis, L.

    2015-04-01

    Within some astronomical libraries, just as it is with other libraries, there are collections we might refer to as being in "the border zone." The materials most representative of this are those that relate to an institution's heritage and history. The challenges of these patrimonial collections are scientific, legal, economic, and political. These collections establish the scientific status of their respective libraries because they extend beyond meeting the needs of astronomers: the material is important in defining the history of the field. The influence of these libraries derives from these heritage materials. From this point of view, the library is a worksite and a laboratory for librarians, project managers, and researchers.

  1. Calendars, Crescents and Calculation: The ROG's Islamic Astronomy project

    NASA Astrophysics Data System (ADS)

    Massey, R.

    2005-12-01

    The Royal Observatory Greenwich (ROG) has acted as a resource centre for mosques in the UK, providing data on the visibility of the new crescent Moon that is essential for determining the beginning of each Islamic month. A series of projects have sought to take advantage of this link, strengthening the connection between the ROG and the British Islamic community and seeking to engage a traditionally 'hard to reach' audience with modern astrophysics. I will describe these activities and offer a brief analysis of their impact.

  2. Digital Signal Processing Using Stream High Performance Computing: A 512-Input Broadband Correlator for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Kocz, J.; Greenhill, L. J.; Barsdell, B. R.; Price, D.; Bernardi, G.; Bourke, S.; Clark, M. A.; Craig, J.; Dexter, M.; Dowell, J.; Eftekhari, T.; Ellingson, S.; Hallinan, G.; Hartman, J.; Jameson, A.; MacMahon, D.; Taylor, G.; Schinzel, F.; Werthimer, D.

    2015-03-01

    A "large-N" correlator that makes use of Field Programmable Gate Arrays and Graphics Processing Units has been deployed as the digital signal processing system for the Long Wavelength Array station at Owens Valley Radio Observatory (LWA-OV), to enable the Large Aperture Experiment to Detect the Dark Ages (LEDA). The system samples a 100 MHz baseband and processes signals from 512 antennas (256 dual polarization) over a 58 MHz instantaneous sub-band, achieving 16.8 Tops s-1 and 0.236 Tbit s-1 throughput in a 9 kW envelope and single rack footprint. The output data rate is 260 MB s-1 for 9-s time averaging of cross-power and 1 s averaging of total power data. At deployment, the LWA-OV correlator was the largest in production in terms of N and is the third largest in terms of complex multiply accumulations, after the Very Large Array and Atacama Large Millimeter Array. The correlator's comparatively fast development time and low cost establish a practical foundation for the scalability of a modular, heterogeneous, computing architecture.

  3. Peta-Flop Real Time Radio Astronomy Signal Processing Instrumentation and the CASPER Collaboration

    NASA Astrophysics Data System (ADS)

    Werthimer, Dan

    2014-04-01

    I will briefly describe next generation radio telescopes, such as HERA and the Square Kilometer Array (SKA), which will require 1E15 to 1E17 operations per second of real time processing. I'll present some of the new architectures we've used to develop a variety of heterogeneous FPGA-GPU-CPU based signal processing systems for such telescopes, including spectrometers, correlators, and beam formers. I will also describe the CASPER collaboration, which has developed architectures, open source programming tools, libraries and reference designs that make it relatively easy to develop a variety of scalable, upgradeable, fault tolerant, low power, real time digital signal processing instrumentation. CASPER utilizes commercial 10Gbit and 40 Gbit ethernet switches to interconnect open source general purpose field programmable gate array (FPGA) boards with GPUs and software modules. CASPER collaborators at hundreds of universities, government labs and observatories have used these techniques to rapidly develop and deploy a variety of correlators, beamformers, spectrometers, pulsar/transient machines, and VLBI instrumentation. CASPER instrumentation is also utilized in physics, medicine, genomics and engineering. Open source source hardware, software, libraries, tools, tutorials, reference designs, information about workshops, and how to join the collaboration are available at http://casper.berkeley.edu

  4. The GalileoMobile Project: sharing astronomy with students and teachers around the world

    NASA Astrophysics Data System (ADS)

    Benitez Herrera, Sandra; Del Sordo, Fabio; Spinelli, Patricia; Ntormousi, Eva

    2015-08-01

    Astronomy is an inspiring tool that can be used to motivate children to learn more about the world, to encourage critical thinking, and engage them in different scientific disciplines. Although many outreach programs bring astronomy to the classroom, most of them act in developed countries and rely heavily on internet connection. This leaves pupils and teachers in remote areas with little access to the latest space missions and the modern astronomical advances. GalileoMobile is an itinerant astronomy education initiative aiming to bridge this gap by donating educational material and organizing activities, experiments and teacher workshops at schools in rural areas. The initiative is run on a voluntary basis by an international team of astronomers, educators, and science communicators, working together to stimulate curiosity and interest in learning, to exchange different visions of the cosmos and to inspire a feeling of unity "under the same sky" between people from different cultures. Since the creation of the project in 2008, we have travelled to Chile, Bolivia, Peru, India, Uganda, Brazil and Colombia, and worked with about 70 schools. From our experiences, we learnt that 1) bringing experts from other countries is very stimulating for children and encourages a collaboration beyond borders; 2) inquiry-based methods are important for making the learning process more effective; 3) involving local educators in our activities helps the longstanding continuation of the project. We are incorporating these lessons learned into a new concept of the project. Constellation 2015, aims to establish a South American network of schools committed to the long-term organisation of astronomical outreach activities amongst their pupils and local communities. Constellation was declared Cosmic Light Project by the International Year of Light 2015 and awarded funding by the OAD. At this Focus Meeting, we will present the outcomes from our latest expeditions in Brazil and Colombia in 2014, as well as the first updates of our Constellation project.

  5. Millimetre-Wave Spectrum of Isotopologues of Ethanol for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Walters, Adam; Schäfer, Mirko; Ordu, Matthias H.; Lewen, Frank; Schlemmer, Stephan; Müller, Holger S. P.

    2015-06-01

    Complex molecules have been identified in star-forming regions and their formation is linked to the specific physical and chemical conditions there. They are suspected to form a role in the origins of life. Amongst these, ethanol is a fairly abundant molecule in warmer regions. For this reason, we have recently carried out laboratory measurements and analyses of the rotational spectra of the three mono-substituted deuterium isotopologues of ethanol (one of which, CH_2DCH_2OH, exists as two distinct conformers according to the position of the deuterium atom with respect to the molecular skeleton). Measurements were taken between 35-500 GHz, allowing accurate predictions in the range of radio telescopes. We have concentrated on the lowest energy anti conformers. The dataset was constrained for fitting with a standard Watson-S reduction Hamiltonian by rejecting transitions from high-lying states, which appear to be perturbed by the gauche states, and by averaging some small methyl torsional splits. This treatment is compatible with the needs for a first search in the interstellar medium, in particular in spectra taken by ALMA. For this purpose an appropriate set of predictions will be included on the Cologne Database for Molecular Spectroscopy. Previous results on the two mono-substituted 13C isotopologues which led to a tentative detection in Sgr B2(N) will be briefly summarized and compared with the latest measurements. The usefulness of studying different isotopologues in the interstellar medium will also be rapidly addressed. Bouchez et al, JQSRT 113 (11), pp. 1148-1154, 2012. Belloche et al. A&A 559, id.A47, 187pp., 2013.

  6. Fast gain calibration in radio astronomy using alternating direction implicit methods: Analysis and applications

    NASA Astrophysics Data System (ADS)

    Salvini, Stefano; Wijnholds, Stefan J.

    2014-11-01

    Context. Modern radio astronomical arrays have (or will have) more than one order of magnitude more receivers than classical synthesis arrays, such as the VLA and the WSRT. This makes gain calibration a computationally demanding task. Several alternating direction implicit (ADI) approaches have therefore been proposed that reduce numerical complexity for this task from 𝒪(P3) to 𝒪(P2), where P is the number of receive paths to be calibrated Aims: We present an ADI method, show that it converges to the optimal solution, and assess its numerical, computational and statistical performance. We also discuss its suitability for application in self-calibration and report on its successful application in LOFAR standard pipelines. Methods: Convergence is proved by rigorous mathematical analysis using a contraction mapping. Its numerical, algorithmic, and statistical performance, as well as its suitability for application in self-calibration, are assessed using simulations. Results: Our simulations confirm the 𝒪(P2) complexity and excellent numerical and computational properties of the algorithm. They also confirm that the algorithm performs at or close to the Cramer-Rao bound (CRB, lower bound on the variance of estimated parameters). We find that the algorithm is suitable for application in self-calibration and discuss how it can be included. We demonstrate an order-of-magnitude speed improvement in calibration over traditional methods on actual LOFAR data. Conclusions: In this paper, we demonstrate that ADI methods are a valid and computationally more efficient alternative to traditional gain calibration methods and we report on its successful application in a number of actual data reduction pipelines.

  7. Improved Methods for Phased Array Feed Beamforming in Single Dish Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Elmer, Michael J.

    Among the research topics needing to be addressed to further the development of phased array feeds (PAFs) for radio astronomical use are challenges associated with calibration, beamforming, and imaging for single dish observations. This dissertation addresses these concerns by providing analysis and solutions that provide a clearer understanding of the effort required to implement PAFs for complex scientific research. It is shown that calibration data are relatively stable over a period of five days and may still be adequate after 70 days. A calibration update system is presented with the potential to refresh old calibrators. Direction-dependent variations have a much greater affect on calibration stability than temporal variations. There is an inherent trade-off in beamformer design between achieving high sensitivity and maintaining beam pattern stability. A hybrid beamformer design is introduced which uses a numerical optimizer to balance the trade-off between these two conflicting goals to provide the greatest sensitivity for a desired amount of pattern control. Relative beam variations that occur when electronically steering beams in the field of view must be reduced in order for a PAF to be useful for source detection and imaging. A dual constraint beamformer is presented that has the ability to simultaneously achieve a uniform main beam gain and specified noise response across all beams. This alone does not reduce the beam variations but it eliminates one aspect of the problem. Incorporating spillover noise control through the use of rim calibrators is shown to reduce the variations between beams. Combining the dual constraint and rim constraint beamformers offers a beamforming option that provides both of these benefits.

  8. An Integrated Circuit for Radio Astronomy Correlators Supporting Large Arrays of Antennas

    NASA Astrophysics Data System (ADS)

    D'Addario, Larry R.; Wang, Douglas

    2016-03-01

    Radio telescopes that employ arrays of many antennas are in operation, and ever larger ones are being designed and proposed. Signals from the antennas are combined by cross-correlation. While the cost of most components of the telescope is proportional to the number of antennas N, the cost and power consumption of cross-correlation are proportional to N2 and dominate at sufficiently large N. Here, we report the design of an integrated circuit (IC) that performs digital cross-correlations for arbitrarily many antennas in a power-efficient way. It uses an intrinsically low-power architecture in which the movement of data between devices is minimized. In a large system, each IC performs correlations for all pairs of antennas but for a portion of the telescope’s bandwidth (the so-called “FX” structure). In our design, the correlations are performed in an array of 4096 complex multiply-accumulate (CMAC) units. This is sufficient to perform all correlations in parallel for 64 signals (N=32 antennas with two opposite-polarization signals per antenna). When N is larger, the input data are buffered in an on-chip memory and the CMACs are reused as many times as needed to compute all correlations. The design has been synthesized and simulated so as to obtain accurate estimates of the ICs size and power consumption. It is intended for fabrication in a 32nm silicon-on-insulator process, where it will require less than 12mm2 of silicon area and achieve an energy efficiency of 1.76-3.3pJ per CMAC operation, depending on the number of antennas. Operation has been analyzed in detail up to N=4096. The system-level energy efficiency, including board-level I/O, power supplies, and controls, is expected to be 5-7pJ per CMAC operation. Existing correlators for the JVLA (N=32) and ALMA (N=64) telescopes achieve about 5000pJ and 1000pJ, respectively using application-specific ICs (ASICs) in older technologies. To our knowledge, the largest-N existing correlator is LEDA at N=256; it uses GPUs built in 28nm technology and achieves about 1000pJ. Correlators being designed for the SKA telescopes (N=128 and N=512) using FPGAs in 16nm technology are predicted to achieve about 100pJ.

  9. Correction of projection effects on double radio sources

    NASA Astrophysics Data System (ADS)

    Carvalho, J. C.

    1990-11-01

    A method is proposed to estimate the projection angle of extragalactic double radio sources. It improves the method suggested by Nottale (1982) by considering the ratio between component size and source dimension not to be a constant. Instead, a power-law dependence on the source size is used, as the observational data seems to indicate. The method is applied to a simulated sample with satisfactory results.

  10. Handbook of Space Astronomy and Astrophysics

    NASA Astrophysics Data System (ADS)

    Zombeck, Martin V.

    2006-11-01

    Foreword; Preface; 1. General data; 2. Astronomy and astrophysics; 3. Radio astronomy; 4. Infrared and submillimeter astronomy; 5. Ultraviolet astronomy; 6. X-ray astronomy; 7. Gamma-ray astronomy; 8. Cosmic rays; 9. Earth's atmosphere and environment; 10. Relativity and cosmology; 11. Atomic physics; 12. Electromagnetic radiation; 13. Plamsa physics; 14. Experimental astronomy and astrophysics; 15. Astronautics; 16. Mathematics; 17. Probability and statistics; 18. Radiation safety; 19. Astronomical catalogs; 20. Computer science; 21. Glossary of abbreviations and symbols; Appendices; Index.

  11. Education and Public Outreach activities in Radio astronomy with the SKA South Africa

    NASA Astrophysics Data System (ADS)

    Oozeer, N.; Bassett, B. A.; de Boer, K.

    2014-10-01

    A Human Capital Development (HCD) program is a crucial part of any large organisation, and especially for large new research facilities such as the Square Kilometre Array (SKA) Africa. HCD provides a way of developing and channeling new minds into a very demanding field that ensures sustainability of the project and a multitude of spin-off benefits. Apart from educating learners at various levels, the HCD program must also inspire and educate the general public about the projects via an active outreach program. We highlight the various types of outreach activities that have been carried out in South Africa and the other SKA Africa partner countries. While there exist many teaching models we introduce and explore a novel concept of peer teaching for research known as the Joint Exchange Development Initiative (JEDI) and present some of its results. The JEDI workshops have resulted in a considerable number of learners embarking on advanced careers in science and research, and the demand is still growing.

  12. A Review of High School Level Astronomy Student Research Projects Over the Last Two Decades

    NASA Astrophysics Data System (ADS)

    Fitzgerald, M. T.; Hollow, R.; Rebull, L. M.; Danaia, L.; McKinnon, D. H.

    2014-09-01

    Since the early 1990s with the arrival of a variety of new technologies, the capacity for authentic astronomical research at the high school level has skyrocketed. This potential, however, has not realised the bright-eyed hopes and dreams of the early pioneers who expected to revolutionise science education through the use of telescopes and other astronomical instrumentation in the classroom. In this paper, a general history and analysis of these attempts is presented. We define what we classify as an Astronomy Research in the Classroom (ARiC) project and note the major dimensions on which these projects differ before describing the 22 major student research projects active since the early 1990s. This is followed by a discussion of the major issues identified that affected the success of these projects and provide suggestions for similar attempts in the future.

  13. Sustainable Astronomy

    NASA Astrophysics Data System (ADS)

    Blaha, C.; Goetz, J.; Johnson, T.

    2011-09-01

    Through our International Year of Astronomy outreach effort, we established a sustainable astronomy program and curriculum in the Northfield, Minnesota community. Carleton College offers monthly open houses at Goodsell Observatory and donated its recently "retire" observing equipment to local schools. While public evenings continue to be popular, the donated equipment was underutilized due to a lack of trained student observing assistants. With sponsorship from NASA's IYA Student Ambassador program, the sustainable astronomy project began in 2009 to generate greater interest in astronomy and train middle school and high school students as observing assistants. Carleton physics majors developed curricular materials and instituted regular outreach programs for grades 6-12. The Northfield High School Astronomy Club was created, and Carleton undergraduates taught high school students how to use telescopes and do CCD imaging. During the summer of 2009, Carleton students began the Young Astronomers Summer Experience (YASE) program for middle school students and offered a two-week, astronomy-rich observing and imaging experience at Goodsell Observatory. In concert with NASA's Summer of Innovation initiative, the YASE program was offered again in 2010 and engaged a new group of local middle school students in hands-on scientific experiments and observing opportunities. Members of the high school astronomy club now volunteer as observing assistants in the community and graduates of the YASE programs are eager to continue observing as members of a public service astronomy club when they enter the Northfield High School. These projects are training future scientists and will sustain the public's interest in astronomy long after the end of IYA 2009.

  14. The Ilgarijiri Project: A collaboration between Aboriginal communities and radio astronomers in the Murchison Region of Western Australia

    NASA Astrophysics Data System (ADS)

    Goldsmith, John

    2014-07-01

    The international radio astronomy initiative known as the Square Kilometre Array is a cutting-edge science project, aimed atdramatically expanding our vision and understanding of the Universe. The $2billion+ international project is being shared between Southern Africa and Australia. The Australian component, centred in the Murchison region of Western Australia, is based upon collaboration with Aboriginal communities. A collaborative project called "Ilgarijiri- Things Belonging to the Sky" shared scientific and Aboriginal knowledge of the night sky. Through a series of collaborative meetings and knowledge sharing, the Ilgarijiri project developed and showcased Aboriginal knowledge of the night sky, via an international touring Aboriginal art exhibition, in Australia, South Africa, the USA and Europe. The Aboriginal art exhibition presents Aboriginal stories relating to the night sky, which prominently feature the 'Seven Sisters' and the 'Emu', as well as the collaborative experience with radio astronomers. The success of the Ilgarijiri collaborative project is based upon several principles, which can help to inform and guide future cultural collaborative projects.

  15. Broadband Upgrade for the 1.668-GHz (L-Band) Radio Astronomy Feed System on the DSN 70-m Antennas

    NASA Astrophysics Data System (ADS)

    Hoppe, D.; Khayatian, B.; Lopez, B.; Torrez, T.; Long, E.; Sosnowski, J.; Franco, M.; Teitelbaum, L.

    2015-08-01

    Currently, each of the three Deep Space Network (DSN) 70-m antennas provides a narrowband, 1.668-GHz (L-band) receive capability for radio astronomy observations. This capability is delivered by a large feedhorn mounted on the exterior of one of the feedcones. It provides a single polarization into a pair of redundant low-noise amplifiers. Recently, funding was obtained to upgrade this system to wideband (1.4-1.9 GHz) dual-polarization operation. This required development of a new feedhorn, polarizer, orthomode transducer (OMT), and waveguide transitions. In this article, we describe the design and laboratory testing of these components.

  16. Society News: Monica Grady awarded CBE; Grubb Parsons Lecture 2012; Join the RAS; Astronomy on radio for kids; New Fellows; Peter D Hingley

    NASA Astrophysics Data System (ADS)

    2012-08-01

    RAS Fellow Prof. Monica Grady has been made a Commander of the Most Excellent Order of the British Empire (CBE), in recognition of her services to space science. The RAS sponsors the annual Grubb Parsons Lecture, which this year took place on 6 June at the University of Durham. If you are a professional astronomer, geophysicist, or similar, a student studying these disciplines, or simply someone with a serious interest in them, we urge you to apply for membership of the RAS. Outreach is an important activity for the RAS. We recently supported an astronomy series called Deep Space High on the digital radio channel Fun Kids.

  17. The Five-Hundred Aperture Spherical Radio Telescope (fast) Project

    NASA Astrophysics Data System (ADS)

    Nan, Rendong; Li, Di; Jin, Chengjin; Wang, Qiming; Zhu, Lichun; Zhu, Wenbai; Zhang, Haiyan; Yue, Youling; Qian, Lei

    Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. Its innovative engineering concept and design pave a new road to realize a huge single dish in the most effective way. FAST also represents Chinese contribution in the international efforts to build the square kilometer array (SKA). Being the most sensitive single dish radio telescope, FAST will enable astronomers to jump-start many science goals, such as surveying the neutral hydrogen in the Milky Way and other galaxies, detecting faint pulsars, looking for the first shining stars, hearing the possible signals from other civilizations, etc. The idea of sitting a large spherical dish in a karst depression is rooted in Arecibo telescope. FAST is an Arecibo-type antenna with three outstanding aspects: the karst depression used as the site, which is large to host the 500-meter telescope and deep to allow a zenith angle of 40 degrees; the active main reflector correcting for spherical aberration on the ground to achieve a full polarization and a wide band without involving complex feed systems; and the light-weight feed cabin driven by cables and servomechanism plus a parallel robot as a secondary adjustable system to move with high precision. The feasibility studies for FAST have been carried out for 14 years, supported by Chinese and world astronomical communities. Funding for FAST has been approved by the National Development and Reform Commission in July of 2007 with a capital budget ~ 700 million RMB. The project time is 5.5 years from the commencement of work in March of 2011 and the first light is expected to be in 2016. This review intends to introduce the project of FAST with emphasis on the recent progress since 2006. In this paper, the subsystems of FAST are described in modest details followed by discussions of the fundamental science goals and examples of early science projects.

  18. NASA IDEAS to Improve Instruction in Astronomy and Space Science

    NASA Astrophysics Data System (ADS)

    Malphrus, B.; Kidwell, K.

    1999-12-01

    The IDEAS to Improve Instructional Competencies in Astronomy and Space Science project is intended to develop and/or enhance teacher competencies in astronomy and space sciences of teacher participants (Grades 5-12) in Kentucky. The project is being implemented through a two-week summer workshop, a series of five follow-up meetings, and an academic year research project. The resources of Kentucky's only Radio Astronomy Observatory- the Morehead Radio Telescope (MRT), Goldstone Apple Valley Radio Telescope (GAVRT) (via remote observing using the Internet), and the Kentucky Department of Education regional service centers are combined to provide a unique educational experience. The project is designed to improve science teacher's instructional methodologies by providing pedagogical assistance, content training, involving the teachers and their students in research in radio astronomy, providing access to the facilities of the Morehead Astrophysical Observatory, and by working closely with a NASA-JOVE research astronomer. Participating teachers will ultimately produce curriculum units and research projects, the results of which will be published on the WWW. A major goal of this project is to share with teachers and ultimately students the excitement and importance of scientific research. The project represents a partnership of five agencies, each matching the commitment both financially and/or personnel. This project is funded by the NASA IDEAS initiative administered by the Space Telescope Science Institute and the National Air and Space Administration (NASA).

  19. Astronomy CATS

    NASA Astrophysics Data System (ADS)

    Brissenden, Gina; Prather, Edward E.; Impey, Chris

    2012-08-01

    The Center for Astronomy Education's (CAE's) NSF-funded Collaboration of Astronomy Teaching Scholars (CATS) Program is a grassroots multi-institutional effort to increase the capacity for astronomy education research and improve science literacy in the United States.Our primary target population is the 500,000 college students who each year enroll in an introductory general education (a breadth requirement for non-science majors) Earth, Astronomy, and Space Science (EASS) course (Fraknoi 2001, AGI 2006).An equally important population for our efforts is the individuals who are, or will be, teaching these students. In this chapter, we will briefly discuss the goals of CAE and CATS, the varied personnel that make up the CATS collective, the diverse projects we've undertaken, and the many challenges we have had to work through to make CATS a success.

  20. Light Pollution in Lowndes County, Georgia: An Observational Project for Introductory Astronomy Students

    NASA Astrophysics Data System (ADS)

    Rumstay, K. S.; VSU Astronomy Students Team

    2000-12-01

    A long-term study of light pollution in Lowndes County, Georgia has been initiated as a collaborative project among students enrolled in introductory astronomy courses at Valdosta State University. A single honors student began the project in Spring 2000; during the Fall 2000 semester all students enrolled in ASTR 1020K (Stellar and Galactic Astronomy) were invited to participate on a voluntary basis. Students were provided with charts showing the appearance of the constellations Cygnus, Pegasus, Cassiopeia, and Orion (as appropriate) at limiting magnitudes ranging from 2.5 to 6.0 in 0.5-magnitude steps. On clear, moonless nights students compared the visual appearance of these constellations to the charts, allowing them to determine a limiting magnitude for their location. Preliminary results suggest that, even on the clearest nights, stars fainter than magnitude 5.0 are not visible from any location within Lowndes County. This limitation results largely from ambient light from Valdosta, the only urban area within the county, and also from atmospheric extinction in a region of high humidity. By participating in this exercise, students in a class traditionally populated by non-science majors gain an appreciation for the collaborative nature of modern science. They also become familiar more familiar with the night sky than they might were their exposure limited to the traditional two-hour weekly laboratory session. Most importantly, as young adults they experience first-hand the deleterious effects of light intrusion upon their enjoyment of the night sky!

  1. Automated radio astronomy operations

    NASA Technical Reports Server (NTRS)

    Livermore, R. W.

    1978-01-01

    The improvements in using a computer to drive a DSN 64-meter antenna are described. The development is used to simplify operation, improve antenna safety, reduce antenna wear, present the abuse of antenna by misoperation, increase quantity and quality of data gathered, and give users a greater choice of automatic operations.

  2. Scientific prospects in soft gamma-ray astronomy enabled by the LAUE project

    NASA Astrophysics Data System (ADS)

    Frontera, F.; Virgilli, E.; Valsan, V.; Liccardo, V.; Carassiti, V.; Caroli, E.; Cassese, F.; Ferrari, C.; Guidi, V.; Mottini, S.; Pecora, M.; Negri, B.; Recanatesi, L.; Amati, L.; Auricchio, N.; Bassani, L.; Campana, R.; Farinelli, R.; Guidorzi, C.; Labanti, C.; Landi, R.; Malizia, A.; Orlandini, M.; Rosati, P.; Sguera, V.; Stephen, J.; Titarchuk, L.

    2013-09-01

    This paper summarizes the development of a successful project, LAUE, supported by the Italian Space Agency (ASI) and devoted to the development of long foca length (up to 100m) Laue lenses for hard X-/soft gamma- ray astronomy (80-600 keV). The apparatus is ready and the assembling of a prototype lens petal is ongoing. The great achievement of this project is the use of bent crystals. From measurements obtained on single crystals and from simulations, we have estimated the expected Point Spread Function and thus the sensitivity of a lens made of petals. The expected sensitivity is a few 10-8 photons cm-2 s-1 keV-1). We discuss a number of open astrophysical questions that can settled with such an instrument aboard a free-flying satellite.

  3. Astronomy for teachers: A South African Perspective

    NASA Astrophysics Data System (ADS)

    de Witt, Aletha; West, Marion; Leeuw, Lerothodi; Gouws, Eldrie

    2015-08-01

    South Africa has nominated Astronomy as a “flagship science” and aims to be an international Astronomy hub through projects such as the Square Kilometre Array (SKA) and the South African Large Telescope (SALT). These projects open up career opportunities in maths, science and engineering and therefore offers a very real door for learners to enter into careers in science and technology through Astronomy. However, the Trends in International Mathematics and Science Survey (TIMSS), the Global Competitiveness Report (GCR) and Annual National Assessment (ANA) have highlighted that South Africa’s Science and Mathematics education is in a critical condition and that South African learners score amongst the worst in the world in both these subjects. In South Africa Astronomy is generally regarded as the worst taught and most avoided Natural Science knowledge strand, and most teachers that specialised in Natural Sciences, never covered Astronomy in their training.In order to address these issues a collaborative project between the University of South Africa (UNISA) and the Hartebeesthoek Radio Astronomy Observatory (HartRAO) was initiated, which aims to assist teachers to gain more knowledge and skills so that they can teach Astronomy with confidence. By collaborating we aim to ensure that the level of astronomy development will be raised in both South Africa and the rest of Africa.With the focus on Teaching and Learning, the research was conducted within a quantitative paradigm and 600 structured questionnaires were administered to Natural Science teachers in Public primary schools in Gauteng, South Africa. This paper reports the findings of this research and makes recommendations on how to assist teachers to teach Astronomy with confidence.

  4. The NASA Space Place: A Plethora of Games, Projects, and Fun Facts for Celebrating Astronomy

    NASA Astrophysics Data System (ADS)

    Leon, N. J.; Fisher, D. K.

    2008-12-01

    The Space Place is a unique NASA education and public outreach program. It includes a NASA website (spaceplace.nasa.gov) in English and Spanish that targets elementary age children with appealing, content- rich STEM material on space science, Earth science, and technology. The site features science and/or technology content related to, so far, over 40 NASA missions. This overall program, as well as special efforts planned for IYA2009, strongly support many of the objectives of IYA. Some of these are: 1. Stimulate interest in astronomy and science, especially among young people and in audiences not normally reached. 2. Increase scientific awareness. 3. Support and improve formal and informal science education. 4. Provide a contemporary image of science and scientists. 5. Facilitate new astronomy education networks and strengthen existing ones. 6. Improve the gender-balanced representation of scientists at all levels and promote greater involvement of underrepresented groups. The Space Place program has cultivated a large network of community partners (Obj. 5), including museums, libraries, and planetariums, as well as a large network of avocational astronomy societies. We send the community partners monthly mailings of the latest NASA materials for their "NASA Space Place" display boards (Obj. 1, 2, 3, 5). The astronomy societies receive original articles with the latest "insider" news on NASA missions for publication in their newsletters or on their websites (Obj. 2, 5). Through these leveraged partnerships, we reach a large audience of children; parents; formal and informal educators; rural, minority, and otherwise underserved audiences (Obj. 1, 6); and avocational astronomers, many of whom work with children and the general public in the classroom or at special events (Obj. 2, 3). Supporting Obj. 4, are the "Space Place Live" cartoon "talk show" episodes, spaceplace.nasa.gov/en/kids/live. For IYA 2009, we will specifically prepare our partners to plan and carry out activities to tie in with the IYA April topic, Galaxies and the Distant Universe. The infrared Spitzer Space Telescope, as well as the Galaxy Evolution Explorer (GALEX) spacecraft are strongly represented on The Space Place web site, with interactive games, images, and crafts that explore the wonders of and latest discoveries about galaxies. In addition, in our mailings and other partner communications throughout the year, we will feature special activities and projects on spaceplace.nasa.gov, and suggest ways to use these resources in IYA-related events.

  5. Astronomy Communication

    NASA Astrophysics Data System (ADS)

    Heck, A.; Madsen, C.

    2003-07-01

    Astronomers communicate all the time, with colleagues of course, but also with managers and administrators, with decision makers and takers, with social representatives, with the news media, and with the society at large. Education is naturally part of the process. Astronomy communication must take into account several specificities: the astronomy community is rather compact and well organized world-wide; astronomy has penetrated the general public remarkably well with an extensive network of associations and organizations of aficionados all over the world. Also, as a result of the huge amount of data accumulated and by necessity for their extensive international collaborations, astronomers have pioneered the development of distributed resources, electronic communications and networks coupled to advanced methodologies and technologies, often much before they become of common world-wide usage. This book is filling up a gap in the astronomy-related literature by providing a set of chapters not only of direct interest to astronomy communication, but also well beyond it. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy nor in communication techniques while providing specific detailed information, as well as plenty of pointers and bibliographic elements. This book will be very useful for researchers, teachers, editors, publishers, librarians, computer scientists, sociologists of science, research planners and strategists, project managers, public-relations officers, plus those in charge of astronomy-related organizations, as well as for students aiming at a career in astronomy or related space science. Link: http://www.wkap.nl/prod/b/1-4020-1345-0

  6. The Radio Sky in the STARLAB

    NASA Astrophysics Data System (ADS)

    Fultz, C.; Smith, T.; Buck, S.; Harris, R.; Boltuch, D.; Hund, L.; Moffett, D.; Walsh, L.; LaFratta, M.; Castelaz, M. W.

    2005-12-01

    The STARLAB is a portable planetarium created, produced, and distributed by Learning Technologies, Ltd. Upon entering the STARLAB, images are projected onto the ceiling of the planetarium's dome using custom, interchangeable projection cylinders mounted on top of an ultrabright point light source. The STARLAB is ideal for teaching students about astronomy since it may be easily transported to schools across the nation. In order to take advantage of this powerful teaching tool, one of the foremost priorities of the Sensing the Radio Sky project was the development a projection cylinder that would visually interpret the quantitative data taken with radio telescopes and present that information in a form that students could understand and appreciate. The final version of the cylinder demonstrates a variety of topics relevant to an understanding of radio astronomy. When using the Radio Sky cylinder in the STARLAB, teachers may discuss the differences between optical and radio astronomy such as the structure of the Milky Way Galaxy, different sources of electromagnetic radiation, and important radio sources within and outside of the Galaxy. In addition, the flexibility of the cylinder's design allows for a variety of educational activities to be conducted within the STARLAB, all complemented by the Radio Sky cylinder's unique presentation of the Galaxy in radio wavelengths. We acknowledge support from the NSF Internship in Public Science Education Program grant number 0324729.

  7. Two Eyes, 3D: A New Project to Study Stereoscopy in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Price, Aaron; SubbaRao, M.; Wyatt, R.

    2012-01-01

    "Two Eyes, 3D" is a 3-year NSF funded research project to study the educational impacts of using stereoscopic representations in informal settings. The project funds two experimental studies. The first is focused on how children perceive various spatial qualities of scientific objects displayed in static 2D and 3D formats. The second is focused on how adults perceive various spatial qualities of scientific objects and processes displayed in 2D and 3D movie formats. As part of the project, two brief high-definition films about variable stars will be developed. Both studies will be mixed-method and look at prior spatial ability and other demographic variables as covariates. The project is run by the American Association of Variable Star Observers, Boston Museum of Science and the Adler Planetarium and Astronomy Museum with consulting from the California Academy of Sciences. Early pilot results will be presented. All films will be released into the public domain, as will the assessment software designed to run on tablet computers (iOS or Android).

  8. Dark Skies Awareness Cornerstone Project for the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Iya Dark Skies Awareness Working Group

    2010-12-01

    Programs that were part of the International Year of Astronomy 2009 (IYA2009) Dark Skies Awareness (DSA) Cornerstone Project have been successfully implemented around the world to promote social awareness of the effects of light pollution on public health, economic issues, ecological consequences, energy conservation, safety and security, nightscape aesthetics and especially astronomy. In developing the programs, DSA Cornerstone Project found that to influence cultural change effectively — to make people literally look up and see the light — we must make children a main focus, use approaches that offer involvement on many levels, from cursory to committed, and offer involvement via many venues. We must make the programs and resources as turn-key as possible, especially for educators — and provide ways to visualize the problem with simple, easily grasped demonstrations. The programs spanned a wide range; from new media technology for the younger generation, to an event in the arts, to various types of educational materials, to the promotion of dark skies communities, to national and international events and to global citizen science programs. The DSA Cornerstone Project is continuing most all of these programs beyond IYA2009. The International Dark-Sky Association as well as the Starlight Initiative is endorsing and helping to continue with some of the most successful programs from the DSA. The GLOBE at Night campaign is adding a research component that examines light pollution’s affects on wildlife. Dark Skies Rangers activities are being implemented in Europe through the Galileo Teacher Training Program. The new “One Star at a Time” will engage people to protect the night sky through personal pledges and registration of public stargazing areas or StarParks, like the newest one in Italy. The Starlight Initiative’s World Night in Defence of the Starlight will take place on the Vernal Equinox. DSA will again oversee the Dark Skies portion of Global Astronomy Month, in which the International Dark Sky Week will be celebrated. DSA will be collaborating with Belgium’s “Night of Darkness” to endeavor to make that lights out event a more global event. DSA will endeavor to support dark skies education worldwide, as in Northern Ireland. DSA will seek to expand light pollution prevention campaigns like Austria’s. People whose homes meet the criteria of good lighting are invited to put a sticker from Austria’s biggest newspaper in their front window to show their support. DSA also seeks to collaborate with the IAU Office for Astronomy Development. The presentation will focus on the DSA programs during IYA and the sustainability of the DSA programs after IYA, as well as the expansion to other programs worldwide, with particular emphasis in communicating dark skies awareness with the public and its educational value in attracting young people to study science and technology. See www.darkskiesawareness.org for more information on the programs.

  9. Orientatio ad Sidera (OAS): a comprehensive project for cultural astronomy research in ancient Mediterranean cultures

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio; César González-García, A.; Rodríguez-Antón, Andrea

    2015-08-01

    During the last decade (starting in 2005), the OAS Project has been run, with the support of the Spanish research agencies. Within its framework, research on cultural astronomy has been developed for a series of ancient cultures from the Atlantic Islands to the Arabian Peninsula with the Meditterranean Sea as the pricipal axis of the project. A catalogue of studies has been performed in a set of cultures such as the Megalithic Phenomenon, ancient Egypt, Middle East Bronze and Iron Age civilizations and the Roman World, among many others. In this essay a general scope of the project and a series of most interesting outcomes will be presented. The evolutionary ties of the megalithic monuments of the Iberian Peninsula and elsewhere, the pattern of orientation of Egyptian temples and skyscaping practices within the Hittite, Commagenian or Nabataean cultures, among others, will be shown; finishing in a comprehensive, statistical and comparative study of the orientation patterns of thousands of ancient monuments of the Mediterranean region. Finally, a sketch of our most recent, still ongoing, research on the astronomical and non-astronomical practices used in the planning of cities in the Roman World will be a compelling and promising closing remark of our analysis.

  10. INSPIRE: A VLF Radio Project for High School Students

    ERIC Educational Resources Information Center

    Marshall, Jill A.; Pine, Bill; Taylor, William W. L.

    2007-01-01

    Since 1988 the Interactive NASA Space Physics Ionospheric Radio Experiment, or INSPIRE, has given students the opportunity to build research-quality VLF radio receivers and make observations of both natural and stimulated radio waves in the atmosphere. Any high school science class is eligible to join the INSPIRE volunteer observing network and

  11. INSPIRE: A VLF Radio Project for High School Students

    ERIC Educational Resources Information Center

    Marshall, Jill A.; Pine, Bill; Taylor, William W. L.

    2007-01-01

    Since 1988 the Interactive NASA Space Physics Ionospheric Radio Experiment, or INSPIRE, has given students the opportunity to build research-quality VLF radio receivers and make observations of both natural and stimulated radio waves in the atmosphere. Any high school science class is eligible to join the INSPIRE volunteer observing network and…

  12. Innovation in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi

    2013-01-01

    Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing large astronomical data holdings; Poster abstracts; Part IV. Practical Issues Connected with the Implementation of the 2003 IAU Resolution: Introduction; 33. Stellar evolution for students of Moscow University; 34. Astronomy for everybody: An approach from the CASAO/NAUH view; 35. Toward a new program in astronomy education in secondary schools in Turkey; 36. Universe awareness for young children; 37. Education in Egypt and Egyptian responses to eclipses; 38. Astronomy in the cultural heritage of African societies; 39. Education at the Pierre Auger Observatory: the cinema as a tool in science education; 40. Freshman seminars: interdisciplinary engagements in astronomy; 41. Astronomy for teachers; Poster abstracts; Conclusion.

  13. Innovation in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi

    2008-07-01

    Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing large astronomical data holdings; Poster abstracts; Part IV. Practical Issues Connected with the Implementation of the 2003 IAU Resolution: Introduction; 33. Stellar evolution for students of Moscow University; 34. Astronomy for everybody: An approach from the CASAO/NAUH view; 35. Toward a new program in astronomy education in secondary schools in Turkey; 36. Universe awareness for young children; 37. Education in Egypt and Egyptian responses to eclipses; 38. Astronomy in the cultural heritage of African societies; 39. Education at the Pierre Auger Observatory: the cinema as a tool in science education; 40. Freshman seminars: interdisciplinary engagements in astronomy; 41. Astronomy for teachers; Poster abstracts; Conclusion.

  14. Student Educational Radio: Village Extension. Project S.E.R.V.E.

    ERIC Educational Resources Information Center

    Dillingham City School District, AK.

    Dillingham High School, through Project SERVE (Student Education Radio: Village Extension), intends to bring 25 rural schools and villages in the Bristol Bay area of Alaska together utilizing educational radio. The objectives of the three-year project are to: (1) increase the number of graduating students choosing broadcasting as a vocation by…

  15. Investigation of onboard quantum time scale for orbital flight of a space radio telescope (the RadioAstron project)

    NASA Astrophysics Data System (ADS)

    Zinoviev, A. N.

    2015-05-01

    Results of observing the operation of instrumentation of the ground-space complex of the Radio-Astron project during space flight conditions of the radio observatory are presented. The technology of quality evaluation of the data received from the space radio telescope (SRT) is considered. The dependence of readings of the onboard frame counter on SRT radial velocity and distance is determined. Technology of constructing a model of the ground-space atomic clocks and onboard quantum time scale based on the results of radio astronomic observations is tested. The method of measurement of the coherent cumulative navigation delay using the onboard quantum time scale is considered. The results of observation of the effect of relativistic and kinematic time dilation onboard the SRT are presented.

  16. Managing a big ground-based astronomy project: the Thirty Meter Telescope (TMT) project

    NASA Astrophysics Data System (ADS)

    Sanders, Gary H.

    2008-07-01

    TMT is a big science project and its scale is greater than previous ground-based optical/infrared telescope projects. This paper will describe the ideal "linear" project and how the TMT project departs from that ideal. The paper will describe the needed adaptations to successfully manage real world complexities. The progression from science requirements to a reference design, the development of a product-oriented Work Breakdown Structure (WBS) and an organization that parallels the WBS, the implementation of system engineering, requirements definition and the progression through Conceptual Design to Preliminary Design will be summarized. The development of a detailed cost estimate structured by the WBS, and the methodology of risk analysis to estimate contingency fund requirements will be summarized. Designing the project schedule defines the construction plan and, together with the cost model, provides the basis for executing the project guided by an earned value performance measurement system.

  17. Dark Skies Africa: a Prototype Project with the IAU Office of Astronomy for Development

    NASA Astrophysics Data System (ADS)

    Walker, Constance Elaine; Tellez, Daniel; Pompea, Stephen M.

    2015-08-01

    The IAU’s Office of Astronomy for Development (OAD) awarded the National Optical Astronomy Observatory (NOAO) with a grant to deliver a “Dark Skies Outreach to Sub-Saharan Africa” program to institutions in 12 African countries during 2013: Algeria, Nigeria, Rwanda, Tanzania, Ghana, Zambia, South Africa, Ethiopia, Gabon, Kenya, Namibia and Senegal. The program helped students identify wasteful and inefficient lighting and provided ways to reduce consumption and to keep energy costs in check. The goal was to inspire students to be responsible stewards in helping their community safeguard one of Africa’s natural resources - a dark night sky.Thirteen kits made by the NOAO Education and Public Outreach group were sent to coordinators at university, science center and planetarium-type institutions in the 12 countries and to the IAU OAD. The program’s kit included complete instructional guides and supplies for six hands-on activities (e.g., on the importance of shielding lights and using energy efficient bulbs) and a project on energy conservation and responsible lighting (through energy audits). The activities were taught to the coordinators in a series of six Google+ Hangout sessions scheduled from June to mid-November. The coordinators at the institutions in turn trained local teachers in junior and senior high schools. The Google+ Hangout sessions also included instruction on carrying out evaluations. From the end of November until mid-December students from the different African countries shared final class projects (such as posters or powerpoints) on the program’s website.The entire program was designed to help coordinators and educators work with students, parents and the community to identify dark sky resource, lighting and energy issues and to assess their status, efficiency and effectiveness. The audience will take away from the presentation lessons learned on how well the techniques succeeded in using Google+ Hangout sessions to instruct and sustain a community of coordinators and educators through distance learning, as well as immersing them (and their students) in projects after a scaffolded sequence of activities.

  18. Inquiry-Based Educational Design for Large-Scale High School Astronomy Projects Using Real Telescopes

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Michael; McKinnon, David H.; Danaia, Lena

    2015-12-01

    In this paper, we outline the theory behind the educational design used to implement a large-scale high school astronomy education project. This design was created in response to the realization of ineffective educational design in the initial early stages of the project. The new design follows an iterative improvement model where the materials and general approach can evolve in response to solicited feedback. The improvement cycle concentrates on avoiding overly positive self-evaluation while addressing relevant external school and community factors while concentrating on backward mapping from clearly set goals. Limiting factors, including time, resources, support and the potential for failure in the classroom, are dealt with as much as possible in the large-scale design allowing teachers the best chance of successful implementation in their real-world classroom. The actual approach adopted following the principles of this design is also outlined, which has seen success in bringing real astronomical data and access to telescopes into the high school classroom.

  19. The Pre-Major in Astronomy Program (Pre-MAP): What Makes a Great First Research Project?

    NASA Astrophysics Data System (ADS)

    Binder, Breanna A.; Schwieterman, Edward; Pre-Major in Astronomy Program

    2016-01-01

    The Pre-Major in Astronomy Program (Pre-MAP) at the University of Washington has been providing incoming students with the opportunity to work on research projects in astronomy and astrobiology almost as soon as they step on campus. These projects, which are developed by graduate students, post-docs, and faculty members, must be accessible to students with limited formal education in astronomy and physics and only ~5 weeks of instruction in computer programming. Projects must be simple enough to be completed within ~6 weeks, but challenging enough to yield interesting outcomes that will encourage students to continue working on research even after the first quarter seminar is over. In this talk, I will identify the challenges and goals associated with designing a 6-week, introductory research project for new undergraduates. I will then discuss some of the most successful outcomes of recent Pre-MAP projects, which have included publications, presentations by Pre-MAP students at conferences, press releases, and observing proposals.

  20. The Life Story of a Star, Book 5. Guidebook. The University of Illinois Astronomy Project.

    ERIC Educational Resources Information Center

    Atkin, J. Myron; Wyatt, Stanley P., Jr.

    Presented is book five in a series of six books in the University of Illinois Astronomy Program which introduces astronomy to upper elementary and junior high school students. This guidebook discusses the interior of stars, their source of energy, and their evolution. Topics presented include: the physical properties of the sun; model of the solar…

  1. Global Astronomy Month: Astronomy around the World

    NASA Astrophysics Data System (ADS)

    McMonigal, C.; Simmons, M.

    2015-09-01

    For six years Global Astronomy Month has taken place each April, growing into a wide-ranging and diverse array of programmes comprising the world's largest worldwide, annual celebration of astronomy. Innovative programmes developed through partnerships, along with the availability of this novel platform, have allowed an expansion of what the month has to offer. Beginning with familiar observing programmes that engage amateur astronomers, programmes have become increasingly inclusive, extending to non-astronomy fields inspired by space. This article explores the development of Global Astronomy Month, the lessons learnt and how the project has provided a stage for expanding existing programmes and testing new ideas.

  2. Research Projects and Undergraduate Retention at the University of Arizona

    NASA Astrophysics Data System (ADS)

    Walker-LaFollette, Amanda; Hardegree-Ullman, K.; Towner, A. P.; McGraw, A. M.; Biddle, L. I.; Robertson, A.; Turner, J.; Smith, C.

    2013-06-01

    The University of Arizonas Astronomy Club utilizes its access to the many telescopes in and around Tucson, Arizona, to allow students to fully participate in a variety of research projects. Three current projects - the exoplanet project, the radio astronomy project, and the Kepler project - all work to give undergraduates who are interested in astronomy the opportunity to explore practical astronomy outside the classroom and in a peer-supported environment. The exoplanet project strives to teach students about the research process, including observing exoplanet transits on the Steward Observatory 61 Kuiper telescope on Mt. Bigelow in Tucson, AZ, reducing the data into lightcurves with the Image Reduction and Analysis Facility (IRAF), modeling the lightcurves using the Interactive Data Language (IDL), and writing and publishing a professional paper, and does it all with no faculty involvement. The radio astronomy project is designed to provide students with an opportunity to work with a professor on a radio astronomy research project, and to learn about the research process, including observing molecules in molecular clouds using the Arizona Radio Observatory 12-meter radio telescope on Kitt Peak in Arizona. The Kepler project is a new project designed in part to facilitate graduate-undergraduate interaction in the Astronomy Department, and in part to allow students (both graduate and undergraduate) to participate in star-spot cycle research using data from the Kepler Mission. All of these research projects and structures provide students with unique access to telescopes, peer mentoring, networking, and understanding the entire process of astronomical research.

  3. Deconvolution of images in centimeter-band radio astronomy for the exploitation of new radio interferometers: characterization of non thermal components in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Dabbech, A.

    2015-04-01

    Within the framework of the preparation for the Square Kilometre Array (SKA), that is the world largest radio telescope, new imaging challenges has to be conquered. The data acquired by SKA will have to be processed on real time because of their huge rate. In addition, thanks to its unprecedented resolution and sensitivity, SKA images will have very high dynamic range over wide fields of view. Hence, there is an urgent need for the design of new imaging techniques that are robust and efficient and fully automated. The goal of this thesis is to develop a new technique aiming to reconstruct a model image of the radio sky from the radio observations. The method have been designed to estimate images with high dynamic range with a particular attention to recover faint extended emission usually completely buried in the PSF sidelobes of the brighter sources and the noise. We propose a new approach, based on sparse representations, called MORESANE. The radio sky is assumed to be a summation of sources, considered as atoms of an unknown synthesis dictionary. These atoms are learned using analysis priors from the observed image. Results obtained on realistic simulations show that MORESANE is very promising in the restoration of radio images; it is outperforming the standard tools and very competitive with the newly proposed methods in the literature. MORESANE is also applied on simulations of observations using the SKA1 with the aim to investigate the detectability of the intracluster non thermal component. Our results indicate that these diffuse sources, characterized by very low surface brightness will be investigated up to the epoch of massive cluster formation with the SKA.

  4. The birth of high-energy neutrino astronomy: A personal history of the DUMAND project

    SciTech Connect

    Roberts, A. )

    1992-01-01

    DUMAND is a project to build a Deep Underwater Muon And Neutrino Detector offshore near the island of Hawaii. At present under construction, it hopes to inaugurate the field of high-energy neutrino astronomy. Potential sources of high-energy neutrinos are listed, and estimates of neutrino intensity given. The paper is concerned with the physics, technology, and history of the project, which started informally in 1973. It survived through a series of summer conferences until it was funded as a feasibility study in 1979 and established in the Hawaii DUMAND Center, at the University of Hawaii. Over a dozen collaborating groups have contributed to the successful construction and operation of DUMAND I, the SPS or Short Prototype String, which established the benign character of the ocean environment and demonstrated its suitability for DUMAND II, a 216-phototube array now under construction. DUMAND II, recently funded, will have more than 20 times the area of any existing detector and a mass of almost 2 million tons; this size is minimal for the intensities and cross sections anticipated. The project became feasible---both technically and financially---through important technical advances in data transmission via fiber optics, high-speed computer technology, special photomultiplier tubes made by Hamamatsu and Philips, remotely controlled undersea vehicles with manipulative abilities, and many deep-sea electronic and oceanographic components. It is supported by an international collaboration with 15 collaborating institutions in the U.S., Europe, and Japan. It is scheduled to install a three-string test array (TRIAD) by late 1992, and the complete nine-string array is scheduled for operation in late 1993.

  5. African Astronomy and the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    MacLeod, Gordon

    2010-02-01

    We highlight the growth of astronomy across Africa and the effect of hosting the Square Kilometer Array (SKA) will have on this growth. From the construction of a new 25m radio telescope in Nigeria, to new university astronomy programmes in Kenya, the HESS in Namibia and the Mauritian Radio Telescope, to the world class projects being developed in South Africa (Southern African Large Telescope and Karoo Array Telescope) astronomy is re-emerging across the continent. The SKA will represent the pinnacle of technological advancement in astronomy when constructed; requiring ultra high speed data transmission lines over 3000 km baselines and the World's fastest computer for correlation purposes. The investment alone to build the SKA on African soil will be of great economic benefit to its people, but the required network connectivity will significantly drive commercial expansion far beyond the initial value of the SKA investment. The most important consequence of hosting the SKA in Africa would be the impact on Human Capital Development (HCD) on the continent. Major HCD projects already underway producing excellent results will be presented. )

  6. The Quiet Skies Project

    ERIC Educational Resources Information Center

    Rapp, Steve

    2008-01-01

    To help promote student awareness of the connection between radio astronomy and radio frequency interference (RFI), an inquiry-based science curriculum was developed to allow high school students to determine RFI levels in their communities. The Quiet Skies Project--the result of a collaboration between the National Aeronautics and Space

  7. The Quiet Skies Project

    ERIC Educational Resources Information Center

    Rapp, Steve

    2008-01-01

    To help promote student awareness of the connection between radio astronomy and radio frequency interference (RFI), an inquiry-based science curriculum was developed to allow high school students to determine RFI levels in their communities. The Quiet Skies Project--the result of a collaboration between the National Aeronautics and Space…

  8. The Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi

    2011-08-01

    We present the status of the Sardinia Radio Telescope (SRT) project, a new general purpose, fully steerable 64 m diameter parabolic radio telescope under construction in Sardinia. The instrument is funded by Italian Ministry of University and Research (MIUR), by the Sardinia Regional Government (RAS), and by the Italian Space Agency (ASI), and it is charge to three research structures of the National Institute for Astrophysics (INAF): the Institute of Radio Astronomy of Bologna, the Cagliari Astronomical Observatory (in Sardinia), and the Arcetri Astrophysical Observatory in Florence. The radio telescope has a shaped Gregorian optical configuration with a 8 m diameter secondary mirror and additional Beam-Wave Guide (BWG) mirrors. One of the most challenging feature of SRT is the active surface of the primary reflector which provides good efficiency up to about 100 GHz. This paper reports on the most recent advances of the construction.

  9. Solving stellar astronomy problems in the orbital stellar stereoscopic observatory project

    NASA Astrophysics Data System (ADS)

    Chubey, M. S.; Kouprianov, V. V.; L'vov, V. N.; Markelov, S. V.; Bakholdin, A. V.; Tsukanova, G. I.

    We propose to establish an Orbital Stellar Stereoscopic Observatory consisting of two identically equipped spacecrafts in the vicinity of two Lagrangian libration points, L4 and L5, of the ``Sun -- Earth + Moon barycenter'' system. The stereoscopic baseline length is B ≈ 259.111 million km (86.4% of the Earth orbit diameter). Each of the two Tsukanova-Korsch three-mirror astrographs has an aperture of 1 m and focal length of 30 m; the focal-plane CCD array is 350 mm in diameter. The expected astrometric accuracy is ± 0.0007 arcsec in a single measurement. Each frame in the scientific program is captured synchronously by the two astrographs, allowing to obtain instantaneous parallaxes of stars as far as up to 5 kpc, along with spectral energy distributions (SEDs) of point and extended sources in the Tholen filter system (Zellner et al. 1985) extended to 12--14 bands, including the integral one. We expect the project to provide a large amount of important information for stellar astronomy and for various studies of Galactic objects.

  10. Characterization of fluoride fibers for the Optical Hawaiian Array for Nanoradian Astronomy project.

    PubMed

    Kotani, Takayuki; Perrin, Guy; Vergnole, Sbastien; Woillez, Julien; Guerin, Jean

    2005-08-20

    We report on the interferometric characterization of a pair of 300 m long single-mode non-polarization-maintaining fibers designed for the Optical Hawaiian Array for Nanoradian Astronomy ('OHANA) project whose goal is to realize a kilometric near-infrared astronomical array by connecting the large telescopes of the Mauna Kea observatory with single-mode fibers. The fluoride glass fibers are operated in the astronomical K band (2.0-2.4 microm) in which their attenuation is low. We have measured very low differential chromatic dispersion, and the wideband fringe visibility is 0.9 if the two fiber arms have the same temperature. The thermal sensitivity of fibers with respect to their interferometric properties has been studied. The differential chromatic dispersion of the fibers is highly sensitive to the temperature difference. On the contrary, the coherent loss due to mismatch of polarization states is not significantly dependent on the temperature difference. Compensation of thermally induced differential dispersion by use of CaF2 glass plates is demonstrated. PMID:16121786

  11. Radio astronomy method for determining the energy and composition of a nucleus of ultrahigh-energy cosmic particle

    NASA Astrophysics Data System (ADS)

    Filonenko, A. D.; Filonenko, V. A.

    2011-02-01

    It is shown that, using broadband multirange antennas of two radio telescopes spaced by (5-10) 103 km, it is possible to determine the energy of a cascade shower in lunar regolith and the composition of a primary cosmic particle provided that the shower was generated by a heavy nucleus.

  12. Plasma and radio waves from Neptune: Source mechamisms and propagation

    NASA Technical Reports Server (NTRS)

    Menietti, J. Douglas

    1994-01-01

    The purpose of this project was to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as it flew by Neptune. The study has included data analysis, theoretical and numerical calculations, and ray tracing to determine the possible source mechanisms and locations of the radiation, including the narrowband bursty and smooth components of the Neptune radio emission.

  13. Titius-Bode Law: An Astronomy Project of a Cloudy Night.

    ERIC Educational Resources Information Center

    Sapp, Richard C.

    1980-01-01

    Describes a study unit on the Titius-Bode Law of planetary distances designed to be used in undergraduate astronomy courses. The format of the guide is based on a Piagetian learning cycle of exploration, conceptualization, and application. (HM)

  14. FM Radio; An Oral Communication Project for Migrants in Palm Beach County.

    ERIC Educational Resources Information Center

    Early, L. F.

    This report gives a full description of the broadcasting and operation of WHRS-FM, a FM radio station established by federal grant to serve migrant workers and their children in Palm Beach County, Florida. The goal of the project was to evaluate FM radio as a solution to the serious economic and educational problem of communicating with the…

  15. A Multi-Feed Receiver in the 18 to 26.5 GHz Band for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Orfei, A.; Carbonaro, L.; Cattani, A.; Cremonini, A.; Cresci, L.; Fiocchi, F.; Maccaferri, A.; Maccaferri, G.; Mariotti, S.; Monari, J.; Morsiani, M.; Natale, V.; Nesti, R.; Panella, D.; Poloni, M.; Roda, J.; Scalambra, A.; Tofani, G.

    2010-08-01

    A large-bandwidth, state-of-the-art multi-feed receiver has been constructed to be used on the new 64 m Sardinia Radio Telescope (SRT) (http://www.srt.inaf.itl), an antenna aiming to work from 300 MHz to 100 GHz with an almost continuous frequency coverage. The goal of this new receiver is to speed up the survey of the sky with high sensitivity in a frequency band that is very interesting to radio astronomers. In the meantime, the antenna erection has been finalized, and the receiver has been mounted on the Medicina 32 m antenna to be tested (http://www.med.ira.inaf.itl). We present a complete description of the system, including a dedicated backend, and the results of the tests.

  16. NSF Internships in Public Science Education: Sensing the Radio Sky

    NASA Astrophysics Data System (ADS)

    Hund, L.; Boltuch, D.; Fultz, C.; Buck, S.; Smith, T.; Harris, R.; Moffett, D.; LaFratta, M.; Walsh, L.; Castelaz, M. W.

    2005-12-01

    The intent of the "Sensing the Radio Sky" project is to teach high school students the concepts and relevance of radio astronomy through presentations in STARLAB portable planetariums. The two year project began in the summer of 2004. A total of twelve interns and four faculty mentors from Furman University and UNCA have participated at the Pisgah Astronomical Research Institute to develop the Radio Sky project. The project united physics and multimedia majors and allowed these students to apply their knowledge of different disciplines to a common goal. One component of the project is the development and production of a cylinder to be displayed in portable STARLAB planetariums. The cylinder gives a thorough view of the Milky Way and of several other celestial sources in radio wavelengths, yet these images are difficult to perceive without prior knowledge of radio astronomy. Consequently, the Radio Sky team created a multimedia presentation to accompany the cylinder. This multimedia component contains six informative lessons on radio astronomy assembled by the physics interns and numerous illustrations and animations created by the multimedia interns. The cylinder and multimedia components complement each other and provide a unique, thorough, and highly intelligible perspective on radio astronomy. The project is near completion and the final draft will be sent to Learning Technologies, Inc., for marketing to owners of STARLAB planetariums throughout the world. The development of the Radio Sky project has also provided a template for potential similar projects that examine our universe in different wavelengths, such as gamma ray, x-ray, and infrared. We acknowledge support from the NSF Internship in Public Science Education Program grant number 0324729.

  17. Air Shower Measurements with Radio Antennas: The LOPES Project

    SciTech Connect

    Haungs, Andreas

    2008-01-24

    LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and calibrate radio pulses from Extensive Air Showers. LOPES is designed as a digital radio interferometer using high bandwidths and fast data processing and profits from the reconstructed air shower observables of KASCADE-Grande. First results of the LOPES experiment are very promising for a future large scale application of the technique to detect cosmic rays of highest energies.

  18. A Voyage through the Radio Universe

    ERIC Educational Resources Information Center

    Spuck, Timothy

    2004-01-01

    Each year, professionals and amateurs alike make significant contributions to the field of astronomy. High school students can also conduct astronomy research. Since 1992, the Radio Astronomy Research Team from Oil City Area Senior High School (OCHS) in Oil City, Pennsylvania, has traveled each year to the National Radio Astronomy Observatory…

  19. A Voyage through the Radio Universe

    ERIC Educational Resources Information Center

    Spuck, Timothy

    2004-01-01

    Each year, professionals and amateurs alike make significant contributions to the field of astronomy. High school students can also conduct astronomy research. Since 1992, the Radio Astronomy Research Team from Oil City Area Senior High School (OCHS) in Oil City, Pennsylvania, has traveled each year to the National Radio Astronomy Observatory

  20. Advances in Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Baars, Jacob W. M.; D'Addario, Larry R.; Thompson, A. Richard

    2009-08-01

    The editors of the third Special Issue on Radio Telescopes, which appeared in the Proceedings of the IEEE in May 1994, surmised in their introduction that "perhaps yet a future issue is merited, one devoted to those new telescopes that are still on the drawing boards." Now, 15 years later, such an issue lies in front of you, featuring 16 papers describing both the realization of new instruments and the status of several giant radio telescopes, most of which are moving from the drawing board to different stages of construction. The development of astronomy over this period has led radio astronomers to concentrate on both the highest and the lowest ranges of the radio spectrum. The technological advance in the millimeter wavelength domain has enabled an enormous improvement in observing capabilities. In the low frequency range, roughly 10 - 2000 MHz, new telescopes are being planned that combine a large instantaneous field of view with a large number of high- resolution antenna beams. In addition to these developments, this issue features papers on several new single aperture telescopes. We also have three papers covering advances in technologies that are applicable to multiple projects, namely, antenna metrology, imaging techniques, and the use of phased array techniques. The issue begins with a short paper by the guest editors on "Radio Astronomy in the Early Twenty-First Century." There we attempt to put the topics of the following papers in historical perspective and to provide background information for readers whose expertise lies outside astronomy. The remaining papers are organized into three broad categories: single antenna telescopes, synthesis array telescopes, and the Square Kilometre Array (SKA). Although the last is also a synthesis array, the intensity of SKA-related work now under way around the world justifies a separate set of papers devoted to it. This issue features new single-aperture and synthesis array radio telescopes and covers advances in antenna metrology, imaging techniques, and the use of phased array technology.

  1. Information Content in Radio Waves: Student Investigations in Radio Science

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  2. The Network for Astronomy in Education in Southwest New Mexico

    NASA Astrophysics Data System (ADS)

    Neely, B.

    1998-12-01

    The Network for Astronomy in Education was organized to use astronomy as a motivational tool to teach science methods and principles in the public schools. NFO is a small private research observatory, associated with the local University, Western New Mexico. We started our program in 1996 with an IDEA grant by introducing local teachers to the Internet, funding a portable planetarium (Starlab) for the students, and upgrading our local radio linked computer network. Grant County is a rural mining and ranching county in Southwest New Mexico. It is ethnically diverse and has a large portion of the population below the poverty line. It's dryness and 6000' foot elevation, along with dark skies, suite it to the appreciation of astronomy. We now have 8 local schools involved in astronomy at some level. Our main programs are the Starlab and Project Astro, and we will soon install a Sidewalk Solar System in the center of Silver City.

  3. Astronomy at the University of South Africa

    NASA Astrophysics Data System (ADS)

    Smits, D. P.

    2000-12-01

    Unisa is the largest correspondence university in Africa and the only South African university currently offering a BSc in Astronomy. The astronomy modules can be included in any standard BSc Physics programme. Besides using the radio and optical telescopes at HartRAO and SAAO, Unisa also has its own Observatory on the main campus equipped with modern instrumentation for training students and doing niche research projects. Unisa est la plus importante universit d'enseignement par correspondance en Afrique et la seule universit d'Afrique du Sud qui forme des licencis s sciences (BSc) en Astronomie. Les modules d'astronomie peuvent tre inclus dans tout programme standard de Physique pour BSc. En plus d'utiliser les tlescopes radio et optiques HartRAO et SAAO, Unisa a aussi sur le campus principal son propre Observatoire quip d'une instrumentation moderne pour la formation des tudiants et pour mener bien des projets de recherche dans des niches scientifiques modernes.

  4. Elementary astronomy

    NASA Astrophysics Data System (ADS)

    Fierro, J.

    2006-08-01

    In developing nations such as Mexico, basic science education has scarcely improved. There are multiple reasons for this problem; they include poor teacher training and curricula that are not challenging for students. I shall suggest ways in which astronomy can be used to improve basic education, it is so attractive that it can be employed to teach how to read and write, learn a second language, mathematics, physics, as well as geography. If third world nations do not teach science in an adequate way, they will be in serious problems when they will try to achieve a better standard of living for their population. I shall also address informal education, it is by this means that most adults learn and keep up to date with subjects that are not their specialty. If we provide good outreach programs in developing nations we can aid adult training; astronomy is ideal since it is particularly multidisciplinary. In particular radio and television programs are useful for popularization since they reach such wide audiences.

  5. Learning Astronomy by Doing Astronomy

    NASA Astrophysics Data System (ADS)

    Percy, J. R.

    2006-08-01

    In the modern science curriculum, students should learn science knowledge or "facts"; they should develop science skills, strategies, and habits of mind; they should understand the applications of science to technology, society, and the environment; and they should cultivate appropriate attitudes toward science. While science knowledge may be taught through traditional lecture-and-textbook methods, theories of learning (and extensive experience) show that other aspects of the curriculum are best taught by doing science -- not just hands-on activities, but "minds-on" engagement. That means more than the usual "cookbook" activities in which students use a predetermined procedure to achieve a predetermined result. The activities should be "authentic"; they should mirror the actual scientific process. In this presentation, I will describe several ways to include science processes within astronomy courses at the middle school, high school, and introductory university level. Among other things, I will discuss: topics that reflect cultural diversity and "the nature of science"; strategies for developing science process skills through projects and other practical work; activities based on those developed and carried out by amateur astronomers; topics and activities suitable for technical-level courses (we refer to them as "applied" in my province); projects for astronomy clubs and science fairs; and topics that expose students to astronomy research within lecture courses.

  6. Gravitational Astronomy

    NASA Astrophysics Data System (ADS)

    Sathyaprakash, B. Suryanarayana

    This chapter is about opening the gravitational window to observe the Universe. Although the weakest of all known forces, gravity plays a dominant role in forming stars and galaxies, shaping the large-scale structure, and driving the expansion of the Universe. Gravity has so far played a passive role in our understanding. We only witness its influence indirectly by observing its effect on star light (Doppler effect, cosmological redshift, gravitational lensing, etc.). However, we are at a momentous period that could soon transform our picture of the Universe by opening the gravitational window for observational astronomy. Gravitational waves have already been critical for understanding how neutron star binaries evolve [1] [2]. However, we have not directly observed the waves themselves. This will change before the end of this decade when several different methods of observing gravitational waves will reach sensitivity levels at which we should finally begin to unravel some of the deepest questions in astronomy, cosmology, and fundamental physics. The chapter by van den Broeck will deal with the two latter topics. In this chapter, we will discuss what gravitational waves are (Sect. 26.2), how they interact with matter (Sect. 26.3), on-going and future projects aimed at detecting cosmic gravitational waves (Sect. 26.4), expected and speculative astronomical sources, and a list of open problems on which gravitational astronomy could shed some light (Sect. 26.5).

  7. Flexible Filter Bank Based on an Improved Weighted Overlap-Add Algorithm for Processing Wide Bandwidth Radio Astronomy Signals

    NASA Astrophysics Data System (ADS)

    Wang, Xianhai; Meng, Qiao; Han, J. L.; Liu, Wei; Zhang, Jianwei

    2015-12-01

    Wideband signals from a radio telescope have to be channelized for spectral observations or for dedispersion for pulsar observations. A polyphase filter bank is designed based on the improved weighted overlap-add (IWOLA) algorithm to achieve channelization. The IWOLA algorithm involves applying an equivalent Hilbert transform to the normal WOLA filter bank by shifting the center frequency of every sub-band by a half of the frequency bin, so that the IWOLA filter bank provides K independently output complex subbands instead of the usual K + 1 sub-bands, reducing the subsequent processing units by one set. Performance of the proposed IWOLA filter bank is analyzed by means of MATLAB simulations. We show how the IWOLA filter bank can be used for a two-stage, high-resolution spectrometer, with a much reduced consumption of FPGA on-chip block RAM.

  8. Lowell Area Council on Interlibrary Network Radio Project.

    ERIC Educational Resources Information Center

    Panciers, David J.

    In the fall of 1973, public, school, and college librarians in the Lowell, Massachusetts, area formed the Lowell Area Council on Interlibrary Networks (LACOIN). With a grant from the Library Services and Construction Act, Title III, LACOIN initiated library-sponsored public affairs radio broadcasting for its community. Utilizing the Lowell

  9. Antenna feed unit for the RadioAstron project

    NASA Astrophysics Data System (ADS)

    Turygin, M. S.

    2014-09-01

    The design and parameters of the antenna feed unit in the ranges of 6, 18, and 92 cm are described. The unit was designed and manufactured for the RadioAstron space telescope with a diameter of 10 m. The parameters and test results are presented.

  10. Using Group Research to Stimulate Undergraduate Astronomy Major Learning

    NASA Astrophysics Data System (ADS)

    McGraw, A. M.; Hardegree-Ullman, K. K.; Turner, J. D.; Shirley, Y. L.; Walker-LaFollette, A. M.; Robertson, A. N.; Carleton, T. M.; Smart, B. M.; Towner, A. P. M.; Wallace, S. C.; Smith, C.-T. W.; Austin, C. L.; Small, L. C.; Daugherty, M. J.; Guvenen, B. C.; Crawford, B. E.; Schlingman, W. M.

    2013-04-01

    The University of Arizona Astronomy Club has been working on two large group research projects since 2009. One research project is a transiting extrasolar project that is fully student led and run. We observed the transiting extrasolar planets, TrES-3b and TrES-4b, with the 1.55 meter Kuiper Telescope using different filters to test a proposed method of detecting extrasolar planet magnetic fields. The second project is a radio astronomy survey utilizing the Arizona Radio Observatory 12 meter telescope on Kitt Peak to study molecular gas in cold star-like cores identified by the Planck all sky survey. This project provides a unique opportunity for a large group of students to get hands-on experience observing with a world-class radio observatory. These projects involve students in every single step of the process including: proposal writing to obtain telescope time on various Southern Arizona telescopes, observing at these telescopes, data reduction and analysis, managing large data sets, and presenting results at scientific meetings and in journal publications. The primary goal of these projects is to involve students in cutting-edge research early on in their undergraduate studies. These projects are designed to be continuous long term projects so that new students can easily join. New students learn from the more experienced students on the projects, creating a learner-centered environment. Independent study credit is now an option for some students working on these projects.

  11. Planetary astronomy

    NASA Technical Reports Server (NTRS)

    Morrison, David; Hunten, Donald; Ahearn, Michael F.; Belton, Michael J. S.; Black, David; Brown, Robert A.; Brown, Robert Hamilton; Cochran, Anita L.; Cruikshank, Dale P.; Depater, Imke

    1991-01-01

    The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed.

  12. Infrared astronomy

    NASA Technical Reports Server (NTRS)

    Gillett, Frederick; Houck, James; Bally, John; Becklin, Eric; Brown, Robert Hamilton; Draine, Bruce; Frogel, Jay; Gatley, Ian; Gehrz, Robert; Hildebrand, Roger

    1991-01-01

    The decade of 1990's presents an opportunity to address fundamental astrophysical issues through observations at IR wavelengths made possible by technological and scientific advances during the last decade. The major elements of recommended program are: the Space Infrared Telescope Facility (SIRTF), the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the IR Optimized 8-m Telescope (IRO), a detector and instrumentation program, the SubMilliMeter Mission (SMMM), the 2 Microns All Sky Survey (2MASS), a sound infrastructure, and technology development programs. Also presented are: perspective, science opportunities, technical overview, project recommendations, future directions, and infrastructure.

  13. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Zakharenko, V. V.; Ulyanov, O. M.

    2015-10-01

    An ultra-low-noise input amplifier intended for a use in a radio telescope operating at 91 cm wavelength is presented. The amplifier noise temperatures are 12.8 1.5 and 10.0 1.5 K at ambient temperatures of 293 and 263 K respectively. The amplifier does not require cryogenic cooling. It can be quickly put in operation thus shortening losses in the telescope observation time. High linearity of the amplifier (output power at 1 dB gain compression P1dB ? 22 dBm, output third order intercept point OIP3 ? 37 dBm) enables the telescope operation in highly urbanized and industrialized regions. To obtain low noise characteristics along with high linearity, high-electron-mobility field-effect transistors were used in parallel in the circuit developed. The transistors used in the amplifier are cost-effective and commercially available. The circuit solution is recommended for similar devices working in ultra-high frequency band.

  14. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Zakharenko, V. V.; Ulyanov, O. M.

    2016-02-01

    An ultra-low-noise input amplifier intended for a use in a radio telescope operating at 91 cm wavelength is presented. The amplifier noise temperatures are 12.8 ± 1.5 and 10.0 ± 1.5 K at ambient temperatures of 293 and 263 K respectively. The amplifier does not require cryogenic cooling. It can be quickly put in operation thus shortening losses in the telescope observation time. High linearity of the amplifier (output power at 1 dB gain compression P1dB ≥ 22 dBm, output third order intercept point OIP3 ≥ 37 dBm) enables the telescope operation in highly urbanized and industrialized regions. To obtain low noise characteristics along with high linearity, high-electron-mobility field-effect transistors were used in parallel in the circuit developed. The transistors used in the amplifier are cost-effective and commercially available. The circuit solution is recommended for similar devices working in ultra-high frequency band.

  15. Working Papers: Astronomy and Astrophysics Panel Reports

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Beichman, Charles A.; Canizares, Claude; Cronin, James; Heeschen, David; Houck, James; Hunten, Donald; Mckee, Christopher F.; Noyes, Robert; Ostriker, Jeremiah P.

    1991-01-01

    The papers of the panels appointed by the Astronomy and Astrophysics survey Committee are compiled. These papers were advisory to the survey committee and represent the opinions of the members of each panel in the context of their individual charges. The following subject areas are covered: radio astronomy, infrared astronomy, optical/IR from ground, UV-optical from space, interferometry, high energy from space, particle astrophysics, theory and laboratory astrophysics, solar astronomy, planetary astronomy, computing and data processing, policy opportunities, benefits to the nation from astronomy and astrophysics, status of the profession, and science opportunities.

  16. MPS Internships in Public Science Education: Sensing the Radio Sky

    NASA Astrophysics Data System (ADS)

    Blake, Melvin; Castelaz, M. W.; Moffett, D.; Walsh, L.; LaFratta, M.

    2006-12-01

    The intent of the “Sensing the Radio Sky” program is to teach high school students the concepts and relevance of radio astronomy through presentations in STARLAB portable planetariums. The two year program began in the summer of 2004 and was completed in December 2006. The program involved a team of 12 undergraduate physics and multimedia majors and four faculty mentors from Furman University, University of North Carolina-Asheville and Pisgah Astronomical Research Institute (PARI). One component of the program is the development and production of a projection cylinder for the portable STARLAB planetariums. The cylinder gives a thorough view of the Milky Way and of several other celestial sources in radio wavelengths, yet these images are difficult to perceive without prior knowledge of radio astronomy. Consequently, the Radio Sky team created a multimedia presentation to accompany the cylinder. This multimedia component contains six informative lessons on radio astronomy assembled by the physics interns and numerous illustrations and animations created by the multimedia interns. The cylinder and multimedia components complement each other and provide a unique, thorough, and highly intelligible perspective on radio astronomy. The final draft is complete and will be sent to Learning Technologies, Inc., for marketing to owners of STARLAB planetariums throughout the world. We acknowledge support from the NSF Internship in Public Science Education Program grant number 0324729.

  17. Dr Elizabeth Alexander: First Female Radio Astronomer

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne

    2005-01-01

    During March-April 1945, solar radio emission was detected at 200 MHz by operators of a Royal New Zealand Air Force radar unit located on Norfolk Island. Initially dubbed the `Norfolk Island Effect', this anomalous radiation was investigated throughout 1945 by British-born Elizabeth Alexander, head of the Operational Research Section of the Radio Development Laboratory in New Zealand. Alexander prepared a number of reports on this work, and in early 1946 she published a short paper in the newly-launched journal, Radio & Electronics. A geologist by training, Elizabeth Alexander happened to be in the right place at the right time, and unwittingly became the first woman in the world to work in the field that would later become known as radio astronomy. Her research also led to further solar radio astronomy projects in New Zealand in the immediate post-war year, and in part was responsible for the launch of the radio astronomy program at the Division of Radiophysics, CSIRO, in Sydney.

  18. Stereoscopic 3D Projections with MITAKA An Important Tool to Get People Interested in Astronomy and Space Science in Peru

    NASA Astrophysics Data System (ADS)

    Shiomi, Nemoto; Shoichi, Itoh; Hidehiko, Agata; Mario, Zegarra; Jose, Ishitsuka; Edwin, Choque; Adita, Quispe; Tsunehiko, Kato

    2014-02-01

    National Astronomical Observatory of Japan has developed space simulation software "Mitaka". By using Mitaka on two PCs and two projectors with polarizing filter, and look through polarized glasses, we can enjoy space travel in three dimensions. Any one can download Mitaka from anywhere in the world by Internet. But, it has been prepared only Japanese and English versions now. We improved a Mitaka Spanish version, and now we are making projections for local people. The experience of the universe in three dimensions is a very memorable for people, and it has become an opportunity to get interested in astronomy and space sciences. A 40 people capacity room, next o to our Planetarium, has been conditioned for 3D projections; also a portable system is available. Due to success of this new outreach system more 3D show rooms will be implemented within the country.

  19. Project RESUN, a Radio EVLA Search for UHE Neutrinos

    NASA Astrophysics Data System (ADS)

    Jaeger, T. R.; Mutel, R. L.; Gayley, K. G.

    2010-12-01

    In the past decade there have been several attempts to detect Ultra High Energy (UHE) neutrinos via radio ?erenkov bursts in terrestrial ice or the lunar regolith. So far these searches have yielded no detections, but the inferred flux upper limits have started to constrain physical models for UHE neutrino generation. We report results from the Radio EVLA Search for UHE Neutrinos (RESUN) experiment, aimed at further limiting isotropic and point-source production models. RESUN uses the Expanded Very Large Array (EVLA) configured in multiple sub-arrays of four antennas observing at 1.4 GHz and pointed along the lunar limb to detect cm-wavelength ?erenkov bursts. No pulses of lunar origin exceeding a threshold of 0.017 ?V m -1 MHz -1 were detected during a observing campaign totaling 200 h. The RESUN null detection implies an upper limit to the differential isotropic neutrino flux EdN/ dE < 1 km -2 yr -1 sr -1 at 90% confidence level for sources with energy ( E) exceeding 10 21.2 eV and EdN/ dE < 0.1 km -2 yr -1 sr -1 for E > 10 22.5 eV. The isotropic flux upper limit is the lowest published for lunar searches in the range 10 20.7 eV < E < 10 22.3 eV and is inconsistent with extragalactic and halo Z-burst models for neutrino generation, in agreement with the ANITA Antarctic ice observations and WMAP neutrino mass estimates. Further, we establish 90% confidence differential flux limits for selected AGN sources located along the lunar celestial path.

  20. Astronomy in Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, Valrio A. R. M.; Paulo, Cludio M.

    2015-03-01

    We present the state of Astronomy in Mozambique and how it has evolved since 2009 following the International Year of Astronomy. Activities have been lead by staff at University Eduardo Mondlane and several outreach activities have also flourished. In 2010 the University introduced its first astronomy module, Introduction to Astronomy and Astrophysics, for the second year students in the Department of Physics. The course has now produced the first students who will be graduating in late 2012 with some astronomy content. Some of these students will now be looking for further studies and those who have been keen in astronomy have been recommended to pursue this as a career. At the university level we have also discussed on the possibility to introduce a whole astronomy course by 2016 which falls well within the HCD that the university is now investing in. With the announcement that the SKA will be split between South Africa with its partner countries (including Mozambique), and Australia we have been working closely with the Ministry of Science and Technology to make astronomy a priority on its agenda. In this respect, an old telecommunications antenna is being converted by the South Africa SKA Project Office, and donated to Mozambique for educational purposes. It will be situated in Maluana, Mozambique.

  1. Putting The "Yee-Hah!" In Astronomy Outreach: Professional Development Through The ASP "Sky Rangers" Project

    NASA Astrophysics Data System (ADS)

    Manning, Jim; Gurton, S.; Hurst, A.

    2010-05-01

    The Astronomical Society of the Pacific is conducting a NASA-funded professional development program to help increase astronomy education and outreach capacity at national parks, nature centers, and other outdoor and environmental centers--venues that still have a dark night sky as a natural resource and a yen to interpret it for their visitors. Through online workshops and on-site workshops at national parks, the ASP staff, working in conjunction with partners from the National Park Service, National Association for Interpretation, and the Association of Science and Technology Centers, provides materials and training focusing on the sky. Participants become part of ASP's "Astronomy from the Ground Up" informational education community of practice, with ongoing options to hone their new skills. The presenter will report on early progress and lessons learned, as well as future plans, as the ASP and its partners work to help wilderness and nature interpreters put a little more "yee-hah!" in their visitor presentations aimed at the sky.

  2. Planetary Astronomy

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1998-01-01

    This 1-year project was an augmentation grant to my NASA Planetary Astronomy grant. With the awarded funding, we accomplished the following tasks: (1) Conducted two NVK imaging runs in conjunction with the ILAW (International Lunar Atmosphere Week) Observing Campaigns in 1995 and 1997. In the first run, we obtained repeated imaging sequences of lunar Na D-line emission to better quantify the temporal variations detected in earlier runs. In the second run we obtained extremely high resolution (R=960.000) Na line profiles using the 4m AAT in Australia. These data are being analyzed under our new 3-year Planetary Astronomy grant. (2) Reduced, analyzed, and published our March 1995 spectroscopic dataset to detect (or set stringent upper limits on) Rb. Cs, Mg. Al. Fe, Ba, Ba. OH, and several other species. These results were reported in a talk at the LPSC and in two papers: (1) A Spectroscopic Survey of Metallic Abundances in the Lunar Atmosphere. and (2) A Search for Magnesium in the Lunar Atmosphere. Both reprints are attached. Wrote up an extensive, invited Reviews of Geophysics review article on advances in the study of the lunar atmosphere. This 70-page article, which is expected to appear in print in 1999, is also attached.

  3. Early Astronomy

    NASA Astrophysics Data System (ADS)

    Thurston, Hugh

    The earliest investigations that can be called scientific are concerned with the sky: they are the beginnings of astronomy. Many early civilizations produced astronomical texts, and several cultures that left no written records left monuments and artifacts-ranging from rock paintings to Stonehenge-that show a clear interest in astronomy. Civilizations in China, Mesopotamia, India and Greece had highly developed astronomies, and the astronomy of the Mayas was by no means negligible. Greek astronomy, as developed by the medieval Arab philosophers, evolved into the astronomy of Copernicus. This displaced the earth from the central stationary position that almost all earlier astronomies had assumed. Soon thereafter, in the first decades of the seventeenth century, Kepler found the true shape of the planetary orbits and Galileo introduced the telescope for astronomical observations.

  4. Developing Astronomy in Cuba

    NASA Astrophysics Data System (ADS)

    Rodriguez Taboada, R. E.

    2006-08-01

    Introduction Beginning from a brief historical introduction the up to day situation is presented and the topics relevant to Astronomy development analyzed from the view point of a person actually working in Astrophysics. Arising from national needs, Astronomical Calculations is the only "native-born" branch of astronomy in Cuba. Cuba was an observational platform capable to provide the Soviet Union with the 24 hours solar patrol needed by its Space Agency System to protect the men in orbit. This was the beginning of a very fruitful development of solar research in Cuba. Russia installed the instruments, trained the people to operate them, and gives the academic environment to develop the scientific work in solar physics, space weather, and related topics. What about Stellar Astronomy? The Cuban astro-climate is not good to develop an observational base. We are trying to develop stellar astronomy in collaboration with institutions capable to provide both, the academic and technical environment; but to continue developing Stellar Astronomy we need to influence the public opinion and convince people they need groups working in Astronomy. How to do that? Publishing. Giving conferences talking about OUR work, not only like spectators of the science. Showing science is culture in modern times. Showing projects in Astronomy can be cheap. This is very important! Astronomy is not a luxury. Real possibilities I consider the Virtual Observatory concept the more appropriate in the near future, but it is necessary to have a connectivity level that is not commonly provided in Cuba, and to train the people. Concluding remarks From my experience "engagement" is the key word for Astronomy development in developing countries. Astronomy can not be developed without an appropriate academic environment, and we have not it. It is not "only" about financial resources, it is about "real collaboration" with a mature partner and common research goals.

  5. Resources for College Libraries: Astronomy

    NASA Astrophysics Data System (ADS)

    Holmquist, J. E.

    2007-10-01

    Most of us have built library collections of books to serve researchers -- graduate students and post-doctoral researchers in astronomy and astrophysics, and the Core List of Astronomy Books project, coordinated by Liz Bryson, exemplifies our collaborative efforts to identify the best books available at the research level. As the editor of the astronomy section of the Resources for College Libraries: A Core List for the Undergraduate Curriculum project, I have tried to ascertain what books college-age students of astronomy are actually reading (or should be reading!). To aid in this endeavor, I have obtained astronomy course reserve lists from colleagues at several U.S. colleges and universities, and regularly obtain lists of the astronomy books currently charged out to undergraduates at Princeton. I shall describe the RCL project, some of the book usage data I collected, and finally, give a brief update on the status of the Astrophysics Library at Princeton.

  6. Skynet Junior Scholars: Bringing Astronomy to Deaf and Hard of Hearing Youth

    NASA Astrophysics Data System (ADS)

    Meredith, Kate; Williamson, Kathryn; Gartner, Constance; Hoette, Vivian L.; Heatherly, Sue Ann

    2016-01-01

    Skynet Junior Scholars (SJS), funded by the National Science Foundation, aims to engage middle school youth from diverse audiences in investigating the universe with research quality robotic telescopes. SJS project development goals include: 1) Online access to optical and radio telescopes, data analysis tools, and professional astronomers, 2) An age-appropriate web-based interface for controlling remote telescopes, 3) Inquiry-based standards-aligned instructional modules. From an accessibility perspective, the goal of the Skynet Junior Scholars project is to facilitate independent access to the project by all youth including those with blindness or low vision and those who are Deaf or Hard of Hearing.Deaf and Hard of Hearing (DHH) students have long been an underserved population within STEM fields, including astronomy. Two main barriers include: (1) insufficient corpus of American Sign Language (ASL) for astronomy terminology, and (2) DHH education professionals who lack astronomy background. A suite of vocabulary, accessible hands-on activities, and interaction with trained professionals, are critical for enhancing the background experiences of DHH youth, as they may come to an astronomy lesson lacking the basic "incidental learning" that is often taken for granted with hearing peers (for example, from astronomy in the media).A collaboration between the Skynet Junior Scholars (SJS) project and the Wisconsin School for the Deaf is bringing astronomy to the DHH community in an accessible way for the first time. We follow a group of seven DHH youth over one semester as they interact with the SJS tools and curriculum to understand how they assimilate astronomy experiences and benefit from access to telescopes both directly (on school campus and at Yerkes Observatory) and through Skynet's robotic telescope network (optical and radio telescopes, inquiry-based modules, data analysis tools, and professional astronomers). We report on our first findings of resources and best practices for engaging DHH youth in astronomy in the future.

  7. Astronomy in Mexico

    NASA Astrophysics Data System (ADS)

    Lee, William H.

    2013-01-01

    Mexican astronomy has a long standing tradition of excellence in research. After a brief review of its history, I outline the current profile of the community, the available infrastructure and participating institutions, and give a glimpse into the future through current projects. The development of astronomy can serve as a powerful lever for science, technological development, education and outreach, as well as for improving the much needed link between basic research and industry development.

  8. Kinds of Astronomy-5

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Astronomers study light and basically, almost everything we know about the universe has been figured out through the study of light gathered by telescopes on the earth, in the earth's atmosphere, and in space. This light comes in many different colors, the sum of which comprises what is commonly I known as the electromagnetic (EM) spectrum. Unfortunately, the earth's atmosphere blocks almost all of wavelengths in the EM spectrum. Only the visible (400-700 mn) and radio (approx. 1-150 m) "windows" are accessible from the ground, and thus have the longest observational "history." These early restrictions on the observational astronomer also gave rise to classifying "kinds" of astronomy based on their respective EM portion, such as the term "radio astronomy."

  9. The Five-hundred-meter Aperture Spherical radio Telescope project and its early science opportunities

    NASA Astrophysics Data System (ADS)

    Li, Di; Nan, Rendong; Pan, Zhichen

    2013-03-01

    The National Astronomical Observatories, Chinese Academy of Science (NAOC), has started building the largest antenna in the world. Known as FAST, the Five-hundred-meter Aperture Spherical radio Telescope is a Chinese mega-science project funded by the National Development and Reform Commission (NDRC). FAST also represents part of Chinese contribution to the international efforts to build the square kilometer array (SKA). Upon its finishing around September of 2016, FAST will be the most sensitive single-dish radio telescope in the low frequency radio bands between 70 MHz and 3 GHz. The design specifications of FAST, its expected capabilities, and its main scientific aspirations were described in an overview paper by Nan et al. (2011). In this paper, we briefly review the design and the key science goals of FAST, speculate the likely limitations at the initial stages of FAST operation, and discuss the opportunities for astronomical discoveries in the so-called early science phase.

  10. Big Computing in Astronomy: Perspectives and Challenges

    NASA Astrophysics Data System (ADS)

    Pankratius, Victor

    2014-06-01

    Hardware progress in recent years has led to astronomical instruments gathering large volumes of data. In radio astronomy for instance, the current generation of antenna arrays produces data at Tbits per second, and forthcoming instruments will expand these rates much further. As instruments are increasingly becoming software-based, astronomers will get more exposed to computer science. This talk therefore outlines key challenges that arise at the intersection of computer science and astronomy and presents perspectives on how both communities can collaborate to overcome these challenges.Major problems are emerging due to increases in data rates that are much larger than in storage and transmission capacity, as well as humans being cognitively overwhelmed when attempting to opportunistically scan through Big Data. As a consequence, the generation of scientific insight will become more dependent on automation and algorithmic instrument control. Intelligent data reduction will have to be considered across the entire acquisition pipeline. In this context, the presentation will outline the enabling role of machine learning and parallel computing.BioVictor Pankratius is a computer scientist who joined MIT Haystack Observatory following his passion for astronomy. He is currently leading efforts to advance astronomy through cutting-edge computer science and parallel computing. Victor is also involved in projects such as ALMA Phasing to enhance the ALMA Observatory with Very-Long Baseline Interferometry capabilities, the Event Horizon Telescope, as well as in the Radio Array of Portable Interferometric Detectors (RAPID) to create an analysis environment using parallel computing in the cloud. He has an extensive track record of research in parallel multicore systems and software engineering, with contributions to auto-tuning, debugging, and empirical experiments studying programmers. Victor has worked with major industry partners such as Intel, Sun Labs, and Oracle. He holds a distinguished doctorate and a Habilitation degree in Computer Science from the University of Karlsruhe. Contact him at pankrat@mit.edu, victorpankratius.com, or Twitter @vpankratius.

  11. Summary of interference measurements at selected radio observatories

    NASA Technical Reports Server (NTRS)

    Tarter, Jill C.

    1990-01-01

    Results are presented from a series of RF interference (RFI) observations conducted during 1989 and 1990 at selected radio astronomy observatories in order to choose a site for the SETI, where the local and orbital RFI would be as benign as possible for observations of weak electromagnetic signals. These observatories included the DSS13 at Goldstone (California), the Arecibo Observatory (Puerto Rico), the Algonquin Radio Observatory in Ottawa (Canada), the Ohio State University Radio Observatory in Columbus (Ohio), and the NRAO in Green Bank (West Virginia). The observations characterize the RFI environment at these sites from 1 to 10 GHz, using radio astronomy antennas, feeds, and receivers; SETI signal processors; and stand-alone equipment built specifically for this purpose. The results served as part of the basis for the selection (by the NASA SETI Microwave Observing Project) of NRAO as the site of choice for SETI observations.

  12. The DNA Files: Report from Genome Radio Project, March--June 1995

    SciTech Connect

    1995-07-10

    The Genome Radio Project (GRP) core staff are now all in place and the office infrastructure has been set up. The project logo, stationery, and letterhead have all been approved. The name of the series has been identified: The DNA Files. Weekly staff planning meetings and work plans have been initiated; the research component has been launched; interviews of potential production personnel are being conducted. The first three months of the GRP were principally devoted to the further development of the entire two-year project, specifically by pursuing full funding for this project from sources other than DOE. The principal purpose of this planning grant includes the following: produce a pilot documentary which can be used to strengthen the marketing strategy of the overall project; create concrete strategies for best engaging the talents and energies of the project`s advisors; and identify concrete collaborations that maximize the efficacy of a well-designed set of ancillary materials. During this period, GRP collaborated with the Exploratorium in San Francisco to record their series of evening lectures on the social implications of genetic research and its applications. Project staff also attended Lawrence Berkeley Lab.`s Genome Educators Workshops, and the Public Radio Conference.

  13. Project Cyclops: The Greatest Radio Telescope Never Built

    NASA Astrophysics Data System (ADS)

    Dixon, Robert

    Each summer NASA sponsors a number of research and development projects at their various research centers across the country, often in cooperation with a nearby university. Selected groups of university faculty and professionals are brought together to study some research problem of interest to NASA, and to provide continuing education for the participants. The great advantage of these summer research programs is that NASA gains the experience of talented people who can look at problems with fresh eyes and no preconceived solutions. The participants are freed from their normal day-to-day responsibilities, and can let their imaginations run wild and be totally dedicated to the problem at hand. These programs are exhilarating, wonderful and can even be career-changing experiences.

  14. The FOSTER Project: Teacher Enrichment Through Participation in NASA's Airborne Astronomy Program

    NASA Technical Reports Server (NTRS)

    Koch, David; Hull, G.; Gillespie, C., Jr.; DeVore, E.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    NASA's airborne astronomy program offers a unique opportunity for K-12 science teacher enrichment and for NASA to reach out and serve the educational community. Learning from a combination of summer workshops, curriculum supplement materials, training in Internet skills and ultimately flying on NASA's C-141 airborne observatory, the teachers are able to share the excitement of scientific discovery with their students and convey that excitement from first hand experience rather than just from reading about science in a textbook. This year the program has expanded to include teachers from the eleven western states served by NASA Ames Research Center's Educational Programs Office as well as teachers from communities from around the country where the scientist who fly on the observatory reside. Through teacher workshops and inservice presentations, the FOSTER (Flight Opportunities for Science Teacher EnRichment) teachers are sharing the resources and experiences with many hundreds of other teachers. Ultimately, the students are learning first hand about the excitement of science, the scientific method in practice, the team work involved, the relevance of science to their daily lives and the importance of a firm foundation in math and science in today's technologically oriented world.

  15. The Serendip piggyback SETI project

    NASA Technical Reports Server (NTRS)

    Lampton, Michael; Bowyer, Stuart; Werthimer, Dan; Donnelly, Charles; Herrick, Walter

    1988-01-01

    The Serendip project, an ongoing SETI program of monitoring and processing broadband radio signals acquired by existing radio astronomy observatories, are summarized. Serendip operates in a piggyback mode, making use of whatever observing plan is under way at its host observatory. The Serendip system at NRAO and the signature detection and identification techniques used by the project are described. The method used to reject terrestrial interference is discussed.

  16. The teaching of astronomy

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Percy, John R.

    This book stems from the proceedings of the International Astronomical Union Colloquium 105. Every facet of the teaching of astronomy is explored by the contributors. Courses, training and teaching techniques form a large sector of the book. Practical information on computers, textbooks and astronomical equipment is given, linking in with chapters on student projects and teaching techniques. The philosophical aspects and the history of astronomy are described in a chapter entitled astronomy and culture. Popularisation of astronomy is discussed including the role of planetariums and the contribution of amateur astronomers. This comprehensive and well illustrated book offers a unique overview of international teaching technology and expertise that will serve as a lasting guide to astronomers involved in education.

  17. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project - Gen-4 and Gen-5 Radio Plans

    NASA Technical Reports Server (NTRS)

    Griner, James H.

    2014-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current plans for the prototype radio development.

  18. The Role of the Goldstone Apple Valley Radio Telescope Project in Promoting Scientific Efficacy among Middle and High School Students.

    ERIC Educational Resources Information Center

    Ibe, Mary; Deutscher, Rebecca

    This study investigated the effects on student scientific efficacy after participation in the Goldstone Apple Valley Radio Telescope (GAVRT) project. In the GAVRT program, students use computers to record extremely faint radio waves collected by the telescope and analyze real data. Scientific efficacy is a type of self-knowledge a person uses to…

  19. Intermediate Astronomy.

    ERIC Educational Resources Information Center

    Greenstone, Sid; Smith, Murray

    Selected materials needed to teach an astronomy unit as well as suggested procedures, activities, ideas, and astronomy fact sheets published by the Manitoba Planetarium are provided. Subjects of the fact sheets include: publications and classroom picture sets available from the National Aeronautics and Space Administration and facts and statistics…

  20. Primary Astronomy.

    ERIC Educational Resources Information Center

    Greenstone, Sid; Smith, Murray

    Selected materials needed to teach an astronomy unit as well as suggested procedures, activities, ideas, and astronomy fact sheets published by the Manitoba Planetarium are provided. Subjects of the fact sheets include: publications and classroom picture sets available from the National Aeronautics and Space Administration and facts and statistics…

  1. Primary Astronomy.

    ERIC Educational Resources Information Center

    Greenstone, Sid; Smith, Murray

    Selected materials needed to teach an astronomy unit as well as suggested procedures, activities, ideas, and astronomy fact sheets published by the Manitoba Planetarium are provided. Subjects of the fact sheets include: publications and classroom picture sets available from the National Aeronautics and Space Administration and facts and statistics

  2. Intermediate Astronomy.

    ERIC Educational Resources Information Center

    Greenstone, Sid; Smith, Murray

    Selected materials needed to teach an astronomy unit as well as suggested procedures, activities, ideas, and astronomy fact sheets published by the Manitoba Planetarium are provided. Subjects of the fact sheets include: publications and classroom picture sets available from the National Aeronautics and Space Administration and facts and statistics

  3. Organizations and Strategies in Astronomy

    NASA Astrophysics Data System (ADS)

    Heck, Andr

    2000-11-01

    This book offers a unique collection -- the first of its kind -- of chapters dealing with socio-dynamical aspects of the astronomy (and related space sciences) community: characteristics of organizations, publication studies, research indicators, space science planning, research communication, public outreach, and so on. The experts contributing to this book have done their best to write in a way understandable by readers not necessarily hyper-specialized in astronomy, while still providing specific detailed information. The book concludes with an extensive bibliography of publications related to socio-astronomy and to the interactions of the astronomy community with society at large. This book will be most usefully read by researchers, teachers, editors, publishers, librarians, science sociologists, research planners and strategists, project managers, and public relations officers, plus those in charge of astronomy-related organizations, as well as by students aiming at a career in astronomy or related space science. Link: http://www.wkap.nl/book.htm/0-7923-6671-9

  4. Reports of planetary astronomy, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A collection is presented of summaries designed to provide information about scientific research projects conducted in the Planetary Astronomy Program in 1990 and 1991, and to facilitate communication and coordination among concerned scientists and interested persons in universities, government, and industry. Highlights of recent accomplishments in planetary astronomy are included.

  5. Crowdfunding Astronomy Outreach Projects: Lessons learned from the UNAWE crowdfunding campaign

    NASA Astrophysics Data System (ADS)

    Ashton, A. J., Heenatigala, T.; Russo, P.

    2014-12-01

    In recent years, crowdfunding has become a popular method of funding new technology or entertainment products, or artistic projects. The idea is that people or projects ask for many small donations from individuals who support the proposed work, rather than a large amount from a single source. Crowdfunding is usually done via an online portal or platform which handles the financial transactions involved. The Universe Awareness (UNAWE) programme decided to undertake a Kickstarter1 crowdfunding campaign centring on the resource Universe in a Box. In this article we present the lessons learned and best practices from that campaign.

  6. Seattle Area High School Astronomy Projects: 4 local teachers present their work with students.

    NASA Astrophysics Data System (ADS)

    Muhs, Eric C.

    2006-12-01

    4 Seattle area high school teachers will present work with students as part of the opening session of High School Teacher Day. Vince San Pietro of Shorecrest HS will discuss a project involving teachers and students in characterizing RR Lyrae candidate stars using the University of Washington’s Manastash Ridge Observatory. Rebecca Fowler of Skyline HS will present her work with student teams in the Team America rocketry contest. Phil Cooper, also of Skyline, will talk about a telescope making project. And Eric Muhs of Roosevelt HS, will show a student-built, free-floating, self-orienting robot that flew aboard NASA’s zero gravity airplane last May.

  7. Planetary astronomy

    NASA Technical Reports Server (NTRS)

    Smith, Harlan J.

    1991-01-01

    Lunar-based astronomy offers major prospects for solar system research in the coming century. In addition to active advocacy of both ground-based and Lunar-based astronomy, a workshop on the value of asteroids as a resource for man is being organized. The following subject areas are also covered: (1) astrophysics from the Moon (composition and structure of planetary atmospheres); (2) a decade of cost-reduction in Very Large Telescopes (the SST as prototype of special-purpose telescopes); and (3) a plan for development of lunar astronomy.

  8. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  9. Astronomy Week in Madeira, Portugal

    NASA Astrophysics Data System (ADS)

    Augusto, P.; Sobrinho, J. L.

    2012-05-01

    The outreach programme Semanas da Astronomia (Astronomy Weeks) is held in late spring or summer on the island of Madeira, Portugal. This programme has been attracting enough interest to be mentioned in the regional press/TV/radio every year and is now, without doubt, the astronomical highlight of the year on Madeira. We believe that this programme is a good case study for showing how to attract the general public to astronomy in a small (population 250 000, area 900 km2) and fairly isolated place such as Madeira. Our Astronomy Weeks have been different each year and have so far included exhibitions, courses, talks, a forum, documentaries, observing sessions (some with blackouts), music and an astro party. These efforts may contribute towards putting Madeira on the map with respect to observational astronomy, and have also contributed to the planned installation of two observatories in the island.

  10. Radio frequency interference protection of communications between the Deep Space Network and deep space flight projects

    NASA Technical Reports Server (NTRS)

    Johnston, D. W. H.

    1981-01-01

    The increasing density of electrical and electronic circuits in Deep Space Station systems for computation, control, and numerous related functions has combined with the extension of system performance requirements calling for higher speed circuitry along with broader bandwidths. This has progressively increased the number of potential sources of radio frequency interference inside the stations. Also, the extension of spectrum usage both in power and frequency as well as the greater density of usage at all frequencies for national and international satellite communications, space research, Earth resource operations and defense, and particularly the huge expansion of airborne electronic warfare and electronic countermeasures operations in the Mojave area have greatly increased the potential number and severity of radio frequency interference incidents. The various facets of this problem and the efforts to eliminate or minimize the impact of interference on Deep Space Network support of deep space flight projects are described.

  11. Astronomy Development in Nigeria: Challenges and Advances

    NASA Astrophysics Data System (ADS)

    Okwe Chibueze, James

    2015-01-01

    Nigeria evidently has huge potentials to develop a strong astronomy community. Much of the strength lies in the great number of intelligent students with the potential of becoming good astronomers. Sadly, astronomy development in Nigeria has stagnated in the past decades owing to poor funding and/or indifferent attitude of the funding bodies, research-unfriendly environment, and non-existence of facilities. Currently, efforts toward fuelling advancement in astronomy are focused on building 'critical mass', establishing collaborations with universities/astronomy institutes outside Nigeria, converting out-of-use communication antennas into radio telescopes, and acquiring out-of-use telescopes for educational and low-level research purposes.

  12. Vision for Astronomy in South Africa and partnership with the US

    NASA Astrophysics Data System (ADS)

    Nemaungani, Takalani

    2014-01-01

    The 2002 National Research and Development Strategy identified astronomy as a national geographic advantage. This identification was based on the historical investments in optical and, to a lesser extent, radio astronomy up to that point and the realisation that the conditions prevailing in Sutherland were among the best in the world. Since then a number of astronomy initiatives have burgeoned in the Southern African region and these include the HESS, SKA and the AVN. Currently, investments in astronomy are by far the biggest investments being made by the Department of Science and Technology (DST). South Africa’s involvement in modern astronomy dates back to 1685 when a French Astronomer, Guy Tachard, setup an observatory at the southern tip of Africa to decipher the star charts of the extreme southern sky. In 1820, a permanent observatory - the Royal Observatory - was established outside of Cape Town and astronomy has been practised continuously since then. By the late 1980s, it became clear that for South African astronomers and astrophysicists to continue conducting first class research, the acquisition of a much larger, powerful and sophisticated telescope would be necessary. This provided the impetus for a new vision to construct the largest single optical telescope in the Southern Hemisphere, eventually known as the Southern African Large Telescope (SALT). Within the last decade, the African appetite for radio astronomy initiatives has increased exponentially. This has largely been spurred by the African bid to host the SKA project and the need for African countries to work in close partnership that consequently resulted in a successful bid to co-host the SKA project and the subsequent need to ensure its effective implementation. This partnership, and the interactions related thereto, has effectively enhanced awareness around the requirements for hosting radio astronomy instrumentation and the associated benefits that could be derived in making such commitments. Consequently, there have been concerted efforts in support of various radio astronomy initiatives that sit at the cusp of the continents ambitions for the hosting of the SKA.

  13. Astronomy in Iraq

    NASA Astrophysics Data System (ADS)

    Alsabti, A. W.

    2006-08-01

    The history of modern Iraqi astronomy is reviewed. During the early 1970's Iraqi astronomy witnessed significant growth through the introduction of the subject at university level and extensively within the school curriculum. In addition, astronomy was popularised in the media, a large planetarium was built in Baghdad, plus a smaller one in Basra. Late 1970 witnessed the construction of the Iraqi National Observatory at Mount Korek in Iraqi Kurdistan. The core facilities of the Observatory included 3.5-meter and 1.25-meter optical telescopes, and a 30-meter radio telescope for millimetre wavelength astronomy. The Iraqi Astronomical Society was founded and Iraq joined the IAU in 1976. During the regime of Saddam Hussain in the 1980's, the Observatory was attacked by Iranian artillery during the Iraq-Iran war, and then again during the second Gulf war by the US air force. Years of sanctions during the 1990's left Iraq cut off from the rest of the international scientific community. Subscriptions to astronomical journals were halted and travel to conferences abroad was virtually non-existent. Most senior astronomers left the country for one reason or another. Support from expatriate Iraqi astronomers existed (and still exists) however, this is not sufficient. Recent changes in Iraq, and the fall of Saddam's regime, has meant that scientific communication with the outside world has resumed to a limited degree. The Ministry of Higher Education in Baghdad, Baghdad University and the Iraqi National Academy of Science, have all played active roles in re-establishing Iraqi astronomy and re-building the damaged Observatory at Mount Korek. More importantly the University of Sallahudin in Erbil, capital of Iraqi Kurdistan, has taken particular interest in astronomy and the Observatory. Organized visits to the universities, and also to the Observatory, have given us a first-hand assessment of the scale of the damage to the Observatory, as well as the needs of astronomy teaching and research. Joint supervision for postgraduate level research was organized between local and Iraqi expatriate astronomers. The IAU was among the first international organizations to offer assistance. Many observatories worldwide have also given support. Plans will be proposed for re-building the Observatory, supporting teaching and research, and establishing an institute for astronomy in Erbil, together with further suggestions on how the international astronomical community can assist Iraqi astronomers.

  14. New horizons in astronomy.

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1972-01-01

    Besides the study of astronomy itself, other topics included cover the geological and biological developments on earth and basic physics of matter, heat, and light. Optical and radio telescopes are discussed, as well as photographic and photoelectric means of detection. The immediate solar system is described by topics on the properties and atmospheres of the inner and outer planets, the sun's energy, sunspots, and the solar spectrum. Stars both on and off the main sequence are discussed in terms of distances, intrinsic properties, lifetimes and evolution. The Milky Way is compared to other galaxies in size, star population and structure, and the different galaxy shapes are pictured. Topics of most recent interest are covered by results of the lunar explorations, new concepts of Mars, and problems of space travel. Problems of modern astronomy include pulsars, neutron stars, and quasars.

  15. System definition phase and acquisition phase project plan for Small Astronomy Satellite SAS-D

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The objective of the SAS-D project is to conduct spectral distribution studies of celestial ultraviolet sources using an Explorer-class spacecraft launched by a Delta vehicle into a geosynchronous orbit in the last half of 1975. The telescope system is intended for use by guest astronomers for a major portion of the total observing time. The concept of the overall system, designed to resemble functionally the operation of a ground-based observatory, should maximize the usefulness of the instrument to the astronomical community by limiting the amount of special instruction needed to use the spaceborne telescope. The SAS-D mission will obtain information on what stars, nebulae, and galaxies are and how they develop.

  16. Astronomy Program for Young Children.

    ERIC Educational Resources Information Center

    Levy, David H.

    1979-01-01

    An account of a teacher's experience in presenting astronomy to 12 to 15 year olds in a summer science program is presented. Observations of planets, meteors, and the sun are the major projects which are discussed. (SA)

  17. Radio relics tracing the projected mass distribution in CIZA J2242.8+5301*

    NASA Astrophysics Data System (ADS)

    Okabe, Nobuhiro; Akamatsu, Hiroki; Kakuwa, Jun; Fujita, Yutaka; Zhang, Yuying; Tanaka, Masayuki; Umetsu, Keiichi

    2015-12-01

    We present a weak-lensing analysis for a merging galaxy cluster, CIZA J2242.8+5301, which hosts double radio relics, using three-band Subaru/Suprime-Cam imaging (Br'z'). Since the lifetime of dark matter halos colliding into clusters is longer than that of X-ray emitting gas halos, weak-lensing analysis is a powerful method to constrain merger dynamics. Two-dimensional shear fitting using a clean background catalog suggests that the cluster undergoes a merger with a mass ratio of about 2 : 1. The main halo is located around the gas core in the southern region, while no concentrated gas core is associated with the northern sub-halo. We find that the projected cluster mass distribution resulting from an unequal-mass merger is in excellent agreement with the curved shapes of the two radio relics and the overall X-ray morphology, except for the lack of the northern gas core. The lack of a prominent radio halo enables us to constrain an upper limit of the fractional energy of magnetohydrodynamic turbulence of (δ B/B)^2<{O}(10^{-6}) at a resonant wavenumber, by finding a balance between the acceleration time and the time after the core passage or the cooling time, with an assumption of resonant acceleration by a second-order Fermi process.

  18. Solar energetic particle events, hard X-ray and radio emissions - the SEPServer project

    NASA Astrophysics Data System (ADS)

    Klein, K.-L.

    2012-04-01

    Solar energetic particle (SEP) events are a rare occasion to measure directly energetic particles accelerated in an astrophysical environement, and they are a major space hazard. Understanding where and how the particles are accelerated and how they propagate through interplanetary space is a challenge in heliophysics. The SEPServer project, funded since December 2010 by the European Union under the FP7 scheme, aims at building a database of SEP events and associated electromagnetic emissions of energetic particles, especially hard X-rays and radio waves. In early 2012 a prototype database is running and holding data of the 23rd and early 24th solar activity cycles from different particle (SoHO, ACE, Wind, Ulysses, STEREO), hard X-ray (INTEGRAL, RHESSI) and radio instruments (Potsdam, Athens, Nanay and the Wind spacecraft). In this contribution the SEPServer concept will be briefly presented, the present status described, and the relationship between the early phases of some SEP events and the associated radio and hard X-ray emissions will be illustrated for a few events.

  19. A new Main Injector radio frequency system for 2.3 MW Project X operations

    SciTech Connect

    Dey, J.; Kourbanis, I.; /Fermilab

    2011-03-01

    For Project X Fermilab Main Injector will be required to provide up to 2.3 MW to a neutrino production target at energies between 60 and 120 GeV. To accomplish the above power levels 3 times the current beam intensity will need to be accelerated. In addition the injection energy of Main Injector will need to be as low as 6 GeV. The current 30 year old Main Injector radio frequency system will not be able to provide the required power and a new system will be required. The specifications of the new system will be described.

  20. Monitoring the Communication Channel from Puschshino to Moscow in the Project of Space Radio Telescope "radioastron"

    NASA Astrophysics Data System (ADS)

    Dumsky, D. V.; Isaev, E. A.; Samodurov, V. A.; Isaev, K. A.

    The need for transmission and storage of large amounts of scientific data in the project space radio telescope "Radioastron" required us to organize a reliable communication channel between the tracking station in Pushchino and treatment centers in Moscow. Network management data requires us to an integrated approach and covers the organization secure access to manage network devices, timely replacement of equipment and software upgrades, backups, as well as documentation of the network infrastructure. The reliability of the channel is highly dependent on continuous monitoring of network and server equipment and communication lines.

  1. Status report of the project "EVN observations of radio sources used for geodetic EUROPE experiments".

    NASA Astrophysics Data System (ADS)

    Tornatore, V.; Stanghellini, C.; Britzen, S.

    1999-03-01

    Most of the quasars or BL Lac objects regularly observed during geodetic VLBI experiments show extended spatial structures at the milliarcsecond scale. For high precision geodetic VLBI analysis source structure effects have to be accounted for. The proper correction of source structure effects is possible when brightness distributions of sources are available. This paper presents a project to obtain high resolution images of radio sources observed during EUROPE VLBI experiments. The present status of the work is given. The contribution of the stations of the observation network is outlined.

  2. How Create an Astronomy Outreach Program to Bring Astronomy to Thousands of People at Outdoor Concerts Astronomy Festivals, or Tourist Sites

    NASA Astrophysics Data System (ADS)

    Lubowich, Donald

    2015-08-01

    I describe how to create an astronomy program for thousands of people at outdoor concerts based on my $308,000 NASA-funded Music and Astronomy Under the Stars (MAUS) program (60 events 2009 - 2013), and the Astronomy Festival on the National Mall (AFNM, 10,000 people/yr).MAUS reached 50,000 music lovers at local parks and at the Central Park Jazz, Newport Folk, Ravinia, or Tanglewood Music Festivals with classical, folk, pop/rock, opera, Caribbean, or county-western concerts assisted by astronomy clubs. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, Ravi Coltrane, Esperanza Spalding, Phish, Blood Sweat and Tears, Deep Purple, Tony Orlando, and Wilco performed at these events. AFNM was started in 2010 with co-sponsorship by the White House Office of Science and Technology Policy. MAUS and AFMN combine solar, optical, and radio telescope observations; large posters/banners; hands-on activities, imaging with a cell phone mount; citizen science activities; hand-outs; and teacher info packet. Representatives from scientific institutions participated. Tyco Brahe, Johannes Kepler, and Caroline Herschel made guest appearances.MAUS reached underserved groups and attracted large crowds. Young kids participated in this family learning experience-often the first time they looked through a telescope. While < 50% of the participants took part in a science activity in the past year, they found MAUS enjoyable and understandable; learned about astronomy; wanted to learn more; and increased their interest in science (ave. rating 3.6/4). MAUS is effective in promoting science education!Lessons learned: plan early; create partnerships with parks, concert organizers, and astronomy clubs; test equipment; have backup equipment; create professional displays; select the best location to obtain a largest number of participants; use social media/www sites to promote the events; use many telescopes for multiple targets; project a live image or video; select equipment that is easy to use, store, set-up, and take down; use hands-on astronomy activities; position the displays for maximum visibility (they are teachable moments); have educator hand-outs, show citizen science projects, promote astronomy clubs and science museums.

  3. Minoan Astronomy

    NASA Astrophysics Data System (ADS)

    Blomberg, Mary; Henriksson, Göran

    Of the three great cultures of the ancient eastern Mediterranean — the Babylonian, Egyptian, and Minoan — we have considerable knowledge of the astronomy of the first two through their documents (see relevant sections of this Handbook). Very little written material, however, has survived from Minoan Crete, but the evidence of other impressive archaeological discoveries implies that the inhabitants were on a par with their neighbors and had made similar advances in astronomy. In lieu of written sources, we have used the methods of archaeoastronomy to recover as much as possible about Minoan astronomy. In short, these are measuring the orientations of walls and their opposite horizons at a representative selection of monuments, analyzing the measurements statistically, and comparing the results with digital reconstruction of the positions of significant celestial bodies for the time when the walls were built.

  4. Astronomy Explained

    NASA Astrophysics Data System (ADS)

    North, Gerald

    Every year large numbers of people take up the study of astronomy, mostly at amateur level. There are plenty of elementary books on the market, full of colourful photographs, but lacking in proper explanations of how and why things are as they are. Many people eventually wish to go beyond the 'coffee-table book' stage and study this fascinating subject in greater depth. This book is written for them. In addition, many people sit for public examinations in this subject each year and this book is also intended to be of use to them. All the topics from the GCSE syllabus are covered here, with sample questions at the end of each chapter. Astronomy Explained provides a comprehensive treatment of the subject in more depth than is usually found in elementary works, and will be of interest to both amateur astronomers and students of astronomy.

  5. Astronomy Allies

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather; Alatalo, Katherine A.

    2016-01-01

    Imagine you are a grad student, at your first conference, and a prominent senior scientist shows interest in your work, and he makes things get way too personal? What would you do? Would you report it? Or would you decide, after a few other instances of harassment, that maybe you shouldn't pursue astronomy? Harassment is under-reported, the policies can be difficult to understand or hard to find, and it can be very intimidating as a young scientist to report it to the proper individuals. The Astronomy Allies Program is designed to help you with these sorts of problems. We are a group of volunteers that will help by doing the following: provide safe walks home during the conference, someone to talk to confidentially, as an intervener, as a resource to report harassment. The Allies are a diverse group of scientists committed to acting as mentors, advocates, and liaisons. The Winter 2015 AAS meeting was the first meeting that had Astronomy Allies, and Astronomy Allies provided a website for information, as well as a twitter, email, and phone number for anyone who needs our help or would like more information. We posted about the Astronomy Allies on the Women In Astronomy blog, and this program resonates with many people: either they want to help, or they have experienced harassment in the past and don't want to see it in the future. Harassment may not happen to most conference participants, but it's wrong, it's against the AAS anti-harassment policy ( http://aas.org/policies/anti-harassment-policy ), it can be very damaging, and if it happens to even one person, that is unacceptable. We intend to improve the culture at conferences to make it so that harassers feel they can't get away with their unprofessional behavior.

  6. Astronomy Allies

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather; Alatalo, Katherine

    2015-08-01

    Imagine you are a grad student, at your first conference, and a prominent senior scientist shows interest in your work, and he makes things get way too personal? What would you do? Would you report it? Or would you decide, after a few other instances of harassment, that maybe you shouldn't pursue astronomy? Harassment is under-reported, the policies can be difficult to understand or hard to find, and it can be very intimidating as a young scientist to report it to the proper individuals. The Astronomy Allies Program is designed to help you with these sorts of problems. We are a group of volunteers that will help by doing the following: provide safe walks home during the conference, someone to talk to confidentially, as an intervener, as a resource to report harassment. The Allies are a diverse group of scientists committed to acting as mentors, advocates, and liaisons. The Winter 2015 AAS meeting was the first meeting that had Astronomy Allies, and Astronomy Allies provided a website for information, as well as a twitter, email, and phone number for anyone who needs our help or would like more information. We posted about the Astronomy Allies on the Women In Astronomy blog, and this program resonates with many people: either they want to help, or they have experienced harassment in the past and don't want to see it in the future. Harassment may not happen to most conference participants, but it's wrong, it's against the AAS anti-harassment policy ( http://aas.org/policies/anti-harassment-policy ), it can be very damaging, and if it happens to even one person, that is unacceptable. We intend to improve the culture at conferences to make it so that harassers feel they can't get away with their unprofessional behavior.

  7. ESO's Astronomy Education Programme

    NASA Astrophysics Data System (ADS)

    Pierce-Price, D. P. I.; Boffin, H.; Madsen, C.

    2006-08-01

    ESO, the European Organisation for Astronomical Research in the Southern Hemisphere, has operated a programme of astronomy education for some years, with a dedicated Educational Office established in 2001. We organise a range of activities, which we will highlight and discuss in this presentation. Many are run in collaboration with the European Association for Astronomy Education (EAAE), such as the "Catch a Star!" competition for schools, now in its fourth year. A new endeavour is the ALMA Interdisciplinary Teaching Project (ITP). In conjunction with the EAAE, we are creating a set of interdisciplinary teaching materials based around the Atacama Large Millimeter Array project. The unprecedented astronomical observations planned with ALMA, as well as the uniqueness of its site high in the Atacama Desert, offer excellent opportunities for interdisciplinary teaching that also encompass physics, engineering, earth sciences, life sciences, and culture. Another ongoing project in which ESO takes part is the "Science on Stage" European science education festival, organised by the EIROforum - the group of seven major European Intergovernmental Research Organisations, of which ESO is a member. This is part of the European Science Teaching Initiative, along with Science in School, a newly-launched European journal for science educators. Overviews of these projects will be given, including results and lessons learnt. We will also discuss possibilities for a future European Astronomy Day project, as a new initiative for European-wide public education.

  8. Astronomy: Project Earth Science.

    ERIC Educational Resources Information Center

    Smith, P. Sean

    This book presents classroom activities and reading materials. The activities use a hands-on approach and address the standards. Each features both a student section and a teacher guide. Eleven activities include: (1) "It's Only a Paper Moon"; (2) "Time Traveler"; (3) "Solar System Scale"; (4) "Hello Out There!"; (5) "How Far to the Star?"; (6)

  9. Astronomy: Project Earth Science.

    ERIC Educational Resources Information Center

    Smith, P. Sean

    This book presents classroom activities and reading materials. The activities use a hands-on approach and address the standards. Each features both a student section and a teacher guide. Eleven activities include: (1) "It's Only a Paper Moon"; (2) "Time Traveler"; (3) "Solar System Scale"; (4) "Hello Out There!"; (5) "How Far to the Star?"; (6)…

  10. Astronomy Adventures.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1986-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Astronomy Adventures." Contents are organized into the following sections: (1)

  11. Lithuanian Astronomy

    NASA Astrophysics Data System (ADS)

    Sudzius, J.; Murdin, P.

    2002-01-01

    Lithuanian folklore, archaic calendars and terminology show that Lithuanians were interested in astronomy from ancient times. A lot of celestial bodies have names of Lithuanian origin that are not related to widely accepted ancient Greek mythology. For example, the Milky Way is named `Pauksciu Takas' (literally the way of birds), the constellation of the Great Bear `Didieji Grizulo Ratai' (literal...

  12. Astronomy Graphics.

    ERIC Educational Resources Information Center

    Hubin, W. N.

    1982-01-01

    Various microcomputer-generated astronomy graphs are presented, including those of constellations and planetary motions. Graphs were produced on a computer-driver plotter and then reproduced for class use. Copies of the programs that produced the graphs are available from the author. (Author/JN)

  13. Astronomy Activities.

    ERIC Educational Resources Information Center

    Greenstone, Sid

    This document consists of activities and references for teaching astronomy. The activities (which include objectives, list of materials needed, and procedures) focus on: observing the Big Dipper and locating the North Star; examining the Big Dipper's stars; making and using an astrolabe; examining retograde motion of Mars; measuring the Sun's

  14. Astronomy Adventures.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1986-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Astronomy Adventures." Contents are organized into the following sections: (1)…

  15. Astronomy Activities.

    ERIC Educational Resources Information Center

    Greenstone, Sid

    This document consists of activities and references for teaching astronomy. The activities (which include objectives, list of materials needed, and procedures) focus on: observing the Big Dipper and locating the North Star; examining the Big Dipper's stars; making and using an astrolabe; examining retograde motion of Mars; measuring the Sun's…

  16. Astronomy Outreach for Large, Unique, and Unusual Audiences

    NASA Astrophysics Data System (ADS)

    Lubowich, Donald

    2015-08-01

    My successful outreach program venues include: outdoor concerts and festivals; the US National Mall; churches, synagogues, seminaries, or clergy conferences; the Ronald McDonald Houses of Long Island and Chicago; the Winthrop U. Hospital Children’s Medical Center the Fresh Air Fund summer camps (low-income and special needs); a Halloween star party (costumed kids look through telescopes); a Super Bowl Star Party (targeting women); Science Festivals (World, NYC; Princeton U.; the USA Science and Engineering Festival); and the NYC Columbus Day Parade. Information was also provided about local science museums, citizen science projects, astronomy educational sites, and astronomy clubs to encourage lifelong learning. In 2010 I created Astronomy Festival on the National Mall (co-sponsored by the White House Office of Science and Technology Policy) with the participation of astronomy clubs, scientific institutions and with Tyco Brahe, Johannes Kepler, and Caroline Herschel making guest appearances. My programs include solar, optical, and radio telescope observations, hands-on activities, a live image projection system; large outdoor posters and banners; videos; hands-on activities, and edible astronomy demonstrations.My NASA-funded Music and Astronomy Under the Stars (MAUS) program (60 events 2009 - 2013) reached 50,000 music lovers at local parks and the Central Park Jazz, Newport Folk, Ravinia, or Tanglewood Music Festivals with classical, folk, pop/rock, opera, Caribbean, or county-western concerts assisted by astronomy clubs. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, Ravi Coltrane, Esperanza Spalding, Phish, Blood Sweat and Tears, Deep Purple, Tony Orlando, and Wilco performed at these events. MAUS reached underserved groups and attracted large crowds. Young kids participated in this family learning experience - often the first time they looked through a telescope. While < 50% of the participants took part in a science activity in the past year, they found MAUS enjoyable and understandable; learned about astronomy; wanted to learn more; and increased their interest in science (ave. rating 3.6/4). MAUS is effective in promoting science education

  17. Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment.

    PubMed

    Rashydov, Namik M; Hajduch, Martin

    2015-01-01

    Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk. PMID:26217350

  18. Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment

    PubMed Central

    Rashydov, Namik M.; Hajduch, Martin

    2015-01-01

    Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk. PMID:26217350

  19. Astronomy Camp = IYA x 22: 22 Years of International Astronomy Education

    NASA Astrophysics Data System (ADS)

    Hooper, Eric Jon; McCarthy, D. W.; Camp Staff, Astronomy

    2010-01-01

    Do you remember childhood dreams of being an astronomer, or the ravenous desire for ever larger glass and better equipment as an amateur astronomer? What if your child or the person down the street could live that dream for a weekend or a week? The University of Arizona Astronomy Camp continues to substantiate those dreams after more than two decades in existence. Astronomy Camp is an immersion hands-on field experience in astronomy, ranging from two to eight nights, occurring a few times per year. Participants span an age range from elementary students to octogenarians. The three basic offerings include adult camps, a beginning Camp for teenagers, and an advanced teen Camp. Several variants of the basic Camp model have evolved, including an ongoing decade long series of specialized Camps for Girl Scout leaders from across the country, funded by the NIRCam instrument development program for the James Webb Space Telescope. The advanced teen Camp is a microcosm of the entire research arc: the participants propose projects, spend the week collecting and analyzing data using research grade CCDs, infrared arrays, and radio/sub-millimeter telescopes, and finish with a presentation of the results. This past summer the Camps moved to Kitt Peak National Observatory for the first time, providing access to a vast and diverse collection of research instruments, including the 0.9-meter WIYN and 2.3-meter Bok telescopes, the McMath-Pierce Solar Telescope, and the 12-meter ARO radio telescope. Education research into the Camp's impact indicates that reasons for its appeal to youth include a learner-centered and personal approach with a fun attitude toward learning, authentic scientific inquiry led by mentors who are real scientists, a peer group with common interests in science and engineering, and the emotional appeal of spending time on a dark "sky island" devoted to the exploration of nature.

  20. The Space Geodesy Project and Radio Frequency Interference Characterization and Mitigation

    NASA Technical Reports Server (NTRS)

    Lawrence, Hilliard M.; Beaudoin, C.; Corey, B. E.; Tourain, C. L.; Petrachenko, B.; Dickey, John

    2013-01-01

    The Space Geodesy Project (SGP) development by NASA is an effort to co-locate the four international geodetic techniques Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR), Very Long Baseline Interferometry (VLBI), Global Navigation Satellite System (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) into one tightly referenced campus and coordinated reference frame analysis. The SGP requirement locates these stations within a small area to maintain line-of-sight and frequent automated survey known as the vector tie system. This causes a direct conflict with the new broadband VLBI technique. Broadband means 2-14 GHz, and RFI susceptibility at -80 dBW or higher due to sensitive RF components in the front end of the radio receiver.

  1. Astronomy Video Contest

    NASA Astrophysics Data System (ADS)

    McFarland, John

    2008-05-01

    During Galileo's lifetime his staunchest supporter was Johannes Kepler, Imperial Mathematician to the Holy Roman Emperor. Johannes Kepler will be in St. Louis to personally offer a tribute to Galileo. Set Galileo's astronomy discoveries to music and you get the newest song by the well known acappella group, THE CHROMATICS. The song, entitled "Shoulders of Giants” was written specifically for IYA-2009 and will be debuted at this conference. The song will also be used as a base to create a music video by synchronizing a person's own images to the song's lyrics and tempo. Thousands of people already do this for fun and post their videos on YOU TUBE and other sites. The ASTRONOMY VIDEO CONTEST will be launched as a vehicle to excite, enthuse and educate people about astronomy and science. It will be an annual event administered by the Johannes Kepler Project and will continue to foster the goals of IYA-2009 for years to come. During this presentation the basic categories, rules, and prizes for the Astronomy Video Contest will be covered and finally the new song "Shoulders of Giants” by THE CHROMATICS will be unveiled

  2. Astronomy Video Contest

    NASA Astrophysics Data System (ADS)

    McFarland, John

    2008-05-01

    One of Galileo's staunchest supporters during his lifetime was Johannes Kepler, Imperial Mathematician to the Holy Roman Emperor. Johannes Kepler will be in St. Louis to personally offer a tribute to Galileo. Set Galileo's astronomy discoveries to music and you get the newest song by the well known acappella group, THE CHROMATICS. The song, entitled "Shoulders of Giants” was written specifically for IYA-2009 and will be debuted at this conference. The song will also be used as a base to create a music video by synchronizing a person's own images to the song's lyrics and tempo. Thousands of people already do this for fun and post their videos on YOU TUBE and other sites. The ASTRONOMY VIDEO CONTEST will be launched as a vehicle to excite, enthuse and educate people about astronomy and science. It will be an annual event administered by the Johannes Kepler Project and will continue to foster the goals of IYA-2009 for years to come. The Astronomy Video poster will contain all the basic information about the contest including: categories, rules, prizes, web address for more info and how to download the new song, "Shoulders of Giants.”

  3. Astronomy posters. Abstracts.

    NASA Astrophysics Data System (ADS)

    van Woerden, H.

    Contents: IAU Symposia Nos. 164: Stellar populations. 165: Compact stars in binaries. 166: Astronomical and astrophysical objectives of sub-milliarcsecond optical astrometry. 167: New developments in array technology and applications. 168: Examining the Big Bang and diffuse background radiations. 169: Unsolved problems of the Milky Way. Joint Discussions Nos. 1: Gas disks in galaxies. 2: Origin and detection of planetary systems. 3: Helio- and asteroseismology. 4: Current developments in astronomy education. 5: Activity in the central parts of galaxies. 6: Sun and heliosphere - challenges for solar-terrestrial physics, magneto- and hydrodynamics. 7: History of astronomy. 8: Time scales - state of the art. 9: Women in astronomy. 10: Extragalactic planetary nebulae. 11: Stellar and interstellar lithium and primordial nucleosynthesis. 12: Accuracy of the HR diagram and related parameters. 13: Recent advances in convection theory and modelling. 14: Towards the establishment of the astronomical standards. 15: Statistical evaluation of astronomical time series. 16: Astrophysical applications of powerful new atomic databases. 17: Dust around young stars: How related to solar system dust? 18: Solar system radar observations. 19: Nutation. 20: The status of archiving astronomical data. Working Groups Nos. 1: Problems of astronomy in Africa. 2: Near-Earth objects detection. 3: International catalog projects. 4: Asteroids and comets.

  4. Astronomy in Venezuela

    NASA Astrophysics Data System (ADS)

    Rosenzweig, Patricia

    Since the installation of the Observatorio Cagigal in Caracas, astronomy in Venezuela has developed steadily, and, in the last few decades, has been strong. Both theoretical and observational astronomy now flourish in Venezuela. A research group, Grupo de Astrofsica (GA) at the Universidad de Los Andes (ULA) in Mrida, started with few members but now has increased its numbers and undergone many transformations, promoting the creation of the Grupo de Astrofsica Terica (CAT), and with other collaborators initiated the creation of a graduate study program (that offers master's and doctor's degrees) in the Postgrado de Fsica Fundamental of ULA. With the financial support of domestic Science Foundations such as CONICIT, CDCHT, Fundacite, and individual and collective grants, many research projects have been started and many others are planned. Venezuelan astronomy has benefitted from the interest of researchers in other countries, who have helped to improve our scientific output and instrumentation. With the important collaboration of national and foreign institutions, astronomy is becoming one of the strongest disciplines of the next decade in Venezuela.

  5. Grassroots Astronomy

    NASA Astrophysics Data System (ADS)

    Marvel, Kevin B.

    Congress has a large impact on the amount and quality of astronomical research that takes place in the United States. By funding NASA and NSF, as well as other agencies such as the Department of Education and the Department of Defense, the Federal Government enables U.S. astronomers to perform cutting edge research. However, Congress makes decisions based on input from citizens. It the citizens are silent on an issue, Congress does not know it exists. Last summer the U.S.amatuer community rallied in support of professional research, resulting in a healthy budget for both NASA and NSF astronomy research. I will present a summary of how the funding process works and how and why amateurs can and should help ensure continued research funding for U.S. astronomy.

  6. Chaco astronomies

    NASA Astrophysics Data System (ADS)

    Martín López, Alejandro

    2015-08-01

    This presentation discusses the result of 18 years of ethnographic and ethnohistorical studies on Chaco astronomies. The main features of the systems of astronomical knowledge of the Chaco Aboriginal groups will be discussed. In particular we will discuss the relevance of the Milky Way, the role of the visibility of the Pleiades, the ways in which the celestial space is represented, the constitution of astronomical orientations in geographic space, etc. We also address a key feature of their vision of the cosmos: the universe is seen by these groups as a socio-cosmos, where humans and non-humans are related. These are therefore actually socio-cosmologies. We will link this to the theories of Chaco Aboriginal groups about power and political relations.We will discuss how the study of Aboriginal astronomies must be performed along with the studies about astronomies of Creole people and European migrants, as well as anthropological studies about the science teaching in the formal education system and by the mass media. In this form we will discuss the relevance of a very complex system of interethnic relations for the conformation of these astronomical representations and practices.We will also discuss the general methodological implications of this case for the ethnoastronomy studies. In particular we will talk about the advantages of a study of regional scope and about the key importance of put in contact the ethnoastronomy with contemporary issues in social sciences.We also analyze the importance of ethnoastronomy studies in relation to studies of sociology of science, especially astronomy. We also study the potential impact on improving formal and informal science curricula and in shaping effective policies to protect the tangible and intangible astronomical heritage in a context of respect for the rights of Aboriginal groups.

  7. Canadian Astronomy

    NASA Astrophysics Data System (ADS)

    Broughton, P.; Murdin, P.

    2000-11-01

    Canada is big (second only to Russia in area) and sparsely populated (30 million). These facts, as trite as they are, do explain a lot about the country, even its scientific endeavors. Almost all astronomy carried out in Canada during centuries of exploration prior to 1900 was connected with surveying and time-keeping. Even the efforts by Sandford Fleming to introduce worldwide time zones in the ...

  8. College Astronomy Teaching Excellence Workshops

    NASA Astrophysics Data System (ADS)

    Slater, T. F.; Bennett, M.; Greene, W. M.; Pompea, S.; Prather, E. E.

    2003-12-01

    As part of the education and public outreach efforts of the NASA JPL Navigator, SIRTF Mission and the Astronomical Society of the Pacific, astronomy educators affiliated with the Conceptual Astronomy and Physics Education Research (CAPER) Team at the University of Arizona are conducting a series of two- and three-day teaching excellence workshops for college faculty. These workshops are being held in conjunction with professional society meetings, such as the American Astronomical Society and the American Association of Physics Teachers, and through the infrastructure of the National Science Foundation's Summer Chautauqua Workshop program. This three-day, interactive teaching excellence workshop focuses on dilemmas astronomy teachers face and develop practical solutions for the troubling issues in curriculum, instruction, and assessment. After reviewing the latest research about how students learn, participants define and set measurable student learning goals and objectives for students in their astronomy courses and construct effective course syllabi reflecting the ASTRO 101 goals publicized by the AAS. To improve instruction, participants learn how to create productive learning environments by using interactive lectures, peer instruction, engaging demonstrations, collaborative groups, tutorials, computer-based laboratories, and observational projects. Participants also learn how to write more effective multiple-choice tests and implement authentic assessment strategies including portfolio assessment, performance tasks, and concept maps. Texts provided at the workshop are: (i) Learner-Centered Astronomy Teaching, Slater and Adams, Prentice Hall, 2002; (ii) Great Ideas for Teaching Astronomy, Pompea, Brooks Cole, 2000; and (iii) Lecture-Tutorials for Introductory Astronomy, Adams, Prather, & Slater, Prentice Hall, 2002.

  9. Humanising Astronomy

    NASA Astrophysics Data System (ADS)

    Levin, S.

    2008-06-01

    Universe Awareness (UNAWE) is an international programme that aims to expose underprivileged children (in the age group 4-10) to the inspirational aspects of astronomy. We are currently at the stage of developing materials that will be utilised in a diverse range of environments. This paper explores UNAWE's particular approach to developing tools which includes not only indigenous and folkloric astronomical knowledge, but also the culture of transmission of such knowledge. A specific understanding and explanation of the Universe, the Sun, Moon and stars is present in every culture and can be found contained in its history, legends and belief systems. By consciously embracing different ways of knowing the Universe and not uniquely the rational model, UNAWE places the humanising potential of astronomy at the centre of its purpose. Whilst inspiring curiosity, pride and a sense of ownership in one's own cultural identity, such an approach also exposes children to the diversity of other peoples and their cultures as well as the unifying aspects of our common scientific heritage. The means of creating and delivering the astronomy programme are as relevant to the desired educational outcomes as the content. The challenge in the design of materials is to communicate this stimulating message to the very young. Respect for alternative values systems, the need for dialogue and community participation, and where possible the production of materials using local resources is emphasised. This paper touches recent experiences liaising with communities in India, South Africa, Tunisia, Venezuela and Colombia.

  10. NASE Training Courses in Astronomy for Teachers throughout the World

    ERIC Educational Resources Information Center

    Ros, Rosa M.

    2012-01-01

    Network for Astronomy School Education, NASE, is a project that is organizing courses for teachers throughout the entire world. The main objective of the project is to prepare secondary and primary school teachers in astronomy. Students love to know more about astronomy and teachers have the opportunity to observe the sky that every school has

  11. NASE Training Courses in Astronomy for Teachers throughout the World

    ERIC Educational Resources Information Center

    Ros, Rosa M.

    2012-01-01

    Network for Astronomy School Education, NASE, is a project that is organizing courses for teachers throughout the entire world. The main objective of the project is to prepare secondary and primary school teachers in astronomy. Students love to know more about astronomy and teachers have the opportunity to observe the sky that every school has…

  12. Using large radio telescopes at decametre wavelengths

    NASA Astrophysics Data System (ADS)

    Lecacheux, A.; Konovalenko, A. A.; Rucker, H. O.

    2003-04-01

    With the aim of evaluating the actual possibilities of doing, from the ground, sensitive radio astronomy at decametre wavelengths (particularly below 40 MHz), an extensive program of radio observations was carried out, in 1999-2002, by using digital spectral and waveform analysers (DSP) of new generation, connected to several of the largest, decametre radio telescopes in the world (i.e. the UTR-2 and URANs arrays in Ukraine, and the Nanay Decameter Array in France). We report and briefly discuss some new findings, dealing with decametre radiation from Jupiter and the Solar Corona: namely the discovery of new kinds of hyper fine structures in spectrograms of the active Sun, and a new characterisation of Jupiter's "millisecond" radiation, whose waveform samples, with time resolution down to 40 nanoseconds, and correlated measurements, by using far distant antennas (3000 km), have been obtained. In addition, scattering effects, caused by the terrestrial ionosphere and the interplanetary medium, could be disentangled, through high time resolution, wide band analyses of solar, planetary and strong galactic radio sources. Consequences for decametre wavelength imaging at high spatial resolution (VLBI) are outlined. Furthermore, in spite of the very unfavourable electromagnetic environment in this frequency range, a substantial increase in quality of the observations, was shown to be provided by using new generation spectrometers, based on sophisticated digital techniques. Indeed, the available, high dynamic range of such devices greatly decrease the effects of artificial and natural radio interference. We give several examples of successful signal detection in case of much weaker radio sources than Solar System ones, down to the 1 Jy intensity level. In summary, we conclude that searching for sensitivity improvement at decametre wavelength is justified, and is now technically feasible, in particular by building giant, phased antenna arrays of much larger collecting area (as in the LOFAR project). One must also take into account some specifics of this wavelength range - but somewhat unusual in "classical" radio astronomy -, i.e. a very high level and density of radio interference (telecommunications) and the variable ionosphere. Some applications to Solar System radio astronomy are briefly outlined.

  13. Fabrication of Optical Fiber Mechanical Shock Sensors for the Los Alamos HERT (High Explosive Radio Telemetry) Project

    SciTech Connect

    P. E. Klingsporn

    2005-11-14

    This document lists the requirements for the fiber optic mechanical shock sensor for the Los Alamos HERT (High Explosive Radio Telemetry) project and provides detailed process steps for fabricating, testing, and assembling the fiber shock sensors for delivery to Los Alamos.

  14. The Red Radio Ring: a gravitationally lensed hyperluminous infrared radio galaxy at z = 2.553 discovered through the citizen science project SPACE WARPS

    NASA Astrophysics Data System (ADS)

    Geach, J. E.; More, A.; Verma, A.; Marshall, P. J.; Jackson, N.; Belles, P.-E.; Beswick, R.; Baeten, E.; Chavez, M.; Cornen, C.; Cox, B. E.; Erben, T.; Erickson, N. J.; Garrington, S.; Harrison, P. A.; Harrington, K.; Hughes, D. H.; Ivison, R. J.; Jordan, C.; Lin, Y.-T.; Leauthaud, A.; Lintott, C.; Lynn, S.; Kapadia, A.; Kneib, J.-P.; Macmillan, C.; Makler, M.; Miller, G.; Montaña, A.; Mujica, R.; Muxlow, T.; Narayanan, G.; Briain, D. Ó.; O'Brien, T.; Oguri, M.; Paget, E.; Parrish, M.; Ross, N. P.; Rozo, E.; Rusu, C. E.; Rykoff, E. S.; Sanchez-Argüelles, D.; Simpson, R.; Snyder, C.; Schloerb, F. P.; Tecza, M.; Wang, W.-H.; Van Waerbeke, L.; Wilcox, J.; Viero, M.; Wilson, G. W.; Yun, M. S.; Zeballos, M.

    2015-09-01

    We report the discovery of a gravitationally lensed hyperluminous infrared galaxy (intrinsic LIR ≈ 1013 L⊙) with strong radio emission (intrinsic L1.4 GHz ≈ 1025 W Hz-1) at z = 2.553. The source was identified in the citizen science project SPACE WARPS through the visual inspection of tens of thousands of iJKs colour composite images of luminous red galaxies (LRGs), groups and clusters of galaxies and quasars. Appearing as a partial Einstein ring (re ≈ 3 arcsec) around an LRG at z = 0.2, the galaxy is extremely bright in the sub-millimetre for a cosmological source, with the thermal dust emission approaching 1 Jy at peak. The redshift of the lensed galaxy is determined through the detection of the CO(3→2) molecular emission line with the Large Millimetre Telescope's Redshift Search Receiver and through [O III] and Hα line detections in the near-infrared from Subaru/Infrared Camera and Spectrograph. We have resolved the radio emission with high-resolution (300-400 mas) eMERLIN L-band and Very Large Array C-band imaging. These observations are used in combination with the near-infrared imaging to construct a lens model, which indicates a lensing magnification of μ ≈ 10. The source reconstruction appears to support a radio morphology comprised of a compact (<250 pc) core and more extended component, perhaps indicative of an active nucleus and jet or lobe.

  15. Introducing Astronomy Related Research into Non-Astronomy Courses

    NASA Astrophysics Data System (ADS)

    Walker, Douglas

    The concern over the insufficient number of students choosing to enter the science and engineering fields has been discussed and documented for years. While historically addressed at the national level, many states are now recognizing that the lack of a highly-skilled technical workforce within their states' borders has a significant effect on their economic health. Astronomy, as a science field, is no exception. Articles appear periodically in the most popular astronomy magazines asking the question, "Where are the young astronomers?" Astronomy courses at the community college level are normally restricted to introductory astronomy I and II level classes that introduce the student to the basics of the night sky and astronomy. The vast majority of these courses is geared toward the non-science major and is considered by many students to be easy and watered down courses in comparison to typical physics and related science courses. A majority of students who enroll in these classes are not considering majors in science or astronomy since they believe that science is "boring and won't produce any type of career for them." Is there any way to attract students? This paper discusses an approach being undertaken at the Estrella Mountain Community College to introduce students in selected mathematics courses to aspects of astronomy related research to demonstrate that science is anything but boring. Basic statistical techniques and understanding of geometry are applied to a large virgin data set containing the magnitudes and phase characteristics of sets of variable stars. The students' work consisted of developing and presenting a project that explored analyzing selected aspects of the variable star data set. The description of the data set, the approach the students took for research projects, and results from a survey conducted at semester's end to determine if student's interest and appreciation of astronomy was affected are presented. Using the data set provided, the students were provided the opportunity for original research and discoveries.

  16. The Astronomy Olympiad italian experience

    NASA Astrophysics Data System (ADS)

    Sandrelli, S.; Giacomini, L.

    2011-10-01

    The International Astronomy Olympiad (IAO) is an internationally annual astronomy scientific-educating event, born in 1996, which includes an intellectual competition between students aged between 14 and 17. In Italy, the Olympiad is coorganized since 2007 by INAF (Istituto Nazionale di Astrofisica) and SAiT (Societ Astronomica Italiana) becoming every year a more visible and global event in the italian scenario (in 2011, INAF institutes participating to the local activities were 13). Unluckily, the Italian Committee of the Olympiads cannot involve directly nor rely on schools, since astronomy is no longer part of the scholastic programs. For this reason, the Committee needed to develop in the last years a non traditional mediatic approach that allowed in 2011 to reach a participation of more than 500 teenagers to the Olympics. We will give an overview of the Astronomy Olympics project in Italy and of this non conventional mediatic approach.

  17. Reports of planetary astronomy - 1991

    NASA Technical Reports Server (NTRS)

    Rahe, Jurgen (Editor)

    1993-01-01

    This publication provides information about currently funded scientific research projects conducted in the Planetary Astronomy Program during 1991, and consists of two main sections. The first section gives a summary of research objectives, past accomplishments, and projected future investigations, as submitted by each principal investigator. In the second section, recent scientifically significant accomplishments within the Program are highlighted.

  18. Practical Semantic Astronomy

    NASA Astrophysics Data System (ADS)

    Graham, Matthew; Gray, N.; Burke, D.

    2010-01-01

    Many activities in the era of data-intensive astronomy are predicated upon some transference of domain knowledge and expertise from human to machine. The semantic infrastructure required to support this is no longer a pipe dream of computer science but a set of practical engineering challenges, more concerned with deployment and performance details than AI abstractions. The application of such ideas promises to help in such areas as contextual data access, exploiting distributed annotation and heterogeneous sources, and intelligent data dissemination and discovery. In this talk, we will review the status and use of semantic technologies in astronomy, particularly to address current problems in astroinformatics, with such projects as SKUA and AstroCollation.

  19. Planetary astronomy

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.

    1988-01-01

    The goal is to use a variety of observational techniques and instruments to reduce, interpret, and synthesize groundbased astronomical data concerning the comets, asteroids, and other small bodies of the solar system in order to study the compositions, physical characteristics, population properties, and evolution of these bodies. This year's research has involved five distinct efforts. Chapman has studied asteroids, with emphasis on synthesizing groundbased databases to determine surface mineralogies and population characteristics; many new results on astronomy, size-distributions, and asteroid family traits have been obtained.

  20. Astronomy stories

    NASA Astrophysics Data System (ADS)

    Berenson, Rhoda

    2015-03-01

    For many years I have taught physics and astronomy courses to liberal arts students. I have found most of my students to be intelligent and diligent, but not anxious to study science. They typically take the class only because their degree requires a science course. Many arrive having already decided they will not be able to do the math or understand the scientific concepts, and have essentially built a wall between themselves and science. In the 1990s, in an effort to help break down that wall, as part of an NSF-supported course, "The Evolution of the Universe, Earth and Life," I began using creative writing assignments.

  1. Egyptian astronomy.

    NASA Astrophysics Data System (ADS)

    Andrillat, H.

    In Egypt, stars and planets were seen as goods and astronomy was practiced by priests in the temples. The most important time cycle of the Egyptian calendar was that of the heliac rising of Sirius during all the history of Ancient Egypt. Thus Egyptian astronomers built a calendar of 365 days, which was never corrected and in which the heliacal raising was evidently shifting at the rate of one day every four years. The year had twelve months of thirty days and a holy period of five days.

  2. Astronomy Education and Popularization in Serbia

    NASA Astrophysics Data System (ADS)

    Atanackovic, O.

    2013-05-01

    Astronomy education at all levels (elementary and secondary schools, universities) in Serbia is reviewed. The attempts to introduce astronomy as an elective course in elementary schools and to reintroduce astronomy as a separate subject in secondary schools are discussed. The role of the Petnica Science Center is briefly described, as well as the participation of the Serbian team in the International Astronomy Olympiads. A special emphasis is put on recent changes introduced in the accredited study programs at all five Serbian state universities. The research projects performed in two main astronomical institutions in Serbia are outlined. The numerous amateur astronomical societies in Serbia are presented and their growing activities summarized.

  3. The Astronomy Spacelab Payloads Study: Executive volume

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The progress of the Astronomy Spacelab Payloads Project at the Goddard Space Flight Center is reported. Astronomical research in space, using the Spacelab in conjunction with the Space Shuttle, is described. The various fields of solar astronomy or solar physics, ultraviolet and optical astronomy, and high energy astrophysics are among the topics discussed. These fields include scientific studies of the sun and its dynamical processes, of the stars in wavelength regions not accessible to ground based observations, and the exciting new fields of X-ray, gamma ray, and particle astronomy.

  4. Astronomy in the UK. A review of British Astronomy and Space Science.

    NASA Astrophysics Data System (ADS)

    Longair, M.

    Contents: 1. Astronomy today. 2. Observing the universe. 3. The grand design. 4. The Big Bang. 5. Current challenges in astrophysics and cosmology. 6. New light on the universe. 7. The Sun, our star. 8. The radio universe. 9. The cold universe. 10. The hot universe. 11. The very hot universe. 12. New approaches to astronomy. 13. Theoretical astrophysics. 14. People, places, money and the future. 15. Careering ahead. 16. The Royal Astronomical Society.

  5. Astronomy and Astrophysics for the 1980s.

    ERIC Educational Resources Information Center

    Field, George B.

    1982-01-01

    Following a discussion of scientific opportunities for astronomy (galaxies and the universe, stars, and planets/life/intelligence), four programs recommended by the National Academy of Sciences' Astronomy Survey Committee are described, indicating areas that must be strengthened before undertaking the programs. Ongoing projects are also

  6. Astronomy and Astrophysics for the 1980s.

    ERIC Educational Resources Information Center

    Field, George B.

    1982-01-01

    Following a discussion of scientific opportunities for astronomy (galaxies and the universe, stars, and planets/life/intelligence), four programs recommended by the National Academy of Sciences' Astronomy Survey Committee are described, indicating areas that must be strengthened before undertaking the programs. Ongoing projects are also…

  7. Current state of Czech astronomy popularization and its potential for enhancing science career interest

    NASA Astrophysics Data System (ADS)

    Kříček, Radek

    2015-08-01

    The Czech Republic has a dense net of observatories, astronomical clubs and other activities for both adults and children. Can we use it to improve skills of our pupils and their motivation to choose their career in science? Does the situation in the Czech Republic differ from abroad? What can we improve in the future? These questions were not answered satisfactorily so far. We decided to contribute to solve this issue.We present our survey of current state based mainly on electronic sources and personal dealings. Besides of 56 observatories working with public and many interest clubs, there are other possibilities to meet astronomy. For example, Astronomical Olympiad attracts thousands of pupils across the country each year to solve both theoretical and practical tasks in astronomy. In other projects, children can visit Dark-Sky Parks, design experiments for a stratospheric balloon, observe with CCD or radio devices or build their own rockets.We outline our ongoing project to examine the link between popularization activities and pupils’ or high school students’ attitude toward science and science career. We plan to create a typology of both popularization activities and life stories of people dealing with astronomy. From the methodological point of view, the mixed method design, combining both the qualitative and quantitative approach, will be used to solve the research problems. The basic research plan will be a case study. So far the project is based on interviews with various subjects. We choose people with different life stories, all connected with astronomy or astronomy popularization in some period. We focus on important moments in their career, similarities between subjects, and various types of possible motivation to participate in astronomy-related activities or to study science at university.Future results can be used to help interested organizations such as universities, observatories or astronomical societies. They will be able to work more effectively with talented youth and stimulate additional interest in science.

  8. The Radio Communication Project in Nepal: A Culture-Centered Approach to Participation

    ERIC Educational Resources Information Center

    Dutta, Mohan Jyoti; Basnyat, Iccha

    2008-01-01

    Considerable research has been conducted on the topic of entertainment-education (EE), the method of using entertainment platforms such as popular music, radio, and television programming to diffuse information, attitudes, and behaviors via role modeling. A significant portion of the recently published EE literature has used the case of the Radio

  9. The Erciyes University Radio Telescope Project for Neutral Hydrogen Observations in Galaxy

    NASA Astrophysics Data System (ADS)

    Kck, I.; Yusifov, I.

    2004-02-01

    Over 40 years investigations of HI and other molecules such as OH, CO, SO etc. in our Galaxy and in other galaxies are being made. In Turkey, there are no results from observations made by radio techniques up to now. We have designed a radio telescope, a 5-m dish, with a receiver working in the 1420 MHz range.

  10. Astronomy in the streets

    NASA Astrophysics Data System (ADS)

    Kebe, Fatoumata

    2015-08-01

    The Ephemerides Association was founded last year by a PhD student in Astronomy. The association is devoted to the promotion and advancement of knowledge of the universe through research and education.The main activities of the association are scientific meetings, the planning and realization of scientific projects, the support of the scientific activities of its members, and the dissemination of related information among members and other interested persons.The association targets the disadvantaged zones of the Paris suburbs.The main issue was how to bring astronomy in those places. In the suburbs, since most of the youth are poor, most leisure activities like cinema are out of your reach. Thus, mostly of them will play football or basketball outside.We decided to go to meet young people who find themselves together in the evening. We prepare the telescope as well as the fasicules to start the observation of the planets. The discussion finally lead to their career plans and aspirations. Astronomy has become a tool to address societal issues. We present our results after one year of activity.

  11. Goldstone-Apple Valley Radio Telescope System Theory of Operation

    NASA Technical Reports Server (NTRS)

    Stephan, George R.

    1997-01-01

    The purpose of this learning module is to enable learners to describe how the Goldstone-Apple Valley Radio Telescope (GAVRT) system functions in support of Apple Valley Science and Technology Center's (AVSTC) client schools' radio astronomy activities.

  12. Astronomy. Inspiration. Art

    NASA Astrophysics Data System (ADS)

    Stanic, N.

    2008-10-01

    This paper speculates how poetry and other kind of arts are tightly related to astronomy. Hence the connection between art and natural sciences in general will be discussed in the frame of ongoing multidisciplinary project `Astronomy. Inspiration. Art' at Public Observatory in Belgrade (started in 2004). This project tends to inspire (better to say `infect') artist with a cosmic themes and fantastic sceneries of the Universe. At the very beginning of the project, Serbian poet and philosopher Laza Lazić (who published 49 books of poetry, stories and novels), as well as writer Gordana Maletić (with 25 published novels for children) were interested to work on The Inspiration by Astronomical Phenomena in Serbian Literature. Five young artists and scientists include their new ideas and new approach to multidisciplinary studies too (Srdjan Djukić, Nenad Jeremić, Olivera Obradović, Romana Vujasinović, Elena Dimoski). Two books that will be presented in details in the frame of this Project, "STARRY CITIES" (http://zavod.co.yu) and "ASTROLIES", don't offer only interesting illustrations, images from the latest astronomical observations and currently accepted cosmological theories -- those books induces, provoking curiosity in a specific and witty way, an adventure and challenge to explore and create.

  13. The Political Uses of Astronomy

    NASA Astrophysics Data System (ADS)

    Gottschalk, K.

    2007-07-01

    In its first twelve years of rule the African National Congress (ANC) Government spent more on astronomy than all governments combined between 1910-1993. Three factors drove this unexpected development: (a) national prestige; (b) dignity of the continent of Africa; and (c) Black dignity. Both astronomy and astronautics project an image of modernity - the cutting edge of high technology. When the Government supports initiatives such as SALT, SKA, the proposed national space agency, and microsats, it does so because it perceives these as having a political importance far beyond their intrinsic importance to astronomy. These project "soft power" - an image of modernity to foreign powers and foreign investors - which contribute to their intangible perceptions of South Africa. Astronomers need to encourage this trend by both greatly increasing public outreach programmes and by making representations to the media, Parliament, and other public authorities, on issues such as light pollution.

  14. Scientific literacy: astronomy at school

    NASA Astrophysics Data System (ADS)

    Gangui, A.; Iglesias, M.; Quinteros, C.

    Models constructed by scientists to explain the world often incorporate their actual individual conceptions about different physical phenomena. Likewise, prospective teachers reach general science courses with preconstructed and consistent models of the universe surrounding them. In this project we present a series of basic questionings that make us reflect on the present situation of the teaching-learning relationship in astronomy within the framework of formal education for elementary school teachers. Our project main aims are: 1) to contribute to finding out the real learning situation of preservice elementary teachers, and 2) from these studies, to try and develop didactic tools that can contribute to improve their formal education in topics of astronomy. In spite of being of chief importance within the science teaching topics, mainly due to its interdisciplinarity and cultural relevance, researches in didactics of astronomy are not well represented in our research institutes. FULL TEXT IN SPANISH

  15. Astronomy Books of 1985.

    ERIC Educational Resources Information Center

    Mercury, 1986

    1986-01-01

    Provides annotated listing of books in 16 areas: (1) amateur astromony; (2) children's books; (3) comets; (4) cosmology; (5) education in astronomy; (6) general astronomy; (7) history of astronomy; (8) life in the universe; (9) miscellaneous; (10) physics and astronomy; (11) pseudo-science; (12) space exploration; (13) stars and stellar evolution;…

  16. Astronomy Books of 1985.

    ERIC Educational Resources Information Center

    Mercury, 1986

    1986-01-01

    Provides annotated listing of books in 16 areas: (1) amateur astromony; (2) children's books; (3) comets; (4) cosmology; (5) education in astronomy; (6) general astronomy; (7) history of astronomy; (8) life in the universe; (9) miscellaneous; (10) physics and astronomy; (11) pseudo-science; (12) space exploration; (13) stars and stellar evolution;

  17. The General History of Astronomy

    NASA Astrophysics Data System (ADS)

    Gingerich, Owen

    2010-04-01

    Foreword; Preface; Acknowledgements; Part I. The Birth of Astrophysics and Other Late Nineteenth-Century Trends (c.1850-c.1920); 1. The origins of astrophysics A. J. Meadows; 2. The impact of photography on astronomy John Lankford; 3. Telescope building, 1850-1900 Albert Van Helden; 4. The new astronomy A. J. Meadows; 5. Variable stars Helen Sawyer Hogg; 6. Stellar evolution and the origin of the Hertzsprung-Russell diagram David DeVorkin; Part II. Observatories and Instrumentation: 7. Astronomical institutions. Introduction Owen Gingerich, Greenwich Observatory Philip S. Laurie, Paris Observatory Jacques Lvy, Pulkovo Observatory Aleksandr A. Mikhailov, Harvard College Observatory Howard Plotkin, United States Naval Observatory Deborah Warner, Lick Observatory Trudy E. Bell, Potsdam Astrophysical Observatory Dieter B. Herrmann; 8. Building large telescopes, 1900-1950 Albert Van Helden; 9. Astronomical institutions in the southern hemisphere, 1850-1950 David S. Evans; 10. Twentieth-century instrumentation Charles Fehrenbach, with a section on 'Early rockets in astronomy' Herbert Friedman; 11. Early radio astronomy Woodruff T. Sullivan III; Appendix: The world's largest telescopes, 1850-1950 Barbara L. Welther; Illustrations: acknowledgements and sources; Index.

  18. Astronomy Education Challenges in Egypt

    NASA Astrophysics Data System (ADS)

    El Fady Beshara Morcos, Abd

    2015-08-01

    One of the major challenges in Egypt is the quality of education. Egypt has made significant progress towards achieving the Education for All and the Millennium Development Goals (MDGs). Many associations and committees as education reform program and education support programs did high efforts in supporting scientific thinking through the scientific clubs. The current state of astronomical education in Egypt has been developed. Astronomy became a part in both science and geography courses of primary, preparatory and secondary stages. Nowadays the Egyptian National Committee for Astronomy, put on its shoulders the responsibility of revising of astronomy parts in the education courses, beside preparation of some training programs for teachers of different stages of educations, in collaboration with ministry of education. General lectures program has been prepared and started in public places , schools and universities. Many TV and Radio programs aiming to spread astronomical culture were presented. In the university stage new astronomy departments are established and astrophysics courses are imbedded in physics courses even in some private universities.

  19. TeachAstronomy.com - Digitizing Astronomy Resources

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, Kevin; Impey, C. D.; Austin, C.; Patikkal, A.; Paul, M.; Ganesan, N.

    2013-06-01

    Teach Astronomy—a new, free online resource—can be used as a teaching tool in non-science major introductory college level astronomy courses, and as a reference guide for casual learners and hobbyists. Digital content available on Teach Astronomy includes: a comprehensive introductory astronomy textbook by Chris Impey, Wikipedia astronomy articles, images from Astronomy Picture of the Day archives and (new) AstroPix database, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy archives, and an RSS feed of astronomy news from Science Daily. Teach Astronomy features an original technology called the Wikimap to cluster, display, and navigate site search results. Development of Teach Astronomy was motivated by steep increases in textbook prices, the rapid adoption of digital resources by students and the public, and the modern capabilities of digital technology. This past spring semester Teach Astronomy was used as content supplement to lectures in a massive, open, online course (MOOC) taught by Chris Impey. Usage of Teach Astronomy has been steadily growing since its initial release in August of 2012. The site has users in all corners of the country and is being used as a primary teaching tool in at least four states.

  20. The Undergraduate ALFALFA Team: A Model for Involving Undergraduates in Large Astronomy Collaborations

    NASA Astrophysics Data System (ADS)

    Craig, David W.; Koopmann, Rebecca A.; Haynes, Martha P.; Undergraduate ALFALFA Team, ALFALFA Team

    2016-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) has allowed faculty and students from a wide range of public and private colleges and especially those with small astronomy programs to learn how science is accomplished in a large collaboration while contributing to the scientific goals of a legacy radio astronomy survey. This effort has been made possible through the collaboration of the ALFALFA PIs and graduate students, Arecibo Observatory staff, and the faculty at 19 undergraduate-focussed institutions. In this talk, we will discuss how the UAT model works for the ALFALFA project and lessons learned from our efforts over the 8 years of grant funding. We will provide suggestions on how the model could be applied to other legacy projects, particularly in such areas as online collaboration and software usage by undergraduates. This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, and AST-1211005.