Science.gov

Sample records for radio astronomy

  1. Radio Astronomy Radio astronomy

    E-print Network

    Metchev, Stanimir

    Radio Astronomy Jin Koda #12;Radio astronomy #12;Atmospheric Window #12;Centimeter radio astronomy Effelsberg 100m telescope (Germany) Green Bank 100m telescope (National Radio Astronomy Observatory;WestVirginia) #12;Centimeter radio astronomy HI 21cm line emission traces the distribution of atomic hydrogen. Dust

  2. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Schaffer, R. D.; Gorenstein, M. V.

    1981-01-01

    The activities of the Deep Space Network in support of Radio Astronomy Operations during April and May 1981 are reported. Work in progres in support of an experiment selected for use of the DSN by the Radio Astronomy Experiment Selection Panel, Twin Quasi-Stellar Object VLBI, is reported.

  3. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  4. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  5. Torun Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Torun Center for Astronomy is located at Piwnice, 15 km north of Torun, Poland. A part of the Faculty of Physics and Astronomy of the Nicolaus Copernicus University, it was created by the union of Torun Radio Astronomy Observatory (TRAO) and the Institute of Astronomy on 1 January 1997....

  6. CRAF Handbook for Radio Astronomy

    E-print Network

    Rodriguez, Luis F.

    CRAF Handbook for Radio Astronomy EUROPEAN SCIENCE FOUNDATION Committee on Radio Astronomy forum for science. The ESF Expert Committee on Radio Astronomy Frequencies, CRAF, was established Astronomy Service and other passive applications. Cover: The 76-m diameter Lovell Telescope at Jodrell Bank

  7. Physics 343 Observational Radio Astronomy

    E-print Network

    Baker, Andrew J.

    , interferometry + science: stars, planets, interstellar medium, active galactic nuclei, cosmic microwave that you choose shortly after spring break. Any topic related to radio astronomy is fair game. Previous years: "Current and Future Radio Astronomy Projects" "The Search for Extratrrestrial Intelligence

  8. Radio astronomy with microspacecraft

    NASA Technical Reports Server (NTRS)

    Collins, D.

    2001-01-01

    A dynamic constellation of microspacecraft in lunar orbit can carry out valuable radio astronomy investigations in the frequency range of 30kHz--30MHz, a range that is difficult to explore from Earth. In contrast to the radio astronomy ivestigations that have flown on individual spacecraft, the four microspacecraft together with a carrier spacecraft, which transported them to lunar orbit, form an interferometer with far superior angular resolution. Use of microspacecraft allows the entire constellation to be launched with a Taurus-class vehicle. Also distinguishing this approach is that the Moon is used as needed to shield the constellation from RF interference from the Earth and Sun.

  9. Physics 343 Observational Radio Astronomy

    E-print Network

    Gustafsson, Torgny

    Physics 343 Observational Radio Astronomy course number = 01:750:343 web page = http Textbook: none. Three useful books will be placed on reserve, and an online "Essential Radio Astronomy; Lectures We'll talk about material relevant to the labs, but also about radio astronomy in general

  10. Physics 343 Observational Radio Astronomy

    E-print Network

    Baker, Andrew J.

    choice May 5th = last day of class: I will lecture on 1­2 topics that you choose shortly after spring, but also about radio astronomy in general: + techniques: singledish telescopes, interferometry + science break. Any topic related to radio astronomy is fair game. Previous years: "Current and Future Radio

  11. NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia ELECTRONICS DIVISION INTERNAL REPORT NO. 305 AN ADAPTIVE INTERFERENCE CANCELING RECEIVER FOR RADIO ASTRONOMY - THEORY R. Bradley, S telephones; all have the potential to interfere with radio astronomy observations. Furthermore, the sky

  12. The Radio JOVE Project - Shoestring Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  13. Physics 343 Observational Radio Astronomy

    E-print Network

    Baker, Andrew J.

    is fair game. Previous years: "Current and Future Radio Astronomy Projects" "The Search telescopes, interferometry + science: stars, planets, interstellar medium, active galactic nuclei, cosmic, or a final project with the SRT studying "radio frequency interference" #12; Visit to Green Bank

  14. Panoramic Radio Astronomy

    E-print Network

    Heald, G

    2009-01-01

    In this contribution we give a brief overview of the Panoramic Radio Astronomy (PRA) conference held on 2-5 June 2009 in Groningen, the Netherlands. The conference was motivated by the on-going development of a large number of new radio telescopes and instruments which, within a few years, will bring a major improvement over current facilities. Interferometers such as the EVLA, ASKAP, ATA, MeerKAT, and APERTIF will provide a combination of larger field of view and increased simultaneous bandwidth, while maintaining good collecting area and angular resolution. They will achieve a survey speed 10-50 times larger at 1-2 GHz than the current possibilities, allowing for the first time optical-like all-sky extra-galactic surveys at these frequencies. Significant progress will be made in many fields of radio astronomy. In this conference we focused on research into the evolution of galaxies over the past few Gyr. In particular, wide-field observations at 1-2 GHz will provide an unprecedented panoramic view of the ga...

  15. Division X: Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Nan, Ren-Dong; Taylor, Russ; Rodriguez, Luis F.; Chapman, Jessica; Dubner, Gloria; Garrett, Michael; Goss, W. Miller; Torrelles, Jose M.; Hirabayashi, Hisashi; Carilli, Chris; Hills, Richard; Shastri, Prajval

    2010-05-01

    The business meeting of Division X in the IAU 2009GA took place in three sessions during the day of August 6, 2009. The meeting, being well attended, started with the approval for the meeting agenda. Then the triennium reports were made in the first session by the president of Division X, Ren-Dong Nan, and by the chairs of three working groups: “Historic Radio Astronomy WG” by Wayne Orchiston, “Astrophysically Important Lines WG” by Masatoshi Ohishi, and “Global VLBI WG” by Tasso Tzioumis (proxy chair appointed by Steven Tingay). Afterwards, a dozen reports from observatories and worldwide significant projects have been presented in the second session. Business meeting of “Interference Mitigation WG” was located in the third session.

  16. Radio astronomy at Stanford

    NASA Astrophysics Data System (ADS)

    Bracewell, R. N.

    2005-12-01

    Many astronomical topics were addressed by students and staff of the Stanford Radio Astronomy Institute over the course of decades, and some of the memorable milestones can be discussed here at length. These are antenna design and construction, the sunspot number series, astronomical tomography, the cosmic microwave background radiation, nulling interferometry for peering into circumstellar environments, celestial mechanics of the early Earth satellites, the extraterrestrial connection, dynamic spectra of exospheric phenomena, the versatile Hartley transform and Centaurus A. In addition to the text references, a complete list of solar publications related to the microwave spectroheliograph is appended. Further detail, and non-solar publications, are available in the annual reports published in the Astronomical Journal and Bulletin American Astronomical Society from 1961 to1980, especially the final report.

  17. Historic Radio Astronomy Working Group

    NASA Astrophysics Data System (ADS)

    2007-06-01

    This special issue of Astronomische Nachrichten contains the proceedings of a session of the Historic Radio Astronomy Working Group of the International Astronomical Union that took place during the 26th General Assembly of the IAU in Prague on 17th August 2006. In addition to the talks presented in Prague some contributions were solicited to give a more complete overview of `The Early History of European Radio Astronomy'.

  18. The future for radio astronomy

    NASA Astrophysics Data System (ADS)

    Breton, Rene P.; Hassall, Tom

    2013-12-01

    THE TRANSIENT UNIVERSE Rene P Breton and Tom Hassall argue that, while radio astronomy has always involved transient phenomena, exploration of this part of the electromagnetic spectrum has been falling behind because of the lack of data. But the advent of a new generation of radio telescopes such as LOFAR, could change that.

  19. Radio Frequency Interference and the National Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Smith, Sierra

    2014-01-01

    Radio frequency interference (RFI) and radio astronomy have been closely linked since the emergence of radio astronomy as a scientific discipline in the 1930s. Even before the official establishment of the National Radio Astronomy Observatory, protection against contemporary and future radio noise levels was seen as crucial to ensure success of any new observatory. My talk will examine the various local, regional, national, and international efforts enacted to protect NRAO and other American radio astronomy sites from RFI.

  20. Radio Astronomy Fundamentals I John Simonetti

    E-print Network

    Zallen, Richard

    Radio Astronomy Fundamentals I John Simonetti Spring 2012 Radio astronomy provides a very different view of the universe than optical astronomy. Radio astronomers and optical astronomers use different terminology to describe their work. Here I present some basic concepts and terms of radio

  1. Planetary radio astronomy from Voyager

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.

    1983-01-01

    The technique of radio astronomy makes it possible for a remote observer to detect the presence of magnetic fields and plasmas in planetary environments. Prior to the flights of the Voyager spacecraft, radio astronomical studies of Jupiter from earth and from earth orbit had correctly predicted the strength and orientation of Jupiter's magnetic field and trapped radiation belts. The Voyager Planetary Radio Astronomy investigations have now provided measurements of the complete spectrum of low frequency radio emissions from both planets. Each Voyager instrument consists of a pair of orthogonal, 10-m, electric monopole antennas which are connected to a step-tuned, superheterodyne receiver operating over the frequency range from 1.2 kHz to 40.5 MHz. The Voyager trajectory provided observations from above both the sunlit and nightside hemispheres of Jupiter. Saturn's nonthermal radio emission has been observed at frequencies as low as 3 kHz and as high as 1.2 MHz.

  2. National Radio Astronomy Observatory Dark Energy

    E-print Network

    Groppi, Christopher

    National Radio Astronomy Observatory Dark Energy: Constraints from Astronomy, Answers from Physics? Jim Condon #12;National Radio Astronomy Observatory UVa/NRAO DE Lunch Talk 2005 Nov. 30 Constraining Astronomy Observatory UVa/NRAO DE Lunch Talk 2005 Nov. 30 Friedmann Equations for Expansion a = distance

  3. Synthesis imaging in radio astronomy

    SciTech Connect

    Perley, R.A.; Schwab, F.R.; Bridle, A.H.

    1989-01-01

    Recent advances in techniques and instrumentation for radio synthesis imaging in astronomy are discussed in a collection of review essays. Topics addressed include coherence in radio astronomy, the interferometer in practice, primary antenna elements, cross correlators, calibration and editing, sensitivity, deconvolution, self-calibration, error recognition, and image analysis. Consideration is given to wide-field imaging (bandwidth and time-average smearing, noncoplanar arrays, and mosaicking), high-dynamic-range imaging, spectral-line imaging, VLBI, solar imaging with a synthesis telescope, synthesis imaging of spatially coherent objects, noise in images of very bright sources, synthesis observing strategies, and the design of aperture-synthesis arrays.

  4. National Radio Astronomy Observatory Associated Universities, Inc.

    E-print Network

    Groppi, Christopher

    National Radio Astronomy Observatory Associated Universities, Inc. OUTSIDE OBSERVER TRAVEL: ________________________________________ Travel office East: Travel office West: Fiscal Office Fiscal Office National Radio Astronomy Observatory National Radio Astronomy Observatory P.O. Box 2 P.O. Box O 1 Green Bank, WV 24944-0002 Socorro, NM 87801

  5. National Radio Astronomy Observatory Dark Energy

    E-print Network

    Groppi, Christopher

    National Radio Astronomy Observatory Dark Energy: Constraints from the Hubble Constant Jim Condon, 43, 625 #12;National Radio Astronomy Observatory UVa/NRAO DE Lunch Talk 2006 Jan. 25 What.086·1019 km H0 1.36 · 1010 years #12;National Radio Astronomy Observatory UVa/NRAO DE Lunch Talk 2006 Jan. 25

  6. NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia

    E-print Network

    Groppi, Christopher

    ) in the Indoor-Outdoor test facility at Green Bank. The 'Kite' dipoles were mounted on the array during Observatory, Charlottesville, 2 National Radio Astronomy Observatory, Green Bank, 3 ECE Dept., Brigham Young National Radio Astronomy Observatory, Green Bank, 2 National Radio Astronomy Observatory, Charlottesville

  7. Weather Forecasting for Radio Astronomy

    E-print Network

    Groppi, Christopher

    Weather Forecasting for Radio Astronomy Part I: The Mechanics and Physics Ronald J Maddalena August 1, 2008 #12;Outline Part I Background -- research inspirations and aspirations Vertical weather, .... Part II Results on refraction & air mass (with Jeff Paradis) Part III Results on opacity, weather

  8. Weather Forecasting for Radio Astronomy

    E-print Network

    Groppi, Christopher

    Weather Forecasting for Radio Astronomy Lecture for the 2009 REU Summer Students Ronald J Maddalena July, 2009 #12;The influence of the weather at cm- and mm-wavelengths Opacity Calibration System, telescope productivity Past conditions Calibration Weather statistics Telescope productivity, hardware

  9. The Helios radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Kayser, S.; Stone, R.

    1984-01-01

    Radio bursts traveling between the Sun and the Earth were tracked by radio astronomy experiments on Helios 1 and 2. A relatively short dipole antenna with a well-defined toroidal reception pattern was flown. The antenna spins in the ecliptic at 60.3 rpm and 2 frequencies are measured in each revolution. The signal analysis determines the strength of the signal, the direction of the source in the ecliptic, and the degree of modulation, and estimates source size. The experiments provide three-dimensional direction finding in space. They extend the radio frequency window beyond what is observable on Earth, and offer a long triangulation baseline.

  10. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Radio astronomy station notification. 2.107 Section...Radio Frequencies § 2.107 Radio astronomy station notification. (a) Pursuant...Geneva, 1982), operators of radio astronomy stations desiring international...

  11. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Radio astronomy station notification. 2.107 Section...Radio Frequencies § 2.107 Radio astronomy station notification. (a) Pursuant...Geneva, 1982), operators of radio astronomy stations desiring international...

  12. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Radio astronomy station notification. 2.107 Section...Radio Frequencies § 2.107 Radio astronomy station notification. (a) Pursuant...Geneva, 1982), operators of radio astronomy stations desiring international...

  13. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Radio astronomy station notification. 2.107 Section...Radio Frequencies § 2.107 Radio astronomy station notification. (a) Pursuant...Geneva, 1982), operators of radio astronomy stations desiring international...

  14. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Radio astronomy station notification. 2.107 Section...Radio Frequencies § 2.107 Radio astronomy station notification. (a) Pursuant...Geneva, 1982), operators of radio astronomy stations desiring international...

  15. Graphical Processing Units (GPUs) in Radio Astronomy

    E-print Network

    Groppi, Christopher

    NVIDIA CUDA Programming Guide) #12;Computing on GPUs - Motivations (Barsdell et al 2010) #12;GPU arithmetic intensity ­ roughly, # operations per sample (or per data transfer) should be in the 100s. (FromNVIDIACUDAProgrammingGuide) #12;GPUs in radio astronomy Most current digital instrument designs for radio astronomy incorporate

  16. NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia

    E-print Network

    Groppi, Christopher

    are presented in this report. The measurements made in the Indoor-Outdoor test facility (IOTF) at Green Bank Observatory, Green Bank, 3 ECE Dept., Brigham Young University, Provo, UT, USA August 30, 2011 #12;Cryogenic Radio Astronomy Observatory, Green Bank, 2 National Radio Astronomy Observatory, Charlottesville, 3

  17. (Astro)Physics 343 Observational Radio Astronomy

    E-print Network

    Baker, Andrew J.

    telescopes, interferometry + science: stars, planets, interstellar medium, active galactic nuclei, cosmic on a topic that you choose shortly after spring break. Any topic related to radio astronomy is fair game. Previous years: "Current and Future Radio Astronomy Projects" "The Search for Extratrrestrial Intelligence

  18. (Astro)Physics 343 Observational Radio Astronomy

    E-print Network

    Baker, Andrew J.

    telescopes, interferometry + science: stars, planets, interstellar medium, active galactic nuclei, cosmic on a topic that you choose shortly after spring break. Any topic related to radio astronomy is fair game. Last year: "Current and Future Radio Astronomy Projects" This year: the search for extraterrestrial

  19. Interference Mitigation In Radio Astronomy and

    E-print Network

    Ellingson, Steven W.

    Interference Mitigation In Radio Astronomy and Remote Sensing Feb 10, 2004 Steve Ellingson ellingson@vt.edu #12;The First Radio Astronomer ...And discovers the Galactic Center! 1932: Karl Jansky given task to find sources of radio frequency interference (RFI) to transatlantic radio communications

  20. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...Notifications concerning interference to radio astronomy, research and receiving installations...Notifications concerning interference to radio astronomy, research and receiving installations. (a)(1) Radio astronomy and radio research...

  1. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...Notifications concerning interference to radio astronomy, research and receiving installations...Notifications concerning interference to radio astronomy, research and receiving installations. (a)(1) Radio astronomy and radio research...

  2. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...Notifications concerning interference to radio astronomy, research and receiving installations...Notifications concerning interference to radio astronomy, research and receiving installations. (a)(1) Radio astronomy and radio research...

  3. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...Notifications concerning interference to radio astronomy, research and receiving installations...Notifications concerning interference to radio astronomy, research and receiving installations. (a)(1) Radio astronomy and radio research...

  4. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...Notifications concerning interference to radio astronomy, research and receiving installations...Notifications concerning interference to radio astronomy, research and receiving installations. (a)(1) Radio astronomy and radio research...

  5. Voyager planetary radio astronomy studies

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Eikenberry, Stephen S.

    1993-01-01

    Analysis of nonthermal radio emission data obtained by the Planetary Radio Astronomy (PRA) spectrometers on the Voyager 1 and 2 spacecraft was performed. This PRA data provided unique insights into the radio emission characteristics of the outer planets because of PRA's unique spectral response below the terrestrial ionospheric plasma frequency and its unprecedented proximity to the source. Of those results which were documented or published, this final report surveys only the highlights and cites references for more complete discussions. Unpublished results for Uranus, Neptune, and theoretical Ionian current distributions are presented at greater length. The most important conclusion to be drawn from these observations is that banded spectral emission is common to the radio emission below 1-2 MHz observed from all four Jovian planets. In every case multiple spectral features evolve on time scales of seconds to minutes. To the extent these features drift in frequency, they appear never to cross one another. The Neptunian spectral features appear to drift little or not at all, their evolution consisting principally of waxing and waning. Since other evidence strongly suggests that most or all of this radio emission is occurring near the local magnetospheric electron cyclotron frequency, this implies that this emission preferentially occurs at certain continually changing planetary radii. It remains unknown why certain radii might be favored, unless radial electric field components or other means serve to differentiate radially the magnetospheric plasma density, particle energy vectors, or particle coherence. Calculation of the spatial distribution and intensity of the Io-generated magnetospheric currents are also presented; these currents may be limited principally by wave impedance and local field strengths.

  6. Python Ephemeris Module for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Kuiper, T. B.

    2013-05-01

    An extension of the Python pyephem module was developed for Deep Space Network (DSN) radio astronomy. The class DSS( ) provides the geodetic coordinates of the DSN stations as well as other properties such as antenna diameter. The class Quasar( ) provides positional data for the sources in the National Radio Astronomy Observatory Very Large Array (NRAO VLA) Calibrator Handbook and flux estimates based the University of Michigan Radio Astronomy Observatory (UMRAO) Database or the VLA Calibrator Handbook. Flux calibration data are also available for the bright planets. Class Pulsar( ) provides the data from the Australia Telescope National Facility (ATNF) Pulsar Catalogue in Python format.

  7. The Golden Years of Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Kellermann, Kenneth I.

    2016-01-01

    The 1960s were the Golden Years of Radio Astronomy. During this decade a new generation of young scientists discovered quasars, pulsars, the cosmic microwave background, cosmic masers, giant molecular clouds, radio source variability, superluminal motion, radio recombination lines, the rotation of Mercury and Venus, the Venus Greenhouse effect, Jupiter's radiation belts, and opened up the high redshift Universe. On the technical side, the 1960s saw the completion of the NRAO 140-ft and 300-ft radio telescopes, the Haystack, Arecibo and Parkes antennas, the Owens Valley Interferometer, the first practical demonstrations of aperture synthesis, VLBI, and CLEAN, the Cambridge 1-mile radio telescope, the most precise tests of GR light bending, and the introduction of the 4th test of GR. Following sessions at the recent IAU 29th General Assembly on the "Golden Years of Radio Astronomy," we will discuss the circumstances surrounding these transformational discoveries which changed the course of modern astronomy.

  8. NATIONAL RADIO ASTRONOMY OBSERVATORY CHARLOTTESVILLE, VIRGINIA

    E-print Network

    Groppi, Christopher

    . Altogether there are three different direct current voltages necessary to operate the system. They are +5NATIONAL RADIO ASTRONOMY OBSERVATORY CHARLOTTESVILLE, VIRGINIA ELECTRONICS DIVISION INTERNAL REPORT/Parallel Converter .... 17 10. Unload Control ..... ........................ ..... .....: 11: 11. Load Control

  9. National Radio Astronomy Observatory Green Bank, WV

    E-print Network

    Groppi, Christopher

    National Radio Astronomy Observatory Green Bank, WV Cryostat Cavity Noise and the Impact......................................................................................23 6.3 Metal Movement ..............................................................................................................................................5 Figure 2: A baseline function; 1 minute (red) and 1 hour (green) averages........................6

  10. Introduction to special section on Mitigation of Radio Frequency Interference in Radio Astronomy

    E-print Network

    Ellingson, Steven W.

    Introduction to special section on Mitigation of Radio Frequency Interference in Radio Astronomy presented at the Workshop on the Mitigation of Radio Frequency Interference in Radio Astronomy (RFI2004), Introduction to special section on Mitigation of Radio Frequency Interference in Radio Astronomy, Radio Sci

  11. A Teaching Lab in Radio Astronomy

    ERIC Educational Resources Information Center

    Smith, Kirk R.; Cudaback, David D.

    1976-01-01

    Describes a study in which participants in a summer institute for secondary science teachers performed a series of experiments with a radio telescope. Concludes that a radio astronomy teaching facility would encourage students to use their own initiative and strategy in working with the scientific concepts involved. (MLH)

  12. Grote Reber, Radio Astronomy Pioneer, Dies

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Grote Reber, one of the earliest pioneers of radio astronomy, died in Tasmania on December 20, just two days shy of his 91st birthday. Reber was the first person to build a radio telescope dedicated to astronomy, opening up a whole new "window" on the Universe that eventually produced such landmark discoveries as quasars, pulsars and the remnant "afterglow" of the Big Bang. His self- financed experiments laid the foundation for today's advanced radio-astronomy facilities. Grote Reber Grote Reber NRAO/AUI photo "Radio astronomy has changed profoundly our understanding of the Universe and has earned the Nobel Prize for several major contributions. All radio astronomers who have followed him owe Grote Reber a deep debt for his pioneering work," said Dr. Fred Lo, director of the National Radio Astronomy Observatory (NRAO). "Reber was the first to systematically study the sky by observing something other than visible light. This gave astronomy a whole new view of the Universe. The continuing importance of new ways of looking at the Universe is emphasized by this year's Nobel Prizes in physics, which recognized scientists who pioneered X-ray and neutrino observations," Lo added. Reber was a radio engineer and avid amateur "ham" radio operator in Wheaton, Illinois, in the 1930s when he read about Karl Jansky's 1932 discovery of natural radio emissions coming from outer space. As an amateur operator, Reber had won awards and communicated with other amateurs around the world, and later wrote that he had concluded "there were no more worlds to conquer" in radio. Learning of Jansky's discovery gave Reber a whole new challenge that he attacked with vigor. Analyzing the problem as an engineer, Reber concluded that what he needed was a parabolic-dish antenna, something quite uncommon in the 1930s. In 1937, using his own funds, he constructed a 31.4-foot-diameter dish antenna in his back yard. The strange contraption attracted curious attention from his neighbors and became something of a minor tourist attraction, he later recalled. Using electronics he designed and built that pushed the technical capabilities of the era, Reber succeeded in detecting "cosmic static" in 1939. In 1941, Reber produced the first radio map of the sky, based on a series of systematic observations. His radio-astronomy work continued over the next several years. Though not a professional scientist, his research results were published in a number of prestigious technical journals, including Nature, the Astrophysical Journal, the Proceedings of the Institute of Radio Engineers and the Journal of Geophysical Research. Reber also received a number of honors normally reserved for scientists professionally trained in astronomy, including the American Astronomical Society's Henry Norris Russell Lectureship and the Astronomical Society of the Pacific's Bruce Medal in 1962, the National Radio Astronomy Observatory's Jansky Lectureship in 1975, and the Royal Astronomical Society's Jackson-Gwilt Medal in 1983. Reber's original dish antenna now is on display at the National Radio Astronomy Observatory's site in Green Bank, West Virginia, where Reber worked in the late 1950s. All of his scientific papers and records as well as his personal and scientific correspondence are held by the NRAO, and will be exhibited in the observatory's planned new library in Charlottesville, Virginia. Reber's amateur-radio callsign, W9GFZ, is held by the NRAO Amateur Radio Club. This callsign was used on the air for the first time since the 1930s on August 25, 2000, to mark the dedication of the Robert C. Byrd Green Bank Telescope. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  13. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Radio astronomy station notification. 2.107....107 Radio astronomy station notification. (a) Pursuant to No. 1492 of Article 13 and Section F of Appendix 3 to the international Radio Regulations (Geneva, 1982), operators of radio astronomy...

  14. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Radio astronomy station notification. 2.107....107 Radio astronomy station notification. (a) Pursuant to No. 1492 of Article 13 and Section F of Appendix 3 to the international Radio Regulations (Geneva, 1982), operators of radio astronomy...

  15. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Radio astronomy station notification. 2.107....107 Radio astronomy station notification. (a) Pursuant to No. 1492 of Article 13 and Section F of Appendix 3 to the international Radio Regulations (Geneva, 1982), operators of radio astronomy...

  16. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Radio astronomy station notification. 2.107....107 Radio astronomy station notification. (a) Pursuant to No. 1492 of Article 13 and Section F of Appendix 3 to the international Radio Regulations (Geneva, 1982), operators of radio astronomy...

  17. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Radio astronomy station notification. 2.107....107 Radio astronomy station notification. (a) Pursuant to No. 1492 of Article 13 and Section F of Appendix 3 to the international Radio Regulations (Geneva, 1982), operators of radio astronomy...

  18. "Radio Astronomy, Whatever That May Be." The Marginalization of Early Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Jarrell, Richard

    2005-01-01

    Today we see radio astronomy as a fully-integrated part of astronomy; it is now just one of several available wavelength regimes and many astrophysicists who use radio data are not radio astronomers themselves. At the beginning, it was very different. Between 1946 and 1960, radio astronomy emerged as an important speciality but it was an area little understood by mainstream astronomers. Radio astronomers rarely published in astronomical journals, gave papers at astronomical conferences or were accorded much notice. The pioneers in the field were not astronomers themselves and had little in common with astronomers. In this paper I note the various ways in which radio astronomy was alienated from the mainstream in its first decade and some of the reasons this alienation occurred. I will also speculate on when and how the integration began to occur.

  19. Technology Advances for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Russell, Damon Stuart

    The field of radio astronomy continues to provide fundamental contributions to the understanding of the evolution, and inner workings of, our universe. It has done so from its humble beginnings, where single antennas and receivers were used for observation, to today's focal plane arrays and interferometers. The number of receiving elements (pixels) in these instruments is quickly growing, currently approaching one hundred. For the instruments of tomorrow, the number of receiving elements will be in the thousands. Such instruments will enable researchers to peer deeper into the fabric of our universe and do so at faster survey speeds. They will provide enormous capability, both for unraveling today's mysteries as well as for the discovery of new phenomena. Among other challenges, producing the large numbers of low-noise amplifiers required for these instruments will be no easy task. The work described in this thesis advances the state of the art in three critical areas, technological advancements necessary for the future design and manufacturing of thousands of low-noise amplifiers. These areas being: the automated, cryogenic, probing of diameter100 mm indium phosphide wafers; a system for measuring the noise parameters of devices at cryogenic temperatures; and the development of low-noise, silicon germanium amplifiers for terahertz mixer receivers. The four chapters that comprise the body of this work detail the background, design, assembly, and testing involved in these contributions. Also included is a brief survey of noise parameters, the knowledge of which is fundamental to the design of low-noise amplifiers and the optimization of the system noise temperature for large, dense, interferometers.

  20. Radio Jove: Jupiter Radio Astronomy for Citizens

    NASA Astrophysics Data System (ADS)

    Higgins, Charles; Thieman, J. R.; Flagg, R.; Reyes, F. J.; Sky, J.; Greenman, W.; Brown, J.; Typinski, D.; Ashcraft, T.; Mount, A.

    2014-01-01

    Radio JOVE is a hands-on educational activity that brings the radio sounds of the Sun, Jupiter, the Milky Way Galaxy, and terrestrial radio noise to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with professional radio observatories in real-time over the Internet. Our website (http://radiojove.gsfc.nasa.gov) includes science information, construction manuals, observing guides, and education resources for teachers and students. Radio Jove is continually expanding its participants with over 1800 kits sold to more than 70 countries worldwide. Recently some of our most dedicated observers have upgraded their Radio Jove antennas to semi-professional observatories. We have spectrographs and wide band antennas, some with 8 MHz bandwidth and some with dual polarization capabilities. In an effort to add to the science literature, these observers are coordinating their efforts to pursue some basic questions about Jupiter’s radio emissions (radio source locations, spectral structure, long term changes, etc.). We can compare signal and ionosphere variations using the many Radio Jove observers at different locations. Observers are also working with members of the Long Wavelength Array Station 1 (LWA1) radio telescope to coordinate observations of Jupiter; Radio Jove is planning to make coordinated observations while the Juno Mission is active beginning in 2015. The Radio Jove program is overviewed, its hardware and software are highlighted, recent sample observations are shown, and we demonstrate that we are capable of real citizen science.

  1. Teaching radio astronomy with Affordable Small Radio Telescope (ASRT)

    NASA Astrophysics Data System (ADS)

    Joshi, Bhal Chandra

    A simple, easy to build and portable radio telescope, called Affordable Small Radio Telescope (ASRT), has been developed by the Radio Physics Laboratory (RPL), a radio astronomy teaching unit associated with the National Centre for Radio Astrophysics (TIFR) and Inter-University Centre for Astronomy and Astrophysics (IUCAA), which are two premier astronomy institutes in India. ASRT consists of off-the-shelf available Direct to Home television dishes and is easy to assemble. Our design is scalable from simple very low cost telescope to more complex yet moderately costing instrument. ASRT provides a platform for demonstrating radio physics concepts through simple hands-on experiment as well as for carrying out solar monitoring by college/University students. The presentation will highlight the concept of ASRT and the different experiments that can be carried out using it. The solar monitoring observations will be discussed along-with details of methods for calibrating these measurements. The pedagogical usefulness of ASRT in introducing undergraduatephysics students to astrophysics, measurements and analysis methods used in radio astronomy will also be discussed. Use of ASRT in the last three years in the programs of RPL, namely the annual Radio Astronomy Winter School for College students (RAWSC) and Pulsar Observing for Students (POS) is also presented. This year a new program was initiated to form a virtual group of an ASRT community, which will not only share their measurements, but also think of improving the pedagogical usefulness of ASRT by innovative experiments. This initiative is presented with the best practices drawn from our experience in using ASRT as a tool for student training in space sciences. The talk will also point out future ideas in involving a larger body of students in simple radio astronomy experiments with the ASRT, which RPL is likely to nucleate as part of its mandate.

  2. National Radio Astronomy International Exchange Program (NINE)

    NASA Astrophysics Data System (ADS)

    Wingate, Lory Mitchell

    2016-01-01

    NINE aims to create synergistic partnerships between NRAO and its US-Based NINE partner institutions and universities, with astronomy-related institutions in other countries. We seek to create a vibrant exchange of students that are interested in learning about activities associated with the radio astronomy field, and to create enduring partnerships that will help train a global, collaborative Science, Technology, Engineering, and Mathematics (STEM) knowledgeable workforce.

  3. The IAU Early French Radio Astronomy Project

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Boischot, A.; Delannoy, J.; Kundu, M.; Lequeux, J.; Pick, M.; Steinberg, J.

    2011-01-01

    In 2006 an ambitious project was launched under the auspices of the IAU Working Group on Historic Radio Astronomy to document important developments in French radio astronomy from 1901 through to the 1960s, in a series of papers published, in English, in the Journal of Astronomical History and Heritage. This successful project has now come to an end with the sixth and final paper in the series about to be published (and a new WG project, on the history of early Japanese radio astronomy, has just been launched). In this paper we discuss Nordmann's abortive attempt to detect solar radio emission in 1901, and the important roles played by staff from the École Normale Supérieure and the Institut d'Astrophysique in Paris during the 1940s through 60s in developing new radio astronomy instrumentation and pursuing a range of solar and non-solar research projects in Paris itself and at field stations established at Marcoussis, Nançay and the Haute Provence Observatory.

  4. Using Many-Core Hardware to Correlate Radio Astronomy Signals

    E-print Network

    van Nieuwpoort, Rob V.

    Using Many-Core Hardware to Correlate Radio Astronomy Signals Rob V. van Nieuwpoort nieuwpoort@astron.nl John W. Romein romein@astron.nl ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo, The Netherlands ABSTRACT A recent development in radio astronomy is to replace traditional dishes with many small

  5. BROAD BAND ANTENNA ARRAYS AND NOISE COUPLING FOR RADIO ASTRONOMY

    E-print Network

    Popovic, Zoya

    BROAD BAND ANTENNA ARRAYS AND NOISE COUPLING FOR RADIO ASTRONOMY by JAN PETER PEETERS WEEM B Engineering 2001 #12;This thesis entitled: Broad Band Antenna Arrays and Noise Coupling for Radio Astronomy Engineering) Broad Band Antenna Arrays and Noise Coupling for Radio Astronomy Thesis directed by Professor

  6. Instrumentation for Wide Bandwidth Radio Astronomy Glenn Evans Jones

    E-print Network

    Weinreb, Sander

    Instrumentation for Wide Bandwidth Radio Astronomy Thesis by Glenn Evans Jones In Partial enthusiast, I cannot imagine a better person to introduce me to the field of radio astronomy which has his broad experience across the gamut of radio astronomy instrumentation and observations. One

  7. Technology for Wide Bandwidth Transient Radio Astronomy Observations

    E-print Network

    Weinreb, Sander

    Technology for Wide Bandwidth Transient Radio Astronomy Observations: The 34 Meter Goldstone.edu/GBTopsdocs/opman/od_rec_ri_gbt__rcvrs.htm #12;(Radio) Astronomy Signals: Continuum & Spectral Line http.P. Norris et al. ApJ 508:275-285, 1998 #12;Time Varying Radio Astronomy Signals: Pulsars and Transients From

  8. Adventures in Radio Astronomy Instrumentation and Signal Processing

    E-print Network

    Masci, Frank

    Adventures in Radio Astronomy Instrumentation and Signal Processing by Peter Leonard Mc has helped to validate the approach to developing radio astronomy instruments that CASPER advocates. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background 7 2.1 An Engineer's View of Radio Astronomy and Instrumentation . . . . 7 2.2 Single

  9. Solar system radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1987-01-01

    The planetary radio-astronomy observations obtained with the two Voyager spacecraft since their launch in 1977 are briefly characterized and illustrated with graphs, diagrams, and sample spectra. Topics addressed include the spacecraft designs and trajectories, the wavelength coverage of the radio instruments, the Io-controlled LF emission of Jupiter, the solar-wind effect on the Saturn kilometric radiation, the Saturn electrostatic discharges, and the use of the clocklike feature of the Uranus emission to measure the planet's rotation period.

  10. Accurate Weather Forecasting for Radio Astronomy

    E-print Network

    Groppi, Christopher

    Accurate Weather Forecasting for Radio Astronomy Ronald J Maddalena October, 2009 #12;Outline Very-3 days #12;The influence of the weather at cm- and mm-wavelengths Opacity Calibration System, telescope productivity Past conditions Calibration Weather statistics Telescope productivity, hardware

  11. Internet Resources for Radio Astronomy

    E-print Network

    Heinz Andernach

    1998-07-31

    A subjective overview of Internet resources for radio-astronomical information is presented. Basic observing techniques and their implications for the interpretation of publicly available radio data are described, followed by a discussion of existing radio surveys, their level of optical identification, and nomenclature of radio sources. Various collections of source catalogues and databases for integrated radio source parameters are reviewed and compared, as well as the web interfaces to interrogate the current and ongoing large-area surveys. Links to radio observatories with archives of raw (uv-) data are presented, as well as services providing images, both of individual objects or extracts (``cutouts'') from large-scale surveys. While the emphasis is on radio continuum data, a brief list of sites providing spectral line data, and atomic or molecular information is included. The major radio telescopes and surveys under construction or planning are outlined. A summary is given of a search for previously unknown optically bright radio sources, as performed by the students as an exercise, using Internet resources only. Over 200 different links are mentioned and were verified, but despite the attempt to make this report up-to-date, it can only provide a snapshot of the current situation.

  12. Gudel M. 2002, Annual Review of Astronomy and Astrophysics 40:217-261 Stellar Radio Astronomy

    E-print Network

    Guedel, Manuel

    Gudel M. 2002, Annual Review of Astronomy and Astrophysics 40:217-261 Stellar Radio Astronomy. Muhsam, Einstein Archive 36-610 1 INTRODUCTION Stellar radio astronomy has matured over the pasturenlingen & Villigen, CH-5232 Villigen PSI, Switzerland e-mail: guedel@astro.phys.ethz.ch KEYWORDS: radio stars

  13. Low Frequency Radio Astronomy with the existing and future radio telescopes

    E-print Network

    Meyer-Vernet, Nicole

    Low Frequency Radio Astronomy with the existing and future radio telescopes A.A. Konovalenko Institute of Radio Astronomy, Kharkov, Ukraine LOFAR meeting, APC Laboratory, Paris, 17-18 January, 2008 #12 development of the low frequency radio astronomy. This program includes the further modernization of UTR-2

  14. Large Radio Astronomy: next 70 Years Step

    E-print Network

    Yu. N. Parijskij

    2003-11-15

    Some attempts to predict the very distant future of Radio Astronomy are given. It is not easy to predict a list of the first priority problems which may appear, but the facilities potential is more predictable. It is suggested, that in addition to the "dedicated for Radio Astronomy", facilities may be extended greatly by integration with the next generation living standards facilities, connected with People-to-People communications through the global networks and by incorporating of the "Natural facilities", such as grav. lensing, maser amplification in the ISM etc. As an examples of the extreme cases of the $10^9 m^2$ class of the new generation Radio Telescopes, utilization of the personal dipole size communication facilities by SKA type instrument, and array from the asteroids first "Frehnel zones" will be mentioned. Radio Astronomy from the secondary to optical facilities tool will be the only tool in the exploration of the $z>10$ Universe. The reality of all predictions depend mostly on the way, the Civilization will prefer : "Ahead, to HOMO SAPIENCE" or "BACK TO PRIMATES".

  15. VRIJE UNIVERSITEIT AMSTERDAM Radio astronomy beam forming on

    E-print Network

    van Nieuwpoort, Rob V.

    VRIJE UNIVERSITEIT AMSTERDAM Radio astronomy beam forming on GPUs by Alessio Sclocco Supervisors Dr Abbreviations viii 1 Introduction 1 2 Background 4 2.1 Radio astronomy Science is no more about computers than astronomy is about telescopes." E. W. Dijkstra #12;VRIJE

  16. Scott M. Ransom National Radio Astronomy Observatory / Univ. of Virginia

    E-print Network

    Groppi, Christopher

    Scott M. Ransom Astronomer National Radio Astronomy Observatory / Univ. of Virginia Scott is a tenured astronomer with the National Radio Astronomy Observatory (NRAO) in Charlottesville, VA where he studies all things "pulsar". He is also a Research Professor with the Astronomy Department

  17. Advances in solar radio astronomy

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1982-01-01

    The status of the observations and interpretations of the sun's radio emission covering the entire radio spectrum from millimeter wavelengths to hectometer and kilometer wavelengths is reviewed. Emphasis is given to the progress made in solar radio physics as a result of recent advances in plasma and radiation theory. It is noted that the capability now exists of observing the sun with a spatial resolution of approximately a second of arc and a temporal resolution of about a millisecond at centimeter wavelengths and of obtaining fast multifrequency two-dimensional pictures of the sun at meter and decameter wavelengths. A summary is given of the properties of nonflaring active regions at millimeter, centimeter, and meter-decameter wavelengths. The properties of centimeter wave bursts are discussed in connection with the high spatial resolution observations. The observations of the preflare build-up of an active region are reviewed. High spatial resolution observations (a few seconds of arc to approximately 1 arcsec) are discussed, with particular attention given to the one- and two-dimensional maps of centimeter-wavelength burst sources.

  18. Advanced Estimation Methods For Radio-Astronomy: Calibration & Inverse problems

    E-print Network

    Tourneret, Jean-Yves

    Advanced Estimation Methods For Radio-Astronomy: Calibration & Inverse problems Conditions: o concerns the calibration and imaging in the radio-astronomy context. Future astronomical instruments radio telescopes," IEEE Signal Processing Mag., vol. 27, pp. 30-42, Jan. 2010. [2] S. Kazemi and S

  19. The beginnings of Australian radio astronomy

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T.

    2005-06-01

    The early stages of Australian radio astronomy, especially the first decade after World War II, are described in detail. These include the transition of the CSIRO Radiophysics Laboratory, under the leadership of Joseph Pawsey and Taffy Bowen, from a wartime laboratory in 1945 to, by 1950, the largest and one of the two most important radio astronomy groups in the world (with the Cavendish Laboratory at Cambridge University). The initial solar investigations are described, including discovery of the hot corona and development of the sea-cliff interferometer. During this same period painstaking `radio star' observations by John Bolton and colleagues led to the first suggested optical identifications of Taurus-A (the Crab Nebula), Centaurus-A (NGC 5128), and Virgo-A (M87). The factors that led to the extraordinary early success of the Radiophysics Laboratory are analyzed in detail, followed by discussion of how the situation changed significantly in the second decade of 1955-1965. Finally, the development of major Australian instruments, from the Parkes Radio Telescope (1961) to the Australia Telescope (1988), is briefly presented.

  20. Auto-Adaptive Radio Astronomy Instruments

    NASA Astrophysics Data System (ADS)

    Pankratius, Victor; Lonsdale, C. J.

    2014-04-01

    Progress in the field of radio astronomy depends heavily on advances in instrumental capabilities, characterized by properties such as collecting area, resolution in the angular, spectral and temporal domains, field of view, and spatial aperture sampling. Generally, such advances in capability represent increases in the formal quantity of astronomical information that is received and processed by the instrument. The current generation of radio astronomy arrays can generate antenna voltage data at rates of Tbits per second, and forthcoming instruments will quickly expand these rates by multiple orders of magnitude. Future Exascale systems will have to make many choices on how to process subsets of big data. As human capacity will be overwhelmed at this scale, part of the discovery process will have to be handled by algorithms and machines. A key challenge will be to identify patterns of scientific significance in massive data sets and adjust instruments to become more sensitive to such patterns. As a step towards realization, we will revisit the current data collection and analysis pipelines from a fresh perspective that treats them as one system. In this system, multicore parallelism reduces big data accumulation by moving fragments of analysis and filtering closer to the data acquisition. MIT Haystack is pursuing approaches that enable future scientists to shift their interaction with bare metal instruments to steering search algorithms. Our vision is to create auto-adaptive instruments that can automatically adjust to identify and characterize interesting data patterns and properties, to optimize signal to noise ratios, and balance the search process depending on environmental changes. Bios Victor Pankratius is a principal investigator and computer scientist at MIT Haystack Observatory, where he advances new directions of computing in astronomy. Contact him at [pankrat at mit dot edu], victorpankratius.com, or Twitter @vpankratius. Colin Lonsdale is Director of the MIT Haystack Observatory, and has a 30-year background in observational radio astronomy and interferometric imaging. His email is [cjl at haystack dot mit dot edu].

  1. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Notification of the National Radio Astronomy Observatory. 5.91 Section 5... Notification of the National Radio Astronomy Observatory. In order to minimize...harmful interference at the National Radio Astronomy Observatory site located at...

  2. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Notification of the National Radio Astronomy Observatory. 5.91 Section 5... Notification of the National Radio Astronomy Observatory. In order to minimize...harmful interference at the National Radio Astronomy Observatory site located at...

  3. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Notification of the National Radio Astronomy Observatory. 5.91 Section 5... Notification of the National Radio Astronomy Observatory. In order to minimize...harmful interference at the National Radio Astronomy Observatory site located at...

  4. 47 CFR 5.91 - Notification to the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Notification to the National Radio Astronomy Observatory. 5.91 Section 5... Notification to the National Radio Astronomy Observatory. In order to minimize...harmful interference at the National Radio Astronomy Observatory site located at...

  5. 47 CFR 5.91 - Notification to the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Notification to the National Radio Astronomy Observatory. 5.91 Section 5... Notification to the National Radio Astronomy Observatory. In order to minimize...harmful interference at the National Radio Astronomy Observatory site located at...

  6. The first radio astronomy from space - RAE

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.

    1987-01-01

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed.

  7. Radio Astronomy: A Strong Link between Undergraduate Education and Research.

    ERIC Educational Resources Information Center

    Pratap, Preethi; Salah, Joseph E.

    2001-01-01

    Describes a successful pilot program to develop and test a program that facilitates the linking of undergraduate research and education through radio astronomy. Based on the pilot experiences, students everywhere should be able to exploit the opportunity to strengthen their education through practical research using radio astronomy. (Author/SAH)

  8. Historical Radio Astronomy Working Group IAU General Assembly

    E-print Network

    Groppi, Christopher

    the observed radio waves and the stellar atmospheres research. The origin of the radio emission observed be present in the interstellar space to account for a free-free emission of the radio waves. In 1947 UnsöldProgram Historical Radio Astronomy Working Group IAU General Assembly Beijing, China Room 408

  9. Large Instrument Development for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Fisher, J. Richard; Warnick, Karl F.; Jeffs, Brian D.; Norrod, Roger D.; Lockman, Felix J.; Cordes, James M.; Giovanelli, Riccardo

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  10. Radio Astronomy Software Defined Receiver Project

    SciTech Connect

    Vacaliuc, Bogdan; Leech, Marcus; Oxley, Paul; Flagg, Richard; Fields, David

    2011-01-01

    The paper describes a Radio Astronomy Software Defined Receiver (RASDR) that is currently under development. RASDR is targeted for use by amateurs and small institutions where cost is a primary consideration. The receiver will operate from HF thru 2.8 GHz. Front-end components such as preamps, block down-converters and pre-select bandpass filters are outside the scope of this development and will be provided by the user. The receiver includes RF amplifiers and attenuators, synthesized LOs, quadrature down converters, dual 8 bit ADCs and a Signal Processor that provides firmware processing of the digital bit stream. RASDR will interface to a user s PC via a USB or higher speed Ethernet LAN connection. The PC will run software that provides processing of the bit stream, a graphical user interface, as well as data analysis and storage. Software should support MAC OS, Windows and Linux platforms and will focus on such radio astronomy applications as total power measurements, pulsar detection, and spectral line studies.

  11. JPL Big Data Technologies for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.; D'Addario, L. R.; De Jong, E. M.; Mattmann, C. A.; Rebbapragada, U. D.; Thompson, D. R.; Wagstaff, K.

    2014-04-01

    During the past three years the Jet Propulsion Laboratory has been working on several technologies to deal with big data challenges facing next-generation radio arrays, among other applications. This program has focused on the following four areas: 1) We are investigating high-level ASIC architectures that reduce power consumption for cross-correlation of data from large interferometer arrays by one to two orders of magnitude. The cost of operations for the Square Kilometre Array (SKA), which may be dominated by the cost of power for data processing, is a serious concern. A large improvement in correlator power efficiency could have a major positive impact. 2) Data-adaptive algorithms (machine learning) for real-time detection and classification of fast transient signals in high volume data streams are being developed and demonstrated. Studies of the dynamic universe, particularly searches for fast (<< 1 second) transient events, require that data be analyzed rapidly and with robust RFI rejection. JPL, in collaboration with the International Center for Radio Astronomy Research in Australia, has developed a fast transient search system for eventual deployment on ASKAP. In addition, a real-time transient detection experiment is now running continuously and commensally on NRAO's Very Long Baseline Array. 3) Scalable frameworks for data archiving, mining, and distribution are being applied to radio astronomy. A set of powerful open-source Object Oriented Data Technology (OODT) tools is now available through Apache. OODT was developed at JPL for Earth science data archives, but it is proving to be useful for radio astronomy, planetary science, health care, Earth climate, and other large-scale archives. 4) We are creating automated, event-driven data visualization tools that can be used to extract information from a wide range of complex data sets. Visualization of complex data can be improved through algorithms that detect events or features of interest and autonomously generate images or video to display those features. This work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  12. The Deep Space Network: An instrument for radio astronomy research

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.; Levy, G. S.; Kuiper, T. B. H.; Walken, P. R.; Chandlee, R. C.

    1988-01-01

    The NASA Deep Space Network operates and maintains the Earth-based two-way communications link for unmanned spacecraft exploring the solar system. It is NASA's policy to also make the Network's facilities available for radio astronomy observations. The Network's microwave communication systems and facilities are being continually upgraded. This revised document, first published in 1982, describes the Network's current radio astronomy capabilities and future capabilities that will be made available by the ongoing Network upgrade. The Bibliography, which includes published papers and articles resulting from radio astronomy observations conducted with Network facilities, has been updated to include papers to May 1987.

  13. NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA ELECTRONICS DIVISION INTERNAL REPORT of the surface that may result from movement of the antenna or changes in ambient temperature. However

  14. NATIONAL RADIO ASTRONOMY OBSERVATORY Oreen Bank, West Virginia

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Oreen Bank, West Virginia Electronics Division Internal Report Stability Test - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 Noise sheet supplied with this amplifier specifies 15 db gain and all test results shown in this report were

  15. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report CALIBRATIONS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -10 SYSTEM TESTING (CONTINUED BLOCK DIAGRAMS Front-End Equipment Test Equipment for Gain-Bandpass Noise Figure Measurements Beam

  16. NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK) WEST VIRGINIA

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK) WEST VIRGINIA ELECTRONICS DIVISION INTERNAL REPORT · · · · · · · · · · · · · · · · · · · · · · · · · · · · 7 Dimensions and Test Results ... · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 and tests are described in this report, and predictions are made for the aperture efficiency and spillover

  17. NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA ELECTRONICS DIVISION INTERNAL REPORT. Compensation Network (Divider) Operation .......... ···· ..... · 3 V. Test Results Test Data ................................ ...27 #12;AN IMPULSE NOISE SUPPRESSOR James V. Morgan, Jr

  18. NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA ELECTRONICS DIVISION INTERNAL REPORT · ······ ··········· ······· ·· ······ Varian Test Program ........·· OOOOO ···· · OOOOO ········· OOOOO ············ Slave Mode using" ·············· ..... ·· ··································· · Noise Tube Measurement using the Thermal Cal Unit ·········· Block Diagram: Test Set Up to Determine

  19. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report .................... ..........................................................................5 6. 0 Theoretical Performance of Instrument 9 7. 0 Tests with Instrument ............................................. ............................. 24 11. Photograph of Test Range

  20. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report rotation of 212 arc minutes is needed. This corresponds to a total edge movement of 0.556". This movement

  1. Sixty Years in radio astronomy: A tribute to Bruce Slee

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne

    2005-06-01

    Bruce Slee is one of the pioneers of radio astronomy. After recording solar emission during World War II, he joined what was then the Council of Scientific and Industrial Research's Division of Radiophysics in Sydney, Australia, and went on to make important contributions to Solar System, Galactic and extra-galactic astronomy. Since his retirement, in 1989, he has continued his research as an Honorary Fellow of the Australia Telescope National Facility. Now in his early 80s, Bruce Slee is one of the few radio astronomy pioneers of the 1940s who is still actively contributing to astrophysics. This issue of the Journal of Astronomical History and Heritage (JAH2), and the two that will follow it, are a tribute to this quietly-spoken scientist and his remarkable 60-year involvement in radio astronomy.

  2. Communicating radio astronomy with the public: Another point of view

    NASA Astrophysics Data System (ADS)

    Varano, S.

    2008-06-01

    Radio waves cannot be sensed directly, but they are used in daily life by almost everybody. Even so, the majority of the general public do not even know that celestial bodies emit radio waves. Presenting invisible radiation to a general audience with little or no background knowledge in physics is a difficult task. In addition, much important technology now commonplace in many other scientific fields was pioneered by radio observatories in their efforts to detect and process radio signals from the Universe. Radio astronomy outreach does not have such a well-established background as optical astronomy outreach. In order to make radio astronomy accessible to the public, it is necessary either to add more scientific detail or to find a different way of communicating. In this paper we present examples from our work at the Visitor Centre "Marcello Ceccarelli", which is part of the Medicina Radio Observatory, operated by the Institute of Radio Astronomy (IRA) in Bologna, which in turn is part of the National Institute for Astrophysics (INAF).

  3. International Agreement Will Advance Radio Astronomy

    NASA Astrophysics Data System (ADS)

    2007-12-01

    Two of the world's leading astronomical institutions have formalized an agreement to cooperate on joint efforts for the technical and scientific advancement of radio astronomy. The National Radio Astronomy Observatory (NRAO) in the United States and the Max-Planck Institute for Radioastronomy (MPIfR) in Germany concluded a Memorandum of Understanding outlining planned collaborative efforts to enhance the capabilities of each other's telescopes and to expand their cooperation in scientific research. The VLBA The VLBA CREDIT: NRAO/AUI/NSF In the first project pursued under this agreement, the MPIfR will contribute $299,000 to upgrade the continent-wide Very Long Baseline Array's (VLBA) capability to receive radio emissions at a frequency of 22 GHz. This improvement will enhance the VLBA's scientific productivity and will be particularly important for cutting-edge research in cosmology and enigmatic cosmic objects such as gamma-ray blazars. "This agreement follows many years of cooperation between our institutions and recognizes the importance of international collaboration for the future of astronomical research," said Fred K.Y. Lo, NRAO Director. "Our two institutions have many common research goals, and joining forces to keep all our telescopes at the forefront of technology will be highly beneficial for the science," said Anton Zensus, Director at MPIfR. In addition to the VLBA, the NRAO operates the Very Large Array (VLA) in New Mexico and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The MPIfR operates the 100-meter Effelsberg Radio Telescope in Germany and the 12-meter APEX submillimeter telescope in 5100 m altitude in the Cilean Atacama desert (together with the European Southern Observatory and the Swedish Onsala Space Observatory). With the 100-meter telescope, it is part of the VLBA network in providing transatlantic baselines. Both institutions are members of a global network of telescopes (the Global VLBI Network) that uses simultaneous observations to produce extremely high-resolution images, and another network (the High Sensitivity Array) that uses the same technique with large telescopes to observe particularly faint celestial objects. With this technique, NRAO telescopes work with MPIfR's Effelsberg telescope to produce images hundreds of times more detailed than those from the Hubble Space Telescope. Both institutions also are part of the international collaboration building the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile and of the international planning effort to build a Square Kilometer Array. The VLBA is a system of ten antennas, each with a dish 25 meters in diameter. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 8000 kilometers. Under the new agreement, the two institutions will continue their previous observational collaborations, and in addition will share resources to improve the technical capabilities of each other's telescopes, particularly at short wavelengths, They also will collaborate in the peer-reviewed process each uses to allocate observing time, and agree to mutually maintain an "open skies" policy allowing open access to each other's telescopes on a peer-reviewed basis. The agreement notes the report of the U.S. National Science Foundation's (NSF) Senior Review committee, which called upon the NRAO to seek partners to contribute to the operation of the VLBA. The MPIfR affirms its strong interest in maintaining the VLBA's unique scientific capabilities, and its monetary contribution toward the 22 GHz upgrade of the VLBA is a solid sign of that commitment. "The VLBA provides the greatest resolving power of any instrument in astronomy, and the MPIfR's contribution to enhancing its capabilities is an important validation of the VLBA's importance to frontier astrophysics," Lo said. The joint VLBA project calls for the MPIfR to fund the receiving-system upgrades and the NRAO to perform the work. The project is scheduled to be complete, with all 10 VLBA an

  4. Radio astronomy aspects of the NASA SETI Sky Survey

    NASA Technical Reports Server (NTRS)

    Klein, Michael J.

    1986-01-01

    The application of SETI data to radio astronomy is studied. The number of continuum radio sources in the 1-10 GHz region to be counted and cataloged is predicted. The radio luminosity functions for steep and flat spectrum sources at 2, 8, and 22 GHz are derived using the model of Peacock and Gull (1981). The relation between source number and flux density is analyzed and the sensitivity of the system is evaluated.

  5. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...notifications concerning interference to radio astronomy, research and receiving installations...notifications concerning interference to radio astronomy, research and receiving installations...Notifications concerning interference to radio astronomy, research and receiving...

  6. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...notifications concerning interference to radio astronomy, research and receiving installations...notifications concerning interference to radio astronomy, research and receiving installations...Notifications concerning interference to radio astronomy, research and receiving...

  7. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...notifications concerning interference to radio astronomy, research and receiving installations...notifications concerning interference to radio astronomy, research and receiving installations...Notifications concerning interference to radio astronomy, research and receiving...

  8. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...notifications concerning interference to radio astronomy, research and receiving installations...notifications concerning interference to radio astronomy, research and receiving installations...Notifications concerning interference to radio astronomy, research and receiving...

  9. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...notifications concerning interference to radio astronomy, research and receiving installations...notifications concerning interference to radio astronomy, research and receiving installations...Notifications concerning interference to radio astronomy, research and receiving...

  10. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Notification of the National Radio Astronomy... Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy... Astronomy Observatory, P.O. Box NZ2, Green Bank, West Virginia, 24944, in writing, of the...

  11. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Notification of the National Radio Astronomy... Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy... Astronomy Observatory, P.O. Box NZ2, Green Bank, West Virginia, 24944, in writing, of the...

  12. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Notification of the National Radio Astronomy... Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy... Astronomy Observatory, P.O. Box NZ2, Green Bank, West Virginia, 24944, in writing, of the...

  13. The Current Status of Low Frequency Radio Astronomy from Space

    NASA Astrophysics Data System (ADS)

    Kaiser, M. L.; Weiler, K. W.

    Ground-based radio astronomy is severely limited by the Earth's ionosphere. Below 15 -- 20 MHz, space-based radio observations are superior or even mandatory. Three different areas of astronomical research manifest themselves at low radio frequencies: solar, planetary, and galactic-extragalactic. Space-based observations of solar phenomena at low frequencies are a natural extension of high-frequency ground-based observations that have been carried out since the beginnings of radio astronomy. Measurements of known solar phenomena such as Types II and III bursts have been extended from the few solar radii altitude range reachable by ground-based techniques out to 1 AU and beyond. These space-based solar measurements have become critical in our developing an understanding of ``space weather." In contrast, non-thermal planetary radio emissions are almost exclusively a space radio astronomy phenomenon. With the exception of two components of Jupiter's complex radio spectrum, the magnetospheric and Auroral radio emissions of Earth, Jupiter, Saturn, Uranus, and Neptune have all been discovered by space radio astronomy techniques. For astrophysical applications, the lack of angular resolution from space at low frequencies has thwarted progress such that most areas still remain to be fully exploited. Results to date have only included overall cosmic background spectra and extremely crude (~1 steradian resolution) ``maps." In this overview we will briefly summarize the current status of science in the three areas of research and outline some future concepts for low-frequency, space-based instruments for solar, planetary, and astrophysical problems.

  14. Latent Dirichlet Allocation for Image Segmentation and Source Finding in Radio Astronomy Images

    E-print Network

    Frean, Marcus

    Latent Dirichlet Allocation for Image Segmentation and Source Finding in Radio Astronomy Images in greyscale images, and in particular, source detection in radio astronomy images. LDA performed similarly to the standard source-detection software on a representative sample of radio astronomy im- ages. Our use of LDA

  15. 47 CFR 5.91 - Notification to the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Notification to the National Radio Astronomy... SERVICE Applications and Licenses § 5.91 Notification to the National Radio Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy Observatory site...

  16. 47 CFR 5.91 - Notification to the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Notification to the National Radio Astronomy... SERVICE Applications and Licenses § 5.91 Notification to the National Radio Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy Observatory site...

  17. National Radio Astronomy Observatory P.O. Box O, 1003 Lopezville Rd, Socorro, NM 87801, USA

    E-print Network

    Ellingson, Steven W.

    National Radio Astronomy Observatory P.O. Box O, 1003 Lopezville Rd, Socorro, NM 87801, USA Astro., Astro 2010 position paper, The Impact of the National Radio Astronomy Observatory) for scientific for radio astronomy. This is one of five papers outlining for the Program Prioritization Panel a series

  18. Sensitivity of Antenna Arrays for Long-Wavelength Radio Astronomy S.W. Ellingson

    E-print Network

    Ellingson, Steven W.

    Sensitivity of Antenna Arrays for Long-Wavelength Radio Astronomy S.W. Ellingson This is a preprint of this paper is: S.W. Ellingson, "Sensitivity of Antenna Arrays for Long-Wavelength Radio Astronomy", IEEE of Antenna Arrays for Long-Wavelength Radio Astronomy S.W. Ellingson, Senior Member, IEEE Abstract-- A number

  19. PetaOp/Second FPGA Signal Processing for SETI and Radio Astronomy

    E-print Network

    Zakhor, Avideh

    PetaOp/Second FPGA Signal Processing for SETI and Radio Astronomy Aaron Parsons1 , Donald Backer1), seeks to speed the development of radio astronomy signal process- ing instrumentation by designing: aparsons@astron.berkeley.edu 2 Xilinx Corporation Currently in radio astronomy, high-performance DSP in

  20. Radio astronomy in Africa: the case of Ghana

    E-print Network

    Asabere, Bernard Duah; Horellou, Cathy; Winkler, Hartmut; Jarrett, Thomas

    2015-01-01

    South Africa has played a leading role in radio astronomy in Africa with the Hartebeesthoek Radio Astronomy Observatory (HartRAO). It continues to make strides with the current seven-dish MeerKAT precursor array (KAT-7), leading to the 64-dish MeerKAT and the giant Square Kilometer Array (SKA), which will be used for transformational radio astronomy research. Ghana, an African partner to the SKA, has been mentored by South Africa over the past six years and will soon emerge in the field of radio astronomy. The country will soon have a science-quality 32m dish converted from a redundant satellite communication antenna. Initially, it will be fitted with 5 GHz and 6.7 GHz receivers to be followed later by a 1.4 - 1.7 GHz receiver. The telescope is being designed for use as a single dish observatory and for participation in the developing African Very Long Baseline Interferometry (VLBI) Network (AVN) and the European VLBI Network. Ghana is earmarked to host a remote station during a possible SKA Phase 2. The loca...

  1. Techniques of Radio Astronomy T. L. Wilson1

    E-print Network

    Masci, Frank

    , the technique of aperture synthesis produces images comparable to or exceeding those obtained with the best Resolution­ Imaging­Aperture Synthesis 1 Introduction Following a short introduction, the basics of simple apertures and interferometers, and an overview of aper- ture synthesis. keywords: Radio Astronomy

  2. The IAU Early Japanese Radio Astronomy Project: A Progress Report

    NASA Astrophysics Data System (ADS)

    Ishiguro, Masato; Orchiston, Wayne; Akabane, Kenji; Stewart, Ron

    2012-09-01

    Japan was one of those nations that make an early start in radio astronomy, when solar observations began at both the Tokyo Astronomical Observatory (TAO) and at Osaka University in 1949. The research at the TAO accelerated during the 1950s and 1960s under the capable direction of Professor Hatanaka, while an equally-vibrant program was developed independently at Toyokawa by Professor Tanaka from Nagoya University. In this paper, after briefly describing the Osaka University initiative we will outline the instruments developed at Toyokawa and Mitaka, review the research programs carried out with them and introduce the scientific staff who played so important a role in the early development of Japanese radio astronomy. Following the success of the WG's Early French Radio Astronomy Project (seven papers were published), an ambitious IAU project to systematically document early developments in Japanese radio astronomy and publish the results in a series of research papers in the Journal of Astronomical History and Heritage was launched in December 2010. Further research visits to Tokyo were made by the second author in 2011 and 2012, and two papers have now been completed and a start made on a third.

  3. Lunar Farside Radio Astronomy Base Facilitated by Lunar Elevator

    NASA Astrophysics Data System (ADS)

    Eubanks, T. M.; Maccone, C.; Radley, C. F.

    2015-10-01

    Dr. JD-Wörner, DG of ESA intends to align ESA to develop a “Moon Village” on the far side for radio astronomy and other purposes. This would encourage new infrastructure reducing transport costs. A lunar lift greatly facilitates this vision.

  4. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia ELECTRONICS DIVISION INTERNAL REPORT Observations J. R. Fisher, August 1994 NRAO, Green Bank, WV We outline here technical procedures for evaluating 1, "Test Setup Parameters," is used to record the necessary details of the measurement setup shown

  5. NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA ELECTRONICS DIVISION INTERNAL REPORT is mounted in a standard NRAO Green Bank front end box 60" by 28" by 28" supported in the focus on the test range the computed aperture efficiency was 58% at S-Band and the spillover and scattered noise

  6. NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA

    E-print Network

    Groppi, Christopher

    on the 140-foot and 300-foot telescopes. In the antenna test range at Green Bank, radiation patterns of feedsNATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA ELECTRONICS DIVISION INTERNAL REPORT azimuth information of the test feed on the hard disk. This report describes a Turbo Pascal efficiency

  7. NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK/ WEST VIRGINIA

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK/ WEST VIRGINIA ELECTRONICS DIVISION NTERNAL REPORT No. 272 ANTENNA TEST RANGE AUTOMATION . ANTHONY WILL* ROGER D. NORROD S I VASANKARAN SRI KANTH * SUMMER STUDENT. NOVEMBER 1987 NUMBER OF COPIES: 150 #12;ANTENNA TEST RANGE AUTOMATION W. Anthony Will

  8. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report) 50, RG9A1 Test equipment Chevrolet Carry All itigut Front Rear 10 meters Left PICTORIAL (TOP VIEW) OF TEST SITE #12;Nems -Clarke Receiver Sanborn Recorder ANT 50, R09/1.1es' Noise WI:0e 10 db directional

  9. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report are provided. The "strobe test" banana jack indicates the lamp is flashing in the encoder. An amplitude "adjust" pot and a "test" jack are provided for the "Interrogation Pulse". The Interrogation Pulse should

  10. NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA ELECTRONICS DIVISION INTERNAL REPORT on Digital Outputs 9.0 Test Procedures - - - - - - - - - - - TABLES 1 Front-End Data Link Address Space in ROM 10A - - - - - - - - - 61 6 Default Digital Output Locations in ROM 10A - - - - - - - - - 63 TEST

  11. NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA ELECTRONICS DIVISION INTERNAL REPORT degrees of freedom of movement, the first being along an axis perpendicular to the dish which is used/min in focal movement and 3.41 rpm in rotation. #12;Position information is obtained with two 12-bit absolute

  12. Journal of Astronomical History and Heritage, 9(2), 203-205 (2006). IAU HISTORIC RADIO ASTRONOMY WORKING GROUP.

    E-print Network

    Groppi, Christopher

    2006-01-01

    Assembly of the IAU as a joint initiative of Commissions 40 (Radio Astronomy) and 41 (History of Astronomy astronomy; and · monitor other developments relating to the history of radio astronomy (including the deaths astronomers who are active in the history of radio astronomy field or sympathetic to it. 2 Progress Reports

  13. Need a Classroom Stimulus? Introduce Radio Astronomy

    ERIC Educational Resources Information Center

    Derman, Samuel

    2010-01-01

    Silently, invisibly, ceaselessly, our planet Earth is showered by radio waves from every direction and from every region of space. This radio energy originates in our solar system, throughout the Milky Way galaxy, and far beyond, out to the remotest reaches of the universe. Detecting and unraveling the origins of these invisible signals is what…

  14. PARTNeR for Teaching and Learning Radio Astronomy Basics

    NASA Astrophysics Data System (ADS)

    Vaquerizo, Juan Ángel

    2010-10-01

    NASA has three satellite tracking stations around the world: CDSCC (Canberra, Australia), GDSCC (Goldstone, USA) and MDSCC (Madrid, Spain). One of the antennas located at MDSCC, DSS-61, is not used for satellite tracking any more and thanks to an agreement between INTA (Instituto Nacional de TA~l'cnica Aeroespacial) and NASA, it has been turned into an educational radio telescope. PARTNeR (Proyecto Académico con el RadioTelescopio de NASA en Robledo, Academic Project with the NASA Radio Telescope at Robledo) is a High School and University radio astronomy educational program that allows teachers and students to control this 34-meter radio telescope and conduct radio astronomical observations via the Internet. As radio astronomy is not a popular subject and astronomy has little presence in the High School Curriculum, teachers need specific training in those subjects to implement PARTNeR. Thus, High School teachers joining the project take a course to learn about the science of radio astronomy and how to use the antenna in their classrooms. Also, teachers are provided with some learning activities they can do with their students. These lesson plans are focused on the implementation of the project within an interdisciplinary framework. All educational resources are available on PARTNeR website. PARTNeR is an inquiry based approach to science education. Nowadays, students can join in three different observational programmes: variability studies in quasars, studies of radio-bursts in X-ray binaries (microquasars), and mapping of radio sources in the galactic plane. Nevertheless, any other project can be held after an evaluation by the scientific committee. The operational phase of the project started in the academic year 2003-04. Since then, 85 High Schools, seven Universities and six societies of amateur astronomers have been involved in the project. During the 2004-09 period, 103 High School teachers from Spain and Portugal have attended the training courses, and 105 radio astronomical remote observations have been performed with users. Until now, more than 2,000 students have been involved in radio astronomical observations.

  15. Planetary radio astronomy observations during the Voyager 1 Titan flyby

    NASA Technical Reports Server (NTRS)

    Daigne, G.; Pedersen, B. M.; Kaiser, M. L.; Desch, M. D.

    1982-01-01

    During the Voyager 1 Titan flyby, unusual radio emissions were observed by the planetary radio astronomy experiment in the 20- to 97-kHz frequency range. It is shown that Titan itself is not the source of the observed radio emission. The emission features are attributed to modification of the normal Saturn kilometric radiation by propagation effects in enhanced density structures within the Titan wake. Furthermore, spiky emissions observed in the magnetic wake of Titan are interpreted in terms of local electrostatic instabilities at the electron plasma frequency. From these measurements a range of electron densities in the wake region is derived, and the consistency of the results is discussed.

  16. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Mahoney, M. J.; Jacobson, A. R.; Knowles, S. H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities.

  17. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations....

  18. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations....

  19. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations....

  20. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations....

  1. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations....

  2. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  3. Radio Astronomy Beam Forming on Many-Core Architectures Alessio Sclocco, Ana Lucia Varbanescu

    E-print Network

    van Nieuwpoort, Rob V.

    Radio Astronomy Beam Forming on Many-Core Architectures Alessio Sclocco, Ana Lucia Varbanescu.l.varbanescu@vu.nl Jan David Mol, Rob V. van Nieuwpoort ASTRON Netherlands Institute for Radio Astronomy Dwingeloo, omni- directional antennas instead, a novel design that promises ground-breaking research in astronomy

  4. National Radio Astronomy Observatory 22 May 2008 US SKA Consortium Meeting, DC

    E-print Network

    Groppi, Christopher

    National Radio Astronomy Observatory 22 May 2008 ­ US SKA Consortium Meeting, DC The Role of NRAO in SKA Fred Lo #12;National Radio Astronomy Observatory 22 May 2008 ­ US SKA Consortium Role of NRAO · National Observatories exist for the benefit of the astronomy community · NRAO mission is to enable

  5. Solar radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Dulk, George A.

    1990-01-01

    The characteristics of solar radio emissions at decametric to kilometric wavelengths are reviewed. Special attention is given to the radiation of the quiet sun at several metric and decametric wavelengths and to nonthermal radiation from the active sun, including radio bursts of type III (electron beams), type-III bursts from behind the sun, storms of type III bursts, the flare-associated radio bursts, type II bursts (shock waves), and shock-associated bursts. It is pointed out that almost no observations have been made so far of solar radiation between about 20 MHz and about 2 MHz. Below about 2 MHz, dynamic spectra of flux densities of solar burst have been recorded in space and observations were made of the directions of centroids and characteristic sizes of the emitting sources.

  6. Hartebeesthoek Radio Astronomy Observatory (HartRAO)

    NASA Technical Reports Server (NTRS)

    Nickola, Marisa; Gaylard, Mike; Quick, Jonathan; Combrinck, Ludwig

    2013-01-01

    HartRAO provides the only fiducial geodetic site in Africa, and it participates in global networks for VLBI, GNSS, SLR, and DORIS. This report provides an overview of geodetic VLBI activities at HartRAO during 2012, including the conversion of a 15-m alt-az radio telescope to an operational geodetic VLBI antenna.

  7. Cancellation of GLONASS signals from Radio Astronomy Data

    E-print Network

    S W Ellingson; J D Bunton; J F Bell

    2000-02-29

    Astronomers use the 1612 MHz OH spectral line emission as a unique window on properties of evolved stars, galactic dynamics, and putative proto-planetary disk systems around young stars. In recent years, experiments using this OH line have become more difficult because radio telescopes are very sensitive to transmissions from the GLONASS satellite system. The weak astronomical signals are often undetectable in the presence of these unwanted human generated signals. In this paper we demonstrate that GLONASS narrow band signals may be removed using digital signal processing in a manner that is robust and non-toxic to the weak astronomy signals, without using a reference antenna. We present results using real astronomy data and outline the steps required to implement useful systems on radio telescopes.

  8. Olof Rydbeck and Early Swedish Radio Astronomy: A Personal Perspective

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, V.

    2006-12-01

    The spectacular development of radio astronomy in Europe and Australia in the period soon after World War II was mostly propelled by ‘amateur’ scientists motivated by a spirit of adventure. Totally untrained in astronomy, these pioneers were necessarily courageous and highly individualistic. Each of the leaders was ‘a character’, and often larger than life. And among these personalities there was none bigger than Olof Rydbeck of Sweden. He was already well known for his studies of electromagnetic theory and the invention and fabrication of devices for ever higher frequencies. He was one of the pioneers in the study of the ionosphere, and had built powerful sounders and also detectors for meteor trails. The creation of the Onsala Radio Observatory was entirely due to his efforts.

  9. Data models for Radio Astronomy in the VO

    NASA Astrophysics Data System (ADS)

    Santander-Vela, J. D.

    2009-07-01

    Data Models are an essential part of automatic data processing, but even more so when trying to tie together data coming from many different data sources, as is the case for the International Virtual Observatory. In this talk we will review the different data models used in the IVOA, which parts of that Data Modelling work are still incomplete, especially in radio wavelengths, and the work the AMIGA group has done within the IVOA Data Modelling Working Group to overcome those shortcomings both in missing data models and support for Radio Astronomy.

  10. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report Recorder 22 2.5 Adjustments and Tests 28 2.5.1 Adjustments 28 2.5.2 Format Unit Test Points 29 2.5.3 Check Controller 61 3.5.4 Abnormalities 62 4. IBM 360 Software 63 4.1 Assembler, Loader 63 4.2 REDPREP 66 4.3 INDEX

  11. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  12. SparseRI: A Compressed Sensing Framework for Aperture Synthesis Imaging in Radio Astronomy

    E-print Network

    Magnor, Marcus

    SparseRI: A Compressed Sensing Framework for Aperture Synthesis Imaging in Radio Astronomy Stephan for Aperture Synthesis Imaging in Radio Astronomy Technical Report 2010-1-11 January 20, 2010 Computer Graphics Abstract In radio interferometry, information about a small region of the sky is ob- tained in the form

  13. SparseRI: A Compressed Sensing Framework for Aperture Synthesis Imaging in Radio Astronomy

    E-print Network

    Magnor, Marcus

    SparseRI: A Compressed Sensing Framework for Aperture Synthesis Imaging in Radio Astronomy S Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA 4 National Radio. Wenger1,2, M. Magnor1, Y. Pihlstr¨om3, S. Bhatnagar4, and U. Rau4 ABSTRACT In radio interferometry

  14. Journal of Astronomical History and Heritage, 12(3), 249-253 (2009). THE IAU HISTORIC RADIO ASTRONOMY WORKING GROUP.

    E-print Network

    Groppi, Christopher

    2009-01-01

    initiative of Commissions 40 (Radio Astronomy) and 41 (History of Astronomy), in order to: · assemble of these instruments; · maintain an on-going bibliography of public- cations on the history of radio astronomy; and · monitor other developments relating to the history of radio astronomy (including the deaths of pio

  15. Presented at "RFI2004: Workshop on Mitigation of Radio Frequency Interference in Radio Astronomy"; Penticton, Canada, 16-18 July 2004

    E-print Network

    Ellingson, Steven W.

    Presented at "RFI2004: Workshop on Mitigation of Radio Frequency Interference in Radio Astronomy Driel ICSU Scientific Committee on Frequency Allocations for Radio Astronomy and Space Science (IUCAF (ITU) for use by radio astronomy ­ for example for highly redshifted spectral lines. Besides

  16. Space situational awareness applications for radio astronomy assets

    NASA Astrophysics Data System (ADS)

    Watts, Galen; Ford, John M.; Ford, H. Alyson

    2015-05-01

    The National Radio Astronomy Observatory (NRAO) builds, operates, and maintains a suite of premier radio antennas, including the 100m aperture Green Bank Telescope, the largest fully-steerable antenna in the world. For more than five decades the NRAO has focused on astrophysics, providing researchers with the most advanced instruments possible: large apertures, extremely low-noise receivers, and signal processors with high frequency and time resolution. These instruments are adaptable to Space Situational Awareness (SSA) tasks such as radar detection of objects in near-Earth and cis-Lunar space, high accuracy orbit determination, object surveillance with passive methods, and uplink and downlink communications. We present the capabilities of antennas and infrastructure at the NRAO Green Bank Observatory in the context of SSA tasks, and discuss what additions and modifications would be necessary to achieve SSA goals while preserving existing radio astronomy performance. We also discuss how the Green Bank Observatory's surrounding topography and location within the National Radio Quiet Zone will enhance SSA endeavors.

  17. Reflections on the Radio Astronomy Explorer program of the 1960s and 70s

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.

    1990-01-01

    The Radio Astronomy Explorer (RAE) program of the late 1960s and early 1970s is, to date, the only totally dedicated radio astronomy mission to have flown. However, only some of the prelaunch goals were achieved due to the unexpectedly high levels of interference from the earth in the form of both naturally occurring and man-made noise. Some important lessons in receiver design were learned which could and should be applied to any future radio astronomy missions.

  18. The Lunar Observer Radio Astronomy Experiment (LORAE)

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.

    1990-01-01

    The paper proposes to place a simple low-frequency dipole antenna on board the Lunar Observer (LO) satellite. LO will orbit the moon in the mid-1990's, mapping the surface at high resolution and gathering new geophysical data. In its modest concept, LORAE will collect crucial data on the radio interference environment while on the near-side (to aid in planning future arrays) and will monitor bursts of emission from the sun and the Jovian planets. LORAE will also be capable of lunar occultation studies of greater than 100 of the brightest sources, gathering arcminute resolution data on sizes and measuring source fluxes. A low resolution all-sky map below 10 MHz, when combined with data from the Gamma-Ray Observatory, will uniquely determine the density of Galactic cosmic ray electrons and the strength of the Galaxy's magnetic field. LORAE also will be able to measure the density of the moon's ionosphere.

  19. Accurate Weather Forecasting for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Maddalena, Ronald J.

    2010-01-01

    The NRAO Green Bank Telescope routinely observes at wavelengths from 3 mm to 1 m. As with all mm-wave telescopes, observing conditions depend upon the variable atmospheric water content. The site provides over 100 days/yr when opacities are low enough for good observing at 3 mm, but winds on the open-air structure reduce the time suitable for 3-mm observing where pointing is critical. Thus, to maximum productivity the observing wavelength needs to match weather conditions. For 6 years the telescope has used a dynamic scheduling system (recently upgraded; www.gb.nrao.edu/DSS) that requires accurate multi-day forecasts for winds and opacities. Since opacity forecasts are not provided by the National Weather Services (NWS), I have developed an automated system that takes available forecasts, derives forecasted opacities, and deploys the results on the web in user-friendly graphical overviews (www.gb.nrao.edu/ rmaddale/Weather). The system relies on the "North American Mesoscale" models, which are updated by the NWS every 6 hrs, have a 12 km horizontal resolution, 1 hr temporal resolution, run to 84 hrs, and have 60 vertical layers that extend to 20 km. Each forecast consists of a time series of ground conditions, cloud coverage, etc, and, most importantly, temperature, pressure, humidity as a function of height. I use the Liebe's MWP model (Radio Science, 20, 1069, 1985) to determine the absorption in each layer for each hour for 30 observing wavelengths. Radiative transfer provides, for each hour and wavelength, the total opacity and the radio brightness of the atmosphere, which contributes substantially at some wavelengths to Tsys and the observational noise. Comparisons of measured and forecasted Tsys at 22.2 and 44 GHz imply that the forecasted opacities are good to about 0.01 Nepers, which is sufficient for forecasting and accurate calibration. Reliability is high out to 2 days and degrades slowly for longer-range forecasts.

  20. Millimeter Radio Astronomy and the Solar Convection Zone

    NASA Astrophysics Data System (ADS)

    Arkhypov, O. V.; Antonov, O. V.; Khodachenko, M. L.

    The global distribution of solar surface activity (active regions) is connected with processes in the convection zone. To extract the information on large-scale motions in the convection zone, we study the solar synoptic charts (Mount Wilson 1998-2004, Fe I, 525.02 nm). The clear indication of large-scale ( ? 18 degree) turbulence is found. This may be a manifestations of the deep convection because there is no such global turbulent eddies in the solar photosphere. The preferred scales of longitudinal variations in surface solar activity are revealed. These correspond to about 15 degree to 51 degree (gigantic convection cells), 90 degree, 180 degree and 360 degree. Similar scales (e.g., 40 degree and 90 degree) are found in the millimeter radio-images (Metsahovi Radio Observatory 1994-1998, 37 and 87 GHz). Hence, the millimeter radio astronomy could prove useful for remote sensing of the solar convection zone.

  1. Journal of Astronomical History and Heritage, 8(1), 65-69 (2005). THE IAU HISTORIC RADIO ASTRONOMY WORKING GROUP.

    E-print Network

    Groppi, Christopher

    2005-01-01

    was formed at the 2003 General Assembly of the IAU as a joint initiative of Commissions 40 (Radio Astronomy of publications on the history of radio astronomy; and · monitor other developments relating to the history of radio astronomy (including deaths of pioneering radio astronomers). 2 New Committee Members Since

  2. Journal of Astronomical History and Heritage, 15(3), 255-257 (2012). IAU HISTORIC RADIO ASTRONOMY WORKING GROUP

    E-print Network

    Groppi, Christopher

    2012-01-01

    of publications on the history of radio astronomy; and d) monitor other develop- ments relating to the history of radio astronomy (in- cluding the deaths of pioneering radio astronomers). The HRA WG is now an Inter Medalists for Innovative Contributions to Radio Astronomy, photographs and memorial art- icles on recently

  3. Voyager planetary radio astronomy at Neptune

    NASA Technical Reports Server (NTRS)

    Warwick, James W.; Evans, David R.; Peltzer, Gerard R.; Peltzer, Robert G.; Romig, Joseph H.; Sawyer, Constance B.; Riddle, Anthony C.; Schweitzer, Andrea E.; Desch, Michael D.; Kaiser, Michael L.

    1989-01-01

    Detection of very intense short radio bursts from Neptune was possible as early as 30 days before closest approach and at least 22 days after closest approach. The bursts lay at frequencies in the range 100 to 1300 kilohertz, were narrowband and strongly polarized, and presumably originated in southern polar regions of the planet. Episodes of smooth emissions in the frequency range from 20 to 865 kilohertz were detected during an interval of at least 10 days around closest approach. The bursts and the smooth emissions can be described in terms of rotation in a period of 16.11 + or - 0.05 hours. The bursts came at regular intervals throughout the encounter, including episodes both before and after closest approach. The smooth emissions showed a half-cycle phase shift between the five episodes before and after closest approach. This experiment detected the foreshock of Neptune's magnetosphere and the impacts of dust at the times of ring-plane crossings and also near the time of closest approach. Finally, there is no evidence for Neptunian electrostatic discharges.

  4. Data Intensive Radio Astronomy en route to the SKA: The Rise of Big Radio Data

    NASA Astrophysics Data System (ADS)

    Taylor, A. R.

    2015-03-01

    Advances in both digital processing devices and in technologies to sample the focal and aperture planes of radio antennas is enabling observations of the radio sky with high spectral and spatial resolution combined with large bandwidth and field of view. As a consequence, survey mode radio astronomy generating vast amounts of data and involving globally distributed collaborations is fast becoming a primary tool for scientific advance. The Square Kilometre Array (SKA) will open up a new frontier in data intensive astronomy. Within the next few years SKA precursor telescopes will demonstrate new technologies and take the first major steps toward the SKA. Projects that path find the scientific journey to the SKA with these and other telescopes are currently underway and being planned. The associated exponential growth in data require us to explore new methodologies for collaborative end-to-end execution of data intensive observing programs.

  5. An evolutionary sequence of low frequency radio astronomy missions

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.

    1990-01-01

    Many concepts for space-based low frequency radio astronomy missions are being developed, ranging from simple single-satellite experiments to large arrays on the far side of the moon. Each concept involves a different tradeoff between the range of scientific questions it can answer and the technical complexity of the experiment. Since complexity largely determines the development time, risk, launch vehicle requirements, cost, and probability of approval, it is important to see where the ability to expand the scientific return justifies a major increase in complexity. An evolutionary series of increasingly capable missions, similar to the series of missions for infrared or X-ray astronomy, is advocated. These would range from inexpensive 'piggy-back' experiments on near-future missions to a dedicated low frequency array in earth orbit (or possibly on the lunar nearside) and eventually to an array on the lunar farside.

  6. RASDR: Benchtop Demonstration of SDR for Radio Astronomy

    SciTech Connect

    Vacaliuc, Bogdan; Oxley, Paul; Fields, David; Kurtz, Dr. Stan; Leech, Marcus

    2012-01-01

    The Society of Amateur Radio Astronomers (SARA) members present the benchtop version of RASDR, a Software Defined Radio (SDR) that is optimized for Radio Astronomy. RASDR has the potential to be a common digital receiver interface useful to many SARA members. This document describes the RASDR 0.0 , which provides digitized radio data to a backend computer through a USB 2.0 interface. A primary component of RASDR is the Lime Microsystems Femtocell chip which tunes from a 0.4-4 GHz center frequency with several selectable bandwidths from 0.75 MHz to 14 MHz. A second component is a board with a Complex Programmable Logic Device (CPLD) chip that connects to the Femtocell and provides two USB connections to the backend computer. A third component is an analog balanced mixer up conversion section. Together these three components enable RASDR to tune from 0.015 MHz thru 3.8GHz of the radio frequency (RF) spectrum. We will demonstrate and discuss capabilities of the breadboard system and SARA members will be able to operate the unit hands-on throughout the workshop.

  7. A Field Programmable Gate Array Spectrometer for Radio Astronomy

    E-print Network

    S. Stanko; B. Klein; J. Kerp

    2005-03-03

    We describe the technological concept and the first-light results of a 1024-channel spectrometer based on field programmable gate array (FPGA) hardware. This spectrometer is the prototype for the seven beam L-band receiver to be installed at the Effelsberg 100-m telescope in autumn 2005. Using "of-the-shelf" hardware and software products, we designed and constructed an extremely flexible Fast-Fourier-Transform (FFT) spectrometer with unprecedented sensitivity and dynamic range, which can be considered prototypical for spectrometer development in future radio astronomy.

  8. A review of decametric radio astronomy - Instruments and science

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Cane, H. V.

    1987-01-01

    The techniques and instruments used in Galactic and extragalactic radio astronomy at dkm wavelengths are surveyed, and typical results are summarized. Consideration is given to the large specialized phased arrays used for early surveys, the use of wideband elements to increase frequency agility, experimental VLBI observations, and limitations on ground-based observations below about 10 MHz (where the proposed LF Space Array, with resolution 0.5-5 arcmin, could make a major contribution). Observations discussed cover the Galactic center, the Galactic background radiation, SNRs, compact Galactic sources, the ISM, and large extragalactic sources.

  9. NATIONAL RADIO ASTRONOMY OBSERVATORY P.O. BOX 2, GREEN BANK, WV 24944

    E-print Network

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY P.O. BOX 2, GREEN BANK, WV 24944 PHONE: 304-456-2209 FAX: 304-456-2200 EMAIL: sheather@nrao.edu The National Radio Astronomy Observatory is a facility of the National Science, Observatory staff have developed an easy way for you to tell your community about your visit to the NRAO . It

  10. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Notifications concerning interference to radio... COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1030 Notifications concerning interference to radio astronomy, research...

  11. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Notifications concerning interference to radio... COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1030 Notifications concerning interference to radio astronomy, research...

  12. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Notifications concerning interference to radio... COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1030 Notifications concerning interference to radio astronomy, research...

  13. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Notifications concerning interference to radio... COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1030 Notifications concerning interference to radio astronomy, research...

  14. Large-N correlator systems for low frequency radio astronomy

    NASA Astrophysics Data System (ADS)

    Foster, Griffin

    Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the development of larger correlator systems, which in turn allows for improvements in sensitivity and resolution. This requires new calibration techniques which account for a broad range of systematic effects.

  15. UniBoard: generic hardware for radio astronomy signal processing

    NASA Astrophysics Data System (ADS)

    Hargreaves, J. E.

    2012-09-01

    UniBoard is a generic high-performance computing platform for radio astronomy, developed as a Joint Research Activity in the RadioNet FP7 Programme. The hardware comprises eight Altera Stratix IV Field Programmable Gate Arrays (FPGAs) interconnected by a high speed transceiver mesh. Each FPGA is connected to two DDR3 memory modules and three external 10Gbps ports. In addition, a total of 128 low voltage differential input lines permit connection to external ADC cards. The DSP capability of the board exceeds 644E9 complex multiply-accumulate operations per second. The first production run of eight boards was distributed to partners in The Netherlands, France, Italy, UK, China and Korea in May 2011, with a further production runs completed in December 2011 and early 2012. The function of the board is determined by the firmware loaded into its FPGAs. Current applications include beamformers, correlators, digital receivers, RFI mitigation for pulsar astronomy, and pulsar gating and search machines The new UniBoard based correlator for the European VLBI network (EVN) uses an FX architecture with half the resources of the board devoted to station based processing: delay and phase correction and channelization, and half to the correlation function. A single UniBoard can process a 64MHz band from 32 stations, 2 polarizations, sampled at 8 bit. Adding more UniBoards can expand the total bandwidth of the correlator. The design is able to process both prerecorded and real time (eVLBI) data.

  16. Stellar Radio Astronomy. Probing Stellar Atmospheres from Protostars to Giants

    E-print Network

    Manuel Guedel

    2002-07-03

    Radio astronomy has provided evidence for the presence of ionized atmospheres around almost all classes of non-degenerate stars. Magnetically confined coronae dominate in the cool half of the Hertzsprung-Russell diagram. Their radio emission is predominantly of non-thermal origin and has been identified as gyrosynchrotron radiation from mildly relativistic electrons, apart from some coherent emission mechanisms. Ionized winds are found in hot stars and in red giants. They are detected through their thermal, optically thick radiation, but synchrotron emission has been found in many systems as well. The latter is emitted presumably by shock-accelerated electrons in weak magnetic fields in the outer wind regions. Radio emission is also frequently detected in pre-main sequence stars and protostars, and has recently been discovered in brown dwarfs. This review summarizes the radio view of the atmospheres of non-degenerate stars, focusing on energy release physics in cool coronal stars, wind phenomenology in hot stars and cool giants, and emission observed from young and forming stars.

  17. Journal of Astronomical History and Heritage, 7: 53-56 (2004) The IAU Historic Radio Astronomy Working Group.

    E-print Network

    Groppi, Christopher

    2004-01-01

    Journal of Astronomical History and Heritage, 7: 53-56 (2004) The IAU Historic Radio Astronomy Kellermann National Radio Astronomy Observatory, 520 Edgemont Rd., Charlotteville, VA 22903-2475, U.S.A. E of publications on the history of radio astronomy; (4) monitoring other developments relating to the history

  18. Found: The Original 1945 Records of Australian Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Goss, Miller; Ekers, Ron; Sim, Helen

    2015-08-01

    In July 2014, we found the original records of the first published Australian radio astronomy observations. These were obtained by Joseph L. Pawsey and Ruby Payne-Scott in early October 1945. The observations gave strong evidence of a million degree corona as well as frequent radio bursts.These observations followed earlier detections of the radio sun by Stanley Hey, George Southworth, Grote Reber and Elizabeth Alexander. The latter observations (the "Norfolk Island Effect" of March 1945) were the immediate motivation for the campaign carried out by Pawsey and Payne-Scott.These observations formed the basis for a number of pioneering publications: the 9 February 1946 Nature paper of Pawsey, Payne-Scott and McCready which was submitted on the last date on which data was obtained on 23 October 1945, the major publication of the initial Australian radio solar publication in the Proceedings of the Royal Society of London in August 1947 and Pawsey's presentation of the radio properties of the million degree corona in the Nature of 2 November 1946. Contemporaneously with these publications, D. F.Martyn was involved in an independent theoretical study of the properties of the solar corona.(Ginzburg and Shklovsky were also involved in this era in a study of the properties of the corona.) The back-to-back Martyn and Pawsey Nature papers were the first that described the radio properties of the hot corona, due to free-free emission. The division of the observed emission into "bursting" and "quiet" modes was challenging for the novice radio astronomers.These historical records had been recognized by Paul Wild in 1968, who instructed the CSIRO Division of Radiophysics secretary to E.("Taffy") G. Bowen, Ms. Sally Atkinson, to submit these to the Australian Academy of Science. Wild characterized these documents as "of considerable historical interest". Apparently the transmission of the documents was not done; a thorough search of the Australian Academy Library in August 2014 failed to locate them. The original papers were only found in Ms. Atkinson's files after her death on 13 November 2012 in Sydney.

  19. Analysis of Zeeman effect data in radio astronomy

    NASA Astrophysics Data System (ADS)

    Sault, R. J.; Killeen, N. E. B.; Zmuidzinas, J.; Loushin, R.

    1990-10-01

    The analysis of Zeeman effect data in radio astronomy is discussed; in particular, previous techniques are extended to include the case of low signal-to-noise ratios. Three statistical techniques for estimating the line-of-sight magnetic field are considered: maximum likelihood, least-squares, and Wiener filters. For high signal-to-noise ratios, all three estimators are essentially unbiased. It is concluded that, in the poor to moderate signal-to-noise ratio regime, all three estimators are biased; the maximum likelihood technique yields results that are, in general, substantially less biased than least-squares and Wiener filters. However, it is possible to 'debias' the least-squares results and obtain estimates that are as good as maximum likelihood under a restricted set of conditions.

  20. Laboratory Astrophysics and Radio Astronomy: Some Recent Successes

    SciTech Connect

    McCarthy, Michael C.

    2006-09-22

    This paper presents several examples illustrating how the close coordination of laboratory astrophysics and radio astronomy can lead to an improved understanding of the rich chemistry of circumstellar shells which surround evolved carbon stars and dense molecular clouds. State-of-the-art microwave techniques in combination with supersonic molecular beam techniques and long path absorption spectroscopy at millimeter-wave wavelengths are used here to determine precise rest frequencies of known or postulated reactive molecules of astrophysical interest. Because the astronomically most interesting lines either have been measured or can be calculated to better than 1 km/sec in equivalent radial velocity, dedicated astronomical searches can be undertaken with confidence, and the carriers of unidentified series of astronomical lines can be established with certainty.

  1. User friendly database for Neptune planetary radio astronomy observations

    NASA Technical Reports Server (NTRS)

    Evans, David R.

    1993-01-01

    Planetary Radio Astronomy (PRA) data from the Voyager Neptune encounter were cleaned and reformatted in a variety of formats. Most of these formats are new and have been specifically designed to provide easy access and use of the data without the need to understand esoteric characteristics of the PRA instrument or the Voyager spacecraft. Several data sets were submitted to the Planetary Data System (PDS) and have either appeared already on peer reviewed CDROM's or are in the process of being reviewed for inclusion in forthcoming CD-ROM's. Many of the data sets are also available online electronically through computer networks; it is anticipated that as time permits, the PDS will make all the data sets that were a part of this contract available both online and on CD-ROM's.

  2. Seeking Graduate & Undergraduate Students I'm seeking students to participate in a variety of projects. All of these pertain to ongoing research in radio astronomy; in

    E-print Network

    Ellingson, Steven W.

    of projects. All of these pertain to ongoing research in radio astronomy; in some cases radio astronomy instrumentation, in other cases signal processing pertaining to radio astronomy, and yet other cases actually doing radio astronomy, or combinations of the above. Topics: GBTrans (Green Bank Transients) project: Re

  3. Radio Astronomy from Jansky to the Future An Engineer's Point of View

    E-print Network

    Weinreb, Sander

    . Most important technology advances 4. Future recommendations #12;·Discovered first cosmic radio wave Holmdel, NJ, 1932 #12;Jansky's Detection of Galactic Radio Waves The antenna was rotated once every 20Radio Astronomy from Jansky to the Future ­ An Engineer's Point of View Sander Weinreb Jansky

  4. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Notifications concerning interference to radio astronomy, research and receiving installations. 73.1030 Section 73.1030 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations §...

  5. Network Development of the Pushchino Radio Astronomy Observatory of ASC LPI

    NASA Astrophysics Data System (ADS)

    Dumsky, D. V.; Isaev, E. A.; Pugachev, V. D.; Samodurov, V. A.; Likhachev, S. F.; Shatskaya, M. V.; Kitaeva, M. A.

    All main changes in the network of the Pushchino Radio Astronomy Observatory has been related to introduction of the buffer data center in the recent years, upgrading internal and external communication channels and the exploitation of ip-telephony.

  6. Gordon James Stanley and the Early Development of Radio Astronomy in Australia and the United States

    NASA Astrophysics Data System (ADS)

    Kellermann, Ken I.; Orchiston, Wayne; Slee, Bruce

    Following the end of the Second World War, the CSIRO Radiophysics Laboratory applied the expertise and surplus radar equipment acquired during the war to problems of astronomy. Gordon Stanley was among the first group of scientists and engineers to work in the exciting new field of radio astronomy. Like many of his contemporaries, he had a strong background in radio and electronics but none in astronomy. At the Radiophysics Laboratory, and later at Caltech, Stanley developed innovative new radio telescopes and sophisticated instrumentation which resulted in important new discoveries that changed, in a fundamental way, our understanding of the Universe. He was one of those who played a key role in the early development of radio astronomy both in Australia and the United States.

  7. Under the Radar: The First Woman in Radio Astronomy, Ruby Payne-Scott

    NASA Astrophysics Data System (ADS)

    Miller Goss, W.

    2012-05-01

    Under the Radar, the First Woman in Radio Astronomy, Ruby Payne-Scott W. Miller Goss, NRAO Socorro NM Ruby Payne-Scott (1912-1981) was an eminent Australian scientist who made major contributions to the WWII radar effort (CSIR) from 1941 to 1945. In late 1945, she pioneered radio astronomy efforts at Dover Heights in Sydney, Australia at a beautiful cliff top overlooking the Tasman Sea. Again at Dover Heights, Payne-Scott carried out the first interferometry in radio astronomy using an Australian Army radar antenna as a radio telescope at sun-rise, 26 January 1946. She continued these ground breaking activities until 1951. Ruby Payne-Scott played a major role in discovering and elucidating the properties of Type III bursts from the sun, the most common of the five classes of transient phenomena from the solar corona. These bursts are one of the most intensively studied forms of radio emission in all of astronomy. She is also one of the inventors of aperture synthesis in radio astronomy. I examine her career at the University of Sydney and her conflicts with the CSIR hierarchy concerning the rights of women in the work place, specifically equal wages and the lack of permanent status for married women. I also explore her membership in the Communist Party of Australia as well as her partially released Australian Scientific Intelligence Organization file. Payne-Scott’s role as a major participant in the flourishing radio astronomy research of the post war era remains a remarkable story. She had a number of strong collaborations with the pioneers of early radio astronomy in Australia: Pawsey, Mills, Christiansen, Bolton and Little. I am currently working on a popular version of the Payne-Scott story; “Making Waves, The Story of Ruby Payne-Scott: Australian Pioneer Radio Astronomer” will be published in 2013 by Springer in the Astronomers’ Universe Series.

  8. Background radio-frequency radiation and its impact on radio astronomy Michelle C. Storey, Bruce MacA Thomas and John M. Sarkissian

    E-print Network

    Sarkissian, John M.

    of the radio-frequency background levels as they use the most sensitive radio-wave receivers in the world to study the sky at radio wavelengths. Radio waves can give us information about astronomical phenomena astronomy telescopes are the most sensitive radio-wave receivers in the world. For example, a mobile phone

  9. Planetary radio astronomy observations from Voyager-2 near Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Evans, D. R.; Romig, J. H.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Aubier, M.; Leblanc, Y.; Lecacheux, A.; Pedersen, B. M.

    1981-01-01

    Voyager-2 planetry radio astronomy measurements obtained near Saturn are discussed. They indicate that Saturnian kilometric radiation is emitted by a strong, dayside source at auroral latitudes in the northern hemisphere and by a weaker (by more than an order of magnitude) source at complementary latitudes in the southern hemisphere. These emissions are variable both due to Saturn's rotation and, on longer time scales, probably due to influences of the solar wind and the satellite Dione. The Saturn electrostatic discharge bursts first discovered by Voyager-1 and attributed to emissions from the B-ring were again observed with the same broadband spectral properties and a 10(h)11(m) + or - 5(m) episodic recurrence period but with an occurrence frequency of only of about 30 percent of that detected with Voyager-1. During the crossing of the ring plane at a distance of 2.88 R sub S, an intense noise event is interpreted to be consequence of the impact/vaporization/ionization of charged micron-size G-ring particles distributed over a total vertical thickness of about 1500 km.

  10. Planetary radio astronomy observations from voyager 2 near saturn.

    PubMed

    Warwick, J W; Evans, D R; Romig, J H; Alexander, J K; Desch, M D; Kaiser, M L; Aubier, M; Leblanc, Y; Lecacheux, A; Pedersen, B M

    1982-01-29

    Planetary radio astronomy measurements obtained by Voyager 2 near Saturn have added further evidence that Saturnian kilometric radiation is emitted by a strong dayside source at auroral latitudes in the northern hemisphere and by a weaker source at complementary latitudes in the southern hemisphere. These emissions are variable because of Saturn's rotation and, on longer time scales, probably because of influences of the solar wind and Dione. The electrostatic discharge bursts first discovered by Voyager 1 and attributed to emissions from the B ring were again observed with the same broadband spectral properties and an episodic recurrence period of about 10 hours, but their occurrence frequency was only about 30 percent of that detected by Voyager 1. While crossing the ring plane at a distance of 2.88 Saturn radii, the spacecraft detected an intense noise event extending to above 1 megahertz and lasting about 150 seconds. The event is interpreted to be a consequence of the impact, vaporization, and ionization of charged, micrometer-size G ring particles distributed over a vertical thickness of about 1500 kilometers. PMID:17771282

  11. Planetary radio astronomy observations from Voyager 2 near Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Evans, D. R.; Romig, J. H.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Aubier, M.; Leblanc, Y.; Lecacheux, A.; Pedersen, B. M.

    1982-01-01

    Planetary radio astronomy measurements obtained by Voyager 2 near Saturn have added further evidence that Saturnian kilometric radiation is emitted by a strong dayside source at auroral latitudes in the northern hemisphere and by a weaker source at complementary latitudes in the southern hemisphere. These emissions are variable because of Saturn's rotation and, on longer time scales, probably because of influences of the solar wind and Dione. The electrostatic discharge bursts first discovered by Voyager 1 and attributed to emissions from the B ring were again observed with the same broadband spectral properties and an episodic recurrence period of about 10 hours, but their occurrence frequency was only about 30 percent of that detected by Voyager 1. While crossing the ring plane at a distance of 2.88 Saturn radii, the spacecraft detected an intense noise event extending to above 1 megahertz and lasting about 150 seconds. The event is interpreted to be a consequence of the impact, vaporization, and ionization of charged, micrometer-size G ring particles distributed over a vertical thickness of about 1500 kilometers.

  12. Spectrum protection for radio astronomy: details, successes, failures, challenges and convergence

    NASA Astrophysics Data System (ADS)

    Liszt, Harvey Steven

    2015-08-01

    This talk will give an overview of the mechanisms that have evolved to provide statutory protection for radio astronomy observing, stopping along the way to note some cm-wave successes (the 21cm H I line and recent agreement not to point 9.6 GHz high-power orbiting radars at radio telescopes), defeats (the 1612 and 1720 MHz OH lines), and challenges (the near-term viablility of 68 - 90 GHz mm-wave spectrum). I'll discuss why ground-based radio and OIR astronomy historically went their separate ways and why there is increasing motivation for convergence of spectrum protection across the various wavebands.

  13. Low Frequency Radio Astronomy from the Lunar Surface

    NASA Astrophysics Data System (ADS)

    MacDowall, R. J.; Lazio, T. J. W.; Burns, J. O.

    2015-10-01

    A low frequency lunar radio observatory is a desirable scientific investment. The stable surface offers advantages for antenna array deployment to image radio emission using aperture synthesis. A far-side array avoids terrestrial radio interference.

  14. Infrared Submillimeter and Radio Astronomy Research and Analysis Program

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    2000-01-01

    This program entitled "Infrared Submillimeter and Radio Astronomy Research and Analysis Program" with NASA-Ames Research Center (ARC) was proposed by the Smithsonian Astrophysical Observatory (SAO) to cover three years. Due to funding constraints only the first year installment of $18,436 was funded, but this funding was spread out over two years to try to maximize the benefit to the program. During the tenure of this contact, the investigators at the SAO, Drs. Wesley A. Traub and Nathaniel P. Carleton, worked with the investigators at ARC, Drs. Jesse Bregman and Fred Wittebom, on the following three main areas: 1. Rapid scanning SAO and ARC collaborated on purchasing and constructing a Rapid Scan Platform for the delay arm of the Infrared-Optical Telescope Array (IOTA) interferometer on Mt. Hopkins, Arizona. The Rapid Scan Platform was tested and improved by the addition of stiffening plates which eliminated a very small but noticeable bending of the metal platform at the micro-meter level. 2. Star tracking Bregman and Wittebom conducted a study of the IOTA CCD-based star tracker system, by constructing a device to simulate star motion having a specified frequency and amplitude of motion, and by examining the response of the tracker to this simulated star input. 3. Fringe tracking. ARC, and in particular Dr. Robert Mah, developed a fringe-packet tracking algorithm, based on data that Bregman and Witteborn obtained on IOTA. The algorithm was tested in the laboratory at ARC, and found to work well for both strong and weak fringes.

  15. Cosmic Noise: The Pioneers of Early Radio Astronomy and Their Discoveries

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T., III

    2012-01-01

    Extraterrestrial radio waves (the galactic background), often referred to as "cosmic noise", were first detected accidentally by Karl Jansky at a frequency of 20 MHz in 1932, with significant followup by Grote Reber. Yet after World War II it was England and Australia that dominated the field. An entirely different sky from that of visual astronomy was revealed by the discoveries of solar noise, "radio stars” (discrete sources such as Cas A, Tau A, Cyg A, Cen A and Vir A), galactic noise, lunar and meteor radar experiments, the detection of the 21 cm hydrogen line, and eventually optical identifications such as the Crab Nebula and M87. Key players included wartime radar experts such as Stanley Hey (the British Army's Operational Research Group), Martin Ryle (Cambridge University), Bernard Lovell (Jodrell Bank) and Joe Pawsey (Radiophysics Lab, Sydney). Younger leaders also emerged such as Graham Smith, Tony Hewish, John Davies, "Chris" Christiansen, Bernie Mills, Paul Wild, and John Bolton. Some optical astronomers (Jan Oort, Henk van de Hulst, Jesse Greenstein, Rudolph Minkowski, and Walter Baade) were also extremely supportive. By the end of the postwar decade, radio astronomy was firmly established within the gamut of astronomy, although very few of its practitioners had been trained as astronomers. I will also trace the technical and social aspects of this wholly new type of astronomy, with special attention on military and national influences. I argue that radio astronomy represents one of the key developments in twentieth century astronomy not only because of its own discoveries, but also its pathfinding for the further opening the electromagnetic spectrum. This study is based on exhaustive archival research and over one hundred interviews with pioneering radio astronomers. Full details are available in the book "Cosmic Noise: A History of Early Radio Astronomy" (Cambridge Univ. Pr.).

  16. Personal recollections of W.N. Christiansen and the early days of Chinese radio astronomy

    NASA Astrophysics Data System (ADS)

    Wang, Shouguan

    2009-03-01

    Between 1963 and 1998, Professor W.N. Christiansen visited China more than a dozen times, bringing valuable scientific information, expert guidance and all possible help to the young Chinese radio astronomy team. Here, the writer presents his memories of two typical, deeply-shared experiences, `The Shahe Experiment' and `The Making of the Miyun Meter Wave Aperture Synthesis Telescope;, as expressions of the kind thoughts of a whole generation of Chinese researchers in astronomy.

  17. Radio Jupiter after Voyager - An overview of the planetary radio astronomy observations

    NASA Technical Reports Server (NTRS)

    Boischot, A.; Lecacheux, A.; Kaiser, M. L.; Desch, M. D.; Alexander, J. K.; Warwick, J. W.

    1981-01-01

    An overview of Jupiter's low-frequency radio emission morphology as observed by the planetary radio astronomy (PRA) instrument onboard the Voyager spacecraft is presented. The PRA measurement capabilities and limitations are summarized, based on over two years of experience with the instrument. As a direct consequence of the PRA spacecraft observations, unprecedented in terms of their sensitivity and frequency coverage, at least three previously-unrecognized emission components have been discovered: broadband and narrow-band kilometric emission, and the lesser-arc decametric emission. Their properties are reviewed. In addition, the fundamental structure of the decameter wavelength and hectometer wavelength emission, now believed to be almost exclusively in the form of complex but repeating arc structures in the frequencytime domain, is described. Dramatic changes in the emission morphology of some components as a function of the sun-Jupiter-spacecraft angle (local time) are described. Finally, the PRA in situ measurements of the Io plasma torus hot-to-cold electron density and temperature ratios are summarized.

  18. Space-based Aperture Array For Ultra-Long Wavelength Radio Astronomy

    E-print Network

    Rajan, Raj Thilak; Bentum, Mark; Klein-Wolt, Marc; Belien, Frederik; Arts, Michel; Saks, Noah; van der Veen, Alle-Jan

    2015-01-01

    The past decade has seen the rise of various radio astronomy arrays, particularly for low-frequency observations below 100MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21cm line emission. However, Earth-based radio astronomy below frequencies of 30MHz is severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. Various studies in the past were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. We briefly present the achievable science cases, and dis...

  19. The Future of Radio Astronomy: Options for Dealing with Human Generated Interference

    E-print Network

    R D Ekers; J F Bell

    2000-02-29

    Radio astronomy provides a unique window on the universe, allowing us to study: non-thermal processes (galactic nuclei, quasars, pulsars) at the highest angular resolution using VLBI, with low opacity. It is the most interesting wave band for SETI searches. To date it has yielded 3 Nobel prizes (microwave background, pulsars, gravitational radiation). There are both exciting possibilities and substantial challenges for radio astronomy to remain at the cutting edge over the next 3 decades. New instruments like ALMA and the SKA will open up new science if the challenge of dealing human generated interference can be met. We summarise some of the issues and technological developments that will be essential to the future success of radio astronomy.

  20. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc. Astronomy: The Visible and Invisible Universe

    E-print Network

    Groppi, Christopher

    under a cooperative agreement by Associated Universities, Inc. Astronomy: The Visible and Invisible Universe #12;The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc. A light wave is a light wave

  1. Analysis of radio astronomy bands using CALLISTO spectrometer at Malaysia-UKM station

    NASA Astrophysics Data System (ADS)

    Zavvari, Azam; Islam, Mohammad Tariqul; Anwar, Radial; Abidin, Zamri Zainal; Asillam, Mhd Fairos; Monstein, Christian

    2015-10-01

    The e-CALLISTO system is a worldwide network that aims to observe solar radio emission for astronomical science. CALLISTO instruments have been deployed worldwide in various locations that together can provide continuous observation of the solar radio spectrum for 24 h per day year-round. Malaysia-UKM is a strategic equatorial location and can observe the Sun 12 h per day. This paper gives an overview of the spectrum allocation for radio astronomy, which falls in the specified operating frequency band of the CALLISTO spectrometer. The radio astronomy bands are analyzed at the Malaysia-UKM station according to the International Telecommunication Union recommendations. Some observational results are also presented in this paper.

  2. High energy astrophysics with the next generation of radio astronomy facilities

    E-print Network

    Rob Fender

    2008-10-06

    High energy astrophysics has made good use of combined high energy (X-ray, gamma-ray) and radio observations to uncover connections between outbursts, accretion, particle acceleration and kinetic feedback to the local ambient medium. In the field of microquasars the connections have been particularly important. However, radio astronomy has been relying on essentially the same facilities for the past ~25 years, whereas high-energy astrophysics, in particular space-based research, has had a series of newer and more powerful missions. In the next fifteen years this imbalance is set to be redressed, with a whole familiy of new radio facilities under development en route to the Square Kilometre Array (SKA) in the 2020s. In this brief review I will summarize these future prospects for radio astronomy, and focus on possibly the most exciting of the new facilities to be built in the next decade, the Low Frequency Array LOFAR, and its uses in high energy astrophysics.

  3. The NRAO Green Bank Site is a unique resource for Radio Astronomy. We are located in the National Radio Quiet Zone (NRQZ) which provides protection from permanent, fixed, licensed transmitter services. Our location,

    E-print Network

    Groppi, Christopher

    The NRAO Green Bank Site is a unique resource for Radio Astronomy. We are located in the National to protect observations. Additionally, the West Virginia Radio Astronomy Zoning Act allows us to prohibit themselves (Zone 1 aka the Radio Astronomy Instrument Zone) as illustrated on the following map: NRAO Green

  4. A Multiband Approach to AGN: Radioscopy & Radio Astronomy

    E-print Network

    M. Kadler; E. Ros; J. Kerp; A. L. Roy; A. P. Marscher; J. A. Zensus

    2004-11-18

    Only in the radio-loud population of active galactic nuclei (AGN) does the production, collimation, and acceleration of powerful relativistic jets take place. We introduce here a concept of combined VLBI- and X-ray spectroscopic observations of sources with relativistic, broad iron lines. This approach has enormous potential to yield deep insights into the accretion/jet-production process in AGN. Better knowledge of the milliarcsecond-resolution radio structure of the nuclear radio cores in so-called ``radio-quiet'' broad-iron-line Seyfert galaxies is essential for future combined radio/X-ray studies of the different modes of radio-jet production in accreting black hole systems.

  5. RESOLVE: Bayesian algorithm for aperture synthesis imaging in radio astronomy

    NASA Astrophysics Data System (ADS)

    Junklewitz, H.; Bell, M. A.; Ensslin, T.

    2015-05-01

    RESOLVE is a Bayesian inference algorithm for image reconstruction in radio interferometry. It is optimized for extended and diffuse sources. Features include parameter-free Bayesian reconstruction of radio continuum data with a focus on extended and weak diffuse sources, reconstruction with uncertainty propagation dependent on measurement noise, and estimation of the spatial correlation structure of the radio astronomical source. RESOLVE provides full support for measurement sets and includes a simulation tool (if uv-coverage is provided).

  6. Outer planets grand tours: Planetary radio astronomy team report

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.

    1972-01-01

    Requirements related to scientific observations of planetary radio emissions during outer planets grand tours are discussed. Observations at low frequencies where non-thermal cooperative plasma phenomena play a major role are considered for determining dynamical processes and magnetic fields near a planet. Magnetic field measurements by spacecraft magnetometers, and by radio receivers in their harmonic modes are proposed for interpretation of planetary radio emission.

  7. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-print Network

    Groppi, Christopher

    NO. 306 Guidelines for the Design of Cryogenic Systems George Behrens William Campbell Dave Williams astronomy receivers are generally operated at cryogenic temperatures. In order to reach cryogenic temperatures, a vacuum chamber (Dewar) containing the receiver is evacuated to a very high vacuum, and a closed

  8. The First Steps of Radio Astronomy in Czestochowa

    E-print Network

    M. Jarosik; S. Starzynski; M. Szczesniak; R. Szczesniak; A. Ceglarek

    2007-12-10

    In the paper, technical documentation and the principle of operation is presented. "KLAUDIA" radio telescope was built in Rabka in 2007 and it is used to receive secondary radio waves, emitted by the Earth's ionosphere at frequency of 40 kHz.

  9. Voyager 1 Planetary Radio Astronomy Observations Near Jupiter

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Riddle, A. C.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Thieman, J. R.; Carr, T. B.; Gulkis, S.; Boischot, A.

    1979-01-01

    Results are reported from the first low frequency radio receiver to be transported into the Jupiter magnetosphere. Dramatic new information was obtained both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio arcs, from above 30 MHz to about 1 MHz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Studies in progress are outlined briefly.

  10. Optimization of continuum receiving systems in radio astronomy

    NASA Astrophysics Data System (ADS)

    Mebold, U.; Gebler, K.-H.

    In connection with the new spectral ranges which have become accessible to the astronomer by means of satellite-based observations, radio continuum observations conducted with ground-based installations have obtained new significance. This conclusion is valid for objects of comparatively little extension, such as a supernova remnant, and for extended structures, such as the Milky Way Galaxy. It is pointed out, in this connection, that the demand for radio continuum surveys has considerably increased during the last few years. The present information is concerned with fundamental aspects which can provide a suitable basis for the optimization of continuum receiving systems. Attention is given to antenna and radiation temperature, optimization efforts related to system noise and amplification stability, the suppression of radar and directional radio noise, disturbances caused by the sun, and the contributions to antenna temperature provided by ground and atmosphere.

  11. The radio astronomy explorer satellite, a low-frequency observatory.

    NASA Technical Reports Server (NTRS)

    Weber, R. R.; Alexander, J. K.; Stone, R. G.

    1971-01-01

    The RAE-1 is the first spacecraft designed exclusively for radio astronomical studies. It is a small, but relatively complex, observatory including two 229-meter antennas, several radiometer systems covering a frequency range of 0.2 to 9.2 MHz, and a variety of supporting experiments such as antenna impedance probes and TV cameras to monitor antenna shape. Since its launch in July, 1968, RAE-1 has sent back some 10 billion data bits per year on measurements of long-wavelength radio phenomena in the magnetosphere, the solar corona, and the Galaxy. In this paper we describe the design, calibration, and performance of the RAE-1 experiments in detail.

  12. A New Approach to Interference Excision in Radio Astronomy: Real-Time Adaptive Cancellation

    NASA Astrophysics Data System (ADS)

    Barnbaum, Cecilia; Bradley, Richard F.

    1998-11-01

    Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have built a prototype adaptive canceler that consists of two receivers: the primary channel (input from the main beam of the telescope) and a separate reference channel. The primary channel receives the desired astronomical signal corrupted by RFI (radio-frequency interference) coming in the sidelobes of the main beam. A separate reference antenna is designed to receive only the RFI. The reference channel input is processed using a digital adaptive filter and then subtracted from the primary channel input, producing the system output. The weighting coefficients of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the canceler locks onto the RFI, and the filter adjusts itself to minimize the effect of the RFI at the system output. We have designed the adaptive canceler with an intermediate frequency (IF) of 40 MHz. This prototype system will ultimately be functional with a variety of radio astronomy receivers in the microwave band. We have also built a prototype receiver centered at 100 MHz (in the FM broadcast band) to test the adaptive canceler with actual interferers, which are well characterized. The initial laboratory tests of the adaptive canceler are encouraging, with attenuation of strong frequency-modulated (FM) interference to 72 dB (a factor of more than 10 million), which is at the performance limit of our measurements. We also consider requirements of the system and the RFI environment for effective adaptive canceling.

  13. Workshop on Satellite Power Systems (SPS) effects on optical and radio astronomy

    SciTech Connect

    Stokes, G.M.; Ekstrom, P.A.

    1980-04-01

    The impacts of the SPS on astronomy were concluded to be: increased sky brightness, reducing the effective aperture of terrestrial telescopes; microwave leakage radiation causing erroneous radioastronomical signals; direct overload of radioastronomical receivers at centimeter wavelengths; and unintentional radio emissions associated with massive amounts of microwave power or with the presence of large, warm structures in orbit causing the satellites to appear as individual stationary radio sources; finally, the fixed location of the geostationary satellite orbits would result in fixed regions of the sky being unusable for observations. (GHT)

  14. Applications of Microwave Photonics in Radio Astronomy and Space Communication

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry R.; Shillue, William P.

    2006-01-01

    An overview of narrow band vs wide band signals is given. Topics discussed included signal transmission, reference distribution and photonic antenna metrology. Examples of VLA, ALMA, ATA and DSN arrays are given. . Arrays of small antennas have become more cost-effective than large antennas for achieving large total aperture or gain, both for astronomy and for communication. It is concluded that emerging applications involving arrays of many antennas require low-cost optical communication of both wide bandwidth and narrow bandwidth; development of round-trip correction schemes enables timing precision; and free-space laser beams with microwave modulation allow structural metrology with approx 100 micrometer precision over distances of 200 meters.

  15. A very low frequency radio astronomy observatory on the Moon

    NASA Technical Reports Server (NTRS)

    Douglas, James N.; Smith, Harlan J.

    1988-01-01

    Because of terrestrial ionospheric absorption, very little is known of the radio sky beyond 10 m wavelength. An extremely simple, low cost very low frequency radio telescope is proposed, consisting of a large array of short wires laid on the lunar surface, each wire equipped with an amplifier and a digitizer, and connected to a common computer. The telescope could do simultaneous multifrequency observations of much of the visible sky with high resolution in the 10 to 100 m wavelength range, and with lower resolution in the 100 to 1000 m range. It would explore structure and spectra of galactic and extragalactic point sources, objects, and clouds, and would produce detailed quasi-three-dimensional mapping of interstellar matter within several thousand parsecs of the Sun.

  16. PARTNeR, a Radio Astronomy experience for students

    NASA Astrophysics Data System (ADS)

    Suárez, O.; Blasco, C.; Gómez, J. F.; Herranz, M.; Montesinos, B.; García, J.

    PARTNeR is the acronym for Academic Project with the NASA Radio Telescope at Robledo. The 34-m antenna in Robledo de Chavela is used by high schools, universities and amateur astronomers to learn about radioastronomy, physics and to get interested in science. The main project we develop is the observations of radio-bursts in X-ray binaries. The high-school teachers joining our program take a training course to learn the basis of radioastronomy. Some practical lessons to teach the children the physical fundamentals of radioastronomy are also given to them. The operational phase of the project started in 2004, and 25 high schools, 5 universities and 4 societies of amateur astronomers have been involved in the project.

  17. The time resolution domain of stellar radio astronomy

    NASA Technical Reports Server (NTRS)

    Bookbinder, J.

    1985-01-01

    The high time resolution (HTR) radio observation of late-type stars and RS CVn systems is discussed. Some examples of these sources are addressed, identifying what information HTR observations can provide. HTR can provide important information on flares in late-type stars, and can be used to study coronal structure and the particle acceleration mechanism in these stars. The possible use of HTR to establish the nature of quiescent emission form RS CVn systems is discussed.

  18. Multiphase Turbulent Interstellar Medium: Some Recent Results from Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Roy, Nirupam

    2015-06-01

    The radio frequency 1.4 GHz transition of the atomic hydrogen is one of the important tracers of the diffuse neutral interstellar medium. Radio astronomical observations of this transition, using either a single dish telescope or an array interferometer, reveal different properties of the interstellar medium. Such observations are particularly useful to study the multiphase nature and turbulence in the interstellar gas. Observations with multiple radio telescopes have recently been used to study these two closely related aspects in greater detail. This review article presents a brief outline of some of the basic ideas of radio astronomical observations and data analysis, summarizes the results from these recent observations, and discusses possible implications of the results. Using various observational techniques, the density and the velocity fluctuations in the Galactic interstellar medium was found to have a Kolmogorov-like power law power spectra. The observed power law scaling of the turbulent velocity dispersion with the length scale can be used to derive the true temperature distribution of the medium. Observations from a large ongoing atomic hydrogen absorption line survey have also been used to study the distribution of gas at different temperature. The thermal steady state model predicts that the multiphase neutral gas will exist in cold and warm phase with temperature below 200 K and above 5000 K respectively. However, these observations clearly show the presence of a large fraction of gas in the intermediate unstable phase. These results raise serious doubt about the validity of the standard model, and highlight the necessity of alternative theoretical models. Interestingly, numerical simulations suggest that some of the observational results can be explained consistently by including the effects of turbulence in the models of the multiphase medium.

  19. Interstellar Scattering and Scintillation as Tools in Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Rickett, B. J.

    1998-05-01

    In recent years Interstellar Scintillation (ISS) has been identified as causing variations in flux density in a variety of radio astronomical observations. Although this ``Galactic seeing'' effect is in some ways a nuisance, ISS is also a valuable tool that provides information on radio source structure at angular scales well beyond the reach of all current interferometers. In addition to ISS, angular and temporal broadening have been measured on many lines of sight in the Galaxy. Such measurements also provide a probe for the fine scale structure in the ionized interstellar plasma. The session will explore the science that can be done using these tools to probe both very compact radio sources and the interstellar plasma. Examples include: ISS provides an explanation of rapid (hours to days - intraday) flux variations at centimeter wavelengths from compact cores of AGNs, reducing the implied brightness temperature by up to six orders of magnitude. ISS has beeen recognised as causing the flux variations from the radio afterglow of the gamma-ray burst observed on May 8 1997, from which a diameter of a few microarcseconds has been estimated for the expanding fireball. A study of the interstellar speckle pattern of the Vela pulsar has achieved nanoarcsecond angular resolution of the pulsar magnetosphere. The Galaxy is permeated by irregular density structures, whose wavenumber spectrum is like a turbulent fluid over at least six and as many as ten orders of magnitude in length scale. However, the local strength of turbulence is itself non-uniform, with localized enhancemnents by more than six orders of magnitude, whose physical origin is still obscure.

  20. Clustering-based Filtering to Detect Isolated and Intermittent Pulses in Radio Astronomy Data Kiri L.Wagstaff, Benyang Tang, Joseph Lazio, and Sarah Burke-Spolaor

    E-print Network

    Clustering-based Filtering to Detect Isolated and Intermittent Pulses in Radio Astronomy Data Kiri-groups (clusters) of data. For radio astronomy, it can aid in interpreting large single pulse detection lists of objects may emit radio pulses, including periodic pulsars, intermittent pulsars, evaporating primordial

  1. Low-Power Architectures for Large Radio Astronomy Correlators

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry R.

    2011-01-01

    The architecture of a cross-correlator for a synthesis radio telescope with N greater than 1000 antennas is studied with the objective of minimizing power consumption. It is found that the optimum architecture minimizes memory operations, and this implies preference for a matrix structure over a pipeline structure and avoiding the use of memory banks as accumulation registers when sharing multiply-accumulators among baselines. A straw-man design for N = 2000 and bandwidth of 1 GHz, based on ASICs fabricated in a 90 nm CMOS process, is presented. The cross-correlator proper (excluding per-antenna processing) is estimated to consume less than 35 kW.

  2. Instrumentation for Kinetic-Inductance-Detector-Based Submillimeter Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Duan, Ran

    A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

  3. New results and techniques in space radio astronomy.

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.

    1971-01-01

    The methods and results of early space radioastronomy experiments are reviewed, with emphasis on the RAE 1 spacecraft which was designed specifically and exclusively for radio astronomical studies. The RAE 1 carries two gravity-gradient-stabilized 229-m traveling-wave V-antennas, a 37-m dipole antenna, and a number of radiometer systems to provide measurements over the 0.2 to 9.2 MHz frequency range with a time resolution of 0.5 sec and an absolute accuracy of plus or minus 25%. Observations of solar bursts at frequencies down to 0.2 MHz provide new information on the density, plasma velocity, and dynamics of coronal streamers out to distances greater than 50 solar radii. New information on the distribution of the ionized component of the interstellar medium is being obtained from galactic continuum background maps at frequencies around 4 MHz. Cosmic noise background spectra measured down to 0.5 MHz produce new estimates on the interstellar flux of cosmic rays, on magnetic fields in the galactic halo, and on distant extragalactic radio sources.

  4. Radio Frequency Interference: Projects and Activities Developed for the High School Earth Science, Astronomy, and Physics Classroom

    NASA Astrophysics Data System (ADS)

    Dunn, S. K.; Brown, J.

    2003-12-01

    Radio Frequency Interference: Projects and Activities Developed for the High School Earth Science, Astronomy, and Physics Classroom Susan Dunn Tewksbury Memorial High School Jason Brown Tyngsboro High School Preethi Pratap MIT Haystack Observatory The Research Experiences for Teachers (RET) program, funded by the NSF, brings teachers into research environments to interact with scientists and translate the experience into the classroom. We will describe a RET experience at the MIT Haystack Observatory which involved using an AR3000A communications receiver and a discone antenna as the basis for an Earth Science, Astronomy, and Physics classroom unit. The projects and activities in this unit were developed to help foster student learning and understanding of radio astronomy, the electromagnetic spectrum, wave dynamics, signal propagation, meteor detection, and radio frequency interference. Additionally, this RET project utilizes the SEARFE (Students Examining Australia???s Radio Frequency Environment) software developed for use with the AR3000A communications receiver to scan and monitor frequencies across the radio bandwidth to determine areas of low and high usage in the radio spectrum. Classroom activities include Scanning Protected Radio Astronomy Bandwidths, Investigating the Radio Environment, Time Variation of Signal Strength, Signal Strength vs. Location Studies, Detecting Meteors using the AR300A Receiver, Mapping the RFI Environment of Your School, AM Radio Interference, and Signal Propagation Effects. The primary focus of the unit???s activities is to address the Massachusetts State Science Frameworks for electromagnetic radiation, waves, cosmology, and matter and energy in the Earth system and foster an understanding of how everyday communications devices may cause radio frequency interference with sensitive radio astronomy equipment. The projects and activities in the unit will be used in the classroom, amended, and the results of the classroom experience will be discussed.

  5. Scientific Visualization of Radio Astronomy Data using Gesture Interaction

    NASA Astrophysics Data System (ADS)

    Mulumba, P.; Gain, J.; Marais, P.; Woudt, P.

    2015-09-01

    MeerKAT in South Africa (Meer = More Karoo Array Telescope) will require software to help visualize, interpret and interact with multidimensional data. While visualization of multi-dimensional data is a well explored topic, little work has been published on the design of intuitive interfaces to such systems. More specifically, the use of non-traditional interfaces (such as motion tracking and multi-touch) has not been widely investigated within the context of visualizing astronomy data. We hypothesize that a natural user interface would allow for easier data exploration which would in turn lead to certain kinds of visualizations (volumetric, multidimensional). To this end, we have developed a multi-platform scientific visualization system for FITS spectral data cubes using VTK (Visualization Toolkit) and a natural user interface to explore the interaction between a gesture input device and multidimensional data space. Our system supports visual transformations (translation, rotation and scaling) as well as sub-volume extraction and arbitrary slicing of 3D volumetric data. These tasks were implemented across three prototypes aimed at exploring different interaction strategies: standard (mouse/keyboard) interaction, volumetric gesture tracking (Leap Motion controller) and multi-touch interaction (multi-touch monitor). A Heuristic Evaluation revealed that the volumetric gesture tracking prototype shows great promise for interfacing with the depth component (z-axis) of 3D volumetric space across multiple transformations. However, this is limited by users needing to remember the required gestures. In comparison, the touch-based gesture navigation is typically more familiar to users as these gestures were engineered from standard multi-touch actions. Future work will address a complete usability test to evaluate and compare the different interaction modalities against the different visualization tasks.

  6. Enhancing the Radio Astronomy Capabilities at NASA's Deep Space Network

    NASA Astrophysics Data System (ADS)

    Lazio, Joseph; Teitelbaum, Lawrence; Franco, Manuel M.; Garcia-Miro, Cristina; Horiuchi, Shinji; Jacobs, Christopher; Kuiper, Thomas; Majid, Walid

    2015-08-01

    NASA's Deep Space Network (DSN) is well known for its role in commanding and communicating with spacecraft across the solar system that produce a steady stream of new discoveries in Astrophysics, Heliophysics, and Planetary Science. Equipped with a number of large antennas distributed across the world, the DSN also has a history of contributing to a number of leading radio astronomical projects. This paper summarizes a number of enhancements that are being implemented currently and that are aimed at increasing its capabilities to engage in a wide range of science observations. These enhancements include* A dual-beam system operating between 18 and 27 GHz (~ 1 cm) capable of conducting a variety of molecular line observations, searches for pulsars in the Galactic center, and continuum flux density (photometry) of objects such as nearby protoplanetary disks* Enhanced spectroscopy and pulsar processing backends for use at 1.4--1.9 GHz (20 cm), 18--27 GHz (1 cm), and 38--50 GHz (0.7 cm)* The DSN Transient Observatory (DTN), an automated, non-invasive backend for transient searching* Larger bandwidths (>= 0.5 GHz) for pulsar searching and timing; and* Improved data rates (2048 Mbps) and better instrumental response for very long baseline interferometric (VLBI) observations with the new DSN VLBI processor (DVP), which is providing unprecedented sensitivity for maintenance of the International Celestial Reference Frame (ICRF) and development of future versions.One of the results of these improvements is that the 70~m Deep Space Station 43 (DSS-43, Tidbinbilla antenna) is now the most sensitive radio antenna in the southern hemisphere. Proposals to use these systems are accepted from the international community.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics & Space Administration.

  7. 8 LINCOLN LABORATORY JOURNAL n VOLUME 21, NUMBER 1, 2014 InsIghts Into the UnIverse: Astronomy wIth hAystAck's rAdIo telescope

    E-print Network

    Herr, Hugh

    wIth hAystAck's rAdIo telescope Insights into the Universe: Astronomy with Haystack's Radio Telescope Observatory has been advancing radio astronomy and radio science for 50 years. Experiments and observations8 LINCOLN LABORATORY JOURNAL n VOLUME 21, NUMBER 1, 2014 InsIghts Into the UnIverse: Astronomy

  8. PARAS program: Phased array radio astronomy from space

    NASA Technical Reports Server (NTRS)

    Jakubowski, Antoni K.; Haynes, David A.; Nuss, Ken; Hoffmann, Chris; Madden, Michael; Dungan, Michael

    1992-01-01

    An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg.

  9. Project PARAS: Phased array radio astronomy from space

    NASA Technical Reports Server (NTRS)

    Nuss, Kenneth; Hoffmann, Christopher; Dungan, Michael; Madden, Michael; Bendakhlia, Monia

    1992-01-01

    An orbiting radio telescope is proposed which, when operated in a very long baseline interferometry (VLBI) scheme, would allow higher than currently available angular resolution and dynamic range in the maps and the ability to observe rapidly changing astronomical sources. Using passive phased array technology, the proposed design consists of 656 hexagonal modules forming a 150-m diameter antenna dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data are transmitted to telemetry stations on the ground. The truss frame supporting each observatory panel is a novel hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and the bottom triangle. Attitude control and station keeping functions will be performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and four hydrazine arcjets, the latter supported by either a photovoltaic array or a radioisotope thermoelectric generator. The total mass of the spacecraft is about 20,500 kg.

  10. Pulsars in a Box: A Radio Astronomy Exercise for Windows from PROJECT CLEA

    NASA Astrophysics Data System (ADS)

    Marschall, L. A.; Snyder, G. A.; Good, R. F.; Hayden, M. B.; Cooper, P. R.

    1996-12-01

    The latest astronomy laboratory exercise from PROJECT CLEA, "Radio Astronomy of Pulsars", is designed for use in introductory astronomy classes, but contains options and features that make it usable by upperclass astronomy students as well. The heart of the exercise is a simulated radio telescope, whose aperture, location, and beamwidth can be set by the instructor. It is steered by pushing buttons, but instead of seeing a star field on the field monitor,students see a projection of the sky showing, with a colored dot,where the beam is pointing. Large LED-like readouts display time and telescope coordinates. The telescope can be operated in either a tracking or transit mode. Using the telescope, students point to several pulsars suggested by the write-up (from an on-line catalog of over 500). Students can then use a multi-channel tunable receiver, with multiple oscilloscope displays, to view the incoming signal vs. time. The signal received is a combination of random receiver and background noise plus the pulsar signal (if it is in the beam) Receivers are tunable from 400 to 1400 MHz, and both the time and frequency behavior of signals can be studied. By measuring the dispersion delay at a number of different frequencies, students can determine the pulsar's distance. Data can be stored, displayed, and printed using a versatile measuring window. Though we provide a manual for a 2-3 hour lab exercise involving dispersion measures, the database and receivers can be used for a wide variety of other exercises, for instance the measurement of pulsar spin-down rates. We welcome suggestions for improvements and applications.

  11. U.S.-Canadian Partnership in Radio Astronomy Valuable for Science, NRAO Director Says

    NASA Astrophysics Data System (ADS)

    2001-10-01

    The United States and Canada intend to collaborate on two of the most important radio astronomy projects of the new century - the Atacama Large Millimeter Array (ALMA) and the Expanded Very Large Array (EVLA), astronomers from both countries announced today. "This cooperative program - the North American Partnership in Radio Astronomy - involves the key projects that will dominate radio astronomy world-wide," said Paul Vanden Bout, director of the National Radio Astronomy Observatory (NRAO). "This partnership will multiply the efforts of both nations' astronomers for the benefit of science. It builds on a long tradition of cooperative efforts in radio astronomy, and will ensure that we continue that tradition into the new millennium," Vanden Bout said. The U.S.-Canada radio astronomy partnership is outlined in two letters of intent signed recently. The first, between the U.S. National Science Foundation (NSF) and Canada's National Research Council (NRC), states that both agencies will use their best efforts to obtain the necessary funding for construction and operation of ALMA. The second, between the National Radio Astronomy Observatory, funded by the NSF, and the Herzberg Institute of Astrophysics, funded by the NRC, forms a partnership in the EVLA. The VLA Expansion Project is a two-phase program designed to improve the scientific capabilities of the VLA tenfold by replacing 1970s-vintage equipment with modern technologies and adding new radio-telescope antennas to the existing 27-antenna array. Dedicated in 1980, the VLA has been used for more than 10,000 observing projects covering nearly every area of astrophysics. It is the most powerful, flexible and widely-used radio telescope in the world. The Expanded VLA will provide the improved observational capabilities needed to meet the research challenges of the coming years. In addition to the participation by Canada, funds have been pledged by Mexico. Both Mexico and Germany have funded VLA improvements in the past. A proposal to the NSF requesting U.S. funds for the EVLA is currently under review by the National Science Foundation. The agreement between the NRAO and the Herzberg Institute of Astrophysics (HIA) calls for HIA to build a new correlator - the digital "heart" that combines the received signals from multiple antennas to make those antennas work as a single, powerful telescope - for the EVLA. The new correlator will represent a contribution of 10 million (US). The full EVLA project will cost about 150 million, to be done in two phases, the first costing 75 million. "Canada has a strong program of radio astronomy, and in particular a skilled team of specialists in designing correlators, and we are pleased to have their talents directed toward building a new machine for the VLA," Vanden Bout said. ALMA will consist of 64 12-meter-diameter dish antennas comprising a single imaging telescope to study the universe at millimeter and submillimeter wavelengths - the region between radio waves and infrared waves. An international project being designed and developed by the U.S. and European nations, ALMA will be located on a high-altitude site in the Atacama desert of Chile. "ALMA will give scientists an unprecedented look at the structure of the early universe and revolutionary insights on how stars and planets form, among many other contributions," Vanden Bout said. "The EVLA will bring unmatched power and versatility to the study of objects as close as the Sun and planets and as far as primeval galaxies at the edge of the observable universe. Together, these two instruments will be at the forefront of 21st Century astrophysics," he added. "ALMA has been a bilateral project involving the United States and Europe. These new agreements with Canada turn ALMA into a partnership between Europe and North America," Vanden Bout said. Design and development work on ALMA has been ongoing since 1998, funded by the NSF and European organizations. Canadians already have participated in this work. ALMA is pla

  12. Astronomy.

    ERIC Educational Resources Information Center

    Greenstone, Sid; Smith, Murray

    Selected materials needed to teach an astronomy unit as well as suggested procedures, activities, ideas, and astronomy fact sheets published by the Manitoba Planetarium are provided. Subjects of the fact sheets include: publications and classroom picture sets available from the National Aeronautics and Space Administration and facts and statistics…

  13. Highest-Resolution Radio Astronomy: The Quest for the Black Hole

    E-print Network

    J. A. Zensus; T. P. Krichbaum; S. Britzen

    2006-10-24

    Radio observations with Very Long Baseline Interferometry (VLBI) provide the highest resolution in astronomy. Combining earth-bound with space-based telescopes and advancing the observations to mm-wavelengths increases the resolution even further. These methods enable us to probe directly the vicinities of the presumed central black holes in active galactic nuclei (AGN) and the powerful jets emanating from these objects. We provide a brief review of recent results in this exciting research domain and we discuss the opportunities for future work possible with the advent of new instrumental developments.

  14. Tectonic motion site survey of the National Radio Astronomy Observatory, Green Bank, West Virginia

    NASA Technical Reports Server (NTRS)

    Webster, W. J., Jr.; Allenby, R. J.; Hutton, L. K.; Lowman, P. D., Jr.; Tiedemann, H. A.

    1979-01-01

    A geological and geophysical site survey was made of the area around the National Radio Astronomy Observatory (NRAO) to determine whether there are at present local tectonic movements that could introduce significant errors to Very Long Baseline Interferometry (VLBI) geodetic measurements. The site survey consisted of a literature search, photogeologic mapping with Landsat and Skylab photographs, a field reconnaissance, and installation of a seismometer at the NRAO. It is concluded that local tectonic movement will not contribute significantly to VLBI errors. It is recommended that similar site surveys be made of all locations used for VLBI or laser ranging.

  15. Applications of the focus plane array or the multi-beam feed system in radio astronomy

    NASA Astrophysics Data System (ADS)

    Wu, Shengyin; Nan, Rendong

    2001-12-01

    The technique of the focus plane array (FPA) or the multi-beam feed system has been more and more widely applied in radio astronomy. Much more information of electric and magnetic field collected at the focus plane could be used to fasten the obervational procedure several or even several tens times by scanning the telescope over the extended sources. The image quality observed can be improved by subtracting or removing effects of fluctuation or irregularity in the atmosphere or the ionosphere, and by monitoring or controlling the accuracy of the main reflector, the subreflector and the pointing of the telescope. Costs and requirements for the accuracy of huge radio telescopes or space radio telescopes might be much reduced by introducing the FPA in monitoring and adjusting telescopes in the future. The FPAs have been equipped widely on millimeter and sub-millimeter radio telescopes and main bands of large radio telescopes in the world. The paper will review the situation of that by listing operating feeds for the latter and describing briefly the FPAs equipped on the former. The restriction of applying the FPAs on telescopes and corresponding phase errors will be briefly analyzed in this paper. Consideration of the cost and prospect of application of the FPA are also shortly given. Finally tentative valuation and suggestion of applying the FPA on the FAST, a planned huge spherical radio telescope with active main reflector, are followed. Arrangement of frequencies, beams, LNAs and corresponding system temperature suggested by experts from China and Jodrell Bank Radio Observatory is listed at last.

  16. A New Geodetic Research Data Management System at the Hartebeesthoek Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Coetzer, G. L.; Botha, R. C.; Combrinck, L.; Fourie, S. C.

    2015-04-01

    The Hartebeesthoek Radio Astronomy Observatory (HartRAO) hosts two research programmes: radio astronomy and space geodesy. The Space Geodesy programme has four main co-located space geodetic techniques, making HartRAO a true fiducial site. The HartRAO Space Geodesy Programme is expanding its geodetic techniques to include Lunar Laser Ranging (LLR) as well as a network of seismometers, accelerometers, tide gauges, and gravimeters. These instruments will be installed across the southern African region and will generate large volumes of data that will be streamed to and stored at HartRAO. Our objective is to implement a complete Geodetic Research Data Management System (GRDMS) to handle all HartRAO's geodetic data on-site in terms of archiving, indexing, processing, and extraction. These datasets and subsequent data products will be accessible to both the scientific community and general public through an intuitive and easy to use web-based front-end. As the first step in this process, we are currently working on establishing a new data centre. This opens up the possibility for the librarian to provide data services and support by working together with researchers and information technology staff. We discuss the rationale, role players and top-level system design of this GRDMS, as well as the current status and planned products thereof.

  17. The Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.; Rathborne, J. M.; Shah, R. Y.; Simon, R.; Bania, T. M.; Clemens, D. P.; Chambers, E. T.; Johnson, A. M.; Dormody, M.; Lavoie, R.; Heyer, M. H.

    2006-03-01

    The Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey is a new survey of Galactic 13CO J=1-->0 emission. The survey used the SEQUOIA multipixel array on the Five College Radio Astronomy Observatory 14 m telescope to cover a longitude range of l=18deg-55.7d and a latitude range of |b|<1deg, a total of 75.4 deg2. Using both position-switching and On-The-Fly mapping modes, we achieved an angular sampling of 22", better than half of the telescope's 46" angular resolution. The survey's velocity coverage is -5 to 135 km s-1 for Galactic longitudes l<=40deg and -5 to 85 km s-1 for Galactic longitudes l>40deg. At the velocity resolution of 0.21 km s-1, the typical rms sensitivity is ?(T*A)~0.13 K. The survey comprises a total of 1,993,522 spectra. We show integrated intensity images (zeroth moment maps), channel maps, position-velocity diagrams, and an average spectrum of the completed survey data set. We also discuss the telescope and instrumental parameters, the observing modes, the data reduction processes, and the emission and noise characteristics of the data set. The Galactic Ring Survey data are available to the community online or in DVD form by request.

  18. The Boston University--Five College Radio Astronomy Observatory Galactic Ring Survey

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.; Rathborne, J. M.; Shah, R. Y.; Simon, R.; Bania, T. M.; Clemens, D. P.; Chambers, E. T.; Johnson, A. M.; Dormody, M.; Lavoie, R.; Heyer, M.

    2005-12-01

    The Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey is a new survey of Galactic 13CO(1--0) emission. The survey used the SEQUOIA array on the Five College Radio Astronomy Observatory 14 m telescope to cover a longitude range of l = 18 deg -- 55.7 deg and a latitude range of |b| < 1 deg, a total of 75.4 square degrees. We achieved an angular sampling of 22 arcsec, better than half of the telescope's 46 arcsec angular resolution. The survey's velocity coverage is -5 to 135 km s-1 for Galactic longitudes l < 40 deg and -5 to 85 km s-1 for Galactic longitudes l > 40 deg. At the velocity resolution of 0.21 km s-1, the typical rms sensitivity is sigma(TA*) ˜ 0.13 K. The survey comprises a total of 1,993,522 spectra. We present the integrated intensity image (zeroth moment map), channel maps, and position-velocity diagram. The Galactic Ring Survey data are available to the community at www.bu.edu/galacticring or in DVD form by request.

  19. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Mccluskey, J. T.; Gulkis, S.; Klein, M.; Kuiper, T.

    1981-01-01

    A K-band reflected-wave ruby maser was used on the 64-meter (DSS-43) antenna at the Tidbinbilla Tracking Station, near Canberra, Australia. Spectral line observations were carried out near 22 GHz for water vapor sources and near 24 GHz for ammonia sources. The water vapor observations were made in the direction of known southern OH and H2O maser sources. All of the previously detected water line sources examined were detected. In addition, two new water vapor maser sources were discovered, G301.1+1.1and G308.9+0.1. The spectrum of G301.0+1.1 is presented six ammonia sources were found: G291.3-0.7, G305.4+0.2, G322.2+0.6, G327.3-0.5, G333.6-0.2, and G268.4-0.8. Spectra of two of these sources, G291.3-0.7 (RCW 57) and G305.4+0.2, are presented. Both show clearly the presence of the quadrupole splitting satellite lines that will allow the determination of NH3 optical depths in these clouds.

  20. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Gulkis, S.

    1982-01-01

    Use of the Tidbinbilla Interferometer to refine the source positions in the Parkes 2.7 GHz survey of the southern sky is described. A result of the first phase of this work was the identification of a quasi-stellar object which appears to be the most remote object yet observed. This object has a red shift of 3.78 (PKS 2000-330, and a velocity of recession equal to 91% of that light. Based on Hubble's law, PKS 2000-330 appears to be 12 billion light years away.

  1. Calibration of a cylindrical RF capacitance probe. [for ionospheric plasma effects on Radio Astronomy Explorer 1 antenna

    NASA Technical Reports Server (NTRS)

    Mosier, S. R.; Kaiser, M. L.

    1975-01-01

    Ambient electron concentrations derived from observations with the Radio Astronomy Explorer 1 antenna capacitance probe have been compared with upper hybrid resonance measurements from the same spacecraft. From this comparison an empirical correction factor for the capacitance probe measurements has been derived. The differences between the two types of measurements is attributed to sheath effects.

  2. Matched wideband low-noise amplifiers for radio astronomy S. Weinreb, J. Bardin, H. Mani, and G. Jones

    E-print Network

    Weinreb, Sander

    Matched wideband low-noise amplifiers for radio astronomy S. Weinreb, J. Bardin, H. Mani, and G low noise amplifiers for the 0.3­4 GHz frequency range are described. The amplifiers can be operated temperature. One amplifier utilizes commercially available, plastic-packaged SiGe transistors for first

  3. MITIGATION OF RADAR INTERFERENCE IN L-BAND RADIO ASTRONOMY S. W. Ellingson and G. A. Hampson

    E-print Network

    Ellingson, Steven W.

    MITIGATION OF RADAR INTERFERENCE IN L-BAND RADIO ASTRONOMY S. W. Ellingson and G. A. Hampson are complicated by pulsed interference from ground-based aviation radars. In this paper, we characterize one such radar received at the Arecibo Observatory using coherently sampled data sets obtained during a recent

  4. Estimating the size of a radio quiet zone for the radio astronomy service

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Han, Wenjun

    2009-12-01

    The size of a radio quiet zone (RQZ) is largely determined by transmission losses of interfering signals, which can be divided into free space loss and diffraction loss. The free space loss is dominant. The diffraction loss presented in this paper is described as unified smooth spherical and knife edge diffractions, which is a function of minimum path clearance. We present a complete method to calculate the minimum path clearance. The cumulative distribution of the lapse rate of refractivity ( g n ), between the earth surface and 1 km above, is studied by using Chinese radio climate data. Because the size of an RQZ is proportional to g n , the cumulative distribution of g n can be used as an approximation for the size of the RQZ. When interference originates from mobile communication or television transmissions at a frequency of 408 MHz, and overline {g_n } is 40 N/km, where the refractivity N=left( {n-1} right) × 10^6, the size of the RQZ would be 180 km for a mobile source or 210 km for a television source, with a probability in the range of 15-100% in different months and for different stations. When speaking of the size of an RQZ, the radius in the case of a circular zone is implied. It results that a size of an RQZ is mainly influenced by transmission loss rather than effective radiated power. In the case where the distance between an interfering source and a radio astronomical observatory is about 100 km, at a frequency of 408 MHz, the allowable effective radiated power of the interfering source should be less than -30 dBW with a probability of about 85% for overline {g_n } equals 40 N/km, or -42 dBW with a probability less than 1 % for overline {g_n } equals 80 N/km.

  5. Unformatted Digital Fiber-Optic Data Transmission for Radio Astronomy Front-Ends

    E-print Network

    Morgan, Matthew A; Castro, Jason J

    2013-01-01

    We report on the development of a prototype integrated receiver front-end that combines all conversions from RF to baseband, from analog to digital, and from copper to fiber into one compact assembly, with the necessary gain and stability suitable for radio astronomy applications. The emphasis in this article is on a novel digital data link over optical fiber which requires no formatting in the front-end, greatly reducing the complexity, bulk, and power consumption of digital electronics inside the antenna, facilitating its integration with the analog components, and minimizing the self-generated radio-frequency interference (RFI) which could leak into the signal path. Management of the serial data link is performed entirely in the back-end based on the statistical properties of signals with a strong random noise component. In this way, the full benefits of precision and stability afforded by conventional digital data transmission are realized with far less overhead at the focal plane of a radio telescope.

  6. New Astronomy from the Moon: a Lunar Based Very-Low Frequency Radio Array

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuki D.

    2002-01-01

    Setting up an observatory on the Moon could not only give us new views of the universe, but also inspire the billions of people who look at the Moon. Such a project will utilize the same transportation, communication, and power systems required for further exploration of the Moon. The lunar surface provides unique advantages for astronomy, even compared to orbits or Lagrange points. It is a large and stable platform that can shield unwanted radiation and that will be easily accessible once a lunar base is established. Astronomy from the Moon has been advocated since at least the mid-1960s. The most seriously investigated concept has always been a very-low- frequency (VLF) array on the lunar far side for mainly three reasons. First, the very low frequencies below ~30 MHz is the last window in the electromagnetic spectrum yet to be explored in astronomy, giving us good reasons to anticipate unexpected discoveries. Second, because of E a r t h ' s significant radio interference, the lunar far side may well be the only site accessible that enables sensitive galactic / extra-galactic VLF observations. Finally, an array of short dipole antennas is one the most technologically feasible observatories to be placed and operated on the Moon. The motivations for a lunar based VLF array is detailed in the first section. The second section provides a review of the foregoing effort and a summary of the consensus to date. To make this dream into a reality, we identify the next required steps in the third section. We must f i r s t address any unresolved issues, especially concerning the lunar environmental factors like the ionosphere density. We should make the most out of the upcoming lunar missions by proposing relevant measurements. Most importantly, we should begin proposing our first array now. C o n s i d e r i n g the limited budget, the first realistic surface array will be deployed as a piggyback payload to early landers on the lunar south pole. The side of the Malapert Mountain that is facing away from Earth may be a good radio-quiet site. To address issues relevant to the lunar VLF array project, we have developed a general tool to simulate the propagation of radio waves in the lunar environment. In this study, we investigated (1) how well the Moon shields long-wavelength radio interference, (2) how the Malapert Mountain at the lunar south pole shields terrestrial radio interference, and (3) how the lunar surface environment i n f l u e n c e interferometric observations. These radio wave simulation studies and their results are presented in the fourth section. Finally, in the last section, we make recommendations for future missions and propose the first surface array to be deployed on the far side of the Malapert Mountain near the lunar south pole. To finalize the site and the design of the observatory, recommendations are presented for specific m e a s u r e m e n t s to be made by upcoming missions including SMART-1, LunarSat, and SELENE. It is especially critical to obtain detailed topology at candidate sites and to determine the electron d e n s i t y profile above the lunar surface at various times of the lunar month. Suggestions are given for a precursor orbiting array around 2010, a surface array on the lunar south pole around 2015, and ultimately a far side array around 2020. To realize the dream of gaining new views of the universe f r o m the Moon, it is time for an international team to begin seriously proposing these missions.

  7. Highlighting the history of French radio astronomy. 3: The Würzburg antennas at Marcoussis, Meudon and Nançay

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Lequeux, James; Steinberg, Jean-Louis; Delannoy, Jean

    2007-11-01

    During the 1940s and 1950s ex-World War II 7.5m Würzburg radar antennas played a crucial role in the early development of radio astronomy in a number of European nations. One of these was France, where three different antennas began to be used during the late 1940s. Two of these were associated with the École Normale Supérieure in Paris, and were initially sited at Marcoussis, near Paris, before being transferred to the Nançay field station in 1957. The third Würzburg antenna was used by staff from the Institut d'Astrophysique de Paris, and was installed at Meudon Observatory on the outskirts of Paris. This paper describes the three antennas, lists the personnel involved, discusses the observations made, evaluates the significance of this research in a national and international context, and comments on their current whereabouts.

  8. National Radio Astronomy Observatory: The early history and development of the observatory at Green Bank, West Virginia, are reviewed.

    PubMed

    Emberson, R M

    1959-11-13

    The existence of the National Radio Astronomy Observatory and the researches already accomplished there are the result of the foresight and wisdom of United States scientists, the National Science Board, and the Congress, who joined forces to make possible this new national asset. Continued effort will be needed td insure that the observatory will always have the finest possible research instruments and that the site will be a haven of radio quiet. Visiting scientists in some instances may wish to bring equipment with them for studying special problems. Within its means, the observatory will provide supporting facilities, including receivers and other electronic devices, computers, laboratories and shops, and housing. Scientists interested in more details concerning arrangements for visitors should direct their inquiries to the National Radio Astronomy Observatory, P. O. Box 2, Green Bank, West Virginia. PMID:17753091

  9. Development of an Experimental Phased Array Feed System and Algorithms for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Landon, Jonathan C.

    Phased array feeds (PAFs) are a promising new technology for astronomical radio telescopes. While PAFs have been used in other fields, the demanding sensitivity and calibration requirements in astronomy present unique new challenges. This dissertation presents some of the first astronomical PAF results demonstrating the lowest noise temperature and highest sensitivity at the time (66 Kelvin and 3.3 m^2/K, respectively), obtained using a narrowband (425 kHz bandwidth)prototype array of 19 linear co-polarized L-band dipoles mounted at the focus of the Green Bank 20 Meter Telescope at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. Results include spectral line detection of hydroxyl (OH) sources W49N and W3OH, and some of the first radio camera images made using a PAF, including an image of the Cygnus X region. A novel array Y-factor technique for measuring the isotropic noise response of the array is shown along with experimental measurements for this PAF. Statistically optimal beamformers (Maximum SNR and MVDR) are used throughout the work. Radio-frequency interference (RFI) mitigation is demonstrated experimentally using spatial cancelation with the PAF. Improved RFI mitigation is achieved in the challenging cases of low interference-to-noise ratio (INR) and moving interference by combining subspace projection (SP) beamforming with a polynomial model to track a rank 1 subspace. Limiting factors in SP are investigated including sample estimation error, subspace smearing, noise bias, and spectral scooping; each of these factors is overcome with the polynomial model and prewhitening. Numerical optimization leads to the polynomial subspace projection (PSP) method, and least-squares fitting to the series of dominant eigenvectors over a series of short term integrations (STIs) leads to the eigenvector polynomial subspace projection (EPSP) method. Expressions for the gradient, Hessian, and Jacobian are given for use in numerical optimization. Results are given for simulated and experimental data, demonstrating deeper beampattern nulls by 6 to 30dB. To increase the system bandwidth toward the hundreds of MHz bandwidth required by astronomers for a fully science-ready instrument, an FPGA digital backend is introduced using a 64-input analog-to-digital converter running at 50 Msamp/sec and the ROACH processing board developed at the University of California, Berkeley. International efforts to develop digital back ends for large antenna arrays are considered, and a road map is proposed for development of a hardware correlator/beamformer at BYU using three ROACH boards communicating over 10 gigabit Ethernet.

  10. Next Generation Very Large Array: Centimeter Radio Astronomy in the 2020s

    NASA Astrophysics Data System (ADS)

    Hughes, A. Meredith; Beasley, Anthony; Carilli, Christopher

    2015-08-01

    We discuss the future scientific discovery and technical challenges for cm radio studies, presenting calculations and simulations of the science of a next generation VLA (ngVLA), an array with vastly improved resolution and sensitivity relative to ALMA and JVLA, operating from ~1 GHz to 115 GHz, with an enhanced ability to image thermal objects on milliarcsecond scales, spanning thermal and non-thermal radio astronomy and bridging SKA and ALMA capabilities.Key areas of astrophysics where ngVLA can make new contributions include:- Probing deep into dusty protoplanetary disks, revealing terrestrial planet formation on AU-scales — regions that are opaque at shorter wavelengths. Observations in this wavelength range are critically required to study the poorly understood growth of dust into rocks.- Providing a census and imaging at kpc-scale resolution, of the cool molecular gas in distant galaxies. The ngVLA will be able to observe the lower order molecular transitions in high redshift, normal star forming galaxies, a key diagnostic for understanding the fuel driving the star formation history of the Universe.- Enabling an unprecedented, wide field imaging capability for nearby galaxies, over the cm frequency range covering key astrochemical tracers, including both thermal/non-thermal radio continuum emission.- Exploring the otherwise-unobservable deep atmospheres of the giant planets. In addition, the subsurfaces of other solar system bodies (e.g. icy satellites, TNOs, comets, asteroids) can be probed via thermal emission and radar remote sensing.- Allowing major improvements in synoptic, astrometric and transient/time-domain measurements at cm wavelengths of a wide variety of active sources, including Fast Radio Bursts, AGNs, pulsars and x-ray binaries.Led by NRAO, work to address the technical challenges for the ngVLA is underway. Areas currently under investigation include: low cost antennas, ultra-wide band feeds and receivers, broad band data transmission, and large N correlators. Minimizing operations costs is also being incorporated into the fundamental design of the array.

  11. New Mexico Fiber-Optic Link Marks Giant Leap Toward Future of Radio Astronomy

    NASA Astrophysics Data System (ADS)

    1998-12-01

    SOCORRO, NM -- Scientists and engineers at the National Radio Astronomy Observatory (NRAO) have made a giant leap toward the future of radio astronomy by successfully utilizing the Very Large Array (VLA) radio telescope in conjunction with an antenna of the continent-wide Very Long Baseline Array (VLBA) using the longest fiber-optic data link ever demonstrated in radio astronomy. The 65-mile fiber link will allow scientists to use the two National Science Foundation (NSF) facilities together in real time, and is the first step toward expanding the VLA to include eight proposed new radio-telescope antennas throughout New Mexico. LEFT: Miller Goss, NRAO's director of VLA/VLBA Operations, unveils graphic showing success of the Pie Town-VLA fiber link. The project, funded by the NSF and Associated Universities, Inc. (AUI), which operates NRAO for the NSF, links the VLA and the VLBA antenna in Pie Town, NM, using a Western New Mexico Telephone Co. fiber-optic cable. The successful hookup was announced at a ceremony that also marked the 10th anniversary of NRAO's Operations Center in Socorro. "Linking the Pie Town antenna to the VLA quadruples the VLA's ability to make detailed images of astronomical objects," said Paul Vanden Bout, NRAO's Director. "This alone makes the link an advance for science, but its greater importance is that it clearly demonstrates the technology for improving the VLA's capabilities even more in the future." "Clearly, the big skies and wide open spaces in New Mexico create near perfect conditions for the incredible astronomical assets located in our state. This new fiber-optic link paves the way for multiplying the already breathtaking scientific capabilities of the VLA," Senator Pete Domenici (R-NM) said. The VLA is a system of 27 radio-telescope antennas distributed over the high desert west of Socorro, NM, in the shape of a giant "Y." Made famous in movies, commercials and numerous published photos, the VLA has been one of the most productive and versatile astronomical observatories in the world since its dedication in 1980. The VLBA is a continent-wide system of 10 radio telescopes distributed across the continental United States, Hawaii and St. Croix in the Caribbean. In both the VLA and VLBA, the cosmic radio waves received by each antenna are combined with those received from every other antenna in the system to produce images with extremely great resolving power, or ability to see fine detail. The more widely separated the antennas, the greater the resolving power. The greatest separation between antennas of the VLA is 20 miles; in the VLBA, 5,000 miles. If your eyes could see the same level of detail as the VLA, you could, at the distance from New York to Los Angeles, make out an object the size of a small car. With the resolving power of the VLBA, you could read the owner's manual. The VLBA can make images hundreds of times more detailed than those available from the Hubble Space Telescope. However, because of the way in which such multi-antenna radio telescopes, called interferometers, work, there is a gap between the levels of detail obtainable with the VLA and the VLBA. Linking the VLA to the VLBA Pie Town antenna is the first step toward filling in that gap and allowing astronomers to see all scales of structure -- small, medium-sized, and large -- in objects such as stars, galaxies and quasars. Additional antennas, distributed throughout New Mexico, would fully fill that gap. Adding the new antennas to the VLA "would provide the capability to image astronomical objects on all spatial scales, from the very largest to the very smallest. The combination of the VLA and VLBA then would be the only single instrument in astronomy covering such a range of spatial scales, and thus a tool of great and unique value to science," said Vanden Bout. LEFT: NRAO Director Paul Vanden Bout, left, speaks with U.S. Senator Pete Domenici, right, following the ceremony at the Array Operations Center in Socorro Dec. 15. Nobel Laureate Robert Wilson is in the ba

  12. PULSE@Parkes, Engaging Students through Hands-On Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Hollow, Robert; Hobbs, George; Shannon, Ryan M.; Kerr, Matthew

    2015-08-01

    PULSE@Parkes is an innovative, free educational program run by CSIRO Astronomy and Space Science (CASS) in which high school students use the 64m Parkes radio telescope remotely in real time to observe pulsars then analyse their data. The program caters for a range of student ability and introduces students to hands-on observing and radio astronomy. Students are guided by professional astronomers, educators and PhD students during an observing session. They have ample time to interact with the scientists and discuss astronomy, careers and general scientific questions. Students use a web-based module to analyse pulsar properties. All data from the program are streamed via a web browser and are freely available from the online archive and may be used for open-ended student investigations. The data are also used by the team for ongoing pulsar studies with two scientific papers published to date.Over 100 sessions have been held so far. Most sessions are held at CASS headquarters in Sydney, Australia but other sessions are regularly held in other states with partner institutions. The flexibility of the program means that it is also possible to run sessions in other countries. This aspect of the program is useful for demonstrating capability, engaging students in diverse settings and fostering collaborations. The use of Twitter (@pulseatparkes) during allows followers worldwide to participate and ask questions.Two tours of Japan plus sessions in the UK, Netherlands and Canada have reached a wide audience. Plans for collaborations in China are well underway with the possibility of use with other countries also being explored. The program has also been successfully used in helping to train international graduate students via the International Pulsar Timing Array Schools. We have identified strong demand and need for programs such as this for training undergraduate students in Asia and the North America in observing and data analysis techniques so one area of planned development is teaching materials and a package for students at this level. The program has also been used to inform the development of educational programs for new telescopes such as the Australian SKA Pathfinder (ASKAP) and the SKA.http://pulseatparkes.atnf.csiro.au/

  13. Designing a new Geodetic Research Data Management System for the Hartebeesthoek Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Coetzer, Glend Lorraine

    2015-08-01

    The Hartebeesthoek Radio Astronomy Observatory (HartRAO) participates in astronomic, astrometric and geodetic Very Long Baseline Interferometry (VLBI) observations using both 26- and 15-m diameter radio telescopes. Geodetic data from a Satellite Laser Ranger (SLR), Global Navigation Satellite System (GNSS), Met4 weather stations and a new seismic vault network must be stored at HartRAO and made available to the scientific community. Some data are e-transferred to correlators, analysis centres and space geodesy data providers, while some data are processed locally to produce basic data products. The new South African co-located seismology network of seismic and GNSS instrumentation will generate large volumes of raw data to be stored and archived at HartRAO. The current data storage systems are distributed and outdated, and management systems currently being used will also not be able to handle the additional large volumes of data. This necessitates the design and implementation of a new, modern research data management system which combines all the datasets into one database, as well as cater for current and future data volume requirements. The librarian’s expertise and knowledge will be used in the design and implementation of the new HartRAO Geodetic Research Data Management System (GRDMS). The librarian’s role and involvement in the design and implementation of the new GRDMS are presented here. Progress to date will also be discussed.

  14. New Book Recounts Exciting, Colorful History Of Radio Astronomy in Green Bank, West Virginia

    NASA Astrophysics Data System (ADS)

    2007-07-01

    A new book published by the National Radio Astronomy Observatory (NRAO) tells the story of the founding and early years of the Observatory at Green Bank, West Virginia. But it was Fun: the first forty years of radio astronomy at Green Bank, is not a formal history, but rather a scrapbook of early memos, recollections, anecdotes and reports. But it was Fun... is liberally illustrated with archival photographs. It includes historical and scientific papers from symposia held in 1987 and 1995 to celebrate the birthdays of two of the radio telescopes at the Observatory. Book cover The National Radio Astronomy Observatory was formed in 1956 after the National Science Foundation decided to establish an observatory in the eastern United States for the study of faint radio signals from distant objects in the Universe. But it was Fun... reprints early memos from the group of scientists who searched the mountains for a suitable site -- an area free from radio transmitters and other sources of radio interference -- "in a valley surrounded by as many ranges of high mountains in as many directions as possible," which was "at least 50 miles distant from any city or other concentration of people." The committee settled on Green Bank, a small village in West Virginia, and the book documents the struggles that followed to create a world-class scientific facility in an isolated area more accustomed to cows than computers. Groundbreaking at the Observatory, then a patchwork of farms and fields, took place in October 1957, only a few days after the launch of Sputnik by the Soviet Union. A year later, Green Bank's first telescope was dedicated, and the book contains a transcription of speeches given at that ceremony, when the Cold War, the space race and America's scientific stature were issues of the hour. The centerpiece of the new Observatory was to be a highly-precise radio telescope 140 feet in diameter, but it was expected that it would soon be surpassed by dishes of much greater size. The book reprints internal memos, reports, and recollections of astronomers who were there, as the initial elation turned to frustration when the 140 Foot Telescope project became mired in technical difficulties, plans for larger dishes were put on hold, and the scientific staff of the fledgling Observatory struggled to create a National Observatory with inadequate equipment in a very remote location. Articles by David Heeschen and John Findlay tell the story of the creation of the 300 Foot Telescope, at that time the largest in the world, which went from initial concept to full operation in only 23 months, and began a rich life of research that put the NRAO on the world scientific map. The 300 Foot Telescope was originally intended to be an interim instrument, but as documented in the book, demand for its use was so high that it was kept in operation long after its initial planned retirement, with regular upgrades and new generations of electronics. The sudden collapse of the 300 Foot Telescope on a calm evening after 26 years of operation shocked the astronomical community. But it was Fun... features dramatic first-hand accounts by the people who were there that night: the telescope operator who found himself under a falling structure; the Observatory staff who at first could not believe what happened, and those who worked during the night and into the next day to secure the area, preserve information on what happened, and deal with the rush of publicity. The book includes extensive photographs and the Executive Summary Report of the panel which was commissioned to investigate the collapse and its implication for the design of other large radio telescopes. But it was Fun... will appeal to a variety of audiences. Historians of science will be interested in the articles by David Heeschen, Gerald Tape, and Hugh van Horn, on the evolution of the concept of a National Observatory, and the difficulties of putting the concepts into practice in Green Bank. Those interested in astronomical discovery will find fascinating and highly personal a

  15. Prototyping scalable digital signal processing systems for radio astronomy using dataflow models

    NASA Astrophysics Data System (ADS)

    Sane, N.; Ford, J.; Harris, A. I.; Bhattacharyya, S. S.

    2012-05-01

    There is a growing trend toward using high-level tools for design and implementation of radio astronomy digital signal processing (DSP) systems. Such tools, for example, those from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER), are usually platform-specific, and lack high-level, platform-independent, portable, scalable application specifications. This limits the designer's ability to experiment with designs at a high-level of abstraction and early in the development cycle. We address some of these issues using a model-based design approach employing dataflow models. We demonstrate this approach by applying it to the design of a tunable digital downconverter (TDD) used for narrow-bandwidth spectroscopy. Our design is targeted toward an FPGA platform, called the Interconnect Break-out Board (IBOB), that is available from the CASPER. We use the term TDD to refer to a digital downconverter for which the decimation factor and center frequency can be reconfigured without the need for regenerating the hardware code. Such a design is currently not available in the CASPER DSP library. The work presented in this paper focuses on two aspects. First, we introduce and demonstrate a dataflow-based design approach using the dataflow interchange format (DIF) tool for high-level application specification, and we integrate this approach with the CASPER tool flow. Secondly, we explore the trade-off between the flexibility of TDD designs and the low hardware cost of fixed-configuration digital downconverter (FDD) designs that use the available CASPER DSP library. We further explore this trade-off in the context of a two-stage downconversion scheme employing a combination of TDD or FDD designs.

  16. Advances in Composite Reflectors: From X-Ray to Radio Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Connell, S. J.; Abusafieh, A. A.; Mehle, G. V.; Sheikh, D. A.; Giles, D. C.

    2000-12-01

    In recent years, Composite Optics, Inc. (COI) has made significant advances in the use of graphite fiber reinforced composite (GFRC) materials for astronomical instrument applications. The inherent low density, high stiffness, and thermal stability makes GFRC a natural candidate for many astronomy applications. In order to reap these inherent benefits in astronomical applications, basic research has focused on material and process improvement. This has been accompanied by the design, fabrication, and test of several prototype reflectors that cover a broad wavelength spectrum of astronomical interests. The results of, and applications for, these efforts are summarized in the following list. X-Ray Carrier Shell: Innovative composite process yields accuracy and moisture stability. Demonstrated by vacuum optical test of 6" Wolter-I shell. Applicable to Con-X, etc. Lightweight Mirror Substrate for Visible Astronomy: Composite/glass hybrid design. Areal density < 15 kg/m2. Demonstrated by cryo-optical test (to 35K) of 1.6m NMSD mirror. Applicable to NGST, etc. Polishable Composite Facesheet: Glass-like coating applied to composite. Polishable by conventional methods. Multiple six-inch substrates polished to 20 angstroms. Technology will enable future 5 kg/m2 visible to UV optics. 10 kg/m2 Submillimeter Reflector: Apertures to 5m possible with economical, all-composite mirror design, diffraction limited at 80 microns. Demonstrated with cryo-optical test (to 70K) of FIRST 2-meter prototype mirror. Applicable to FIRST and other IR astronomy. Large, Ultra-Stable Optical Support Structure: Uniform and near-zero CTE over broad dimensions. Demonstrated with cryo-optical test of 2-meter FIRST prototype. Applicable to NGST, SIM, LISSA. Ground Based Radio Telescope Reflector: Low-cost, accurate, stable, durable all-composite design for support structure & reflective surface. Demonstrated via fab & test of 3m adjustable and 5m static prototypes. Applicable to LMT, ALMA, etc. These recent accomplishments represent new enabling technologies to meet the needs of numerous astronomical instrument concepts. COI will soon transition two of these technologies to production (FIRST and LMT), while continuing to further the capability of composites with on-going research. COI gratefully acknowledges the financial and technical support of NASA and the NSF for these projects.

  17. Detection of dust impacts by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Evans, David R.

    1993-01-01

    The Planetary Radio Astronomy (PRA) instrument detected large numbers of dust particles during the Voyager 2 encounter with Neptune. The signatures of these impacts are analyzed in some detail. The major conclusions are described. PRA detects impacts from all over the spacecraft body, not just the PRA antennas. The signatures of individual impacts last substantially longer than was expected from complementary Plasma Wave Subsystem (PWS) data acquired by another Voyager experiment. The signatures of individual impacts demonstrate very rapid fluctuations in signal strength, so fast that the data are limited by the speed of response of the instrument. The PRA detects events at a rate consistently lower than does the Plasma Wave subsystem. Even so, the impact rate is so great near the inbound crossing of the ring plane that no reliable estimate of impact rate can be made for this period. The data are consistent with the presence of electrons accelerated by ions within an expanding plasma cloud from the point of impact. An ancillary conclusion is that the anomalous appearance of data acquired at 900 kHz appears to be due to an error in processing the PRA data prior to their delivery rather than due to overload of the PRA instrument.

  18. The Evolution of the National Radio Astronomy Observatory into a User Based Observatory

    NASA Astrophysics Data System (ADS)

    Kellerman, Kenneth I.; Bouton, E.

    2006-12-01

    The NRAO was conceived in the mid 1950s as a state-of-the-art facility to allow the United States to compete in the exciting radio astronomy discoveries then taking place in the U.K., the Netherlands and Australia. Otto Struve, the first NRAO director in Green Bank, was chosen to lead the Observatory research program. During Struve's tenure as director, nearly all of the research was carried out by NRAO staff members resident at the Green Bank Observatory. However, under Dave Heeschen, who served as NRAO Director from 1961 to 1978, the number of visitor programs gradually increased; the NRAO scientific staff become more involved in visitor support than in doing their own research, and users became more dependent on instruments and techniques developed by NRAO, often not even coming to the Observatory for their observations. Currently, about half of the observing time on NRAO facilities is allocated to observers from foreign institutions -institutions with which NRAO was built to compete.

  19. Radio Telescopes Extend Astronomy's Best "Yardstick," Provide Vital Tool for Unraveling Dark Energy Mystery

    NASA Astrophysics Data System (ADS)

    2009-06-01

    Radio astronomers have directly measured the distance to a faraway galaxy, providing a valuable "yardstick" for calibrating large astronomical distances and demonstrating a vital method that could help determine the elusive nature of the mysterious Dark Energy that pervades the Universe. Galaxy UGC 3789 Visible-light image of UGC 3789 CREDIT: STScI "We measured a direct, geometric distance to the galaxy, independent of the complications and assumptions inherent in other techniques. The measurement highlights a valuable method that can be used to determine the local expansion rate of the Universe, which is essential in our quest to find the nature of Dark Energy," said James Braatz, of the National Radio Astronomy Observatory (NRAO), who presented the work to the American Astronomical Society's meeting in Pasadena, California. Braatz and his colleagues used the National Science Foundation's Very Long Baseline Array (VLBA) and Robert C. Byrd Green Bank Telescope (GBT), and the Effelsberg Radio Telescope of the Max Planck Institute for Radioastronomy (MPIfR) in Germany to determine that a galaxy dubbed UGC 3789 is 160 million light-years from Earth. To do this, they precisely measured both the linear and angular size of a disk of material orbiting the galaxy's central black hole. Water molecules in the disk act as masers to amplify, or strengthen, radio waves the way lasers amplify light waves. The observation is a key element of a major effort to measure the expansion rate of the Universe, known as the Hubble Constant, with greatly improved precision. That effort, cosmologists say, is the best way to narrow down possible explanations for the nature of Dark Energy. "The new measurement is important because it demonstrates a one-step, geometric technique for measuring distances to galaxies far enough to infer the expansion rate of the Universe," said Braatz. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF The VLBA Very Long Baseline Array CREDIT: NRAO/AUI/NSF Dark Energy was discovered in 1998 with the observation that the expansion of the Universe is accelerating. It constitutes 70 percent of the matter and energy in the Universe, but its nature remains unknown. Determining its nature is one of the most important problems in astrophysics. "Measuring precise distances is one of the oldest problems in astronomy, and applying a relatively new radio-astronomy technique to this old problem is vital to solving one of the greatest challenges of 21st Century astrophysics," said team member Mark Reid of the Harvard-Smithsonian Center for Astrophysics (CfA). The work on UGC 3789 follows a landmark measurement done with the VLBA in 1999, in which the distance to the galaxy NGC 4258 -- 23 million light-years -- was directly measured by observing water masers in a disk of material orbiting its central black hole. That measurement allowed refinement of other, indirect distance-measuring techniques using variable stars as "standard candles." The measurement to UGC 3789 adds a new milepost seven times more distant than NGC 4258, which itself is too close to measure the Hubble Constant directly. The speed at which NGC 4258 is receding from the Milky Way can be influenced by local effects. "UGC 3789 is far enough that the speed at which it is moving away from the Milky Way is more indicative of the expansion of the Universe," said team member Elizabeth Humphreys of the CfA. Following the achievement with NGC 4258, astronomers used the highly-sensitive GBT to search for other galaxies with similar water-molecule masers in disks orbiting their central black holes. Once candidates were found, astronomers then used the VLBA and the GBT together with the Effelsberg telescope to make images of the disks and measure their detailed rotational structure, needed for the distance measurements. This effort requires multi-year observations of each galaxy. UGC 3789 is the first galaxy in the program to yield such a precise distance. Team member Cheng-Yu Kuo of the University of V

  20. Investigation of radio astronomy image processing techniques for use in the passive millimetre-wave security screening environment

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher T.; Hutchinson, Simon; Salmon, Neil A.; Wilkinson, Peter N.; Cameron, Colin D.

    2014-06-01

    Image processing techniques can be used to improve the cost-effectiveness of future interferometric Passive MilliMetre Wave (PMMW) imagers. The implementation of such techniques will allow for a reduction in the number of collecting elements whilst ensuring adequate image fidelity is maintained. Various techniques have been developed by the radio astronomy community to enhance the imaging capability of sparse interferometric arrays. The most prominent are Multi- Frequency Synthesis (MFS) and non-linear deconvolution algorithms, such as the Maximum Entropy Method (MEM) and variations of the CLEAN algorithm. This investigation focuses on the implementation of these methods in the defacto standard for radio astronomy image processing, the Common Astronomy Software Applications (CASA) package, building upon the discussion presented in Taylor et al., SPIE 8362-0F. We describe the image conversion process into a CASA suitable format, followed by a series of simulations that exploit the highlighted deconvolution and MFS algorithms assuming far-field imagery. The primary target application used for this investigation is an outdoor security scanner for soft-sided Heavy Goods Vehicles. A quantitative analysis of the effectiveness of the aforementioned image processing techniques is presented, with thoughts on the potential cost-savings such an approach could yield. Consideration is also given to how the implementation of these techniques in CASA might be adapted to operate in a near-field target environment. This may enable a much wider usability by the imaging community outside of radio astronomy and thus would be directly relevant to portal screening security systems in the microwave and millimetre wave bands.

  1. Highlighting the history of French radio astronomy. 4: Early solar research at the École Normale Supérieure, Narcoussis and Nançay

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Steinberg, Jean-Louis; Kundu, Mukul; Arsac, Jacques; Blum, Émile-Jacques; Boischot, André

    2009-11-01

    The first tentative steps in solar radio astronomy took place during the 1940s and early 1950s as physicists and engineers in a number of countries used recycled World War II equipment to investigate the flux levels and polarisation of solar bursts and emission from the quiet Sun, and sought to understand the connection between this emission and optical features in the solar photosphere and chromosphere. There was also an abiding interest in the terrestrial effects of this solar radio emission. Among these solar pioneers were French radio astronomers from the École Normale Supérieure in Paris. In this paper we review the early solar observations made by them from Paris, Marcoussis and Nançay prior to the construction of a number of innovative multi-element solar interferometers at the Nançay field station in the mid-1950s.

  2. Multi-messenger astronomy of gravitational-wave sources with flexible wide-area radio transient surveys

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Cregg C. Yancey, Brandon E. Bear, Bernadine Akukwe, Kevin Chen, Jayce Dowell, Jonathan D. Gough, Jonah Kanner, Kenneth Obenberger, Peter Shawhan, John H. Simonetti , Gregory B. Taylor , Jr-Wei Tsai

    2016-01-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg(2) sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.

  3. Multi-messenger Astronomy of Gravitational-wave Sources with Flexible Wide-area Radio Transient Surveys

    NASA Astrophysics Data System (ADS)

    Yancey, Cregg C.; Bear, Brandon E.; Akukwe, Bernadine; Chen, Kevin; Dowell, Jayce; Gough, Jonathan D.; Kanner, Jonah; Kavic, Michael; Obenberger, Kenneth; Shawhan, Peter; Simonetti, John H.; -Wei Tsai, Gregory B. Taylor, Jr.

    2015-10-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ?30 s time window and ?200–500 deg2 sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ?2. For some models, we also map the parameter space that may be constrained by non-detections.

  4. Multi-messenger astronomy of gravitational-wave sources with flexible wide-area radio transient surveys

    E-print Network

    Cregg C. Yancey; Brandon E. Bear; Bernadine Akukwe; Kevin Chen; Jayce Dowell; Jonathan D. Gough; Jonah Kanner; Michael Kavic; Kenneth Obenberger; Peter Shawhan; John H. Simonetti; Gregory B. Taylor; Jr-Wei Tsai

    2015-10-23

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of gravitational waves and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, LOFAR and MWA. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a $\\usim 30$ second time window and $\\usim 200 \\mendash 500 \\punits{deg}^{2}$ sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a \\emph{prompt} radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of $\\usim 2$. For some models, we also map the parameter space that may be constrained by non-detections.

  5. Ambient and Cryogenic, Decade Bandwidth, Low Noise Receiving System for Radio Astronomy Using Sinuous Antenna

    NASA Astrophysics Data System (ADS)

    Gawande, Rohit Sudhir

    Traditionally, radio astronomy receivers have been limited to bandwidths less than an octave, and as a result multiple feeds and receivers are necessary to observe over a wide bandwidth. Next generation of instruments for radio astronomy will benefit greatly from reflector antenna feeds that demonstrate very wide instantaneous bandwidth, and exhibit low noise behavior. There is an increasing interest in wideband systems from both the cost and science point of view. A wideband feed will allow simultaneous observations or sweeps over a decade or more bandwidth. Instantaneous wide bandwidth is necessary for detection of short duration pulses. Future telescopes like square kilometer array (SKA), consisting of 2000 to 3000 coherently connected antennas and covering a frequency range of 70 MHz to 30 GHz, will need decade bandwidth single pixel feeds (SPFs) along with integrated LNAs to achieve the scientific objectives in a cost effective way. This dissertation focuses on the design and measurement of a novel decade bandwidth sinuous-type, dual linear polarized, fixed phase center, low loss feed with an integrated LNA. A decade bandwidth, low noise amplifier is specially designed for noise match to the higher terminal impedance encountered by this antenna yielding an improved sensitivity over what is possible with conventional 50 O amplifiers. The self-complementary, frequency independent nature of the planar sinuous geometry results in a nearly constant beam pattern and fixed phase center over more than a 10:1 operating frequency range. In order to eliminate the back-lobe response over such a wide frequency range, we have projected the sinuous pattern onto a cone, and a ground plane is placed directly behind the cone's apex. This inverted, conical geometry assures wide bandwidth operation by locating each sinuous resonator a quarter wavelength above the ground plane. The presence of a ground plane near a self complementary antenna destroys the self complementary nature of the composite structure resulting in frequency dependent impedance variations. We demonstrate, using simulations and measurements, how the return loss can be improved by modifying the sinuous geometry. The feed-LNA combination is characterized for important properties such as return loss, system noise, far field beam patterns including cross-polarization over a wide frequency range. The system is developed as a feed for a parabolic reflector. The overall system performance is calculated in terms of the A/Tsys ratio. A cryogenic version would have a direct impact on specialized observing applications requiring large instantaneous bandwidths with high sensitivity. A novel cryogenic implementation of this system is demonstrated using a Stirling cycle, one-stage refrigerator. The cryocooler offers advantages like low cost, light weight, small size, low power consumption, and does not require routine maintenance. The higher antenna input impedance and a balanced feeding method for the sinuous antenna offers a unique set of challenges when developing a cryogenic system.

  6. High Data Rate Transmission in High Resolution Radio Astronomy using International Academic Networks - vlbiGRID

    NASA Astrophysics Data System (ADS)

    Hughes-Jones, Richard; Spencer, Ralph; Parsley, Steve

    Recent developments in Very Long Baseline Interferometry (VLBI) radio astronomy are aimed at improving reliability and reducing the cost of operations by moving from a custom made tape based system to using exchangeable disks in PCs, and then linking the Telescopes with the Correlator using the internet. This paper describes the work done to investigate the possibility of transmitting VLBI data over the production academic networks. VLBI data was sent from a server at Manchester, over the Net North West Metropolitan Network, MAN, and onto the UK Academic Network, SuperJANET4. The GÉANT backbone provided the international connectivity between the UK and SURFnet, the academic network in the Netherlands, and this in turn was connected to servers in Amsterdam and Dwingeloo that acted as data sinks. These tests were demonstrated at the iGrid2002 exhibition held in Amsterdam in September 2002 and at the European Research 2002 exhibition in Brussels in November 2002 which marked the launch of the European Union Framework 6 Initiative. Collaboration with UKERNA, SURFnet and Dante together with the availability of high data rate international links gave us the opportunity to try transferring the data via the production internet. The tests were successful achieving data rates from Manchester of 500 Mbps over the production network. This was the first demonstration of fibre-optic link connected international VLBI. Discussion and details of the UDP/IP transfer mechanisms used are presented together with network performance measurements made during the tests. The effect of operating with different Quality of Service traffic on the backbone is also presented. The VLBI Demonstration confirmed that the end hosts must have sufficient power in both compute cycles and input/output capability; the requirements for operation at Gigabit speeds will be shown. Some recent measurements made on modern server-quality PC motherboards and Network Interface Cards are also presented.

  7. Multi-messenger astronomy of gravitational-wave sources with flexible wide-area radio transient surveys

    E-print Network

    Yancey, Cregg C; Akukwe, Bernadine; Chen, Kevin; Dowell, Jayce; Gough, Jonathan D; Kanner, Jonah; Kavic, Michael; Obenberger, Kenneth; Shawhan, Peter; Simonetti, John H; Taylor, Gregory B; Tsai, Jr-Wei

    2015-01-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of gravitational waves and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, LOFAR and MWA. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a $\\usim 30$ second time window and $\\usim 200 \\mendash 500 \\punits{deg}^{2}$ sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio array...

  8. The history of early low frequency radio astronomy in Australia. 3: Ellis, Reber and the Cambridge field station near Hobart

    NASA Astrophysics Data System (ADS)

    George, Martin; Orchiston, Wayne; Slee, Bruce; Wielebinski, Richard

    2015-07-01

    Low frequency radio astronomy in Tasmania began with the arrival of Grote Reber to the State in 1954. After analysing ionospheric data from around the world, he concluded that Tasmania would be a very suitable place to carry out low frequency observations. Communications with Graeme Ellis in Tasmania, who had spent several years studying the ionosphere, led to a collaboration between the two in 1955 during which year they made observations at Cambridge, near Hobart. Their observations took place at four frequencies between 2.13 MHz and 0.52 MHz inclusive, with the results at the higher frequencies revealing a clear celestial component

  9. The Eclipsing Radio Emission of the Precataclysmic Binary Institute of Astronomy & Astrophysics, Academia Sinica,

    E-print Network

    White, Stephen

    The Eclipsing Radio Emission of the Precataclysmic Binary V471 Tau Jeremy Lim Institute confirming the presence of eclipses in the centime­ ter radio emission of the eclipsing binary V471 Tau eclipse per orbit: in all we observed one near--complete radio eclipse, the ingress phase of two other

  10. Development of Radio Astronomy at Centre for Basic Space Science Observatory, Nsukka Nigeria

    NASA Astrophysics Data System (ADS)

    Aliyu, Nasiru; Okere, Bonaventure I.; Lanre, Daniyan O.; Ezechi, Nwachukwu E.

    2015-08-01

    Radio telescopes for research, teaching and learning at Centre for Basic Space Science (CBSS) observatory are currently in place of development. A small parabolic radio telescope with diameter of 3.0 m working at 1420 MHz is already available for general purpose of radio astronomical observations. In addition, a Radio Jove telescope with dual dipole antenna working at 20 MHz and Sudden Ionospheric Disturbance (SID) monitor working at 24 KHz are also available. It is suitable to monitor daily solar burst, solar flares as well as Jupiter decametric emission. More over, CBSS radio interferometers are now under construction. It consists of non-tracking Radio Jove array and SID monitor as well as two radio telescope tracking interferometers. The latter is planned to utilize up to 4 antennas. Multi frequency receivers are made available at 24 KHz, 20 and 1420 MHz and will be used for VLBI in the near future.

  11. Highlighting the history of French radio astronomy. 2: The solar eclipse observations of 1949-1954

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Steinberg, Jean-Louis

    2007-03-01

    During the 1940s and early 1950s radio astronomers from a number of nations used observations of total and partial solar eclipses to investigate the positions of radio-emitting regions and to determine the distribution of radio emission across the solar disk. Between 1949 and 1954 French radio astronomers from the Ecole Normale Supérieure and the Institute of Astrophysics between them mounted four successful eclipse expeditions to Africa and northern Europe. This short paper lists the personnel involved, discusses their instrumentation, describes the observations made, and evaluates the significance of these observations in an international context.

  12. Discovering astronomy

    NASA Technical Reports Server (NTRS)

    Chapman, R. D.

    1978-01-01

    An overview of basic astronomical knowledge is presented with attention to the structure and dynamics of the stars and planets. Also dealt with are techniques of astronomical measurement, e.g., stellar spectrometry, radio astronomy, star catalogs, etc. Basic physical principles as they pertain to astronomy are reviewed, including the nature of light, gravitation, and electromagnetism. Finally, stellar evolution and cosmology are discussed with reference to the possibility of life elsewhere in the universe.

  13. The Astronomical Low Frequency Array: A Proposed Explorer Mission for Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Jones, D.; Allen, R.; Basart, J.; Bastian, T.; Bougeret, J. L.; Dennison, B.; Desch, M.; Dwarakanath, K.; Erickson, W.; Finley, D.; Kaiser, M.; Kassim, N.; Kuiper, T.; MacDowall, R.; Mahoney, M.; Perley, R.; Preston, R.; Reiner, M.; Rodriguez, P.; Stone, R.; Unwin, S.; Weiler, K.; Woan, G.; Woo, R.

    1999-01-01

    A radio interferometer array in space providing high dynamic range images with unprecedented angular resolution over the broad frequency range from 0.030 - 30 MHz will open new vistas in solar, terrestial, galactic, and extragalactic astrophysics.

  14. Automatic Mapping of Real Time Radio Astronomy Signal Processing Pipelines onto Heterogeneous Clusters

    E-print Network

    Filiba, Terry

    2013-01-01

    the SETI (Search for Extraterrestrial Intelligence) effortIn the search for extraterrestrial intelligence (SETI), theSearch for Extraterrestrial Radio Emissions from Nearby Developed Intelligent Populations, aims to find extraterrestrial intelligence

  15. Source counts at 5 gigahertz from the MG survey. [radio astronomy

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Lawrence, C. R.; Burke, B. F.

    1985-01-01

    The MIT-Green Bank (MG) radio survey (reported by Bennett and colleagues in 1984 and 1985) is the largest 5 GHz survey to date. In this paper the source counts from the MG survey are examined. They are consistent with past measurements, but due to the large size of the MG survey the Poisson errors have been reduced. Radio source evolution models (such as that reported by Condon in 1984) are consistent with these new measurements.

  16. A 5 Giga Samples Per Second 8-Bit Analog to Digital Printed Circuit Board for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Jiang, Homin; Liu, Howard; Guzzino, Kim; Kubo, Derek; Li, Chao-Te; Chang, Ray; Chen, Ming-Tang

    2014-09-01

    We have designed, manufactured, and characterized an 8-bit 5 Giga samples per second (Gsps) ADC printed circuit board assembly (PCBA). An e2v EV8AQ160 ADC chip was used in the design and the board is plug compatible with the field programmable gate array (FPGA) board developed by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) community. Astronomical interference fringes were demonstrated across a single baseline pair of antennas using two ADC boards on the Yuan Tseh Lee Array for Microwave Background Anisotropy (AMiBA) telescope. Several radio interferometers are using this board for bandwidth expansion, such as Submillimeter Array; also, several experimental telescopes are building new spectrometers using the same board. The ADC boards were attached directly to the Reconfigurable Open Architecture Computing Hardware (ROACH-2) FPGA board for processing of the digital output signals. This ADC board provides the capability of digitizing radio frequency signals from DC to 2 GHz (3 dB bandwidth), and to an extended bandwidth of 2.5 GHz (5 dB) with derated performance. The following worst-case performance parameters were obtained over 2 GHz: spur free dynamic range (SFDR) of 44 dB, signal-to-noise and distortion (SINAD) of 35 dB, and effective number of bits (ENOB) of 5.5.

  17. Solar radioastronomy with the LOFAR (LOw Frequency ARray) radio telescope

    E-print Network

    White, Stephen

    (LOFAR) will be a radio astronomy interferometric array operating in the approximate fre- quency range 10 the solar science that LOFAR will address. Keywords: Low-frequency radio astronomy, Solar radio astronomy discoveries of radio astronomy took place; radio astronomy only migrated to the higher microwave frequencies

  18. The wideband backend at the MDSCC in Robledo. A new facility for radio astronomy at Q- and K-bands

    NASA Astrophysics Data System (ADS)

    Rizzo, J. R.; Pedreira, A.; Gutiérrez Bustos, M.; Sotuela, I.; Larrañaga, J. R.; Ojalvo, L.; Franco, M.; Cernicharo, J.; García-Miró, C.; Castro Cerón, J. M.; Kuiper, T. B. H.; Vázquez, M.; Calvo, J.; Baquero, A.

    2012-06-01

    Context. The antennas of NASA's Madrid Deep Space Communications Complex (MDSCC) in Robledo de Chavela are available as single-dish radio astronomical facilities during a significant percentage of their operational time. Current instrumentation includes two antennas of 70 and 34 m in diameter, equipped with dual-polarization receivers in K (18-26 GHz) and Q (38-50 GHz) bands, respectively. Until mid-2011, the only backend available in MDSCC was a single spectral autocorrelator, which provides bandwidths from 2 to 16 MHz. The limited bandwidth available with this autocorrelator seriously limited the science one could carry out at Robledo. Aims: We have developed and built a new wideband backend for the Robledo antennas, with the objectives (1) to optimize the available time and enhance the efficiency of radio astronomy in MDSCC; and (2) to tackle new scientific cases that were impossible to investigate with the existing autocorrelator. Methods: The features required for the new backend include (1) a broad instantaneous bandwidth of at least 1.5 GHz; (2) high-quality and stable baselines, with small variations in frequency along the whole band; (3) easy upgradability; and (4) usability for at least the antennas that host the K- and Q-band receivers. Results: The backend consists of an intermediate frequency (IF) processor, a fast Fourier transform spectrometer (FFTS), and the software that interfaces and manages the events among the observing program, antenna control, the IF processor, the FFTS operation, and data recording. The whole system was end-to-end assembled in August 2011, at the start of commissioning activities, and the results are reported in this paper. Frequency tunings and line intensities are stable over hours, even when using different synthesizers and IF channels; no aliasing effects have been measured, and the rejection of the image sideband was characterized. Conclusions: The new wideband backend fulfills the requirements and makes better use of the available time for radio astronomy, which opens new possibilities to potential users. The first setup provides 1.5 GHz of instantaneous bandwidth in a single polarization, using 8192 channels and a frequency resolution of 212 kHz; upgrades under way include a second FFTS card, and two high-resolution cores providing 100 MHz and 500 MHz of bandwidth, and 16 384 channels. These upgrades will permit simultaneous observations of the two polarizations with instantaneous bandwidths from 100 MHz to 3 GHz, and spectral resolutions from 7 to 212 kHz.

  19. Characterizing Interference in Radio Astronomy Observations through Active and Unsupervised Learning

    NASA Technical Reports Server (NTRS)

    Doran, G.

    2013-01-01

    In the process of observing signals from astronomical sources, radio astronomers must mitigate the effects of manmade radio sources such as cell phones, satellites, aircraft, and observatory equipment. Radio frequency interference (RFI) often occurs as short bursts (< 1 ms) across a broad range of frequencies, and can be confused with signals from sources of interest such as pulsars. With ever-increasing volumes of data being produced by observatories, automated strategies are required to detect, classify, and characterize these short "transient" RFI events. We investigate an active learning approach in which an astronomer labels events that are most confusing to a classifier, minimizing the human effort required for classification. We also explore the use of unsupervised clustering techniques, which automatically group events into classes without user input. We apply these techniques to data from the Parkes Multibeam Pulsar Survey to characterize several million detected RFI events from over a thousand hours of observation.

  20. Analysis of the Capability and Limitations of Relativistic Gravity Measurements Using Radio Astronomy Methods

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.; Counselman, C. C., III

    1975-01-01

    The uses of radar observations of planets and very-long-baseline radio interferometric observations of extragalactic objects to test theories of gravitation are described in detail with special emphasis on sources of error. The accuracy achievable in these tests with data already obtained, can be summarized in terms of: retardation of signal propagation (radar), deflection of radio waves (interferometry), advance of planetary perihelia (radar), gravitational quadrupole moment of sun (radar), and time variation of gravitational constant (radar). The analyses completed to date have yielded no significant disagreement with the predictions of general relativity.

  1. On the optimal frequency of observation of Cherenkov radiation in the radio astronomy method for measuring superhigh-energy cosmic-ray particle flux

    NASA Astrophysics Data System (ADS)

    Filonenko, A. D.

    2008-09-01

    Possible reasons for the absence of direct observations of individual events in measuring the super-high-energy particle flux by the radio astronomy technique are considered. One of these reasons is probably associated with the choice of extremely high frequencies (˜1.5 GHz) for detecting radio pulses. Calculations show that the radiation intensity attains its peak value at frequencies ˜500 600 MHz and then sharply decreases so that it becomes three orders of magnitude lower even at a frequency of ˜1.5 GHz. The effectiveness of particle detection in the range of high (˜600 MHz) and low (˜60 MHz) frequencies is analyzed.

  2. Astronomy Education In The Netherlands

    E-print Network

    Peletier, Reynier

    Astronomy Education In The Netherlands Course names are key words. Juli 2008 Masters research track Space-based Astronomy (5) 2 (6) 2 Radio Astronomy (6) 2 (6) 2 Interferometry (5) 2 (6) 2 Astronomical.5* Signal Processing 5 (6) 2 Data Mining (3) 2 Other History of Astronomy (6) 2 Inter Acadamic Course 6 6 6

  3. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    E-print Network

    Junklewitz, H; Selig, M; Enßlin, T A

    2013-01-01

    We present RESOLVE, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. RESOLVE not only estimates the measured sky brightness in total intensity, but also its spatial correlation structure, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. For a radio interferometer, it succeeds in deconvolving the effects of the instrumental point spread function during this process. Additionally, RESOLVE provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with RESOLVE we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Mu...

  4. Low noise, 0.4-3 GHz cryogenic receiver for radio astronomy.

    PubMed

    Gawande, R; Bradley, R; Langston, G

    2014-10-01

    We present the design and measurement of a radio telescope receiver front end cooled to 100 K physical temperature, and working over 400 MHz to 3 GHz frequency band. The system uses a frequency independent feed developed for operation as a feed for parabola using sinuous elements and integrated with an ultra-wideband low noise amplifier. The ambient temperature system is tested on the 43 m radio telescope in Green Bank, WV and the system verification results on the sky are presented. The cryogenic receiver is developed using a Stirling cycle, one stage cryocooler. The measured far field patterns and the system noise less than 80 K over a 5:1 bandwidth are presented. PMID:25362437

  5. Low noise, 0.4-3 GHz cryogenic receiver for radio astronomy

    NASA Astrophysics Data System (ADS)

    Gawande, R.; Bradley, R.; Langston, G.

    2014-10-01

    We present the design and measurement of a radio telescope receiver front end cooled to 100 K physical temperature, and working over 400 MHz to 3 GHz frequency band. The system uses a frequency independent feed developed for operation as a feed for parabola using sinuous elements and integrated with an ultra-wideband low noise amplifier. The ambient temperature system is tested on the 43 m radio telescope in Green Bank, WV and the system verification results on the sky are presented. The cryogenic receiver is developed using a Stirling cycle, one stage cryocooler. The measured far field patterns and the system noise less than 80 K over a 5:1 bandwidth are presented.

  6. Directions for Space-Based Low-Frequency Radio Astronomy 2. Telescopes

    NASA Astrophysics Data System (ADS)

    Basart, J. P.; Burns, J. O.; Dennison, B. K.; Weiler, K. W.; Kassim, N. E.; Castillo, S. P.; McCune, B. M.

    Astronomical studies of celestial sources at low radio frequencies (0.3 to 30 MHz) lag far behind the investigations of celestial sources at high radio frequencies. In a companion paper [Basart et al., this issue] we discussed the need for low-frequency investigations, and in this paper we discuss the telescopes required to make the observations. Radio telescopes for use in the low-frequency range can be built principally from ``off-the-shelf'' components. For relatively little cost for a space mission, great strides can be made in deploying arrays of antennas and receivers in space that would produce data contributing significantly to our understanding of galaxies and galactic nebulae. In this paper we discuss an evolutionary sequence of telescopes, antenna systems, receivers, and (u,v) plane coverage. The telescopes are space-based because of the disruptive aspects of the Earth's ionosphere on low-frequency celestial signals traveling to the Earth's surface. Orbiting antennas consisting of array elements deposited on a Kevlar balloon have strong advantages of nearly identical multiple beams over 4? steradians and few mechanical aspects in deployment and operation. The relatively narrow beam width of these antennas can significantly help reduce the ``confusion'' problem. The evolutionary sequence of telescopes starts with an Earth-orbiting spectrometer to measure the low-frequency radio environment in space, proceeds to a two-element interferometer, then to an orbiting array, and ends with a telescope on the lunar farside. The sequence is in the order of increasing capability which is also the order of increasing complexity and cost. All the missions can be accomplished with current technology.

  7. The antenna DSA 3 and its potential use for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Benaglia, P.; Casco, N.; Cichowolski, S.; Cillis, A.; García, B.; Ravignani, D.; Reynoso, E. M.; de la Vega, G.

    The European Space Agency (ESA) will inaugurate its third Deep Space Antenna (DSA 3) by the end of 2012. DSA 3 will be located in Argentina near the city of Malargüe in the Mendoza province. While the instrument will be primarily dedicated to communications with interplanetary mis- sions, the characteristics of its antenna and receivers will also enable stan- dalone leading scientific contributions, with a high scientific-technological return. We outline here scientific proposals for a radio astronomical use of DSA 3.

  8. 75 FR 47141 - Review of Personal Radio Services Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-04

    ...Coordinate WMTS operation with radio astronomy observatories and Federal Government...and that will be located near the radio astronomy observatories listed below, operation...the director of the affected radio astronomy observatory before the equipment...

  9. MOLECULAR CLOUDS AND CLUMPS IN THE BOSTON UNIVERSITY-FIVE COLLEGE RADIO ASTRONOMY OBSERVATORY GALACTIC RING SURVEY

    SciTech Connect

    Rathborne, J. M.; Johnson, A. M.; Jackson, J. M.; Shah, R. Y.; Simon, R. E-mail: alexj@bu.edu E-mail: ronak@bu.edu

    2009-05-15

    The Boston University-Five College Radio Astronomy Observatory (BU-FCRAO) Galactic Ring Survey (GRS) of {sup 13}CO J = 1 {yields} 0 emission covers Galactic longitudes 18{sup 0} < l < 55.{sup 0}7 and Galactic latitudes |b| {<=} 1{sup 0}. Using the SEQUOIA array on the FCRAO 14 m telescope, the GRS fully sampled the {sup 13}CO Galactic emission (46'' angular resolution on a 22'' grid) and achieved a spectral resolution of 0.21 km s{sup -1}. Because the GRS uses {sup 13}CO, an optically thin tracer, rather than {sup 12}CO, an optically thick tracer, the GRS allows a much better determination of column density and also a cleaner separation of velocity components along a line of sight. With this homogeneous, fully sampled survey of {sup 13}CO emission, we have identified 829 molecular clouds and 6124 clumps throughout the inner Galaxy using the CLUMPFIND algorithm. Here we present details of the catalog and a preliminary analysis of the properties of the molecular clouds and their clumps. Moreover, we compare clouds inside and outside of the 5 kpc ring and find that clouds within the ring typically have warmer temperatures, higher column densities, larger areas, and more clumps compared with clouds located outside the ring. This is expected if these clouds are actively forming stars. This catalog provides a useful tool for the study of molecular clouds and their embedded young stellar objects.

  10. Observations of electron gyroharmonic waves and the structure of the Io torus. [jupiter 1 spacecraft radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Alexander, J. K.; Desch, M. D.; Hubbard, R. F.; Pedersen, B. M.

    1980-01-01

    Narrow-banded emissions were observed by the Planetary Radio Astronomy experiment on the Voyager 1 spacecraft as it traversed the Io plasma torus. These waves occur between harmonics of the electron gyrofrequency and are the Jovian analogue of electrostatic emissions observed and theoretically studied for the terrestrial magnetosphere. The observed frequencies always include the component near the upper hybrid resonant frequency, (fuhr) but the distribution of the other observed emissions varies in a systematic way with position in the torus. A refined model of the electron density variation, based on identification of the fuhr line, is included. Spectra of the observed waves are analyzed in terms of the linear instability of an electron distribution function consisting of isotropic cold electrons and hot losscone electrons. The positioning of the observed auxiliary harmonics with respect to fuhr is shown to be an indicator of the cold to hot temperature ratio. It is concluded that this ratio increases systematically by an overall factor of perhaps 4 or 5 between the inner and outer portions of the torus.

  11. SkuareView: Client-Server Framework for Accessing Extremely Large Radio Astronomy Image Data

    E-print Network

    Kitaeff, Vyacheslav V; Wicenec, Andreas; Cannon, Andrew D; Vinsen, Kevin

    2012-01-01

    The new wide-field radio telescopes, such as: ASKAP, MWA, and SKA; will produce spectral-imaging data-cubes (SIDC) of unprecedented volume. This requires new approaches to managing and servicing the data to the end-user. We present a new integrated framework based on the JPEG2000/ISO/IEC 15444 standard to address the challenges of working with extremely large SIDC. We also present the developed j2k software, that converts and encodes FITS image cubes into JPEG2000 images, paving the way to implementing the pre- sented framework.

  12. Solar maximum mission: Ground support programs at the Harvard Radio Astronomy Station

    NASA Technical Reports Server (NTRS)

    Maxwell, A.

    1983-01-01

    Observations of the spectral characteristics of solar radio bursts were made with new dynamic spectrum analyzers of high sensitivity and high reliability, over the frequency range 25-580 MHz. The observations also covered the maximum period of the current solar cycle and the period of international cooperative programs designated as the Solar Maximum Year. Radio data on shock waves generated by solar flares were combined with optical data on coronal transients, taken with equipment on the SMM and other satellites, and then incorporated into computer models for the outward passage of fast-mode MHD shocks through the solar corona. The MHD models are non-linear, time-dependent and for the most recent models, quasi-three-dimensional. They examine the global response of the corona for different types of input pulses (thermal, magnetic, etc.) and for different magnetic topologies (for example, open and closed fields). Data on coronal shocks and high-velocity material ejected from solar flares have been interpreted in terms of a model consisting of three main velocity regimes.

  13. VLA observations of stellar planetary nebulae. [using Very Large Array at National Radio Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.; Balick, B.; Thompson, A. R.

    1979-01-01

    Coordinates, dimensions, 4885-MHz flux densities, and brightness temperatures of K3-2, NGC 6833, Ps 1, II 5117, Me 2-2, Hb 12, Vy 1-1, and M1-5 are reported. In two other cases, H3-29 and H3-75, confused extended structure was detected in which the nebula could not be identified with certainty. He 2-467, M1-2, and Peterson's H-alpha object in M15 were also included in the observations but not detected with an upper limit of less than 10 mJy. The observations are compared with some of the previous optical and radio data, such as log S(H-beta). Distances are computed from the present data with standard assumptions. Corresponding linear radii range below 0.1 pc, among the smallest in previous distributions of radius.

  14. Handbook of Space Astronomy and Astrophysics

    NASA Astrophysics Data System (ADS)

    Zombeck, Martin V.

    2006-11-01

    Foreword; Preface; 1. General data; 2. Astronomy and astrophysics; 3. Radio astronomy; 4. Infrared and submillimeter astronomy; 5. Ultraviolet astronomy; 6. X-ray astronomy; 7. Gamma-ray astronomy; 8. Cosmic rays; 9. Earth's atmosphere and environment; 10. Relativity and cosmology; 11. Atomic physics; 12. Electromagnetic radiation; 13. Plamsa physics; 14. Experimental astronomy and astrophysics; 15. Astronautics; 16. Mathematics; 17. Probability and statistics; 18. Radiation safety; 19. Astronomical catalogs; 20. Computer science; 21. Glossary of abbreviations and symbols; Appendices; Index.

  15. Absolute Calibration of the Radio Astronomy Flux Density Scale from 22 to 43 GHz using Planck

    NASA Astrophysics Data System (ADS)

    Butler, Bryan J.; Partridge, R. Bruce; Perley, Richard A.; Stevens, Jamie B.; Lopez-Caniego, Marcos; Rocha, Graca; Walter, Ben Z.; Zacchei, Andrea

    2015-01-01

    The Planck mission detected hundreds of extragalactic radio sources at frequencies from 28 to 857 GHz. Since Planck's calibration is absolute, based on the satellite's annual motion around the Sun, and since its beams are well-characterized at the sub-percent levels, Planck's flux density measurements are absolute to percent-level accuracy. We have made coordinated Planck, VLA and ATCA observations of ~60 strong, unresolved sources in order to compare Planck's absolute calibration to that used by these two interferometers at 22, 28 and 43 GHz. The flux densities of the sources used to calibrate the VLA observations are taken from Perley and Butler (2013), which is fundamentally based on models of the planet Mars calibrated via WMAP observations. The flux densities of the sources used to calibrate the ATCA observations are based on models of the planet Uranus. Despite the scatter introduced by the variability of many of the sources, the three flux density scales are determined to agree to 1-2% accuracy.

  16. Peta-Flop Real Time Radio Astronomy Signal Processing Instrumentation and the CASPER Collaboration

    NASA Astrophysics Data System (ADS)

    Werthimer, Dan

    2014-04-01

    I will briefly describe next generation radio telescopes, such as HERA and the Square Kilometer Array (SKA), which will require 1E15 to 1E17 operations per second of real time processing. I'll present some of the new architectures we've used to develop a variety of heterogeneous FPGA-GPU-CPU based signal processing systems for such telescopes, including spectrometers, correlators, and beam formers. I will also describe the CASPER collaboration, which has developed architectures, open source programming tools, libraries and reference designs that make it relatively easy to develop a variety of scalable, upgradeable, fault tolerant, low power, real time digital signal processing instrumentation. CASPER utilizes commercial 10Gbit and 40 Gbit ethernet switches to interconnect open source general purpose field programmable gate array (FPGA) boards with GPUs and software modules. CASPER collaborators at hundreds of universities, government labs and observatories have used these techniques to rapidly develop and deploy a variety of correlators, beamformers, spectrometers, pulsar/transient machines, and VLBI instrumentation. CASPER instrumentation is also utilized in physics, medicine, genomics and engineering. Open source source hardware, software, libraries, tools, tutorials, reference designs, information about workshops, and how to join the collaboration are available at http://casper.berkeley.edu

  17. Digital Signal Processing Using Stream High Performance Computing: A 512-Input Broadband Correlator for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Kocz, J.; Greenhill, L. J.; Barsdell, B. R.; Price, D.; Bernardi, G.; Bourke, S.; Clark, M. A.; Craig, J.; Dexter, M.; Dowell, J.; Eftekhari, T.; Ellingson, S.; Hallinan, G.; Hartman, J.; Jameson, A.; MacMahon, D.; Taylor, G.; Schinzel, F.; Werthimer, D.

    2015-03-01

    A "large-N" correlator that makes use of Field Programmable Gate Arrays and Graphics Processing Units has been deployed as the digital signal processing system for the Long Wavelength Array station at Owens Valley Radio Observatory (LWA-OV), to enable the Large Aperture Experiment to Detect the Dark Ages (LEDA). The system samples a ˜ 100 MHz baseband and processes signals from 512 antennas (256 dual polarization) over a ˜ 58 MHz instantaneous sub-band, achieving 16.8 Tops s-1 and 0.236 Tbit s-1 throughput in a 9 kW envelope and single rack footprint. The output data rate is 260 MB s-1 for 9-s time averaging of cross-power and 1 s averaging of total power data. At deployment, the LWA-OV correlator was the largest in production in terms of N and is the third largest in terms of complex multiply accumulations, after the Very Large Array and Atacama Large Millimeter Array. The correlator's comparatively fast development time and low cost establish a practical foundation for the scalability of a modular, heterogeneous, computing architecture.

  18. Solar radioastronomy with the LOFAR (LOw Frequency ARray) radio telescope

    E-print Network

    White, Stephen

    Array (LOFAR) will be a radio astronomy interferometric array operating in the approximate fre­ quency and discuss the solar science that LOFAR will address. Keywords: Low­frequency radio astronomy, Solar radio discoveries of radio astronomy took place; radio astronomy only migrated to the higher microwave frequencies

  19. Millimetre-Wave Spectrum of Isotopologues of Ethanol for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Walters, Adam; Schäfer, Mirko; Ordu, Matthias H.; Lewen, Frank; Schlemmer, Stephan; Müller, Holger S. P.

    2015-06-01

    Complex molecules have been identified in star-forming regions and their formation is linked to the specific physical and chemical conditions there. They are suspected to form a role in the origins of life. Amongst these, ethanol is a fairly abundant molecule in warmer regions. For this reason, we have recently carried out laboratory measurements and analyses of the rotational spectra of the three mono-substituted deuterium isotopologues of ethanol (one of which, CH_2DCH_2OH, exists as two distinct conformers according to the position of the deuterium atom with respect to the molecular skeleton). Measurements were taken between 35-500 GHz, allowing accurate predictions in the range of radio telescopes. We have concentrated on the lowest energy anti conformers. The dataset was constrained for fitting with a standard Watson-S reduction Hamiltonian by rejecting transitions from high-lying states, which appear to be perturbed by the gauche states, and by averaging some small methyl torsional splits. This treatment is compatible with the needs for a first search in the interstellar medium, in particular in spectra taken by ALMA. For this purpose an appropriate set of predictions will be included on the Cologne Database for Molecular Spectroscopy. Previous results on the two mono-substituted 13C isotopologues which led to a tentative detection in Sgr B2(N) will be briefly summarized and compared with the latest measurements. The usefulness of studying different isotopologues in the interstellar medium will also be rapidly addressed. Bouchez et al, JQSRT 113 (11), pp. 1148-1154, 2012. Belloche et al. A&A 559, id.A47, 187pp., 2013.

  20. Studies in laboratory spectroscopy and radio astronomy: From simple hydrides to complex organic molecules

    NASA Astrophysics Data System (ADS)

    Halfen, Dewayne Terrence

    2006-08-01

    There are two main objectives for this thesis. First, laboratory rotational spectra of metal-containing molecules were measured using the millimeter-wave spectrometers of the Ziurys group. Second, radio astronomical observations were performed on a number of the molecules measured in the laboratory, along with several organic species. The laboratory work is essential to the discovery of new molecules in the interstellar medium, and the understanding of the chemical composition of the universe. Identification of these species can only occur after their pure rotational spectra have been measured. Therefore, an investigation of the rotational spectra of several classes of molecules was performed including metal-bearing hydrides, chlorides, carbon-containing species, and molecular ions. The experimental measurements were aided by necessary improvements in the operation of the spectrometers. Many of these species had not been observed by any spectroscopic technique, including CaC, CuCH 3 , FeCO + and VCl + . Several of these molecules exhibited unusual interactions that complicated the analysis of their spectra, such as VCl, TiCl + , VCl + , and FeCO + . Synthesis of these species required exotic production techniques, including the use of Broida ovens and AC and DC discharges. Astronomical observations of several of the molecules studied in the laboratory were conducted, and upper limits to the abundances obtained. Additional searches for more of the species studied are planned. A region in the Galactic center with a complex chemical composition called Sgr B2(N) was recognized through observations of N 2 O. Several organic species were then searched for in this source. The detection of the simple sugar glycolaldehyde was confirmed by observing all of the favorable transitions of this molecule in Sgr B2(N). A standard set of criteria for identifying complex organic molecules was drawn up as a result of this study. This investigation led to an attempt to confirm a larger sugar, dihydroxyacetone. Unfortunately the detection of this species was proven false, and a limit could be placed on the chemical complexity of this source.

  1. Broadband Upgrade for the 1.668-GHz (L-Band) Radio Astronomy Feed System on the DSN 70-m Antennas

    NASA Astrophysics Data System (ADS)

    Hoppe, D.; Khayatian, B.; Lopez, B.; Torrez, T.; Long, E.; Sosnowski, J.; Franco, M.; Teitelbaum, L.

    2015-08-01

    Currently, each of the three Deep Space Network (DSN) 70-m antennas provides a narrowband, 1.668-GHz (L-band) receive capability for radio astronomy observations. This capability is delivered by a large feedhorn mounted on the exterior of one of the feedcones. It provides a single polarization into a pair of redundant low-noise amplifiers. Recently, funding was obtained to upgrade this system to wideband (1.4-1.9 GHz) dual-polarization operation. This required development of a new feedhorn, polarizer, orthomode transducer (OMT), and waveguide transitions. In this article, we describe the design and laboratory testing of these components.

  2. 78 FR 25137 - Radio Experimentation and Market Trials-Streamlining Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ...91 Notification to the National Radio Astronomy Observatory. 5.95 Informal objections...passive services (including the radio astronomy service). Stations authorized under...91 Notification to the National Radio Astronomy Observatory. In order to minimize...

  3. Radio Observations of Rapidly Rotating F--M Dwarf Stars in the Institute of Astronomy & Astrophysics, Academia Sinica,

    E-print Network

    White, Stephen

    Radio Observations of Rapidly Rotating F--M Dwarf Stars in the Pleiades Jeremy Lim Institute, MD 20742, USA email: white@astro.umd.edu ABSTRACT We report deep 3.6 cm radio observations of six class from F9 to M0. This study, supplemented by our previous radio detections of three G8­ K2 dwarfs

  4. Astronomy research at the Aerospace Corporation. [research projects - NASA programs

    NASA Technical Reports Server (NTRS)

    Paulikas, G. A.

    1974-01-01

    This report reviews the astronomy research carried out at The Aerospace Corporation during 1974. The report describes the activities of the San Fernando Observatory, the research in millimeter wave radio astronomy as well as the space astronomy research.

  5. Automated radio astronomy operations

    NASA Technical Reports Server (NTRS)

    Livermore, R. W.

    1978-01-01

    The improvements in using a computer to drive a DSN 64-meter antenna are described. The development is used to simplify operation, improve antenna safety, reduce antenna wear, present the abuse of antenna by misoperation, increase quantity and quality of data gathered, and give users a greater choice of automatic operations.

  6. National Radio Astronomy Observatory

    E-print Network

    Groppi, Christopher

    the architecture of the program. The software runs five different threads to simulate five different ROACH-END ................................................................. 02 SOFTWARE PACKETIZER .................................................................. 03 TEST in the feed array. A PAF and a hardware backend for forming beams (referred to as beamformer) are being built

  7. The Green Bank Solar Radio Burst Spectrometer

    E-print Network

    White, Stephen

    National Radio Astronomy Observatory Technology Center 1180 Boxwood Estate Rd, Charlottesville, VA 22903 S at the Green Bank Site of the National Radio Astronomy Observatory in the National Radio Quiet Zone, where Radio Astronomy Observatory 520 Edgemont Rd, Charlottesville, VA 22903 R. A. Bradley & E. Mastrantonio

  8. 76 FR 6927 - Radio Experimentation and Market Trials Under Part 5 of the Commission's Rules and Streamlining...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ...91 Notification of the National Radio Astronomy Observatory. 5.95 Informal objections...passive services (including the radio astronomy service). (b) Each frequency or band...91 Notification of the National Radio Astronomy Observatory. In order to minimize...

  9. A Cryogenic Ultra-Low-Noise MMIC-based LNA with a discrete First Stage Transistor Suitable for Radio Astronomy Applications

    E-print Network

    McCulloch, Mark A; Piccirillo, Lucio

    2013-01-01

    In this paper a new design of MMIC based LNA is outlined. This design uses a discrete 100-nm InP HEMT placed in front of an existing InP MMIC LNA to lower the overall noise temperature of the LNA. This new approach known as the Transistor in front of MMIC (T+MMIC) LNA, possesses a gain in excess of 40dB and an average noise temperature of 9.4K compared to 14.5K for the equivalent MMIC-only LNA measured across a 27-33GHz bandwidth at a physical temperature of 8K. A simple ADS model offering further insights into the operation of the LNA is also presented and a potential radio astronomy application is discussed

  10. A Voyage through the Radio Universe

    ERIC Educational Resources Information Center

    Spuck, Timothy

    2004-01-01

    Each year, professionals and amateurs alike make significant contributions to the field of astronomy. High school students can also conduct astronomy research. Since 1992, the Radio Astronomy Research Team from Oil City Area Senior High School (OCHS) in Oil City, Pennsylvania, has traveled each year to the National Radio Astronomy Observatory…

  11. Deconvolution of images in centimeter-band radio astronomy for the exploitation of new radio interferometers: characterization of non thermal components in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Dabbech, A.

    2015-04-01

    Within the framework of the preparation for the Square Kilometre Array (SKA), that is the world largest radio telescope, new imaging challenges has to be conquered. The data acquired by SKA will have to be processed on real time because of their huge rate. In addition, thanks to its unprecedented resolution and sensitivity, SKA images will have very high dynamic range over wide fields of view. Hence, there is an urgent need for the design of new imaging techniques that are robust and efficient and fully automated. The goal of this thesis is to develop a new technique aiming to reconstruct a model image of the radio sky from the radio observations. The method have been designed to estimate images with high dynamic range with a particular attention to recover faint extended emission usually completely buried in the PSF sidelobes of the brighter sources and the noise. We propose a new approach, based on sparse representations, called MORESANE. The radio sky is assumed to be a summation of sources, considered as atoms of an unknown synthesis dictionary. These atoms are learned using analysis priors from the observed image. Results obtained on realistic simulations show that MORESANE is very promising in the restoration of radio images; it is outperforming the standard tools and very competitive with the newly proposed methods in the literature. MORESANE is also applied on simulations of observations using the SKA1 with the aim to investigate the detectability of the intracluster non thermal component. Our results indicate that these diffuse sources, characterized by very low surface brightness will be investigated up to the epoch of massive cluster formation with the SKA.

  12. Radio astronomy method for determining the energy and composition of a nucleus of ultrahigh-energy cosmic particle

    NASA Astrophysics Data System (ADS)

    Filonenko, A. D.; Filonenko, V. A.

    2011-02-01

    It is shown that, using broadband multirange antennas of two radio telescopes spaced by (5-10) × 103 km, it is possible to determine the energy of a cascade shower in lunar regolith and the composition of a primary cosmic particle provided that the shower was generated by a heavy nucleus.

  13. A scientific program for infrared, submillimeter and radio astronomy from space: A report by the Management Operations Working Group

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Important and fundamental scientific progress can be attained through space observations in the wavelengths longward of 1 micron. The formation of galaxies, stars, and planets, the origin of quasars and the nature of active galactic nuclei, the large scale structure of the Universe, and the problem of the missing mass, are among the major scientific issues that can be addressed by these observations. Significant advances in many areas of astrophysics can be made over the next 20 years by implementing the outlined program. This program combines large observatories with smaller projects to create an overall scheme that emphasized complementarity and synergy, advanced technology, community support and development, and the training of the next generation of scientists. Key aspects of the program include: the Space Infrared Telescope Facility; the Stratospheric Observatory for Infrared Astronomy; a robust program of small missions; and the creation of the technology base for future major observatories.

  14. A Multi-Feed Receiver in the 18 to 26.5 GHz Band for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Orfei, A.; Carbonaro, L.; Cattani, A.; Cremonini, A.; Cresci, L.; Fiocchi, F.; Maccaferri, A.; Maccaferri, G.; Mariotti, S.; Monari, J.; Morsiani, M.; Natale, V.; Nesti, R.; Panella, D.; Poloni, M.; Roda, J.; Scalambra, A.; Tofani, G.

    2010-08-01

    A large-bandwidth, state-of-the-art multi-feed receiver has been constructed to be used on the new 64 m Sardinia Radio Telescope (SRT) (http://www.srt.inaf.itl), an antenna aiming to work from 300 MHz to 100 GHz with an almost continuous frequency coverage. The goal of this new receiver is to speed up the survey of the sky with high sensitivity in a frequency band that is very interesting to radio astronomers. In the meantime, the antenna erection has been finalized, and the receiver has been mounted on the Medicina 32 m antenna to be tested (http://www.med.ira.inaf.itl). We present a complete description of the system, including a dedicated backend, and the results of the tests.

  15. Transactions IAU, Volume XXVIIIA Reports on Astronomy 2009-2012

    E-print Network

    Groppi, Christopher

    Transactions IAU, Volume XXVIIIA Reports on Astronomy 2009-2012 Ian Corbett, ed. c 2012 GROUP ON HISTORICAL RADIO ASTRONOMY CHAIR Kenneth Kellermann VICE-CHAIR Wayne Orchiston BOARD Rod Davies Woerden TRIENNIAL REPORT 2009-2012 1. Introduction The IAU Working Group on Historical Radio Astronomy

  16. Working Papers: Astronomy and Astrophysics Panel Reports

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Beichman, Charles A.; Canizares, Claude; Cronin, James; Heeschen, David; Houck, James; Hunten, Donald; Mckee, Christopher F.; Noyes, Robert; Ostriker, Jeremiah P.

    1991-01-01

    The papers of the panels appointed by the Astronomy and Astrophysics survey Committee are compiled. These papers were advisory to the survey committee and represent the opinions of the members of each panel in the context of their individual charges. The following subject areas are covered: radio astronomy, infrared astronomy, optical/IR from ground, UV-optical from space, interferometry, high energy from space, particle astrophysics, theory and laboratory astrophysics, solar astronomy, planetary astronomy, computing and data processing, policy opportunities, benefits to the nation from astronomy and astrophysics, status of the profession, and science opportunities.

  17. Astronomy Research Strategic Planning Vision 2015 Astronomy is entering an amazing era of giant new telescopes able to probe to the very limits of the

    E-print Network

    Schweik, Charles M.

    Astronomy Research ­ Strategic Planning Vision 2015 Astronomy is entering an amazing era of giant decade . Astronomy at UMass is a small department, yet it has a very successful research program. Our-wavelength astronomy, formerly with the Five College Radio Astronomy Observatory and now the Large Millimeter Telescope

  18. Flexible Filter Bank Based on an Improved Weighted Overlap-Add Algorithm for Processing Wide Bandwidth Radio Astronomy Signals

    NASA Astrophysics Data System (ADS)

    Wang, Xianhai; Meng, Qiao; Han, J. L.; Liu, Wei; Zhang, Jianwei

    2015-12-01

    Wideband signals from a radio telescope have to be channelized for spectral observations or for dedispersion for pulsar observations. A polyphase filter bank is designed based on the improved weighted overlap-add (IWOLA) algorithm to achieve channelization. The IWOLA algorithm involves applying an equivalent Hilbert transform to the normal WOLA filter bank by shifting the center frequency of every sub-band by a half of the frequency bin, so that the IWOLA filter bank provides K independently output complex subbands instead of the usual K + 1 sub-bands, reducing the subsequent processing units by one set. Performance of the proposed IWOLA filter bank is analyzed by means of MATLAB simulations. We show how the IWOLA filter bank can be used for a two-stage, high-resolution spectrometer, with a much reduced consumption of FPGA on-chip block RAM.

  19. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Zakharenko, V. V.; Ulyanov, O. M.

    2015-10-01

    An ultra-low-noise input amplifier intended for a use in a radio telescope operating at 91 cm wavelength is presented. The amplifier noise temperatures are 12.8 ± 1.5 and 10.0 ± 1.5 K at ambient temperatures of 293 and 263 K respectively. The amplifier does not require cryogenic cooling. It can be quickly put in operation thus shortening losses in the telescope observation time. High linearity of the amplifier (output power at 1 dB gain compression P1dB ? 22 dBm, output third order intercept point OIP3 ? 37 dBm) enables the telescope operation in highly urbanized and industrialized regions. To obtain low noise characteristics along with high linearity, high-electron-mobility field-effect transistors were used in parallel in the circuit developed. The transistors used in the amplifier are cost-effective and commercially available. The circuit solution is recommended for similar devices working in ultra-high frequency band.

  20. A Group Sparsity Imaging Algorithm for Transient Radio Sources Stephan Wengera

    E-print Network

    Magnor, Marcus

    Braunschweig, Germany b National Radio Astronomy Observatory, Socorro, NM 87801, USA Abstract RadioA Group Sparsity Imaging Algorithm for Transient Radio Sources Stephan Wengera , Urvashi Raub. Keywords: radio interferometry, compressed sensing, sparse recovery 1. Introduction Radio interferometers

  1. A Radio Transient 0.1 pc from Sagittarius A* Geoffrey C. Bower1

    E-print Network

    Bower, Geoffrey

    -rays: binaries 1 Astronomy Department & Radio Astronomy Laboratory, University of California, Berkeley, CA 94720 60208; doug- roberts,zadeh@northwestern.edu 4 National Radio Astronomy Observatory, Charlottesville, VA 22903; bcotton@nrao.edu 5 National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801; mgoss

  2. VRIJE UNIVERSITEIT AMSTERDAM Auto-tuning a LOFAR radio

    E-print Network

    van Nieuwpoort, Rob V.

    VRIJE UNIVERSITEIT AMSTERDAM Auto-tuning a LOFAR radio astronomy pipeline in JavaCL Author Jan Kis processing pipelines which is not limited to radio astronomy and can be easily extended to other fields as well. Since the com- putations in radio astronomy are suitable candidates for parallelization, we

  3. 4918 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 51, NO. 10, OCTOBER 2013 Radio Frequencies: Policy and Management

    E-print Network

    Long, David G.

    . I. Kellermann and A. R. Thompson are with the National Radio Astronomy Observatory is operated a summary of this framework for radio scientists and engineers. Index Terms--Radio astronomy, radioBoer is with the Radio Astronomy Laboratory, University of Cali- fornia at Berkeley, Berkeley, CA 94720 USA (e

  4. Early Astronomy

    NASA Astrophysics Data System (ADS)

    Thurston, Hugh

    The earliest investigations that can be called scientific are concerned with the sky: they are the beginnings of astronomy. Many early civilizations produced astronomical texts, and several cultures that left no written records left monuments and artifacts-ranging from rock paintings to Stonehenge-that show a clear interest in astronomy. Civilizations in China, Mesopotamia, India and Greece had highly developed astronomies, and the astronomy of the Mayas was by no means negligible. Greek astronomy, as developed by the medieval Arab philosophers, evolved into the astronomy of Copernicus. This displaced the earth from the central stationary position that almost all earlier astronomies had assumed. Soon thereafter, in the first decades of the seventeenth century, Kepler found the true shape of the planetary orbits and Galileo introduced the telescope for astronomical observations.

  5. Radio Emission from Cool Stars Stephen M. White

    E-print Network

    White, Stephen

    Radio Emission from Cool Stars Stephen M. White Dept. of Astronomy, University of Maryland, College Park MD 20742 Abstract. Recent developments in the study of radio emission from cool stars are reviewed. 1. Stars as Radio Sources The field of stellar radio astronomy would barely exist if active cool

  6. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  7. Astronomy Development in Nigeria: Challenges and Advances

    NASA Astrophysics Data System (ADS)

    Okwe Chibueze, James

    2015-01-01

    Nigeria evidently has huge potentials to develop a strong astronomy community. Much of the strength lies in the great number of intelligent students with the potential of becoming good astronomers. Sadly, astronomy development in Nigeria has stagnated in the past decades owing to poor funding and/or indifferent attitude of the funding bodies, research-unfriendly environment, and non-existence of facilities. Currently, efforts toward fuelling advancement in astronomy are focused on building 'critical mass', establishing collaborations with universities/astronomy institutes outside Nigeria, converting out-of-use communication antennas into radio telescopes, and acquiring out-of-use telescopes for educational and low-level research purposes.

  8. Intermediate Astronomy.

    ERIC Educational Resources Information Center

    Greenstone, Sid; Smith, Murray

    Selected materials needed to teach an astronomy unit as well as suggested procedures, activities, ideas, and astronomy fact sheets published by the Manitoba Planetarium are provided. Subjects of the fact sheets include: publications and classroom picture sets available from the National Aeronautics and Space Administration and facts and statistics…

  9. Primary Astronomy.

    ERIC Educational Resources Information Center

    Greenstone, Sid; Smith, Murray

    Selected materials needed to teach an astronomy unit as well as suggested procedures, activities, ideas, and astronomy fact sheets published by the Manitoba Planetarium are provided. Subjects of the fact sheets include: publications and classroom picture sets available from the National Aeronautics and Space Administration and facts and statistics…

  10. Multiwavelength Observations of the Second Largest Known FRII Radio Galaxy, NVSS 2146+82

    E-print Network

    Bridle, Alan

    H. Bridle National Radio Astronomy Observatory3 Steven R. Majewski4 & Craig L. Sarazin Department upper limits on 1NOAO WIYN Queue Investigator 2National Radio Astronomy Observatory Jansky Pre-Doctoral Fellow 3The National Radio Astronomy Observatory is a facility of the National Science Foundation

  11. DATA REDUCTION OF HYPERSPECTRAL RADIO-ASTRONOMICAL IMAGES FOR GALAXY CLUSTER SEGMENTATION

    E-print Network

    phenomenon in optical astronomy, they are commonly used for more than twenty years in radio astronomy- tant for whole astronomy. 1.1. Radio-lines observation Data cubes from radio line observations contain on a reduced dimension space by maximizing a given criterion. Principal co

  12. Astronomy in Iraq

    NASA Astrophysics Data System (ADS)

    Alsabti, A. W.

    2006-08-01

    The history of modern Iraqi astronomy is reviewed. During the early 1970's Iraqi astronomy witnessed significant growth through the introduction of the subject at university level and extensively within the school curriculum. In addition, astronomy was popularised in the media, a large planetarium was built in Baghdad, plus a smaller one in Basra. Late 1970 witnessed the construction of the Iraqi National Observatory at Mount Korek in Iraqi Kurdistan. The core facilities of the Observatory included 3.5-meter and 1.25-meter optical telescopes, and a 30-meter radio telescope for millimetre wavelength astronomy. The Iraqi Astronomical Society was founded and Iraq joined the IAU in 1976. During the regime of Saddam Hussain in the 1980's, the Observatory was attacked by Iranian artillery during the Iraq-Iran war, and then again during the second Gulf war by the US air force. Years of sanctions during the 1990's left Iraq cut off from the rest of the international scientific community. Subscriptions to astronomical journals were halted and travel to conferences abroad was virtually non-existent. Most senior astronomers left the country for one reason or another. Support from expatriate Iraqi astronomers existed (and still exists) however, this is not sufficient. Recent changes in Iraq, and the fall of Saddam's regime, has meant that scientific communication with the outside world has resumed to a limited degree. The Ministry of Higher Education in Baghdad, Baghdad University and the Iraqi National Academy of Science, have all played active roles in re-establishing Iraqi astronomy and re-building the damaged Observatory at Mount Korek. More importantly the University of Sallahudin in Erbil, capital of Iraqi Kurdistan, has taken particular interest in astronomy and the Observatory. Organized visits to the universities, and also to the Observatory, have given us a first-hand assessment of the scale of the damage to the Observatory, as well as the needs of astronomy teaching and research. Joint supervision for postgraduate level research was organized between local and Iraqi expatriate astronomers. The IAU was among the first international organizations to offer assistance. Many observatories worldwide have also given support. Plans will be proposed for re-building the Observatory, supporting teaching and research, and establishing an institute for astronomy in Erbil, together with further suggestions on how the international astronomical community can assist Iraqi astronomers.

  13. HIGH SENSITIVITY SIDEBAND-SEPARATING RECEIVERS FOR MILLIMETER ASTRONOMY: ACHIEVING THE ULTIMATE IN ASTROPHYSICAL SPECTROSCOPY

    E-print Network

    Ziurys, Lucy M.

    , AZ, 85721; and A. R. KERR, National Radio Astronomy Observatory, Charlottesville, VA. High resolution of the National Radio Astronomy Observatory (NRAO), new receiver architecture has been developed and put in use. RIELAND, R. W. FREUND, Arizona Radio Observatory, and Steward Observatory, University of Arizona, Tucson

  14. Sustainable Astronomy

    NASA Astrophysics Data System (ADS)

    Blaha, C.; Goetz, J.; Johnson, T.

    2011-09-01

    Through our International Year of Astronomy outreach effort, we established a sustainable astronomy program and curriculum in the Northfield, Minnesota community. Carleton College offers monthly open houses at Goodsell Observatory and donated its recently "retire" observing equipment to local schools. While public evenings continue to be popular, the donated equipment was underutilized due to a lack of trained student observing assistants. With sponsorship from NASA's IYA Student Ambassador program, the sustainable astronomy project began in 2009 to generate greater interest in astronomy and train middle school and high school students as observing assistants. Carleton physics majors developed curricular materials and instituted regular outreach programs for grades 6-12. The Northfield High School Astronomy Club was created, and Carleton undergraduates taught high school students how to use telescopes and do CCD imaging. During the summer of 2009, Carleton students began the Young Astronomers Summer Experience (YASE) program for middle school students and offered a two-week, astronomy-rich observing and imaging experience at Goodsell Observatory. In concert with NASA's Summer of Innovation initiative, the YASE program was offered again in 2010 and engaged a new group of local middle school students in hands-on scientific experiments and observing opportunities. Members of the high school astronomy club now volunteer as observing assistants in the community and graduates of the YASE programs are eager to continue observing as members of a public service astronomy club when they enter the Northfield High School. These projects are training future scientists and will sustain the public's interest in astronomy long after the end of IYA 2009.

  15. Islamic AstronomyIslamic Astronomy Topics covered

    E-print Network

    Aslaksen, Helmer

    Islamic AstronomyIslamic Astronomy #12;Topics covered ·· Islamic calendarIslamic calendar ·· types importance in the structure ofof kaabakaaba ·· problems in Islamic astronomyproblems in Islamic astronomy astronomyObservatories in Islamic astronomy #12;Islamic Calendar #12;Islamic Calendar The calendar is called

  16. Multiverso: Rock'n'Astronomy

    NASA Astrophysics Data System (ADS)

    Caballero, J. A.

    2012-05-01

    In the last few years, there have been several projects involving astronomy and classical music. But have a rock band ever appeared at a science conference or an astronomer at a rock concert? We present a project, Multiverso, in which we mix rock and astronomy, together with poetry and video art (Caballero, 2010). The project started in late 2009 and has already reached tens of thousands people in Spain through the release of an album, several concert-talks, television, radio, newspapers and the internet.

  17. Astronomy & Astrophysics manuscript no. ATLAS2.3GHz-catalogfinal c ESO 2012 June 28, 2012

    E-print Network

    Norris, Ray

    attempts to use this tool, whether in a wide, shallow layout (e.g. the National Radio Astronomy Observatory-scale radio surveys are the primary instrument in the tool- box of contemporary astronomy to investigateAstronomy & Astrophysics manuscript no. ATLAS2.3GHz-catalogfinal c ESO 2012 June 28, 2012

  18. Radio Science, Volume ???, Number , Pages 15, Radio Frequency Interference Mitigation for Detection

    E-print Network

    Ellingson, Steven W.

    Radio Science, Volume ???, Number , Pages 1­5, Radio Frequency Interference Mitigation for Detection of Extended Sources with an Interferometer Geoffrey C. Bower Radio Astronomy Laboratory, UC Berkeley, Berkeley, CA 94720, USA Radio frequency interference (RFI) is a significant problem for current

  19. Minoan Astronomy

    NASA Astrophysics Data System (ADS)

    Blomberg, Mary; Henriksson, Göran

    Of the three great cultures of the ancient eastern Mediterranean — the Babylonian, Egyptian, and Minoan — we have considerable knowledge of the astronomy of the first two through their documents (see relevant sections of this Handbook). Very little written material, however, has survived from Minoan Crete, but the evidence of other impressive archaeological discoveries implies that the inhabitants were on a par with their neighbors and had made similar advances in astronomy. In lieu of written sources, we have used the methods of archaeoastronomy to recover as much as possible about Minoan astronomy. In short, these are measuring the orientations of walls and their opposite horizons at a representative selection of monuments, analyzing the measurements statistically, and comparing the results with digital reconstruction of the positions of significant celestial bodies for the time when the walls were built.

  20. Astronomy Allies

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather; Alatalo, Katherine

    2015-08-01

    Imagine you are a grad student, at your first conference, and a prominent senior scientist shows interest in your work, and he makes things get way too personal? What would you do? Would you report it? Or would you decide, after a few other instances of harassment, that maybe you shouldn't pursue astronomy? Harassment is under-reported, the policies can be difficult to understand or hard to find, and it can be very intimidating as a young scientist to report it to the proper individuals. The Astronomy Allies Program is designed to help you with these sorts of problems. We are a group of volunteers that will help by doing the following: provide safe walks home during the conference, someone to talk to confidentially, as an intervener, as a resource to report harassment. The Allies are a diverse group of scientists committed to acting as mentors, advocates, and liaisons. The Winter 2015 AAS meeting was the first meeting that had Astronomy Allies, and Astronomy Allies provided a website for information, as well as a twitter, email, and phone number for anyone who needs our help or would like more information. We posted about the Astronomy Allies on the Women In Astronomy blog, and this program resonates with many people: either they want to help, or they have experienced harassment in the past and don't want to see it in the future. Harassment may not happen to most conference participants, but it's wrong, it's against the AAS anti-harassment policy ( http://aas.org/policies/anti-harassment-policy ), it can be very damaging, and if it happens to even one person, that is unacceptable. We intend to improve the culture at conferences to make it so that harassers feel they can't get away with their unprofessional behavior.

  1. Astronomy Allies

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather; Alatalo, Katherine A.

    2016-01-01

    Imagine you are a grad student, at your first conference, and a prominent senior scientist shows interest in your work, and he makes things get way too personal? What would you do? Would you report it? Or would you decide, after a few other instances of harassment, that maybe you shouldn't pursue astronomy? Harassment is under-reported, the policies can be difficult to understand or hard to find, and it can be very intimidating as a young scientist to report it to the proper individuals. The Astronomy Allies Program is designed to help you with these sorts of problems. We are a group of volunteers that will help by doing the following: provide safe walks home during the conference, someone to talk to confidentially, as an intervener, as a resource to report harassment. The Allies are a diverse group of scientists committed to acting as mentors, advocates, and liaisons. The Winter 2015 AAS meeting was the first meeting that had Astronomy Allies, and Astronomy Allies provided a website for information, as well as a twitter, email, and phone number for anyone who needs our help or would like more information. We posted about the Astronomy Allies on the Women In Astronomy blog, and this program resonates with many people: either they want to help, or they have experienced harassment in the past and don't want to see it in the future. Harassment may not happen to most conference participants, but it's wrong, it's against the AAS anti-harassment policy ( http://aas.org/policies/anti-harassment-policy ), it can be very damaging, and if it happens to even one person, that is unacceptable. We intend to improve the culture at conferences to make it so that harassers feel they can't get away with their unprofessional behavior.

  2. Early Astronomy

    NASA Astrophysics Data System (ADS)

    Thurston, Hugh

    The earliest investigations that we can relate to what is now science are observations of the sky: Astronomy. The earliest written records of every civilization we know of - from China, Egypt, the Tigris-Euphrates and Indus valleys, Central America, the Andes, and so forth - all contain at least some astronomical texts. There are in addition monuments and artifacts that show a clear interest in astronomy, such as Stonehenge and rock paintings, from cultures that left no written records. The interest in celestial phenomena contributed to the development of Babylonian arithmetic and Greek geometry.

  3. Past, Present and Future of Chinese Astronomy

    NASA Astrophysics Data System (ADS)

    Fang, Cheng

    2015-03-01

    Through out the ancient history, Chinese astronomers had made tremendous achievements. Since the main purpose of the ancient Chinese astronomy was to study the correlation between man and the universe, all the Emperors made ancient Chinese astronomy the highly regarded science throughout the history. After a brief introduction of the achievement of ancient Chinese astronomy, I describe the beginnings of modern astronomy research in China in the 20th century. Benefiting from the fast development of Chinese economy, the research in astronomy in China has made remarkable progress in recent years. The number of astronomers has doubled in the past ten years, and the number of graduate students has grown over 1300. The current budget for astronomy research is ten times larger than that ten years ago. The research covers all fields in astronomy, from galaxies to the Sun. The recent progress in both the instruments, such as the Guo Shoujing's telescope, a Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), and the theoretical research will be briefly presented. The ongoing and future projects on the space- and ground-based facilities will be described, including the Five Hundred Meter Aperture Spherical Radio Telescope (FAST), ``Chang E'' (Lunar mission) project, Hard X-ray Modulate Telescope (HXMT), DArk Matter Particle Explorer (DAMPE), Deep Space Solar Observatory (DSO), Chinese Antarctic Observatory (CAO), 65m steerable radio telescope, Chinese Spectral Radioheliogaph (CSRH) etc.

  4. THE ASTRONOMY DEPARTMENT OF PHYSICS AND ASTRONOMY

    E-print Network

    THE ASTRONOMY MAJOR DEPARTMENT OF PHYSICS AND ASTRONOMY DARTMOUTH COLLEGE September(2013(( #12;The Department of Physics and Astronomy website: http: //www.dartmouth.edu/~physics Upcoming colloquia://dartmouth.smartcatalogiq.com/en/2013/orc If you are thinking of majoring in astronomy, and have any questions, please contact any

  5. Astronomy Activities.

    ERIC Educational Resources Information Center

    Greenstone, Sid

    This document consists of activities and references for teaching astronomy. The activities (which include objectives, list of materials needed, and procedures) focus on: observing the Big Dipper and locating the North Star; examining the Big Dipper's stars; making and using an astrolabe; examining retograde motion of Mars; measuring the Sun's…

  6. Astronomy Adventures.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1986-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Astronomy Adventures." Contents are organized into the following sections: (1)…

  7. Civic Astronomy

    NASA Astrophysics Data System (ADS)

    Wise, George

    2004-10-01

    The founding of the Dudley Observatory at Albany, N.Y., in 1852 was a milestone in humanity's age-old quest to understand the heavens. As the best equipped astronomical observatory in the U.S. led by the first American to hold a Ph.D. in astronomy, Benjamin Apthorp Gould Jr., the observatory helped pioneer world-class astronomy in America. It also proclaimed Albany's status as a major national center of culture, knowledge and affluence. This book explores the story of the Dudley Observatory as a 150 year long episode in civic astronomy. The story ranges from a bitter civic controversy to a venture into space, from the banks of the Hudson River to the highlands of Argentina. It is a unique glimpse at a path not taken, a way of doing science once promising, now vanished. As discoveries by the Dudley Observatory's astronomers, especially its second director Lewis Boss, made significant contributions to the modern vision of our Milky Way galaxy as a rotating spiral of more than a million stars, the advance of astronomy left that little observatory behind.

  8. Time Series Analysis 1 Time series in astronomy

    E-print Network

    Babu, G. Jogesh

    in astronomy Periodic phenomena: binary orbits (stars, extrasolar planets); stellar rotation (radio pulsars star. Highly variable X-rays are produced in the inner accretion disk. X-ray binary time series often

  9. Goldstone-Apple Valley Radio Telescope System Theory of Operation

    NASA Technical Reports Server (NTRS)

    Stephan, George R.

    1997-01-01

    The purpose of this learning module is to enable learners to describe how the Goldstone-Apple Valley Radio Telescope (GAVRT) system functions in support of Apple Valley Science and Technology Center's (AVSTC) client schools' radio astronomy activities.

  10. NationalRadio Observatory

    E-print Network

    Groppi, Christopher

    CENTER SpacePlaceSpacePlace Get close to some of the world's biggest telescopes and enjoy fun, hands (NRAO) site. Your personal guide will introduce you to the fascinating world of radio astronomy featuring science demonstrations and a short film about the world-class Robert C. Byrd Green Bank Telescope

  11. Radio Science, Volume ???, Number , Pages 1?? , RFI Identi cation and Mitigation Using Simultaneous

    E-print Network

    Ellingson, Steven W.

    14853 S. Chatterjee National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM 87801 T. J Observatory, Westford, MA 01886 J. M. Cordes Astronomy Department and NAIC, Cornell University, Ithaca, NY mitigation is a critically important issue in radio astronomy using existing instruments as well

  12. Inuit Astronomy

    NASA Astrophysics Data System (ADS)

    MacDonald, John

    Inuit live mainly in the treeless Arctic regions of North America, Greenland, and parts of northeastern Siberia. Their cosmology, based on shamanistic belief, constructed a view of the sky and its contents distinctively suited to their spiritual and pragmatic needs. Their astronomy, particularly for those groups living far above the Arctic Circle, reflects the unique appearance of the celestial sphere at high northerly latitudes, demonstrated most noticeably in the annual disappearance of the sun during midwinter months.

  13. Chaco astronomies

    NASA Astrophysics Data System (ADS)

    Martín López, Alejandro

    2015-08-01

    This presentation discusses the result of 18 years of ethnographic and ethnohistorical studies on Chaco astronomies. The main features of the systems of astronomical knowledge of the Chaco Aboriginal groups will be discussed. In particular we will discuss the relevance of the Milky Way, the role of the visibility of the Pleiades, the ways in which the celestial space is represented, the constitution of astronomical orientations in geographic space, etc. We also address a key feature of their vision of the cosmos: the universe is seen by these groups as a socio-cosmos, where humans and non-humans are related. These are therefore actually socio-cosmologies. We will link this to the theories of Chaco Aboriginal groups about power and political relations.We will discuss how the study of Aboriginal astronomies must be performed along with the studies about astronomies of Creole people and European migrants, as well as anthropological studies about the science teaching in the formal education system and by the mass media. In this form we will discuss the relevance of a very complex system of interethnic relations for the conformation of these astronomical representations and practices.We will also discuss the general methodological implications of this case for the ethnoastronomy studies. In particular we will talk about the advantages of a study of regional scope and about the key importance of put in contact the ethnoastronomy with contemporary issues in social sciences.We also analyze the importance of ethnoastronomy studies in relation to studies of sociology of science, especially astronomy. We also study the potential impact on improving formal and informal science curricula and in shaping effective policies to protect the tangible and intangible astronomical heritage in a context of respect for the rights of Aboriginal groups.

  14. Astronomy Software

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Software Bisque's TheSky, SkyPro and Remote Astronomy Software incorporate technology developed for the Hubble Space Telescope. TheSky and SkyPro work together to orchestrate locating, identifying and acquiring images of deep sky objects. With all three systems, the user can directly control computer-driven telescopes and charge coupled device (CCD) cameras through serial ports. Through the systems, astronomers and students can remotely operate a telescope at the Mount Wilson Observatory Institute.

  15. Astronomy & Astrophysics manuscript no. January 23, 2002 (DOI: will be inserted by hand later)

    E-print Network

    Falcke, Heino

    National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801, U.S.A. e-mail: julvestaAstronomy & Astrophysics manuscript no. January 23, 2002 (DOI: will be inserted by hand later) Radio Sources in Low-Luminosity Active Galactic Nuclei. III. \\AGNs" in a Distance-Limited Sample

  16. Astronomy in School Science.

    ERIC Educational Resources Information Center

    Gee, Brian

    1979-01-01

    Presents a report about astronomy education in the United Kingdom. Some of the views about astronomy activities in schools and the importance of teaching astronomy and space science in British schools are included. (HM)

  17. [A chapter prepared for the book \\Information Handling in Astronomy", edited by Andre Heck, to be published by Kluwer. Completed 2000-03-08.

    E-print Network

    Wells, Donald C.

    Radio Astronomy Observatory 2 The history of the Flexible Image Transport System [FITS] is re- viewed for astronomy worldwide, the International Astronomical 1 dwells@nrao.edu 2 The National Radio Astronomy Observatory is a facility of the US National Science Foun- dation operated under cooperative agreement

  18. Radio Spectral Evolution of a Radio Rich, Impulsive Solar Flare: Implications for Plasma Heating and Electron Acceleration

    E-print Network

    Radio Spectral Evolution of a Radio Rich, Impulsive Solar Flare: Implications for Plasma Heating and Electron Acceleration T. S. Bastian G. D. Fleishman1 National Radio Astronomy Observatory, Charlottesville, VA 22903 D. E. Gary New Jersey Institute of Technology, Newark, NJ ABSTRACT We present radio and X

  19. Astronomy stories

    NASA Astrophysics Data System (ADS)

    Berenson, Rhoda

    2015-03-01

    For many years I have taught physics and astronomy courses to liberal arts students. I have found most of my students to be intelligent and diligent, but not anxious to study science. They typically take the class only because their degree requires a science course. Many arrive having already decided they will not be able to do the math or understand the scientific concepts, and have essentially built a wall between themselves and science. In the 1990s, in an effort to help break down that wall, as part of an NSF-supported course, "The Evolution of the Universe, Earth and Life," I began using creative writing assignments.

  20. Infrared astronomy

    NASA Technical Reports Server (NTRS)

    Gillett, Frederick; Houck, James; Bally, John; Becklin, Eric; Brown, Robert Hamilton; Draine, Bruce; Frogel, Jay; Gatley, Ian; Gehrz, Robert; Hildebrand, Roger

    1991-01-01

    The decade of 1990's presents an opportunity to address fundamental astrophysical issues through observations at IR wavelengths made possible by technological and scientific advances during the last decade. The major elements of recommended program are: the Space Infrared Telescope Facility (SIRTF), the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the IR Optimized 8-m Telescope (IRO), a detector and instrumentation program, the SubMilliMeter Mission (SMMM), the 2 Microns All Sky Survey (2MASS), a sound infrastructure, and technology development programs. Also presented are: perspective, science opportunities, technical overview, project recommendations, future directions, and infrastructure.

  1. Planetary astronomy

    NASA Technical Reports Server (NTRS)

    Morrison, David; Hunten, Donald; Ahearn, Michael F.; Belton, Michael J. S.; Black, David; Brown, Robert A.; Brown, Robert Hamilton; Cochran, Anita L.; Cruikshank, Dale P.; Depater, Imke

    1991-01-01

    The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed.

  2. Goldstone Apple Valley Radio Telescope Project.

    ERIC Educational Resources Information Center

    Ibe, Mary; MacLaren, Dave

    2003-01-01

    Describes the Goldstone Apple Valley Radio Telescope (GAVRT) project as a way of teaching astronomy concepts to middle school students. The project provides students opportunities to work with professional scientists. (SOE)

  3. Antennas in Radio Telescope Systems

    NASA Astrophysics Data System (ADS)

    Ellingson, S. W.

    2015-03-01

    Radio astronomy is the study of the universe by measurement of radio frequency emission at frequencies ranging from a few MHz to the far infrared. Signals of interest are typically extraordinarily weak, necessitating large effective aperture and resulting in some of the world's largest antenna systems. Technologies now commonly employed include reflector antennas ("dishes") using horn-type feeds or feed arrays, beamforming arrays consisting of elements ranging from dipoles to large dishes, and interferometry. Many problems in radio astronomy also require very fine angular resolution, leading to aperture synthesis imaging instruments consisting of antennas distributed over apertures ranging from hundreds of meters to intercontinental distances. This chapter provides a brief review of antenna systems used in operational modern radio telescopes and in anticipated new radio telescopes.

  4. TeachAstronomy.com - Digitizing Astronomy Resources

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, Kevin; Impey, C. D.; Austin, C.; Patikkal, A.; Paul, M.; Ganesan, N.

    2013-06-01

    Teach Astronomy—a new, free online resource—can be used as a teaching tool in non-science major introductory college level astronomy courses, and as a reference guide for casual learners and hobbyists. Digital content available on Teach Astronomy includes: a comprehensive introductory astronomy textbook by Chris Impey, Wikipedia astronomy articles, images from Astronomy Picture of the Day archives and (new) AstroPix database, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy archives, and an RSS feed of astronomy news from Science Daily. Teach Astronomy features an original technology called the Wikimap to cluster, display, and navigate site search results. Development of Teach Astronomy was motivated by steep increases in textbook prices, the rapid adoption of digital resources by students and the public, and the modern capabilities of digital technology. This past spring semester Teach Astronomy was used as content supplement to lectures in a massive, open, online course (MOOC) taught by Chris Impey. Usage of Teach Astronomy has been steadily growing since its initial release in August of 2012. The site has users in all corners of the country and is being used as a primary teaching tool in at least four states.

  5. B2 1144+35: A Giant Low Power Radio Galaxy with Superluminal Motion

    E-print Network

    Taylor, Greg

    Bologna, Italy 3 National Radio Astronomy Observatory, P.O. Box 0, Socorro NM 87801, USA 4 National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville VA 22903­2475, USA 5 Instituto de Astrofisica deB2 1144+35: A Giant Low Power Radio Galaxy with Superluminal Motion G. Giovannini 1;2 , G.B. Taylor

  6. THE COMPLEX CORE OF ABELL 2199: THE XRAY and RADIO INTERACTION

    E-print Network

    Eilek, Jean

    Center New Mexico Tech, Socorro NM 87801, USA 1 The National Radio Astronomy Observatory is operatedTHE COMPLEX CORE OF ABELL 2199: THE X­RAY and RADIO INTERACTION F. N OWEN National Radio Astronomy Observatory 1 P.O. Box O, Socorro NM 87801, USA and J. A. EILEK Physics Department and Astrophysics Research

  7. Astronomy Education Challenges in Egypt

    NASA Astrophysics Data System (ADS)

    El Fady Beshara Morcos, Abd

    2015-08-01

    One of the major challenges in Egypt is the quality of education. Egypt has made significant progress towards achieving the Education for All and the Millennium Development Goals (MDGs). Many associations and committees as education reform program and education support programs did high efforts in supporting scientific thinking through the scientific clubs. The current state of astronomical education in Egypt has been developed. Astronomy became a part in both science and geography courses of primary, preparatory and secondary stages. Nowadays the Egyptian National Committee for Astronomy, put on its shoulders the responsibility of revising of astronomy parts in the education courses, beside preparation of some training programs for teachers of different stages of educations, in collaboration with ministry of education. General lectures program has been prepared and started in public places , schools and universities. Many TV and Radio programs aiming to spread astronomical culture were presented. In the university stage new astronomy departments are established and astrophysics courses are imbedded in physics courses even in some private universities.

  8. Astronomy Looks Different When You Listen to It.

    ERIC Educational Resources Information Center

    Jones, Richard C.

    1994-01-01

    Describes the use of a radio telescope to arouse new interest among students. The article partitions into the following sections: (1) Radio Astronomy--Which Level; (2) First Steps: The Site--The Antenna; (3) The Electronics: Do It Yourself, or Store Bought; (4) Field Test: Music of the Spheres; (5) Getting Started: Entry Level Projects; and (6)…

  9. Early infrared astronomy

    NASA Astrophysics Data System (ADS)

    Lequeux, James

    2009-07-01

    I present a short history of infrared astronomy, from the first scientific approaches of the ‘radiant heat’ in the seventeenth century to the 1970's, the time when space infrared astronomy was developing very rapidly. The beginning of millimeter and submillimeter astronomy is also covered. As the progress of infrared astronomy was strongly dependent on detectors, some details are given on their development.

  10. GRADUATE STUDY IN ASTRONOMY

    E-print Network

    Frantz, Kyle J.

    GRADUATE STUDY IN ASTRONOMY Georgia State's Center for High Angular Resolution Astronomy (CHARA a remote operations center located on campus. The Program for Extragalactic Astronomy (PEGA) and CHARA AND ASTRONOMY at Georgia State University offers programs of study leading to the Doctor of Philosophy (Ph

  11. Astronomy Books of 1985.

    ERIC Educational Resources Information Center

    Mercury, 1986

    1986-01-01

    Provides annotated listing of books in 16 areas: (1) amateur astromony; (2) children's books; (3) comets; (4) cosmology; (5) education in astronomy; (6) general astronomy; (7) history of astronomy; (8) life in the universe; (9) miscellaneous; (10) physics and astronomy; (11) pseudo-science; (12) space exploration; (13) stars and stellar evolution;…

  12. Successful Innovative Methods in Introducing Astronomy Courses

    NASA Astrophysics Data System (ADS)

    Chattejee, T. K. C.

    2006-08-01

    Innovating new informative methods to induce interest in students has permitted us to introduce astronomy in several universities and institutes in Mexico. As a prelude, we gave a popular course in the history of astronomy. This was very easy as astronomy seems to be the most ancient of sciences and relating the achievements of the ancient philosophers/scientists was very enlightening. Then we put up an amateur show of the sky every week (subject to climatic conditions for observability). We showed how to take photographs and make telescopic observations. We enlightened the students of the special missions of NASA and took them to museums for space exploration. We gave a popular seminar on "Astrodynamics," highlighting its importance. We gave a series of introductory talks in radio and T.V. Finally we exposed them to electronic circulars, like "Universe Today" and "World Science." The last mentioned strategy had the most electrifying effect. We may not have been successful without it, as the students began to take the matter seriously only after reading numerous electronic circulars. In this respect, these circulars are not only informative about the latest news in astronomy, but highlight the role of astronomy in the modern world. Without it, students seem to relate astronomy to astrology; it is due to this misconception that they are not attracted to astronomy. Students were hardly convinced of the need for an astronomy course, as they did not know about the scope and development of the subject. This awakened the interests of students and they themselves proposed the initiation of an elementary course in astronomy to have a feel of the subject. Later on they proposed a course on "Rocket Dynamics." We will discuss our methods and their impact in detail.

  13. Astronomy for teachers: A South African Perspective

    NASA Astrophysics Data System (ADS)

    de Witt, Aletha; West, Marion; Leeuw, Lerothodi; Gouws, Eldrie

    2015-08-01

    South Africa has nominated Astronomy as a “flagship science” and aims to be an international Astronomy hub through projects such as the Square Kilometre Array (SKA) and the South African Large Telescope (SALT). These projects open up career opportunities in maths, science and engineering and therefore offers a very real door for learners to enter into careers in science and technology through Astronomy. However, the Trends in International Mathematics and Science Survey (TIMSS), the Global Competitiveness Report (GCR) and Annual National Assessment (ANA) have highlighted that South Africa’s Science and Mathematics education is in a critical condition and that South African learners score amongst the worst in the world in both these subjects. In South Africa Astronomy is generally regarded as the worst taught and most avoided Natural Science knowledge strand, and most teachers that specialised in Natural Sciences, never covered Astronomy in their training.In order to address these issues a collaborative project between the University of South Africa (UNISA) and the Hartebeesthoek Radio Astronomy Observatory (HartRAO) was initiated, which aims to assist teachers to gain more knowledge and skills so that they can teach Astronomy with confidence. By collaborating we aim to ensure that the level of astronomy development will be raised in both South Africa and the rest of Africa.With the focus on Teaching and Learning, the research was conducted within a quantitative paradigm and 600 structured questionnaires were administered to Natural Science teachers in Public primary schools in Gauteng, South Africa. This paper reports the findings of this research and makes recommendations on how to assist teachers to teach Astronomy with confidence.

  14. Highlights of Astronomy, Vol. 16

    NASA Astrophysics Data System (ADS)

    Montmerle, Thierry

    2015-04-01

    Part I. Invited Discourses: 1. The Herschel view of star formation; 2. Past, present and future of Chinese astronomy; 3. The zoo of galaxies; 4. Supernovae, the accelerating cosmos, and dark energy; Part II. Joint Discussion: 5. Very massive stars in the local universe; 6. 3-D views of the cycling Sun in stellar context; 7. Ultraviolet emission in early-type galaxies; 8. From meteors and meteorites to their parent bodies: current status and future developments; 9. The connection between radio properties and high-energy emission in AGNs; 10. Space-time reference systems for future research; Part III. Special Sessions: 11. Origin and complexity of massive star clusters; 12. Cosmic evolution of groups and clusters of galaxies; 13. Galaxy evolution through secular processes; 14. New era for studying interstellar and intergalactic magnetic fields; 15. The IR view of massive stars: the main sequence and beyond; 16. Science with large solar telescopes; 17. The impact hazard: current activities and future plans; 18. Calibration of star-formation rate measurements across the electromagnetic spectrum; 19. Future large scale facilities; 20. Dynamics of the star-planet relations strategic plan and the Global Office of Astronomy for Development; 21. Strategic plan and the Global Office of Astronomy for Development; 22. Modern views of the interstellar medium; 23. High-precision tests of stellar physics from high-precision photometry; 24. Communicating astronomy with the public for scientists; 25. Data intensive astronomy; 26. Unexplained spectral phenomena in the interstellar medium; 27. Light pollution: protecting astronomical sites and increasing global awareness through education.

  15. Mon. Not. R. Astron. Soc. 366, 12651288 (2006) doi:10.1111/j.1365-2966.2005.09916.x CENSORS: A Combined EISNVSS Survey of Radio Sources II.

    E-print Network

    Best, Philip

    2006-01-01

    - ple was selected from the National Radio Astronomy Obs. Best,2 R. Rengelink2 and H. J. A. R¨ottgering2 1Institute for Astronomy, Royal Observatory Edinburgh EIS­NVSS Survey of Radio Sources (CENSORS) is a 1.4-GHz radio survey selected from the National Radio

  16. Australian Aboriginal Astronomy in the International Year of Astronomy

    E-print Network

    Norris, Ray

    1 Australian Aboriginal Astronomy in the International Year of Astronomy Ray P. Norris CSIRO Astronomy & Space Science, NSW, Australia Warawara Dept. The International year of Astronomy seemed an excellent opportunity to tell the wider

  17. Teaching and Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay; Percy, John

    2005-12-01

    Preface; Part I. Astronomy in the Curriculum Around the World: Preface; 1. Why astronomy is useful and should be included in the school curriculum John R. Percy; 2. Astronomy and mathematics education Rosa M. Ros; 3. Astronomy in the curriculum around the world; 4. Engaging gifted science students through astronomy Robert Hollow; 5. Poster highlights: astronomy in the curriculum around the world; Part II. Astronomy Education Research: Preface; 6. Astronomy education research down under John M. Broadfoot and Ian S. Ginns; 7. A contemporary review of K-16 astronomy education research Janelle M. Bailey and Timothy F. Slater; 8. Implementing astronomy education research Leonarda Fucili; 9. The Astronomy Education Review: report on a new journal Sidney C. Wolff and Andrew Fraknoi; 10. Poster highlights: astronomy education research; Part III. Educating Students: Preface; 11. Textbooks for K-12 astronomy Jay M. Pasachoff; 12. Distance/internet astronomy education David H. McKinnon; 13. Educating students with robotic telescopes - open discussion; 14. Poster highlights - educating students; Part IV. Educating teachers: Preface; 15. Pre-service astronomy education of teachers Mary Kay Hemenway; 16. In-service education of teachers Michèle Gerbaldi; 17. Poster highlights: educating teachers; Part V. Astronomy and Pseudoscience: Preface; 18. Astronomy, pseudoscience and rational thinking Jayant V. Narlikar; 19. Astronomical pseudosciences in North America John R. Percy and Jay M. Pasachoff; Part VI. Astronomy and Culture: Preface; 20. Teaching astronomy in other cultures: archeoastronomy Julieta Fierro; 21. Poster highlights: astronomy and culture; Part VII. Astronomy in Developing Countries: Preface; 22. Astronomy Curriculum for developing countries Case Rijsdijk; 23. Science education resources for the developing countries James C. White II; Part VIII. Public Outreach in Astronomy: Preface; 24. What makes informal education programs successful? Nahide Craig and Isabel Hawkins; 25. The role of science centers and planetariums Nick Lomb; 26. Science education for the new century - a European perspective Claus Madsen; 27. Communicating astronomy to the public Charles Blue; 28. Poster highlights: public outreach in astronomy; Part IX. The Education Programs of the IAU: Preface; 29. A short overview of astronomical education carried out by the IAU Syuzo Isobe; Part X. Discussion; Index.

  18. Teaching and Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay; Percy, John

    2009-07-01

    Preface; Part I. Astronomy in the Curriculum Around the World: Preface; 1. Why astronomy is useful and should be included in the school curriculum John R. Percy; 2. Astronomy and mathematics education Rosa M. Ros; 3. Astronomy in the curriculum around the world; 4. Engaging gifted science students through astronomy Robert Hollow; 5. Poster highlights: astronomy in the curriculum around the world; Part II. Astronomy Education Research: Preface; 6. Astronomy education research down under John M. Broadfoot and Ian S. Ginns; 7. A contemporary review of K-16 astronomy education research Janelle M. Bailey and Timothy F. Slater; 8. Implementing astronomy education research Leonarda Fucili; 9. The Astronomy Education Review: report on a new journal Sidney C. Wolff and Andrew Fraknoi; 10. Poster highlights: astronomy education research; Part III. Educating Students: Preface; 11. Textbooks for K-12 astronomy Jay M. Pasachoff; 12. Distance/internet astronomy education David H. McKinnon; 13. Educating students with robotic telescopes - open discussion; 14. Poster highlights - educating students; Part IV. Educating teachers: Preface; 15. Pre-service astronomy education of teachers Mary Kay Hemenway; 16. In-service education of teachers Michèle Gerbaldi; 17. Poster highlights: educating teachers; Part V. Astronomy and Pseudoscience: Preface; 18. Astronomy, pseudoscience and rational thinking Jayant V. Narlikar; 19. Astronomical pseudosciences in North America John R. Percy and Jay M. Pasachoff; Part VI. Astronomy and Culture: Preface; 20. Teaching astronomy in other cultures: archeoastronomy Julieta Fierro; 21. Poster highlights: astronomy and culture; Part VII. Astronomy in Developing Countries: Preface; 22. Astronomy Curriculum for developing countries Case Rijsdijk; 23. Science education resources for the developing countries James C. White II; Part VIII. Public Outreach in Astronomy: Preface; 24. What makes informal education programs successful? Nahide Craig and Isabel Hawkins; 25. The role of science centers and planetariums Nick Lomb; 26. Science education for the new century - a European perspective Claus Madsen; 27. Communicating astronomy to the public Charles Blue; 28. Poster highlights: public outreach in astronomy; Part IX. The Education Programs of the IAU: Preface; 29. A short overview of astronomical education carried out by the IAU Syuzo Isobe; Part X. Discussion; Index.

  19. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  20. Statistical challenges in modern astronomy

    E-print Network

    Babu, G. Jogesh

    Statistical challenges in modern astronomy Eric Feigelson (Astro & Astrophys) & Jogesh Babu (Stat) Penn State University #12;What is astronomy? Astronomy (astro = star, nomen= name in Greek to distant cosmic phenomena. #12;Overview of modern astronomy & astrophysics Big Bang Cosmic Microwave

  1. Innovation in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi

    2013-01-01

    Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing large astronomical data holdings; Poster abstracts; Part IV. Practical Issues Connected with the Implementation of the 2003 IAU Resolution: Introduction; 33. Stellar evolution for students of Moscow University; 34. Astronomy for everybody: An approach from the CASAO/NAUH view; 35. Toward a new program in astronomy education in secondary schools in Turkey; 36. Universe awareness for young children; 37. Education in Egypt and Egyptian responses to eclipses; 38. Astronomy in the cultural heritage of African societies; 39. Education at the Pierre Auger Observatory: the cinema as a tool in science education; 40. Freshman seminars: interdisciplinary engagements in astronomy; 41. Astronomy for teachers; Poster abstracts; Conclusion.

  2. The Radio Jove Project

    NASA Technical Reports Server (NTRS)

    Thieman, J. R.

    2010-01-01

    The Radio love Project is a hands-on education and outreach project in which students, or any other interested individuals or groups build a radio telescope from a kit, operate the radio telescope, transmit the resulting signals through the internet if desired, analyze the results, and share the results with others through archives or general discussions among the observers. Radio love is intended to provide an introduction to radio astronomy for the observer. The equipment allows the user to observe radio signals from Jupiter, the Sun, the galaxy, and Earth-based radiation both natural and man-made. The project was started through a NASA Director's Discretionary Fund grant more than ten years ago. it has continued to be carried out through the dedicated efforts of a group of mainly volunteers. Dearly 1500 kits have been distributed throughout the world. Participation can also be done without building a kit. Pre-built kits are available. Users can also monitor remote radio telescopes through the internet using free downloadable software available through the radiosky.com website. There have been many stories of prize-winning projects, inspirational results, collaborative efforts, etc. We continue to build the community of observers and are always open to new thoughts about how to inspire the observers to still greater involvement in the science and technology associated with Radio Jove.

  3. Global Astronomy Month: Astronomy around the World

    NASA Astrophysics Data System (ADS)

    McMonigal, C.; Simmons, M.

    2015-09-01

    For six years Global Astronomy Month has taken place each April, growing into a wide-ranging and diverse array of programmes comprising the world's largest worldwide, annual celebration of astronomy. Innovative programmes developed through partnerships, along with the availability of this novel platform, have allowed an expansion of what the month has to offer. Beginning with familiar observing programmes that engage amateur astronomers, programmes have become increasingly inclusive, extending to non-astronomy fields inspired by space. This article explores the development of Global Astronomy Month, the lessons learnt and how the project has provided a stage for expanding existing programmes and testing new ideas.

  4. Optical and Radio Emission from the Galactic Supernova Remnant HB 3 (G132.6+1.5)

    E-print Network

    Observer, Kitt Peak National Observatory, National Optical Astronomy Observatories, operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National, Case Western Reserve University. 2 Also the Dominion Radio Astrophysical Observatory, Herzberg

  5. Radio Telescope Gets Star Treatment

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-11-01

    Actress Jodie Foster, who played a scientist in search of extraterrestrial life in the 1997 film Contact, narrates a new promotional film to reintroduce the public to the National Radio Astronomy Observatory's (NRAO) renovated Karl G. Jansky Very Large Array (VLA) radio telescope in New Mexico. The 24-minute film, Beyond the Visible, which will air in the VLA Visitor Center, focuses on the operation of the telescope and scientific achievements associated with it.

  6. A Large-Scale Jet and FR I Radio Source in a Spiral Galaxy: The Host Properties and External Environment

    E-print Network

    . Yun 2 National Radio Astronomy Observatory 3 , Socorro, NM 87801 and John M. Hill Steward Observatory Department, University of Massachusetts, Amherst, MA 01003 3 The National Radio Astronomy Observatory is operA Large-Scale Jet and FR I Radio Source in a Spiral Galaxy: The Host Properties and External

  7. Nontechnical Astronomy Books of 1989.

    ERIC Educational Resources Information Center

    Mercury, 1990

    1990-01-01

    Presented are 126 reviews. Categories include amateur astronomy, children's books, computers and astronomy, cosmic rays, cosmology, education in astronomy, galaxies, general astronomy, history of astronomy, life in the universe, physics and astronomy, pseudoscience, quasars and active galaxies, reference, solar system, space exploration, stars and…

  8. Interdisciplinary Approaches to Astronomy.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1986-01-01

    Provides a bibliography of materials which deal with astronomy and: (1) science fiction; (2) poetry; (3) general fiction; (4) music; (5) psychology; and (6) the law. Also cites two general references on interdisciplinary approaches with astronomy topics. (JN)

  9. NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia 22903

    E-print Network

    Groppi, Christopher

    bandwidth is examined for three circuits: (i) parallel RC, (ii) parallel RC with series L, and (iii be well described by the parallel RC circuit shown in Fig. 1(a). This is true of Schottky diodes and SIS) parallel RCL with series L. The broadband matching theories of Bode (1945) and Fano (1950) are used

  10. NP Stokes fields for radio astronomy

    E-print Network

    Ezra T. Newman; Richard H. Price

    2010-07-25

    The spin weighted spherical harmonic (SWSH) description of angular functions typically is associated with the Newman-Penrose (NP) null tetrad formalism. Recently the SWSH description, but not the NP formalism, has been used in the study of the polarization anisotropy of the cosmic microwave background. Here we relate this application of SWSHs to a description of electromagnetic radiation and polarization in the NP formalism. In particular we introduce NP Stokes fields that are the NP equivalent of the Stokes parameters. In addition to giving a more coherent foundation for the recent cosmological SWSH application, the NP formalism aids in the computation of the Lorentz transformation properties of polarization.

  11. NATIONAL RADIO ASTRONOMY OBSERVATORY CHARLOTTESVILLE) VA

    E-print Network

    Groppi, Christopher

    language, and the Disk Operating System (DOS, version 3.3). II. Hardware The computer mainframe is an Apple construction. The mainframe has 8 card slots which are assigned to peripherals as follows: Slot 0 · Usually

  12. NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia

    E-print Network

    Groppi, Christopher

    Observatory, Green Bank. March 4, 2012 #12;Characterization of ADC083000 and EV8AQ160 based ADC boards for VEGAS D. Anish Roshi1,2 & Srikanth Bussa1 1 NRAO, Green Bank, WV, 2 NRAO, Charlottesville, VA March 4B near 800 MHz. 1 ADC test setup and Data Analysis A block diagram of the test setup used for ADC

  13. NATIONAL RADIO ASTRONOMY OBSERVATORY CHARLOTTESVILLE, VIRGINIA

    E-print Network

    Groppi, Christopher

    . The tests were run on a feather fan and a sentinel fan, both manufacted by Rotron and considered in their hottest area at 25°C and 35°C. The results were: FAN MODEL APPLIED V SPEED FAN T °C AMBIENT T °C Feather 65V 2180 rpm 46° 25° Feather 120V 3320 rpm 45° 25° Sentinel 65V 1430 rpm 53° 25° Sentinel 120V 3320

  14. NATIONAL RADIO ASTRONOMY OBSERVATORY CHARLOTTESVILLE, VIRGINIA

    E-print Network

    Groppi, Christopher

    back-end to the chopper wheel and control the noise diode and resistive load switches of the second for processing 2) whether the data is from the hot load, cold load, noise diode, or resistive load 3) switching. This section also contains a noise diode to determine mixer-receiver mismatch and a resistive load to determine

  15. Senior Design Projects National Radio Astronomy Observatory

    E-print Network

    Groppi, Christopher

    #12;ATelescope Designed to be Enhanced We have an ongoing development program to ensure the GBT remains a vibrant, cutting-edge instrument for years to come All development is done in conjunction of >10Pb/day; Take advantage of web-based technologies e.g. GWT,AJAX, JAVA, Genshi #12;NRAO / WVU Senior

  16. National Radio Astronomy Observatory Socorro, NM 87801

    E-print Network

    Groppi, Christopher

    protection. A major concern of this type of installation is the susceptibility of the cable to lightning New Mexico have experienced outages of any kind since this type of cable was initially installed that these cables experience are lightning, flood damage, backhoe damage, and gopher damage. The lightning damage

  17. NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia

    E-print Network

    Groppi, Christopher

    the receiver feed horn and the mixer converts the receiver to a single sideband receiver. If the receiver = d 3 = .0186 3 CAPACITIVE TUNING SCREWS WAVEGUIDE 5L2 FIGURE 1, THREE CAVITY FILTER This procedure

  18. NATIONAL RADIO ASTRONOMY OBSERVATORY SOCORRO, NEW MEXICO*

    E-print Network

    Groppi, Christopher

    the input impedance to a gap in a cylindrical transversally mounted waveguide post. It is expected width can be used, within a given accuracy. For 1% maximum error, 2a .25a > d > 2b .25b > g > - n where one-third of the minimum shown above will result in an error of less than 12%. This error is still

  19. NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia

    E-print Network

    Groppi, Christopher

    No. 140 RF ABSORPTION DUE TO PAINT ON THE 36-FOOT ANTENNA SURFACE Robert W. Haas MARCH 1974 NUMBER OF COPIES: 150 #12;RF ABSORPTION DUE TO PAINT ON THE 36-FOOT ANTENNA SURFACE. The surface of the NRAO 36-ft of the dish when in sunlight. The paint is "Hi-Reflectance Flat White No. 6" manufactured by Triangle Paint Co

  20. NATIONAL RADIO ASTRONOMY OBSERVATORY CHARLOTTESVILLE, VIRGINIA

    E-print Network

    Groppi, Christopher

    with low sub-gap current (resistance (30 RN ) in the sub-gap region bandwidth. The 2 factor in the numerator is due to switching. Using values of Tm , Bm , and Bd for present-15 wattsssec1/2. #12;III. SIS Detector Responsivity An excellent review of the theory and past experimental

  1. NATIONAL RADIO ASTRONOMY OBSERVATORY CHARLOTTESVILLE, VIRGINIA

    E-print Network

    Groppi, Christopher

    micro- bridges has evolved in recent years so that size effects and thermal effects are fairly well of present (submicron) bridges. The following sections describe further the electrical characteristics and mixing theory for Josephson junctions, the design and performance analysis of an experimental mixer

  2. NATIONAL RADIO ASTRONOMY OBSERVATORY CHARLOTTESVILLE, VIRGINIA

    E-print Network

    Groppi, Christopher

    of the board. Short lengths of #22 tinned-copper wire must be inserted through the seven .031" diameter holes in the circuit board. Solder both sides of the board and remove excess wire. It is important throughout List). Mount the nine chip capacitors, carefully avoiding the application of excessive heat. The 680 p

  3. A Group Sparsity Imaging Algorithm for Transient Radio Sources

    E-print Network

    Magnor, Marcus

    ://graphics.tu-bs.de/ Urvashi Rau National Radio Astronomy Observatory Socorro, NM 87801, USA httpA Group Sparsity Imaging Algorithm for Transient Radio Sources Stephan Wenger and Marcus Magnor://www.aoc.nrao.edu/rurvashi/ Abstract--Radio interferometers can achieve high spatial res- olution for temporally constant sources

  4. RADIO MEASUREMENTS OF CORONAL MAGNETIC FIELDS Stephen M. White

    E-print Network

    White, Stephen

    1 RADIO MEASUREMENTS OF CORONAL MAGNETIC FIELDS Stephen M. White Dept. of Astronomy, Univ corona using radio observations is reviewed. This is a well established technique that exploits the fact that the electron gyrofrequency for typical coronal magnetic field strengths (100­2000 Gauss) lies in the radio

  5. Teaching and Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Percy, John R.

    2010-10-01

    I review the teaching and learning of astronomy, in elementary and secondary school, colleges and universities, and for the public through astronomy outreach and communication. I describe International Year of Astronomy 2009, and some of the national and personal projects in which I am involved.

  6. Physics & Astronomy Degree options

    E-print Network

    Brierley, Andrew

    138 Physics & Astronomy Degree options BSc (Single Honours Degrees) Astrophysics Physics MPhys in Mathematics Physics and Astronomy (Gateway and International Gateway) Entry For UK students with high academic science qualifications. Do I need previous knowledge of this subject? ­ Yes, see above. Physics&Astronomy

  7. Physics & Astronomy Degree options

    E-print Network

    Brierley, Andrew

    148 Physics & Astronomy Degree options BSc (Single Honours Degrees) Astrophysics Physics MPhys AND HL7 in Mathematics Physics and Astronomy (Gateway and International Gateway) Entry For UK students. Physics&Astronomy Subject enquiries Dr Kenny Wood E: physics@st-andrews.ac.uk Features * The nature

  8. Greek Mathematical Astronomy

    NASA Astrophysics Data System (ADS)

    Jones, Alexander

    Mathematics was employed in Greek astronomy as the basis of modeling the heavens and the apparent paths of the heavenly bodies, employing spheres and circles as the elements of the models. Although fundamentally geometrical in conception, Greek mathematical astronomy became increasingly quantitative and numerical, partly in response to Babylonian astronomy.

  9. Radio jets in NGC 4151

    NASA Technical Reports Server (NTRS)

    Johnston, K. J.; Elvis, M.; Kjer, D.; Shen, B. S. P.

    1982-01-01

    The relationship between the radio and optical emissions from the nucleus of the Seyfert galaxy NGC 4151 is investigated by mapping the radio radiation from this source at wavelengths of 20 and 6 cm using the Very Large Array of the National Radio Astronomy Observatory. Results show that the radio emission at wavelengths from 20 to 6 cm extend 10'' (950 pc) along a position angle of 72-84 degrees. This nonthermal emission is found to consist of at least six components and is similar to jets observed in other compact extragalactic radio sources. These radio jets appear to be coincident with the optical line emission region in NGC 4151 and are aligned with the position angle of the linearly polarized optical continuum emission.

  10. Astronomy in the City for Astronomy Education

    NASA Astrophysics Data System (ADS)

    Ros, Rosa Maria; García, Beatriz

    2015-08-01

    Astronomy is part of our culture. Astronomy cannot be isolated in a classroom, it has to be integrated in the normal life of teachers and students. “Astronomy in the city” is an important part of NASE (Network for Astronomy School Education). In each NASE course we introduce a “working group session” chaired by a local expert in cultural astronomy. The chair introduces several examples of astronomy in their city and after that, the participants have the opportunity to discuss and mention several similar examples. After this session all participants visit one or two sites proposed and introduced by the chair.After more than 5 years using this method we visited and discovered several examples of astronomy in the city:• Astronomy in ancient typical cloths• Archeological temples oriented according the Sun rise or set.• Petroglyphs with astronomical meaning.• Astronomy in monuments.• Sundials.• Oriented Colonial churches• Astronomy in SouvenirsIn any case, teachers and students discover that Astronomy is part of their everyday life. They can take into account the Sun's path when they park their car or when they take a bus "what is the best part in order to be seat in the shadow during the journey?" The result is motivation to go with “open eyes” when they are in the street and they try to get more and more information about their surroundings.The most significant characteristic of NASE is that the ”Local NASE Working Group” (LWG) in each country continues with astronomy activities using our materials and new materials created by them. These LWG are integrated by 6 to 8 teachers and professors that participated actively in NASE courses. They maintains alive the program and increases the number of students which can learn through our didactical proposal. There are more than 25 LWG that teach and organize activities on astronomy (education and/or communication) in about 20 countries.In summary, one of the main activities is to introduce local cultural aspects in NASE astronomy courses. The participants can discover a new approach to local culture from an astronomical point of view.More details: http:www.naseprogram.org

  11. Distant FR I radio galaxies in the Hubble Deep Field: implications for the cosmological evolution of radio-loud AGN

    E-print Network

    Best, Philip

    Distant FR I radio galaxies in the Hubble Deep Field: implications for the cosmological evolution of radio-loud AGN I. A. G. SnellenP and P. N. Best Institute for Astronomy, Royal Observatory, Blackford S T R AC T Deep and high-resolution radio observations of the Hubble Deep Field and flanking fields have

  12. Radio Science in Africa

    NASA Astrophysics Data System (ADS)

    Lefeuvre, Francois; Mc Kinnel, Lee-Anne; Chukwuma, Victor; Amory-Mazaudier, Christine

    2010-05-01

    Radio science activities covered by URSI (International Radio Science Union) are briefly reviewed. They encompass the knowledge and study of all aspects of electromagnetic fields and waves in a wide frequency range running from micro pulsation frequencies (i.e. from ~1 mHz) to Terahertz. The topics include: electromagnetic measurements and standards, electromagnetic theory and applications, radio-communication systems and signal processing, electronics and Photonics, electromagnetic environment and interference, wave propagation and remote sensing, ionospheric radio and propagation, waves in plasmas, radio astronomy, and electromagnetics in biology and medicine. The main radio science activities conducted by the URSI national Committees of South Africa, Egypt and Nigeria, and by African radio scientists groups gathered in GIRGEA (Groupe International de Recherche en Géophysique Europe Afrique) are reviewed. The emphasis is put on the activities developed in the context of the IHY programme and of the SCINDA network for forecasting ionospheric irregularities that adversely impact communication and navigation systems in the low latitude regions.

  13. Review of radio science 1984-1986

    NASA Astrophysics Data System (ADS)

    Hyde, G.

    Theoretical, experimental, and applications aspects of radio science are examined in a collection of subject-area reviews. Topics addressed include EM metrology, fields and waves, signals and systems, electronic and optical devices and their applications, and EM noise and interference. Consideration is given to wave propagation and remote sensing, ionospheric radio and wave propagation in plasmas, radio astronomy, and the biological effects of EM waves. An extensive glossary of acronyms is provided.

  14. African Astronomy and the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    MacLeod, Gordon

    2010-02-01

    We highlight the growth of astronomy across Africa and the effect of hosting the Square Kilometer Array (SKA) will have on this growth. From the construction of a new 25m radio telescope in Nigeria, to new university astronomy programmes in Kenya, the HESS in Namibia and the Mauritian Radio Telescope, to the world class projects being developed in South Africa (Southern African Large Telescope and Karoo Array Telescope) astronomy is re-emerging across the continent. The SKA will represent the pinnacle of technological advancement in astronomy when constructed; requiring ultra high speed data transmission lines over 3000 km baselines and the World's fastest computer for correlation purposes. The investment alone to build the SKA on African soil will be of great economic benefit to its people, but the required network connectivity will significantly drive commercial expansion far beyond the initial value of the SKA investment. The most important consequence of hosting the SKA in Africa would be the impact on Human Capital Development (HCD) on the continent. Major HCD projects already underway producing excellent results will be presented. )

  15. Astronomy and Politics

    NASA Astrophysics Data System (ADS)

    Steele, John M.

    The relationship between astronomy and politics is a complex but important part of understanding the practice of astronomy throughout history. This chapter explores some of the ways that astronomy, astrology, and politics have interacted, placing particular focus on the way that astronomy and astrology have been used for political purposes by both people in power and people who wish to influence a ruler's policy. Also discussed are the effects that politics has had on the development of astronomy and, in particular, upon the recording and preservation of astronomical knowledge.

  16. November 20, 2012 A Volume Limited Radio Survey of Ultracool Dwarfs

    E-print Network

    National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA 3 Department of Astronomy, University of California, Berkeley, CA 94720, USA 4 Armagh Observatory, College Hill, Armagh BT61 for Astronomy, National University of Ireland, Galway, Ireland 7 Price Center, Albert Einstein College

  17. David Tsiklauri, Astronomy Unit, School of Physics and Astronomy

    E-print Network

    David Tsiklauri, Astronomy Unit, School of Physics and Astronomy astro.qmul.ac.uk/~tsiklauri 19 Sep oscillations, waves in magnetised plasmas, elements of plasma kinetics. David Tsiklauri Astronomy Unit Queen, Astronomy Unit, School of Physics and Astronomy astro.qmul.ac.uk/~tsiklauri 19 Sep 2012 STFC summer school

  18. Deep Spitzer observations of infrared-faint radio sources: high-redshift radio-loud AGN?

    E-print Network

    Norris, Ray

    , Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK 8 Institute for Astronomy, UniversityDeep Spitzer observations of infrared-faint radio sources: high-redshift radio-loud AGN? Ray P Oliver,5 Nick Seymour15 and Jason Surace6 1 CSIRO Australia Telescope National Facility, PO Box 76

  19. IAU GENERAL ASSEMBLY: RIO 2009 REPORT OF THE IAU WORKING GROUP ON HISTORIC RADIO

    E-print Network

    Groppi, Christopher

    IAU GENERAL ASSEMBLY: RIO 2009 REPORT OF THE IAU WORKING GROUP ON HISTORIC RADIO ASTRONOMY 1. PREAMBLE During the Rio General Assembly we held the following meetings of the Working Group: a Business Meeting, a Science Meeting on "The Development of Aperture Synthesis Imaging in Radio Astronomy

  20. ASTRONOMY AND ASTROLOGY IN THE

    E-print Network

    Aslaksen, Helmer

    ASTRONOMY AND ASTROLOGY IN THE WORKS OF CHAUCER Done By: Ameerah Bte Po'ad Mattar Chew Yoke Wah in astronomy albeit the astronomy incorporated in his works are concealed in a way that it is difficult to extract his full knowledge of astronomy. Astronomy was not the key topic in Chaucer's works although his

  1. UNDERGRADUATE PROGRAMS DEPARTMENT OF ASTRONOMY

    E-print Network

    Jefferys, William

    UNDERGRADUATE PROGRAMS DEPARTMENT OF ASTRONOMY The UniversiTy of Texas aT aUsTin Astronomy is one richness of the universe. Join this adventure by exploring the astronomy program at the University of Texas at Austin. The Department of Astronomy at UT Austin is one of the top ten astronomy research programs

  2. PHYSICS & ASTRONOMY GRADUATE STUDENT HANDBOOK DEPARTMENT OF PHYSICS & ASTRONOMY

    E-print Network

    Tipple, Brett

    PHYSICS & ASTRONOMY GRADUATE STUDENT HANDBOOK DEPARTMENT OF PHYSICS & ASTRONOMY UNIVERSITY OF UTAH Fall 2012 Version 2012 .................................................................................... 11 3.1. Ph.D. in Physics 12 3.1.1. Astronomy & Astrophysics

  3. Some innovative programmes in Astronomy education

    NASA Astrophysics Data System (ADS)

    Babu, G. S. D.; Sujatha, S.

    In order to inculcate a systematic scientific awareness of the subject of Astronomy among the students and to motivate them to pursue careers in Astronomy and Astrophysics, various innovative educational programmes have been designed at MPBIFR. Among them, the main programme is termed as the ``100-hour Certificate Course in Astronomy and Astrophysics'' which has been designed basically for the students of the undergraduate level of B.Sc. and B.E. streams. The time duration of the 100 hours in this course is partitioned as 36 hours of classroom lectures, 34 hours of practicals and field trips and the remaining 30 hours being dedicated to dissertation writing and seminar presentations by the students. In addition, after the 100-hour course, the students have the option to take up specialized advance courses in the topics of Astrobiology, Astrochemistry, Radio Astronomy, Solar Astronomy and Cosmology as week-end classes. These courses are at the post graduate level and are covered in a span of 18 to 20 hours spread over a period of 9 to 10 weeks. As a preparatory programme, short-term introductory courses in the same subject are conducted for the high school students during the summer vacation period. Along with this, a three-week programme in basic Astronomy is also designed as an educational package for the general public. The students of these courses have the opportunity of being taken on field trips to various astronomical centers as well as the Radio, Solar and the Optical Observatories as part of their curriculum. The guided trips to the ISRO’s Satellite Centre at Bangalore and the Satellite Launching Station at SHAR provide high degree of motivation apart from giving thrilling experiences to the students. Further, the motivated students are encouraged to involve themselves in regular research programmes in Astronomy at MPBIFR for publishing research papers in national and international journals. The teaching and mentoring faculty for all these programmes includes the visiting Scientists and Professors from various Research Organizations located in and around Bangalore as well as the in-house Scientific staff. It is gratifying to note that several students, after going through one or more of these courses, have indeed made commitments to pursue Astronomy as their career, some of them even obtaining admissions in to the institutes and universities in India and abroad for further studies in this field.

  4. Armenian Cultural Astronomy

    NASA Astrophysics Data System (ADS)

    Farmanyan, S. V.; Mickaelian, A. M.

    2015-07-01

    Cultural Astronomy is the reflection of sky events in various fields of nations' culture. In foreign literature this field is also called "Astronomy in Culture" or "Astronomy and Culture". Cultural astronomy is the set of interdisciplinary fields studying the astronomical systems of current or ancient societies and cultures. It is manifested in Religion, Mythology, Folklore, Poetry, Art, Linguistics and other fields. In recent years, considerable attention has been paid to this sphere, particularly international organizations were established, conferences are held and journals are published. Armenia is also rich in cultural astronomy. The present paper focuses on Armenian archaeoastronomy and cultural astronomy, including many creations related to astronomical knowledge; calendars, rock art, mythology, etc. On the other hand, this subject is rather poorly developed in Armenia; there are only individual studies on various related issues (especially many studies related to Anania Shirakatsi) but not coordinated actions to manage this important field of investigation.

  5. Statistical challenges in modern astronomy

    E-print Network

    Babu, G. Jogesh

    Statistical challenges in modern astronomy Eric Feigelson (Astro & Astrophys) & Jogesh Babu (Stat) Penn State University #12;Overview of modern astronomy & astrophysics Eternal expansion Continuing star Interstellar gas & dust Compact stars · White dwarfs · Neutron stars · Black holes #12;Astronomy & statistics

  6. Information Content in Radio Waves: Student Investigations in Radio Science

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  7. Journey of Ethiopia Astronomy

    NASA Astrophysics Data System (ADS)

    Belay Tessema, Solomon

    2015-08-01

    Ancient astronomy had contributed away for the modern development of astronomy. The history of astronomy development in Ethiopian was liked with different beliefs and culture of the society. The Ethiopians were the first who invented the science of stars, and gave names to the planets, not at random and without meaning, but descriptive of the qualities which they conceived them to possess; and it was from them that this art passed, still in an imperfect state, to the Egyptians. Even though, Ethiopian’s contributions for astronomy in the world were immense but the journey of modern astronomy is still in the infant stage. The modern astronomy and space program in Ethiopia was started in 2004 in well organized form from three individuals to the public. In the past eleven years of journey of astronomy development in Ethiopia was the most challenging from national to international level. After strong struggle of a few committed individuals for the past eleven years the development of astronomy is completely changed from dark age to bright age. This paper will try to address the details of journey of astronomy in Ethiopia.

  8. Astronomical Book Trek: Astronomy Books of 1982.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1983-01-01

    Provided in two separate annotated lists are technical and nontechnical astronomy books. Categories in the latter group include: general astronomy; astronomy textbooks; amateur astronomy; astronomy history; life on other worlds; astrophysics; the solar system; space exploration; and the sun. (JN)

  9. Random time series in astronomy.

    PubMed

    Vaughan, Simon

    2013-02-13

    Progress in astronomy comes from interpreting the signals encoded in the light received from distant objects: the distribution of light over the sky (images), over photon wavelength (spectrum), over polarization angle and over time (usually called light curves by astronomers). In the time domain, we see transient events such as supernovae, gamma-ray bursts and other powerful explosions; we see periodic phenomena such as the orbits of planets around nearby stars, radio pulsars and pulsations of stars in nearby galaxies; and we see persistent aperiodic variations ('noise') from powerful systems such as accreting black holes. I review just a few of the recent and future challenges in the burgeoning area of time domain astrophysics, with particular attention to persistently variable sources, the recovery of reliable noise power spectra from sparsely sampled time series, higher order properties of accreting black holes, and time delays and correlations in multi-variate time series. PMID:23277606

  10. 1 Introduction 1.1 Astronomy and Astrophysics

    E-print Network

    Press, William H.

    ? Astronomy is ffl the art of observation and the measurement side of the subject ffl radio, optical, IR, UV, quasars, etc. Astrophysics is ffl the application of physics to these observations to understand and in: from nuclear scales (1 fm = 10 \\Gamma15 m = 1 Fm = 10 \\Gamma13 cm) to cosmological scales (10 Gpc = 10

  11. NASA IDEAS to Improve Instruction in Astronomy and Space Science

    NASA Astrophysics Data System (ADS)

    Malphrus, B.; Kidwell, K.

    1999-12-01

    The IDEAS to Improve Instructional Competencies in Astronomy and Space Science project is intended to develop and/or enhance teacher competencies in astronomy and space sciences of teacher participants (Grades 5-12) in Kentucky. The project is being implemented through a two-week summer workshop, a series of five follow-up meetings, and an academic year research project. The resources of Kentucky's only Radio Astronomy Observatory- the Morehead Radio Telescope (MRT), Goldstone Apple Valley Radio Telescope (GAVRT) (via remote observing using the Internet), and the Kentucky Department of Education regional service centers are combined to provide a unique educational experience. The project is designed to improve science teacher's instructional methodologies by providing pedagogical assistance, content training, involving the teachers and their students in research in radio astronomy, providing access to the facilities of the Morehead Astrophysical Observatory, and by working closely with a NASA-JOVE research astronomer. Participating teachers will ultimately produce curriculum units and research projects, the results of which will be published on the WWW. A major goal of this project is to share with teachers and ultimately students the excitement and importance of scientific research. The project represents a partnership of five agencies, each matching the commitment both financially and/or personnel. This project is funded by the NASA IDEAS initiative administered by the Space Telescope Science Institute and the National Air and Space Administration (NASA).

  12. High Energy Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.

  13. TeV Astronomy

    E-print Network

    Rieger, Frank M; Aharonian, Felix A

    2013-01-01

    With the successful realization of the current-generation of ground-based detectors, TeV Astronomy has entered into a new era. We review recent advances in VHE astronomy, focusing on the potential of Imaging Atmospheric Cherenkov Telescopes (IACTs), and highlight astrophysical implications of the results obtained within recent years.

  14. High energy particle astronomy.

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  15. Towards "Astronomy for Development"

    NASA Astrophysics Data System (ADS)

    Govender, Kevindran

    2015-08-01

    The ambition of the IAU's decadal strategic plan is to use astronomy to stimulate development globally. The Office of Astronomy for Development was established in 2011 to implement this visionary plan. This talk will reflect on the past, present and future activities of the office, and describe the status of implementation of the plan at this halfway point in the 2010-2020 decade.

  16. Astronomy and Culture

    NASA Astrophysics Data System (ADS)

    Stavinschi, M.

    2006-08-01

    Astronomy is, by definition, the sum of the material and spiritual values created by mankind and of the institutions necessary to communicate these values. Consequently, astronomy belongs to the culture of each society and its scientific progress does nothing but underline its role in culture. It is interesting that there is even a European society which bears this name "Astronomy for Culture" (SEAC). Its main goal is "the study of calendric and astronomical aspects of culture". Owning ancient evidence of astronomical knowledge, dating from the dawn of the first millennium, Romania is interested in this topic. But Astronomy has a much deeper role in culture and civilization. There are many aspects that deserve to be discussed. Examples? The progress of astronomy in a certain society, in connection with its evolution; the place held by the astronomy in literature and, generally, in art; the role of the SF in the epoch of super-mediatization; astronomy and belief; astronomy and astrology in the modern society, and so forth. These are problems that can be of interest for IAU, but the most important one could be her educational role, in the formation of the culture of the new generation, in the education of the population for the protection of our planet, in the ensuring of a high level of spiritual development of the society in the present epoch.

  17. A Basic Astronomy Library.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    This bibliography lists the most useful and scientifically accurate astronomy books published in the 1980s for beginners and students. The books are categorized under the topics of: (1) astronomy in general; (2) solar system as a whole; (3) planets; (4) asteroids, comets, and meteorites; (5) the sun; (6) stars and their evolution; (7) mikly way…

  18. Astronomy in Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, Valério A. R. M.; Paulo, Cláudio M.

    2015-03-01

    We present the state of Astronomy in Mozambique and how it has evolved since 2009 following the International Year of Astronomy. Activities have been lead by staff at University Eduardo Mondlane and several outreach activities have also flourished. In 2010 the University introduced its first astronomy module, Introduction to Astronomy and Astrophysics, for the second year students in the Department of Physics. The course has now produced the first students who will be graduating in late 2012 with some astronomy content. Some of these students will now be looking for further studies and those who have been keen in astronomy have been recommended to pursue this as a career. At the university level we have also discussed on the possibility to introduce a whole astronomy course by 2016 which falls well within the HCD that the university is now investing in. With the announcement that the SKA will be split between South Africa with its partner countries (including Mozambique), and Australia we have been working closely with the Ministry of Science and Technology to make astronomy a priority on its agenda. In this respect, an old telecommunications antenna is being converted by the South Africa SKA Project Office, and donated to Mozambique for educational purposes. It will be situated in Maluana, Mozambique.

  19. Junior High Astronomy.

    ERIC Educational Resources Information Center

    Greenstone, Sid; Smith, Murray

    Selected materials needed to teach an astronomy unit as well as suggested procedures, activities, ideas, and astronomy fact sheets published by the Manitoba Planetarium are provided. Subjects of the fact sheets include: publications and classroom picture sets available from the National Aeronautics and Space Administration and facts and statistics…

  20. Indian Astronomy: History of

    NASA Astrophysics Data System (ADS)

    Mercier, R.; Murdin, P.

    2002-01-01

    From the time of A macronryabhat under dota (ca AD 500) there appeared in India a series of Sanskrit treatises on astronomy. Written always in verse, and normally accompanied by prose commentaries, these served to create an Indian tradition of mathematical astronomy which continued into the 18th century. There are as well texts from earlier centuries, grouped under the name Jyotishaveda macronn d...

  1. Astronomy Demonstrations and Models.

    ERIC Educational Resources Information Center

    Eckroth, Charles A.

    Demonstrations in astronomy classes seem to be more necessary than in physics classes for three reasons. First, many of the events are very large scale and impossibly remote from human senses. Secondly, while physics courses use discussions of one- and two-dimensional motion, three-dimensional motion is the normal situation in astronomy; thus,…

  2. Monitoring Radio Frequency Interference in Southwest Virginia

    NASA Astrophysics Data System (ADS)

    Rapp, Steve

    2010-01-01

    The radio signals received from astronomical objects are extremely weak. Because of this, radio sources are easily shrouded by interference from devices such as satellites and cell phone towers. Radio astronomy is very susceptible to this radio frequency interference (RFI). Possibly even worse than complete veiling, weaker interfering signals can contaminate the data collected by radio telescopes, possibly leading astronomers to mistaken interpretations. To help promote student awareness of the connection between radio astronomy and RFI, an inquiry-based science curriculum was developed to allow high school students to determine RFI levels in their communities. The Quiet Skies Project_the result of a collaboration between the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the National Radio Astronomy Observatory (NRAO)_encourages students to collect and analyze RFI data and develop conclusions as a team. Because the project focuses on electromagnetic radiation, it is appropriate for physics, physical science, chemistry, or general science classes. My class-about 50 students from 15 southwest Virginia high schools-participated in the Quiet Skies Project and were pioneers in the use of the beta version of the Quiet Skies Detector (QSD), which is used to detect RFI. Students have been involved with the project since 2005 and have collected and shared data with NRAO. In analyzing the data they have noted some trends in RFI in Southwest Virginia.

  3. Joseph Henry and Astronomy

    NASA Astrophysics Data System (ADS)

    Rothenberg, Marc

    2016-01-01

    Joseph Henry (1797-1878) is best known for his work in electromagnetism and as the first secretary of the Smithsonian Institution. But he was also a pioneer solar physicist, an early advocate of US participation in astrophysics, and a facilitator of international cooperation in astronomy. This paper will briefly trace his role in the development of the US astronomical community from the time he taught astronomy at Princeton in the 1830s through his death, focusing on failed efforts to persuade US astronomers and patrons of astronomy that the best path for US astronomy should be astrophysics. He thought that the US could make a more significant contribution to astronomy science by striking out on a less travelled path rather than competing with the established European observatories.

  4. History of Oriental Astronomy

    NASA Astrophysics Data System (ADS)

    Ansari, S. M. Razaullah

    2002-12-01

    This volume deals specifically with recent original research in the history of Chinese, Korean, Japanese, Islamic, and Indian astronomy. It strikes a balance between landmarks of history of Ancient and Medieval Astronomy in the Orient on one hand, and on the other the transmission of the European Astronomy into the countries of the Orient. Most contributions are based on research by the experts in this field. The book also indicates the status of astronomy research in non-European cultural areas of the world. The book is especially of interest to historians of astronomy and science, and students of cultural heritage. Link: http://www.wkap.nl/prod/b/1-4020-0657-8

  5. Radio Quiet Protection at the Australian Square Kilometre array site

    NASA Astrophysics Data System (ADS)

    Harvey-Smith, Lisa

    2015-08-01

    Radio astronomy relies on the detection of very faint signals from the universe. Many radio telescopes are now detrimentally affected by radio frequency interference (RFI), which results from a wide range of active spectrum users such as communications, aviation and satellites. This is why many new radio observatories are being sited at increasingly remote locations.The site for the Square Kilometre Array and its pathfinders in Australia is the Murchison Radio-Astronomy Observatory (MRO). The MRO is located more than 350km from the nearest population centre and has a large radio-quiet zone that is managed under a range of legislative agreements.In this talk I will describe the radio quiet zone, what protection it gives, how it works and how astronomers interact with the spectrum management authorities.

  6. To See the Unseen: A History of Planetary Radar Astronomy

    NASA Technical Reports Server (NTRS)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground-based facilities by this transformed planetary radar astronomy, as well as the upgrading of the Arecibo and Goldstone radars. A technical essay appended to this book provides an overview of planetary radar techniques, especially range-Doppler mapping.

  7. STATISTICAL ANALYSIS OF 5 YEAR CONTINUOUS RADIO FLARE DATA FROM PERSEI, V711 TAURI, LIBRAE, AND UX ARIETIS

    E-print Network

    Richards, Donald St. P.

    @rsd.nrl.navy.mil Frank D. Ghigo National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944; fghigoSTATISTICAL ANALYSIS OF 5 YEAR CONTINUOUS RADIO FLARE DATA FROM #12; PERSEI, V711 TAURI, LIBRAE, AND UX ARIETIS Mercedes T. Richards1 Department of Astronomy and Astrophysics, Pennsylvania State

  8. The Very Long Baseline ArrayThe Very Long Baseline Array Brought to you by the National Radio

    E-print Network

    Groppi, Christopher

    Brought to you by the National Radio Astronomy Observatory, a facility of the National Science Foundation Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreementThe Very Long Baseline ArrayThe Very Long Baseline Array Brought to you by the National Radio

  9. The Future of Space Astronomy.

    ERIC Educational Resources Information Center

    Field, George B.

    1984-01-01

    Discusses various aspects of space astronomy, considering advantages, the space telescope and ground-based astronomy, an orbiting astrophysics facility, solar physics, and other areas. Indicates that earth-based astronomy will continue to be carried out there and space astronomy will be limited to observations that can be carried out only from…

  10. Gravitational Waves and Time Domain Astronomy

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  11. Astronomy Landscape in Africa

    NASA Astrophysics Data System (ADS)

    Nemaungani, Takalani

    2015-01-01

    The vision for astronomy in Africa is embedded in the African Space Policy of the African Union in early 2014. The vision is about positioning Africa as an emerging hub for astronomy sciences and facilities. Africa recognized the need to take advantage of its natural resource, the geographical advantage of the clear southern skies and pristine sites for astronomy. The Pan African University (PAU) initiative also presents an opportunity as a post-graduate training and research network of university nodes in five regions of Africa and supported by the African Union. The Southern African node based in South Africa concentrates on space sciences which also includes astronomy. The PAU aims to provide the opportunity for advanced graduate training and postgraduate research to high-performing African students. Objectives also include promoting mobility of students and teachers and harmonizing programs and degrees.A number of astronomy initiatives have burgeoned in the Southern African region and these include the Southern Africa Largest Optical Telescope (SALT), HESS (High Energy Stereoscopic System), the SKA (Square Kilometre Array) and the AVN (African Very Long Baseline Interferometer Network). There is a growing appetite for astronomy sciences in Africa. In East Africa, the astronomy community is well organized and is growing - the East African Astronomical society (EAAS) held its successful fourth annual conference since 2010 on 30 June to 04 July 2014 at the University of Rwanda. Centred around the 'Role of Astronomy in Socio-Economic Transformation,' this conference aimed at strengthening capacity building in Astronomy, Astrophysics and Space Science in general, while providing a forum for astronomers from the region to train young and upcoming scientists.

  12. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Asbury, M. L.

    2000-05-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is an interactive online astronomy resource developed and maintained at the University of Maryland for use by students, educators and the general public. The Astronomy Workshop has been extensively tested and used successfully at many different levels, including High School and Junior High School science classes, University introductory astronomy courses, and University intermediate and advanced astronomy courses. Some topics currently covered in the Astronomy Workshop are: ANIMATED ORBITS OF PLANETS AND MOONS: The orbits of the nine planets and 63 known planetary satellites are shown in animated, to-scale drawings. The orbiting bodies move at their correct relative speeds about their parent, which is rendered as an attractive, to-scale gif image. SOLAR SYSTEM COLLISIONS: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country impacted (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). SCALE OF THE UNIVERSE: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. SCIENTIFIC NOTATION: Students are interactively guided through conversions between scientific notation and regular numbers. ORBITAL SIMULATIONS: These tools allow the student to investigate different aspects of the three-body problem of celestial mechanics. ASTRONOMY WORKSHOP BULLETIN BOARD: Get innovative teaching ideas and read about in-class experiences with the Astronomy Workshop. Share your ideas with other educators by posting on the Bulletin Board. Funding for the Astronomy Workshop is provided by NSF.

  13. Teaching Astronomy with Technology

    NASA Astrophysics Data System (ADS)

    Austin, Carmen; Impey, Chris David; Wenger, Matthew

    2015-01-01

    Students today are expected to have access to computers and the Internet. Students young and old, in school and out of school, are interested in learning about astronomy, and have computers to use for this. Teach Astronomy is a website with a comprehensive digital astronomy textbook freely available to students and educators. In addition to the textbook, there are astronomy Wikipedia articles, image archives from Astronomy Picture of the Day and AstroPix, and video lectures covering all topics of astronomy. Teach Astronomy has a unique search tool called the wikimap that can be used to search through all of the resources on the site. Astronomy: State of the Art (ASOTA) is a massive, open, online course (MOOC). Over 18,000 students have enrolled over the past year and half. This MOOC has been presented in various forms. First, only to students on the web, with content released weekly on host site Udemy. Then to university students who met formally in the classroom for educational activities, but were also expected to watch lectures online on their own time. Presently, it is available online for students to go at their own pace. In the future it will be available in an extended format on a new host site, Coursera. ASOTA instructors use social media to interact with students. Students ask questions via the course host site, Udemy. Live question and answer sessions are conducted using Google Hangouts on Air, and interesting and relevant astronomy news, or supplementary educational content is shared via the ASOTA Facebook page. Teaching on the Internet may seem impersonal and impractical, but by learning to use all of these tools, instructors have the ability to interact with students, and keep them engaged.

  14. Big Computing in Astronomy: Perspectives and Challenges

    NASA Astrophysics Data System (ADS)

    Pankratius, Victor

    2014-06-01

    Hardware progress in recent years has led to astronomical instruments gathering large volumes of data. In radio astronomy for instance, the current generation of antenna arrays produces data at Tbits per second, and forthcoming instruments will expand these rates much further. As instruments are increasingly becoming software-based, astronomers will get more exposed to computer science. This talk therefore outlines key challenges that arise at the intersection of computer science and astronomy and presents perspectives on how both communities can collaborate to overcome these challenges.Major problems are emerging due to increases in data rates that are much larger than in storage and transmission capacity, as well as humans being cognitively overwhelmed when attempting to opportunistically scan through Big Data. As a consequence, the generation of scientific insight will become more dependent on automation and algorithmic instrument control. Intelligent data reduction will have to be considered across the entire acquisition pipeline. In this context, the presentation will outline the enabling role of machine learning and parallel computing.BioVictor Pankratius is a computer scientist who joined MIT Haystack Observatory following his passion for astronomy. He is currently leading efforts to advance astronomy through cutting-edge computer science and parallel computing. Victor is also involved in projects such as ALMA Phasing to enhance the ALMA Observatory with Very-Long Baseline Interferometry capabilities, the Event Horizon Telescope, as well as in the Radio Array of Portable Interferometric Detectors (RAPID) to create an analysis environment using parallel computing in the cloud. He has an extensive track record of research in parallel multicore systems and software engineering, with contributions to auto-tuning, debugging, and empirical experiments studying programmers. Victor has worked with major industry partners such as Intel, Sun Labs, and Oracle. He holds a distinguished doctorate and a Habilitation degree in Computer Science from the University of Karlsruhe. Contact him at pankrat@mit.edu, victorpankratius.com, or Twitter @vpankratius.

  15. Mathematical Astronomy in India

    NASA Astrophysics Data System (ADS)

    Plofker, Kim

    Astronomy in South Asia's Sanskrit tradition, apparently originating in simple calendric computations regulating the timing of ancient ritual practices, expanded over the course of two or three millennia to include detailed spherical models, an endless variety of astrological systems, and academic mathematics in general. Assimilating various technical models, methods, and genres from the astronomy of neighboring cultures, Indian astronomers created new forms that were in turn borrowed by their foreign counterparts. Always recognizably related to the main themes of Eurasian geocentric mathematical astronomy, Indian astral science nonetheless maintained its culturally distinct character until Keplerian heliocentrism and Newtonian mechanics replaced it in colonial South Asia's academic mainstream.

  16. Teaching Astronomy Using Tracker

    NASA Astrophysics Data System (ADS)

    Belloni, Mario; Christian, Wolfgang; Brown, Douglas

    2013-03-01

    A recent paper in this journal1 presented a set of innovative uses of video analysis for introductory physics using Tracker. In addition, numerous other papers have described how video analysis can be a meaningful part of introductory courses.2-4 Yet despite this, there are few resources for using video analysis in introductory astronomy classes. In this paper we describe the use of Tracker in introductory astronomy to analyze a ``video'' consisting of a series of still images of star fields and sunspots. Because astronomy focuses on concepts unfamiliar to most students, the visualization that video analysis provides can be especially valuable.

  17. Discovering Astronomy Through Poetry

    NASA Astrophysics Data System (ADS)

    Mannone, John C.

    2011-05-01

    The literature is replete with astronomical references. And much of that literature is poetry. Using this fact, not only can the teacher infuse a new appreciation of astronomy, but also, the student has the opportunity to rediscover history through astronomy. Poetry can be an effective icebreaker in the introduction of new topics in physics and astronomy, as well as a point of conclusion to a lecture. This presentation will give examples of these things from the ancient literature (sacred Hebraic texts), classical literature (Homer's Iliad and Odyssey), traditional poetry (Longfellow, Tennyson and Poe) and modern literature (Frost, Kooser, and others, including the contemporary work of this author).

  18. Big Data Challenges for Large Radio Arrays

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.; Wagstaff, Kiri; Thompson, David; D'Addario, Larry; Navarro, Robert; Mattmann, Chris; Majid, Walid; Lazio, Joseph; Preston, Robert; Rebbapragada, Umaa

    2012-01-01

    Future large radio astronomy arrays, particularly the Square Kilometre Array (SKA), will be able to generate data at rates far higher than can be analyzed or stored affordably with current practices. This is, by definition, a "big data" problem, and requires an end-to-end solution if future radio arrays are to reach their full scientific potential. Similar data processing, transport, storage, and management challenges face next-generation facilities in many other fields.

  19. Analysis of Jovian decamteric data: Study of radio emission mechanisms

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.; Arias, T. A.; Garnavich, P. N.; Hammerschlag, R.

    1986-01-01

    This research effort involved careful examination of Jovian radio emission data below 40 MHz, with emphasis on the informative observations of the Planetary Radio Astronomy experiment (PRA) on the Voyager 1 and 2 spacecraft. The work is divided into three sections, decametric arcs, decametric V bursts, and hectometric modulated spectral activity (MSA).

  20. COMPRESSED SENSING FOR RADIO INTERFEROMETRIC IMAGING: REVIEW AND FUTURE DIRECTION

    E-print Network

    McEwen, Jason

    COMPRESSED SENSING FOR RADIO INTERFEROMETRIC IMAGING: REVIEW AND FUTURE DIRECTION Jason D. McEwen1 interferometry is a powerful technique for astronomi- cal imaging. The theory of compressed sensing (CS) has been re- quired to achieve this goal. Index Terms-- Compressed sensing, sparsity, radio interferometry

  1. Radio Journalism.

    ERIC Educational Resources Information Center

    Bittner, John R.; Bittner, Denise A.

    This book, a how-to-do-it guide for the novice and the professional alike, deals with several aspects of radio journalism: producing documentaries, preparing and announcing radio news, ethics and responsibility, regulation of radio journalism, and careers. It traces the history and growth of radio news, shows its impact on the public, and…

  2. Infrared Astronomy in the Past Half Century

    NASA Astrophysics Data System (ADS)

    Harwit, M.

    Infrared astronomy has greatly changed in the past four decades. From a small extension to optical astronomy that stretched out to slightly longer wavelengths, infrared astronomy gradually reached out to cover the entire wavelength range to the radio regime, and established itself as a field of importance in its own right. These efforts required the development of new detection techniques that permitted access to ever larger portions of the near-,mid and far-infrared regime and extended out into the submillimeter domain. Infrared and submillimeter techniques became essential for the investigations of star formation processes that took place at such low temperatures that no optical emission could be expected. The new observations pierced the dark dust clouds populating the Milky Way to provide a clear view of the Galaxy's center. In the distant Universe startlingly luminous merging galaxies came into view. We were beginning to look far back in time to perceive the gradual evolution of galaxies over the aeons. A serious drawback, however, persisted. At progressively longer wavelengths the view of the Universe became increasingly blurred. Ordinary telescopes no longer provided sharp views. Interferometers would have to be pioneered and constructed at great cost. Major investments led to the construction of dedicated facilities, on the ground, in the air and in space. The increased funding, however, also dictated that infrared astronomers reorganize themselves.Initially started by a few individuals working with their students and a few technicians, infrared astronomy had to change as increasing numbers of scientists entered the field and began to erect facilities that required the dedicated efforts of hundreds of astronomers on a single project. Infrared astronomy has evolved into Big Science, a limit at which increasing budgets threaten to become an unacceptable burden on society. Members of our discipline will need to think carefully how we may continue to pursue further advances within socially affordable limits.

  3. Astronomy, Astrology, and Medicine

    NASA Astrophysics Data System (ADS)

    Greenbaum, Dorian Gieseler

    Astronomy and astrology were combined with medicine for thousands of years. Beginning in Mesopotamia in the second millennium BCE and continuing into the eighteenth century, medical practitioners used astronomy/astrology as an important part of diagnosis and prescription. Throughout this time frame, scientists cited the similarities between medicine and astrology, in addition to combining the two in practice. Hippocrates and Galen based medical theories on the relationship between heavenly bodies and human bodies. In an enduring cultural phenomenon, parts of the body as well as diseases were linked to zodiac signs and planets. In Renaissance universities, astronomy and astrology were studied by students of medicine. History records a long tradition of astrologer-physicians. This chapter covers the topic of astronomy, astrology, and medicine from the Old Babylonian period to the Enlightenment.

  4. Cultural Astronomy in Japan

    NASA Astrophysics Data System (ADS)

    Renshaw, Steven L.

    While Japan is known more for its contributions to modern astronomy than its archaeoastronomical sites, there is still much about the culture's heritage that is of interest in the study of cultural astronomy. This case study provides an overview of historical considerations necessary to understand the place of astronomy in Japanese society as well as methodological considerations that highlight traditional approaches that have at times been a barrier to interdisciplinary research. Some specific areas of study in the cultural astronomy of Japan are discussed including examples of contemporary research based on interdisciplinary approaches. Japan provides a fascinating background for scholars who are willing to go beyond their curiosity for sites of alignment and approach the culture with a desire to place astronomical iconography in social context.

  5. Kepler's physical astronomy

    NASA Astrophysics Data System (ADS)

    Stephenson, Bruce

    The contributions of Johannes Kepler to astronomy and celestial mechanics are examined in a historical and analytical study. The 'Astronomia nova' is treated as a single argument, in an effort to show how Kepler laid the foundations of physical astronomy, and individual chapters are devoted to the 'Mysterium cosmographicum,' the 'Epitome Astronomiae Copernicanae,' and Kepler and the development of modern science. Extensive diagrams, a glossary of terms, and an index to the 'Astronomia nova' are provided.

  6. NASA thesaurus: Astronomy vocabulary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A terminology of descriptors used by the NASA Scientific and Technical information effort to index documents in the area of astronomy is presented. The terms are listed in hierarchical format derived from the 1988 edition of the NASA Thesaurus Volume 1 -- Hierarchical Listing. Over 1600 terms are included. In addition to astronomy, space sciences covered include astrophysics, cosmology, lunar flight and exploration, meteors and meteorites, celestial mechanics, planetary flight and exploration, and planetary science.

  7. Music and Astronomy

    E-print Network

    J. A. Caballero; S. Gonzalez Sanchez; I. Caballero

    2008-10-16

    What do Brian May (the Queen's lead guitarist), William Herschel and the Jupiter Symphony have in common? And a white dwarf, a piano and Lagartija Nick? At first glance, there is no connection between them, nor between Music and Astronomy. However, there are many revealing examples of musical Astronomy and astronomical Music. This four-page proceeding describes the sonorous poster that we showed during the VIII Scientific Meeting of the Spanish Astronomical Society.

  8. Compact Radio Cores in the Galactic Center and Elsewhere 1 Heino Falcke

    E-print Network

    Falcke, Heino

    Compact Radio Cores in the Galactic Center and Elsewhere 1 Heino Falcke Department of Astronomy of my earlier reviews (Falcke 1996a&b), and then move on to discuss in detail examples of radio cores galaxies and radio­weak quasars, which suggest that there jets play an even larger râ??ole than initially

  9. Radio Detection of Cosmic Rays Antje Fitzner

    E-print Network

    van Suijlekom, Walter

    Radio Detection of Cosmic Rays Antje Fitzner Bachelor's thesis for Physics & Astronomy Supervisor fluorescence (ultraviolet radiation). The interaction of all charged particles in a shower with nitrogen in the atmosphere produces ultraviolet radiation, which can be measured, but only at dark, moonless nights [3

  10. Radio Polarization of BL Lacertae objects

    E-print Network

    Fan, J H; Yuan, Y H; Wang, Y X; Liu, Y; Su, J B; Zhang, Y W; Yang, J H; Huang, Y; Fan, Jun-Hui; Hua, Tong-Xu; Yuan, Yu-Hai; Wang, Yong-Xiang; Liu, Yi; Su, Jiang-Bo; Zhang, Yong-Wei; Yang, Jiang-He; Huang, Yong

    2006-01-01

    In this paper, using the database of the university of Michigan Radio Astronomy Observatory (UMRAO) at three (4.8 GHz, 8 GHZ, and 14.5 GHz) radio frequencies, we studied the polarization properties for 47 BL Lacertae objects(38 radio selected BL Lacertae objects, 7 X-ray selected BL Lacertae, and two inter-middle objects (Mkn 421 and Mkn 501), and found that (1) The polarizations at higher radio frequency is higher than those at lower frequency, (2) The variability of polarization at higher radio frequency is higher than those at lower frequency, (3) The polarization is correlated with the radio spectral index, and (4) The polarization is correlated with core-dominance parameter for those objects with known core-dominance parameters suggesting that the relativistic beaming could explain the polarization characteristic of BL Lacs.

  11. Achievements and Mirages in Uhecr and Neutrino Astronomy

    E-print Network

    Fargion, D

    2009-01-01

    Photon Astronomy ruled the last four centuries while wider photon band ruled last radio-X-Gamma century of discovery. Present decade may see the rise and competition of UHECR and UHE Neutrino Astronomy. Tau Neutrino may win and be the first flavor revealed. It could soon rise at horizons in AUGER at EeV energies, if nucleons are the main UHECR currier. If on the contrary UHECR are Lightest nuclei (He, Li. B) UHE tau neutrino maybe suppressed at EeV and enhanced at tens -hundred PeV. Detectable in AMIGA and HEAT denser sub-array in AUGER. Within a few years.

  12. Astronomy Students Learn to Think Big.

    ERIC Educational Resources Information Center

    Somerville, W. B.

    1989-01-01

    Presents background information related to astronomy for high school students. Discusses the differences between astronomy and astrophysics, and the employment of the astronomy graduates. Lists degree programs in astronomy and related subjects in an appendix. (YP)

  13. Plasma and radio waves from Neptune: Source mechamisms and propagation

    NASA Technical Reports Server (NTRS)

    Menietti, J. Douglas

    1994-01-01

    The purpose of this project was to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as it flew by Neptune. The study has included data analysis, theoretical and numerical calculations, and ray tracing to determine the possible source mechanisms and locations of the radiation, including the narrowband bursty and smooth components of the Neptune radio emission.

  14. MPS Internships in Public Science Education: Sensing the Radio Sky

    NASA Astrophysics Data System (ADS)

    Blake, Melvin; Castelaz, M. W.; Moffett, D.; Walsh, L.; LaFratta, M.

    2006-12-01

    The intent of the “Sensing the Radio Sky” program is to teach high school students the concepts and relevance of radio astronomy through presentations in STARLAB portable planetariums. The two year program began in the summer of 2004 and was completed in December 2006. The program involved a team of 12 undergraduate physics and multimedia majors and four faculty mentors from Furman University, University of North Carolina-Asheville and Pisgah Astronomical Research Institute (PARI). One component of the program is the development and production of a projection cylinder for the portable STARLAB planetariums. The cylinder gives a thorough view of the Milky Way and of several other celestial sources in radio wavelengths, yet these images are difficult to perceive without prior knowledge of radio astronomy. Consequently, the Radio Sky team created a multimedia presentation to accompany the cylinder. This multimedia component contains six informative lessons on radio astronomy assembled by the physics interns and numerous illustrations and animations created by the multimedia interns. The cylinder and multimedia components complement each other and provide a unique, thorough, and highly intelligible perspective on radio astronomy. The final draft is complete and will be sent to Learning Technologies, Inc., for marketing to owners of STARLAB planetariums throughout the world. We acknowledge support from the NSF Internship in Public Science Education Program grant number 0324729.

  15. Berkeley's Advanced Labs for Undergraduate Astronomy Majors

    NASA Astrophysics Data System (ADS)

    Heiles, C.

    1998-12-01

    We currently offer three advanced laboratory courses for undergraduate majors: optical, IR, and radio. These courses contain both intellectual and practical content; in this talk we focus on the radio lab as a representative example. The first half of the semester concentrates on fundamentals of microwave electronics and radio astronomy techniques in four formal laboratory exercises which emphasize hands-on use of microwave devices, laboratory instruments, and computer-controlled data taking. The second half of the course emphasizes astronomy, using a horn with ~ 1 m(2) aperture to map the HI in the Galaxy and a two-element interferometer composed of ~ 1 m diameter dishes on a ~ 10 m baseline to measure accurate positions of radio sources and accurate diameters for the Sun and Moon. These experiments and observations offer ideal opportunities for teaching coordinates, time, rotation matrices, data reduction techniques, least squares, signal processing, image processing, Fourier transforms, and laboratory and astronomical instrumentation. The students can't get along without using computers as actually used by astronomers. We stay away from packaged software such as IRAF, which are ``black boxes''; rather, students learn far more by writing their own software, usually for the first time. They use the IDL language to take and reduce data and prepare them for the lab reports. We insist on quality reports---including tables, postscript graphs and images, correct grammar, spelling, and all the rest---and we strongly urge (successfully!) the students to use LATEX. The other two lab courses have the same emphasis: the guiding spirit is to place the students in a real-life research-like situation. There is too much to do, so students perform the work in small groups of 3 or 4 and groups are encouraged to share their knowledge. Lab reports are written individually. These courses are very demanding, requiring an average of 20 hours per week from the students (and probably more from the instructors). Everybody loves it!

  16. arXiv:1108.4037v1[astro-ph.CO]19Aug2011 Ultra Steep Spectrum radio sources in the Lockman Hole: SERVS

    E-print Network

    Norris, Ray

    Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK 13 National Radio´isica da Universidade de Lisboa, Lisbon, Portugal 3 UK Astronomy Technology Centre, Royal Observatory Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA 14 Institute of Cosmology

  17. Astronomical Book Trek: Astronomy Books of 1983.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1984-01-01

    Presents an annotated list of technical and non-technical astronomy books. Topic areas of non-technical books include general astronomy, amateur astronomy, computers and astronomy, history of astronomy, pseudoscience, space exploration, physics and astronomy, and textbooks. Each entry includes author, title, description, source, and current cost.…

  18. Rescuing Middle School Astronomy

    NASA Astrophysics Data System (ADS)

    Mayo, L. A.; Janney, D.

    2010-12-01

    There is a crisis in education at the middle school level (Spellings, 2006). Recent studies point to large disparities in middle school performance in schools with high minority populations. The largest disparities exist in areas of math and science. Astronomy has a universal appeal for K-12 students but is rarely taught at the middle school level. When it is taught at all it is usually taught in isolation with few references in other classes such as other sciences (e.g. physics, biology, and chemistry), math, history, geography, music, art, or English. The problem is greatest in our most challenged school districts. With scores in reading and math below national averages in these schools and with most state achievement tests ignoring subjects like astronomy, there is little room in the school day to teach about the world outside our atmosphere. Add to this the exceedingly minimal training and education in astronomy that most middle school teachers have and it is a rare school that includes any astronomy teaching at all. In this presentation, we show how to develop and offer an astronomy education training program for middle school teachers encompassing a wide range of educational disciplines that are frequently taught at the middle school level. The prototype for this program was developed and launched in two of the most challenged and diverse school systems in the country; D.C. Public Schools, and Montgomery County (MD) Public Schools.

  19. CCD Astronomy Software User's Guide

    E-print Network

    CCDSoft CCD Astronomy Software User's Guide Version 5 Revision 1.11 Copyright © 1992­2006 SantaSky Astronomy Software, and AutomaDome are trademarks of Software Bisque. WindowsTM is a trademark of Microsoft

  20. The history of radio telescopes, 1945-1990

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T.

    2009-08-01

    Forged by the development of radar during World War II, radio astronomy revolutionized astronomy during the decade after the war. A new universe was revealed, centered not on stars and planets, but on the gas between the stars, on explosive sources of unprecedented luminosity, and on hundreds of mysterious discrete sources with no optical identifications. Using “radio telescopes” that looked nothing like traditional (optical) telescopes, radio astronomers were a very different breed from traditional (optical) astronomers. This pathbreaking of radio astronomy also made it much easier for later “astronomies” and their “telescopes” (X-ray, ultraviolet, infrared, gamma-ray) to become integrated into astronomy after the launch of the space age in the 1960s. This paper traces the history of radio telescopes from 1945 through about 1990, from the era of converted small-sized, military radar antennas to that of large interferometric arrays connected by complex electronics and computers; from the era of strip-chart recordings measured by rulers to powerful computers and display graphics; from the era of individuals and small groups building their own equipment to that of Big Science, large collaborations and national observatories.

  1. Mon. Not. R. Astron. Soc. 392, 617629 (2009) doi:10.1111/j.1365-2966.2008.14068.x Evolution of the radio-loud galaxy population

    E-print Network

    Best, Philip

    2009-01-01

    constructed from the cross-correlation of the National Radio Astronomy Observatory Very Large Array Sky Survey for Astronomy, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ Accepted 2008 October 8. Received of the radio-loud galaxy population E. Donoso,1 P. N. Best2 and G. Kauffmann1 1Max-Planck-Institut f

  2. MNRAS 453, 12231240 (2015) doi:10.1093/mnras/stv1518 High radio-frequency properties and variability of brightest

    E-print Network

    Faraon, Andrei

    2015-01-01

    ¨ahovi Radio Observatory, Mets¨ahovintie 114, FI-02540 Kylm¨al¨a, Finland 11Argelander-Institute of AstronomyMNRAS 453, 1223­1240 (2015) doi:10.1093/mnras/stv1518 High radio-frequency properties. Sadler17 and R. D. E. Saunders12 1Centre for Extragalactic Astronomy, Department of Physics, Durham

  3. The LOFAR radio environment

    NASA Astrophysics Data System (ADS)

    Offringa, A. R.; de Bruyn, A. G.; Zaroubi, S.; van Diepen, G.; Martinez-Ruby, O.; Labropoulos, P.; Brentjens, M. A.; Ciardi, B.; Daiboo, S.; Harker, G.; Jeli?, V.; Kazemi, S.; Koopmans, L. V. E.; Mellema, G.; Pandey, V. N.; Pizzo, R. F.; Schaye, J.; Vedantham, H.; Veligatla, V.; Wijnholds, S. J.; Yatawatta, S.; Zarka, P.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, M.; Beck, R.; Bell, M.; Bell, M. R.; Bentum, M.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Butcher, H.; Conway, J.; de Vos, M.; Dettmar, R. J.; Eisloeffel, J.; Falcke, H.; Fender, R.; Frieswijk, W.; Gerbers, M.; Griessmeier, J. M.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hessels, J.; Hoeft, M.; Horneffer, A.; Karastergiou, A.; Kondratiev, V.; Koopman, Y.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Mann, G.; McKean, J.; Meulman, H.; Mevius, M.; Mol, J. D.; Nijboer, R.; Noordam, J.; Norden, M.; Paas, H.; Pandey, M.; Pizzo, R.; Polatidis, A.; Rafferty, D.; Rawlings, S.; Reich, W.; Röttgering, H. J. A.; Schoenmakers, A. P.; Sluman, J.; Smirnov, O.; Sobey, C.; Stappers, B.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; van Ardenne, A.; van Cappellen, W.; van Duin, A. P.; van Haarlem, M.; van Leeuwen, J.; van Weeren, R. J.; Vermeulen, R.; Vocks, C.; Wijers, R. A. M. J.; Wise, M.; Wucknitz, O.

    2013-01-01

    Aims: This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods: We have analysed the radio-frequency interference (RFI) situation in two 24-h surveys with Dutch LOFAR stations, covering 30-78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz/1 s resolution. Results: We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFAR's nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linearly when decreasing the data frequency resolution. Conclusions: Currently, by using an automated RFI detection strategy, the LOFAR radio environment poses no perceivable problems for sensitive observing. It remains to be seen if this is still true for very deep observations that integrate over tens of nights, but the situation looks promising. Reasons for the low impact of RFI are the high spectral and time resolution of LOFAR; accurate detection methods; strong filters and high receiver linearity; and the proximity of the antennas to the ground. We discuss some strategies that can be used once low-level RFI starts to become apparent. It is important that the frequency range of LOFAR remains free of broadband interference, such as DAB stations and windmills.

  4. The Unified Astronomy Thesaurus

    NASA Astrophysics Data System (ADS)

    Erdmann, Christopher; Frey, Katie

    2015-08-01

    The Unified Astronomy Thesaurus (UAT) is an open, interoperable and community-supported thesaurus which unifies the existing divergent and isolated Astronomy & Astrophysics vocabularies into a single high-quality, freely-available open thesaurus formalizing astronomical concepts and their inter-relationships. The UAT builds upon both the International Astronomical Union Thesaurus and the International Virtual Observatory Alliance Thesaurus with major contributions from the astronomy portions of the thesauri developed by the Institute of Physics Publishing, the American Institute of Physics, and SPIE, donated to the American Astronomical Society (AAS). In this talk, I will describe the effort behind the creation of the UAT, its continued development through the leadership of the AAS, and discuss some of its current and potential applications.

  5. Radio Days.

    ERIC Educational Resources Information Center

    Sanderson, Neil

    1998-01-01

    Thousands of today's high school students run FM radio stations at school, carrying on a tradition that began 50 years ago. Radio helps students learn to work with others and develop a strong sense of responsibility. A sidebar gives advice on starting a high school radio station. (MLF)

  6. Linear regression issues in astronomy

    E-print Network

    Babu, G. Jogesh

    Linear regression issues in astronomy Eric Feigelson Summer School in astrostatistics References-dependent & Quantitative Variables in Econometrics 1983) Astronomy: Malmquist bias in Hubble diagram (Deeming, Vistas Astr) Schmitt (ApJ 1985) Presented for astronomy by Isobe, Feigelson & Nelson (ApJ 1986) Implemented

  7. DEPARTMENT OF PHYSICS AND ASTRONOMY

    E-print Network

    DEPARTMENT OF PHYSICS AND ASTRONOMY DARTMOUTH COLLEGE GRADUATE STUDENT HANDBOOK 2014-15 #12;2 TABLE .....................................................................28 #12;3 SECTION I PRACTICAL MATTERS 1. WELCOME AND OVERVIEW The Department of Physics and Astronomy undergraduate courses. The course requirements for physics and astronomy students are given in Section II-1

  8. DEPARTMENT OF PHYSICS AND ASTRONOMY

    E-print Network

    DEPARTMENT OF PHYSICS AND ASTRONOMY DARTMOUTH COLLEGE GRADUATE STUDENT HANDBOOK 2012-13 #12;2 TABLE .....................................................................27 #12;3 SECTION I PRACTICAL MATTERS 1. WELCOME AND OVERVIEW The Department of Physics and Astronomy with some undergraduate courses. The course requirements for physics and astronomy students are given

  9. School-Based Extracurricular Astronomy

    ERIC Educational Resources Information Center

    Stanger, Jeffrey J.

    2010-01-01

    The International Year of Astronomy in 2009 focused considerable public attention on Astronomy and generated valuable resources for educators. These activities are an effective vehicle for promoting Science to students and to the wider school community. The most engaging practical astronomy activities are best delivered with sustained support from…

  10. Quickly Creating Interactive Astronomy Illustrations

    ERIC Educational Resources Information Center

    Slater, Timothy F.

    2015-01-01

    An innate advantage for astronomy teachers is having numerous breathtaking images of the cosmos available to capture students' curiosity, imagination, and wonder. Internet-based astronomy image libraries are numerous and easy to navigate. The Astronomy Picture of the Day, the Hubble Space Telescope image archive, and the NASA Planetary…

  11. Teaching Astronomy in UK Schools

    ERIC Educational Resources Information Center

    Roche, Paul; Roberts, Sarah; Newsam, Andy; Barclay, Charles

    2012-01-01

    This article attempts to summarise the good, bad and (occasionally) ugly aspects of teaching astronomy in UK schools. It covers the most common problems reported by teachers when asked about covering the astronomy/space topics in school. Particular focus is given to the GCSE Astronomy qualification offered by Edexcel (which is currently the…

  12. Cosmic Ray Astronomy

    E-print Network

    Paul Sommers; Stefan Westerhoff

    2008-02-09

    Cosmic ray astronomy attempts to identify and study the sources of ultrahigh energy cosmic rays. It is unique in its reliance on charged particles as the information carriers. While no discrete source of ultrahigh energy cosmic rays has been identified so far, a new generation of detectors is acquiring the huge exposure that is needed at the highest energies, where deflection by magnetic fields is minimized and the background from distant sources is eliminated by pion photoproduction. In this paper, we summarize the status of cosmic ray astronomy, describing the detectors and the analysis techniques.

  13. Gamma-ray Astronomy

    E-print Network

    Jim Hinton

    2007-12-20

    The relevance of gamma-ray astronomy to the search for the origin of the galactic and, to a lesser extent, the ultra-high-energy cosmic rays has long been recognised. The current renaissance in the TeV gamma-ray field has resulted in a wealth of new data on galactic and extragalactic particle accelerators, and almost all the new results in this field were presented at the recent International Cosmic Ray Conference (ICRC). Here I summarise the 175 papers submitted on the topic of gamma-ray astronomy to the 30th ICRC in Merida, Mexico in July 2007.

  14. New Technology Lunar Astronomy Mission

    NASA Astrophysics Data System (ADS)

    Chen, P. C.; Oliversen, R. J.; Barry, R. K.; Romeo, R.; Pitts, R.; Ma, K. B.

    1995-12-01

    A scientifically productive Moon-based observatory can be established in the near term (3-5 years) by robotic spacecraft. Such a project is affordable even taking into account NASA's currently very tight budget. In fact the estimated cost of a lunar telescope is sufficiently low that it can be financed by private industry, foundations, or wealthy individuals. The key factor is imaginative use of new technologies and new materials. Since the Apollo era, many new areas of space technology have been developed in the US by NASA, the military, academic and industry sectors, ESA, Japan, and others. These include ultralite optics, radiation tolerant detectors, precision telescope drives incorporating high temperature superconductors, smart materials, active optics, dust and thermal control structures, subminiature spectrometers, tiny radio transmitters and receivers, small rockets, innovative fuel saving trajectories, and small precision landers. The combination of these elements makes possible a lunar observatory capable of front line astrophysical research in UV-Vis-IR imaging, spectrometry, and optical interferometry, at a per unit cost comparable to that of Small Explorer (SMEX) class missions. We describe work in progress at NASA GSFC and elsewhere, applications to other space projects, and spinoff benefits to ground-based astronomy, industry, and education.

  15. Firefighters' Radios

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Public Technology Inc. asked for NASA assistance to devise the original firefighter's radio. Good short-range radio communications are essential during a fire to coordinate hose lines, rescue victims, and otherwise increase efficiency. Useful firefighting tool is lower cost, more rugged short range two-way radio. Inductorless electronic circuit replaced inductances and coils in radio circuits with combination of transistors and other low-cost components. Substitution promises reduced circuit size and cost. Enhanced electrical performance made radio more durable and improved maintainability by incorporating modular construction.

  16. The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies

    E-print Network

    Goeke, Robert F.

    The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a ...

  17. PARTNeR: A Tool for Outreach and Teaching Astronomy

    NASA Astrophysics Data System (ADS)

    Gallego, Juan Ángel Vaquerizo; Fuertes, Carmen Blasco

    PARTNeR is an acronym for Proyecto Académico con el Radio Telescopio de NASA en Robledo (Academic Project with the NASA Radio Telescope at Robledo). It is intended for general Astronomy outreach and, in particular, radioastronomy, throughout Spanish educational centres. To satisfy this target, a new educational material has been developed in 2007 to help not only teachers but also students. This material supports cross curricular programs and provides with the possibility of including Astronomy in related subjects like Physics, Chemistry, Technology, Mathematics or even English language. In this paper, the material that has been developed will be shown in detail and how it can be adapted to the disciplines from 4th year ESO (Enseñanza Secundaria Obligatoria-Compulsory Secondary Education) to High School. The pedagogic results obtained for the first year it has been implemented with students in classrooms will also be presented.

  18. The IDL astronomy user's library

    NASA Technical Reports Server (NTRS)

    Landsman, W. B.

    1992-01-01

    IDL (Interactive Data Language) is a commercial programming, plotting, and image display language, which is widely used in astronomy. The IDL Astronomy User's Library is a central repository of over 400 astronomy-related IDL procedures accessible via anonymous FTP. The author will overview the use of IDL within the astronomical community and discuss recent enhancements at the IDL astronomy library. These enhancements include a fairly complete I/O package for FITS images and tables, an image deconvolution package and an image mosaic package, and access to IDL Open Windows/Motif widgets interface. The IDL Astronomy Library is funded by NASA through the Astrophysics Software and Research Aids Program.

  19. Successes and challenges in Space Science/Astronomy Development in West Africa

    NASA Astrophysics Data System (ADS)

    EKEOMA Opara, Fidelis

    2015-08-01

    The increasing number of Astronomers in Nigeria has challenged Space Scientists and Engineers on the popularization of Space Science and Astronomy.The aothor presents in this work many successes recorded at the Centre for Basic Space Science and Astronomy (CBSS), National Space Research and Development Agency, Nigeria in terms of local fabrications of instruments in both radio and optical frequencies with its attendant challenges.Professor F.E. Opara is the Director/ CEO NASRDA Centre for Basic Space Science and Astronomy (CBSS), Nsukka, Nigeria.

  20. Multiscale methods in astronomy

    NASA Astrophysics Data System (ADS)

    Starck, Jean-Luc

    Wavelets have been used extensively for several years now in astronomy for many purposes, ranging from data filtering and deconvolution, to star and galaxy detection or cosmic ray removal. We review in this paper a range of methods and applications. A recent method, the ridgelet transform is also described, and we show its interest when the data present anisotropic features.