Science.gov

Sample records for radio channel measurements

  1. A radio frequency device for measurement of minute dielectric property changes in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Song, Chunrong; Wang, Pingshan

    2009-01-01

    We demonstrate a sensitive radio frequency (rf) device to detect small dielectric property changes in microfluidic channel. The device consists of an on-chip Wilkinson power divider and a rat-race hybrid, which are built with planar microstrip lines and thin film chip resistors. Interference is used to cancel parasitic background signals. As a result, the measurement sensitivity is improved by more than 20 dB compared with conventional transmission lines. Compared with an ultrasensitive slot antenna/cuvette assembly [K. M. Taylor and D. W. van der Weide, IEEE Trans. Microwave Theory Tech. 53, 1576 (2005)], the proposed rf device is two times more sensitive.

  2. FMCW channel sounder with digital processing for measuring the coherence of wideband HF radio links

    NASA Astrophysics Data System (ADS)

    Salous, S.

    1986-08-01

    Multipath propagation, and in particular, the interference between the ordinary and the extraordinary waves, places a fundamental constraint on the performance of wideband HF skywave radio links. Furthermore, the dispersive nature of ionospheric propagation causes phase nonlinearity and hence distortion of narrow pulses. In this paper, an FMCW wideband sounder built for the purposes of characterizing the channel is described. Spectral analysis of the audio output of the sounder via the FFT algorithm is shown to permit measurement of thef amplitude/frequency function, the polarization bandwidth, the fade rate, the fade depth and the distortion of a narrow pulse, all for a desired isolated ionospheric propagation mode. The sounder was used to collect data over an oblique path in the UK. The results of applying the FFT processing technique to the experimental data are presented.

  3. Radio Channel Simulator (RCSM)

    Energy Science and Technology Software Center (ESTSC)

    2007-01-31

    This is a simulation package for making site specific predictions of radio signal strength. The software computes received power at discrete grid points as a function of the transmitter location and propagation environment. It is intended for use with wireless network simulation packages and to support wireless network deployments.

  4. The F. C. C.'s Clear Channel Radio Policies: Regulation in the Slow Lane.

    ERIC Educational Resources Information Center

    Jassem, Harvey C.

    In 1928, the Federal Radio Commission (the precursor of the Federal Communications Commission--FCC) noted the need for special radio channels that could carry radio across the United States free from interference from other radio stations. Many of these "clear channels" still exist as protected entities. Perhaps no other FCC policy better reflects…

  5. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725...

  6. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725...

  7. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725...

  8. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725...

  9. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725...

  10. Multimedia Transmission Over Cognitive Radio Channels Under Sensing Uncertainty

    NASA Astrophysics Data System (ADS)

    Ye, Chuang; Ozcan, Gozde; Gursoy, M. Cenk; Velipasalar, Senem

    2016-02-01

    This paper studies the performance of hierarchical modulation-based multimedia transmission in cognitive radio (CR) systems with imperfect channel sensing results under constraints on both transmit and interference power levels. Unequal error protection (UEP) of data transmission using hierarchical quadrature amplitude modulation (HQAM) is considered in which high priority (HP) data is protected more than low priority (LP) data. In this setting, closed-form bit error rate (BER) expressions for HP data and LP data are derived in Nakagami-$m$ fading channels in the presence of sensing errors. Subsequently, the optimal power control that minimizes weighted sum of average BERs of HP bits and LP bits or its upper bound subject to peak/average transmit power and average interference power constraints is derived and a low-complexity power control algorithm is proposed. Power levels are determined in three different scenarios, depending on the availability of perfect channel side information (CSI) of the transmission and interference links, statistical CSI of both links, or perfect CSI of the transmission link and imperfect CSI of the interference link. The impact of imperfect channel sensing decisions on the error rate performance of cognitive transmissions is also evaluated. In addition, tradeoffs between the number of retransmissions, the severity of fading, and peak signal-to-noise ratio (PSNR) quality are analyzed numerically. Moreover, performance comparisons of multimedia transmission with conventional quadrature amplitude modulation (QAM) and HQAM, and the proposed power control strategies are carried out in terms of the received data quality and number of retransmissions.

  11. Radio Science Measurements with Suppressed Carrier

    NASA Technical Reports Server (NTRS)

    Asmar, Sami; Divsalar, Dariush; Oudrhiri, Kamal

    2013-01-01

    Radio Science started when it became apparent with early Solar missions that occultations by planetary atmospheres would affect the quality of radio communications. Since then the atmospheric properties and other aspects of planetary science, solar science, and fundamental physics were studied by scientists. Radio Science data was always extracted from a received pure residual carrier (without data modulation). For some missions, it is very desirable to obtain Radio Science data from a suppressed carrier modulation. In this paper we propose a method to extract Radio Science data when a coded suppressed carrier modulation is used in deep space communications. Type of modulation can be BPSK, QPSK, OQPSK, MPSK or even GMSK. However we concentrate mostly on BPSK modulation. The proposed method for suppressed carrier simply tries to wipe out data that acts as an interference for Radio Science measurements. In order to measure the estimation errors in amplitude and phase of the Radio Science data we use Cramer-Rao bound (CRB). The CRB for the suppressed carrier modulation with non-ideal data wiping is then compared with residual carrier modulation under the same noise condition. The method of derivation of CRB for non-ideal data wiping is an innovative method that presented here. Some numerical results are provided for coded system.

  12. Adaptation of the Electra Radio to Support Multiple Receive Channels

    NASA Technical Reports Server (NTRS)

    Satorius, Edgar H.; Shah, Biren N.; Bruvold, Kristoffer N.; Bell, David J.

    2011-01-01

    Proposed future Mars missions plan communication between multiple assets (rovers). This paper presents the results of a study carried out to assess the potential adaptation of the Electra radio to a multi-channel transceiver. The basic concept is a Frequency Division multiplexing (FDM) communications scheme wherein different receiver architectures are examined. Options considered include: (1) multiple IF slices, A/D and FPGAs each programmed with an Electra baseband modem; (2) common IF but multiple A/Ds and FPGAs and (3) common IF, single A/D and single or multiple FPGAs programmed to accommodate the FDM signals. These options represent the usual tradeoff between analog and digital complexity. Given the space application, a common IF is preferable; however, multiple users present dynamic range challenges (e.g., near-far constraints) that would favor multiple IF slices (Option 1). Vice versa, with a common IF and multiple A/Ds (Option 2), individual AGC control of the A/Ds would be an important consideration. Option 3 would require a common AGC control strategy and would entail multiple digital down conversion paths within the FPGA. In this paper, both FDM parameters as well as the different Electra design options will be examined. In particular, signal channel spacing as a function of user data rates and transmit powers will be evaluated. In addition, tradeoffs between the different Electra design options will be presented with the ultimate goal of defining an augmented Electra radio architecture for potential future missions.

  13. Radio occultation measurements of the lunar ionosphere.

    NASA Astrophysics Data System (ADS)

    Pluchino, S.; Schillirò, F.; Salerno, E.; Pupillo, G.; Maccaferri, G.; Cassaro, P.

    Radio occultation measurements by using interplanetary probes is a well known technique to obtain information on planetary atmospheres. To further understand the morphology of the lunar ionosphere we performed radio occultation experiments by using the radio sounding technique. This method mainly consists in the analisys of the effects produced on the radio wave transmitted from the spacecraft to the Earth when it crosses the atmosphere. The wave amplitude and phase undergo modifications that are correlated to the physical parameters - i.e. electron density - of the crossed medium. The first data set was obtained during the lunar occultations of the European probe SMART-1 shortly before impacting the lunar soil on September 3rd, 2006. During this experiment several radio occultation measurements of the signal transmitted by the spacecraft were performed in S and X band by using the 32 meters radiotelescopes (at Medicina and Noto) of the Istituto di Radioastronomia - Istituto Nazionale di Astrofisica. Further experiments were performed during lunar occultations of Saturn and Venus. On May 22nd and June 18th 2007 the Cassini spacecraft, orbiting Saturn, and the Venus Express spacecraft, orbiting Venus, respectively were occulted by the Moon. The variation of the Total Electron Content (TEC) measured by our instruments (˜ 1013 el/m2) on this occasion is in agreement with values of the electron number density acquired by in situ measuments of the US Apollo missions and the USSR Luna 19 and 22 probes.

  14. New approaches in cellular radio systems using dynamic radio channel management

    NASA Astrophysics Data System (ADS)

    Yilmaz, Nusret; Ergul, F. R.

    2004-09-01

    New approaches are presented to facilitate dynamic radio bandwidth management for mobile communication systems. The aim is achieve an overall high level of QoS for both handoff calls and new calls. At the same time, the utilization of wireless network resources, i.e. the revenues earned by the operator. The simultaneous satisfaction of these two conflicting interests, under varying mobility and network traffic conditions, will be difficult. However, a balanced operation could be obtained by applying two novel approaches in system management. First, apriori information about possible handoffs, in the form of cell transition probabilities could be provided by the mobile, which is based on data collected by the mobile itself. This information is used to make handoff reservation requests in neighboring cells. Second, simultaneously controlling the radio resource reservation and new call admission to the system. This approach controls both the amount of reserved channels and the number of new calls admitted in a dynamic way. A theoretical analysis and a simulation have been used to study these approaches and it has been demonstrated that these approaches perform better then other reported approaches in the literature.

  15. Multiple-site investigation of the properties of an HF radio channel and the ionosphere using Digital Radio Mondiale broadcasting

    NASA Astrophysics Data System (ADS)

    Mlynarczyk, Janusz; Koperski, Piotr; Kulak, Andrzej

    2012-01-01

    The Digital Radio Mondiale (DRM), one of the new digital radio broadcasting standards, has been designed to overcome typical short wave radio channel difficulties, such as the multipath propagation and fast temporal changes of the received signal level, both related to the properties of the ionosphere along the path of propagation. In particular, some of the RF carriers used in the applied COFDM transmission technique serve to estimate the current state of the radio channel to enable the proper demodulation of the received signal.We have been detecting such RF carriers on select frequency channels (standard DRM broadcast) using a network of recording stations located in different parts of Poland in order to collect data on the HF radio channel. We have been also evaluating the usefulness of this procedure in providing information on the current state of the ionosphere in the refraction region between the transmitter and receivers. When the DRM system becomes more widespread, this method can supplement data that comes from the ionosondes, since it does not require much financial resources and the receivers can be easily scattered over a large area. This paper presents a set of experimental data and its analysis.

  16. Radio Plasma Imager Simulations and Measurements

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Benson, R. F.; Fung, S. F.; Taylor, W. W. L.; Boardsen, S. A.; Reinisch, B. W.; Haines, D. M.; Bibl, K.; Cheney, G.; Galkin, I. A.

    1999-01-01

    The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N(sub e)) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m boom Z axis antenna on RPI will be used to measures echoes coming from distances of several R(sub E).

  17. Design and Implementation of an Underlay Control Channel for Cognitive Radios

    SciTech Connect

    Daryl Wasden; Hussein Moradi; Behrouz Farhang-Boroujeny

    2012-11-01

    Implementation of any cognitive radio network requires an effective control channel that can operate under various modes of activity from the primary users. This paper reports the design and implementation of a filter bank multicarrier spread spectrum (FBMC-SS) system for use as the control channel in cognitive radio networks. The proposed design is based on a filtered multitone (FMT) implementation. Carrier and timing acquisition and tracking methods as well as a blind channel estimation method are developed for the proposed control channel. We also report an implementation of the proposed FBMC-SS system on a hardware platform; a FlexRIO FPGA module from National Instruments.

  18. 47 CFR 22.725 - Channels for conventional rural radiotelephone stations and basic exchange telephone radio systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stations and basic exchange telephone radio systems. 22.725 Section 22.725 Telecommunication FEDERAL... basic exchange telephone radio systems. The following channels are allocated for paired assignment to... telephone radio systems. These channels may be assigned for use by central office or rural...

  19. 47 CFR 22.725 - Channels for conventional rural radiotelephone stations and basic exchange telephone radio systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... stations and basic exchange telephone radio systems. 22.725 Section 22.725 Telecommunication FEDERAL... basic exchange telephone radio systems. The following channels are allocated for paired assignment to... telephone radio systems. These channels may be assigned for use by central office or rural...

  20. 47 CFR 22.725 - Channels for conventional rural radiotelephone stations and basic exchange telephone radio systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stations and basic exchange telephone radio systems. 22.725 Section 22.725 Telecommunication FEDERAL... basic exchange telephone radio systems. The following channels are allocated for paired assignment to... telephone radio systems. These channels may be assigned for use by central office or rural...

  1. A review of radio channel models for body centric communications

    NASA Astrophysics Data System (ADS)

    Cotton, Simon L.; D'Errico, Raffaele; Oestges, Claude

    2014-06-01

    The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing some of the advanced topics which are currently being addressed in the field of body centric communications.

  2. A review of radio channel models for body centric communications

    PubMed Central

    Cotton, Simon L; D'Errico, Raffaele; Oestges, Claude

    2014-01-01

    The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing some of the advanced topics which are currently being addressed in the field of body centric communications. PMID:26430285

  3. Radio frequency sensing measurements and methods for location classification in wireless networks

    NASA Astrophysics Data System (ADS)

    Maas, Dustin C.

    The wireless radio channel is typically thought of as a means to move information from transmitter to receiver, but the radio channel can also be used to detect changes in the environment of the radio link. This dissertation is focused on the measurements we can make at the physical layer of wireless networks, and how we can use those measurements to obtain information about the locations of transceivers and people. The first contribution of this work is the development and testing of an open source, 802.11b sounder and receiver, which is capable of decoding packets and using them to estimate the channel impulse response (CIR) of a radio link at a fraction of the cost of traditional channel sounders. This receiver improves on previous implementations by performing optimized matched filtering on the field-programmable gate array (FPGA) of the Universal Software Radio Peripheral (USRP), allowing it to operate at full bandwidth. The second contribution of this work is an extensive experimental evaluation of a technology called location distinction, i.e., the ability to identify changes in radio transceiver position, via CIR measurements. Previous location distinction work has focused on single-input single-output (SISO) radio links. We extend this work to the context of multiple-input multiple-output (MIMO) radio links, and study system design trade-offs which affect the performance of MIMO location distinction. The third contribution of this work introduces the "exploiting radio windows" (ERW) attack, in which an attacker outside of a building surreptitiously uses the transmissions of an otherwise secure wireless network inside of the building to infer location information about people inside the building. This is possible because of the relative transparency of external walls to radio transmissions. The final contribution of this dissertation is a feasibility study for building a rapidly deployable radio tomographic (RTI) imaging system for special operations forces (SOF). We show that it is possible to obtain valuable tracking information using as few as 10 radios over a single floor of a typical suburban home, even without precise radio location measurements.

  4. Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks

    PubMed Central

    Campbell, Carlene E.-A.; Loo, Kok-Keong (Jonathan); Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band. PMID:22346614

  5. Multi-channel distributed coordinated function over single radio in wireless sensor networks.

    PubMed

    Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band. PMID:22346614

  6. Energy-Efficient Channel Handoff for Sensor Network-Assisted Cognitive Radio Network.

    PubMed

    Usman, Muhammad; Khan, Muhammad Sajjad; Vu-Van, Hiep; Insoo, Koo

    2015-01-01

    The visiting and less-privileged status of the secondary users (SUs) in a cognitive radio network obligates them to release the occupied channel instantly when it is reclaimed by the primary user. The SU has a choice to make: either wait for the channel to become free, thus conserving energy at the expense of delayed transmission and delivery, or find and switch to a vacant channel, thereby avoiding delay in transmission at the expense of increased energy consumption. An energy-efficient decision that considers the tradeoff between energy consumption and continuous transmission needs to be taken as to whether to switch the channels. In this work, we consider a sensor network-assisted cognitive radio network and propose a backup channel, which is sensed by the SU in parallel with the operating channel that is being sensed by the sensor nodes. Imperfect channel sensing and residual energy of the SU are considered in order to develop an energy-efficient handoff strategy using the partially observable Markov decision process (POMDP), which considers beliefs about the operating and backup channels and the remaining energy of the SU in order to take an optimal channel handoff decision on the question "Should we switch the channel?" The objective is to dynamically decide in each time slot whether the SU should switch the channel or not in order to maximize throughput by utilizing energy efficiently. Extensive simulations were performed to show the effectiveness of the proposed channel handoff strategy, which was demonstrated in the form of throughput with respect to various parameters, i.e., detection probability, the channel idle probabilities of the operating and backup channels, and the maximum energy of the SU. PMID:26213936

  7. Energy-Efficient Channel Handoff for Sensor Network-Assisted Cognitive Radio Network

    PubMed Central

    Usman, Muhammad; Sajjad Khan, Muhammad; Vu-Van, Hiep; Insoo, Koo

    2015-01-01

    The visiting and less-privileged status of the secondary users (SUs) in a cognitive radio network obligates them to release the occupied channel instantly when it is reclaimed by the primary user. The SU has a choice to make: either wait for the channel to become free, thus conserving energy at the expense of delayed transmission and delivery, or find and switch to a vacant channel, thereby avoiding delay in transmission at the expense of increased energy consumption. An energy-efficient decision that considers the tradeoff between energy consumption and continuous transmission needs to be taken as to whether to switch the channels. In this work, we consider a sensor network-assisted cognitive radio network and propose a backup channel, which is sensed by the SU in parallel with the operating channel that is being sensed by the sensor nodes. Imperfect channel sensing and residual energy of the SU are considered in order to develop an energy-efficient handoff strategy using the partially observable Markov decision process (POMDP), which considers beliefs about the operating and backup channels and the remaining energy of the SU in order to take an optimal channel handoff decision on the question “Should we switch the channel?” The objective is to dynamically decide in each time slot whether the SU should switch the channel or not in order to maximize throughput by utilizing energy efficiently. Extensive simulations were performed to show the effectiveness of the proposed channel handoff strategy, which was demonstrated in the form of throughput with respect to various parameters, i.e., detection probability, the channel idle probabilities of the operating and backup channels, and the maximum energy of the SU. PMID:26213936

  8. SINCGARS (Single-Channel Ground/Airborne Radio System) operator performance decay

    NASA Astrophysics Data System (ADS)

    Palmer, Richard L.; Buckalew, Louis W.

    1988-11-01

    The Single-Channel Ground/Airborne Radio System (SINCGARS) is scheduled to replace the Army's VRC-12 and PRC-77 radios. However, SINCGARS is more complex to operate and requires more training. This study examined the decay of operational skills and knowledge in two groups of recently trained operators who went without exposure to SINCGARS for several weeks. Performance levels were measured with the SINCGARS Learning-Retention Test (SLRT), a simulated hands-on performance test emphasizing skills and operational knowledge retention. The results provided tentative indications that operators may lose about 10 percent of their prior performance levels within the first few weeks. This figure is expected to vary considerably, depending on the type of soldier, the length of the nonexposure period, and other conditions. It was also found that performance level was correlated with soldiers' Armed Services Vocational Aptitude Battery (ASVAB) General Technical (GT) scores. Correlations between GT and SLRT scores obtained at two different times were .43 and .50, respectively. However, no relation was observed between performance decay and GT. Further evaluation of operator performance decay needs to be done to determine the effect of longer periods of nonexposure (e.g., 60 and 90 days).

  9. AUTOMATIC RADIO TRACKING OF FISH IN EXPERIMENTAL CHANNELS

    EPA Science Inventory

    An automatic tracking system controlled by an RCA 1802 microprocessor was developed to locate fish in a 400 m outdoor experimental channel at the U.S. EPA Monticello Ecological Research Station. The monitoring network consisted of 12 horizontally polarized antennas spaced at 30 m...

  10. The disturbances of ionospheric radio channel during magnetic storm on March 17-19, 2015

    NASA Astrophysics Data System (ADS)

    Ponomarchuk, S. N.; Polekh, N. M.; Romanova, E. B.; Zolotukhina, N. A.; Kurkin, V. I.; Podlesniy, A. V.

    2015-11-01

    The disturbances of ionospheric radio channel during 17-24 March 2015 magnetic storm are investigated. The heliospheric sources which caused the storm are considered. Based on space-distributed multipurpose chirp ionosonde data effects of geomagnetic disturbances influence on conditions of HF signal propagation are studied.

  11. Coded 16 QAM scheme for fast fading mobile radio channels

    NASA Astrophysics Data System (ADS)

    Subasinghe-Dias, Dileeka; Feher, Kamilo

    1995-05-01

    An adaptive Viterbi algorithm, derived from a dynamic estimate of the fading channel is used for the decoding of a convolutional coded 16 QAM system in a mobile environment. The estimates are obtained by a sequence of known pilot symbols embedded in the data stream, and perform compensation for Rayleigh fading. The likelihood criterion in the Viterbi decoder is also modified by these channel estimates through a metric weighting function. We demonstrate through computer simulations, that our new technique achieves a BER improvement of 7-10 dB at P e = 10(sup - 3) in a fast flat Rayleigh fading environment compared to an uncoded system. The BER performance of our new technique in a CCI controlled environment is also studied, and the results show that it may achieve a 40% to 85% improvement in capacity over the standard modem scheme for the new U.S. digital cellular system, pi/4-QPSK.

  12. Information capacities of quantum measurement channels

    NASA Astrophysics Data System (ADS)

    Holevo, A. S.

    2013-03-01

    We study the relation between the unassisted and entanglement-assisted classical capacities C and Cea of entanglement-breaking channels. We argue that the gain of entanglement assistance Cea/C > 1 generically for measurement channels with unsharp observables; in particular for the measurements with pure posterior states the information loss in the entanglement-assisted protocol is zero, resulting in an arbitrarily large gain for very noisy or weak signal channels. This is illustrated by examples of continuous observables corresponding to state tomography in finite dimensions and heterodyne measurement. In contrast, state preparations are characterized by the property of having no gain of entanglement assistance, Cea/C = 1.

  13. Entanglement in channel discrimination with restricted measurements

    SciTech Connect

    Matthews, William; Piani, Marco; Watrous, John

    2010-09-15

    We study the power of measurements implementable with local quantum operations and classical communication (LOCC) measurements in the setting of quantum channel discrimination. More precisely, we consider discrimination procedures that attempt to identify an unknown channel, chosen uniformly from two known alternatives, that take the following form: (i) the input to the unknown channel is prepared in a possibly entangled state with an ancillary system, (ii) the unknown channel is applied to the input system, and (iii) an LOCC measurement is performed on the output and ancillary systems, resulting in a guess for which of the two channels was given. The restriction of the measurement in such a procedure to be an LOCC measurement is of interest because it isolates the entanglement in the initial input-ancillary systems as a resource in the setting of channel discrimination. We prove that there exist channel discrimination problems for which restricted procedures of this sort can be at either of the two extremes: they may be optimal within the set of all discrimination procedures (and simultaneously outperform all strategies that make no use of entanglement), or they may be no better than unentangled strategies (and simultaneously suboptimal within the set of all discrimination procedures).

  14. Radio frequency interference measurements in Indonesia. A survey to establish a radio astronomy observatory

    NASA Astrophysics Data System (ADS)

    Hidayat, Taufiq; Munir, Achmad; Dermawan, Budi; Jaelani, Anton Timur; Léon, Stéphane; Nugroho, Dading Hadi; Suksmono, Andriyan Bayu; Mahasena, Putra; Premadi, Premana Wardayanti; Herdiwijaya, Dhani; Kunjaya, Chatief; Dupe, Zadrach Ledoufij; Brahmantyo, Budi; Mandey, Denny; Yusuf, Muhammad; Tri Wulandari, Hesti Retno; Arief, Falahuddin; Irfan, Muhammad; Puri Jatmiko, Agus Triono; Akbar, Evan Irawan; Sianturi, Hery Leo; Tanesib, Jehunias Leonidas; Warsito, Ali; Utama, Judhistira Aria

    2014-02-01

    We report the first measurements of radio frequency spectrum occupancy performed at sites aimed to host the future radio astronomy observatory in Indonesia. The survey is intended to obtain the radio frequency interference (RFI) environment in a spectral range from low frequency 10 MHz up to 8 GHz. The measurements permit the identification of the spectral occupancy over those selected sites in reference to the allocated radio spectrum in Indonesia. The sites are in close proximity to Australia, the future host of Square Kilometre Array (SKA) at low frequency. Therefore, the survey was deliberately made to approximately adhere the SKA protocol for RFI measurements, but with lower sensitivity. The RFI environment at Bosscha Observatory in Lembang was also measured for comparison. Within the sensitivity limit of the measurement equipment, it is found that a location called Fatumonas in the surrounding of Mount Timau in West Timor has very low level of RFI, with a total spectrum occupancy in this measured frequency range being about 1 %, mostly found at low frequency below 20 MHz. More detailed measurements as well as a strategy for a radio quiet zone must be implemented in the near future.

  15. A concurrent access MAC protocol for cognitive radio ad hoc networks without common control channel

    NASA Astrophysics Data System (ADS)

    Timalsina, Sunil K.; Moh, Sangman; Chung, Ilyong; Kang, Moonsoo

    2013-12-01

    Cognitive radio ad hoc networks (CRAHNs) consist of autonomous nodes that operate in ad hoc mode and aim at efficient utilization of spectrum resources. Usually, the cognitive nodes in a CRAHN exploit a number of available channels, but these channels are not necessarily common to all nodes. Such a network environment poses the problem of establishing a common control channel (CCC) as there might be no channel common to all the network members at all. In designing protocols, therefore, it is highly desirable to consider the network environment with no CCC. In this article, we propose a MAC protocol called concurrent access MAC (CA-MAC) that operates in the network environment with no CCC. The two devices in a communication pair can communicate with each other even if they have only one common channel available. Therefore, the problems with CCC (such as channel saturation and denial of service attacks) can also be resolved. In CA-MAC, channel accesses are distributed over communication pairs, resulting in increased network connectivity. In addition, CA-MAC allows different communication pairs to access multiple channels concurrently. According to our performance study, CA-MAC provides higher network connectivity with shorter channel access delay compared to SYN-MAC, which is the conventional key MAC protocol for the network environment with no CCC, resulting in better network throughput.

  16. Capacity of Cognitive Radio with Partial Channel Distribution Information in Rayleigh Fading Environments

    NASA Astrophysics Data System (ADS)

    Xu, D.; Li, Q.

    2015-11-01

    This paper investigates the capacity of the secondary user (SU) in a cognitive radio (CR) network in Rayleigh fading environments. Different from existing works where perfect channel state information (CSI) or channel distribution information (CDI) of the interference link from the SU to the primary user (PU) is assumed to be available, this paper assumes that only partial CDI is available. Specifically, we assume the distribution parameter is unknown and estimated from a set of channel gain samples. With such partial CDI, closed-form expressions for the ergodic and outage capacities of the SU are obtained under the transmit power and the interference outage constraints. It is shown that the capacity with partial CDI is not degraded compared to that with perfect CDI if the interference outage constraint is loose. It is also shown that the capacity can be significantly improved by increasing the number of channel gain samples.

  17. Joint Sensing and Power Allocation in Multiple-Channel Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    Yu, Huogen; Tang, Wanbin; Li, Shaoqian

    This letter considers a multiple-channel cognitive radio network (CRN) which can simultaneously sense multiple narrowband channels at a time. Taking the maximization of the CRN's overall throughput as the design objective, the optimization problem of jointly designing sensing time, sensing thresholds and transmission power allocation is formulated under the total power constraint of the CRN and the average interference constraint of the primary network. An iterative algorithm is proposed to obtain the locally optimal values for these parameters. Finally, numerical results show that significant overall throughput gain is achieved through the joint design.

  18. Monitoring the Communication Channel from Puschshino to Moscow in the Project of Space Radio Telescope "radioastron"

    NASA Astrophysics Data System (ADS)

    Dumsky, D. V.; Isaev, E. A.; Samodurov, V. A.; Isaev, K. A.

    The need for transmission and storage of large amounts of scientific data in the project space radio telescope "Radioastron" required us to organize a reliable communication channel between the tracking station in Pushchino and treatment centers in Moscow. Network management data requires us to an integrated approach and covers the organization secure access to manage network devices, timely replacement of equipment and software upgrades, backups, as well as documentation of the network infrastructure. The reliability of the channel is highly dependent on continuous monitoring of network and server equipment and communication lines.

  19. Validation of statistical channel models for 60 GHz radio systems in hospital environments.

    PubMed

    Kyrö, Mikko; Takizawa, Ken-ichi; Haneda, Katsuyuki; Vainikainen, Pertti

    2013-05-01

    Statistical channel models for 60 GHz communications systems in hospital environments are validated using channel capacity and throughput of a physical layer as figures of merit. The channel models are validated by comparing the performance figures with channels from the measurements and the channel models. The throughput evaluation is based on system specifications given by the IEEE 802.15.3 c standard for high data rate wireless personal area networks, namely orthogonal frequency division multiplexing and single carrier transmissions. The channel capacity serves as a metric of the potential of the two transmission schemes since it defines the upper bound of the throughput. The capacity is derived based on the signal formats of the transmission schemes. The capacity shows that 97 % of the measurement results are within 2σ range of the modeled results. The throughput shows that the channel models predict the maximum achievable throughput of the measured channels precisely, while the mean throughput in some cases shows difference because of the interpolation effect of the small-scale fading in the statistical channel models. Due to the interpolation effect, the channel model is more suitable for a precise analysis of the outage performance than the measurements where the number of channel samples is limited and the worst faded channels are not necessarily included. PMID:23221798

  20. Intercalibration of microwave temperature sounders using radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Isoz, O.; Buehler, S. A.; Eriksson, P.

    2015-05-01

    This is a study of the usefulness of radio occultation (RO) data for intercomparing different microwave temperature (MWT) sounding instruments. The RO data used are from the Global Navigational Satellite System Receiver for Atmospheric Sounding on the Metop-A and B satellites. The MWT sounders investigated are the Advanced Microwave Sounding Unit-A instruments on the satellites NOAA 15, 16, and 18 and Metop-A. We collocate RO and MWT data and then use these collocations to study various aspects of the MWT instruments. In addition, two different versions of the MWT data are compared: standard operational data (OPR) and the NOAA Integrated Microwave Intercalibration Approach data (IMICA). The time series of monthly mean differences shows that there are robust patterns for each satellite and data version, which mostly drift only slowly over time. The intersatellite spread, measured by the standard deviation of the yearly mean values by all satellites, is between 0.1 and 0.4 K, depending on channel, with no significant differences between OPR and IMICA data. The only notable exception is Channel 8 of NOAA 16, which appears to have a time-varying offset of 0.5-1 K relative to the other instruments. At this point it is not clear whether this deviation is real or a sampling artifact, so further study is needed. Due to the large number of collocations used, it is possible to also investigate the scene brightness and scan angle dependence of the MWT bias (relative to RO). First results of such an analysis are presented and discussed. Particularly, the investigation of the scan angle dependence is novel, since this bias pattern is difficult to assess without RO data. Further work is needed on these angular dependences, before conclusions are robust enough to include in data recalibration efforts, but our overall conclusion is that RO collocations are a powerful tool for intercomparing MWT sounders.

  1. 47 CFR 22.725 - Channels for conventional rural radiotelephone stations and basic exchange telephone radio systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... stations and basic exchange telephone radio systems. 22.725 Section 22.725 Telecommunication FEDERAL... basic exchange telephone radio systems. The following channels are allocated for paired assignment to transmitters that provide conventional rural radiotelephone service and to transmitters in basic...

  2. 47 CFR 22.725 - Channels for conventional rural radiotelephone stations and basic exchange telephone radio systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... stations and basic exchange telephone radio systems. 22.725 Section 22.725 Telecommunication FEDERAL... basic exchange telephone radio systems. The following channels are allocated for paired assignment to transmitters that provide conventional rural radiotelephone service and to transmitters in basic...

  3. Measuring cosmic ray radio signals at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Dallier, Richard; Pierre Auger Collaboration

    2011-02-01

    The recent results of the LOPES and CODALEMA experiments open the door to a renewal of the radio technique for cosmic ray induced shower measurements. The demonstration has been done of its potential and performances at energies below 1018 eV, this upper limit being due to the small scale of the current experiments. A natural stage toward the improvement of the method is thus to install radio detectors in association with a large cosmic ray detector such as Auger. Besides surface and fluorescence detection, radio detection could be an alternative method, providing a complementary information. The Pierre Auger Collaboration has thus engaged a R&D effort which will lead to the installation of a radio engineering array covering 20 km2 on its southern site. Outline of the technique, results of the first phase of the tests and current plans for the future engineering array will be presented.

  4. Measurement technique of the Giotto radio science experiment

    NASA Technical Reports Server (NTRS)

    Edenhofer, P.; Buschert, H.; Bird, M. K.; Esposito, P. B.; Porsche, H.

    1987-01-01

    The paper describes the technique used to record time delay and waveform measurements for the Giotto radio science experiment of ESA's mission to comet Halley. The data were taken by using either two-way measurements (during pre- and post-encounter) or one-way measurements (during encounter with comet Halley), the downlink of the radio signal of the Giotto spacecraft being received at 8.4 GHz by the 64 m tracking stations of NASA's Deep Space Network (DSN). The waveform measurements were obtained at a sampling frequency of 50 kHz with an open-loop receiver assembly at DSN station Canberra as recently used for the Voyager/Uranus fly-by. Performance and calibration data are given as relevant to the radio subsystems on the ground and aboard Giotto.

  5. 802.11s based multi-radio multi-channel mesh networking for fractionated spacecraft

    NASA Astrophysics Data System (ADS)

    Michel, Tony; Thapa, Bishal; Taylor, Steve

    802.11s is a new IEEE standard for mesh networking. It defines the protocols needed to build mobile ad hoc networks that operate over 802.11a, b, g and n waveforms running on inexpensive, and high performance commercial WiFi stations. We have developed a new capability to add to the 802.11s that uses multiple directional radio links that can operate simultaneously within a single mesh node. This is the basis of our multi-channel multi-radio mesh network used in the DARPA F6 program called F6Net. We have developed an analysis and emulation facility that lets us model the F6Net and evaluate the performance in a real world experimentation setup. This paper presents an “ Over-the-Air” experimentation testbed that uses standard Commercial Off-The-Shelf (COTS) 2.4GHz WiFi dongles in an indoor environment, and a shared-code simulation testbed that uses hardware simulated drivers within NS3's channel simulation facility to test 80211s network. To the best of our knowledge, this is the first work that provides a comprehensive evaluation platform with a full-fledged COTS hardware/software prototype to evaluate 802.11s network. Furthermore, we explain the design and development of multi-radio mesh extension for 802.11s that yields a robust and scalable mesh network suitable for clusters of LEO satellites.

  6. Capabilities and Limitations of Radio Occultation Measurements for Ionosphere Monitoring

    NASA Technical Reports Server (NTRS)

    Hajj, G. A.; Romans, L. J.; Pi, X.; Wang, Chunming

    1999-01-01

    The paper: (1) describes the range of capabilities of GPS radio occultation missions in ionospheric research: (a) ionospheric profiling; (b) ionospheric imaging; (c) ionospheric data assimilation; and (d) measurement of scintillation. (2) Identify strengths and weaknesses of measurements: (a) coverage; (b) resolution; and (c) uniqueness of solution.

  7. Optical radio-photonic channel for transmission of a coherent narrowband analog signal

    NASA Astrophysics Data System (ADS)

    Zhuk, D. I.; Denisyuk, I. Yu.; Fokina, M. I.

    2015-10-01

    The channel of an optical transmission line of coherent narrowband analog signal consisting of a continuous-wave laser, an electro-optic modulator, and a vector phase rotator based on electrically controlled fiber-optical 1 × 2 splitter and fixed delay lines is analyzed. The scheme is constructed from commercially available components used in digital optical communication systems. The applicability of components for analog and small-signal circuits is determined. Variation of radio signal phase in the range from 0° to 170° for radio signal frequencies between 1 and 2 GHz is demonstrated experimentally. It is shown that phase variation is a linear function of frequency in this range.

  8. OFDR based distributed temperature sensor using the three-channel simultaneous radio-frequency lock-in technique

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Zhou, Xinlei; Peng, Wei; Yu, Qingxu

    2015-09-01

    Weak signal detection for single-mode fiber-optic distributed temperature sensor (DTS) is a key technology to achieve better performance. A hybrid technique combining the incoherent optical frequency domain reflectometry (IOFDR) and the three-channel simultaneous radio-frequency (RF) lock-in amplifier (LIA) is presented to improve the signal-to-noise ratio (SNR) of the measured spontaneous Raman backscattered light. The field programmable gate array (FPGA) based RF-LIA is designed with a novel and simple structure. The measurement frequency range is achieved from 1 kHz to 100 MHz. Experimental results show that the backscattered light signal of picowatt level can be detected with high SNR. With a 2.5 km single-mode fiber, a 1064 nm laser source, and the measurement time of 500 s, this sensing system can reach a spatial resolution of 0.93 m and a temperature resolution of about 0.2°C.

  9. Channel direction information probing for multi-antenna cognitive radio system

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Villardi, Gabriel Porto; Kojima, Fumihide; Yano, Hiroyuki

    2015-12-01

    This work studies the problem of channel direction information (CDI) probing for multi-antenna cognitive radio system. The CDI of the channel from the secondary transmitter (ST) to primary receiver (PR) is elementary information in designing the beamforming at the ST for mitigating the interference to the PR. However, lacking the explicit cooperation between primary and secondary systems, the CDI has to be acquired by probing at the ST, which is challenging. To solve this, we consider the line of sight (LoS) channel between the ST and the PR, and propose one CDI probing scheme for the ST. Specifically, the ST sends two types of probing signals by beamforming towards an interested region where both the secondary receiver (SR) and the PR are located and then actively learns the hidden feedback information from the primary system to acquire the CDI. The proposed scheme has a closed-form solution, and avoids the iteration between the probing and acquisition, which is desirable for practical system. Moreover, we show that the proposed probing scheme can be extended for primary systems working under multi-access channel and broadcasting channel. Simulation results demonstrate that the proposed scheme can improve the accuracy of the acquired CDI at the ST in cognitive ratio system remarkably.

  10. Application of the Hardman methodology to the Single Channel Ground-Airborne Radio System (SINCGARS)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The HARDMAN methodology was applied to the various configurations of employment for an emerging Army multipurpose communications system. The methodology was used to analyze the manpower, personnel and training (MPT) requirements and associated costs, of the system concepts responsive to the Army's requirement for the Single Channel Ground-Airborne Radio System (SINCGARS). The scope of the application includes the analysis of two conceptual designs Cincinnati Electronics and ITT Aerospace/Optical Division for operating and maintenance support addressed through the general support maintenance echelon.

  11. A novel transform domain processing based channel estimation method for OFDM radio-over-fiber systems.

    PubMed

    Tao, Li; Yu, Jianjun; Yang, Qi; Shao, Yufeng; Zhang, Junwen; Chi, Nan

    2013-03-25

    In this paper, a transform domain processing (TDP) based channel estimation method for orthogonal frequency-division multiplexing (OFDM) Radio-over-Fiber (RoF) systems is proposed. Theoretically investigation shows that TDP can greatly reduce the number of required training symbols. An 8 x 4.65 Gb/s multi-user OFDM RoF system over 40 km fiber link and 60 GHz wireless link is experimentally demonstrated utilizing TDP scheme. Compared with conventional time domain averaging (TDA) scheme, the overhead can be reduced from several tens of training symbols to merely one symbol and the receiver sensitivity has been improved by 1.8 dB at BER of 3.8 x 10(-3). The calculated BER performance for 8 wireless users clearly validates the feasibility of this TDP-based channel estimation method. PMID:23546130

  12. Measurements of gravity driven granular channel flows

    NASA Astrophysics Data System (ADS)

    Facto, Kevin

    This dissertation presents experiments that studied two gravity driven granular channel flows. The first experiment used magnetic resonance imaging to measure the density and displacement distributions of poppy seeds flowing in a rough walled channel. Time-averaged measurements of normalized velocity and density showed little flow speed dependence. Instantaneous measurements, however, showed marked velocity dependence in the displacement distributions. There was evidence of aperiodic starting and stopping at lower flow speeds and the onset of density waves on a continuous flow at higher speeds. The second experiment measured forces in all three spatial directions at the boundary of a flow of steel balls. The relationship between the normal and the tangential forces were examined statistically and compared to the Coulomb friction model. For both large and small forces, the tangential and normal forces are unrelated, as there appears to be a strong tendency for the tangential force to maintain a value that will bear the weight the weight of the particles in flow.

  13. Radio Emission in Atmospheric Air Showers Measured by LOPES-30

    SciTech Connect

    Isar, P. G.

    2008-01-24

    When Ultra High Energy Cosmic Rays (UHECR) interact with particles in the Earth's atmosphere, they produce a shower of secondary particles propagating towards the ground. These relativistic particles emit synchrotron radiation in the radio frequency range when passing the Earth's magnetic field. The LOPES (LOFAR Prototype Station) experiment investigates the radio emission from these showers in detail and will pave the way to use this detection technique for large scale applications like in LOFAR (Low Frequency Array) and the Pierre Auger Observatory. The LOPES experiment is co-located and measures in coincidence with the air shower experiment KASCADE-Grande at Forschungszentrum Karlsruhe, Germany. LOPES has an absolute amplitude calibration array of 30 dipole antennas (LOPES-30). After one year of measurements of the single East-West polarization by all 30 antennas, recently, the LOPES-30 set-up was configured to perform dual-polarization measurements. Half of the antennas have been configured for measurements of the North-South polarization. Only by measuring at the same time both, the E-W and N-S polarization components of the radio emission, the geo-synchrotron effect as the dominant emission mechanism in air showers can be verified. The status of the measurements, including the absolute calibration procedure of the dual-polarized antennas as well as analysis of dual-polarized event examples are reported.

  14. Energy efficiency in cognitive radio network: Study of cooperative sensing using different channel sensing methods

    NASA Astrophysics Data System (ADS)

    Cui, Chenxuan

    When cognitive radio (CR) operates, it starts by sensing spectrum and looking for idle bandwidth. There are several methods for CR to make a decision on either the channel is occupied or idle, for example, energy detection scheme, cyclostationary detection scheme and matching filtering detection scheme [1]. Among them, the most common method is energy detection scheme because of its algorithm and implementation simplicities [2]. There are two major methods for sensing, the first one is to sense single channel slot with varying bandwidth, whereas the second one is to sense multiple channels and each with same bandwidth. After sensing periods, samples are compared with a preset detection threshold and a decision is made on either the primary user (PU) is transmitting or not. Sometimes the sensing and decision results can be erroneous, for example, false alarm error and misdetection error may occur. In order to better control error probabilities and improve CR network performance (i.e. energy efficiency), we introduce cooperative sensing; in which several CR within a certain range detect and make decisions on channel availability together. The decisions are transmitted to and analyzed by a data fusion center (DFC) to make a final decision on channel availability. After the final decision is been made, DFC sends back the decision to the CRs in order to tell them to stay idle or start to transmit data to secondary receiver (SR) within a preset transmission time. After the transmission, a new cycle starts again with sensing. This thesis report is organized as followed: Chapter II review some of the papers on optimizing CR energy efficiency. In Chapter III, we study how to achieve maximal energy efficiency when CR senses single channel with changing bandwidth and with constrain on misdetection threshold in order to protect PU; furthermore, a case study is given and we calculate the energy efficiency. In Chapter IV, we study how to achieve maximal energy efficiency when CR senses multiple channels and each channel with same bandwidth, also, we preset a misdetection threshold and calculate the energy efficiency. A comparison will be shown between two sensing methods at the end of the chapter. Finally, Chapter V concludes this thesis.

  15. Measurement of stream channel habitat using sonar

    USGS Publications Warehouse

    Flug, M.; Seitz, H.; Scott, J.

    1998-01-01

    An efficient and low cost technique using a sonar system was evaluated for describing channel geometry and quantifying inundated area in a large river. The boat-mounted portable sonar equipment was used to record water depths and river width measurements for direct storage on a laptop computer. The field data collected from repeated traverses at a cross-section were evaluated to determine the precision of the system and field technique. Results from validation at two different sites showed average sample standard deviations (S.D.s) of 0.12 m for these complete cross-sections, with coefficient of variations of 10%. Validation using only the mid-channel river cross-section data yields an average sample S.D. of 0.05 m, with a coefficient of variation below 5%, at a stable and gauged river site using only measurements of water depths greater than 0.6 m. Accuracy of the sonar system was evaluated by comparison to traditionally surveyed transect data from a regularly gauged site. We observed an average mean squared deviation of 46.0 cm2, considering only that portion of the cross-section inundated by more than 0.6 m of water. Our procedure proved to be a reliable, accurate, safe, quick, and economic method to record river depths, discharges, bed conditions, and substratum composition necessary for stream habitat studies. ?? 1998 John Wiley & Sons, Ltd.

  16. Rocket radio measurement of electron density in the nighttime ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, B. E.; Smith, L. G.

    1979-01-01

    One experimental technique based on the Faraday rotation effect of radio waves is presented for measuring electron density in the nighttime ionosphere at midlatitudes. High frequency linearly-polarized radio signals were transmitted to a linearly-polarized receiving system located in a spinning rocket moving through the ionosphere. Faraday rotation was observed in the reference plane of the rocket as a change in frequency of the detected receiver output. The frequency change was measured and the information was used to obtain electron density data. System performance was evaluated and some sources of error were identified. The data obtained was useful in calibrating a Langmuir probe experiment for electron density values of 100/cu cm and greater. Data from two rocket flights are presented to illustrate the experiment.

  17. Stochastic Wireless Channel Modeling, Estimation and Identification from Measurements

    SciTech Connect

    Olama, Mohammed M; Djouadi, Seddik M; Li, Yanyan

    2008-07-01

    This paper is concerned with stochastic modeling of wireless fading channels, parameter estimation, and system identification from measurement data. Wireless channels are represented by stochastic state-space form, whose parameters and state variables are estimated using the expectation maximization algorithm and Kalman filtering, respectively. The latter are carried out solely from received signal measurements. These algorithms estimate the channel inphase and quadrature components and identify the channel parameters recursively. The proposed algorithm is tested using measurement data, and the results are presented.

  18. Precise Radio-Telescope Measurements Advance Frontier Gravitational Physics

    NASA Astrophysics Data System (ADS)

    2009-09-01

    Scientists using a continent-wide array of radio telescopes have made an extremely precise measurement of the curvature of space caused by the Sun's gravity, and their technique promises a major contribution to a frontier area of basic physics. "Measuring the curvature of space caused by gravity is one of the most sensitive ways to learn how Einstein's theory of General Relativity relates to quantum physics. Uniting gravity theory with quantum theory is a major goal of 21st-Century physics, and these astronomical measurements are a key to understanding the relationship between the two," said Sergei Kopeikin of the University of Missouri. Kopeikin and his colleagues used the National Science Foundation's Very Long Baseline Array (VLBA) radio-telescope system to measure the bending of light caused by the Sun's gravity to an accuracy of 0.03 percent. With further observations, the scientists say their precision technique can make the most accurate measure ever of this phenomenon. Bending of starlight by gravity was predicted by Albert Einstein when he published his theory of General Relativity in 1916. According to relativity theory, the strong gravity of a massive object such as the Sun produces curvature in the nearby space, which alters the path of light or radio waves passing near the object. The phenomenon was first observed during a solar eclipse in 1919. Though numerous measurements of the effect have been made over the intervening 90 years, the problem of merging General Relativity and quantum theory has required ever more accurate observations. Physicists describe the space curvature and gravitational light-bending as a parameter called "gamma." Einstein's theory holds that gamma should equal exactly 1.0. "Even a value that differs by one part in a million from 1.0 would have major ramifications for the goal of uniting gravity theory and quantum theory, and thus in predicting the phenomena in high-gravity regions near black holes," Kopeikin said. To make extremely precise measurements, the scientists turned to the VLBA, a continent-wide system of radio telescopes ranging from Hawaii to the Virgin Islands. The VLBA offers the power to make the most accurate position measurements in the sky and the most detailed images of any astronomical instrument available. The researchers made their observations as the Sun passed nearly in front of four distant quasars -- faraway galaxies with supermassive black holes at their cores -- in October of 2005. The Sun's gravity caused slight changes in the apparent positions of the quasars because it deflected the radio waves coming from the more-distant objects. The result was a measured value of gamma of 0.9998 +/- 0.0003, in excellent agreement with Einstein's prediction of 1.0. "With more observations like ours, in addition to complementary measurements such as those made with NASA's Cassini spacecraft, we can improve the accuracy of this measurement by at least a factor of four, to provide the best measurement ever of gamma," said Edward Fomalont of the National Radio Astronomy Observatory (NRAO). "Since gamma is a fundamental parameter of gravitational theories, its measurement using different observational methods is crucial to obtain a value that is supported by the physics community," Fomalont added. Kopeikin and Fomalont worked with John Benson of the NRAO and Gabor Lanyi of NASA's Jet Propulsion Laboratory. They reported their findings in the July 10 issue of the Astrophysical Journal.

  19. Probing the radio emission from air showers with polarization measurements

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  20. Indoor radio channel modeling and mitigation of fading effects using linear and circular polarized antennas in combination for smart home system at 868 MHz

    NASA Astrophysics Data System (ADS)

    Wunderlich, S.; Welpot, M.; Gaspard, I.

    2014-11-01

    The markets for smart home products and services are expected to grow over the next years, driven by the increasing demands of homeowners considering energy monitoring, management, environmental controls and security. Many of these new systems will be installed in existing homes and offices and therefore using radio based systems for cost reduction. A drawback of radio based systems in indoor environments are fading effects which lead to a high variance of the received signal strength and thereby to a difficult predictability of the encountered path loss of the various communication links. For that reason it is necessary to derive a statistical path loss model which can be used to plan a reliable and cost effective radio network. This paper presents the results of a measurement campaign, which was performed in six buildings to deduce realistic radio channel models for a high variety of indoor radio propagation scenarios in the short range devices (SRD) band at 868 MHz. Furthermore, a potential concept to reduce the variance of the received signal strength using a circular polarized (CP) patch antenna in combination with a linear polarized antenna in an one-to-one communication link is presented.

  1. Montblanc1: GPU accelerated radio interferometer measurement equations in support of Bayesian inference for radio observations

    NASA Astrophysics Data System (ADS)

    Perkins, S. J.; Marais, P. C.; Zwart, J. T. L.; Natarajan, I.; Tasse, C.; Smirnov, O.

    2015-09-01

    We present Montblanc, a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. BIRO uses Bayesian inference to select sky models that best match the visibilities observed by a radio interferometer. To accomplish this, BIRO evaluates the RIME multiple times, varying sky model parameters to produce multiple model visibilities. χ2 values computed from the model and observed visibilities are used as likelihood values to drive the Bayesian sampling process and select the best sky model. As most of the elements of the RIME and χ2 calculation are independent of one another, they are highly amenable to parallel computation. Additionally, Montblanc caters for iterative RIME evaluation to produce multiple χ2 values. Modified model parameters are transferred to the GPU between each iteration. We implemented Montblanc as a Python package based upon NVIDIA's CUDA architecture. As such, it is easy to extend and implement different pipelines. At present, Montblanc supports point and Gaussian morphologies, but is designed for easy addition of new source profiles. Montblanc's RIME implementation is performant: On an NVIDIA K40, it is approximately 250 times faster than MEQTREES on a dual hexacore Intel E5-2620v2 CPU. Compared to the OSKAR simulator's GPU-implemented RIME components it is 7.7 and 12 times faster on the same K40 for single and double-precision floating point respectively. However, OSKAR's RIME implementation is more general than Montblanc's BIRO-tailored RIME. Theoretical analysis of Montblanc's dominant CUDA kernel suggests that it is memory bound. In practice, profiling shows that is balanced between compute and memory, as much of the data required by the problem is retained in L1 and L2 caches.

  2. PAD-MAC: Primary User Activity-Aware Distributed MAC for Multi-Channel Cognitive Radio Networks

    PubMed Central

    Ali, Amjad; Piran, Md. Jalil; Kim, Hansoo; Yun, Jihyeok; Suh, Doug Young

    2015-01-01

    Cognitive radio (CR) has emerged as a promising technology to solve problems related to spectrum scarcity and provides a ubiquitous wireless access environment. CR-enabled secondary users (SUs) exploit spectrum white spaces opportunistically and immediately vacate the acquired licensed channels as primary users (PUs) arrive. Accessing the licensed channels without the prior knowledge of PU traffic patterns causes severe throughput degradation due to excessive channel switching and PU-to-SU collisions. Therefore, it is significantly important to design a PU activity-aware medium access control (MAC) protocol for cognitive radio networks (CRNs). In this paper, we first propose a licensed channel usage pattern identification scheme, based on a two-state Markov model, and then estimate the future idle slots using previous observations of the channels. Furthermore, based on these past observations, we compute the rank of each available licensed channel that gives SU transmission success assessment during the estimated idle slot. Secondly, we propose a PU activity-aware distributed MAC (PAD-MAC) protocol for heterogeneous multi-channel CRNs that selects the best channel for each SU to enhance its throughput. PAD-MAC controls SU activities by allowing them to exploit the licensed channels only for the duration of estimated idle slots and enables predictive and fast channel switching. To evaluate the performance of the proposed PAD-MAC, we compare it with the distributed QoS-aware MAC (QC-MAC) and listen-before-talk MAC schemes. Extensive numerical results show the significant improvements of the PAD-MAC in terms of the SU throughput, SU channel switching rate and PU-to-SU collision rate. PMID:25831084

  3. Super-Sharp Radio "Vision" Measures Galaxy's Motion in Space

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) have measured the motion across the sky of a galaxy nearly 2.4 million light-years from Earth. While scientists have been measuring the motion of galaxies directly toward or away from Earth for decades, this is the first time that the transverse motion (called proper motion by astronomers) has been measured for a galaxy that is not a satellite of our own Milky Way Galaxy. M33 Radio/Optical Image of M33 CREDIT: NRAO/AUI/NSF, NOAO/AURA/NSF (Click on image for more files) An international scientific team analyzed VLBA observations made over two and a half years to detect minuscule shifts in the sky position of the spiral galaxy M33. Combined with previous measurements of the galaxy's motion toward Earth, the new data allowed the astronomers to calculate M33's movement in three dimensions for the first time. "A snail crawling on Mars would appear to be moving across the surface more than 100 times faster than the motion we measured for this galaxy," said Mark Reid, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. M33 is a satellite of the larger galaxy M31, the well-known Andromeda Galaxy that is the most distant object visible to the naked eye. Both are part of the Local Group of galaxies that includes the Milky Way. In addition to measuring the motion of M33 as a whole, the astronomers also were able to make a direct measurement of the spiral galaxy's rotation. Both measurements were made by observing the changes in position of giant clouds of molecules inside the galaxy. The water vapor in these clouds acts as a natural maser, strengthening, or amplifying, radio emission the same way that lasers amplify light emission. The natural masers acted as bright radio beacons whose movement could be tracked by the ultra-sharp radio "vision" of the VLBA. Reid and his colleagues plan to continue measuring M33's motion and also to make similar measurements of M31's motion. This will allow them to answer important questions about the composition, history and fates of the two galaxies as well as of the Milky Way. "We want to determine the orbits of M31 and M33. That will help us learn about their history, specifically, how close have they come in the past?" Reid explained. "If they have passed very closely, then maybe M33's small size is a result of having material pulled off it by M31 during the close encounter," he added. Accurate knowledge of the motions of both galaxies also will help determine if there's a collision in their future. In addition, orbital analysis can give astronomers valuable clues about the amount and distribution of dark matter in the galaxies. M33's motion in space M33's motion in space, relative to M31 and the Milky Way CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) The direct measurement of M33's transverse angular spin is the first time such a measurement has been done accurately. In the 1920s, some astronomers thought they had measured the spin of spiral galaxies, but their results proved to be in error. More recently, radio astronomers have measured the Doppler shift of hydrogen gas in galaxies to determine the spin speed, which, when combined with the angular spin, gives a direct estimate of the distance of the galaxy. The astronomers' task was not simple. Not only did they have to detect an impressively tiny amount of motion across the sky, but they also had to separate the actual motion of M33 from the apparent motion caused by our Solar System's motion around the center of the Milky Way. The motion of the Solar System and the Earth around the Galactic center, some 26,000 light-years away, has been accurately measured using the VLBA over the last decade. "The VLBA is the only telescope system in the world that could do this work," Reid said. "Its extraordinary ability to resolve fine detail is unmatched and was the absolute prerequisite to making these measurements." Reid worked with Andreas Brunthaler of the Max Planck Institute for Radioastronomy in Bonn, Germany; Heino Falcke of ASTRON in the Netherlands; Lincoln Greenhill, also of the Harvard- Smithsonian Center for Astrophysics; and Christian Henkel, also of the Max Planck Institute in Bonn. The scientists reported their findings in the March 4 issue of the journal Science. The VLBA is a system of ten radio-telescope antennas, each with a dish 25 meters (82 feet) in diameter and weighing 240 tons. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 5,000 miles, providing astronomers with the sharpest vision of any telescope on Earth or in orbit. Dedicated in 1993, the VLBA has an ability to see fine detail equivalent to being able to stand in New York and read a newspaper in Los Angeles. The VLBA's scientific achievements include making the most accurate distance measurement ever made of an object beyond the Milky Way Galaxy; the first mapping of the magnetic field of a star other than the Sun; movies of motions in powerful cosmic jets and of distant supernova explosions; the first measurement of the propagation speed of gravity; and long-term measurements that have improved the reference frame used to map the Universe and detect tectonic motions of Earth's continents. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  4. Validation of GPS Radio Occultation Measurements From Champ

    NASA Astrophysics Data System (ADS)

    Jakowski, N.; Wehrenpfennig, A.; Heise, S.

    The ionospheric radio occultation (IRO) technique is a powerful tool for deriving vertical profiles of electron density on global scale. In this talk we report results of ionospheric radio occultation measurements carried out onboard the German CHAMP (CHAllenging Minisatellite Payload) satellite mission that contributes also to essen- tial improvements of gravity and magnetic field models of the Earth. Electron density profiles are derived from the IRO data by applying a new model assisted retrieval tech- nique that is briefly described. This retrieval technique was developed to overcome the serious upper boundary problem due to the rather low orbit height of CHAMP of less than 450 km height. Since the first IRO measurements were performed onboard CHAMP on 11 April 2001 we have retrieved more than 5000 electron density pro- files in 2001. These data are systematically compared with vertical sounding derived profiles and key parameters such as f0F2 and hmF2 to draw conclusions on reliability and accuracy of IRO derived electron density profiles. The extracted f0F2 values de- viate from corresponding ionosonde data with an absolute rms error in the order of 1 MHz. Potentials and limitations of the retrieval technique in particular for low-altitude missions like CHAMP will be addressed.

  5. Radio Telescopes' Precise Measurements Yield Rich Scientific Payoffs

    NASA Astrophysics Data System (ADS)

    2008-01-01

    Having the sharpest pictures always is a big advantage, and a sophisticated radio-astronomy technique using continent-wide and even intercontinental arrays of telescopes is yielding extremely valuable scientific results in a wide range of specialties. That's the message delivered to the American Astronomical Society's meeting in Austin, Texas, by Mark Reid of the Harvard-Smithsonian Center for Astrophysics, a leading researcher in the field of ultra-precise astronomical position measurements. Very Long Baseline Interferometry provides extremely high precision that can extend use of the parallax technique to many more celestial objects. Parallax is a direct means of measuring cosmic distances by detecting the slight shift in an object’s apparent position in the sky caused by Earth’s orbital motion. Credit: Bill Saxton, NRAO/AUI/NSF "Using radio telescopes, we are measuring distances and motions of celestial bodies with unprecedented accuracy. That's helping us better understand many processes ranging from star formation to the scale of the entire Universe," Reid said. The observing technique, called Very Long Baseline Interferometry (VLBI), was pioneered in 1967, but has come into continuous use only in the past 10-15 years. The National Science Foundation's Very Long Baseline Array (VLBA), a system of 10 radio-telescope antennas ranging from Hawaii to the Caribbean, was dedicated in 1993. There are other VLBI systems in Europe and Asia, and large radio telescopes around the world cooperate regularly to increase sensitivity. VLBI observations routinely produce images hundreds of times more detailed than those made at visible-light wavelengths by the Hubble Space Telescope. Several groups of researchers from across the globe use the VLBA to study stellar nurseries in our own Milky Way Galaxy and measure distances to regions where new stars are forming. The key has been to improve measurement accuracy to a factor of a hundred times better than that produced by the highly successful Hipparcos satellite. Using small clouds of gas in star-forming regions that strongly amplify radio waves, called cosmic masers, the astronomers measured the tiny shift in the object's position in the sky caused by the Earth's orbit around the sun. This, in turn, yielded highly-accurate distances by the simple surveying technique of triangulation, the "gold standard" of distance measuring techniques available to astronomers. Dr. Mark Reid Dr. Mark Reid Credit: CfA Click image for high-resolution file (1.02 MB) "Knowing the distance accurately means we also know the luminosities, masses and ages of the young stars much more accurately, and that is vital to understanding how star formation works," Reid said. In addition, he pointed out, the VLBA observations have shown the motions of the young stars in the Milky Way are much more complicated than simple circular motion. Massive young stars appear to be born orbiting the Milky Way considerably slower than older stars. "This might be explained by the interaction of giant molecular clouds, the ultimate sites of massive star formation, as they "surf" spiral density waves in the Milky Way." An international team of scientists led by Reid has used VLBI to detect the slight change in apparent position of the object at the Milky Way's center caused by our Solar System's orbit around that center. "It takes our Solar System more than 200 million years to circle the center of our Galaxy, and yet we can detect that motion in only a couple weeks with the VLBA -- truly astounding!" Reid said. The VLBA studies of the Galactic Center have shown that an object called Sagittarius A* is at the exact gravitational center of our Galaxy. That means, the scientists say, that the object must be incredibly massive. "The VLBA measurements, combined with infrared observations of stellar orbits around this object, provide overwhelming evidence that it's a supermassive black hole," Reid explained. "These observations are also going to make it possible to re-define the coordinate system used to map the entire Galaxy," Reid added. Looking farther outward, astronomers achieved a longstanding goal of measuring the spin of another galaxy. In 2005, Reid and his colleagues measured both the rotational spin and the motion in space of the galaxy M33, nearly 2.4 million light-years from Earth. Astronomers in the 1920s had attempted such a feat, but their results were not accurate enough. "This achievement had to wait for the VLBA," Reid said. This and subsequent work has put strong limits on the amount of unseen "dark matter" around the giant Andromeda galaxy, which M33 orbits. A continuing goal is to use VLBI observations to measure the orbits of these and other galaxies within the Local Group of galaxies to which our own Milky Way belongs. VLBA The Very Long Baseline Array (VLBA), the National Radio Astronomy Observatory’s continent-wide radio-telescope system. The VLBA provides the greatest resolving power, or ability to see detail, of any instrument in astronomy. Credit: NRAO/AUI/NSF In 1999, astronomers set a new standard for a distance measurement outside the Local Group of galaxies when they used the VLBA to make a direct geometric distance measurement to a galaxy called NGC 4258, 23.5 million light-years from Earth. That measurement, accurate to within 7 percent, caused other scientists to revise their indirect-measurement techniques for the rest of the Universe. The NGC 4258 distance was calculated by measuring the motion of masers in a disk of gas containing water molecules and orbiting a supermassive black hole at the galaxy's center. "Now, other galaxies are being observed in hopes of extending direct distance measurement even farther out in the Universe," Reid said. "One candidate, called UGC 3789, at a distance of about 160 million light-years, will be measured with about 10 percent accuracy. Our goal is to further improve these measurements and to measure 5 to 10 other galaxies in order to determine the Hubble constant (the expansion rate of the Universe) to 3 percent accuracy. This would put limits on key parameters of the dark energy that apparently is accelerating the expansion of the Universe," Reid added. The kind of accurate measurement of distances and motions that VLBI observations provide can benefit numerous other areas of astronomy, Reid pointed out. For example, the distances to pulsars have been measured directly with the VLBA, yielding better understanding of their characteristics. The technique also could reveal planets circling some nearby stars. "Anytime you can do something as dramatic as improving measurement accuracy by a hundredfold, you're bound to get a great scientific payoff," Reid said. "We're looking forward to exciting new results in the coming years," he added. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  6. Radio-frequency probe for bubble size and velocity measurements.

    PubMed

    Abuaf, N; Feierabend, T P; Zimmer, G A; Jones, O C

    1979-10-01

    A radio frequency (rf) probe that can provide local void fraction and interface velocity measurements in a gas-liquid two-phase flow was developed. The probe response to bubble passage was investigated with single-bubble controlled experiments. For a fixed geometry, the probe response was dependent on the dielectric constant of the medium surrounding the probe tip (air or water) and on the frequency of the carrier signal supplied to the probe. Bubble lengths (< 1 cm) and average bubble approach velocities (< 160 cm/s) were independently measured by two light sources and detectors placed at a known distance from each other and sensing the passage of each bubble. By choosing a sensitive probe tip length of 2.75-3 mm, the rf probe output provided enough information to determine the bubble length and velocity. The results obtained by the two independent methods show reasonable agreement (+/-10%). PMID:18699371

  7. Indoor radio measurement and planning for UMTS/HSDPA with antennas

    NASA Astrophysics Data System (ADS)

    Eheduru, Marcellinus

    Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, approximately 70-80% of the HSDPA traffic is estimated to originate from inside buildings. Thus for network operators, indoor coverage has become a necessity for technical and business reasons. Macro-cellular (outdoor) to indoor coverage is a natural inexpensive way of providing network coverage inside the buildings. However, it does not guarantee sufficient link quality required for optimal HSDPA operation. On the contrary, deploying a dedicated indoor system may be far too expensive from an operator's point of view. In this thesis, the concept is laid for the understanding of indoor radio wave propagation in a campus building environment which could be used to plan and improve outdoor-to-indoor UMTS/HSDPA radio propagation performance. It will be shown that indoor range performance depends not only on the transmit power of an indoor antenna, but also on the product's response to multipath and obstructions in the environment along the radio propagation path. An extensive measurement campaign will be executed in different indoor environments analogous to easy, medium and hard radio conditions. The effects of walls, ceilings, doors and other obstacles on measurement results would be observed. Chapter one gives a brief introduction to the evolution of UMTS and HSDPA. It goes on to talk about radio wave propagation and some important properties of antennas which must be considered when choosing an antenna for indoor radio propagation. The challenges of in-building network coverage and also the objectives of this thesis are also mentioned in this chapter. The evolution and standardization, network architecture, radio features and most importantly, the radio resource management features of UMTS/HSDPA are given in chapter two. In this chapter, the reason why Wideband Code Division Multiple Access (WCDMA) was specified and selected for 3G (UMTS) systems would be seen. The architecture of the radio access network, interfaces with the radio access network between base stations and radio network controllers (RNC), and the interface between the radio access network and the core network are also described in this chapter. The main features of HSDPA are mentioned at the end of the chapter. In chapter three the principles of the WCDMA air interface, including spreading, Rake reception, signal fading, power control and handovers are introduced. The different types and characteristics of the propagation environments and how they influence radio wave propagation are mentioned. UMTS transport, logical and physical channels are also mentioned, highlighting their significance and relationship in and with the network. Radio network planning for UMTS is discussed in chapter four. The outdoor planning process which includes dimensioning, detailed planning, optimization and monitoring is outlined. Indoor radio planning with distributed antenna systems (DAS), which is the idea and motivation behind this thesis work, is also discussed. The various antennas considered and the antenna that was selected for this thesis experiment was discussed in chapter five. The antenna radiation pattern, directivity, gain and input impedance were the properties of the antenna that were taken into consideration. The importance of the choice of the antenna for any particular type of indoor environment is also mentioned. In chapter six, the design and fabrication of the monopole antennas used for the experimental measurement is mentioned. The procedure for measurement and the equipment used are also discussed. The results gotten from the experiment are finally analyzed and discussed. In this chapter the effect of walls, floors, doors, ceilings and other obstacles on radio wave propagation will be seen. Finally, chapter seven concludes this thesis work and gives some directions for future work.

  8. Study of technological sludges by radio-frequency permittivity measurement

    SciTech Connect

    Lavrov, I.S.; Ponomareva, V.N.; Rozental, O.M.

    1985-10-01

    The authors examine the radio-frequency permittivity method to obtain information on the dynamics of charge carriers or polar molecules from the dissipation of energy and phase shift of the electromagnetic field in the surface layer specimen. By varying the frequency it is possible to measure the spectral relaxation characteristics needed to provide information on mutual correlation of the molecules. The disappearance of megahertz dispersion when sludges are concentrated indicates that these associations become included in the adhesive joints in the course of concentration. It follows that polar associations, represented in permittivity studies as nanosecond oscillators, are important elements of the adhesive joints, effectively forming them but becoming incapable of polarization in an external megahertz field.

  9. Maximizing the utility of radio spectrum: Broadband spectrum measurements and occupancy model for use by cognitive radio

    NASA Astrophysics Data System (ADS)

    Petrin, Allen J.

    Radio spectrum is a vital national asset; proper management of this finite resource is essential to the operation and development of telecommunications, radio-navigation, radio astronomy, and passive remote sensing services. To maximize the utility of the radio spectrum, knowledge of its current usage is beneficial. As a result, several spectrum studies have been conducted in urban Atlanta, suburban Atlanta, and rural North Carolina. These studies improve upon past spectrum studies by resolving spectrum usage by nearly all its possible parameters: frequency, time, polarization, azimuth, and location type. The continuous frequency range from 400MHz to 7.2 GHz was measured with a custom-designed system. More than 8 billion spectrum measurements were taken over several months of observation. A multi-parameter spectrum usage detection method was developed and analyzed with data from the spectrum studies. This method was designed to exploit all the characteristics of spectral information that was available from the spectrum studies. Analysis of the spectrum studies showed significant levels of underuse. The level of spectrum usage in time and azimuthal space was determined to be only 6.5 % for the urban Atlanta, 5.3 % for suburban Atlanta, and 0.8 % for the rural North Carolina spectrum studies. Most of the frequencies measured never experienced usage. Interference was detected in several protected radio astronomy and sensitive radio navigation bands. A cognitive radio network architecture to share spectrum with fixed microwave systems was developed. The architecture uses a broker-based sharing method to control spectrum access and investigate interference issues.

  10. Polarized radio emission from extensive air showers measured with LOFAR

    SciTech Connect

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J.E.; Falcke, H.; Hörandel, J.R.; Krause, M.; Nelles, A.; Rachen, J.P.; Veen, S. ter; Thoudam, S.

    2014-10-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.

  11. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an estimate of the age of the universe. In order to do this, you need an unambiguous, absolute distance to another galaxy. We are pleased that the NSF's VLBA has for the first time determined such a distance, and thus provided the calibration standard astronomers have always sought in their quest for accurate distances beyond the Milky Way," said Morris Aizenman, Executive Officer of the National Science Foundation's (NSF) Division of Astronomical Sciences. "For astronomers, this measurement is the golden meter stick in the glass case," Aizenman added. The international team of astronomers used the VLBA to measure directly the motion of gas orbiting what is generally agreed to be a supermassive black hole at the heart of NGC 4258. The orbiting gas forms a warped disk, nearly two light-years in diameter, surrounding the black hole. The gas in the disk includes water vapor, which, in parts of the disk, acts as a natural amplifier of microwave radio emission. The regions that amplify radio emission are called masers, and work in a manner similar to the way a laser amplifies light emission. Determining the distance to NGC 4258 required measuring motions of extremely small shifts in position of these masers as they rotate around the black hole. This is equivalent to measuring an angle one ten-thousandth the width of a human hair held at arm's length. "The VLBA is the only instrument in the world that could do this," said Moran. "This work is the culmination of a 20-year effort at the Harvard Smithsonian Center for Astrophysics to measure distances to cosmic masers," said Irwin Shapiro, Director of that institution. Collection of the data for the NGC 4258 project was begun in 1994 and was part of Herrnstein's Ph.D dissertation at Harvard University. Previous observations with the VLBA allowed the scientists to measure the speed at which the gas is orbiting the black hole, some 39 million times more massive than the Sun. They did this by observing the amount of change in the wavelength of the radio waves caused by the Doppler effect. The gas is orbiting at a speed of more than two million miles per hour. The orbiting disk of gas is almost edge-on as viewed from Earth. The astronomers obtained the orbital speeds and the positions of the masers in the disk by measuring the Doppler Shift of the masers at the disk's sides, where the gas is moving almost directly away from the Earth on one side and toward the Earth on the other. Measurements of the different orbital speeds at different distances from the black hole, made in 1994, allowed them to determine the mass of the black hole. These measurements required the great resolving power, or ability to see fine detail, of the VLBA. This picture of an orbiting disk was confirmed by measurement of centrifugal acceleration, according to the scientists. The newest observations were focused on maser "spots" on the near edge of the disk, where orbital motion shifts their position in the sky, though by an extremely small amount. The VLBA, however, was able to detect this extremely small movement, called "proper motion" by astronomers. This motion was detected by observing the galaxy at 4- to 8-month intervals over more than three years. "By knowing the speed at which the gas is orbiting and then measuring its motion across the sky, we can use plain old trigonometry to calculate the distance," Greenhill said. He added, however, that "you need a bit of luck to be able to do this. So far, we know of only 22 galaxies with water masers in their nuclear regions that also are relatively nearby. Then, the geometry of the disk, relative to Earth, has to be right to allow us to make such a measurement" The VLBA measurement of NGC 4258's distance differs significantly from the distance to that galaxy determined through HST observations of Cepheid variable stars. Using such stars, a team of astronomers led by University of California-Berkeley scientist Eyal Maoz has made preliminary and as-yet unpublished estimates of the distance to NGC 4258 as either 27 or 29 million light-years, depending on assumptions about the characteristics of this type of star in that galaxy. Other Cepheid-based galaxy distances were used to calculate the expansion rate of the universe, called the Hubble Constant, announced by a team of HST observers last week. "This difference could mean that there may be more uncertainty in Cepheid-determined distances than people have realized," said Moran. "Providing this directly-determined distance to one galaxy -- a distance that can serve as a milestone -- should be helpful in determining distances to other galaxies, and thus the Hubble Constant and the size and age of the universe" The VLBA is a system of ten radio-telescope antennas, each 25 meters (82 feet) in diameter, stretching some 5,000 miles from Mauna Kea in Hawaii to St. Croix in the U.S. Virgin Islands. Operated from NRAO's Array Operations Center in Socorro, NM, the VLBA offers astronomers the greatest resolving power of any telescope anywhere. The NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Background information: Determining Cosmic Distances Determining cosmic distances obviously is vital to understanding the size of the universe. In turn, knowing the size of the universe is an important step in determining its age. "The size puts a limit on how much expansion could have occurred since the Big Bang, and thus tells us something about the age," said Moran. However, determining cosmic distances has proven to be a particularly thorny problem for astronomers. In the third century, B.C., the Greek astronomer Aristarchus devised a method of using trigonometry to determine the relative distances of the Moon and Sun, but in practice his method was difficult to use. Though a great first step, he missed the mark by a factor of 20. It wasn't until 1761 that trigonometric methods produced a relatively accurate distance to Venus, thus calibrating the size of the Solar System. The first accurate distance to another star was determined trigonometrically by Friedrich Wilhelm Bessel in 1838. Traditional trigonometric methods of measuring celestial distances require extremely accurate measurement of an object's position in the sky. By measuring the apparent shift in an object's position, called parallax, caused by the Earth's journey around the Sun, the distance to the object can be calculated. Until recent years, such measurements were limited by the atmosphere's degrading effect on optical observations. Recently, the Hipparcos satellite has measured stellar distances accurate to within 10 percent out to about 300 light-years. Beyond the range of parallax measurements, astronomers were forced to use indirect methods of estimating distances. Many of these methods make presumptions about the intrinsic brightness of objects, then estimate the distance by measuring how much fainter they appear on Earth. The faintness is presumed to be caused by the distance, according to the inverse-square law (doubling of the distance reduces brightness by a factor of four). Thus, stars of a particular spectral class are all presumed to be of the same intrinsic brightness. Such techniques have been used to estimate distances of stars out to about 25,000 light-years, still not far enough to estimate distance beyond our own Milky Way Galaxy. Early in the 20th Century, Henrietta Leavitt, of Harvard College Observatory, discovered that variable-brightness stars known as Cepheid variables showed a useful property -- the longer their pulsation periods, the brighter they are intrinsically. Once the absolute distance to a few Cepheids was determined, these stars were used to measure distances beyond the Milky Way. In the 1920s, Edwin Hubble used Cepheid-variable distance determinations to show that, contrary to then-prevalent opinion, many "nebulae" were, in fact, other galaxies far distant from our own. Distances determined using Cepheid variables, along with measurements of the Doppler shift of other galaxies' light, allowed Hubble to discover the expansion of the universe, the basis of the Big Bang theory. The Cepheid technique still is one of the building blocks of the extragalactic distance scale. However, because of absorption of light by interstellar dust and subtle differences among the stars themselves, this technique is subject to considerable uncertainty. Similarly, techniques that use a specific type of supernova (Type Ia) presumed to be of uniform intrinsic brightness, while able to make distance estimates farther than the Cepheid technique, still are subject to uncertainties. The NSF's VLBA, with resolving power hundreds of times better than even the Hubble Space Telescope, has allowed direct trigonometric techniques to be applied in measuring much greater distances than ever before. The VLBA measured the expansion of the shell of exploding debris from the supernova SN 1993J in the galaxy M81, 11 million light- years away. This information, combined with optical observations that measured the speed of the expanding debris by the Doppler shift of its emitted spectral lines, allowed a trigonometric calculation of the distance to M81. Now, with the VLBA's direct measurement of motions in the gas disk surrounding NGC 4258, trigonometric measurement, not subject to the vagaries of dust absorption and other uncertaintities in an object's brightness, has been extended to a distance of more than 23 million light-years.

  12. A Broadcast Channel Assignment Mechanism based on The Broadcast Tree for Multi-radio Multi-channel Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Zeng, Yingzhi

    2016-02-01

    This paper proposed a broadcast Channel Assignment Mechanism on base of optimized Broadcast Tree for wireless Mesh network (WMN), which is created by Branch and Bound Method. The simulations show that our algorithm not only reduces the broadcast redundancy but also avoids the potential channel interferences produced by unnecessary relay nodes.

  13. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  14. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate

  15. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Mahoney, M. J.; Jacobson, A. R.; Knowles, S. H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities.

  16. At-sea distribution of radio-marked Ashy Storm-Petrels Oceanodroma homochroa captured on the California Channel Islands

    USGS Publications Warehouse

    Adams, J.; Takekawa, J.Y.

    2008-01-01

    Small, rare and wide-ranging pelagic birds are difficult to locate and observe at sea; little is therefore known regarding individual movements and habitat affinities among many of the world's storm-petrels (Family Hydrobatidae). We re-located 57 of 70 radio-marked Ashy Storm-Petrels Oceanodroma homochroa captured at three colonies in the California Channel Islands: Scorpion Rocks (2004, 2005), Santa Barbara Island (2004) and Prince Island (2005). Between 23 July and 22 September 2004, and 5 July and 4 August 2005, we flew 29 telemetry surveys, covered more than 65 000 km2 (2004) and 43 000 km2 (2005) of open ocean from San Nicolas Island north to the Farallon Islands and obtained 215 locations from 57 storm-petrels at sea. In both years, radio-marked storm-petrels were aggregated over the continental slope from Point Conception to Point Buchon, within the western Santa Barbara Channel, and over the Santa Cruz Basin between Santa Cruz, San Nicolas and Santa Barbara islands. Individuals captured in the Channel Islands ranged more than 600 km and were located as far north as Gulf of the Farallones National Marine Sanctuary. This is the first study to use radiotelemetry to determine the at-sea distribution and movements for any storm-petrel species.

  17. Residence times and diel passage distributions of radio-tagged juvenile spring chinook salmon and steelhead in a gatewell and fish collection channel of a Columbia River Dam

    USGS Publications Warehouse

    Beeman, J.W.; Maule, A.G.

    2001-01-01

    The amount of time radio-tagged juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead O. mykiss spent within a gatewell and the juvenile collection channel at McNary Dam, Columbia River, USA, was measured to determine the diel passage behavior and residence times within these portions of the juvenile bypass system. The median gatewell residence times were 8.9 h for juvenile chinook salmon and 3.2 h for steelhead. Juvenile spring chinook salmon spent 83% of their time in the 18-m-deep gatewell at depths of 9 m or less, and juvenile steelhead spent 96% of their time in the upper 11 m. Fish released during midday and those released in the evening generally exited the gatewell in the evening, indicating that fish entering the gatewell during daylight will have prolonged residence times. Median collection-channel residence times of juvenile chinook salmon were much shorter (2.3 min) than those of steelhead (28.0 min), most likely because of the greater size of the steelhead and the high water velocities within the channel (2.1 m/s). This and other studies indicate most juvenile salmonids enter gatewells of several Columbia and Snake river dams in the evening and pass into the collection channels quickly. However, this is not consistent with the natural in-river migration patterns of these species and represents a delay in dam passage.

  18. Measurement of Geopotential Heights by GPS Radio Occultation

    NASA Technical Reports Server (NTRS)

    Leroy, Stephen S.

    1997-01-01

    Geopotential heights of constant pressure surfaces are retrieved from global positioning system (GPS) radio occultation data. In order to assess accuracy a subset of data obtained by GPS/MET during spring 1995 and summer 1995 are compared to the output of the European Centre for Medium-Range Weather Forecasts (ECMWF) global model. The root-mean-square measurement error is 20 m throughout the upper troposphere and lower stratosphere. Furthermore, the ECMWF global model contains enhanced errors in the southeast Pacific. In probing the data for potential utility in climate studies, a Bayesian interpolation technique is used to map the geopotential height fields in the upper troposphere during the summer. Despite limitations of the GPS/MET data set the global average 300-mbar geopotential height over a 2-week period in summer 1995 is determined with an accuracy of 7 m. By obtaining greater coverage and partially resolving synoptic variability, a future constellation of 16 orbiting receivers could obtain global average geopotential height estimates in the upper troposphere with an accuracy of 1 m each day. Accuracy would be somewhat worse for regional studies, except in the tropics where synoptic variability is depressed.

  19. Radio Frequency Hearing Aids: The Need for Complementary and Compatible Channel Allocation.

    ERIC Educational Resources Information Center

    Burgess, Vic; And Others

    1979-01-01

    The article discusses the use of radio frequency hearing aids, which provide a practical means of improving the signal-to-noise ratio of conventional hearing aids used by the aurally handicapped. (Author/DLS)

  20. MEASURING THE JET POWER OF FLAT-SPECTRUM RADIO QUASARS

    SciTech Connect

    Shabala, S. S.; Santoso, J. S.; Godfrey, L. E. H.

    2012-09-10

    We use frequency-dependent position shifts of flat-spectrum radio cores to estimate the kinetic power of active galactic nucleus (AGN) jets. We find a correlation between the derived jet powers and AGN narrow-line luminosity, consistent with the well-known relation for radio galaxies and steep spectrum quasars. This technique can be applied to intrinsically weak jets even at high redshift.

  1. Optimal throughput for cognitive radio with energy harvesting in fading wireless channel.

    PubMed

    Vu-Van, Hiep; Koo, Insoo

    2014-01-01

    Energy resource management is a crucial problem of a device with a finite capacity battery. In this paper, cognitive radio is considered to be a device with an energy harvester that can harvest energy from a non-RF energy resource while performing other actions of cognitive radio. Harvested energy will be stored in a finite capacity battery. At the start of the time slot of cognitive radio, the radio needs to determine if it should remain silent or carry out spectrum sensing based on the idle probability of the primary user and the remaining energy in order to maximize the throughput of the cognitive radio system. In addition, optimal sensing energy and adaptive transmission power control are also investigated in this paper to effectively utilize the limited energy of cognitive radio. Finding an optimal approach is formulated as a partially observable Markov decision process. The simulation results show that the proposed optimal decision scheme outperforms the myopic scheme in which current throughput is only considered when making a decision. PMID:24574885

  2. Direct physical measure of conformational rearrangement underlying potassium channel gating

    SciTech Connect

    Mannuzzu, L.M.; Moronne, M.M.; Isacoff, E.Y.

    1996-01-12

    In response to membrane depolarization, voltage-grated ion channels undergo a structural rearrangement that moves charges or diapoles in the membrane electric field and opens the channel-conducting pathway. By combination of site-specific fluorescent labeling of the Shaker potassium channel protein with voltage clamping, this gating conformational charge was measured in real time. Curing channel activation, a stretch of at least seven amino acids of the putative transmembrane segment S4 moved from a buried postions into the extracellular environment. This movement correlated with the displacement of the gating charge, providing physical evidence in support of the hypothesis that S4 is the voltage sensor of voltage-gated ion channels. 24 refs., 4 figs.

  3. Magellan radio occultation measurements of atmospheric waves on Venus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Jenkins, J. M.

    1995-01-01

    Radio occultation experiments were conducted at Venus on three consecutive orbits of the Magellan spacecraft in October 1991. Each occultation occurred over the same topography (67 deg N, 127 deg E) and at the same local time (22 hr 5 min), but the data are sensitive to zonal variations because the atmosphere rotates significantly during one orbit. Through comparisons between observations and predictions of standard wave theory, we have demonstrated that small-scale oscillations in retrieved temperature profiles as well as scintillations in received signal intensity are caused by a spectrum of vertically propagating internal gravity waves. There is a strong similarity between the intensity scintillations observed here and previous measurements, which pertain to a wide range of locations and experiment dates. This implies that the same basic phenomenon underlies all the observations and hence that gravity waves are a persistent, global feature of Venus' atmosphere. We obtained a fairly complete characterization of a gravity wave that appears above the middle cloud in temperature measurements on all three orbits. The amplitude and vertical wavelength are about 4 K and 2.5 km respectively, at 65 km. A model for radiative damping implies that the wave intrinsic frequency is approximately 2 x 10(exp 4) rad/sec, the corresponding ratio between horizontal and vertical wavelengths is approximately 100. The wave is nearly stationary relative to the surface or the Sun. Radiative attenuation limits the wave amplitude at altitudes above approximately 65 km, leading to wave drag on the mean zonal winds of about +0.4 m/sec per day (eastward). The sign, magnitude, and location of this forcing suggest a possible role in explaining the decrease with height in the zonal wind speed that is believed to occur above the cloud tops. Temperature oscillations with larger vertical wavelengths (5-10 km) were also observed on all three orbits, but we are able unable to interpret these unambiguously.

  4. Radio Frequency (RF) Attenuation Measurements of the Space Shuttle Vehicle

    NASA Technical Reports Server (NTRS)

    Scully, R. C.; Kent, B. M.; Kempf, D. R.; Johnk, R. T.

    2006-01-01

    Following the loss of Columbia, the Columbia Accident Investigation Board (CAIB) provided recommendations to be addressed prior to Return To Flight (RTF). As a part of CAIB Recommendation 3.4.1 - Ground Based Imagery, new C-band and X-band radars were added to the array of ground-based radars and cameras already in-situ at Kennedy Space Center. Because of higher power density considerations and new operating frequencies, the team of Subject Matter Experts (SMEs) assembled to investigate the technical details of introducing the new radars recommended a series of radio frequency (RF) attenuation tests be performed on the Space Shuttle vehicle to establish the attenuation of the vehicle outer mold line structure with respect to its external RF environment. Because of time and complex logistical constraints, it was decided to split the test into two separate efforts. The first of these would be accomplished with the assistance of the Air Force Research Laboratory (AFRL), performing RF attenuation measurements on the aft section of OV-103 (Discovery) while in-situ in Orbiter Processing Facility (OPF) 3, located at Kennedy Space Center. The second would be accomplished with the assistance of the National Institute of Standards and Technology (NIST) and the electromagnetic interference (EMI) laboratory out of the Naval Air Warfare Center, Patuxent River, Maryland (PAX River), performing RF attenuation measurements on OV-105 (Endeavour) in-situ inside the Space Shuttle Landing Facility (SLF) hangar, also located at Kennedy Space Center. This paper provides a summary description of these efforts and their results.

  5. Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization.

    PubMed

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2015-01-01

    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption. PMID:25664434

  6. Analysis of Wireless Sensor Network Topology and Estimation of Optimal Network Deployment by Deterministic Radio Channel Characterization

    PubMed Central

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2015-01-01

    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption. PMID:25664434

  7. Measurement of multipath delay profile in land mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi; Arakaki, Yoshiya; Wakana, Hiromitsu; Suzuki, Ryutaro

    1993-01-01

    Mobile satellite communication channel has been evaluated mainly with fading statistics of signal. When bandwidth of transmitting signal becomes wider, frequency selectivity of fading becomes a significant factor of the channel. Channel characteristics, not only signal variation but multipath delay spread should be evaluated. A multipath measurement system is proposed and developed for mobile satellite applications. With this system and ETS-V satellite, multipath delay profiles are measured in various environments including Tokyo metropolis and Sapporo city at 1.5 GHz. Results show that the maximum excess delay is within 1 microsec and the maximum delay spread is 0.2 microsecs at elevation angles of 40 to 47 degrees. In wideband signal transmission of about 1 MHz and more, designers should consider the effect of selective fading due to the multipath of land mobile satellite channel.

  8. The Radio JOVE Project: A New Multi-channel Spectrum Analyzer

    NASA Astrophysics Data System (ADS)

    Flagg, D.; Sky, J.; Reyes, F.; Thieman, J.; Higgins, C.

    2004-05-01

    A new radio spectrograph is now operational at the University of Florida Radio Observatory (UFRO) via the education and public outreach project called the Radio JOVE project(http://radiojove.gsfc.nasa.gov). The UFRO telescope is a 16-element 10-40 MHz log spiral array which is sensitive to both right-hand and left-hand circular polarization. Another spectrograph is connected to a 17-30 MHz log-periodic antenna located at Windward Community College in Hawaii (http://jupiter.wcc.hawaii.edu). Freely available software from Radio-Sky Publishing (http://www.radiosky.com) allows students, teachers, and radio astronomy enthusiasts to view the spectral data in real time via the Internet. Ultimately team members will be able to log on to the telescope and control the antenna and spectrometer's total sweep range, polarization, and calibrations. The software and telescope controls are discussed, and recent data results are shown. These data are of high quality and can lead to research applications.

  9. Radio Occultation Measurements with the Mars Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Hinson, David P.; Asmar, S.; Kahan, D.; Akopian, V.; Maalouf, S.

    2012-10-01

    The Mars Reconnaissance Orbiter (MRO) circles Mars in a low-altitude, sun-synchronous, polar orbit, crossing the equator at local times of about 3 and 15 h. There are frequent opportunities for radio occultation (RO) sounding of the martian atmosphere, which has been conducted routinely since January 2008. Observations are limited to one orbit per day, so as to minimize the impact on transmission of data collected by the primary scientific instruments. We are retrieving atmospheric profiles from the MRO RO data, and we are delivering the results to the NASA Planetary Data System (PDS) for archiving and public distribution. The value of these RO profiles derives from their combination of accurate absolute calibration, excellent vertical resolution (about 500 m), and accurate registration in radius. The first attribute qualifies the RO profiles as a reliable standard for cross-instrument calibration, and comparisons are underway with atmospheric observations by the MRO Mars Climate Sounder (MCS). The second attribute yields unique insight into the structure and dynamics of the lower atmosphere (0-10 km) and its interaction with surface reservoirs of dust and volatiles. The third attribute allows precise measurements of geopotential height and surface pressure, which constrain the mass distribution of the atmosphere and its seasonal variations. These attributes also enable long-term monitoring of interannual variability and climatic trends. We will characterize the spatial and seasonal coverage of the observations to date, and we will illustrate the atmospheric phenomena captured by the MRO RO profiles. This research is funded in part by Grant NNX12AL48G of the Mars Data Analysis Program.

  10. Analysis of satellite measurements of terrestrial radio noise

    NASA Technical Reports Server (NTRS)

    Bakalyar, G.; Caruso, J. A.; Vargas-Vila, R.; Ziemba, E.

    1974-01-01

    Worldwide distributions of terrestrial radio noise as monitored by Radio Astronomy Explorer 1 (RAE 1) generated and compared with CCIR predictions. These contour maps show the global morphology of radio noise at 6.55 and 9.18 MHz for fall, winter, spring and summer during the local time blocks of 00-08 LT and 16-24 LT. These computer produced maps show general agreement with CCIR predictions over large land masses. The RAE and CCIR maps diverge at high latitudes over Asia and frequently over ocean regions. Higher noise levels observed by RAE at high latitudes are attributed to magnetospheric emission while higher noise levels observed by RAE over Asia are attributable to high power transmitters. Analysis of RAE noise observations in conjunction with various geophysical phenomena showed no obvious correlation.

  11. Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks

    PubMed Central

    Campbell, Carlene E.-A.; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives. PMID:22163883

  12. Multi-channel multi-radio using 802.11 based media access for sink nodes in wireless sensor networks.

    PubMed

    Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives. PMID:22163883

  13. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials.

    PubMed Central

    Andersen, O S

    1983-01-01

    The patch-clamp technique of Mueller (1975, Ann. N.Y. Acad. Sci., 274:247-264) and Neher and Sakmann (1976, Nature (Lond.), 260:799-802) was modified to be suitable for single-channel measurements in lipid bilayers at potentials up to 500 mV. This method was used to study gramicidin A single-channel current-voltage characteristics. It was found that the sublinear current-voltage behavior normally observed at low permeant ion concentrations and rather low potentials (V less than or equal to 200 mV) continues to be seen all the way up to 500 mV. This phenomenon is characteristic of the low permeant ion situation in which the channel is far from saturation, and implies that the overall rate constant for association between ion and channel is very weakly, if at all, voltage dependent. The magnitude of the single channel currents at 500 mV is consistent with the notion that the aqueous convergence conductance is a significant factor in determining the permeability characteristics of the gramicidin A channel. PMID:6188500

  14. A wireless multi-channel bioimpedance measurement system for personalized healthcare and lifestyle.

    PubMed

    Ramos, Javier; Ausn, Jos Luis; Lorido, Antonio Manuel; Redondo, Francisco; Duque-Carrillo, Juan Francisco

    2013-01-01

    Miniaturized, noninvasive, wearable sensors constitute a fundamental prerequisite for pervasive, predictive, and preventive healthcare systems. In this sense, this paper presents the design, realization, and evaluation of a wireless multi-channel measurement system based on a cost-effective high-performance integrated circuit for electrical bioimpedance (EBI) measurements in the frequency range from 1 kHz to 1 MHz. The resulting on-chip spectrometer provides high measuring EBI capabilities and together with a low-cost, commercially available radio frequency transceiver device. It provides reliable wireless communication, constitutes the basic node to build EBI wireless sensor networks (EBI-WSNs). The proposed EBI-WSN behaves as a high-performance wireless multi-channel EBI spectrometer, where the number of channels is completely scalable and independently configurable to satisfy specific measurement requirements of each individual. A prototype of the EBI node leads to a very small printed circuit board of approximately 8 cm2 including chip-antenna, which can operate several years on one 3-V coin cell battery and make it suitable for long-term preventive healthcare monitoring. PMID:23739358

  15. A Portable MIMO Testbed and Selected Channel Measurements

    NASA Astrophysics Data System (ADS)

    Goud, Paul, Jr.; Hang, Robert; Truhachev, Dmitri; Schlegel, Christian

    2006-12-01

    A portable[InlineEquation not available: see fulltext.] multiple-input multiple-output (MIMO) testbed that is based on field programmable gate arrays (FPGAs) and which operates in the 902-928 MHz industrial, scientific, and medical (ISM) band has been developed by the High Capacity Digital Communications (HCDC) Laboratory at the University of Alberta. We present a description of the HCDC testbed along with MIMO channel capacities that were derived from measurements taken with the HCDC testbed for three special locations: a narrow corridor, an athletics field that is surrounded by a metal fence, and a parkade. These locations are special because the channel capacities are different from what is expected for a typical indoor or outdoor channel. For two of the cases, a ray-tracing analysis has been performed and the simulated channel capacity values closely match the values calculated from the measured data. A ray-tracing analysis, however, requires accurate geometrical measurements and sophisticated modeling for each specific location. A MIMO testbed is ideal for quickly obtaining accurate channel capacity information.

  16. Navigation Signal Disturbances by Multipath Propagation - Scaled Measurements with a Universal Channel Sounder Architecture

    NASA Astrophysics Data System (ADS)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg

    2015-11-01

    The performance of navigation systems is always reduced by unwanted multipath propagation. This is especially of practical importance for airborne navigation systems like the instrument landing system (ILS) or the VHF omni directional radio range (VOR). Nevertheless, the quantitative analysis of corresponding, potentially harmful multipath propagation disturbances is very difficult due to the large parameter space. Experimentally difficulties arise due to very expensive, real scale measurement campaigns and numerical simulation techniques still have shortcomings which are briefly discussed. In this contribution a new universal approach is introduced on how to measure very flexibly multipath propagation effects for arbitrary navigation systems using a channel sounder architecture in a scaled measurement environment. Two relevant scenarios of multipath propagation and the impact on navigation signals are presented. The first describes disturbances of the ILS due to large taxiing aircraft. The other example shows the influence of rotating wind turbines on the VOR.

  17. Morphology of the Solar Corona from Radio Occultation Measurements: Implications for Solar Probe

    NASA Technical Reports Server (NTRS)

    Woo, R.

    1996-01-01

    This paper summarizes the latest results on the morphology of the near-Sun solar wind obtained from radio occultation measurements, and their impact on the planning and conduct of a mission to the Sun such as Solar Probe.

  18. Marine information systems and new measuring channels for hydrophysical parameters

    NASA Astrophysics Data System (ADS)

    Smirnov, G. V.; Olenin, A. L.

    2015-03-01

    The results of the development and implementation of oceanographic information-measuring systems in the 1960s to 1970s and 1980s to 1990s are analytically treated and the basic principles of present-day systems for collecting data on oceanographic parameters are considered. We present the design of a technological platform for multichannel complexes aimed at concurrent measurements of hydrological, optical, and chemical characteristics. The platform allows one to combine the conventional and new channels for measuring oceanographic parameters.

  19. Seventy Years of Radio Science, Technology, Standards, and Measurement at the National Bureau of Standards

    NASA Astrophysics Data System (ADS)

    Gillmor, C. Stewart

    This large volume describes all the forms of radio research done at the National Bureau of Standards (now, National Institute of Standards and Technology) from its founding in 1901 until about 1980. The volume truly reflects its subtitle; it describes in great detail research in radio propagation and all its connections with geophysics and geospace, but also radio as instrument for discovery and application in meteorology, navigation, and in standards of measurement and testing in electronics.The book is a bit unwieldy and some of its chapters will be of most interest to former NBS employees. For example, there is a lengthy chapter on the transfer of radio research work from Washington, D.C, to Boulder, Colo., in the early 1950s, complete with photostat of the quit claim deed to NBS from the Boulder Chamber of Commerce. On the other hand, radio research developed and flourished in this country in the early days at industrial (Bell Telephone, General Electric, Westinghouse) and government (NBS, Naval Research Laboratory) labs more than in academia, and it is very interesting to learn how the labs interacted and to read details of the organizational structure. I can attest personally to the great difficulties in locating materials concerning radio history. While we have numerous volumes devoted to certain popular radio heroes, little is available concerning government radio pioneers such as L. W. Austin, who directed the U.S. Navy's radio research for many years while situated physically at the Bureau of Standards, or J. H. Dellinger, long-time chief of the Radio Section and head spokesman on radio for the U.S. government until the 1930s.

  20. Digital beacon receiver for ionospheric TEC measurement developed with GNU Radio

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.

    2008-11-01

    A simple digital receiver named GNU Radio Beacon Receiver (GRBR) was developed for the satellite-ground beacon experiment to measure the ionospheric total electron content (TEC). The open-source software toolkit for the software defined radio, GNU Radio, is utilized to realize the basic function of the receiver and perform fast signal processing. The software is written in Python for a LINUX PC. The open-source hardware called Universal Software Radio Peripheral (USRP), which best matches the GNU Radio, is used as a front-end to acquire the satellite beacon signals of 150 and 400 MHz. The first experiment was successful as results from GRBR showed very good agreement to those from the co-located analog beacon receiver. Detailed design information and software codes are open at the URL http://www.rish.kyoto-u.ac.jp/digitalbeacon/.

  1. Equivalence and Accuracy of MOSFET Channel Length Measurement Techniques

    NASA Astrophysics Data System (ADS)

    Jain, Sanjay

    1989-02-01

    It is shown that the MOSFET channel length measurement techniques of Terada and Muta, Peng et al., Whitfield, Suciu and Johnston, and De La Moneda et al. are actually equivalent, i.e. merely different expressions of the same formula for channel length in terms of measured resistance, and that some of the transresistance methods of Jain, although not equivalent, are also related to the same formula. The accuracy of this formula is evaluated for the general case and related to the error components due to source and drain resistance asymmetry, short channel geometry effect, and variation of series resistance with bias. No independent error component due to field-induced mobility degradation is found. Finally the errors in the methods of Terada and Muta, Chen et al., Sheu et al., Wordeman et al. and Jain, are determined and compared. The gate transresistance technique is found to be the most accurate method.

  2. Modeling the recorded spectrum and reconstructing the transfer function of the wideband ionospheric HF radio channel in the case of chirp sounding

    NASA Astrophysics Data System (ADS)

    Ilyin, N. V.; Davydenko, M. A.; Khakhinov, V. V.

    2007-05-01

    We model theoretically the received spectrum in the case of sounding of the ionospheric HF radio channel by a chirp signal. It is shown that the result of processing of an individual time sample of the received signal is equivalent to the sounding of the radio channel by a complex narrow-band pulsed signal such that the group delays of its propagation modes determine the maxima in the received spectrum. We analyze the quadrature components of realizations of the received signal at the intermediate frequency at the bandpass-filter output in the receiving channel of the chirp ionosonde. The results of our analysis show the possibility of reconstructing the transfer function of a HF radio channel in the sounding-frequency band for the delay range determined by the characteristics of the intermediate-frequency bandpass filter. We propose a method for reconstructing the transfer function of the ionospheric radio channel, which involves supplementing the circuit of primary processing of the signal by a corrective digital filter with specified amplitude-frequency and phase-frequency characteristics. The proposed method can be used for all operating regimes of the chirp ionosonde in the case of digital recording and processing of signals.

  3. Measurement and Modeling of Narrowband Channels for Ultrasonic Underwater Communications.

    PubMed

    Cañete, Francisco J; López-Fernández, Jesús; García-Corrales, Celia; Sánchez, Antonio; Robles, Encarnación; Rodrigo, Francisco J; Paris, José F

    2016-01-01

    Underwater acoustic sensor networks are a promising technology that allow real-time data collection in seas and oceans for a wide variety of applications. Smaller size and weight sensors can be achieved with working frequencies shifted from audio to the ultrasonic band. At these frequencies, the fading phenomena has a significant presence in the channel behavior, and the design of a reliable communication link between the network sensors will require a precise characterization of it. Fading in underwater channels has been previously measured and modeled in the audio band. However, there have been few attempts to study it at ultrasonic frequencies. In this paper, a campaign of measurements of ultrasonic underwater acoustic channels in Mediterranean shallow waters conducted by the authors is presented. These measurements are used to determine the parameters of the so-called κ-μ shadowed distribution, a fading model with a direct connection to the underlying physical mechanisms. The model is then used to evaluate the capacity of the measured channels with a closed-form expression. PMID:26907281

  4. Method for automatic absolute calibration of sodar measurement channels

    NASA Astrophysics Data System (ADS)

    Kamardin, A. P.; Odintsov, S. L.

    2015-11-01

    We discuss a method for continuous absolute calibration of "Volna-4M" meteorological acoustic radar (sodar) measurement channels. Accelerometers, placed on paraboloids of sodar antennas, are suggested to use for automatic calibration. Results of testing the module of continuous sodar calibration are presented.

  5. Measurement and Modeling of Narrowband Channels for Ultrasonic Underwater Communications

    PubMed Central

    Cañete, Francisco J.; López-Fernández, Jesús; García-Corrales, Celia; Sánchez, Antonio; Robles, Encarnación; Rodrigo, Francisco J.; Paris, José F.

    2016-01-01

    Underwater acoustic sensor networks are a promising technology that allow real-time data collection in seas and oceans for a wide variety of applications. Smaller size and weight sensors can be achieved with working frequencies shifted from audio to the ultrasonic band. At these frequencies, the fading phenomena has a significant presence in the channel behavior, and the design of a reliable communication link between the network sensors will require a precise characterization of it. Fading in underwater channels has been previously measured and modeled in the audio band. However, there have been few attempts to study it at ultrasonic frequencies. In this paper, a campaign of measurements of ultrasonic underwater acoustic channels in Mediterranean shallow waters conducted by the authors is presented. These measurements are used to determine the parameters of the so-called κ-μ shadowed distribution, a fading model with a direct connection to the underlying physical mechanisms. The model is then used to evaluate the capacity of the measured channels with a closed-form expression. PMID:26907281

  6. Technique to determine location of radio sources from measurements taken on spinning spacecraft

    NASA Technical Reports Server (NTRS)

    Fainberg, J.

    1979-01-01

    The procedure developed to extract average source direction and average source size from spin-modulated radio astronomy data measured on the IMP-6 spacecraft is described. Because all measurements are used, rather than just finding maxima or minima in the data, the method is very sensitive, even in the presence of large amounts of noise. The technique is applicable to all experiments with directivity characteristics. It is suitable for onboard processing on satellites to reduce the data flow to Earth. The application to spin-modulated nonpolarized radio astronomy data is made and includes the effects of noise, background, and second source interference. The analysis was tested with computer simulated data and the results agree with analytic predictions. Applications of this method with IMP-6 radio data have led to: (1) determination of source positions of traveling solar radio bursts at large distances from the Sun; (2) mapping of magnetospheric radio emissions by radio triangulation; and (3) detection of low frequency radio emissions from Jupiter and Saturn.

  7. Amplitude calibration of a digital radio antenna array for measuring cosmic ray air showers

    NASA Astrophysics Data System (ADS)

    Nehls, S.; Hakenjos, A.; Arts, M. J.; Blümer, J.; Bozdog, H.; van Cappellen, W. A.; Falcke, H.; Haungs, A.; Horneffer, A.; Huege, T.; Isar, P. G.; Krömer, O.

    2008-05-01

    Radio pulses are emitted during the development of air showers, where air showers are generated by ultra-high energy cosmic rays entering the Earth's atmosphere. These nano-second short pulses are presently investigated by various experiments for the purpose of using them as a new detection technique for cosmic particles. For an array of 30 digital radio antennas (LOPES experiment) an absolute amplitude calibration of the radio antennas including the full electronic chain of the data acquisition system is performed, in order to estimate absolute values of the electric field strength for these short radio pulses. This is mandatory, because the measured radio signals in the MHz frequency range have to be compared with theoretical estimates and with predictions from Monte Carlo simulations to reconstruct features of the primary cosmic particle. A commercial reference radio emitter is used to estimate frequency dependent correction factors for each single antenna of the radio antenna array. The expected received power is related to the power recorded by the full electronic chain. Systematic uncertainties due to different environmental conditions and the described calibration procedure are of order 20%.

  8. Radio spectrum measurements of artificial ball lightning and testing the hypothesis on its plasmochemical nature

    NASA Astrophysics Data System (ADS)

    Kopeikin, V. V.

    2014-01-01

    Spectral measurements of radiowaves emitted by artificial ball lightning are presented. The measurements were carried out using two different facilities: a pulsed power generator (PPG) and a three-contour Tesla transformer. The results of these measurements confirm the hypothesis that ball lightning is a self-oscillator of high-voltage pulses in the radio range.

  9. Ion Channel Conductance Measurements on a Silicon-Based Platform

    NASA Astrophysics Data System (ADS)

    Wilk, S. J.; Aboud, S.; Petrossian, L.; Goryll, M.; Tang, J. M.; Eisenberg, R. S.; Saraniti, M.; Goodnick, S. M.; Thornton, T. J.

    2006-05-01

    Conductance measurements of the transmembrane porin protein OmpF as a function of pH and bath concentration have been made with both a microfabricated silicon substrate device and a commercially available polystyrene aperture. Ion transport through the channel was simulated in atomic detail: the measured current was compared with theoretically calculated current, using a Brownian Dynamics kernel coupled to the Poisson equation by a P3M force field. The explicit protein structure and fixed charge distribution in the protein are calculated using the molecular dynamics code, GROMACS. Reasonable agreement is obtained in the simulated versus measured conductance over the range of experimental concentrations studied.

  10. FOREGROUND PREDICTIONS FOR THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM FROM MEASUREMENTS OF FAINT INVERTED RADIO SOURCES AT 5 GHz

    SciTech Connect

    Schneider, Michael D.; Becker, Robert H.; De Vries, Willem; White, Richard L.

    2012-05-10

    We present measurements of a population of matched radio sources at 1.4 and 5 GHz down to a flux limit of 1.5 mJy in 7 deg{sup 2} of the NOAO Deep Field South. We find a significant fraction of sources with inverted spectral indices that all have 1.4 GHz fluxes less than 10 mJy and are therefore too faint to have been detected and included in previous radio source count models that are matched at multiple frequencies. Combined with the matched source population at 1.4 and 5 GHz in 1 deg{sup -2} in the ATESP survey, we update models for the 5 GHz differential number counts and distributions of spectral indices in 5 GHz flux bins that can be used to estimate the unresolved point source contribution to the cosmic microwave background temperature anisotropies. We find a shallower logarithmic slope in the 5 GHz differential counts than in previously published models for fluxes {approx}< 100 mJy as well as larger fractions of inverted spectral indices at these fluxes. Because the Planck flux limit for resolved sources is larger than 100 mJy in all channels, our modified number counts yield at most a 10% change in the predicted Poisson contribution to the Planck temperature power spectrum. For a flux cut of 5 mJy with the South Pole Telescope and a flux cut of 20 mJy with the Atacama Cosmology Telescope, we predict a {approx}30% and {approx}10% increase, respectively, in the radio source Poisson power in the lowest frequency channels of each experiment relative to that predicted by previous models.

  11. Strain tensors in layer systems by precision ion channeling measurements

    SciTech Connect

    Trinkaus, H.; Buca, D.; Hollaender, B.; Minamisawa, R. A.; Mantl, S.; Hartmann, J. M.

    2010-06-15

    A powerful method for analyzing general strain states in layer systems is the measurement of changes in the ion channeling directions. We present a systematic derivation and compilation of the required relations between the strain induced angle changes and the components of the strain tensor for general crystalline layer systems of reduced symmetry compared to the basic (cubic) crystal. It is shown that, for the evaluation of channeling measurements, virtually all layers of interest may be described as being 'pseudo-orthorhombic'. The commonly assumed boundary conditions and the effects of surface misorientations on them are discussed. Asymmetric strain relaxation in layers of reduced symmetry is attributed to a restriction in the slip system of the dislocations inducing it. The results are applied to {l_brace}110{r_brace}SiGe/Si layer systems.

  12. Frame synchronization methods based on channel symbol measurements

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Cheung, K.-M.

    1989-01-01

    The current DSN frame synchronization procedure is based on monitoring the decoded bit stream for the appearance of a sync marker sequence that is transmitted once every data frame. The possibility of obtaining frame synchronization by processing the raw received channel symbols rather than the decoded bits is explored. Performance results are derived for three channel symbol sync methods, and these are compared with results for decoded bit sync methods reported elsewhere. It is shown that each class of methods has advantages or disadvantages under different assumptions on the frame length, the global acquisition strategy, and the desired measure of acquisition timeliness. It is shown that the sync statistics based on decoded bits are superior to the statistics based on channel symbols, if the desired operating region utilizes a probability of miss many orders of magnitude higher than the probability of false alarm. This operating point is applicable for very large frame lengths and minimal frame-to-frame verification strategy. On the other hand, the statistics based on channel symbols are superior if the desired operating point has a miss probability only a few orders of magnitude greater than the false alarm probability. This happens for small frames or when frame-to-frame verifications are required.

  13. Wideband HF Channel Analyzer

    NASA Astrophysics Data System (ADS)

    Peo, G. E.; Bello, P. A.

    1981-01-01

    This document is a final report describing a wideband (1 MHz) HF channel analyzer. The Wideband HF Channel Analyzer is a digital signal processor designed to be used for wideband high-frequency radio channel measurement studies. The analyzer contains analog-to-digital converters, a digital pre-processor, a digital correlator array, a digital post-processor and two computer interfaces. To perform a channel measurement experiment, a transmitter at a remote site broadcasts a pseudo-random number (PN) sequence modulated onto a suitable carrier. After complex demodulation at the receiver, the analyzer measures channel delay by correlating the received sequence with its internal reference. Two modes of operation are provided. The Sounder Mode is used to obtain a preliminary characterization of the channel. The Prober Mode is used to more accurately measure the channel delay characteristics.

  14. Source and event selection for radio-planetary frame-tie measurements using the Phobos Landers

    NASA Technical Reports Server (NTRS)

    Linfield, R.; Ulvestad, J.

    1988-01-01

    The Soviet Phobos Lander mission will place two spacecraft on the Martian moon Phobos in 1989. Measurements of the range from Earth-based stations to the landers will allow an accurate determination of the ephemerides of Phobos and Mars. Delta Very Long Base Interferometry (VLBI) between the landers and compact radio sources nearby on the sky will be used to obtain precise estimates of the angular offset between the radio and planetary reference frames. The accuracy of this frame-tie estimate is expected to be in the vicinity of 10 mrad, depending on how well several error sources can be controlled (calibrated or reduced). Many candidate radio sources for VLBI measurements were identified, but additional work is necessary to select those sources which have characteristics appropriate to the present application. Strategies for performing the source selection are described.

  15. Wireless radio channel for intramuscular electrode implants in the control of upper limb prostheses.

    PubMed

    Stango, Antonietta; Yazdandoost, Kamya Yekeh; Farina, Dario

    2015-08-01

    In the last few years the use of implanted devices has been considered also in the field of myoelectric hand prostheses. Wireless implanted EMG (Electromyogram) sensors can improve the functioning of the prosthesis, providing information without the disadvantage of the wires, and the usability by amputees. The solutions proposed in the literature are based on proprietary communication protocols between the implanted devices and the prosthesis controller, using frequency bands that are already assigned to other purposes. This study proposes the use of a standard communication protocol (IEEE 802.15.6), specific for wireless body area networks (WBANs), which assign a specific bandwidth to implanted devices. The propagation losses from in-to-on body were investigated by numerical simulation with a 3D human model and an electromagnetic solver. The channel model resulting from the study represents the first step towards the development of myoelectric prosthetic hands which are driven by signals acquired by implanted sensors. However these results can provide important information to researchers for further developments, and manufacturers, which can decrease the production costs for hand prostheses having a common standard of communication with assigned frequencies of operation. PMID:26737192

  16. Occupational exposure of personnel operating military radio equipment: measurements and simulation.

    PubMed

    Paljanos, Annamaria; Miclaus, Simona; Munteanu, Calin

    2015-09-01

    Technical literature provides numerous studies concerning radiofrequency exposure measurements for various radio communication devices, but there are few studies related to exposure of personnel operating military radio equipment. In order to evaluate exposure and identify cases when safety requirements are not entirely met, both measurements and simulations are needed for accurate results. Moreover, given the technical characteristics of the radio devices used in the military, personnel mainly operate in the near-field region so both measurements and simulation becomes more complex. Measurements were made in situ using a broadband personal exposimeter equipped with two isotropic probes for both electric and magnetic components of the field. The experiment was designed for three different operating frequencies of the same radio equipment, while simulations were made in FEKO software using hybrid numerical methods to solve complex electromagnetic field problems. The paper aims to discuss the comparative results of the measurements and simulation, as well as comparing them to reference levels specified in military or civilian radiofrequency exposure standards. PMID:26444196

  17. A study of atomic and molecular energy transfer channels in Kr-Xe gas mixtures excited with radio frequency discharges

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Krylov, B.; Gerasimov, G.; Arnesen, A.; Hallin, R.

    2002-04-01

    Simultaneous observations of the vacuum ultraviolet (VUV) and visible-near-IR emission from radio frequency discharges in gaseous Kr with small (<0.1%) Xe admixture concentrations were conducted in the pressure range 80-400 hPa. The spectra were used for investigation of energy transfer from the lowest excited states of both atomic krypton and krypton molecules to the ground state xenon atoms. The VUV emission spectra allowed us to obtain a value of 3.9×107×PXe hPa-1 s-1 for the energy transfer rate from the 1u state of Kr2* molecules and a rate of 1.7×106×PXe hPa-1 s-1 for the energy transfer rate from the system of the four lowest Kr excited states to Xe ground state atoms. A value of 1.6×106×PXe hPa-1 s-1 was independently obtained for this atom-to-atom energy transfer channel based on our observations of IR emission.

  18. Ultrasound Doppler Velocimetry Measurements in Turbulent Liquid Metal Channel Flow

    NASA Astrophysics Data System (ADS)

    Rivero, Michel; Jian, Dandan; Karcher, Christian; Cuevas, Sergio

    2010-11-01

    Control of molten metal flow using magnetic fields is important in industrial applications. The Electromagnetic Flow Control Channel (EFCO) is an experimental test facility, located at Ilmenau University of Technology, for the development of such kind of control systems. The working fluid is the low-melting liquid metal alloy GaInSn in eutectic composition. In this channel, flow control is realized by combining and coupling the non-contact flow driving technology of electromagnetic pumps based on rotating permanent magnets and the non-contact flow rate measurement technology termed Lorentz Force Velocimetry (LFV). The flow rate is adjusted by controlling the rotation rate of the permanent magnet system. Physically, LFV is based on measuring the force acting on a magnet system. This force is induced by the melt flow passing through the static magnetic field generated by the system and is proportional to the flow. To calibrate such flow meters, we apply UDV technique to measure and analyse both turbulent hydrodynamic and MHD flow profiles in EFCO at various Reynolds numbers.

  19. Propagation measurements on a line-of-sight over-water radio link in Norway

    NASA Astrophysics Data System (ADS)

    Thorvaldsen, Per; Henne, Ingvar

    2014-07-01

    Propagation measurements have been carried out on a 43 km long 13 GHz 128 QAM (quadrature amplitude modulation) over-water path in the coastal regions of Norway. The measurements lasted for 18 months. The intention with the measurements on this in-service radio link was to compare results with models given by the (Recommendation International Telecommunication Union) Rec. ITU-R P. 530-15. The attenuation due to combined rain and wet snow was of special interest, since the radio link is situated in an area—Trondheimsfjorden—that has a significant amount of wet snow in winter. The radio link experienced outages due to multipath, rain and wet snow, where the latter were the predominant outage cause. The fading due to combined rain and wet snow resembled the shape of the model given in Rec. ITU-R P. 530-15, but the model underpredicts the amount of fading. In addition to outages (performance degradation and unavailability) and fading, various other parameters such as fading speed, enhancement, average fade duration, and number of fade events have been measured and compared to Rec. ITU-R P. 530-15. The radio link activity has also been compared to the weather conditions at the time for the most severe fading incidents.

  20. Measurement of cosmic-ray air showers with the Tunka Radio Extension (Tunka-Rex)

    NASA Astrophysics Data System (ADS)

    Bezyazeekov, P. A.; Budnev, N. M.; Gress, O. A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Konstantinov, E. N.; Korosteleva, E. E.; Kostunin, D.; Krömer, O.; Kuzmichev, L. A.; Levinson, E.; Lubsandorzhiev, N.; Mirgazov, R. R.; Monkhoev, R.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Rühle, C.; Schröder, F. G.; Wischnewski, R.; Zagorodnikov, A.

    2015-12-01

    Tunka-Rex is a radio detector for cosmic-ray air showers in Siberia, triggered by Tunka-133, a co-located air-Cherenkov detector. The main goal of Tunka-Rex is the cross-calibration of the two detectors by measuring the air-Cherenkov light and the radio signal emitted by the same air showers. This way we can explore the precision of the radio-detection technique, especially for the reconstruction of the primary energy and the depth of the shower maximum. The latter is sensitive to the mass of the primary cosmic-ray particles. In this paper we describe the detector setup and explain how electronics and antennas have been calibrated. The analysis of data of the first season proves the detection of cosmic-ray air showers and therefore, the functionality of the detector. We confirm the expected dependence of the detection threshold on the geomagnetic angle and the correlation between the energy of the primary cosmic-ray particle and the radio amplitude. Furthermore, we compare reconstructed amplitudes of radio pulses with predictions from CoREAS simulations, finding agreement within the uncertainties.

  1. Constraining the CMB optical depth through the dispersion measure of cosmological radio transients

    NASA Astrophysics Data System (ADS)

    Fialkov, A.; Loeb, A.

    2016-05-01

    The dispersion measure of extragalactic radio transients can be used to measure the column density of free electrons in the intergalactic medium. The same electrons also scatter the Cosmic Microwave Background (CMB) photons, affecting precision measurements of cosmological parameters. We explore the connection between the dispersion measure of radio transients existing during the Epoch of Reionization (EoR) and the total optical depth for the CMB showing that the existence of such transients would provide a new sensitive probe of the CMB optical depth. As an example, we consider the population of FRBs. Assuming they exist during the EoR, we show that: (i) such sources can probe the reionization history by measuring the optical depth to sub-percent accuracy, and (ii) they can be detected with high significance by an instrument such as the Square Kilometer Array.

  2. Midlatitude D region variations measured from broadband radio atmospherics

    NASA Astrophysics Data System (ADS)

    Han, Feng

    The high power, broadband very low frequency (VLF, 3--30 kHz) and extremely low frequency (ELF, 3--3000 Hz) electromagnetic waves generated by lightning discharges and propagating in the Earth-ionosphere waveguide can be used to measure the average electron density profile of the lower ionosphere (D region) across the wave propagation path due to several reflections by the upper boundary (lower ionosphere) of the waveguide. This capability makes it possible to frequently and even continuously monitor the D region electron density profile variations over geographically large regions, which are measurements that are essentially impossible by other means. These guided waves, usually called atmospherics (or sferics for short), are recorded by our sensors located near Duke University. The purpose of this work is to develop and implement algorithms to derive the variations of D region electron density profile which is modeled by two parameters (one is height and another is sharpness), by comparing the recorded sferic spectra to a series of model simulated sferic spectra from using a finite difference time domain (FDTD) code. In order to understand the time scales, magnitudes and sources for the midlatitude nighttime D region variations, we analyzed the sferic data of July and August 2005, and extracted both the height and sharpness of the D region electron density profile. The heights show large temporal variations of several kilometers on some nights and the relatively stable behavior on others. Statistical calculations indicate that the hourly average heights during the two months range between 82.0 km and 87.2 km with a mean value of 84.9 km and a standard deviation of 1.1 km. We also observed spatial variations of height as large as 2.0 km over 5 degrees latitudes on some nights, and no spatial variation on others. In addition, the measured height variations exhibited close correlations with local lightning occurrence rate on some nights but no correlation with local lightning or displaced lightning on others. The nighttime profile sharpness during 2.5 hours in two different nights was calculated, and the results were compared to the equivalent sharpness derived from International Reference Ionosphere (IRI) models. Both the absolute values and variation trends in IRI models are different from those in broadband measurements. Based on sferic data similar to those for nighttime, we also measured the day-time D region electron density profile variations in July and August 2005 near Duke University. As expected, the solar radiation is the dominant but not the only determinant source for the daytime D region profile height temporal variations. The observed quiet time heights showed close correlations with solar zenith angle changes but unexpected spatial variations not linked to the solar zenith angle were also observed on some days, with 15% of days exhibiting regional differences larger than 0.5 km. During the solar flare, the induced height change was approximately proportional to the logarithm of the X-ray fluxes. During the rising and decaying phases of the solar flare, the height changes correlated more consistently with the short (wavelength 0.5--4 A), rather than the long (wavelength 1--8 A) X-ray flux changes. The daytime profile sharpness during morning, noontime and afternoon periods in three different days and for the solar zenith angle range 20 to 75 degrees was calculated. These broadband measured results were compared to narrowband VLF measurements, IRI models and Faraday rotation base IRI models (called FIRI). The estimated sharpness from all these sources was more consistent when the solar zenith angle was small than when it was large. By applying the nighttime and daytime measurement techniques, we also derived the D region variations during sunrise and sunset periods. The measurements showed that both the electron density profile height and sharpness decrease during the sunrise period while increase during the sunset period.

  3. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    SciTech Connect

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-10-15

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  4. Radio observations of the planets - The importance of laboratory measurements

    NASA Astrophysics Data System (ADS)

    de Pater, I.; Mitchell, D. L.

    1993-03-01

    Laboratory data on the line broadening parameters of H2S gas under Uranian/Neptunian conditions, on the far wings of the H2S and NH3 line profiles, and on the dielectric properties of CH4-, NH3-, H2S-, and NH4SH-ice are needed to constrain elemental abundances and understand the dynamics and cloud physics in the atmospheres of the giant planets. Measurements of the absorption coefficient of gaseous H2SO4 at millimeter wavelengths are needed in order to obtain a better understanding of Venus' atmosphere. To determine wind velocity fields in Venus' and Mars' atmospheres, accurate measurements of the center frequencies of the CO lines are necessary. The absorption and scattering properties of lunar soils and/or terrestrial rock powders at frequencies from approximately 1 to 200 GHz, determined in laboratory experiments, would provide a valuable addition to existing data at 450 MHz, 35 GHz, and far infrared frequencies. These data would be used to analyze the microwave spectra of planetary surfaces. Such studies may be helpful in distinguishing the effects of radiative transfer from those of nonlinear heat conduction and internal heat sources.

  5. Measurements of turbulence in the venus atmosphere deduced from pioneer venus multiprobe radio scintillations.

    PubMed

    Woo, R; Armstrong, J W; Kendall, W B

    1979-07-01

    The 2.3-gigahertz log-amplitude fluctuations observed in the radio links of the Pioneer Venus entry probes during Venus encounter have been used to study turbulence in the Venus atmosphere. The deduced estimates of the upper bound of structure constant c(n) of the refractive index fluctuations (c(n) less, similar 4 x 10(-8) cm(-(1/3))) are inconsistent with similar entry probe measurements by Veneras 4 to 8 but are consistent with the radio occultation measurements by flyby (Mariners 5 and 10) and orbiting (Venerat 9) spacecraft. The Pioneer Venus measurements therefore provide a resolution of the long-standing order of magnitude discrepancy between these earlier measurements of c(n). PMID:17778912

  6. The Accuracy of Radio Interferometric Measurements of Earth Rotation

    NASA Technical Reports Server (NTRS)

    Eubanks, T. M.; Steppe, J. A.; Spieth, M. A.

    1985-01-01

    The accuracy of very long base interferometry earth rotation (UT1) measurements is examined by intercomparing TEMPO and POLARIS data for 1982 and the first half of 1983. None of these data are simultaneous, and so a proper intercomparison requires accounting for the scatter introduced by the rapid, unpredictable, UT1 variations driven by exchanges of angular momentum with the atmosphere. A statistical model of these variations, based on meteorological estimates of the Atmospheric Angular Momentum is derived, and the optimal linear (Kalman) smoother for this model is constructed. The scatter between smoothed and independent raw data is consistent with the residual formal errors, which do not depend upon the actual scatter of the UT1 data. This represents the first time that an accurate prediction of the scatter between UT1 data sets were possible.

  7. Wide Range Neutron Flux Measuring Channel for Aerospace Application

    SciTech Connect

    Cibils, R. M.; Busto, A.; Gonella, J. L.; Martinez, R.; Chielens, A. J.; Otero, J. M.; Nunez, M.; Tropea, S. E.

    2008-01-21

    The use of classical techniques for neutron flux measurements in nuclear reactors involves the switching between several detection chains as the power grows up to 10 decades. In space applications where mass and size constraints are of key significance, such volume of hardware represents a clear disadvantage. Instead of requiring different instruments for each reactor operating range (start-up, ramping-up, and nominal power), a single instrument chain should be desirable. A Wide Range Neutron Detector (WRND) system, combining a classic pulse Counting Channel with a Campbell's theorem based Fluctuation Channel can be implemented for the monitoring and control of a space nuclear reactor. Such an instrument will allow for a reduction in the complexity of space-based nuclear instrumentation and control systems. In this presentation we will discuss the criteria and tradeoffs involved in the development of such a system. We will focus particularly on the characteristics of the System On Chip (SOC) and the DSP board used to implement this instrument.

  8. Record-Breaking Radio Astronomy Project to Measure Sky with Extreme Precision

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Astronomers will tie together the largest collection of the world's radio telescopes ever assembled to work as a single observing tool in a project aimed at improving the precision of the reference frame scientists use to measure positions in the sky. The National Science Foundation's Very Long Baseline Array (VLBA) will be a key part of the project, which is coordinated by the International VLBI Service for Geodesy and Astrometry. For 24 hours, starting Wednesday, November 18, and ending Thursday, November 19, 35 radio telescopes located on seven continents will observe 243 distant quasars. The quasars, galaxies with supermassive black holes at their cores, are profuse emitters of radio waves, and also are so distant that, despite their actual motions in space, they appear stationary as seen from Earth. This lack of apparent motion makes them ideal celestial landmarks for anchoring a grid system, similar to earthly latitude and longitude, used to mark the positions of celestial objects. Data from all the radio telescopes will be combined to make them work together as a system capable of measuring celestial positions with extremely high precision. The technique used, called very long baseline interferometry (VLBI), has been used for decades for both astronomical and geodetic research. However, no previous position-measuring observation has used as many radio telescopes or observed as many objects in a single session. The previous record was a 23-telescope observation. At a meeting in Brazil last August, the International Astronomical Union adopted a new reference frame for celestial positions that will be used starting on January 1. This new reference frame uses a set of 295 quasars to define positions, much like surveyor's benchmarks in a surburban subdivision. Because even with 35 radio telescopes around the world, there are some gaps in sky coverage, the upcoming observation will observe 243 of the 295. By observing so many quasars in a single observing session, problems of linking positions from one observing session to another can be avoided, the astronomers say. The result will be a much stronger, more precise, reference grid. Telescopes in Asia, Australia, Europe, North America, South America, Antarctica, and in the Pacific will participate. Improving the celestial positional grid will allow astronomers better to pinpoint the locations and measure the motions of objects in the sky. As astronomers increasingly study objects using multiple telescopes observing at different wavelengths, such as visible light, radio, infrared, etc., the improved positional grid will allow more accurate overlaying of the different images. The improved celestial reference frame also strengthens a terrestrial reference frame used for radio-telescope measurements that contribute to geophysical research. The precise geodetic measurements help geophysicists understand phenomena such as plate tectonics, earth tides, and processes that affect our planet's orientation in space. The VLBA is a continent-wide radio telescope system with 10, 240-ton dish antennas ranging from Hawaii to the Virgin Islands. Operated from the National Radio Astronomy Observatory's Pete V. Domenici Science Operations Center in Socorro, New Mexico, the VLBA offers the greatest resolving power, or ability to see fine detail, of any telescope in astronomy. The multi-telescope observation will be accompanied by public-outreach activities in celebration of the International Year of Astronomy. A public web page devoted to the observation will be hosted at Bordeaux Observatory, and some of the participating telescopes will have webcams available.

  9. Magnetization of the ionospheres of Venus and Mars: Results from radio occultation measurements

    SciTech Connect

    Woo, R.; Kliore, A.J. )

    1991-07-01

    In situ measurements by the Pioneer Venus orbiting spacecraft, conducted during solar maximum only, have shown that magnetization (permeation of large-scale magnetic fields) of the ionosphere of Venus occurs under high solar wind dynamic pressure and that this takes place most frequently near the subsolar region. In this paper, the authors use remote sensing radio occultation measurements to study magnetization of the ionospheres of Venus and Mars based on these characteristics. For Venus they take advantage of the unique data set consisting of 148 electron density profiles deduced from Pioneer Venus radio occultation measurements. They demonstrate that radio occultation measurements yield results on frequency of occurrence of magnetization during solar maximum that are similar to those obtained from the Pioneer Venus in situ magnetic field measurements. During solar minimum, for which direct ionospheric measurements have never been made, they find that magnetization of the Venus ionosphere is more pervasive than at solar maximum. Magnetization extends to higher solar zenith angles (SZA) and appears stronger than at solar maximum. These results confirm that during solar minimum, the high solar wind dynamic pressure state is more prevalent at Venus because the ionospheric plasma pressure is weaker than at solar maximum. Comparison of a large number of electron density profiles of Mars (deduced from radio occultation measurements by the Viking 1 and 2 and Mariner 9 spacecraft for SZA > 46{degrees}) with those of Venus shows an absence of the ledge and disturbed topside plasma observed in the Venus profiles. These results, however, do not constitute evidence against magnetization of the ionosphere of Mars, as Shinagawa and Cravens (1989) have shown on their one-dimensional MHD models that, even when the ionosphere of Mars is highly magnetized, the magnetic structure differs from that at Venus, and a ledge does not form in its electron density profiles.

  10. Educational Radio. Information Bulletin 21-B.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The term "Educational Radio" includes all radio stations licensed for noncommercial operation. A history of educational radio begins with the first domestic law for control of radio in general, The Radio Act of 1912. Federal Communication Commission (FCC) regulations pertaining to educational radio or "public radio" deal with channel assignments,…

  11. Coronal magnetic field strength from Type II radio emission: complementarity with Faraday rotation measurements

    NASA Astrophysics Data System (ADS)

    Mancuso, S.; Garzelli, M. V.

    2013-12-01

    We analyzed the band splitting of a Type II radio burst observed on 1997 May 12 by ground- and space-based radio spectrometers. Type II radio emission is the most evident signature of coronal shock waves and the observed band splitting is generally interpreted as due to plasma emission from both upstream and downstream shock regions. From the inferred compression ratio we estimated, using the magnetohydrodynamic (MHD) Rankine-Hugoniot relations, the ambient Alfvén Mach number. By means of the electron density obtained by inverting white-light polarized brightness (pB) coronagraph data and the shock speed inferred from the Type II frequency drift, we finally derived a radial profile for the magnetic field strength in the middle corona. The result was compared with the field profile obtained in May 1997 (but above ~5 R⊙) with Faraday rotation measurements of extragalactic radio sources occulted by the corona. The power law of the form B(r) = 3.76 r-2.29 G inferred in that work nicely describes the combined set of data in a wide range of heliocentric distances (r ≈ 1.8-14 R⊙).

  12. Bilayer Measurement of Endoplasmic Reticulum Ca2+ Channels

    PubMed Central

    Bezprozvanny, Ilya

    2015-01-01

    Reconstitution of ion channels into planar lipid bilayers (also called black lipid membranes or BLM) is the most widely used method to conduct physiological studies of intracellular ion channels, including endoplasmic reticulum (ER) calcium (Ca2+) channels. The two main types of Ca2+ release channels in the ER membrane are ryanodine receptors (RyanRs) and inositol(1,4,5)-trisphosphate receptors (InsP3Rs). Use of the BLM reconstitution technique enabled the initial description of the functional properties of InsP3R and RyanR at the single-channel level more than 20 years ago. Since then, BLM reconstitution methods have been used to study physiological modulation and to perform structure–function analysis of these channels, and to study pathological changes in the function of InsP3R and RyanR in various disease states. The BLM technique has also been useful for studies of other intracellular Ca2+ channels, such as ER Ca2+ leak presenilin channels and NAADP-gated lysosomal Ca2+ channels encoded by TPC2. In this article, basic protocols used for BLM studies of ER Ca2+ channels are introduced. PMID:24184754

  13. High radio fluxes of PKS2023-07 measured with RATAN-600

    NASA Astrophysics Data System (ADS)

    Trushkin, S. A.; Nizhelskij, N. A.; Tsybulev, P. G.

    2016-04-01

    After the AGILE detection the gamma-ray flare from the quasar PSK2023-07 (correctly PKS B2022-077) by Piano et al, ATel #8879 we carried out its observations with the RATAN-600 radio telescope SAO RAS. The measured flux densities are equal to 1.50, 1.96, 2.54 Jy at 4.8, 11.2, 21.7 GHz respectively on 1 Apr 2016.

  14. Assessment of the Impacts of Radio Frequency Interference on SMAP Radar and Radiometer Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Curtis W.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Hirad Ghaemi

    2012-01-01

    The NASA Soil Moisture Active and Passive (SMAP) mission will measure soil moisture with a combination of Lband radar and radiometer measurements. We present an assessment of the expected impact of radio frequency interference (RFI) on SMAP performance, incorporating projections based on recent data collected by the Aquarius and SMOS missions. We discuss the impacts of RFI on the radar and radiometer separately given the differences in (1) RFI environment between the shared radar band and the protected radiometer band, (2) mitigation techniques available for the different measurements, and (3) existing data sources available that can inform predictions for SMAP.

  15. Venus - Mass, gravity field, atmosphere, and ionosphere as measured by the Mariner 10 dual-frequency radio system

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Tyler, G. L.; Fjeldbo, G.; Kliore, A. J.; Levy, G. S.; Brunn, D. L.; Dickinson, R.; Edelson, R. E.; Martin, W. L.; Postal, R. B.

    1974-01-01

    The unique properties of the Mariner 10 radio system, and the preliminary scientific results obtained from the analysis of the radio signals are described. In the normal two-way communication mode, a command- and range-modulated 2115-MHz signal is transmitted to the spacecraft for reception on its omnidirectional antenna. As implemented for Mariner 10, the dual-frequency system has proven fully capable of performing interplanetary columnar electron content measurements while achieving the prime goals of the celestial mechanics and radio science team. The determination of the mass and gravitational potential of Venus is one of the major objectives of the radio science experiments. Information on Venus's atmosphere was deduced from analysis of the radio signals during occultation. Open-loop receiver differential Doppler data were used to measure the nightside and dayside ionospheres of Venus.

  16. GIS technology for spatiotemporal measurements of gully channel width evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field observations of gully evolution in active croplands have often revealed the presence of a less erodible soil layer that is typically associated with tillage practices (i.e. plowpan). This more erosion-resistant layer limits channel incision forcing the gully channel to expand laterally through...

  17. The upper ionosphere of Mars: A comparison of Mariner 9 radio occultation and MARSIS measurements

    NASA Astrophysics Data System (ADS)

    Vogt, M. F.; Withers, P.

    2014-12-01

    Electron density profiles of the Martian ionosphere show that the dayside ionosphere can be divided into two regions, one controlled by diffusion where the electron density decreases exponentially with altitude, and one at lower altitudes in which electron densities follow the basic predictions of Chapman theory. Models and data generally place the transition between the two regions near 200 km, but measurements from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) on Mars Express suggest that the transition occurs closer to 275 km. This altitude also marks the transition between the two MARSIS operational modes: the electron density above 275 km is determined from local plasma frequency measurements, while at lower altitudes it is obtained remotely from radio sounding. In this study we compare Mariner 9 radio occultation electron density profiles to the Němec et al. (2011) empirical model based on MARSIS data to evaluate the accuracy and biases of the MARSIS measurements. We investigate whether the Mariner 9 electron density profiles can be well described by the Němec et al. (2011) empirical model. We also identify the typical Mariner 9 transition region altitude, as measured by a change in scale height, to determine whether the transition at 275 km observed by MARSIS is a consequence of differences in the two MARSIS operational modes or is physically meaningful. The Mariner 9 radio occultation measurements of the Martian ionosphere have recently been digitized and reanalyzed and are ideal for our study because they extend as high as 400 km, spanning the transition region between the two MARSIS data types, while similar measurements from Mars Global Surveyor rarely extend beyond 200 km. Our findings will help resolve discrepancies between the two MARSIS data types and validate the MARSIS electron density measurements.

  18. Conceptual Background to Radio

    NASA Astrophysics Data System (ADS)

    Ponsonby, J. E. B.

    2004-06-01

    The International Telecommunications Union (ITU) conceives the radio spectrum as primarily a resource for telecommunications. Indeed most applications of radio are for communications and other radio services, particularly the Radio Astronomy Service, are deemed to be `pretend'communication serviceas for spectrum amnagement purposes. The language of Radio Spectrum Management is permeated by the terminology ofcommunications, some derived from the physics of radio and some from aspects of information theory. This contribution touches on all the essential concepts of radiocommunications which the author thinks should be the common mental equipment of the Spectrum Manager. The fundamental capacity of a communication channel is discussed in terms of the degrees of freedom and bandwidth of a signal, and the signal to noise ratio. It is emphasized that an information bearing signal is inherently unpredictable, and must, at some level, be discontinuous. This has important consequences for the form of its power spectrum. The effect of inserting filters is discussed particularly with regard to constant amplitude signals and, in the context of non-linear power amplifiers, the phenomenon of`sideband recovery'. All the common generic forms of modulation are discussed including the very different case of `no-modulation' which applies in all forms of passive remote sensing. Whilst all are agreed that the radio spectrum should be used `efficiently', there is no quantitative measure of spectral efficiency which embraces all relevant aspects of spectral usage. These various aspects are dicussed. Finally a brief outline of some aspects of antennae are reviewed. It is pointed out that the recent introduction of so-called `active antennnae', which have properties unlike traditional passive antennae, has confused the interpretation of those ITU Radio Regulations which refer to antennae.

  19. VLA Radio Star Measurement of the Rotation of the Hipparcos Frame with Respect to the ICRF

    NASA Astrophysics Data System (ADS)

    Boboltz, D. A.; Fey, A. L.; Puatua, W. K.; Zacharias, N.; Claussen, M. J.; Johnston, K. J.; Gaume, R. A.

    2006-08-01

    The Very Large Array (VLA), linked with the Pie Town Very Long Baseline Array antenna, hase been used to determine astrometric positions of 46 radiostars in the International Celestial Reference Frame (ICRF). Positions were obtained in the ICRF directly through phase referencing of the stars to nearby ICRF quasars whose positions are accurate at the 0.25 mas level. Radio star positions are estimated to be accurate at the 10 mas level, with position errors approaching a few milli-arcseconds for some of the stars observed. The measured positions were combined with previous measurements taken from as early as 1978 to obtain proper motion estimates for all 46 stars with average uncertainties of 1.7 mas/yr. We compared reference frames produced from our radio star positions and the Hipparcos Catalogue data, and find consistency in the frames on the 1-sigma level, with errors of 2.7 mas per axis for the orientation angles at our mean epoch of 2003.78. No significant spin is found between our radio data frame and the Hipparcos Celestial Reference Frame (HCRF) with largest rotation rates of +0.55 and -0.41 mas/yr around the x and z axes, respectively, with 1-sigma errors of 0.36 mas/yr. Thus, our results are consistent with a non-rotating Hipparcos frame with respect to the ICRF.

  20. Global sporadic E rates as derived from GPS radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Arras, Christina; Jacobi, Christoph; Wickert, Jens; Heise, Stefan

    The low-Earth orbiting satellites CHAMP, GRACE and the FORMOSAT-3/COSMIC constel-lation provide in total about 2,500 globally distributed GPS radio occultation (RO) measure-ments per day. This fosters substantial studies of atmospheric parameters on a global scale in a high spatial resolution. Due to the fact that GPS signals are highly sensitive to sharp electron density gradients in ionospheric altitudes, the radio occultation technique is a valuable tool for detecting sporadic E layers occurring in the lower ionosphere. Sporadic E layers, themselves, are localised patches of relatively high electron density in the E-region ionosphere which cause strong amplitude scintillations in GPS signals. This characteristic is used to derive information on sporadic E occurrence from radio occultation data. Based on the combined CHAMP, GRACE and COSMIC RO data set, we derive a global distribution of sporadic E occurrence rates enabling us to investigate their seasonal variation. It is generally accepted that sporadic E is caused through neutral wind shear inducing a vertical motion to ions and electrons. It has frequently been proposed that this formation process is enhanced for increased dip angles and a stronger horizontal magnetic field component. We compared our global distribution of sporadic E occurrence rates with magnetic field predictions from the International Geomagnetic Reference Field (IGRF) and can confirm experimentally these theoretical aspects in midlatitudes.

  1. The New Horizons Bistatic Radio Science Experiment to Measure Pluto's Surface Properties

    NASA Astrophysics Data System (ADS)

    Linscott, I.; Hinson, D. P.; Tyler, G. L.; Vincent, M.

    2014-12-01

    The New Horizons (NH) payload includes a Radio Science Experiment (REX) for principally occultation and radiometric measurement of Pluto and Charon during the flyby in July 2015. The REX subsystem is contained, together with the NH X-Band radio, in the Integrated Electronics Module (IEM) in the New Horizons spacecraft. REX samples and records in two polarizations both total RF power in a 4.5 MHz bandwidth, and radio signal waveforms in a narrow, 1.25 kHz band. During the encounter, and at closest approach to Pluto, the spacecraft's high gain antenna (HGA) will scan Pluto's equatorial latitudes, intercepting the specular zone, a region near Pluto's limb that geometrically favors reflection from the earth's direction. At the same time, a powerful 80 kW uplink beacon will have been transmitted from earth by the DSN to arrive at Pluto during spacecraft closest approach. Reflection from the specular zone is expected to be sufficiently strong to observe the bistatic uplink in the REX narrowband record. Measurements in both polarizations will then be combined to yield surface reflectivity, roughness and limits on the dielectric constant in the specular zone.

  2. RadioAstron Measurement of High Brightness Temperature of 3C 273

    NASA Astrophysics Data System (ADS)

    Kellermann, Kenneth I.; RadioAstron AGN Early Science Team

    2014-01-01

    We report on observations of the quasar 3C 273 with the RadioAstron space to ground interferometer on projected baselines up to 173,000 km. The interferometer data at 1.3 cm between the RadioAstron Spacecraft and both the GBT and the VLA, obtained on a baseline of 7.9 x 109 λ, which achieved the highest angular resolution ever reported from any astronomical measurement, showed structure in the base of the radio jet smaller than about 30 micro arcsec. The observations at 18 cm between the spacecraft and both GBT and Arecibo on projected baselines of up to 9.6 x 108 λ give a direct measure of the brightness temperature of more than about 1014 K. This high value is greatly in excess of the 1012 K limit expected from inverse Compton cooling or the 1011 K expected if there is equilibrium between particle and magnetic energy. Such high observed brightness temperatures are difficult to understand in terms of Doppler boosting since 15 GHz VLBA monitoring of 3C 273 over the past 15 years indicate Lorentz factors of only about 10 to 15. We discuss possible explanations in terms of a continual acceleration of relativistic particles, incoherent radiation from relativistic protons, coherent radiation such as from a synchrotron maser, or a relativistic flow velocity, causing Doppler boosting, that is far in excess of the pattern velocity observed with the VLBA.

  3. Digital measurements of LF radio wave absorption in the lower ionosphere and inferred gravity wave activity

    NASA Astrophysics Data System (ADS)

    Lastovicka, J.; Boska, J.; Buresova, D.

    1993-10-01

    Low frequency (LF) radio wave absorption in the lower ionosphere has been measured at Pruhonice (approximately 50 deg N) since 1957. A new digital computer-controlled measuring-recording-processing system was introduced in 1988. The A3 method of radio wave absorption measurement, the measuring equipment used for the digital measurements at 270 kHz, is briefly described. The digital nighttime LF A3 measurements allow the use of absorption data for studying and monitoring the gravity wave activity in the upper middle atmosphere in the period range 10 min-3(2) hours. The resulting gravity wave spectra are as expected even though their shapes vary. Individual period bands sometimes exhibit a similar general pattern of variability in gravity wave activity (winter 1990), while in other intervals we observe a shift of gravity wave energy from one period band to another (winter 1991). No strong, pronounced and consistent response to strong geomagnetic storms and midwinter stratospheric warming is found. An apparent seasonal variation with winter minima observed in shorter-period gravity wave activity is an artefact of the changing length of the night. There is no significant seasonal variation of gravity wave activity in the analysed data. The method is very cheap -- the results are a by-product of measurements made for ionospheric purposes.

  4. Measurement of the linear polarization of channeling radiation in silicon and diamond

    SciTech Connect

    Rzepka, M.; Buschhorn, G.; Diedrich, E.; Kotthaus, R.; Kufner, W.; Roessl, W.; Schmidt, K.H.; Hoffmann-Stascheck, P.; Genz, H.; Nething, U.; Richter, A.; Sellschop, J.P.F.

    1995-07-01

    Utilizing 90{degree} Compton scattering the linear polarization of channeling radiation produced at the superconducting accelerator S-DALINAC with 62 MeV electrons in silicon and diamond has been measured in the energy range between 50 and 400 keV. Planar channeling radiation due to transitions involving transversal bound as well as unbound states is completely linearly polarized perpendicular to the channeling plane. Axial channeling radiation does not show linear polarization.

  5. Patch-clamp measurement of ICRAC and ORAI channel activity.

    PubMed

    Alansary, Dalia; Kilch, Tatiana; Holzmann, Christian; Peinelt, Christine; Hoth, Markus; Lis, Annette

    2014-06-01

    Depletion of internal Ca(2+) stores activates store-operated Ca(2+) channels. The most prominent members of this class of channels are Ca(2+) release-activated Ca(2+) (CRAC) channels, which are present in a variety of cell types including immune cells. CRAC channels are composed of ORAI proteins, which are activated by endoplasmic reticulum-bound STIM proteins on Ca(2+) store depletion. The underlying Ca(2+) current is called ICRAC, which is required for many cellular functions including T-cell activation, mast cell activation, Ca(2+)-dependent gene expression, and refilling of internal Ca(2+) stores. To analyze ICRAC or the Ca(2+) current through heterologously expressed ORAI channels, whole-cell patch clamp is the technique of choice. It allows the direct analysis of ion currents through CRAC/ORAI channels. The patch-clamp technique has been used to determine selectivity, permeability, rectification, inactivation, and several other biophysical and pharmacological properties of the channels, and is the most direct and reliable technique to analyze ICRAC. PMID:24890214

  6. Generalized evaluation of environmental radioactivity measurements with UncertRadio Part II: Methods with linear unfolding.

    PubMed

    Kanisch, Günter

    2016-04-01

    For the software UncertRadio (UR), designed for a generalized evaluation of environmental radioactivity measurements, the evaluation procedure is given if least squares-fitting is involved. UR is then applied to the simultaneous detection of Strontium-89 and Strontium-90. This method is easily extendable over recent approaches based on the evaluation of two measurements, i.e. on two unknowns with two equations. The evaluation within UR includes ISO 11929 decision thresholds and detection limits. The propagation of distributions with MC simulation is described. PMID:26773816

  7. VLF Radio Field Strength Measurement of power line carrier system in San Diego, California

    NASA Technical Reports Server (NTRS)

    Mertel, H. K.

    1981-01-01

    The radio frequency interference (RFI) potential was evaluated for a Powerline Carriet (PLC) installed in San Diego which monitors the performance of an electrical power system. The PLC system generated 30 amperes at 5.79 kHz. The RF radiations were measured to be (typically) 120 dBuV/m at the beginning of the 12 kV powerline and 60 dBuV/m at the end of the powerline. The RF fields varied inversely as the distance squared. Measurements were also performed with a 45 kHz PLC system. The RF fields were of similar amplitude.

  8. Linear signal-compensated amplifier for reactor power measuring channels

    NASA Astrophysics Data System (ADS)

    Khaleeq, M. Tahir; Atique-ur-Rahman, Ahmed, Eijaz

    2006-07-01

    A linear amplifier with automatic signal compensation has been developed for nuclear channels. The amplifier controls its sensitivity automatically according to the reference input within the desired settings and has automatic signal compensation capability for use in the nuclear channels. The amplifier will be used in the existing safety channel of Pakistan Research Reactor-1, where the system has an independent sensitivity control unit for manual compensation of xenon effect. The new amplifier will improve the safety of the system. The amplifier is tested and the results found are in very good agreement with the designed specifications. This article presents design and construction of the amplifier and test results.

  9. Linear signal-compensated amplifier for reactor power measuring channels

    SciTech Connect

    Khaleeq, M. Tahir; Atique-ur-Rahman,; Ahmed, Eijaz

    2006-07-15

    A linear amplifier with automatic signal compensation has been developed for nuclear channels. The amplifier controls its sensitivity automatically according to the reference input within the desired settings and has automatic signal compensation capability for use in the nuclear channels. The amplifier will be used in the existing safety channel of Pakistan Research Reactor-1, where the system has an independent sensitivity control unit for manual compensation of xenon effect. The new amplifier will improve the safety of the system. The amplifier is tested and the results found are in very good agreement with the designed specifications. This article presents design and construction of the amplifier and test results.

  10. HF Channel Availability under Ionospheric Disturbances: Model, Method and Measurements as Contributions

    NASA Astrophysics Data System (ADS)

    Tulunay, E.; Senalp, E. T.; Tulunay, Y.; Warrington, E. M.; Sari, M. O.

    2009-04-01

    A small group at METU has been developing data driven models in order to forecast some critical parameters, which affect the communication and navigation systems, since 1990. The background on the subjects supports new achievements in terms of theoretical and experimental basis contributing the COST 296 WG2 activities. This work mentions the representative contributions. (i) A method has been proposed for the assessment of HF Channel Availability under ionospheric disturbances. Signal to Noise Ratio (SNR), Doppler Spread and Modified Power Delay Spread were considered. The study relates the modem performance to ionospheric disturbances. Ionospheric disturbance was characterised by Disturbance Storm Type (DST) index. Radar data including Effective Multipath Spread, Composite Doppler Spread and SNR values were obtained from the experiment conducted between Leicester UK (52.63° N; 1.08° W) and Uppsala, Sweden (59.92° N; 17.63° E) in the year 2001. First, joint probability density function (PDF) of SNR, Doppler Spread, and Effective Multipath Spread versus DST were considered. It was demonstrated by determining the conditional PDFs, and by using Bayes' Theorem, that there were dependencies between DST and the above mentioned parameters [Sari, 2006]. Thus, it is concluded that the availability of the HF channel is a function of DST. As examples of modem characterizations, Military Standards were considered. Given a magnetic condition, the modem availability was calculated. The model developed represents the ionospheric HF channel, and it is based on a stochastic approach. Depending on the new experimental data, the conditional PDFs could be updated continuously. The HF channel availability under various ionospheric Space Weather (SW) conditions can be determined using the model. The proposed method is general and can include other indices as well. The method can also be applied to a variety of other processes. (ii) The effects of space weather conditions on the variation of group range and line-of-sight Doppler velocity of the HF Radar echo signal were investigated. HF radar system under ionospheric disturbances has been identified globally and some operational suggestions have been presented. It is possible for the HF radar operator to estimate the possible skip distance and possible single hop group ranges for the given frequencies of 11 MHz and 14 MHz [Buyukpabuscu, 2007]. (iii) The measurements over the HF band during the 29 March 2006 total solar eclipse in Antalya (36° N; 30° E) Turkey was conducted from the channel occupancy and atmospheric noise points of view. The whole HF band ranging from 1 to 30 MHz has been swept using 10 kHz peak and 200 Hz average detectors of a certified EMI receiver equipped with a calibrated active monopole antenna. The changes in the atmospheric noise during the eclipse were reported [Tulunay, 2006]. The model based, theoretical and experimental works mentioned are promising and have potential for future research and developments. References Buyukpabuscu S.O. (2007), System Identification with Particular Interest On The High Frequency Radar Under Ionospheric Disturbances, MS Thesis, Electrical and Electronics Eng., Middle East Technical Univ., Ankara, Turkey, February 2007. Sari M.O. (2006), A New Approach For The Assessment Of Hf Channel Availability Under Ionospheric Disturbances, MS Thesis, Electrical and Electronics Eng., Middle East Technical Univ., Ankara, Turkey, September 2006. Tulunay E., E. M. Warrington, Y. Tulunay, Y. Bahadırlar, A.S. Türk, R. Çaputçu, T. Yapıcı , E.T. Şenalp (2006), Propagation Related Measurements during Three Solar Eclipses in Turkey, IET 10th International Conference on Ionospheric Radio Systems & Techniques, IRST 2006, 18-21 July 2006, London, UK.

  11. Near-Sun solar wind consequences of solar structure and dynamic phenomena observed by radio scintillation measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1994-01-01

    Since radio propagation measurements using either natural or spacecraft radio signals are used for probing the solar wind in the vicinity of the sun, they represent a key tool for studying the interplanetary consequences of solar structure and dynamic phenomena. New information on the near sun consequences was obtained from radio scintillation observations of coherent spacecraft signals. The results covering density fluctuations, fractional density fluctuations, coronal streamers, heliospheric current sheets, coronal mass ejections and interplanetary shocks are reviewed. A joint ICE S-band (13 cm wavelength) Doppler scintillation measurement with the SOHO white-light coronograph (LASCO) is described.

  12. Radio science

    NASA Astrophysics Data System (ADS)

    1984-10-01

    Radio science experiments use electromagnetic waves to probe or study the solar system. Three major research areas were identified within this discipline: radio astronomy, radar astronomy, and celestial mechanics. Radio astronomy (or radiometry) is the detection and measurement of naturally produced radio frequency emissions. Sources include surfaces, atmospheres, rings, and plasmas. Radar astronomy is the observation of man-made signals after their interaction with a target. Both imaging and non-imaging results. Celestial mechanics includes all studies related to the motions of (and gravity fields of) bodies within the solar system. These should not be considered rigid separations, but aid in the discussion of the data sets.

  13. An interlaboratory comparison programme on radio frequency electromagnetic field measurements: the second round of the scheme.

    PubMed

    Nicolopoulou, E P; Ztoupis, I N; Karabetsos, E; Gonos, I F; Stathopulos, I A

    2015-04-01

    The second round of an interlaboratory comparison scheme on radio frequency electromagnetic field measurements has been conducted in order to evaluate the overall performance of laboratories that perform measurements in the vicinity of mobile phone base stations and broadcast antenna facilities. The participants recorded the electric field strength produced by two high frequency signal generators inside an anechoic chamber in three measurement scenarios with the antennas transmitting each time different signals at the FM, VHF, UHF and GSM frequency bands. In each measurement scenario, the participants also used their measurements in order to calculate the relative exposure ratios. The results were evaluated in each test level calculating performance statistics (z-scores and En numbers). Subsequently, possible sources of errors for each participating laboratory were discussed, and the overall evaluation of their performances was determined by using an aggregated performance statistic. A comparison between the two rounds proves the necessity of the scheme. PMID:25205832

  14. Measurements and modeling of radio frequency field structures in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Lee, Charles A.; Chen, Guangye; Arefiev, Alexey V.; Bengtson, Roger D.; Breizman, Boris N.

    2011-01-01

    Measurements of the radio frequency (rf) field structure, plasma density, and electron temperature are presented for a 1 kW argon helicon plasma source. The measured profiles change considerably when the equilibrium magnetic field is reversed. The measured rf fields are identified as fields of radially localized helicon waves, which propagate in the axial direction. The rf field structure is compared to the results of two-dimensional cold plasma full-wave simulations for the measured density profiles. Electron collision frequency is adjusted in the simulations to match the simulated and measured field profiles. The resulting frequency is anomalously high, which is attributed to the excitation of an ion-acoustic instability. The calculated power deposition is insensitive to the collision frequency and accounts for most of the power supplied by the rf-generator.

  15. The radio waves & thermal electrostatic noise spectroscopy (SORBET) experiment on BepiColombo/MMO/PWI and the importance of radio HF measurements at Mercury

    NASA Astrophysics Data System (ADS)

    Moncuquet, M.; Matsumoto, H.; Bougeret, J.-L.; Issautier, K.; Kojima, H.; Maksimovic, M.; Meyer-Vernet, N.; Zarka, P.

    SORBET (Spectroscopie des Ondes Radio & du Bruit Electrostatique Thermique) is a radio HF spectrometer designed for the radio and Plasma Waves Instrument (PWI) onboard BepiColombo/Mercury Magnetospheric Orbiter (MMO), which performs remote and in-situ measurements of waves (electromagnetic and electrostatic). Technically, SORBET includes a plasma wave spectrometer, with two E-field inputs from the two perpendicular electric antennas and one B-field input from a search coil, in the range 2.5 kHz - 640 kHz. This frequency band includes the local gyrofrequency and plasma frequency expected on most part of the MMO orbits. SORBET also includes a higher frequency radio receiver for remote sensing in the range 500kHz-10.2MHz. Owing to its capabilities, SORBET will be able to address the following scientific objectives: High resolution mapping (˜ 30 km) of electron density and temperature in the solar wind and Hermean magnetosphere and exo-ionosphere, via the technique of Quasi-Thermal Noise (QTN) spectroscopy. It is noteworthy that the QTN technique is weakly sensitive to spacecraft potential and photoelectron perturbations, a point highly in favour of this technique at Mercury. These QTN measurements will be determinant for the dynamic modeling of the magnetosphere and will provide a fundamental input for the chemistry of cold ionized species (Na, K, O ...) in Mercury's environment. Detection and study of Hermean radio emissions, including possible cyclotron emissions (up to ˜ 10-20 kHz) from mildly energetic electrons in highly magnetized (polar?) regions, and possible synchrotron radiation (up to a few MHz?) from more energetic electrons. Monitoring of solar radio emissions up to ~10 MHz, in order to create a solar activity index from the view point of Mercury, allowing to correlate it with the Hermean magnetospheric response. We propose to further discuss these scientific objectives and to underline that such radio HF measurements are a clue for understanding the structure and dynamics (regions, boundaries, acceleration, dissipation processes ...) of the Hermean magnetosphere/exo-ionosphere system and its interaction with the solar wind.

  16. Channel Bow in Boiling Water Reactors - Hot Cell Examination Results and Correlation to Measured Bow

    SciTech Connect

    Mahmood, S.T.; Lin, Y.P.; Dubecky, M.A.; Mader, E.V.

    2007-07-01

    An increase in frequency of fuel channel-control blade interference has been observed in Boiling Water Reactors (BWR) in recent years. Many of the channels leading to interference were found to bow towards the control blade in a manner that was inconsistent with the expected bow due to other effects. The pattern of bow appeared to indicate a new channel bow mechanism that differed from the predominant bow mechanism caused by differential growth due to fast-fluence gradients. In order to investigate this new type of channel bow, coupons from several channels with varying degrees of bow were returned to the GE Vallecitos Nuclear Center (VNC) for Post-Irradiation Examination (PIE). This paper describes the characteristics of channel corrosion and hydrogen pickup observed, and relates the observations to the channel exposure level, control history, and measured channel bow. The channels selected for PIE had exposures in the range of 36-48 GWd/MTU and covered a wide range of measured bow. The coupons were obtained at 4 elevations from opposing channel sides adjacent and away from the control blade. The PIE performed on these coupons included visual examination, metallography, and hydrogen concentration measurements. A new mechanism of control-blade shadow corrosion-induced channel bow was found to correlate with differences in the extent of corrosion and corresponding differences in the hydrogen concentration between opposite sides of the channels. The increased corrosion on the control blade sides was found to be dependent on the level of control early in the life of the channel. The contributions of other potential factors leading to increased channel bow and channel-control blade interference are also discussed in this paper. (authors)

  17. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    SciTech Connect

    Woo, R.; Sjogren, W.L.; Kliore, A.J. ); Luhmann, J.G. ); Brace, L.H. )

    1989-02-01

    This paper presents the first S-band (2.3 GHz) radio scintillations observed in the ionosphere of Venus and discovered when the Pioneer Venus Orbiter spacecraft traversed the ionosphere of Venus. In situ plasma measurements as well as propagation calculations confirm that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. While these topside plasma irregularities have not been studied before, simultaneous magnetic field measurements presented here reveal that they are associated with the penetration of large-scale magnetic fields in the ionosphere. Previous studies based on extensive magnetic field measurements have shown that the presence of large-scale magnetic fields occurs in the subsolar region when the solar wind dynamic pressure exceeds the ionospheric plasma pressure. As with the large-scale magnetic fields, the disturbed plasma and resulting scintillations are therefore a manifestation of high-dynamic solar wind interaction with the ionosphere. Since the scintillations only occur in the subsolar region of Venus, the global morphology of ionospheric scintillations at Venus is different from that of the terrestrial ionosphere, where scintillations are observed in both polar and equatorial regions, with peaks occurring during nighttime. This difference apparently stems from the fact that Venus is not a magnetic planet. The authors also demonstrate that the disturbed plasma produced by the high-dynamic solar wind interaction can be remotely sensed by scintillations during radio occultation measurements, that is, when the spacecraft is outside the ionosphere.

  18. Induced current measurements in whole body exposure condition to radio frequency electric fields.

    PubMed

    Wilén, J; Mild, K H; Paulsson, L E; Anger, G

    2001-12-01

    The current induced in a human exposed to radio frequency electric fields has been studied by the use of a stripline, in which whole body exposure to vertical electric fields (3-27 MHz) can be produced. We have examined two different techniques to measure the induced current; parallel plate meters and current probes. When the subject has good connection to the ground, the choice of measurement technique is not crucial, since there are only minor differences in readings between the instruments. But when the subject is wearing shoes and/or standing on a wooden plate, the difference between the instruments increases considerably. The difference can mainly be explained by the capacitive coupling between the parallel plate meters and the ground; therefore, the current probes are preferred when the subject does not have perfect contact with the ground. Since the International Commission on Non-Ionizing Radiation Protection guidelines demand measurements of induced current in humans exposed to radio frequency fields in the range of 10-110 MHz, the importance of finding an appropriate measurement procedure becomes apparent. PMID:11748673

  19. Rayleigh beacon for measuring the surface profile of a radio telescope.

    PubMed

    Padin, S

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3  mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds. PMID:25607971

  20. The detection of the ionospheric irregularities by GNSS signal and the incoherent scatter radio measurements

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Shagimuratov, Irk; Krankowski, Andrzej; Sieradsky, Rafal; Zakharenkova, Irina; Rietveld, Michael; Kapcia, Jacek

    2013-04-01

    The high-latitude ionosphere has a very complicated structure and high dynamics. The ionospheric irregularities can produce scintillations of radio waves that occur predominantly in the ionosphere F-layer. The strong fluctuations can influence on the performance of the different space communication and navigation radio systems. The fluctuations of GPS/GLONASS signals are caused by the ionospheric irregularities with spatial dimensions more than 10 km. These structures can be detected by high potential incoherent scatter radars. It was proposed and carried out at the beginning of June 2012 experiment for a detailed study of the nature of the ionospheric irregularities, influencing on GPS/GLONASS signals parameters, by incoherent scatter and trans-ionospheric radio measurements simultaneously. The EISCAT facilities position provides the unique opportunity to study the ionospheric irregularities' parameters associated with TEC fluctuations and GPS/GLONASS signals scintillations. The EISCAT heating facility provides unique possibility to generate the artificial ionospheric irregularities and to estimate the impact factor of these irregularities on GPS/GLONASS signals transionospheric propagation. In order to detect the ionosphere irregularities it is used the IS radar measurements (electron density and plasma temperatures profiles) and simultaneously registered on EISCAT site amplitude and phase fluctuations in GPS/GLONASS signals by use of the Javad multi-constellation GPS/GLONASS receiver with high samples rate (100 Hz) and special scintillation GPS receiver PolaRxS PRO that dedicated to ionospheric monitoring and space weather applications and provides TEC and S4 scintillation index measurements. The low frequency fluctuations can be directly measured due to the electron density changes along the radio ray path between a GPS/GLONASS satellite and a ground-based receiver on EISCAT site. The raw data (under scintillating conditions) obtained by use of the high samples rate GPS/GLONASS receiver are processed in order to derive the scintillation parameters. The practical aspect of this investigation is a detailed study of nature and impact level of the ionospheric irregularities that can influence on the GPS/GLONASS performance especially at high latitudes and during geomagnetically disturbed period and to obtain new knowledge that may improve the reliability of the global navigation systems in Arctic and Antarctic regions. The authors are grateful to the EISCAT Scientific Association for observing time on the EISCAT facilities within the framework of Peer-reviewed Program.

  1. The performance of the ATS-6 radio beacon as a measurement system

    NASA Technical Reports Server (NTRS)

    Grubb, R. N.; Fritz, R. B.; Jones, J. E.

    1976-01-01

    The overall system performance of the ATS-6 Radio Beacon transmitter in orbit and the Boulder ground receiver will be considered. In particular, the calibration accuracy and stability of the system will be described in terms of the observed difference in total content measured by the 360 to 140 MHz differential group delay and the 360 to 40 MHz differential group delay during the first year of operation. A summary of the transmitter housekeeping data and of the ground data collected on the EIRP and satellite antenna polar diagrams will also be presented.

  2. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Sjogren, William L.; Kliore, Arvydas J.; Luhmann, Janet G.; Brace, Larry H.

    1989-01-01

    The observation of S-band (2.3 GHz) radio scintillations in the ionosphere of Venus by the Pioneer Venus Orbiter is reported. In situ plasma measurements and propagation calculations show that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. It is suggested that these topside plasma irregularities are associated with the penetration of large-scale magnetic fields in the ionosphere. It is found that the disturbed plasma and the scintillations are a manifestation of high-dynamic solar wind interaction with the ionosphere.

  3. Generalized evaluation of environmental radioactivity measurements with UncertRadio. Part I: Methods without linear unfolding.

    PubMed

    Kanisch, Günter

    2016-04-01

    It is shown how a generalized evaluation of a large variety of environmental radioactivity measurements, without and with using linear unfolding, can be performed with a single program, UncertRadio (UR). Using a function parser allows deriving numerical partial derivatives for ISO GUM compatible uncertainty propagation. The evaluation within UR is extended to include ISO 11929 decision thresholds and detection limits. Alternatively, propagation of distributions with MC simulation is included. Part I gives an overview considering evaluations without using linear unfolding. PMID:26748020

  4. Rapid estimation of recharge potential in ephemeral-stream channels using electromagnetic methods, and measurements of channel and vegetation characteristics

    USGS Publications Warehouse

    Callegary, J.B.; Leenhouts, J.M.; Paretti, N.V.; Jones, C.A.

    2007-01-01

    To classify recharge potential (RCP) in ephemeral-stream channels, a method was developed that incorporates information about channel geometry, vegetation characteristics, and bed-sediment apparent electrical conductivity (??a). Recharge potential is not independently measurable, but is instead formulated as a site-specific, qualitative parameter. We used data from 259 transects across two ephemeral-stream channels near Sierra Vista, Arizona, a location with a semiarid climate. Seven data types were collected: ??a averaged over two depth intervals (0-3 m, and 0-6 m), channel incision depth and width, diameter-at-breast-height of the largest tree, woody-plant and grass density. A two-tiered system was used to classify a transect's RCP. In the first tier, transects were categorized by estimates of near-surface-sediment hydraulic permeability as low, moderate, or high using measurements of 0-3 m-depth ??a. Each of these categories was subdivided into low, medium, or high RCP classes using the remaining six data types, thus yielding a total of nine RCP designations. Six sites in the study area were used to compare RCP and ??a with previously measured surrogates for hydraulic permeability. Borehole-averaged percent fines showed a moderate correlation with both shallow and deep ??a measurements, however, correlation of point measurements of saturated hydraulic conductivity, percent fines, and cylinder infiltrometer measurements with ??a and RCP was generally poor. The poor correlation was probably caused by the relatively large measurement volume and spatial averaging of ??a compared with the spatially-limited point measurements. Because of the comparatively large spatial extent of measurement transects and variety of data types collected, RCP estimates can give a more complete picture of the major factors affecting recharge at a site than is possible through point or borehole-averaged estimates of hydraulic permeability alone. ?? 2007 Elsevier B.V. All rights reserved.

  5. Sub-micrometer fluidic channel for measuring photon emitting entities

    DOEpatents

    Stavis, Samuel M; Edel, Joshua B; Samiee, Kevan T; Craighead, Harold G

    2014-11-18

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  6. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain

    NASA Astrophysics Data System (ADS)

    Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Zhou, Xiaoxiao; Shi, Yan

    2016-03-01

    In this paper, a reflective metasurface is designed, fabricated, and experimentally demonstrated to generate an orbital angular momentum (OAM) vortex wave in radio frequency domain. Theoretical formula of phase-shift distribution is deduced and used to design the metasurface producing vortex radio waves. The prototype of a practical configuration is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that the vortex waves with different OAM mode numbers can be flexibly generated by using sub-wavelength reflective metasurfaces. The proposed method and metasurface pave a way to generate the OAM vortex waves for radio and microwave wireless communication applications.

  7. Measurement of Ensemble TRPV1 Ion Channel Currents Using Droplet Bilayers

    PubMed Central

    Vijayvergiya, Viksita; Acharya, Shiv; Wilson, Sidney P.; Schmidt, Jacob J.

    2015-01-01

    Electrophysiological characterization of ion channels is useful for elucidation of channel function as well as quantitative assessment of pharmaceutical effects on ion channel conductance. We used droplet bilayers to measure ensemble ion channel currents from membrane preparations made from TRPV1-expressing HEK cells. Conductance measurements showed rectification, activation by acid and capsaicin, and inhibition by capsazepine, SB 452533, and JNJ 17293212. We also quantitatively measured concentration-dependent inhibition of channel conductance through determination of capsazepine IC50 in agreement with previously published studies using patch clamp. These results, combined with the reduced apparatus and material requirements of droplet bilayers, indicate that this platform could be used for study of other physiologically relevant ion channels. PMID:26513481

  8. Radio frequency coupling apparatus and method for measuring minority carrier lifetimes in semiconductor materials

    DOEpatents

    Johnston, Steven W.; Ahrenkiel, Richard K.

    2002-01-01

    An apparatus for measuring the minority carrier lifetime of a semiconductor sample using radio-frequency coupling. The measuring apparatus includes an antenna that is positioned a coupling distance from a semiconductor sample which is exposed to light pulses from a laser during sampling operations. A signal generator is included to generate high frequency, such as 900 MHz or higher, sinusoidal waveform signals that are split into a reference signal and a sample signal. The sample signal is transmitted into a sample branch circuit where it passes through a tuning capacitor and a coaxial cable prior to reaching the antenna. The antenna is radio-frequency coupled with the adjacent sample and transmits the sample signal, or electromagnetic radiation corresponding to the sample signal, to the sample and receives reflected power or a sample-coupled-photoconductivity signal back. To lower impedance and speed system response, the impedance is controlled by limiting impedance in the coaxial cable and the antenna reactance. In one embodiment, the antenna is a waveguide/aperture hybrid antenna having a central transmission line and an adjacent ground flange. The sample-coupled-photoconductivity signal is then transmitted to a mixer which also receives the reference signal. To enhance the sensitivity of the measuring apparatus, the mixer is operated to phase match the reference signal and the sample-coupled-photoconductivity signal.

  9. Ion movement through gramicidin A channels. Interfacial polarization effects on single-channel current measurements.

    PubMed Central

    Andersen, O S

    1983-01-01

    Gramicidin A single-channel current-voltage characteristics were studied at low permeant ion concentrations and very high applied potentials. The purpose of these experiments was to elucidate the basis for the small, but definite, voltage dependence observed under these circumstances. It was found that this residual voltage dependence is a reflection of interfacial polarization effects, similar to those proposed by Walz et al. (Biophys. J. 9:1150-1159). It will be concluded that there exists an effectively voltage-independent step in the association reaction between a gramicidin A channel and the permeating ion. Some consequences of interfacial polarization effects for the analysis of conductance vs. activity relations will be discussed. PMID:6188501

  10. Fast single-channel measurements resolve the blocking effect of Cs+ on the K+ channel.

    PubMed Central

    Draber, S; Hansen, U P

    1994-01-01

    The Cs+ block of K+ channels has often been investigated by methods that allow only indirect estimation of the rate constants of blocking and re-opening. This paper presents single-channel records with high temporal resolution which make the direct observation of the fast transitions between the blocked and the unblocked state possible. The rate constants kOGb, kGbO of Cs(+)-dependent blocking and of re-opening are evaluated from the time constants found in the open-time and closed-time histograms. The blocking rate constant kOGb between 1000 and 50000 s-1 depends linearly on the Cs+ concentration and strongly on voltage, increasing by a factor of 1.44 per 10 mV hyperpolarization. The re-opening rate constant kGbO approximately 30000 s-1 is independent of Cs+ concentration and only slightly voltage-dependent. Formally, the results can be described by a Woodhull-model. The strong voltage dependence with d > 1, however, weakens its plausibility. The results are interpreted in terms of a molecular framework emerging from recent results on the structure of voltage-gated channels. PMID:7918979

  11. Microwave and Radio Frequency, RF, Measurements on Superconducting MgB_2.

    NASA Astrophysics Data System (ADS)

    Hakim, Nazih; Parimi, Patanjali; Kusko, Christian; Sridhar, Srinivas

    2002-03-01

    Measurements of the 10GHz surface resistance, Rs, of dense wires, polycrystalline samples, and thin films of MgB2 are presented. The microwave absorption results are discussed with measurements on low Tc (Nb) and high Tc (YBa_2Cu_3O_6.95) superconductors. Measurements of the radio frequency penetation depth λ (T,H) have yielded vortex dynamics parameters such as pinning force constants κ _p, vortex viscosity η , critical fields Hc1 and Hc2, and have led to the observation of a vortex mobility transition. The entire field-dependent behavior of the penetration depth λ (T,H) is well described by a quantitative model of dynamic response of vortex diffusion. The results are analysed in the context of the nature of the superconducting state.

    Work supported by the Office off Naval Research.

  12. Magnetization of the ionospheres of Venus and Mars - Results from radio occultation measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Kliore, Arvydas J.

    1991-01-01

    Remote sensing radio occultation measurements are used here to study magnetization of the ionospheres of Venus and Mars. For Venus, the measurements yield results on frequency of occurrence of magnetization during solar maximum that are similar to those obtained from Pioneer Venus in situ magnetic field measurements. During solar minimum, magnetization of the Venus ionosphere is more pervasive than at solar maximum. Magnetization extends to higher solar zenith angles and appears stronger than at solar maximum. These results confirm that during solar minimum the high solar wind dynamic pressure state is more prevalent at Venus because the ionospheric plasma pressure is weaker than at solar maximum. Comparison of a large number of electron density profiles of Mars with those of Venus shows an absence of the ledge and disturbed topside plasma observed in the Venus profiles. These results do not constitute evidence against magnetization of the ionosphere of Mars.

  13. The Atacama Cosmology Telescope: measuring radio galaxy bias through cross-correlation with lensing

    NASA Astrophysics Data System (ADS)

    Allison, Rupert; Lindsay, Sam N.; Sherwin, Blake D.; de Bernardis, Francesco; Bond, J. Richard; Calabrese, Erminia; Devlin, Mark J.; Dunkley, Joanna; Gallardo, Patricio; Henderson, Shawn; Hincks, Adam D.; Hlozek, Renée; Jarvis, Matt; Kosowsky, Arthur; Louis, Thibaut; Madhavacheril, Mathew; McMahon, Jeff; Moodley, Kavilan; Naess, Sigurd; Newburgh, Laura; Niemack, Michael D.; Page, Lyman A.; Partridge, Bruce; Sehgal, Neelima; Spergel, David N.; Staggs, Suzanne T.; van Engelen, Alexander; Wollack, Edward J.

    2015-07-01

    We correlate the positions of radio galaxies in the FIRST survey with the cosmic microwave background lensing convergence estimated from the Atacama Cosmology Telescope over 470 deg2 to determine the bias of these galaxies. We remove optically cross-matched sources below redshift z = 0.2 to preferentially select active galactic nuclei (AGN). We measure the angular cross-power spectrum C_l^{κ g} at 4.4σ significance in the multipole range 100 < l < 3000, corresponding to physical scales within ≈2-60 Mpc at an effective redshift zeff = 1.5. Modelling the AGN population with a redshift-dependent bias, the cross-spectrum is well fitted by the Planck best-fitting Λ cold dark matter cosmological model. Fixing the cosmology and assumed redshift distribution of sources, we fit for the overall bias model normalization, finding b(zeff) = 3.5 ± 0.8 for the full galaxy sample and b(zeff) = 4.0 ± 1.1(3.0 ± 1.1) for sources brighter (fainter) than 2.5 mJy. This measurement characterizes the typical halo mass of radio-loud AGN: we find log (M_halo / M_{⊙}) = 13.6^{+0.3}_{-0.4}.

  14. The Q/U Imaging Experiment: Polarization Measurements of Radio Sources at 43 and 95 GHz

    NASA Astrophysics Data System (ADS)

    Huffenberger, K. M.; Araujo, D.; Bischoff, C.; Buder, I.; Chinone, Y.; Cleary, K.; Kusaka, A.; Monsalve, R.; Næss, S. K.; Newburgh, L. B.; Reeves, R.; Ruud, T. M.; Wehus, I. K.; Zwart, J. T. L.; Dickinson, C.; Eriksen, H. K.; Gaier, T.; Gundersen, J. O.; Hasegawa, M.; Hazumi, M.; Miller, A. D.; Radford, S. J. E.; Readhead, A. C. S.; Staggs, S. T.; Tajima, O.; Thompson, K. L.; QUIET Collaboration

    2015-06-01

    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ˜480 such sources within QUIET’s four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30-40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources in Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%-20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps.

  15. The effect of the dynamic wet troposphere on radio interferometric measurements

    NASA Technical Reports Server (NTRS)

    Treuhaft, R. N.; Lanyi, G. E.

    1987-01-01

    A statistical model of water vapor fluctuations is used to describe the effect of the dynamic wet troposphere on radio interferometric measurements. It is assumed that the spatial structure of refractivity is approximated by Kolmogorov turbulence theory, and that the temporal fluctuations are caused by spatial patterns moved over a site by the wind, and these assumptions are examined for the VLBI delay and delay rate observables. The results suggest that the delay rate measurement error is usually dominated by water vapor fluctuations, and water vapor induced VLBI parameter errors and correlations are determined as a function of the delay observable errors. A method is proposed for including the water vapor fluctuations in the parameter estimation method to obtain improved parameter estimates and parameter covariances.

  16. Optical positions of 22 radio stars measured by photoelectric astrolabe Mark-1 in Irkutsk

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Mei; Lu, Chun-Lin; Li, Dong-Ming; Xu, Jia-Yan

    2004-06-01

    The observation of star position for catalogue compiling had been made in Irkutsk for 5 years with the Chinese photoelectric astrolabe Mark-1 according to the agreement of scientific cooperation between CSAO and VS NIITRI. This cooperation has taken the advantage of combination of the large zenith distance (45°) of almucantar for the astrolabe Mark-1 with the high latitude (52°) for Irkutsk, which could eliminate the blind zone existing in declination measurements for all the astrolabe catalogues. Based on the cooperation, a star catalogue containing positions of 817 stars had been completed; besides, the positions of 22 radio stars had been measured precisely in both right ascension and declination, which are given in this paper.

  17. Sensitive Radio-Frequency Measurements of a Quantum Dot by Tuning to Perfect Impedance Matching

    NASA Astrophysics Data System (ADS)

    Ares, N.; Schupp, F. J.; Mavalankar, A.; Rogers, G.; Griffiths, J.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.; Smith, C. G.; Cottet, A.; Briggs, G. A. D.; Laird, E. A.

    2016-03-01

    Electrical readout of spin qubits requires fast and sensitive measurements, which are hindered by poor impedance matching to the device. We demonstrate perfect impedance matching in a radio-frequency readout circuit, using voltage-tunable varactors to cancel out parasitic capacitances. An optimized capacitance sensitivity of 1.6 aF /√{Hz } is achieved at a maximum source-drain bias of 170 -μ V root-mean-square and with a bandwidth of 18 MHz. Coulomb blockade in a quantum-dot is measured in both conductance and capacitance, and the two contributions are found to be proportional as expected from a quasistatic tunneling model. We benchmark our results against the requirements for single-shot qubit readout using quantum capacitance, a goal that has so far been elusive.

  18. Emissive sheath measurements in the afterglow of a radio frequency plasma

    SciTech Connect

    Sheehan, J. P. Hershkowitz, N.; Barnat, E. V.; Weatherford, B. R.; Kaganovich, I. D.

    2014-01-15

    The difference between the plasma potential and the floating potential of a highly emissive planar surface was measured in the afterglow of a radio frequency discharge. A Langmuir probe was used to measure the electron temperature and an emissive probe was used to measure the spatial distribution of the potential using the inflection point in the limit of zero emission technique. Time-resolved measurements were made using the slow-sweep method, a technique for measuring time-resolved current-voltage traces. This was the first time the inflection point in the limit of zero emission was used to make time-resolved measurements. Measurements of the potential profile of the presheath indicate that the potential penetrated approximately 50% farther into the plasma when a surface was emitting electrons. The experiments confirmed a recent kinetic theory of emissive sheaths, demonstrating that late in the afterglow as the plasma electron temperature approached the emitted electron temperature, the emissive sheath potential shrank to zero. However, the difference between the plasma potential and the floating potential of a highly emissive planar surface data appeared to be much less sensitive to the electron temperature ratio than the theory predicts.

  19. New expansion rate measurements of the Crab nebula in radio and optical

    NASA Astrophysics Data System (ADS)

    Bietenholz, M. F.; Nugent, R. L.

    2015-12-01

    We present new radio measurements of the expansion rate of the Crab nebula's synchrotron nebula over a ˜30-yr period. We find a convergence date for the radio synchrotron nebula of CE 1255 ± 27. We also re-evaluated the expansion rate of the optical-line-emitting filaments, and we show that the traditional estimates of their convergence date are slightly biased. Using an unbiased Bayesian analysis, we find a convergence date for the filaments of CE 1091 ± 34 (˜40 yr earlier than previous estimates). Our results show that both the synchrotron nebula and the optical-line-emitting filaments have been accelerated since the explosion in CE 1054, but that the synchrotron nebula has been relatively strongly accelerated, while the optical filaments have been only slightly accelerated. The finding that the synchrotron emission expands more rapidly than the filaments supports the picture that the latter are the result of the Rayleigh-Taylor instability at the interface between the pulsar-wind nebula and the surrounding freely expanding supernova ejecta, and rules out models where the pulsar-wind bubble is interacting directly with the pre-supernova wind of the Crab's progenitor.

  20. Stability measurements of the radio science system at the 34-m high-efficiency antennas

    NASA Technical Reports Server (NTRS)

    Pham, T. T.; Breidenthal, J. C.; Peng, T. K.; Abbate, S. F.; Rockwell, S. T.

    1993-01-01

    From 1991 to 1993 the fractional frequency stability of the operational Radio Science System was measured at DSS's 15, 45, and 65. These stations are designed to have the most stable uplink and downlink equipment in the Deep Space Network (DSN). Some measurements were performed when the antenna was moving and the frequency was ramped. The stability, including contributions of all elements in the station except for the antenna and the hydrogen maser, was measured to be 0.3 to 1.3 x 10(exp -15) when the frequency was fixed, and 0.6 to 6.0 x 10(exp -15) when the frequency was ramped (sample interval, 1000 sec). Only one measurement out of fifteen exceeded specification. In all other cases, when previous measurements on the antenna and the hydrogen maser were added, a total system stability requirement of 5.0 x 10(exp -15) as met. In addition, ambient temperature was found to cause phase variation in the measurements at a rate of 5.5 deg of phase per deg C.

  1. Mariners 6 and 7: radio occultation measurements of the atmosphere of Mars.

    PubMed

    Kliore, A; Fjeldbo, G; Seidel, B L; Rasool, S I

    1969-12-12

    Radio occultation measurements with Mariners 6 and 7 provided refractivity data in the atmosphiere of Mars at four points above its surface. For an atmosphere consisting predominantly of carbon dioxide, surface pressures between 6 and 7 millibars are obtained at three of the points of measurement, and 3.8 at the fourth, indicating an elevation of 5 to 6 kilometers. The temperature profile measured by Mariner 6 near the equator in the daytime indicates temperatures in the stratosphere about 100 degrees K warmer than those predicted by theory. The measurements of Mariner 6 taken at 79 degrees N at the beginning of polar night indicate that conditions are favorable for the condensation of carbon dioxide at almost all altitudes. Mariner 7 measurements taken at 58 degrees S in daytime and 38 degrees N at night also show that carbon dioxide condensation is possible at altitudes above about 25 kilometers. Measurements of the electron density in the ionosphere show that the upper atmosphere is substantially warmer than it was in 1965, possibly because of increased solar activity and closer proximity to the sun. PMID:17744965

  2. Experimental determination of conduction channels in atomic-scale conductors based on shot noise measurements

    NASA Astrophysics Data System (ADS)

    Vardimon, Ran; Klionsky, Marina; Tal, Oren

    2013-10-01

    We demonstrate a general procedure for determining the conduction channels of quantum conductors from shot noise measurements. This numerical approach allows multichannel analysis which was previously limited to superconductors. Channel analysis of Ag and Au atomic contacts reveals a remarkable behavior in which the channels fully open one by one with increasing conductance. These results allow us to unambiguously distinguish between free-electron and tight-binding descriptions for the conductance of monovalent contacts. Furthermore, the channel resolution uncovers the presence of tunneling channels in parallel to the conductance through the main contact and provides a means for distinguishing between the contact conductance and tunneling contributions. Finally, unique channel distributions were found for Al and Pt contacts reflecting their distinct valence orbital structures.

  3. Lunar occultation of the diffuse radio sky: LOFAR measurements between 35 and 80 MHz

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.; de Bruyn, A. G.; Wijnholds, S. J.; Brentjens, M.; Abdalla, F. B.; Asad, K. M. B.; Bernardi, G.; Bus, S.; Chapman, E.; Ciardi, B.; Daiboo, S.; Fernandez, E. R.; Ghosh, A.; Harker, G.; Jelic, V.; Jensen, H.; Kazemi, S.; Lambropoulos, P.; Martinez-Rubi, O.; Mellema, G.; Mevius, M.; Offringa, A. R.; Pandey, V. N.; Patil, A. H.; Thomas, R. M.; Veligatla, V.; Yatawatta, S.; Zaroubi, S.; Anderson, J.; Asgekar, A.; Bell, M. E.; Bentum, M. J.; Best, P.; Bonafede, A.; Breitling, F.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Corstanje, A.; de Gasperin, F.; de Geus, E.; Deller, A.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Hörandel, J.; Iacobelli, M.; Juette, E.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Norden, M. J.; Orru, E.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Renting, A.; Röttgering, H.; Schwarz, D.; Shulevski, A.; Smirnov, O.; Stappers, B. W.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Thoudam, S.; Toribio, C.; Vocks, C.; Wise, M. W.; Wucknitz, O.; Zarka, P.

    2015-07-01

    We present radio observations of the Moon between 35 and 80 MHz to demonstrate a novel technique of interferometrically measuring large-scale diffuse emission extending far beyond the primary beam (global signal) for the first time. In particular, we show that (i) the Moon appears as a negative-flux source at frequencies 35 < ν < 80 MHz since it is `colder' than the diffuse Galactic background it occults, (ii) using the (negative) flux of the lunar disc, we can reconstruct the spectrum of the diffuse Galactic emission with the lunar thermal emission as a reference, and (iii) that reflected RFI (radio-frequency interference) is concentrated at the centre of the lunar disc due to specular nature of reflection, and can be independently measured. Our RFI measurements show that (i) Moon-based Cosmic Dawn experiments must design for an Earth-isolation of better than 80 dB to achieve an RFI temperature <1 mK, (ii) Moon-reflected RFI contributes to a dipole temperature less than 20 mK for Earth-based Cosmic Dawn experiments, (iii) man-made satellite-reflected RFI temperature exceeds 20 mK if the aggregate scattering cross-section of visible satellites exceeds 175 m2 at 800 km height, or 15 m2 at 400 km height. Currently, our diffuse background spectrum is limited by sidelobe confusion on short baselines (10-15 per cent level). Further refinement of our technique may yield constraints on the redshifted global 21 cm signal from Cosmic Dawn (40 > z > 12) and the Epoch of Reionization (12 > z > 5).

  4. HIGH-RESOLUTION RADIO CONTINUUM MEASUREMENTS OF THE NUCLEAR DISKS OF Arp 220

    SciTech Connect

    Barcos-Muñoz, L.; Evans, A. S.; Privon, G. C.; Stierwalt, S.; Leroy, A. K.; Condon, J.; Reichardt, A.; Armus, L.; Mazzarella, J. M.; Murphy, E. J.; Meier, D. S.; Momjian, E.; Ott, J.; Sakamoto, K.; Sanders, D. B.; Schinnerer, E.; Walter, F.; Surace, J. A.; Thompson, T. A.

    2015-01-20

    We present new Karl G. Jansky Very Large Array radio continuum images of the nuclei of Arp 220, the nearest ultra-luminous infrared galaxy. These new images have both the angular resolution to study the detailed morphologies of the two nuclei that power the galaxy merger and sensitivity to a wide range of spatial scales. At 33 GHz, we achieve a resolution of 0.''081 × 0.''063 (29.9 × 23.3 pc) and resolve the radio emission surrounding both nuclei. We conclude from the decomposition of the radio spectral energy distribution that a majority of the 33 GHz emission is synchrotron radiation. The spatial distributions of radio emission in both nuclei are well described by exponential profiles. These have deconvolved half-light radii (R {sub 50d}) of 51 and 35 pc for the eastern and western nuclei, respectively, and they match the number density profile of radio supernovae observed with very long baseline interferometry. This similarity might be due to the fast cooling of cosmic rays electrons caused by the presence of a strong (∼mG) magnetic field in this system. We estimate extremely high molecular gas surface densities of 2.2{sub −1.0}{sup +2.1}×10{sup 5} (east) and 4.5{sub −1.9}{sup +4.5}×10{sup 5} (west) M {sub ☉} pc{sup –2}, corresponding to total hydrogen column densities of N {sub H} = 2.7{sub −1.2}{sup +2.7}×10{sup 25} (east) and 5.6{sub −2.4}{sup +5.5}×10{sup 25} cm{sup –2} (west). The implied gas volume densities are similarly high, n{sub H{sub {sub 2}}}∼3.8{sub −1.6}{sup +3.8}×10{sup 4} (east) and ∼11{sub −4.5}{sup +12}×10{sup 4} cm{sup –3} (west). We also estimate very high luminosity surface densities of Σ{sub IR}∼4.2{sub −0.7}{sup +1.6}×10{sup 13} (east) and Σ{sub IR}∼9.7{sub −2.4}{sup +3.7}×10{sup 13} (west) L{sub ⊙} kpc{sup −2}, and star formation rate surface densities of Σ{sub SFR} ∼ 10{sup 3.7} {sup ±} {sup 0.1} (east) and Σ{sub SFR} ∼ 10{sup 4.1} {sup ±} {sup 0.1}(west) M {sub ☉} yr{sup –1}kpc{sup –2}. These values, especially for the western nucleus are, to our knowledge, the highest luminosity surface densities and star formation rate surface densities measured for any star-forming system. Despite these high values, the nuclei appear to lie below the dusty Eddington limit in which radiation pressure is balanced only by self-gravity. The small measured sizes also imply that at wavelengths shorter than λ = 1 mm, dust absorption effects must play an important role in the observed light distribution while below 5 GHz free-free absorption contributes substantial opacity. According to these calculations, the nuclei of Arp 220 are only transparent in the frequency range ∼5-350 GHz. Our results offer no clear evidence that an active galactic nucleus dominates the emission from either nucleus at 33 GHz.

  5. Maximum Likelihood Turbo Iterative Channel Estimation for Space-Time Coded Systems and Its Application to Radio Transmission in Subway Tunnels

    NASA Astrophysics Data System (ADS)

    González-López, Miguel; Míguez, Joaquín; Castedo, Luis

    2004-12-01

    This paper presents a novel channel estimation technique for space-time coded (STC) systems. It is based on applying the maximum likelihood (ML) principle not only over a known pilot sequence but also over the unknown symbols in a data frame. The resulting channel estimator gathers both the deterministic information corresponding to the pilot sequence and the statistical information, in terms of a posteriori probabilities, about the unknown symbols. The method is suitable for Turbo equalization schemes where those probabilities are computed with more and more precision at each iteration. Since the ML channel estimation problem does not have a closed-form solution, we employ the expectation-maximization (EM) algorithm in order to iteratively compute the ML estimate. The proposed channel estimator is first derived for a general time-dispersive MIMO channel and then is particularized to a realistic scenario consisting of a transmission system based on the global system mobile (GSM) standard performing in a subway tunnel. In this latter case, the channel is nondispersive but there exists controlled ISI introduced by the Gaussian minimum shift keying (GMSK) modulation format used in GSM. We demonstrate, using experimentally measured channels, that the training sequence length can be reduced from 26 bits as in the GSM standard to only 5 bits, thus achieving a 14% improvement in system throughput.

  6. Portable Wireless LAN Device and Two-way Radio Threat Assessment for Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.

    2003-01-01

    Measurement processes, data and analysis are provided to address the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. A radiated emission measurement process is developed and spurious radiated emissions from various devices are characterized using reverberation chambers. Spurious radiated emissions in aircraft radio frequency bands from several wireless network devices are compared with baseline emissions from standard computer laptops and personal digital assistants. In addition, spurious radiated emission data in aircraft radio frequency bands from seven pairs of two-way radios are provided, A description of the measurement process, device modes of operation and the measurement results are reported. Aircraft interference path loss measurements were conducted on four Boeing 747 and Boeing 737 aircraft for several aircraft radio systems. The measurement approach is described and the path loss results are compared with existing data from reference documents, standards, and NASA partnerships. In-band on-channel interference thresholds are compiled from an existing reference document. Using these data, a risk assessment is provided for interference from wireless network devices and two-way radios to aircraft systems, including Localizer, Glideslope, Very High Frequency Omnidirectional Range, Microwave Landing System and Global Positioning System. The report compares the interference risks associated with emissions from wireless network devices and two-way radios against standard laptops and personal digital assistants. Existing receiver interference threshold references are identified as to require more data for better interference risk assessments.

  7. BER performance analysis of radio over free-space optical systems considering laser phase noise under Gamma-Gamma turbulence channels.

    PubMed

    Lim, Wansu; Yun, Changho; Kim, Kiseon

    2009-03-16

    This paper analytically investigates a bit error rate (BER) performance of radio over free space optical (FSO) systems considering laser phase noise under Gamma-Gamma turbulence channels. An external modulation using a dual drive Mach-Zehnder modulator (DD-MZM) and a phase shifter is employed because a DD-MZM is robust against a laser chirp and provides high spectral efficiency. We derive a closed form average BER as a function of different turbulence strengths and laser diode (LD) linewidth, and investigate its analytical behavior under practical scenario. As a result, for a given average SNR with normalized perturbation, it is shown that the difference of average BER corresponding to two LDs (with linewidth of 624 MHz and 10 MHz) under weak turbulence is almost 3 times larger than that under strong turbulence. PMID:19293875

  8. Beam emittance measurements and simulations of injector line for radio frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Mathew, Jose V.; Rao, S. V. L. S.; Pande, Rajni; Singh, P.

    2015-07-01

    A 400 keV deuteron (D+) radio frequency quadrupole (RFQ) accelerator has been designed, built, and commissioned at the Bhabha Atomic Research Centre, India. A beam line has been developed for injecting deuterons into the 400 keV RFQ. This comprises of a RF plasma ion source and a low energy beam transport (LEBT) system, consisting of two solenoid magnets and two steerer magnets. The ion source is characterized in terms of transverse beam emittance. A slit-wire scanner based emittance measurement setup has been developed for the transverse emittance measurements of H+ and D+ beams. The measured emittance values are found to be well within the acceptance value for the RFQ. These measured emittance parameters are used to optimize the solenoid fields in LEBT to match the beam from the ion source to RFQ. TRACEWIN simulation code is used for the beam transport simulations. The simulations show 99% transmission of D+ beam through the RFQ, while 95% transmission has been measured experimentally.

  9. The structure of the Venus ionosphere from Venera-15,-16 radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Gavrik, Anatoly; Kopnina, Tatyana; Samoznaev, Lev

    Between 1975 and 1994, regular research of the Venus ionosphere was carried out by Venera-9,-10, Pioneer-Venus, Venera-15,-16 and Magellan spacecrafts. Over 600 altitude distributions of electron densities were derived from occultation data under various conditions. Nowadays, occultations are performed by the Venus-Express spacecraft. The high coherence and stability of radio signals from Venera-15,-16 (1 and 4 GHz), along with the fact that the refraction of the 1 GHz signal in the ionosphere exceeds the refraction of the signals used by other researchers by a factor of 6, allowed one to carry out a more accurate analysis of the radiophysical parameters of the Venus ionosphere. The method used in these investigations is based on the theoretical linear relation between the refraction attenuation and the frequency gradient. It is correct only when the powers and phases of the signals are measured with high-precision in a dual frequency radio sounding. The agreement between the variations in the measured refraction attenuation and the refraction attenuation calculated from frequency data testifies to the influence of the plasma on radio signals in spite of the fact that the refraction effects are comparable with noise. The good correlation of the Venera-15,-16 data indicates the existence of the bottom part of the daytime Venus ionosphere at altitudes of 80-120 km. When the noise level was low, we observed the bottom ionosphere in all 19 occultations at solar zenith angles between 56 and 87 . We also observed the bottom ionosphere in 6 out of 9 occultations near the planet's terminator, but the effect was comparable with noise. In the night ionosphere, none of 25 occultations revealed the bottom plasma layer. Thus, the bottom layer of the daytime Venus ionosphere is permanent. The properties of the bottom ionosphere of Venus depend on the solar zenith angle. Considerable variations in the bottom layer properties of the Venus daytime ionosphere can be associated with some wave processes in the top atmosphere and in the bottom ionosphere.

  10. Martian electron density profiles retrieved from Mars Express dual-frequency radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Zhang, S. J.; Cui, J.; Guo, P.; Li, J. L.; Ping, J. S.; Jian, N. C.; Zhang, K. F.

    2015-05-01

    The S- and X-band dual-frequency Doppler radio occultation observations obtained by the Mars Express Radio Science (MaRS) experiments are reduced in this study. A total of 414 Martian electron density profiles are retrieved covering the period from DOY 93 2004 to DOY 304 2012. These observations are well distributed over both longitude and latitude, with Sun-Mars distance varying from 1.38 AU to 1.67 AU, the solar zenith angle (SZA) ranging from 52 ° to 122 ° . Due to the improved vertical resolution for the MaRS experiments, the vertical structures of the retrieved profiles appear to be more complicated than those revealed by early radio occultation experiments. Dayside electron density profiles have primary peaks (M2) typically around 130 km and secondary peaks (M1) around 110 km. Nightside electron density profiles are highly variable, many of which do not have double layer structures. Both the dayside and nightside electron density profiles reveal some atypical features such as topside layering above M2 and bottom-side layering below M1. The former likely represent the plasma fluctuations in response to the solar wind (SW) interactions with the Martian ionosphere, whereas the latter is thought to be induced by the meteoric influx. We fit the peak electron density of profiles up to terminator with a simple power relation (Nm =N0 Chk (χ) ) , with the best-fit subsolar peak electron density being N0 = (1.499 ± 0.002) ×105cm-3 , and the best-fit power index being k = 0.513 ± 0.001 . The measured total electron content (TEC) is obtained by integrating the observed electron density profile vertically from 50 km to 400 km, which is then compared with the ideal TEC computed from the one-layer Chapman model. We find that the one-layer Chapman model can generally underestimate the measured TEC up to ∼ 0.1 TECU (1TECU = 1.0 ×1016m-2) for 55 °

  11. The atmosphere of Titan - an analysis of the Voyager 1 radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Lindal, G. F.; Wood, G. E.; Hotz, H. B.; Sweetnam, D. N.; Eshleman, V. R.; Tyler, G. L.

    1983-02-01

    The equatorial atmosphere of Titan was probed by means of two coherently related radio signals transmitted from Voyager 1 at 13.0 and 3.6 cm wavelengths during the November 12, 1980 occultation of the spacecraft by the Saturn satellite. An analysis of the differential dispersive frequency measurements did not reveal any ionization layers in the upper atmosphere of Titan. The gas refractivity data, which extend from the surface to about 200 km altitude, were interpreted in two different ways. In the first, it is assumed that N2 makes up virtually all of the atmosphere, with small amounts of CH4 and other hydrocarbons present. In the second interpretation of the refractivity data, it is assumed that the 3.5 km altitude level corresponds to the bottom of a CH4 cloud layer and that N2 and CH4 were perfectly mixed below this level.

  12. Atmosphere and ionosphere of venus from the mariner v s-band radio occultation measurement.

    PubMed

    Kliore, A; Levy, G S; Cain, D L; Fjeldbo, G; Rasool, S I

    1967-12-29

    Measurements of the frequency, phase, and amplitude of the S-band radio signal of Mariner V as it passed behind Venus were used to obtain the effects of refraction in its atmosphere and ionosphere. Profiles of refractivity, temperature, pressure, and density in the neutral atmosphere, as well as electron density in the daytime ionosphere, are presented. A constant scale height was observed above the tropopause, and the temperature increased with an approximately linear lapse rate below the tropopause to the level at which signal was lost, presumably because heavy defocusing attenuation occurred as critical refraction was approached. An ionosphere having at least two maxima was observed at only 85 kilometers above the tropopause. PMID:17749791

  13. Shallow water radio-magnetotelluric (RMT) measurements in urban environment: A case study from Stockholm city

    NASA Astrophysics Data System (ADS)

    Mehta, Suman; Bastani, Mehrdad; Malehmir, Alireza; Wang, Shunguo; Pedersen, Laust

    2014-05-01

    The Radio-MagnetoTelluric (RMT) method uses the electromagnetic signal from distant radio transmitters in the frequency range 15 to 250 kHz. RMT applications in near-surface studies have already been well established. Two components of electric field and three components of magnetic field are measured. These measured components are related to each other via transfer functions which contain detailed information about the variation of electrical resistivity of the subsurface. The present study is carried out in the frame of TRUST (TRansparent Underground STructure) project supported by several research and public organizations as well as industry. The study area is located close to central Stockholm in Sweden where the Swedish traffic authority has planned to construct a 21-km long motorway to bypass the city. In order to reduce the impact on natural and cultural environments, 18 km of the motorway will be located in tunnels. The main objective of this study is thus to identify potential fracture zones and faults as well as the general geological settings. The proposed path of the tunnel partly passes under the Lake Mälaren at a depth of about 60 m. Thus a challenge was posed on the applicability of RMT method in shallow water environments. Successful applications of RMT measurements using the Uppsala University's EnviroMT system on land encouraged us to modify the system to acquire data over lake water especially in urban areas. Pioneered by the Geological Survey of Sweden (SGU), RMT data were collected over the Lake Mälaren in spring 2012. The prototype acquisition system did not only turn out to be appropriate for such a challenging environment, but it was also much more efficient as compared with land surveys. Fifty two lines including 1160 stations with an average spacing of 15 m were covered in three days. Cultural noise associated with the city-related environment had to be identified and filtered out before inversion could be carried out. Reliable estimates of the impedance tensor were obtained by the parametric representation combined with a Truncated Singular Value Decomposition (TSVD) regularization of Bastani and Pedersen (2001). The processed data were then inverted to obtain 2D resistivity models. The resulting models along 23 lines correlate well and image variation of water depth, thickness of subaqueous sediments as well as the depth to crystalline bedrock. Low resistivity zones observed in the bedrock coincide well with the low velocity zones identified in refraction seismic surveys available along the RMT lines, indicating the presence of possible fracture zones in the bedrock. The experiment illustrates that the RMT methods can be well adapted to this type of environment; it is fast and cost-effective in shallow water especially in urban settings. Acknowledgments: Formas, SGU, BeFo, SBUF, Skanska, Boliden, FQM and NGI References: Bastani, M., 2001, EnviroMT - a new Controlled Source/Radio Magnetotelluric System: Ph.D. thesis, ISBN 91-554-5051-2, Uppsala University. Bastani, M. and Pedersen, L. B., 2001, Estimation of magnetotelluric transfer functions from radio transmitters. GEOPHYSICS, 66, 1038-1051.

  14. Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Ekers, Ron; Wilson, Thomas L.

    ``Radio Telescopes" starts with a brief historical introduction from Jansky's1931 discovery of radio emission from the Milky Way through the development ofradio telescope dishes and arrays to aperture synthesis imaging. It includessufficient basics of electromagnetic radiation to provide some understanding of thedesign and operation of radio telescopes. The criteria such as frequencyrange, sensitivity, survey speed, angular resolution, and field of view thatdetermine the design of radio telescopes are introduced. Because it is soeasy to manipulate the electromagnetic waves at radio frequencies, radiotelescopes have evolved into many different forms, sometimes with "wire"structures tuned to specific wavelengths, which look very different from anykind of classical telescope. To assist astronomers more familiar with otherwavelength domains, the appendix A.1. includes a comparison of radioand optical terminology. Some of the different types of radio telescopesincluding the filled aperture dishes, electronically steered phased arrays, andaperture synthesis radio telescopes are discussed, and there is a sectioncomparing the differences between dishes and arrays. Some of the morerecent developments including hierarchical beam forming, phased arrayfeeds, mosaicing, rotation measure synthesis, digital receivers, and longbaseline interferometers are included. The problem of increasing radiofrequency interference is discussed, and some possible mitigation strategies areoutlined.

  15. Parametric Channeling Radiation and its Application to the Measurement of Electron Beam Energy

    SciTech Connect

    Takabayashi, Y.

    2010-06-23

    We have proposed a method for observing parametric channeling radiation (PCR) and of applying it to the measurement of electron beam energy. The PCR process occurs if the energy of the channeling radiation coincides with the energy of the parametric X-ray radiation (PXR). The PCR process can be regarded as the diffraction of 'virtual channeling radiation'. We developed a scheme for beam energy measurement and designed an experimental setup. We also estimated the beam parameters, and calculated the angular distributions of PXR and PCR. These considerations indicate that the observation of PCR is promising.

  16. Atomic nitrogen measurements in a radio-frequency atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Wagenaars, Erik; Gans, Timo; O'Connell, Deborah; Niemi, Kari

    2012-10-01

    Atmospheric-pressure plasma jets (APPJs) driven with radio-frequency voltages have the potential to be used in a range of new healthcare applications. To guarantee the safety and effectiveness of these new devices, a thorough understanding of the physics and chemistry of these plasmas is needed. The exact mechanisms through which APPJs affect biological materials like cells, bacteria and DNA are largely unknown, however, recent studies suggest the importance of reactive oxygen and nitrogen species (RONS). The starting point for the creation of many of the different RONS is the production of atomic oxygen and nitrogen in APPJs by breaking up oxygen and nitrogen gas molecules. In order to fully understand and control the production and effects of different RONS it is therforte important to measure atomic oxygen and nitrogen species in APPJs. This contribution presents the first direct measurements of atomic nitrogen species in APPJs. The measurements were performed with a two-photon absorption laser-induced fluorescence diagnostic, using 206.65 nm laser photons for the excitation of ground-state N atoms and observing fluorescence light around 744 nm. The APPJ was run with a helium gas flow of 1 slm and varying small admixtures of molecular nitrogen of 0 -- 0.7 vol%. A maximum in the measured N concentration was observed for an admixture of 0.25 vol% nitrogen gas.

  17. The Role of Helium Metastable States in Radio-Frequency Helium-Oxygen Atmospheric Pressure Plasma Jets: Measurement and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Niemi, Kari; Waskoenig, Jochen; Sadeghi, Nader; Gans, Timo; O'Connell, Deborah

    2011-10-01

    Absolute densities of metastable He atoms were measured line-of sight integrated along the plasma channel of a capacitively-coupled radio-frequency driven atmospheric pressure plasma jet operated in helium oxygen mixtures by tunable diode-laser absorption spectroscopy. Dependencies of the He metastable density with oxygen admixtures up to 1 percent were investigated. Results are compared to a 1-d numerical simulation, which includes a semi-kinetical treatment of the electron dynamics and the complex plasma chemistry (20 species, 184 reactions), and very good agreement is found. The main formation mechanisms for the helium metastables are identified and analyzed, including their pronounced spatio-temporal dynamics. Penning ionization through helium metastables is found to be significant for plasma sustainment, while it is revealed that helium metastables are not an important energy carrying species into the jet effluent and therefore will not play a direct role in remote surface treatments.

  18. Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: A phantom validation at 7 T

    SciTech Connect

    Zhang, Xiaotong; Liu, Jiaen; Van de Moortele, Pierre-Francois; Schmitter, Sebastian; He, Bin

    2014-12-15

    Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate the feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.

  19. Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: A phantom validation at 7 T

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Liu, Jiaen; Schmitter, Sebastian; He, Bin

    2014-12-01

    Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate the feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.

  20. Measurement of the t-channel single top quark production cross section

    SciTech Connect

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Abolins, Maris A.; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Aguilo, Ernest; Ahsan, Mahsana; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

    2009-07-01

    The D0 collaboration reports direct evidence for electroweak production of single top quarks through the t-channel exchange of a virtual W boson. This is the first analysis to isolate an individual single top quark production channel. We select events containing an isolated electron or muon, missing transverse energy, and two, three or four jets from 2.3 fb{sup -1} of p{bar p} collisions at the Fermilab Tevatron Collider. One or two of the jets are identified as containing a b hadron. We combine three multivariate techniques optimized for the t-channel process to measure the t- and s-channel cross sections simultaneously. We measure cross sections of 3.14{sub -0.80}{sup +0.94} pb for the t-channel and 1.05 {+-} 0.81 pb for the s-channel. The measured t-channel result is found to have a significance of 4.8 standard deviations and is consistent with the standard model prediction.

  1. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  2. Intrinsic noise measurement of an ultra-sensitive radio-frequency single electron transistor

    NASA Astrophysics Data System (ADS)

    Xue, W. W.; Ji, Z.; Pan, Feng; Rimberg, A. J.

    2008-03-01

    The radio-frequency single electron transistor (rf-SET) has been the focus of intense interest since its invention in 1998[1]. Using cryogenic ultra-thin film evaporation techniques [2] and an improved on-chip superconducting matching network [3], we have consistently fabricated rf-SETs with charge sensitivity of 1.7--5μe/√Hz and uncoupled energy sensitivity 1.1--5. Using our 1GHz resonant circuit, intrinsic noise in the SET arising from a dc voltage bias was measured in the white noise limit. We measured the offset charge dependence of the intrinsic noise in the vicinity of the Josephson-quasiparticle and double Josephson-quasiparticle transport cycles. In regions for which the offset charge and resistance noise are strongly suppressed, we can determine the SET shot noise in the sup-gap regime. We discuss the effects of correlations between charge carriers on the measured Fano factor. [1] R.J.Schoelkopf et al., Science 280,1238 (1998); [2] N.A.Court et al., Cond-mat 0706.4150 (2007); [3] W.W.Xue et al., Appl.Phys.Lett. 91, 093511 (2007).

  3. Radio Occultation Measurements of Pluto’s Atmosphere with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, David P.; Linscott, Ivan; Tyler, Len; Bird, Mike; Paetzold, Martin; Strobel, Darrell; Summers, Mike; Woods, Will; Stern, Alan; Weaver, Hal; Olkin, Cathy; Young, Leslie; Ennico, Kimberly; Gladstone, Randy; Greathouse, Tommy; Kammer, Josh; Parker, Alex; Parker, Joel; Retherford, Kurt; Schindhelm, Eric; Singer, Kelsi; Steffl, Andrew; Tsang, Con; Versteeg, Maarten

    2015-11-01

    The reconnaissance of the Pluto System by New Horizons included radio occultations at both Pluto and Charon. This talk will present the latest results from the Pluto occultation. The REX instrument onboard New Horizons received and recorded uplink signals from two 70-m antennas and two 34-m antennas of the NASA Deep Space Network - each transmitting 20 kW at 4.2-cm wavelength - during a diametric occultation by Pluto. At the time this was written only a short segment of data at occultation entry (193°E, 17°S) was available for analysis. The REX measurements extend unequivocally to the surface, providing the first direct measure of the surface pressure and the temperature structure in Pluto’s lower atmosphere. Data from occultation exit (16°E, 15°N) are scheduled to arrive on the ground in late August 2015. Those observations will yield an improved estimate of the surface pressure, a second temperature profile, and a measure of the diameter of Pluto with a precision of a few hundred meters. This work is supported by the NASA New Horizons Mission.

  4. Conductive Sphere in a Radio Frequency Field: Theory and Applications to Positioners, Heating, and Noncontact Measurements

    NASA Technical Reports Server (NTRS)

    Jackson, H. W.; Watkins, J. L.; Chung, S.; Wagner, P.

    1996-01-01

    An electrically conductive spherical sample located in an electromagnetic field excited by rf (radio frequency) current in a system of coaxial coils is treated theoretically. Maxwell's equations are solved exactly and all integrals in the formulas for the fields are evaluated analytically for the case where the sphere is on the axis and the coil system is modeled by a stack of filamentary circular loops. Formulas are also derived for electromagnetic force exerted on the sphere, excess impedance in the coil system due to the presence of the sphere, and power absorbed by the sphere. All integrals in those formulas have been evaluated analytically. Force measurements are presented and they are in excellent agreement with the new theory. A low-power electromagnetic levitator that is accurately described by the theory has been demonstrated and is discussed. Experimental measurements of excess impedance are presented and compared with theory, and those results are used to demonstrate an accurate noncontact method for determining electrical conductivity. Theoretical formulas for power absorption are evaluated numerically and their usefulness in both rf heating and in making noncontact measurements of a number of thermophysical properties of materials is discussed.

  5. Measurements of reduced-density air channels produced by a double-pulsed electron beam

    SciTech Connect

    Bieniosek, F.M.; Cartier, S.L.

    1995-05-15

    Single-pulse and noncollinear double-pulse channels formed by intense relativistic electron beams were studied by using a laser deflection probe for times up to 100 ms. The first of two pulsed electron beams propagating in a 30-cm-diam tube was magnetically deflected to generate an off-axis neutral-density channel of {similar_to}40% depth in moist air at 250 Torr. Subsequently after a time delay of 1.36 ms, a similar electron beam pulse (1.2 MeV, 13 kA, 10 ns full width at half maximum) was injected along the tube axis. After injection of the second pulse, the rate of channel decay was enhanced, and a large-scale convective motion of the hot channel gas toward the second pulse ensued. Measurements of the channel motion are compared with the predictions of a simple hydrodynamic model.

  6. In situ measurement of gas composition changes in radio frequency plasmas using a quartz sensor

    SciTech Connect

    Suzuki, Atsushi; Nonaka, Hidehiko

    2009-09-15

    A simple method using a quartz sensor (Q-sensor) was developed to observe gas composition changes in radio frequency (rf) plasmas. The output depends on the gases' absolute pressure, molecular weight, and viscosity. The pressure-normalized quartz sensor output depends only on the molecular weight and viscosity of the gas. Consequently, gas composition changes can be detected in the plasmas if a sensor can be used in the plasmas. Influences imparted by the plasmas on the sensor, such as those by reactive particles (e.g., radicals and ions), excited species, electrons, temperature, and electric potentials during measurements were investigated to test the applicability of this quartz sensor measurement to plasma. The Q-sensor measurement results for rf plasmas with argon, hydrogen, and their mixtures are reproducible, demonstrating that the Q-sensor measurement is applicable for plasmas. In this work, pressure- and temperature-normalized Q-sensor output (NQO) were used to obtain the gas composition information of plasma. Temperature-normalization of the Q-sensor output enabled quartz sensor measurements near plasma electrodes, where the quartz sensor temperature increases. The changes in NQO agreed with results obtained by gas analysis using a quadrupole mass spectrometer. Results confirmed that the change in NQO is mainly attributable to changes in the densities and kinds of gas molecules in the plasma gas phase, not by other extrinsic influences of plasma. For argon, hydrogen, and argon-hydrogen plasmas, these changes correspond to reduction in nitrogen, production of carbon monoxide, and dissociation of hydrogen molecules, respectively. These changes in NQO qualitatively and somewhat quantitatively agreed with results obtained using gas analysis, indicting that the measurement has a potential application to obtain the gas composition in plasmas without disturbing industrial plasma processes.

  7. Controlling of Entropic Uncertainty in Qubits System Under the Generalized Amplitude Damping Channel via Weak Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Yang; Fang, Mao-Fa; Yu, Min

    2016-03-01

    We study the effect of weak measurements on the entropic uncertainty in two-qubit system under the generalized amplitude damping channel. Our results show that, the entropic uncertainty in qubits system can be reduced under weak measurements by choosing appropriate measuring strength, which provides a new method to break through the restriction of uncertainty relation in quantum mechanics.

  8. The New Horizons Radio Science Experiment: Expected Performance in Measurements of Pluto's Atmospheric Structure, Surface Pressure, and Surface Temperature

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Linscott, I.; Woods, W. W.; Tyler, G. L.; Bird, M. K.; Paetzold, M.; Strobel, D. F.

    2014-12-01

    The New Horizons (NH) payload includes a Radio Science Experiment (REX) for investigating key characteristics of Pluto and Charon during the upcoming flyby in July 2015. REX flight equipment augments the NH radio transceiver used for spacecraft communications and tracking. The REX hardware implementation requires 1.6 W and 160 g. This presentation will focus on the final design and the predicted performance of two high-priority observations. First, REX will receive signals from a pair of 70-m antennas on Earth - each transmitting 20 kW at 4.2-cm wavelength - during a diametric radio occultation by Pluto. The data recorded by REX will reveal the surface pressure, the temperature structure of the lower atmosphere, and the surface radius. Second, REX will measure the thermal emission from Pluto at 4.2-cm wavelength during two linear scans across the disk at close range when both the dayside and the nightside are visible, allowing the surface temperature and its spatial variations to be determined. Both scans extend from limb to limb with a resolution of about 10 pixels; one bisects Pluto whereas the second crosses the winter pole. We will illustrate the capabilities of REX by reviewing the method of analysis and the precision achieved in a lunar occultation observed by New Horizons in May 2011. Re-analysis of radio occultation measurements by Voyager 2 at Triton is also under way. More generally, REX objectives include a radio occultation search for Pluto's ionosphere; examination of Charon through both radio occultation and radiometry; a search for a radar echo from Pluto's surface; and improved knowledge of the Pluto system mass and the Pluto-Charon mass ratio from a combination of two-way and one-way Doppler frequency measurements.

  9. Peak radiated power measurement of the DOE Mark II container tag with integrated ST-676 sensor radio frequency identification device.

    SciTech Connect

    Jursich, Mark

    2010-04-01

    The total peak radiated power of the Department of Energy Mark II container tag was measured in the electromagnetic reverberation chamber facility at Sandia National Laboratories. The tag's radio frequency content was also evaluated for possible emissions outside the intentional transmit frequency band. No spurious emissions of any significance were found, and the radiated power conformed to the manufacturer's specifications.

  10. Remote, PCM-controlled, multi-channel radio frequency FM telemetry system for cryogenic wind tunnel application

    NASA Technical Reports Server (NTRS)

    Diamond, John K.

    1989-01-01

    A telemetry system used in the NASA-Langley cryogenic transonic wind tunnel to obtain rotational strain and temperature data is described. The system consists of four FM transmitters allowing for a remotely controlled PCM combination. A rotating four-contact mercury slip-ring is used as an interface between the fixed and rotating mechnical structures. Over 60 channels of data on the main fan disk and blade structures have been obtained. These data are studied to verify computer predictions and mechanical life. A series of block diagrams are included.

  11. An introduction to China FY3 radio occultation mission and its measurement simulation

    NASA Astrophysics Data System (ADS)

    Bi, YanMeng; Yang, ZhongDong; Zhang, Peng; Sun, YueQiang; Bai, WeiHua; Du, QiFei; Yang, GuangLin; Chen, Jie; Liao, Mi

    2012-04-01

    GNSS (Global Navigation Satellite System) radio occultation mission for remote sensing of the Earth's atmosphere will be performed by GNOS (GNSS Occultation Sounder) instrument on China FengYun-3 (FY3) 02 series satellites, the first of which FY3-C will be launched in the year 2013. This paper describes the FY3 GNOS mission and presents some results of measurement simulation. The key designed specifications of GNOS are also shown. The main objective of simulation is to provide scientific support for GNOS occultation mission on the FY3-C satellites. We used EGOPS software to simulate occultation measurements according to GNOS designed parameters. We analyzed the accuracy of retrieval profiles based on two typical occultation events occurring in China South-East area among total simulated events. Comparisons between the retrieval atmospheric profiles and background profiles show that GNOS occultation has high accuracy in the troposphere and lower stratosphere. The sensitivities of refractivity to three types of instrumental error, i.e. Doppler biases, clock stability and local multipath, were analyzed. The results indicated that the Doppler biases introduced by along-ray velocity error and GNOS clock error were the primary error sources for FY3-C occultation mission.

  12. Evaluation of uncertainty in gravity wave potential energy calculations through GPS radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Luna, D.; Alexander, P.; de la Torre, A.

    2013-09-01

    The application of the Global Positioning System (GPS) radio occultation (RO) method to the atmosphere enables the determination of height profiles of temperature, among other variables. From these measurements, gravity wave activity is usually quantified by calculating the potential energy through the integration of the ratio of perturbation and background temperatures between two given altitudes in each profile. The uncertainty in the estimation of wave activity depends on the systematic biases and random errors of the measured temperature, but also on additional factors like the selected vertical integration layer and the separation method between background and perturbation temperatures. In this study, the contributions of different parameters and variables to the uncertainty in the calculation of gravity wave potential energy in the lower stratosphere are investigated and quantified. In particular, a Monte Carlo method is used to evaluate the uncertainty that results from different GPS RO temperature error distributions. In addition, our analysis shows that RO data above 30 km height becomes dubious for gravity waves potential energy calculations.

  13. First measurements of radar coherent scatter by the Radio Aurora Explorer CubeSat

    NASA Astrophysics Data System (ADS)

    Bahcivan, H.; Cutler, J. W.; Bennett, M.; Kempke, B.; Springmann, J. C.; Buonocore, J.; Nicolls, M.; Doe, R.

    2012-07-01

    The Radio Aurora Explorer CubeSat detected the first radar echoes during the solar storm of March 8, 2012. The 300 s ground-to-space bi-static radar experiment was conducted in conjunction with the Poker Flat Incoherent Scatter Radar in the local morning (˜8 am) over Poker Flat, Alaska. The geomagnetic conditions for the E region field-aligned irregularity generation were optimal due to strong (about 1500 m/s) F region ion drifts and sufficient E region ionization (electron densities were ˜2 × 1011 m-3). The corresponding E region electric field of ˜80 mV/m was larger than the excitation threshold for the Farley-Buneman instability. An auto-correlation analysis resolved, for the first time, the distribution of auroral E region backscatter with 3 km resolution in altitude and sub-degree resolution in aspect angle. Moreover, the measured Doppler velocities of the UHF scatter shows the phase speed saturation of the meter-scale plasma waves. The measured Doppler velocity is in excellent agreement with the Cs cos θ formula for auroral E region irregularities.

  14. Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels

    SciTech Connect

    Fedorko, Wojciech T.; /Chicago U.

    2008-09-01

    The authors present the first measurement of the top quark mass using simultaneously data from two decay channels. They use a data sample of {radical}s = 1.96 TeV collisions with integrated luminosity of 1.9 fb{sup -1} collected by the CDF II detector. They select dilepton and lepton + jets channel decays of t{bar t} pairs and reconstruct two observables in each topology. They use non-parametric techniques to derive probability density functions from simulated signal and background samples. The observables are the reconstructed top quark mass and the scalar sum of transverse energy of the event in the dilepton topology and the reconstructed top quark mass and the invariant mass of jets from the W boson decay in lepton + jets channel. They perform a simultaneous fit for the top quark mass and the jet energy scale which is constrained in situ by the hadronic W boson resonance from the lepton + jets channel. Using 144 dilepton candidate events and 332 lepton + jets candidate events they measure: M{sub top} = 171.9 {+-} 1.7 (stat. + JES) {+-} 1.1 (other sys.) GeV/c{sup 2} = 171.9 {+-} 2.0 GeV/c{sup 2}. The measurement features a robust treatment of the systematic uncertainties, correlated between the two channels and develops techniques for a future top quark mass measurement simultaneously in all decay channels. Measurements of the W boson mass and the top quark mass provide a constraint on the mass of the yet unobserved Higgs boson. The Higgs boson mass implied by measurement presented here is higher than Higgs boson mass implied by previously published, most precise CDF measurements of the top quark mass in lepton + jets and dilepton channels separately.

  15. A Measurement of the Millimeter Emission and the Sunyaev-zel'dovich Effect Associated with Low-frequency Radio Sources

    NASA Technical Reports Server (NTRS)

    Gralla, Megan B.; Crichton, Devin; Marriage, Tobias A.; Mo, Wenli; Aguirre, Paula; Addison, Graeme E.; Asboth, V.; Battaglia, Nick; Bock, James; Bond, J. Richard; Devlin, Mark J.; Duenner, Rolando; Hajian, Amir; Halpern, Mark; Hilton, Matt; Hincks, Adam D.; Hlozek Renee A.; Huffenberger, Kevin M.; Hughes, John P.; Ivison, R. J.; Kosowsky, Arthur; Lin, Yen-Ting; Switzer, Eric R.; Wollack, Edward J.; Zemcov, Michael B.

    2013-01-01

    We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel'dovich Effect associated with the halos that host them. The Atacama Cosmology Telescope (ACT) has conducted a survey at 148 GHz, 218 GHz and 277 GHz along the celestial equator. Using samples of radio sources selected at 1.4 GHz from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) Survey and the National Radio Astronomy Observatory Very Large Array Sky Survey (NVSS), we measure the stacked 148, 218 and 277 GHz flux densities for sources with 1.4 GHz flux densities ranging from 5 to 200 mJy. At these flux densities, the radio source population is dominated by active galactic nuclei (AGN), with both steep and at spectrum populations, which have combined radio-to-millimeter spectral indices ranging from 0.5 to 0.95, reecting the prevalence of steep spectrum sources at high flux densities and the presence of at spectrum sources at lower flux densities. The thermal Sunyaev-Zelapos;dovich (SZ) eect associated with the halos that host the AGN is detected at the 5 level through its spectral signature. When we compare the SZ eect with weak lensing measurements of radio galaxies, we find that the relation between the two is consistent with that measured by Planck for local bright galaxies. We present a detection of the SZ eect in some of the lowest mass halos (average M(sub 200) approx. equals 10(exp 13) solar M h(sup-1) (sub 70) ) studied to date. This detection is particularly important in the context of galaxy evolution models, as it confirms that galaxies with radio AGN also typically support hot gaseous halos. With Herschel* observations, we show that the SZ detection is not significantly contaminated by dusty galaxies or by dust associated with the AGN or galaxies hosting the AGN. We show that 5 mJy < S(sub 1:4) < 200 mJy radio sources contribute l(l +1)C(sub l)/(2 pi ) = 0:37+/- 0:03 micro K(exp 2) to the angular power spectrum at l = 3000 at 148 GHz, after accounting for the SZ effect associated with their host halos.

  16. Inconsistencies in Tropical Tropopause Temperatures Between Radiosonde and GPS Radio Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Spackman, J. R.; Leroy, S. S.; Moyer, E. J.; Ao, C. O.; Weinstock, E. M.; Anderson, J. G.

    2004-12-01

    Accurate temperature measurements at the tropical tropopause are critical to diagnosing the relationship between water vapor saturation mixing ratio and stratospheric water vapor and, accordingly, the mechanisms for stratosphere-troposphere exchange. The radiosonde network has provided the most accurate temperature record in the tropics to date, but a self-consistent temperature mapping of the tropical tropopause layer (TTL) with radiosonde data is impaired by (i) very limited spatial sampling, especially over the predominantly marine tropics, (ii) differences in radiosonde instrument packages, and (iii) solar radiation effects on reported temperatures. Global positioning system (GPS) radio occultation measurements offer a powerful approach to examining the temperature structure of the TTL that provides homogeneous spatial coverage of the tropics while still maintaining high vertical resolution. We use a GPS occultation data set obtained from the CHAMP satellite for 2001-2003 with retrievals performed at the Jet Propulsion Laboratory (JPL) and subjected to objective quality control. These occultations are compared with radiosonde measurements from the WMO global network that have been processed through the complex quality control of NCEP. GPS occultations and radiosondes show significant differences in (i) the mean cold-point tropopause temperature, (ii) the distribution of cold-point temperatures, and (iii) the height of the cold-point tropopause. We investigate differences between radiosonde and occultation climatologies of the TTL, paying special attention to the merits and deficiencies of each measurement approach. We also compare the GPS occultation retrievals of JPL to other retrieval algorithms to investigate potential biases. The temperature differences between GPS occultations and radiosondes at the cold-point tropopause could have profound implications for the water vapor budget of the stratosphere.

  17. A New Top Mass Measurement in The Dilepton Channel

    SciTech Connect

    Trovato, Marco

    2008-01-01

    The top quark discovery completed the present picture of the fundamental constituents of the nature. Since then, the Collider Detector at Fermilab and D0 Collaborations have been spending great efforts to measure its properties better. About 30 times larger than the second heaviest quark, the mass of the top has been measured with increased statistic and more and more sophisticated techniques in order to reduce as much as possible its uncertainty. This is because the top is expected to play a fundamental role in the Standard Model. The value of its mass sets boundaries on the mass of the unobserved Higgs boson, and perhaps more appealing, studies of its properties might lead to the discovery of new physics.

  18. Measurement of single-top T-channel production using ATLAS data

    NASA Astrophysics Data System (ADS)

    Holzbauer, Jenny Lyn

    This document reports the measurement of the single-top t-channel cross-section using data from the ATLAS detector, located at the Large Hadron Collider on the border of France and Switzerland. The data used were collected during the first half of 2011, from proton-proton collisions with a 7 TeV center-of-mass collision energy. Single-top is electroweak top-quark production and t-channel is one of the standard model production modes. To isolate this production, selections are applied to find events with a similar final state. A cut-based analysis is used to further isolate the signal using a series of selections in several orthogonal kinematic regions. Finally, a statistical analysis is performed to determine the measured cross-section and the CKM matrix element |Vtb|. The cross-section for top and anti-top production is considered separately and the resulting cross-sections are sigmat+ = 59+18-16 pb for the positive charge channel and sigmat - = 33+13-12 pb for the negative charge channel. The total measured single-top t-channel cross-section using all kinematic channels in this analysis is 92+29-26 pb with an expected cross-section of sigmat = 62+22-20 pb. The 95% confidence level limit on the standard model | Vtb| value is determined to be |Vtb| > 0.67.

  19. Morphology of solar wind fluctuations and structure in the vicinity of the Sun from radio propagation measurements

    NASA Technical Reports Server (NTRS)

    Woo, R.

    1995-01-01

    Radio propagation measurements represent a powerful means for remote probing of electron density and solar wind speed in the acceleration region of the solar wind not yet explored by in situ measurements. Recent investigations based on radio propagation measurements have led to considerable progress in our knowledge of the general morphology of solar wind fluctuations and structure, especially in terms of their relationship to solar wind properties that have been observed directly by fields and particles measurements, and to coronal features observed in white-light measurements. The purpose of this paper is to present an overview of the latest results on quasi-stationary structure covering the large scale variation of solar wind speed over the streamer belt and coronal hole regions, coronal streamers (source of slow solar wind) and their associated small-scale electron density structure, plumes, density and fractional or relative density fluctuations, and the spectral characteristics of the electron density fluctuations. The radio propagation measurements not only reveal new information on the structure near the Sun, but also show that the structure appears to undergo substantial evolution on its way to 0.3 AU, the closest radial distance for which direct in situ spacecraft measurements are available.

  20. Antenna Performance Measurements at L, S, C, and X Bands for the TM65m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Wang, Jin-qing; Zhao, Rong-bing; Yu, Lin-feng; Yin, Hai-ling; Lao, Bao-qiang; Wu, Ya-jun; Li, Bin; Dong, Jian; Jiang, Yong-bin; Xia, Bo; Zuo, Xiu-ting; Gou, Wei; Guo, Wen; Wu, Xiao-cong; Lu, Xue-jiang; Liu, Qing-hui; Fan, Qing-yuan; Jiang, Dong-rong; Qian, Zhi-han

    2016-01-01

    In this paper, we reported the measured results of the antenna efficiency, sensitivity, and system noise temperature of the TM65m radio telescope. The key parameters describing a radio astronomy receiving system were introduced at first. Then, we discussed the measurement methods and the measuring errors. Finally, the measured results of the antenna efficiency, sensitivity, and system noise temperature performances at the L, S, C, and X bands were given. The results show that the efficiency and SEFD (System Equivalent Flux Density) decrease dramatically at both low and high elevations when the position of the subreflector is fixed. The antenna efficiencies at the C and X bands can be raised to 60% and more in the whole elevation range when the subreflector (servo) model is activated. The system noise temperature is independent to the subreflector model. Among the four wavebands, the C-band sensitivity and system noise temperature are optimal.

  1. Radio frequency interference measurement in site testing programs for the future multi-wavelength observatory in Indonesia

    NASA Astrophysics Data System (ADS)

    Hidayat, T.; Dermawan, B.; Mahasena, P.; Munir, A.; Nurzaman, M. Z.; Jaelani, A. T.

    2015-09-01

    A new multi-wavelength astronomical observatory in Indonesia is currently under preparation. To pave the way the presence of radio astronomical facilities in the planned observatory, we conduct a series of radio frequency interference (RFI) measurements as part of its site testing programs. The corresponding sites, instruments as well as its measurement set up must be selected, planned, and implemented accordingly. This work presents our preparation set up and considers the RFI measurement at meter and centimeter wavelengths (or frequencies from 50 MHz up to 6 GHz). In this frequency range, it is relevant to adopt the Square Kilometre Array (SKA) Protocol as our measurement method. The first results using the Mode 1 of the SKA Protocol are used as reference in this work. Preparation of the Mode 2 is currently undertaken and its preliminary results are presented.

  2. Temperature and Pressure Measurements and Visualization of He II Cavitation Flow through Venturi Channel

    SciTech Connect

    Ishii, T.; Murakami, M.; Harada, K.

    2004-06-23

    He II cavitation flow through a Venturi channel was experimentally investigated through temperature and pressure measurements and optical visualization. So far some distinctive features of cavitation between He II and He I flows were clarified. Then, detailed measurements were added for further investigation, such as the measurements of the temperature drop distribution throughout the flow channel and the void fraction. Further considerations were given on the cavitation inception with emphasis on the superheating of liquid helium, and the effect of the flow separation on cavitation.

  3. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements.

    PubMed

    Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O(3+) ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured. PMID:26628167

  4. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    SciTech Connect

    Yu, Deyang Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-15

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O{sup 3+} ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  5. Temperature and Pressure Measurements and Visualization of He II Cavitation Flow through Venturi Channel

    NASA Astrophysics Data System (ADS)

    Ishii, T.; Murakami, M.; Harada, K.

    2004-06-01

    He II cavitation flow through a Venturi channel was experimentally investigated through temperature and pressure measurements and optical visualization. So far some distinctive features of cavitation between He II and He I flows were clarified. Then, detailed measurements were added for further investigation, such as the measurements of the temperature drop distribution throughout the flow channel and the void fraction. Further considerations were given on the cavitation inception with emphasis on the superheat ingof liquid helium, and the effect of the flow separation on cavitation.

  6. 47 CFR 95.7 - Channel sharing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Channel sharing. 95.7 Section 95.7 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.7 Channel sharing. (a) Channels or channel pairs (one...

  7. 47 CFR 95.7 - Channel sharing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Channel sharing. 95.7 Section 95.7 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.7 Channel sharing. (a) Channels or channel pairs (one...

  8. 47 CFR 95.7 - Channel sharing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Channel sharing. 95.7 Section 95.7 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.7 Channel sharing. (a) Channels or channel pairs (one...

  9. 47 CFR 95.7 - Channel sharing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Channel sharing. 95.7 Section 95.7 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.7 Channel sharing. (a) Channels or channel pairs (one...

  10. 47 CFR 95.7 - Channel sharing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Channel sharing. 95.7 Section 95.7 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.7 Channel sharing. (a) Channels or channel pairs (one...

  11. Experimental measurements of traffic and radio disturbances in Ente Nazionale per l'Energia Elettrica's (ENEL) mobile radio networks

    NASA Astrophysics Data System (ADS)

    Farinetti, A.; Manin, A.

    1983-06-01

    To help redesign the Italian national communication network, a telephone traffic analyzer was implemented using a 8086 microprocessor. Results show that the peak load is double the average load in working hours; that the average peak load is 0.115 Erlang for each network; and that the average conversation length is 19 sec. Electromagnetic disturbances were measured in 50 Italian localities, finding and average reduction of receiver sensibility of 11 dB at 450 MHz and 24 dB at 160 MHz in urban areas with a high noise level.

  12. A high-frequency warm shallow water acoustic communications channel model and measurements.

    PubMed

    Chitre, Mandar

    2007-11-01

    Underwater acoustic communication is a core enabling technology with applications in ocean monitoring using remote sensors and autonomous underwater vehicles. One of the more challenging underwater acoustic communication channels is the medium-range very shallow warm-water channel, common in tropical coastal regions. This channel exhibits two key features-extensive time-varying multipath and high levels of non-Gaussian ambient noise due to snapping shrimp-both of which limit the performance of traditional communication techniques. A good understanding of the communications channel is key to the design of communication systems. It aids in the development of signal processing techniques as well as in the testing of the techniques via simulation. In this article, a physics-based channel model for the very shallow warm-water acoustic channel at high frequencies is developed, which are of interest to medium-range communication system developers. The model is based on ray acoustics and includes time-varying statistical effects as well as non-Gaussian ambient noise statistics observed during channel studies. The model is calibrated and its accuracy validated using measurements made at sea. PMID:18189549

  13. Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Park, J. S.; Ibrahim, M. Y.

    1986-01-01

    Periodic rib turbulators were used in advanced turbine cooling designs to enhance the internal heat transfer. The objective of the present project was to investigate the combined effects of the rib angle of attack and the channel aspect ratio on the local heat transfer and pressure drop in rectangular channels with two opposite ribbed walls for Reynolds number varied from 10,000 to 60,000. The channel aspect ratio (W/H) was varied from 1 to 2 to 4. The rib angle of attack (alpha) was varied from 90 to 60 to 45 to 30 degree. The highly detailed heat transfer coefficient distribution on both the smooth side and the ribbed side walls from the channel sharp entrance to the downstream region were measured. The results showed that, in the square channel, the heat transfer for the slant ribs (alpha = 30 -45 deg) was about 30% higher that of the transverse ribs (alpha = 90 deg) for a constant pumping power. However, in the rectangular channels (W/H = 2 and 4, ribs on W side), the heat transfer at alpha = 30 -45 deg was only about 5% higher than 90 deg. The average heat transfer and friction correlations were developed to account for rib spacing, rib angle, and channel aspect ratio over the range of roughness Reynolds number.

  14. Interplay between Appearance and Disappearance Channels for Precision Measurements of θ₂₃ and δ

    SciTech Connect

    Coloma, Pilar; Minakata, Hisakazu; Parke, Stephen J.

    2014-11-01

    We discuss how the CP violating phase δ and the mixing angle θ₂₃ can be measured precisely in an environment where there are strong correlations between them. This is achieved by paying special attention to the mutual roles and the interplay between the appearance and the disappearance channels in long-baseline neutrino oscillation experiments. We analyze and clarify the general structure of the θ₂₃ - θ₁₃ - δ degeneracy for both the appearance and disappearance channels in a more complete fashion than what has previously been discussed in the literature. A full understanding of this degeneracy is of vital importance if θ₂₃ is close to maximal mixing. The relative importance between the appearance and disappearance channels depends upon the particular setup and how close to maximal mixing Nature has chosen the value for θ₂₃. For facilities that operate with a narrow band beam or a wide band beam centered on the first oscillation extremum, the contribution of the disappearance channel depends critically on the systematic uncertainties assumed for this channel. Whereas for facilities that operate at energies above the first oscillation extremum or at the second oscillation extremum the appearance channels dominate. On the other hand, for δ we find that the disappearance channel usually improves the sensitivity, modestly for facilities around the first oscillation extremum and more significantly for facilities operating at an energy above the first oscillation extremum, especially near δ ~ ± π/2.

  15. Inferences from the Distributions of Fast Radio Burst Pulse Widths, Dispersion Measures, and Fluences

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2016-02-01

    The widths, dispersion measures (DMs), dispersion indices, and fluences of Fast Radio Bursts (FRBs) impose coupled constraints that all models must satisfy. The non-monotonic dependence of burst widths (after deconvolution of instrumental effects) on DMs excludes the intergalactic medium as the location of scattering that broadens the FRBs in time. Temporal broadening far greater than that of pulsars at similar high Galactic latitudes implies that scattering occurs close to the sources where high densities and strong turbulence or heterogeneity are plausible. FRB energetics are consistent with supergiant pulses from young, fast, high-field pulsars at cosmological distances. The distribution of FRB DMs is: (1) inconsistent with that of expanding clouds (such as SNRs); (2) inconsistent with space-limited source populations (such as the local Supercluster); and (3) consistent with intergalactic dispersion of a homogeneous source population at cosmological distances. Finally, the FRB {log}\\N-{log} S relation also indicates a cosmological distribution aside from the anomalously bright Lorimer burst.

  16. Error analysis for intrinsic quality factor measurement in superconducting radio frequency resonators

    NASA Astrophysics Data System (ADS)

    Melnychuk, O.; Grassellino, A.; Romanenko, A.

    2014-12-01

    In this paper, we discuss error analysis for intrinsic quality factor (Q0) and accelerating gradient (Eacc) measurements in superconducting radio frequency (SRF) resonators. The analysis is applicable for cavity performance tests that are routinely performed at SRF facilities worldwide. We review the sources of uncertainties along with the assumptions on their correlations and present uncertainty calculations with a more complete procedure for treatment of correlations than in previous publications [T. Powers, in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27]. Applying this approach to cavity data collected at Vertical Test Stand facility at Fermilab, we estimated total uncertainty for both Q0 and Eacc to be at the level of approximately 4% for input coupler coupling parameter β1 in the [0.5, 2.5] range. Above 2.5 (below 0.5) Q0 uncertainty increases (decreases) with β1 whereas Eacc uncertainty, in contrast with results in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27], is independent of β1. Overall, our estimated Q0 uncertainty is approximately half as large as that in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27].

  17. RECONCILING MODELS OF LUMINOUS BLAZARS WITH MAGNETIC FLUXES DETERMINED BY RADIO CORE-SHIFT MEASUREMENTS

    SciTech Connect

    Nalewajko, Krzysztof; Begelman, Mitchell C.; Sikora, Marek

    2014-11-20

    Estimates of magnetic field strength in relativistic jets of active galactic nuclei, obtained by measuring the frequency-dependent radio core location, imply that the total magnetic fluxes in those jets are consistent with the predictions of the magnetically arrested disk (MAD) scenario of jet formation. On the other hand, the magnetic field strength determines the luminosity of the synchrotron radiation, which forms the low-energy bump of the observed blazar spectral energy distribution (SED). The SEDs of the most powerful blazars are strongly dominated by the high-energy bump, which is most likely due to the external radiation Compton mechanism. This high Compton dominance may be difficult to reconcile with the MAD scenario, unless (1) the geometry of external radiation sources (broad-line region, hot-dust torus) is quasi-spherical rather than flat, or (2) most gamma-ray radiation is produced in jet regions of low magnetization, e.g., in magnetic reconnection layers or in fast jet spines.

  18. A bending angle forward operator for global positioning system radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Cucurull, L.; Derber, J. C.; Purser, R. J.

    2013-01-01

    Applications for space-based GPS technology have extended to the atmospheric field during the last two decades. More recently, numerical weather prediction (NWP) centers started incorporating global positioning system (GPS) radio occultation (RO) soundings into their operational assimilation algorithms, resulting in a significant improvement in weather forecasting skill. The main reasons for such benefits are the unbiased nature of the GPS RO measurements, high accuracy and precision, all-weather capability, and equal accuracy over either land or ocean. Profiles of refractivity or bending angle are typically used, owing to the relative simplicity of their forward operators and the computational economy this implies. Although the NOAA National Centers for Environmental Prediction (NCEP) are using refractivities in their operational configuration, a bending angle forward operator has been developed, tested, and implemented and was scheduled to replace the assimilation of refractivities operationally in May, 2012. Results from the NCEP's bending angle method (NBAM) show improvement over the assimilation of refractivities in all atmospheric fields being evaluated. A detailed description and evaluation of NBAM is presented in this article, as well as the advantages this code offers over the assimilation of refractivities and other existing algorithms that assimilate GPS RO bending angles.

  19. THE CORRELATION BETWEEN DISPERSION MEASURE AND X-RAY COLUMN DENSITY FROM RADIO PULSARS

    SciTech Connect

    He, C.; Ng, C.-Y.; Kaspi, V. M.

    2013-05-01

    Pulsars are remarkable objects that emit across the entire electromagnetic spectrum, providing a powerful probe of the interstellar medium. In this study, we investigate the relation between dispersion measure (DM) and X-ray absorption column density N{sub H} using 68 radio pulsars detected at X-ray energies with the Chandra X-Ray Observatory or XMM-Newton. We find a best-fit empirical linear relation of N{sub H} (10{sup 20} cm{sup -2})= 0.30{sup +0.13}{sub -0.09} DM (pc cm{sup -3}), which corresponds to an average ionization of 10{sup +4}{sub -3}%, confirming the ratio of one free electron per 10 neutral hydrogen atoms commonly assumed in the literature. We also compare different N{sub H} estimates and note that some N{sub H} values obtained from X-ray observations are higher than the total Galactic H I column density along the same line of sight, while the optical extinction generally gives the best N{sub H} predictions.

  20. Quantitative Measurement of Vocal Fold Vibration in Male Radio Performers and Healthy Controls Using High-Speed Videoendoscopy

    PubMed Central

    Warhurst, Samantha; McCabe, Patricia; Heard, Rob; Yiu, Edwin; Wang, Gaowu; Madill, Catherine

    2014-01-01

    Purpose Acoustic and perceptual studies show a number of differences between the voices of radio performers and controls. Despite this, the vocal fold kinematics underlying these differences are largely unknown. Using high-speed videoendoscopy, this study sought to determine whether the vocal vibration features of radio performers differed from those of non-performing controls. Method Using high-speed videoendoscopy, recordings of a mid-phonatory/i/ in 16 male radio performers (aged 25–52 years) and 16 age-matched controls (aged 25–52 years) were collected. Videos were extracted and analysed semi-automatically using High-Speed Video Program, obtaining measures of fundamental frequency (f0), open quotient and speed quotient. Post-hoc analyses of sound pressure level (SPL) were also performed (n = 19). Pearson's correlations were calculated between SPL and both speed and open quotients. Results Male radio performers had a significantly higher speed quotient than their matched controls (t = 3.308, p = 0.005). No significant differences were found for f0 or open quotient. No significant correlation was found between either open or speed quotient with SPL. Discussion A higher speed quotient in male radio performers suggests that their vocal fold vibration was characterised by a higher ratio of glottal opening to closing times than controls. This result may explain findings of better voice quality, higher equivalent sound level and greater spectral tilt seen in previous research. Open quotient was not significantly different between groups, indicating that the durations of complete vocal fold closure were not different between the radio performers and controls. Further validation of these results is required to determine the aetiology of the higher speed quotient result and its implications for voice training and clinical management in performers. PMID:24971625

  1. Multifrequency channel microwave reflectometer with frequency hopping operation for density fluctuation measurements in Large Helical Device

    SciTech Connect

    Tokuzawa, T.; Kawahata, K.; Ejiri, A.

    2010-10-15

    In order to measure the internal structure of density fluctuations using a microwave reflectometer, the broadband frequency tunable system, which has the ability of fast and stable hopping operation, has been improved in the Large Helical Device. Simultaneous multipoint measurement is the key issue of this development. For accurate phase measurement, the system utilizes a single sideband modulation technique. Currently, a dual channel heterodyne frequency hopping reflectometer system has been constructed and applied to the Alfven eigenmode measurements.

  2. A Measurement of the Millimeter Emission and the Sunyaev-Zel'dovich Effect Associated with Low-Frequency Radio Sources

    NASA Technical Reports Server (NTRS)

    Gralla, Megan B.; Crichton, Devin; Marriage, Tobias; Mo, Wenli; Aguirre, Paula; Addison, Graeme E.; Asboth, V.; Battaglia, Nick; Bock, James; Bond, J. Richard; Devlin, Mark; Dunner, Rolando; Hajian, Amir; Halpern, Mark; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee A.; Huffenberger, Kevin M.; Hughes, John P.; Ivison, R.J.; Kosowsky, Arthur; Lin, Yen-Ting; Marsden, Danica; Menanteau, Felipe; Wollack, Edward J.

    2014-01-01

    We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel'dovich effect associated with the halos that host them. We stack data at 148, 218 and 277 GHz from the Atacama Cosmology Telescope at the positions of a large sample of radio AGN selected at 1.4 GHz. The thermal Sunyaev-Zel'dovich (SZ) effect associated with the halos that host the AGN is detected at the 5 sigma level through its spectral signature, representing a statistical detection of the SZ effect in some of the lowest mass halos (average M(sub 200) approximately equals 10(sup 13) solar mass h(sub 70)(exp -1) ) studied to date. The relation between the SZ effect and mass (based on weak lensing measurements of radio galaxies) is consistent with that measured by Planck for local bright galaxies. In the context of galaxy evolution models, this study confirms that galaxies with radio AGN also typically support hot gaseous halos. Adding Herschel observations allows us to show that the SZ signal is not significantly contaminated by dust emission. Finally, we analyze the contribution of radio sources to the angular power spectrum of the cosmic microwave background.

  3. Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes

    NASA Astrophysics Data System (ADS)

    Sotomayor-Beltran, C.; Sobey, C.; Hessels, J. W. T.; de Bruyn, G.; Noutsos, A.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brüggen, M.; Ciardi, B.; de Gasperin, F.; Dettmar, R.-J.; van Duin, A.; Duscha, S.; Eislöffel, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Grit, T.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Keane, E.; Kohler, J.; Kramer, M.; Kondratiev, V. I.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Markoff, S.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pilia, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Serylak, M.; Sluman, J.; Stappers, B. W.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2013-04-01

    Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations - either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders.

  4. Effect of weak measurement on entanglement distribution over noisy channels.

    PubMed

    Wang, Xin-Wen; Yu, Sixia; Zhang, Deng-Yu; Oh, C H

    2016-01-01

    Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence. PMID:26935775

  5. Effect of weak measurement on entanglement distribution over noisy channels

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Wen; Yu, Sixia; Zhang, Deng-Yu; Oh, C. H.

    2016-03-01

    Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence.

  6. Effect of weak measurement on entanglement distribution over noisy channels

    PubMed Central

    Wang, Xin-Wen; Yu, Sixia; Zhang, Deng-Yu; Oh, C. H.

    2016-01-01

    Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence. PMID:26935775

  7. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel

    PubMed Central

    Ishida, Itzel G.; Rangel-Yescas, Gisela E.; Carrasco-Zanini, Julia

    2015-01-01

    Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ∼25% less than the well-established 13–14 eo in Shaker. Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ∼50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker, where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shaker’s, accounting for the smaller Kv1.2 gating charge. PMID:25779871

  8. Revisiting the Dispersion Measure of Fast Radio Bursts Associated with Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Yu, Yun-Wei

    2014-12-01

    Some fast radio bursts (FRBs) are expected to be associated with the afterglow emission of gamma-ray bursts (GRBs), while a short-lived, supermassive neutron star (NS) forms during the GRBs. I investigate the possible contributions to the dispersion measure (DM) of the FRBs from the GRB ejecta and the wind blown from the precollapsing NS. On the one hand, sometimes an internal X-ray plateau afterglow could be produced by the NS wind, which indicates that a great number of electron-positron pairs are carried by the wind. If the pair-generation radius satisfies a somewhat rigorous condition, the relativistic and dense wind would contribute a high DM to the associated FRB, which can be comparable to and even exceed the DM contributed by the intergalactic medium. On the other hand, if the wind only carries a Goldreich-Julian particle flux, its DM contribution would become negligible; meanwhile, the internal plateau afterglow would not appear. Alternatively, the FRB should be associated with a GRB afterglow produced by the GRB external shock, i.e., an energy-injection-caused shallow-decay afterglow or a normal single-power-law afterglow if the impulsive energy release of the GRB is high enough. In the latter case, the DM contributed by the high-mass GRB ejecta could be substantially important, in particular, for an environment of main-sequence stellar wind. In summary, a careful assessment on the various DM contributors could be required for the cosmological application of the expected FRB-GRB association. The future DM measurements of GRB-associated FRBs could provide a constraint on the physics of NS winds.

  9. Revisiting the dispersion measure of fast radio bursts associated with gamma-ray burst afterglows

    SciTech Connect

    Yu, Yun-Wei

    2014-12-01

    Some fast radio bursts (FRBs) are expected to be associated with the afterglow emission of gamma-ray bursts (GRBs), while a short-lived, supermassive neutron star (NS) forms during the GRBs. I investigate the possible contributions to the dispersion measure (DM) of the FRBs from the GRB ejecta and the wind blown from the precollapsing NS. On the one hand, sometimes an internal X-ray plateau afterglow could be produced by the NS wind, which indicates that a great number of electron-positron pairs are carried by the wind. If the pair-generation radius satisfies a somewhat rigorous condition, the relativistic and dense wind would contribute a high DM to the associated FRB, which can be comparable to and even exceed the DM contributed by the intergalactic medium. On the other hand, if the wind only carries a Goldreich-Julian particle flux, its DM contribution would become negligible; meanwhile, the internal plateau afterglow would not appear. Alternatively, the FRB should be associated with a GRB afterglow produced by the GRB external shock, i.e., an energy-injection-caused shallow-decay afterglow or a normal single-power-law afterglow if the impulsive energy release of the GRB is high enough. In the latter case, the DM contributed by the high-mass GRB ejecta could be substantially important, in particular, for an environment of main-sequence stellar wind. In summary, a careful assessment on the various DM contributors could be required for the cosmological application of the expected FRB-GRB association. The future DM measurements of GRB-associated FRBs could provide a constraint on the physics of NS winds.

  10. Predictions of HF system performance for propagation through disturbed ionospheres measured using low-Earth-orbit satellite radio beacon tomography

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul A.; Hei, Matthew A.; Siefring, Carl L.; Wilkens, Matthew R.

    2014-07-01

    The CERTO radio beacon on the C/NOFS satellite sends VHF/UHF radio signals at 150 and 400 MHz to provide measurements of integrated electron density or Total Electron Content (TEC) by an east-west chain of ground receivers in Peru. Computerized Ionospheric Tomography (CIT) is used to convert the TEC data into two-dimensional images of electron densities with maximum 5 × 5 km resolution in Longitude-Altitude space. These images are updated every 95 min as the C/NOFS satellite passes over the receiver network in its low-latitude orbit with an inclination of 12°. The 2-D, high-resolution images of the ionosphere are used to predict the impact of equatorial plasma structures on HF propagation of radar and radio signals. Electron density measurements from the NRL radio tomography chain across Peru are used for simulations of the performance by HF one-way links. HF rays from transmitter to receiver are traced through the electron density images produced by radio beacon tomography. Eight separate paths are found between a transmitter and ground receiver separated by 2000 km. A total of 36 backscatter echoes are found with unique group delay, Doppler frequency shift, phase delay, and echo amplitude. This multipath effect explains the range and Doppler spreading of observations for HF monostatic radar propagation through F layer irregularities. This type of analysis is useful for prediction and interpretation of range and Doppler observations from HF systems including over-the-horizon and SuperDARN radars, HF Geolocation Arrays, and HF communications networks.

  11. Measurement and statistical analysis of wideband MF atmospheric radio noise. I - Structure and distribution and time variation of noise power

    NASA Astrophysics Data System (ADS)

    Herman, J. R.; Deangelis, X. A.; Giordano, A. A.; Marzotto, K. F.; Hsu, F. M.

    1986-02-01

    Wideband measurements (100 kHz) of medium frequency atmospheric noise have been made over the past several years in the southwestern United States. In part 1 of a two-part paper the measurement and data transcription system and the statistical analysis software used to analyze the data are presented. In part 2, representative first- and higher-order statistics and the impact of the data on bandwidth and system performance are described. Measurement results presented in part 1 include the temporal structure of atmospheric noise, the distribution and time variation of the measured average noise power, and comparisons with predictions by the International Radio Consultative Committee (CCIR).

  12. Instantaneous measure of EEG channel importance for improved patient-adaptive neonatal seizure detection.

    PubMed

    Temko, Andriy; Lightbody, Gordon; Thomas, Eoin M; Boylan, Geraldine B; Marnane, William

    2012-03-01

    A measure of bipolar channel importance is proposed for EEG-based detection of neonatal seizures. The channel weights are computed based on the integrated synchrony of classifier probabilistic outputs for the channels which share a common electrode. These estimated time-varying weights are introduced within a Bayesian probabilistic framework to provide a channel specific and, thus, adaptive seizure classification scheme. Validation results on a clinical dataset of neonatal seizures confirm the utility of the proposed channel weighting for the two patient-independent seizure detectors recently developed by this research group: one based on support vector machines (SVMs) and the other on Gaussian mixture models (GMMs). By exploiting the channel weighting, the receiver operating characteristic (ROC) area can be significantly increased for the most difficult patients, with the average ROC area across 17 patients increased by 22% (relative) for the SVM and by 15% (relative) for the GMM-based detector, respectively. It is shown that the system developed here outperforms the recent published studies in this area. PMID:22156948

  13. Toward Global Soundings and Atmospheric Measurements for Climate and NWP Using GNSS Radio Occultation Systems

    NASA Astrophysics Data System (ADS)

    Mango, S. A.; Ector, D.; Wilczynski, P.; Fulton, R. A.; Whitely, D.; Cucurull, L.; Chu, V.; Schreiner, W. S.; Rocken, C.; Anthes, R. A.; Kuo, Y.; Cook, K.

    2010-12-01

    The history of observing radio occultations [RO] using a space-borne platform and an earth-based or another space-based platform to probe an intervening planetary atmosphere, i.e. to determine atmospheric profiles and characteristics, dates back to 1964 with the sounding of the atmosphere of Mars and subsequent soundings of planetary atmospheres using a radio transmitter on a satellite and the RO technique. The first use of a Global Navigation Satellite Systems (GNSS) transmitter as a signal source to sound the Earth’s intervening atmosphere utilizing the satellite RO technique was demonstrated with the transmitters on the US Global Positioning System (GPS) constellation of navigation and timing satellites (24-30 satellites) and the receiver on the GPS-MET satellite mission. Several satellite RO missions followed using GPS signal sources - i.e. CHAMP, SAC-C, Oersted, IOX, GRACE and GRAS. In April 2006 a joint USA/Taiwan mission, FORMOSAT-3/COSMIC, a constellation of 6 microsatellites, began sounding successfully the Earth’s atmosphere using GPS and RO for meteorological, ionospheric and climatic studies. Within the next two decades there will be a multiplicity of GNSS constellations flying. Several nations are now planning or initializing other full, operational GNSS missions which will significantly increase the potential number of signal source satellites for RO, to somewhere in the range of 87-125 transmitters, including: 1. GPS (USA), 2. GLONASS (Russian Federation), 3. Galileo (EU) 4. COMPASS (China), 5. IRNSS (India), 6. QZSS (Japan). The national commitments for operations and sustainment of these GNSS constellations have been made for at least the next decades. The operation and sustainment of a large constellation of RO satellites capable of handling the signals from this large multiplicity of GNSS systems would provide soundings and observations of the Earth’s atmosphere for research and operations with unparalleled spatial and temporal coverage. Such a multiplicity of RO receiver satellites would enable high spatial density, global soundings and some critical atmospheric measurements with short repeat times for NWP and some of the shorter climate time scales. The United States and Taiwan have such a new program in formulation for a constellation of 12-24 small RO satellites called COSMIC-2 or FORMOSAT-7/COSMIC-2. COSMIC-2 is a follow-on mission to the Taiwan/USA partnered mission, FORMOSAT-3/COSMIC. This paper will present new results of analyses of such a COSMIC-2 constellation of RO satellites and the multiplicities of GNSS signal sources including the spatial and temporal coverage and scales, the sounding performance in terms of the measurement range, uncertainty and resolution of the bending angle, refractivity and atmospheric density, temperature and water vapor profiles as well as the ionospheric specification, TEC, and electron density profiles.

  14. A Measurement of the Top Quark Mass in the Dilepton Decay Channel at CDF II

    SciTech Connect

    Jayatilaka, Bodhitha A

    2006-08-01

    The top quark, the most recently discovered quark, is the most massive known fundamental fermion. Precision measurements of its mass, a free parameter in the Standard Model of particle physics, can be used to constrain the mass of the Higgs Boson. In addition, deviations in the mass as measured in different channels can provide possible evidence for new physics. We describe a measurement of the top quark mass in the decay channel with two charged leptons, known as the dilepton channel, using data collected by the CDF II detector from p{bar p} collisions with {radical}s = 1.96 TeV at the Fermilab Tevatron. The likelihood in top mass is calculated for each event by convolving the leading order matrix element describing q{bar q} {yields} t{bar t} {yields} b{ell}{nu}{sub {ell}}{bar b}{ell}'{nu}{sub {ell}'} with detector resolution functions. The presence of background events in the data sample is modeled using similar calculations involving the matrix elements for major background processes. In a data sample with integrated luminosity of 1.0 fb{sup -1}, we observe 78 candidate events and measure M{sub t} = 164.5 {+-} 3.9(stat.) {+-} 3.9(syst.) GeV/c{sup 2}, the most precise measurement of the top quark mass in this channel to date.

  15. The Faroe Bank Channel overflow in one year of continuous current and hydrographic measurements

    NASA Astrophysics Data System (ADS)

    Ullgren, Jenny; Fer, Ilker; Darelius, Elin

    2014-05-01

    Cold, dense water from the Nordic Seas flows out into the North Atlantic across the shallow Iceland-Scotland ridge through a few deeper passages, the deepest of which (at 840 m) is the narrow Faroe Bank Channel. The overflow is swift, with velocities exceeding 1 m/s, and associated with strong vertical mixing. Here we present results from eight hydrographic and current meter moorings that were deployed in the Faroe Bank Channel overflow region during the period 28 May 2012 to 5 June 2013, measuring current velocity, temperature, and salinity at hourly or higher sampling frequencies. One array of three moorings - the channel section - was placed at about 8 30'W, just downstream of the sill in the channel. Another array, the slope section, with four moorings was located some 60 km further downstream, at about 9 40'W. At the easternmost (channel) section, the cold plume was thick, with water colder than 3C - considered as plume water - occupying the bottom 200 m at all times. At the slope section, the plume has thinned considerably as a result of entrainment of overlying warmer water. Mesoscale oscillations at periods of a few days dominated the temporal variability of velocity and temperature at both mooring sections. The mesoscale oscillation period, indicated by a peak in the energy density spectrum, was longer at the channel than the slope section (four and six days, respectively). A spectral peak at the diurnal tidal frequency is observed in the channel, but is absent on the slope. We will discuss these and other aspects of how the plume structure and variability develops along its path as the dense overflow exits the Faroe Bank Channel.

  16. Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers

    NASA Astrophysics Data System (ADS)

    Belov, K.; Mulrey, K.; Romero-Wolf, A.; Wissel, S. A.; Zilles, A.; Bechtol, K.; Borch, K.; Chen, P.; Clem, J.; Gorham, P. W.; Hast, C.; Huege, T.; Hyneman, R.; Jobe, K.; Kuwatani, K.; Lam, J.; Liu, T. C.; Nam, J.; Naudet, C.; Nichol, R. J.; Rauch, B. F.; Rotter, B.; Saltzberg, D.; Schoorlemmer, H.; Seckel, D.; Strutt, B.; Vieregg, A. G.; Williams, C.; T-510 Collaboration

    2016-04-01

    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  17. Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers.

    PubMed

    Belov, K; Mulrey, K; Romero-Wolf, A; Wissel, S A; Zilles, A; Bechtol, K; Borch, K; Chen, P; Clem, J; Gorham, P W; Hast, C; Huege, T; Hyneman, R; Jobe, K; Kuwatani, K; Lam, J; Liu, T C; Nam, J; Naudet, C; Nichol, R J; Rauch, B F; Rotter, B; Saltzberg, D; Schoorlemmer, H; Seckel, D; Strutt, B; Vieregg, A G; Williams, C

    2016-04-01

    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties. PMID:27104694

  18. Venus: ionosphere and atmosphere as measured by dual-frequency radio occultation of mariner v.

    PubMed

    1967-12-29

    Venus has daytime and nighttime ionospheres at the positions probed by radio occulation. The main layers are thin by terrestrial standards, with the nighttime peak concentration of electrons being about two orders of magnitude below that of the daytime peak. Above the nighttime peak were several scale-height regimes extending to a radius of at least 7500, and probably to 9700, kilometers from the center of Venus. Helium and hydrogen at plasma temperatures of 600 degrees to 1100 degrees K seem indicated in the regimes from 6300 to 7500 kilometers, with cooler molecular ions in lower regions. Above the daytime peak a sharp plasmapause was discovered, marking a sudden transition from appreciable ionization concentrations near Venus to the tenuous conditions of the solar wind. This may be indicative of a kind of interaction of the magnetized solar wind with a planetary body that differs from the two different kinds of interaction characterized by Earth and by Moon. For Venus and probably for Mars, the magnetic field of the solar wind may pile up in front of the conducting ionosphere, form an induced magnetosphere that ends at the plasmapause, above which any ionosphere that tends to form is swept away by the shocked solar wind that flows between the stand-off bow-shock and the magnetopause. The neutral atmosphere was also probed and a surface reflection may have been detected, but the data have not yet been studied in detail. Results are consistent with a super-refractive atmosphere, as expected from Soviet measurements near the surface. Thus, two unusual features of Venus can be described in terms of a light trap in the lower atmosphere, and a magnetic trap in the conducting ionosphere. PMID:17749790

  19. Measurement of the PPN Parameter (gamma) with radio signals from the Cassini Spacecraft at X- and Ka-Bands

    NASA Technical Reports Server (NTRS)

    Anderson, John D.; Lau, Eunice L.; Giampieri, Giacomo

    2005-01-01

    Radio Doppler data from the Cassini spacecraft during its solar conjunction in June 2002 can be used to measure the bending of light by solar gravitation. In terms of the standard post-Newtonian parameter (gamma), we find that (gamma) - 1 = (-1.3 +/- 5.2)x10^-5 in agreement with the theory of General Relativity. This result implies that the parameter (omega) in the Brans-Dicke theory is greater than 9000 at a 95% confidence level.

  20. First Results from The New Horizons Radio Science Experiment: Measurements of Pluto's Atmospheric Structure, Surface Pressure, and Microwave Brightness Temperature

    NASA Astrophysics Data System (ADS)

    Linscott, Ivan; Stern, Alan; Weaver, Hal; Young, Leslie; Olkin, Cathy; Ennico, Kim

    2015-11-01

    The Radio Science Experiment (REX), on board the New Horizons spacecraft, measured key characteristics of Pluto and Charon during the July 14, 2015, flyby. The REX flight instrument is integrated into the NH X-band radio transceiver and provides high precision, narrow band recording of powerful uplink transmissions from Earth stations, as well as a record of broadband radiometric power. This presentation reviews the performance and initial results of the radio occultation of Pluto, the radiometric temperature profiles, and gravity measurements during the encounter. REX received two pair of 20-kW uplink signals, one pair per polarization, transmitted from the DSN at 4.2- cm wavelength during a diametric radio occultation of Pluto. The REX recording of the uplinks affords a precise measurement of the surface pressure, the temperature structure of the lower atmosphere, and the surface radius of Pluto. The ingress portion of one polarization was played back from the spacecraft in July, while the egress portion of the same polarization was played back in August. Both ingress and egress segments of the occultation have been processed to obtain the pressure and temperature structure of Pluto’s atmosphere. In addition, REX measured the thermal emission from Pluto at 4.2- cm wavelength during two linear scans across the disk at close range when both the dayside and the night side were visible. Both scans extend from limb to limb with a resolution of one-tenth Pluto’s disk and temperature resolution of 0.1 K. A third radiometric scan was obtained during the dark side transit of the occultation. This work was supported by NASA’s New Horizons project.

  1. Coupling interactions between voltage sensors of the sodium channel as revealed by site-specific measurements.

    PubMed

    Chanda, Baron; Asamoah, Osei Kwame; Bezanilla, Francisco

    2004-03-01

    The voltage-sensing S4 segments in the sodium channel undergo conformational rearrangements in response to changes in the electric field. However, it remains unclear whether these structures move independently or in a coordinated manner. Previously, site-directed fluorescence measurements were shown to track S4 transitions in each of the four domains. Here, using a similar technique, we provide direct evidence of coupling interactions between voltage sensors in the sodium channel. Pairwise interactions between S4s were evaluated by comparing site-specific conformational changes in the presence and absence of a gating perturbation in a distal domain. Reciprocity of effect, a fundamental property of thermodynamically coupled systems, was measured by generating converse mutants. The magnitude of a local gating perturbation induced by a remote S4 mutation depends on the coupling strength and the relative equilibrium positions of the two voltage sensors. In general, our data indicates that the movement of all four voltage sensors in the sodium channel are coupled to a varying extent. Moreover, a gating perturbation in S4-DI has the largest effect on the activation of S4-DIV and vice versa, demonstrating an energetic linkage between S4-DI and S4-DIV. This result suggests a physical mechanism by which the activation and inactivation process may be coupled in voltage-gated sodium channels. In addition, we propose that cooperative interactions between voltage sensors may be the mechanistic basis for the fast activation kinetics of the sodium channel. PMID:14981134

  2. Analysis of the Capability and Limitations of Relativistic Gravity Measurements Using Radio Astronomy Methods

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.; Counselman, C. C., III

    1975-01-01

    The uses of radar observations of planets and very-long-baseline radio interferometric observations of extragalactic objects to test theories of gravitation are described in detail with special emphasis on sources of error. The accuracy achievable in these tests with data already obtained, can be summarized in terms of: retardation of signal propagation (radar), deflection of radio waves (interferometry), advance of planetary perihelia (radar), gravitational quadrupole moment of sun (radar), and time variation of gravitational constant (radar). The analyses completed to date have yielded no significant disagreement with the predictions of general relativity.

  3. Laser measurement of H{sup -} ions in a field-effect-transistor based radio frequency ion source

    SciTech Connect

    Tanaka, N.; Matsuno, T.; Funaoi, T.; Ando, A.; Tauchi, Y.; Nakano, H.; Tsumori, K.; Takeiri, Y.

    2012-02-15

    Hydrogen negative ion density measurements are required to clarify the characteristics of negative ion production and ion source performance. Both of laser photodetachment and cavity ring down (CRD) measurements have been implemented to a field-effect-transistor based radio-frequency ion source. The density ratio of negative hydrogen ions to electrons was successfully measured by laser photodetachment and effect of magnetic filter field on negative ion density was confirmed. The calculated CRD signal showed that CRD mirrors with >99.990% reflectivity are required and loss of reflectivity due to cesium contamination should be minimized.

  4. A Novel, High Resolution, Non-Contact Channel Temperature Measurement Technique

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Stark, B.; Kayali, S.

    1998-01-01

    An in-situ optical technique based on infrared emission spectroscopy has been developed for non-contact measurement of the temperature of a hot spot in the gate channel of a GaAs metal/semiconductor field effect transistor (MESFET).

  5. Intraseasonal temperature variability in the upper troposphere and lower stratosphere from the GPS radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Tian, Baijun; Ao, Chi O.; Waliser, Duane E.; Fetzer, Eric J.; Mannucci, Anthony J.; Teixeira, Joao

    2012-08-01

    In this study, we examine the detailed spatiotemporal patterns and vertical structure of the intraseasonal temperature variability in the upper troposphere and lower stratosphere (UTLS) associated with the Madden-Julian Oscillation (MJO) using the temperature profiles from the recent Global Positioning System radio occultation (GPS RO) measurements including the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission. The MJO-related temperature anomalies in the UTLS are smaller near the equator (<0.6 K) than over the subtropics and extratropics (>1.2 K). Near the equator, the temperature anomalies exhibit an eastward tilt with height from the upper troposphere (UT) to the lower stratosphere (LS) and their magnitudes and signs are determined by the strength of convective anomalies and vertical pressure level. The subtropical temperature anomalies have similar magnitudes and patterns at a given location between the UT (250 hPa to 150 hPa) and the LS (150 hPa to 50 hPa) except for opposite signs that change around 150 hPa. The subtropical warm (cold) anomalies in the UT and cold (warm) anomalies in the LS are typically collocated with the subtropical positive (negative) tropopause height anomalies/cyclones (anticyclones) and flank or lie to the west of equatorial enhanced (suppressed) convection. We also compare the intraseasonal temperature variability in the UTLS related to the MJO between the GPS RO and Atmospheric Infrared Sounder (AIRS) measurements to highlight the new features of the GPS RO temperature anomalies and to evaluate the quality of the AIRS temperature in the UTLS considering the GPS RO temperature in the UTLS as the benchmark. Both AIRS and GPS RO have a very consistent vertical structure in the subtropical UTLS with a high correlation coefficient 0.92 and similar magnitudes. Both AIRS and GPS RO also show a generally consistent vertical structure of the intraseasonal temperature anomalies in the equatorial UTLS. However, GPS RO reveals many detailed fine-scale vertical structures of the equatorial temperature anomalies between 150 and 50 hPa that are not well captured by AIRS. Furthermore, the equatorial temperature anomalies are about 40% underestimated in AIRS in comparison to GPS RO, over the equatorial Indian and western Pacific Oceans for 250 hPa and over all longitudes for 100 hPa. The low sampling within the optically thick clouds and low vertical resolution near the tropopause may both contribute to these deficiencies of AIRS.

  6. A Radio-Polarisation and Rotation Measure Study of the Gum Nebula and Its Environment

    NASA Astrophysics Data System (ADS)

    Purcell, C. R.; Gaensler, B. M.; Sun, X. H.; Carretti, E.; Bernardi, G.; Haverkorn, M.; Kesteven, M. J.; Poppi, S.; Schnitzeler, D. H. F. M.; Staveley-Smith, L.

    2015-05-01

    The Gum Nebula is 36°-wide shell-like emission nebula at a distance of only ˜450 pc. It has been hypothesized to be an old supernova remnant, fossil H ii region, wind-blown bubble, or combination of multiple objects. Here we investigate the magneto-ionic properties of the nebula using data from recent surveys: radio-continuum data from the NRAO VLA and S-band Parkes All Sky Surveys, and H α data from the Southern H-Alpha Sky Survey Atlas. We model the upper part of the nebula as a spherical shell of ionized gas expanding into the ambient medium. We perform a maximum-likelihood Markov chain Monte Carlo fit to the NVSS rotation measure data, using the H α data to constrain average electron density in the shell ne. Assuming a latitudinal background gradient in rotation measure, we find {{n}e}=1.3-0.4+0.4 c{{m}-3}, angular radius {{φ }outer}=22\\buildrel{\\circ}\\over{.} 7-0.1+0.1, shell thickness dr=18.5-1.4+1.5 pc, ambient magnetic field strength {{B}0}=3.9-2.2+4.9 μ G, and warm gas filling factor f=0.3-0.1+0.3. We constrain the local, small-scale (˜260 pc) pitch-angle of the ordered Galactic magnetic field to +7{}^\\circ ≲ \\wp ≲ +44{}^\\circ , which represents a significant deviation from the median field orientation on kiloparsec scales (˜-7.°2). The moderate compression factor X=6.0-2.5+5.1 at the edge of the H α shell implies that the “old supernova remnant” origin is unlikely. Our results support a model of the nebula as a H ii region around a wind-blown bubble. Analysis of depolarization in 2.3 GHz S-PASS data is consistent with this hypothesis and our best-fitting values agree well with previous studies of interstellar bubbles.

  7. Multi-channel transimpedance measurement of a planar electromagnetic sensor array

    NASA Astrophysics Data System (ADS)

    Chen, Dixiang; Xie, Ruifang; Zhou, Weihong; Hu, Hengjiang; Pan, Mengchun

    2015-02-01

    Planar electromagnetic sensor arrays have advantages such as nice coherence, fast response speed and high sensitivity, which can be used for micro damage inspection of crucial parts in equipment, and the key point in improving the inspection performance is to achieve a precise measurement of multi-channel transimpedances (the inductive voltages divided by the exciting current of the sensor). The principle and characteristics of planar electromagnetic sensor arrays are introduced in this paper, and a digital lock-in impedance measurement algorithm was investigated, with which the interference and noise in inductive voltage signals can be restrained effectively and the amplitude and phase of the transimpedance can be obtained with good repeatability. An eight channel impedance measurement system was established based on a field programmable gate array and utilized to inspect the micro damage in metal materials, and the experimental data were analyzed. The experimental results show that the impedance measurement has excellent repeatability when the sensor array is placed in air, and the maximum measurement error of the complete transimpedance measurement system is lower than 10%. A micro crack with a size of 1 mm (length) × 0.1 mm (width) × 1 mm (depth) can be detected through the measurement of multi-channel transimpedance in the planar electromagnetic sensor array.

  8. Measurements on the satellite-mobile channel at L and S bands

    NASA Technical Reports Server (NTRS)

    Smith, H.; Gardiner, J. G.; Barton, S. K.

    1993-01-01

    An experiment is described in which measurements are made on the satellite-mobile channel at L and S bands. A light aircraft carrying a c.w. beacon is flown at elevation angles of 40, 60 and 80 degrees to a mobile receiver. The signal strength at the mobile is recorded in open, urban, suburban and tree shadowed environments. This data is then analyzed to produce statistics for the channel with respect to frequency, elevation angle, and environment. Results are presented together with a brief discussion, suggested interpretation, and conclusion.

  9. Reduction of flow-measurement uncertainties in laser velocimeters with nonorthogonal channels

    NASA Technical Reports Server (NTRS)

    Snyder, P. K.; Orloff, K. L.; Reinath, M. S.

    1983-01-01

    An analysis of certain geometrical limitations inherent in the application of laser velocimeters with nonorthogonal channels has led to the development of advanced-LDA-calibration and data-acquisition techniques that minimize systematic and statistical errors, respectively. The data-acquisition technique optimizes the number of velocity samples collected from three velocimeter channels as a function of local turbulence intensity, vector direction, and prescribed confidence interval. Linear velocity surveys and streamline traces measured in a turbulent flow field with a three-dimensional laser velocimeter are presented and the validity and accuracy of the theoretical analysis are discussed.

  10. Single channel and ensemble hERG conductance measured in droplet bilayers.

    PubMed

    Vijayvergiya, Viksita; Acharya, Shiv; Poulos, Jason; Schmidt, Jacob

    2015-02-01

    The human ether-a-go-go related gene (hERG) encodes the potassium channel Kv11.1, which plays a key role in the cardiac action potential and has been implicated in cardiac disorders as well as a number of off-target pharmaceutical interactions. The electrophysiology of this channel has been predominantly studied using patch clamp, but lipid bilayers have the potential to offer some advantages, including apparatus simplicity, ease of use, and the ability to control the membrane and solution compositions. We made membrane preparations from hERG-expressing cells and measured them using droplet bilayers, allowing measurement of channel ensemble currents and 13.5 pS single channel currents. These currents were ion selective and were blockable by E-4031 and dofetilide in a dose-dependent manner, allowing determination of IC50 values of 17 nM and 9.65 μM for E-4031 and dofetilide, respectively. We also observed time- and voltage- dependent currents following step changes in applied potential that were similar to previously reported patch clamp measurements. PMID:25653065

  11. Measuring the Solar Magnetic Field with STEREO A Radio Transmissions: Faraday Rotation Observations using the 100m Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Kobelski, A.; Jensen, E.; Wexler, D.; Heiles, C.; Kepley, A.; Kuiper, T.; Bisi, M.

    2016-04-01

    The STEREO mission spacecraft recently passed through superior conjunction, providing an opportunity to probe the solar corona using radio transmissions. Strong magnetic field and dense plasma environment induce Faraday rotation of the linearly polarized fraction of the spacecraft radio carrier signal. Variations in the Faraday rotation signify changes in magnetic field components and plasma parameters, and thus can be used to gain understanding processes of the quiescent sun as well as active outbursts including coronal mass ejections. Our 2015 observing campaign resulted in a series of measurements over several months with the 100m Green Bank Telescope (GBT) to investigate the coronal Faraday rotation at various radial distances. These observations reveal notable fluctuations in the Faraday rotation of the signal in the deep corona, and should yield unique insights into coronal magnetohydrodynamics down to a 1.5 solar radius line-of-sight solar elongation.

  12. Effects of horizontal velocity variations on ultrasonic velocity measurements in open channels

    USGS Publications Warehouse

    Swain, E.D.

    1992-01-01

    Use of an ultrasonic velocity meter to determine discharge in open channels involves measuring the velocity in a line between transducers in the stream and relating that velocity to the average velocity in the stream. The standard method of calculating average velocity in the channel assumes that the velocity profile in the channel can be represented by the one-dimensional von Karman universal velocity profile. However, the velocity profile can be described by a two-dimensional equation that accounts for the horizontal velocity variations induced by the channel sides. An equation to calculate average velocity accounts for the two-dimensional variations in velocity within a stream. The use of this new equation to calculate average velocity was compared to the standard method in theoretical trapezoidal cross sections and in the L-31N and Snapper Creek Extension Canals near Miami, Florida. These comparisons indicate that the two-dimensional variations have the most significant effect in narrow, deep channels. Also, the two-dimensional effects may be significant in some field situations and need to be considered when determining average velocity and discharge with an ultrasonic velocity meter.

  13. Analysis of Tracking Measuring Method of Focus Cabin of Five-hundred-meter Aperture Spherical radio Telescope(FAST)

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Zhu, Lichun

    2015-08-01

    FAST (Five-hundred-meter Aperture Spherical radio Telescope) project is one of the Chinese mega-Science Projects to build the largest single dish radio telescope in the world. FAST has three outstanding innovation aspects: in the karst depression which is large to host the 500-meter telescope, an active main reflector correcting for spherical aberration on the ground to achieve a full polarization is being built, the light-weight feed focus cabin in which a parallel robot as a secondary adjustable system to move with high precision is driven by cables and servomechanism plus. The part of main reflector which is illuminated by the feed is continually adjusted to fit the paraboloid of revolution in real time when tracking the radio source. How to get high precise real-time feedback data of moving focus cabin’s position when tracking the source is one of the crucial problems for the astronomical observation.At present 24 steady basis pillars for measurement whose position coordinates are already known, have been built in the construction field of FAST. Total stations will be installed on one of those pillars, and prisms will be installed on focus cabin. The purpose of this study was to assess the accuracy and reliability of two measuring method: the space distance intersection calculation method and polar measuring method. The space distance intersection calculation method is only using multiple measuring distances between three pillars and prism and known coordinates of pillars to calculate the prism’s coordinates, the polar measurement is using the measuring distance and angles to get the prism’s coordinate.

  14. A method to measure specific absorption rate of nanoparticles in colloidal suspension using different configurations of radio-frequency fields

    NASA Astrophysics Data System (ADS)

    Ketharnath, Dhivya; Pande, Rohit; Xie, Leiming; Srinivasan, Srimeenakshi; Godin, Biana; Wosik, Jarek

    2012-08-01

    We report a method for characterization of the efficiency of radio-frequency (rf) heating of nanoparticles (NPs) suspended in an aqueous medium. Measurements were carried out for water suspended 5 nm superparamagnetic iron-oxide NPs with 30 nm dextran matrix for three different configurations of rf electric and magnetic fields. A 30 MHz high-Q resonator was designed to measure samples placed inside a parallel plate capacitor and solenoid coil with or without an rf electric field shield. All components of rf losses were analyzed and rf electric and magnetic field induced heating of NPs and the dispersion medium was determined and discussed.

  15. The role of helium metastable states in radio-frequency driven helium-oxygen atmospheric pressure plasma jets: measurement and numerical simulation

    NASA Astrophysics Data System (ADS)

    Niemi, K.; Waskoenig, J.; Sadeghi, N.; Gans, T.; O'Connell, D.

    2011-10-01

    Absolute densities of metastable He(23S1) atoms were measured line-of-sight integrated along the discharge channel of a capacitively coupled radio-frequency driven atmospheric pressure plasma jet operated in technologically relevant helium-oxygen mixtures by tunable diode-laser absorption spectroscopy. The dependences of the He(23S1) density in the homogeneous-glow-like α-mode plasma with oxygen admixtures up to 1% were investigated. The results are compared with a one-dimensional numerical simulation, which includes a semi-kinetical treatment of the pronounced electron dynamics and the complex plasma chemistry (in total 20 species and 184 reactions). Very good agreement between measurement and simulation is found. The main formation mechanisms for metastable helium atoms are identified and analyzed, including their pronounced spatio-temporal dynamics. Penning ionization through helium metastables is found to be significant for plasma sustainment, while it is revealed that helium metastables are not an important energy carrying species into the jet effluent and therefore will not play a direct role in remote surface treatments.

  16. Heat transfer and pressure drop measurement in wavy channels with flow disturbers

    SciTech Connect

    Dini, S.; Veronesi, R.; Hryniewicz, E.V.

    1999-07-01

    In the current work, the transient method was employed to obtain the local heat transfer coefficient for a 6 in. x 3/8 in. x 12 in. (15.24cm x .9525cm x 30.48cm) Plexiglas {reg_sign} wavy channel with and without flow disturbers. A short duration transient test was performed to measure the heat transfer coefficient by introducing heated air over test specimen that had been sprayed with calibrated thermochromic liquid crystals. This technique allowed the experimenter to observe the temperature changes using a video camera. because a Plexiglas surface has a low thermal diffusivity, a one-dimensional assumption is a reasonable approximation because the surface temperature response is limited to a thin layer near the surface and lateral conduction is small. The heat transfer coefficient using the transient technique is then determined from the response of the surface temperature to a step change in the local temperature. Using this method, the axial variation in the heat transfer coefficient for Reynolds numbers in the laminar (1100) and turbulent region (2900) were obtained. These Reynolds numbers were based on the hydraulic diameter at the inlet of the wavy channel. Also, in this investigation, the region of greatest heat transfer and the pressure drop were both experimentally and analytically determined and the friction factor across an in-phase corrugated wall channel (wavy channel) at Reynolds numbers of 1100 and 2900 were obtained. A manometer and a pressure transducer were employed to measure pressure drop across the channel. The effect of flow disturbers mounted on each peak, alternate peaks and the first six peaks of a twelve-peak channel were also investigated. For all cases, the pressure drop and friction factor were shown to moderately increase with rib placement in the test section when compared to the results obtained from a similar smooth wavy channel without ribs. Additionally, for all cases, the friction factor also decreased with an increase in the Reynolds number. If the ratio of pumping power to heat transfer rate was selected as the primary criteria, the channel with a flow disturber placed on alternate peaks was determined to be the best configuration. The following figure illustrates the color changes of the liquid crystals.

  17. Photogrammetric survey to measure the bed topography of a laboratory large amplitude meandering channel

    NASA Astrophysics Data System (ADS)

    Lo Brutto, Mauro

    2010-05-01

    One of the main characteristics of the rivers that exhibit a meandering planform is the continuous evolution of the planimetric shape. In order to limit flooding risks and to control the ecological equilibrium of the areas neighboring the channel, it is important to define a forecast methodology of the channel evolution. The pattern of the channel evolution strongly depends on the configuration of the "stable" bed topography along the channel in every stage of the evolution itself. Previous works [Schumm, 1963; Schumm, 1972; Jackson, 1975; Hooke, 1976; Ren and Jun, 1989; Whiting and Dietrich, 1993] show that the localization of the erosion and deposition zones along the channel is not standard but it depends on the planimetric shape of the channel itself. For example, it was shown that at the early stage of a meander wave evolution (small value of deflection angle J0) the deepest erosion of the bed is localized at the inner bank between the sections corresponding respectively to the inflection point and to the apex of the bend. In channels with "large" sinuosity (large value of deflection angle J0) the deepest erosion is localized in the outer bank near the apex of the bend [Yalin, 1992]. Recently, da Silva et al. [2006] verified that every different sinuosity (every J0) has its own convective flow pattern and, as previously observed in a large amplitude meandering channel by Termini (1996), the knowledge of the convective structure of the depth-averaged "initial" (determined at t=0 with flat bed) flow, which is associated only to changing channel curvature, can be used to predict the general features of bed topography. Thus, the knowledge of the stable bed topography is important to predict the channel planimetric evolution. In this paper the equilibrium bed topography determined in a large meandering laboratory channel has been first measured by a using a profile indicator PV09 by Delft Hydraulics (precision of 0.1 mm). The PV09 is designed to maintain a constant distance between the probe and the bed (or between the probe and the free surface) in order to maintain a constant electric capacity. Thus, the instrument is able to monitor the temporal or the spatial variation of the bed (or the free surface) sampling a value per second. Then, the analogical output is converted into digital, filtered and recorded by the help of a PC card NI-DAQ (National Instruments) and of a data acquisition algorithm expressly scheduled in Labview (ver. 7.0) environment. Then a photogrammetric survey has been carried out to produce in a fully automatic way a very dense Digital Surface Model (DSM) of the bed topography of the laboratory channel. The image acquisition has been performed using a Nikon D80 digital camera with a focal length of 28 mm and a resolution of 3872 pixel x 2592 pixel; the pixel size was 6.1 mm. The camera-to-object distance was 0.65 m and the photo scale was 1:23. The photos were taken providing the stereo coverage necessary for automatic DSM generation. The photos orientation was executed by bundle adjustment without control points using only several calibrated scale bar to scale the photogrammetric model. The very dense DSM has been produced with a step of 2 mm for the whole channel using image matching techniques without editing.

  18. Radio frequency ice dielectric permittivity measurements using CReSIS data

    NASA Astrophysics Data System (ADS)

    Stockham, M.; Macy, J.; Besson, D.

    2016-03-01

    We report on studies of the ice dielectric permittivity using 150-195 MHz radar depth sounding data accumulated by the Center for Remote Sensing of Ice Sheets group, based at the University of Kansas. In the context of astroparticle physics experiments aimed at understanding radio emissions from cosmic rays interacting in the Earth's polar regions, our goals for this study were twofold: (1) identify radio frequency wave speed polarization asymmetries in Antarctica and (for the first time) in Greenland and (2) directly extract the depth dependence of the radio frequency field attenuation length as well as map out the attenuation over a large area. We first examine asymmetries in the real part of the permittivity (index-of-refraction n=√ɛ') using Center for Remote Sensing of Ice Sheets bedrock radar reflection data taken from a single location, but with different signal polarizations. These data indicate birefringence for flow parallel-, versus perpendicular-to the local ice-flow direction, with the former corresponding to smaller index-of-refraction (i.e., faster wave speed). Second, we have investigated the imaginary part of the permittivity (ɛ'') and extracted the depth dependence of the field attenuation length (Lα˜√ɛ''), as well as estimated the depth-averaged radio frequency attenuation length from data taken near the Greenland Ice Core Project site near Summit, Greenland. We obtain =500-60+90 m based on calculated values in the 1000-2000 m ice depth interval to which we have sensitivity and extrapolated to the full depth, where the errors shown reflect our uncertainty in our extrapolation. We also observe the expected decrease in attenuation length with increasing depth/temperature. A depth-averaged attenuation length is also extracted directly from the relative strengths of the observed bedrock versus surface returns over large regions of both Greenland and Antarctica.

  19. e-MERLIN Radio Continuum Measurements of OB Star Winds in Cyg OB2

    NASA Astrophysics Data System (ADS)

    Morford, Jack; Prinja, Raman; Fenech, Danielle Marie

    2015-08-01

    We report on the first results from the e-MERLIN Cyg OB2 Radio Survey (COBRaS), which is designed to exploit e-MERLIN's enhanced capabilities to conduct deep-field mapping of the tremendously rich Cyg OB2 association in our Galaxy. The project aims to deliver the most detailed radio census of the most massive OB association in the northern hemisphere.There is considerable evidence for structure (clumping) in the radiatively driven stellar winds of hot stars. The existence of clumping has important consequences for mass-loss rate determinations. Mass-loss rates that are not corrected for clumping provide incorrect inputs for stellar and Galactic evolution models. Radio observations are ideally suited to study the effect of clumping in the outer regions of the wind. We present the first 20 cm (L-band) continuum detections of OB stars in Cyg OB2. These data substantially increase the observational detections of the outer wind of massive stars. In combination with other observations at different wavelengths COBRaS will greatly advance our knowledge of clumping as a function of radial distance around massive stars. The observations allow us to quantify the amount of clumping and search for possible relations with stellar and/or wind parameters.

  20. Isothermal mass flow measurements in microfabricated rectangular channels over a very wide Knudsen range

    NASA Astrophysics Data System (ADS)

    Anderson, John M.; Moorman, Matthew W.; Brown, Jason R.; Hochrein, James M.; Thornberg, Steven M.; Achyuthan, Komandoor E.; Gallis, Michael A.; Torczynski, John R.; Khraishi, Tariq; Manginell, Ronald P.

    2014-05-01

    Measurement and modeling of gas flows in microelectromechanical systems (MEMS) scale channels are relevant to the fundamentals of rarefied gas dynamics (RGD) and the practical design of MEMS-based flow systems and micropumps. We describe techniques for building robust, leak-free, rectangular microchannels which are relevant to micro- and nanofluidic devices, while the channels themselves are useful for fundamental RGD studies. For the first time, we report the isothermal steady flow of helium (He) gas through these channels from the continuum to the free-molecular regime in the unprecedented Knudsen range of 0.03-1000. On the high end, our value is 20-fold larger than values previously reported by Ewart et al (2007 J. Fluid Mech. 584 337-56). We accomplished this through a dual-tank accumulation technique which enabled the monitoring of very low flow rates, below 10-14 kg s-1. The devices were prebaked under vacuum for 24 h at 100 °C in order to reduce outgassing and attain high Kn. We devised fabrication methods for controlled-depth micro-gap channels using silicon for both channel ceiling and floor, thereby allowing direct comparisons to models which utilize this simplifying assumption. We evaluated the results against a closed-form expression that accurately reproduces the continuum, slip, transition, and free-molecular regimes developed partly by using the direct simulation Monte Carlo method. The observed data were in good agreement with the expression. For Kn > ˜100, we observed minor deviations between modeled and experimental flow values. Our fabrication processes and experimental data are useful to fundamental RGD studies and future MEMS microflow devices with respect to extremely low-flow measurements, model validation, and predicting optimal designs.

  1. The equilibrium velocity of spherical particles in rectangular microfluidic channels for size measurement.

    PubMed

    Sommer, Christian; Quint, Stephan; Spang, Peter; Walther, Thomas; Bassler, Michael

    2014-07-01

    According to the Segré-Silberberg effect, spherical particles migrate to a lateral equilibrium position in parabolic flow profiles. Here, for the first time, the corresponding equilibrium velocity is studied experimentally for micro particles in channels with rectangular cross section. Micro channels are fabricated in PMMA substrate based on a hot embossing process. To measure individual particle velocities at very high precision, the technique of spatially modulated emission is applied. It is found that the equilibrium velocity is size-dependent and the method offers a new way to measure particle size in microfluidic systems. The method is of particular interest for microfluidic flow cytometry as it delivers an alternative to the scatter signal for cell size determination. PMID:24829932

  2. Measurement of top quark polarisation in t-channel single top quark production

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Awad, A.; El Sawy, M.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Kodolova, O.; Korneeva, N.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Sunar Cerci, D.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2016-04-01

    A first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in t-channel single top quark production is presented. It is based on a sample of pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb-1. A high-purity sample of t-channel single top quark events with an isolated muon is selected. Signal and background components are estimated using a fit to data. A differential cross section measurement, corrected for detector effects, of an angular observable sensitive to the top quark polarisation is performed. The differential distribution is used to extract a top quark spin asymmetry of 0.26 ± 0.03(stat) ± 0.10(syst), which is compatible with a p-value of 4.6% with the standard model prediction of 0.44. [Figure not available: see fulltext.

  3. Measurement of the single top quark t-channel cross section with a template fit analysis

    NASA Astrophysics Data System (ADS)

    Merola, Mario; Cms Collaboration

    2013-07-01

    We present a measurement of the inclusive single top t-channel production cross section in proton-proton collisions at the LHC, using data collected with the CMS experiment during 2011 and 2012. The analyzed data correspond to an integrated luminosity of 1.17/1.56 fb-1 for muon/electron channel respectively at the centre-of-mass energy of 7TeV, and to 5.0 fb-1 at 8 TeV. The analysis exploits the pseudorapidity distribution of the recoil jet and reconstructed top-quark mass using background estimates determined from control samples in data. The measurement is used to determine the CKM matrix element |Vtb|.

  4. Measurement of top quark polarisation in t-channel single top quark production

    SciTech Connect

    Khachatryan, Vardan

    2015-11-09

    Our first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in t-channel single top quark production is presented. It is based on a sample of pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb-1. A high-purity sample of t-channel single top quark events with an isolated muon is selected. Signal and background components are estimated using a fit to data. Furthermore, a differential cross section measurement, corrected for detector effects, of an angular observable sensitive to the top quark polarisation is performed. The differential distribution is used to extract a top quark spin asymmetry of 0.26 ± 0.03 (stat) ± 0.10 (syst), which is compatible with a p-value of 4.6% with the standard model prediction of 0.44.

  5. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements

    NASA Astrophysics Data System (ADS)

    Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.; Rebecca, L.; Lalnunthari, J.; Thanga, H. H.

    2016-04-01

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.

  6. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements.

    PubMed

    Hlondo, L R; Lalremruata, B; Punte, L R M; Rebecca, L; Lalnunthari, J; Thanga, H H

    2016-04-01

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result. PMID:27131701

  7. Measurements of the Top Quark Mass in the Dilepton Decay Channel at the D0 Experiment

    SciTech Connect

    Grohsjean, Alexander

    2008-10-01

    We present the most recent measurements of the top quark mass in the dilepton decay channel at the D0 experiment using proton-antiproton collisions with a center-of-mass energy of 1.96 TeV at the Tevatron collider. Two different methods have been used: the Neutrino Weighting and the Matrix Element method. The combined results yield a top mass of 174.4 +-3.8 GeV.

  8. A new method for measuring the absolute efficiency of channel electron multipliers for electrons

    NASA Astrophysics Data System (ADS)

    Pszona, S.

    1999-01-01

    A new method for measuring the absolute efficiency for electron counting with channel electron multipliers (CEMs) is described. The new method is based on the transient time response of the CEMs to pulsed electron beams. It is especially suitable for CEMs with resistance higher than 100 MΩ and it has been used to determine the absolute efficiency of a B419BL (Mullard) and KPE07 (TUG) CEM for detection of electrons in the energy range 50-1500 eV.

  9. Lightning Return-Stroke Current Waveforms Aloft, from Measured Field Change, Current, and Channel Geometry

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; LeVine, D. M.; Idone, V. P.

    2006-01-01

    Three-dimensional reconstructions of six rocket-triggered lightning channels are derived from stereo photographs. These reconstructed channels are used to infer the behavior of the current in return strokes above the ground from current waveforms measured at the channel base and electric-field-change waveforms measured at a range of 5.2 kilometers for 24 return strokes in these channels. Streak photographs of 14 of the same strokes are analyzed to determine the rise times, propagation speeds, and amplitudes of relative light intensity for comparison with the electrical inferences. Results include the following: 1) The fine structure of the field-change waveforms that were radiated by these subsequent return strokes can be explained, in large part, by channel geometry. 2) The average 10 - 90% rise time of the stroke current increased by about a factor of seven in our sample, from an observed 0.31 plus or minus 0.17 microseconds at the surface to an inferred 2.2 plus or minus 0.5 microcseconds at 1 kilometer path length above the surface. 3) The three-dimensional propagation speed of the current front averaged 1.80 plus or minus 0.24 X 10(exp 8) meters per second over channel lengths typically greater than 1 kilometer. 4) Assuming that the measured current was entirely due to the return stroke forced an unreasonably large and abrupt reduction in inferred current amplitude over the first few tens of meters above the surface, especially in cases when the leader was bright relative to its stroke. Therefore, a significant fraction of the current at the surface was probably due to the leader, at least in such cases. 5) Peak return-stroke currents decreased by approximately 37 plus or minus 12% from 100 meters to 1 kilometer of path length above the surface. Because of uncertainty about how to partition the measured current between leader and return stroke, we are unable to infer the variation of current amplitude near the ground.

  10. Development of 200-channel mapping system for tissue oxygenation measured by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Niwayama, Masatsugu; Kohata, Daisuke; Shao, Jun; Kudo, Nobuki; Hamaoka, Takatumi; Katsumura, Toshihito; Yamamoto, Katsuyuki

    2000-07-01

    Near-infrared spectroscopy (NIRS) is a very useful technique for noninvasive measurement of tissue oxygenation. Among various methods of NIRS, continuous wave near-infrared spectroscopy (CW- NIRS) is especially suitable for real-time measurement and for practical use. CW-NIRS has recently been applied in vivo reflectance imaging of muscle oxygenation and brain activity. However, conventional mapping systems do not have a sufficient mapping area at present. Moreover, they do not enable quantitative measurement of tissue oxygenation because conventional NIRS is based on the inappropriate assumption that tissue is homogeneous. In this study, we developed a 200-channel mapping system that enables measurement of changes in oxygenation and blood volume and that covers a wider area (30 cm x 20 cm) than do conventional systems. The spatial resolution (source- detector separation) of this system is 15 mm. As for the effcts of tissue inhomogeneity on muscle oxygenation measurement, subcutaneous adipose tissue greatly reduces measurement sensitivity. Therefore, we also used a correction method for influence of the subcutaneous fat layer so that we could obtain quantitative changes in concentrations of oxy- and deoxy- hemoglobin. We conducted exercise tests and measured the changed in hemoglobin concentration in the thigh using the new system. The working muscles in the exercises could be imaged, and the heterogeneity of the muscles was shown. These results demonstrated the new 200-channel mapping system enables observation of the distribution of muscle metabolism and localization of muscle function.

  11. Measuring flood discharge in unstable stream channels using ground-penetrating radar

    USGS Publications Warehouse

    Spicer, K.R.; Costa, J.E.; Placzek, G.

    1997-01-01

    Field experiments were conducted to test the ability of ground-penetrating radar (GPR) to measure stream-channel cross sections at high flows without the necessity of placing instruments in the water. Experiments were conducted at four U.S. Geological Survey gaging stations in southwest Washington State. With the GPR antenna suspended above the water surface from a bridge or cableway, traverses were made across stream channels to collect radar profile plots of the streambed. Subsequent measurements of water depth were made using conventional depth-measuring equipment (weight and tape) and were used to calculate radar signal velocities. Other streamflow-parameter data were collected to examine their relation to radar signal velocity and to claritv of streambed definition. These initial tests indicate that GPR is capable of producing a reasonably accurate (??20%) stream-channel profile and discharge far more quickly than conventional stream-gaging procedures, while avoiding the problems and hazards associated with placing instruments in the water.

  12. Radio-frequency measurements of UNiX compounds (X= Al, Ga, Ge) in high magnetic fields

    SciTech Connect

    Mielke, Charles H; Mcdonald, David R; Zapf, Vivien; Altarawneh, Moaz M; Lacerda, Alex H; Adak, Sourav; Karunakar, Kothapalli; Nakotte, Heinrich; Chang, S; Alsmadi, A M; Alyones, S

    2009-01-01

    We performed radio-frequency (RF) skin-depth measurements of antiferromagnetic UNiX compounds (X=Al, Ga, Ge) in magnetic fields up to 60 T and at temperatures between 1.4 to {approx}60 K. Magnetic fields are applied along different crystallographic directions and RF penetration-depth was measured using a tunnel-diode oscillator (TDO) circuit. The sample is coupled to the inductive element of a TDO resonant tank circuit, and the shift in the resonant frequency {Delta}f of the circuit is measured. The UNiX compounds exhibit field-induced magnetic transitions at low temperatures, and those transitions are accompanied by a drastic change in {Delta}f. The results of our skin-depth measurements were compared with previously published B-T phase diagrams for these three compounds.

  13. Solar gravitational deflection of radio waves measured by very-long-baseline interferometry

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Kent, S. M.; Knight, C. A.; Shapiro, I. I.; Clark, T. A.; Hinteregger, H. F.; Rogers, A. E. E.; Whitney, A. R.

    1974-01-01

    Utilizing a four-antenna technique, simultaneous observations were made, at each end of an 845-km baseline, of the radio sources 3C279 and 3C273B, which are 10 deg apart in the sky. Differences in interferometric phases at 3.7-cm wavelength monitored near the time of the 1972 occultation of 3C279 by the sun, yielded a gravitational deflection of 0.99 plus or minus 0.03 times the value predicted by general relativity, corresponding to gamma = 0.98 plus or minus 0.06 (standard error).

  14. Measurements of the Suitability of Large Rock Salt Formations for Radio Detection of High-Energy Neutrinos

    SciTech Connect

    Odian, Allen C.

    2001-09-14

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant (WIPP), located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors.

  15. High fidelity wireless network evaluation for heterogeneous cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso

    2012-06-01

    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal-level interactions with real radios. This holistic wireless evaluation approach supports a large-scale, het- erogeneous, and dynamic CR network architecture and allows developing cross-layer network protocols under high fidelity, repeatable, and scalable wireless test scenarios suitable for heterogeneous space, air, and ground networks.

  16. Four-channel ZnS scintillator measurements of escaping tritons in TFTR

    SciTech Connect

    Zweben, S.J.

    1988-10-01

    A four-channel scintillation detector capable of measuring tritons, protons, and alphas escaping from a tokamak plasma was operated during the 1986 run period of the Tokamak Fusion Test Reactor (TFTR). Signals consistent with the expected 1 MeV triton behavior have been observed during deuterium operation. Backgrounds associated with neutrons, gammas, and soft x-rays have been evaluated in situ. Such a detector should be capable of measuring escaping alphas during the D/T phase of TFTR. 16 refs., 10 figs.

  17. Eratosthenes via Ham Radio

    ERIC Educational Resources Information Center

    Koser, John F.

    1975-01-01

    A secondary geology class used Eratosthenes' method for measuring the circumference of the earth by comparing their measurements of the shadow of a vertical rod to the measurements made by another person contacted by ham radio. (MLH)

  18. Offset correction system for 128-channel self-triggering readout chip with in-channel 5-bit energy measurement functionality

    NASA Astrophysics Data System (ADS)

    Otfinowski, P.; Grybos, P.; Szczygiel, R.; Kasinski, K.

    2015-04-01

    We report on a novel, two-stage 8-bit trimming solution dedicated for multichannel systems with reduced trim DAC area occupancy. The presented design was used for comparator offset correction in a 128-channel particle tracking, self-triggering readout system and manufactured in 180 nm CMOS process. The 8-bit trim DAC has a range of ±165 mV, current consumption of 3.2 μA and occupies an area of 37 μm×17 μm in each channel, which corresponds to a 6-bit conventional current steering DAC with similar linearity.

  19. THE RADIO-2 mm SPECTRAL INDEX OF THE CRAB NEBULA MEASURED WITH GISMO

    SciTech Connect

    Arendt, R. G.; George, J. V.; Staguhn, J. G.; Benford, D. J.; Fixsen, D. J.; Maher, S. F.; Moseley, S. H.; Sharp, E.; Wollack, E. J.; Devlin, M. J.; Dicker, S. R.; Korngut, P. M.; Irwin, K. D.; Jhabvala, C. A.; Miller, T. M.; Kovacs, A.; Mason, B. S.; Navarro, S.; Sievers, A.; Sievers, J. L.

    2011-06-10

    We present results of 2 mm observations of the Crab Nebula, obtained using the Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) bolometer camera on the IRAM 30 m telescope. Additional 3.3 mm observations with the MUSTANG bolometer array on the Green Bank Telescope are also presented. The integrated 2 mm flux density of the Crab Nebula provides no evidence for the emergence of a second synchrotron component that has been proposed. It is consistent with the radio power-law spectrum, extrapolated up to a break frequency of log ({nu}{sub b}[GHz]) = 2.84 {+-} 0.29 or {nu}{sub b} = 695{sup +651}{sub -336} GHz. The Crab Nebula is well resolved by the {approx}16.''7 beam (FWHM) of GISMO. Comparison to radio data at comparable spatial resolution enables us to confirm significant spatial variation of the spectral index between 21 cm and 2 mm. The main effect is a spectral flattening in the inner region of the Crab Nebula, correlated with the toroidal structure at the center of the nebula that is prominent in the near-IR through X-ray regime.

  20. Error Vector Magnitude (EVM) Measurement to Characterize Tracking and Data Relay Satellite (TDRS) Channel Impairment

    NASA Technical Reports Server (NTRS)

    Mebratu, Derssie; Kegege, Obadiah; Shaw, Harry

    2016-01-01

    Digital signal transmits via a carrier wave, demodulates at a receiver and locates an ideal constellation position. However, a noise distortion, carrier leakage and phase noise divert an actual constellation position of a signal and locate to a new position. In order to assess a source of noise and carrier leakage, Bit Error Rate (BER) measurement technique is also used to evaluate the number of erroneous bit per bit transmitted signal. In addition, we present, Error Vector Magnitude (EVM), which measures an ideal and a new position, assesses a source of signal distortion, and evaluates a wireless communication system's performance with a single metric. Applying EVM technique, we also measure the performance of a User Services Subsystem Component Replacement (USSCR) modem. Furthermore, we propose EVM measurement technique in the Tracking and Data Relay Satellite system (TDRS) to measure and evaluate a channel impairment between a ground (transmitter) and the terminal (receiver) at White Sands Complex.

  1. Allometric relationships between traveltime channel networks, convex hulls, and convexity measures

    NASA Astrophysics Data System (ADS)

    Tay, Lea Tien; Sagar, B. S. Daya; Chuah, Hean Teik

    2006-06-01

    The channel network (S) is a nonconvex set, while its basin [C(S)] is convex. We remove open-end points of the channel connectivity network iteratively to generate a traveltime sequence of networks (Sn). The convex hulls of these traveltime networks provide an interesting topological quantity, which has not been noted thus far. We compute lengths of shrinking traveltime networks L(Sn) and areas of corresponding convex hulls C(Sn), the ratios of which provide convexity measures CM(Sn) of traveltime networks. A statistically significant scaling relationship is found for a model network in the form L(Sn) ˜ A[C(Sn)]0.57. From the plots of the lengths of these traveltime networks and the areas of their corresponding convex hulls as functions of convexity measures, new power law relations are derived. Such relations for a model network are CM(Sn) ˜ ? and CM(Sn) ˜ ?. In addition to the model study, these relations for networks derived from seven subbasins of Cameron Highlands region of Peninsular Malaysia are provided. Further studies are needed on a large number of channel networks of distinct sizes and topologies to understand the relationships of these new exponents with other scaling exponents that define the scaling structure of river networks.

  2. Pressure Drop Measurements for Turbulent Channel Flow over Superhydrophobic Surfaces with Superimposed Riblets

    NASA Astrophysics Data System (ADS)

    Perkins, Richard; Prince, Joseph; Vanderhoff, Julie; Maynes, Daniel

    2012-11-01

    We consider the combined drag reducing mechanisms of riblets and superhydrophobicity. Pressure drop measurements were acquired for turbulent channel flow over riblet surfaces, superhydrophobic surfaces, and surfaces with both drag reducing mechanisms. The riblets were nominally 80 μm tall, 16 μm wide, and spaced with a period of 160 μm. The superhydrophobic structuring was composed of alternating microribs (15 μm tall and 8 μm wide) and cavities (32 μm wide), aligned parallel to the flow. The channel consisted of a control section and a test section comprised of smooth and patterned wafers, respectively. In all cases, the test section walls were structured on top and bottom while the side walls were left smooth. The channel had a hydraulic diameter of 7.3 mm and an aspect ratio of 10:1. Seven pressure ports were precision machined into the walls of both the control and test sections. The pressure drop measurements were acquired simultaneously over both sections to eliminate uncertainty associated with the flow rate. The drag reduction for all test sections was then computed directly and data were obtained over a Reynolds number range of 11000 to 15000.

  3. Faraday Rotation Measurements in a Laser Initiated Discharge Channel for Ion Beam Transport

    NASA Astrophysics Data System (ADS)

    Niemann, C.; Ponce, D. M.; Yu, S. S.; Leemans, W.; Fessenden, T. J.; Dahlbacka, G.; Vandersloot, K.; Sharp, W. M.; Tauschwitz, A.

    1999-11-01

    The neutralized beam transport in high-current plasma channels makes them interesting for the final focusing of high-intensity beams in an inertial confinement fusion reactor. The current-density distribution inside the channel is of great interest, since it determines the focusing properties. A Faraday polarimeter is currently under construction for the laser-channel experiment at the Lawrence Berkeley National Laboratory. The setup consists of a high power cw CO2 laser and a detector of two ambient temperature HgCdTe photodetectors working in the half shadow angle principle. Expected peak rotation for 40 kA discharge current is about half a degree. The polarimeter is designed to achieve a sensitivity of 0.01^circ and a contrast of 10-3 with a risetime better than 1 μ s. Tests of the detector - amplifier system will be presented as well as first time- and space-resolved measurements of the rotation. The polarimeter will be used in conjunction with a Michelson interferometer to determine the magnetic field. Measurements will be compared with numerical simulations (CYCLOPS).

  4. Wireless Charge Based Capacitance Measurement Circuits with On-Chip Spiral Inductor for Radio Frequency Identification Biosensor

    NASA Astrophysics Data System (ADS)

    Kim, Boram; Uno, Shigeyasu; Nakazato, Kazuo

    2012-04-01

    A wireless measuring system of charge based capacitance measurement (CBCM) circuit has been designed and demonstrated for biomedical applications. The radio frequency identification (RFID) chip that includes on-chip spiral inductor tag antenna, and RFID circuit, and CBCM sensor chip are fabricated within standard complementary metal oxide semiconductor (CMOS) process. The capacitance change caused by DNA detection can be converted into the voltage output using capacitance-to-voltage conversion circuit. To confirm the transmission of the capacitance, the poly-capacitor of fixed capacitance and on-chip spiral inductor tag antenna were fabricated using 1.2 µm, 2-metal, 2-poly CMOS technology. As a result of measurement, three different capacitances (34, 141, 564 fF) were detected wirelessly.

  5. Effect of Vapor-Cell Geometry on Rydberg-Atom-Based Measurements of Radio-Frequency Electric Fields

    NASA Astrophysics Data System (ADS)

    Fan, Haoquan; Kumar, Santosh; Sheng, Jiteng; Shaffer, James P.; Holloway, Christopher L.; Gordon, Joshua A.

    2015-10-01

    A new approach to detect absolute radio-frequency (rf) electric fields (E-fields) that uses Rydberg atoms at room temperature in vapor cells has been demonstrated recently. The large-transition dipole moments between energetically adjacent Rydberg states enable this technique to make traceable E-field measurements with high sensitivity over a large frequency range from 1 GHz to 1 THz. In this paper, we experimentally investigate how the vapor-cell geometry affects the accuracy of the measurements. We find that the effects of the vapor cell on the measured rf E-field are minimized by making the vapor-cell size small compared to the wavelength of the rf E-field.

  6. The BepiColombo mission to Mercury and the Italian Spring Accelerometer (ISA) role in the Radio Science Experiments measurements

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Lucchesi, D. M.; Lucente, M.; Nozzoli, S.; Peron, R.; Santoli, F.; Argada, A.; Fiorenza, E.; Lefevre, C.; Magnafico, C.

    2011-10-01

    The BepiColombo mission to Mercury [1, 10] of the European Space Agency (ESA) aims to perform a set of experiments, the so called Radio Science Experiments (RSE), that will be devoted to the study of the gravity field and rotational state of Mercury [8] as well as to verify the theory of general relativity to an unprecedented level of accuracy [9]. One of the key ingredients in order to reach the very ambitious objectives of this mission, in the context of the RSE, is represented by the measurements of the onboard accelerometer [5, 2]. The Italian Spring Accelerometer (ISA) has been selected by ESA to measure and then allow to remove, a posteriori, the disturbing nongravitational accelerations acting on the Mercury Planetary Orbiter (MPO) surface. This paper is devoted to describe the accelerometer characteristics and performance and to introduce some of the experimental procedures in order to calibrate its measurements on ground and during the nominal phase of the mission.

  7. Measurements of Shear Lift Force on a Bubble in Channel Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Motil, Brian J.; Skor, Mark

    2003-01-01

    Under microgravity conditions, the shear lift force acting on bubbles, droplets or solid particles in multiphase flows becomes important because under normal gravity, this hydrodynamic force is masked by buoyancy. This force plays an important role in furnishing the detachment process of bubbles in a setting where a bubble suspension is needed in microgravity. In this work, measurements of the shear lift force acting on a bubble in channel flow are performed. The shear lift force is deduced from the bubble kinematics using scaling and then compared with predictions from models in literature that address different asymptotic and numerical solutions. Basic trajectory calculations are then performed and the results are compared with experimental data of position of the bubble in the channel. A direct comparison of the lateral velocity of the bubbles is also made with the lateral velocity prediction from investigators, whose work addressed the shear lift on a sphere in different two-dimensional shear flows including Poiseuille flow.

  8. Estimation of uncorrelated content in experimentally measured frequency response functions using three measurement channels

    NASA Astrophysics Data System (ADS)

    Cobb, R. E.; Mitchell, L. D.

    1990-11-01

    Experimental frequency response functions (FRF) measurements are normally made by measuring two signals: the force applied to the structure and the resulting response. If the coherence between these signals is less than unity, it is known only that there is uncorrelated content present in either or both signals. This paper presents, for the first time, a method for estimating the magnitude and source of any uncorrelated content present in a measurement system, provided that the original random signal is available for measurement. This is the case when a signal generator/amplifier/shaker set-up is used. However, this method cannot be applied to hammer impact testing. Measurements are made of the signals from the random noise generator, the force gauge, and the response transducer. From these measurements estimates can be made of uncorrelated content in the force and response measurements as well as in the amplification/shaker system. These estimates of uncorrelated content will be useful in improving the measurement system and in determining when the results from the 1Ĥ and 2Ĥ estimators are valid. They also can be used to estimate the s2 term in sĤ. The uncorrelated content estimators are applied in several different FRF measurements. Estimates of uncorrelated content from an inefficient non-linear shaker-to-force-gauge connection, from a ground-loop problem, and from leakage are shown. Limits on dynamic range are discussed.

  9. AG Channel Measurement and Modeling Results for Over-Sea Conditions

    NASA Technical Reports Server (NTRS)

    Matolak, David; Sun, Rouyu

    2014-01-01

    This report describes results from flight tests conducted in an over-sea environment, for the purpose of characterizing the air-to-ground (AG) channel, for future unmanned aircraft system (UAS) communication system analysis and design. These results are for the first of a set of several flight tests conducted in different ground site (GS) environments. An ultimate aim of all these tests is the development of models for the AG channel that can be used in communication system evaluation. In this report we provide measured results for propagation path loss, root-mean square delay spread (RMS-DS), and the correlation coefficient of the primary received signal components on the four antennas (two antennas for C-band, two for L-band). For path loss, the curved-earth two-ray model provides a reasonable fit to the measured data, altered by several dB at the shortest link distances by aircraft antenna pattern effects. This two-ray model also accounts for the majority of measured RMS-DS results of a few tens of nanoseconds, except for the occasional intermittent reflections from surface objects. These intermittent reflections yield RMS-DS values up to several hundred nanoseconds. For portions of the flight path that were over a harbor area highly populated with boats, the channel was found to be more "continuously dispersive," with RMS-DS reaching approximately 250 ns. A separate model will be developed for this over-harbor setting. The correlation coefficient results are still undergoing analysis; preliminary observations are that correlation between signals on the same-band antennas is generally large (>0.6) for the C-band straight flight paths, whereas for the L-band signals and for the oval-shaped flight paths the correlation is generally small (below 0.4). Inter-band correlations are typically very small, and are well modeled as zero-mean Gaussian in distribution, with a standard deviation less than 0.2. Hence the over-sea channel effects in the two bands can be considered uncorrelated, which will allow for good diversity gains in dual-band systems. We describe initial modeling approaches for the over-sea channel; complete models for this and the over-harbor setting will appear in a subsequent report.

  10. Frequency Allocation; The Radio Spectrum.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The Federal Communications Commission (FCC) assigns segments of the radio spectrum to categories of users, and specific frequencies within each segment to individual users. Since demand for channel space exceeds supply, the process is complex. The radio spectrum can be compared to a long ruler: the portion from 10-540 kiloHertz has been set aside…

  11. The atmosphere of Neptune - Results of radio occultation measurements with the Voyager 2 spacecraft

    NASA Technical Reports Server (NTRS)

    Lindal, G. F.; Lyons, J. R.; Sweetnam, D. N.; Eshleman, V. R.; Hinson, D. P.

    1990-01-01

    This paper presents the vertical temperature and composition profiles of Neptune's troposphere and stratosphere, covering an altitude of 250 km, obtained from radio tracking data that were acquired during Voyager-2's occultation by Neptune, which began near 62 deg N planetographic latitude and ended near 45 deg S latitude. In the computations, the He/H2 abundance ratio 15/85 was adapted, which is consistent with solar abundance estimates and with recent results from Uranus. It was assumed that aerosols and heavier gases such as CH4, NH3, H2S, and H2O have a negligible effect on the microwave refractivity above the 0.5 bar pressure level.

  12. Radio Journalism.

    ERIC Educational Resources Information Center

    Bittner, John R.; Bittner, Denise A.

    This book, a how-to-do-it guide for the novice and the professional alike, deals with several aspects of radio journalism: producing documentaries, preparing and announcing radio news, ethics and responsibility, regulation of radio journalism, and careers. It traces the history and growth of radio news, shows its impact on the public, and…

  13. Heat Loss Measured at a Lava Channel and its Implications for Down-Channel Cooling and Rheology

    NASA Astrophysics Data System (ADS)

    Bailey, J. E.; Harris, A. J.; Dehn, J.; Calvari, S.

    2005-12-01

    Channelized lava flow on Mt. Etna (Sicily) was observed during May 30-31, 2001. Data collected using a Forward Looking Infrared (FLIR) thermal camera and a Minolta-Land Cyclops 300 thermal infrared thermometer showed that the bulk volume flux of lava flowing in the channel varied greatly over time. Cyclic changes in the channel's volumetric flow rate occurred over several hours, with cycle durations of 113-190 minutes. Profiles of the surface temperature and heat-loss of the lava flow were extracted from 2016 thermal images acquired by the FLIR over a period of ~8 hours. Flow surface temperatures declined from ~1070 K at the vent to ~930 K at 70 m. Heat losses were dominated by radiation (5 × 104 W m2) and convection (~104 W/m2). These compare with a heat gain from crystallization of 6 × 103 W/m2. The imbalance between sinks and sources gives core cooling (δT/δx) of ~110 K/km. However, cooling rate per unit distance also depends on the varying flow conditions, where we distinguished: (1) unimpeded, high-velocity (~0.2 m/s) flow with low δT/δx (0.3 K/m); (2) unimpeded, low-velocity (~0.1 m/s) flow with higher δT/δx (0.5 K/m); (3) waning, insulated flow at low velocity (~0.1 m/s) with low δT/δx (0.3 K/m); and (4) impeded flow at low velocity (<0.1 m/s) with higher δT/δx (0.4 K/m). Our data allow us to define three thermal states of flow emplacement: insulated, rapid, and protected. Insulated is promoted by the formation of hanging blockages and coherent roofs. During rapid emplacement, higher velocities suppress cooling rates, and δT/δx can be tied to mean velocity (Vmean) by δT/δx = aVmean-b. In the protected case, deeper, narrow channels present a thermally efficient channel, where δT/δx can be assessed using the ratio of channel width (w) to depth (d) in w/d = aδT/δx-b.

  14. Quantum Markov chains, sufficiency of quantum channels, and Rényi information measures

    NASA Astrophysics Data System (ADS)

    Datta, Nilanjana; Wilde, Mark M.

    2015-12-01

    A short quantum Markov chain is a tripartite state {ρ }{ABC} such that system A can be recovered perfectly by acting on system C of the reduced state {ρ }{BC}. Such states have conditional mutual information I(A;B| C) equal to zero and are the only states with this property. A quantum channel {N} is sufficient for two states ρ and σ if there exists a recovery channel using which one can perfectly recover ρ from {N}(ρ ) and σ from {N}(σ ). The relative entropy difference D(ρ \\parallel σ )-D({N}(ρ )\\parallel {N}(σ )) is equal to zero if and only if {N} is sufficient for ρ and σ. In this paper, we show that these properties extend to Rényi generalizations of these information measures which were proposed in (Berta et al 2015 J. Math. Phys. 56 022205; Seshadreesan et al 2015 J. Phys. A: Math. Theor. 48 395303), thus providing an alternate characterization of short quantum Markov chains and sufficient quantum channels. These results give further support to these quantities as being legitimate Rényi generalizations of the conditional mutual information and the relative entropy difference. Along the way, we solve some open questions of Ruskai and Zhang, regarding the trace of particular matrices that arise in the study of monotonicity of relative entropy under quantum operations and strong subadditivity of the von Neumann entropy.

  15. A method to measure specific absorption rate of nanoparticles in colloidal suspension using different configurations of radio-frequency fields

    PubMed Central

    Ketharnath, Dhivya; Pande, Rohit; Xie, Leiming; Srinivasan, Srimeenakshi; Godin, Biana; Wosik, Jarek

    2012-01-01

    We report a method for characterization of the efficiency of radio-frequency (rf) heating of nanoparticles (NPs) suspended in an aqueous medium. Measurements were carried out for water suspended 5 nm superparamagnetic iron-oxide NPs with 30 nm dextran matrix for three different configurations of rf electric and magnetic fields. A 30 MHz high-Q resonator was designed to measure samples placed inside a parallel plate capacitor and solenoid coil with or without an rf electric field shield. All components of rf losses were analyzed and rf electric and magnetic field induced heating of NPs and the dispersion medium was determined and discussed. PMID:22991480

  16. A new method of measuring radio source parameters of a partially polarized distributed source from spacecraft observations

    NASA Technical Reports Server (NTRS)

    Manning, R.; Fainberg, J.

    1980-01-01

    An experimental system is analyzed which is designed to determine the angular and polarization properties of low frequency radio sources from measurements made on a spinning spacecraft. The system has been optimized to provide high accuracies for sources at high as well as low elevation angles. Theoretical expressions are derived for the response of this system to a partially polarized point source. Integrations are then carried out to get the system response to a uniform circular distributed source. Data processing techniques are derived so that computer simulations can be carried out to investigate the accuracy of this technique. It is shown that using 24 measurements of a partially polarized source (with Q = U = V = 0.5), taken in one spacecraft rotation, the resulting rms errors in angular position are less than one degree and the errors in determining the Stokes parameters are generally 1-10% for a wide range of source elevations.

  17. Lightning Return-Stroke Current Waveforms Aloft, From Measured Field Change, Current, and Channel Geometry

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; LeVine, D. M.

    2002-01-01

    Direct current measurements are available near the attachment point from both natural cloud-to-ground lightning and rocket-triggered lightning, but little is known about the rise time and peak amplitude of return-stroke currents aloft. We present, as functions of height, current amplitudes, rise times, and effective propagation velocities that have been estimated with a novel remote-sensing technique from data on 24 subsequent return strokes in six different lightning flashes that were triggering at the NASA Kennedy Space Center, FL, during 1987. The unique feature of this data set is the stereo pairs of still photographs, from which three-dimensional channel geometries were determined previously. This has permitted us to calculate the fine structure of the electric-field-change (E) waveforms produced by these strokes, using the current waveforms measured at the channel base together with physically reasonable assumptions about the current distributions aloft. The computed waveforms have been compared with observed E waveforms from the same strokes, and our assumptions have been adjusted to maximize agreement. In spite of the non-uniqueness of solutions derived by this technique, several conclusions seem inescapable: 1) The effective propagation speed of the current up the channel is usually significantly (but not unreasonably) faster than the two-dimensional velocity measured by a streak camera for 14 of these strokes. 2) Given the deduced propagation speed, the peak amplitude of the current waveform often must decrease dramatically with height to prevent the electric field from being over-predicted. 3) The rise time of the current wave front must always increase rapidly with height in order to keep the fine structure of the calculated field consistent with the observations.

  18. A single-channel SQUID magnetometer for measuring magnetic field of human fetal heart

    NASA Astrophysics Data System (ADS)

    Bachir, Wesam; Grot, Przemyslaw; Dunajski, Zbigniew

    2004-07-01

    A non-invasive single-channel SQUID magnetometer for fetal magnetocardiography has been developed. The signal is picked-up with a wire wound third order gradiometer. The optimal configuration of the flux transformer is a trade-off between sufficient sensitivity for the magnetic field originated in fetal heart and effective immunity against the ambient magnetic noise. The over all system performance together with the measuring probe and SQUID electronics is described. The balancing of the third order flux transformer is discussed as well as the signal processing of fetal magnetocardiogram recordings.

  19. Measurements on diproton emission from the break-up channels of 23Al and 22Mg

    NASA Astrophysics Data System (ADS)

    Ma, YuGang; Fang, DeQing; Sun, XiaoYan; Zhou, Pei; Cai, XiangZhou; Chen, JinGen; Guo, Wei; Tian, WenDong; Wang, HongWei; Zhang, GuoQiang; Cao, XiGuang; Fu, Yao; Hu, ZhengGuo; Wang, JianSong; Wang, Meng; Togano, Y.; Aoi, N.; Baba, H.; Honda, T.; Okada, K.; Hara, Y.; Ieki, K.; Ishibashi, Y.; Itou, Y.; Iwasa, N.; Kanno, S.; Kawabata, T.; Kimura, H.; Kondo, Y.; Kurita, K.; Kurokawa, M.; Moriguchi, T.; Murakami, H.; Oishi, H.; Ota, S.; Ozawa, A.; Sakurai, H.; Shimoura, S.; Shioda, R.; Takeshita, E.; Takeuchi, S.; Yamada, K.; Yamada, Y.; Yasuda, Y.; Yoneda, K.; Motobayashi, T.

    2011-08-01

    Two-proton relative momentum distributions from the break-up channels 23Al→p+p+21Na and 22Mg→p+p+20Ne at an energy of 60-70 A MeV have been measured together with two-proton opening angles at the projectile fragment separator beamline (RIPS) in the RIKEN Ring Cyclotron Facility. The results demonstrate the existence of diproton emission component from single-step 2He for highly excited 23Al and 22Mg.

  20. Measurement of vital sign in chick embryo using multi-channel diffuse speckle contrast analysis.

    PubMed

    Yeo, C B; Park, H C; Lee, K J; Song, C

    2015-08-01

    In poultry industry which is avian breeding program, the determination whether chick embryos survive in the artificial incubation periods or not is essential to reduce the financial resources. We developed the multi-channel diffuse speckle contrast analysis (DSCA) system composed of four optical fiber detectors enabling to achieve in-vivo measurements of deep tissue flow noninvasively. The system could confirm vital sign of the chick embryo in early incubation stage. Moreover, it demonstrates the change of relative blood flow index and depth information with simplicity, low cost, and flexibility. PMID:26737731

  1. Multi-channel optical pyrometer for sub-nanosecond temperature measurements at NDCX-I/II

    SciTech Connect

    Ni, P.A.; Bieniosek, F.M.; Waldron, W.L.

    2011-04-13

    We present a detailed technical description of a fast multi-channel pyrometer designed for warm-dense-matter (WDM) experiments with intense heavy ion beams at the neutralized-drift-compression-experiment linear accelerator (NDCX-I/II) at Lawrence Berkeley National Laboratory (LBNL). The unique features of the described instrument are its sub-nanosecond temporal resolution (100 ps rise-time) and a broad range, 1,500 K - 12,000 K of measurable brightness temperatures in the visible and near-infrared regions of the spectrum. The working scheme, calibration procedure, experimental data obtained with the pyrometer and future applications are presented.

  2. Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal

    NASA Astrophysics Data System (ADS)

    He, Zhi; Yao, Chunmei; Zou, Jian

    2013-10-01

    Using the weak measurement (WM) and quantum measurement reversal (QMR) approach, robust state transfer and entanglement distribution can be realized in the spin-(1)/(2) Heisenberg chain. We find that the ultrahigh fidelity and long distance of quantum state transfer with certain success probability can be obtained using proper WM and QMR, i.e., the average fidelity of a general pure state from 80% to almost 100%, which is almost size independent. We also find that the distance and quality of entanglement distribution for the Bell state and the general Werner mixed state can be obviously improved by the WM and QMR approach.

  3. Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation.

    PubMed

    Dou, Haiyang; Jung, Euo Chang; Lee, Seungho

    2015-05-01

    Asymmetrical flow field-flow fractionation (AF4) has been considered to be a useful tool for simultaneous separation and characterization of polydisperse macromolecules or colloidal nanoparticles. AF4 analysis requires the knowledge of the channel thickness (w), which is usually measured by injecting a standard with known diffusion coefficient (D) or hydrodynamic diameter (dh). An accurate w determination is a challenge due to its uncertainties arising from the membrane's compressibility, which may vary with experimental condition. In the present study, influence of factors including the size and type of the standard on the measurement of w was systematically investigated. The results revealed that steric effect and the particles-membrane interaction by van der Waals or electrostatic force may result in an error in w measurement. PMID:25817708

  4. Using a novel flood prediction model and GIS automation to measure the valley and channel morphology of large river networks

    EPA Science Inventory

    Traditional methods for measuring river valley and channel morphology require intensive ground-based surveys which are often expensive, time consuming, and logistically difficult to implement. The number of surveys required to assess the hydrogeomorphic structure of large river n...

  5. Effect of Ducting on Radio Occultation Measurements: An Assessment Based on High-Resolution Radiosonde Soundings

    NASA Technical Reports Server (NTRS)

    Ao, C. O

    2007-01-01

    Recent studies have shown that the presence of elevated ducts in the lower atmosphere has an adverse effect on the inversion of GPS radio occultation data. The problem arises because the microwave refractivity within and below an elevated duct is no longer uniquely determined by the bending angle profile. Applying Abel inversion without a priori knowledge of the duct will introduce a negative bias in the retrieved refractivity profile within and below the duct. In this work, high vertical resolution radiosonde data are used to give a quantitative assessment of the characteristics and effects of ducts, including their frequency of occurrences, heights, and thicknesses at different latitudes and seasons. The negative bias from the Abel-retrieved refractivity profiles resulting from these ducts is also computed. The results give a strong indication that ducting in the lower troposphere is a frequent phenomenon over the tropics and midlatitudes. The ducts are shown to be predominantly caused by sharp changes in the vertical structure of water vapor. The majority of the ducts are found to be below 2 km, with a median duct layer thickness of about 100 m. The negative refractivity bias is shown to be largest below 2 km, with a median value of about 0.5-1% in the tropics and 0.2-0.5% in midlatitudes. The bias is about a factor of 2-3 smaller between 2 to 3 km and is negligible above 4 km.

  6. Some applications of the STI-method in evaluating speech transmission channels

    NASA Astrophysics Data System (ADS)

    Steeneken, H. J. M.; Houtgast, T.

    1981-06-01

    A description is given of a measuring device for the application of the STI-method. The application of the device in evaluating speech communication channels as radio communication links, digital communication channels and microphones and telephones in noisy environments is demonstrated. Consequently the STI might well be used as a design specification for speech communication systems.

  7. Properties of the plasma channel in liquid discharges inferred from cathode local temperature measurements

    SciTech Connect

    Revaz, B.; Witz, G.; Fluekiger, R.

    2005-12-01

    The properties of the plasma channel at the cathode surface in a liquid discharge have been studied by means of temperature measurements and heat transfer numerical analysis. The studied discharge (current: 5 A; duration: 100 {mu}s; gap: 10 {mu}m) is typical of electrical discharge machining (EDM) in the semifinishing operation. The temperature information is obtained from two independent experiments: (1) microthermocouples patterned on the cathode, close to the discharge have been used to record the temperature variation caused by a single discharge with a high local resolution and large bandwidth; (2) the geometry of the resolidified layer, which gives the maximum extension of the melting point temperature isotherm, has been measured. These temperature data have then been compared to numerical simulation using inverse calculations allowing the experimental determination of two fundamental quantities of the discharge cathode interaction: (1) the power fraction transferred from the discharge to the sample, which was found to be close to 10% and (2) the exponent n of the power law expansion of the plasma channel r{sub plasma}{proportional_to}t{sup n}, which is n=0.2. The validity of the present analysis relies on the fact that the experimental temperature information is obtained for different values of the parameter r{sub plasma}/t{sub 0}{sup 2}, where t{sub 0}{sup 2} is the characteristic time of the experiment.

  8. USING RADIO HALOS AND MINIHALOS TO MEASURE THE DISTRIBUTIONS OF MAGNETIC FIELDS AND COSMIC RAYS IN GALAXY CLUSTERS

    SciTech Connect

    Keshet, Uri; Loeb, Abraham

    2010-10-10

    Some galaxy clusters show diffuse radio emission in the form of giant halos (GHs) on Mpc scales or minihalos (MHs) on smaller scales. Comparing Very Large Array and XMM-Newton radial profiles of several such clusters, we find a universal linear correlation between radio and X-ray surface brightness, valid in both types of halos. It implies a halo central emissivity {nu}j{sub {nu}} = 10{sup -31.4{+-}0.2}(n/10{sup -2}cm{sup -3}){sup 2}(T/T{sub 0}){sup 0.2{+-}0.5}ergs{sup -1}cm{sup -3}, where T and T{sub 0} are the local and central temperatures, respectively, and n is the electron number density. We argue that the tight correlation and the scaling of j{sub {nu}}, combined with morphological and spectral evidence, indicate that both GHs and MHs arise from secondary electrons and positrons, produced in cosmic-ray ion (CRI) collisions with a strongly magnetized B {approx}> 3{mu}G intracluster gas. When the magnetic energy density drops below that of the microwave background, the radio emission weakens considerably, producing halos with a clumpy morphology (e.g., RXC J2003.5 - 2323 and A2255) or a distinct radial break. We thus measure a magnetic field B = 3{mu}G at a radius r {approx_equal} 110kpc in A2029 and r {approx_equal} 50kpc in Perseus. The spectrum of secondaries, produced from hadronic collisions of {approx}20GeV CRIs, reflects the energy dependence of the collision cross section. We use the observed spectra of halos, in particular where they steepen with increasing radius or frequency, to (1) measure B {approx_equal} 10({nu}/700MHz){mu}G with {nu} the spectral break frequency, (2) identify a correlation between the average spectrum and the central magnetic field, and (3) infer a CRI spectral index s {approx}< -2.7 and energy fraction {xi}{sub p} {approx} 10{sup -3.6{+-}0.2} at particle energies above 10 GeV. Our results favor a model where CRIs diffuse away from their sources (which are probably supernovae, according to a preliminary correlation with star formation), whereas the magnetic fields are generated by mergers in GHs and by core sloshing in MHs.

  9. Film, Radio, and Television.

    ERIC Educational Resources Information Center

    Hardesty, Carolyn, Ed.

    1990-01-01

    This journal issue covers the history of film, radio, and television in Iowa. The first article, "When Pictures and Sound Came to Iowa," summarizes the origin of movies and radio and their early beginnings in Iowa. Using old photographs and measurement charts, the viewing, reading, and listening habits of young people in 1950 and 1958 are…

  10. Film, Radio, and Television.

    ERIC Educational Resources Information Center

    Hardesty, Carolyn, Ed.

    1990-01-01

    This journal issue covers the history of film, radio, and television in Iowa. The first article, "When Pictures and Sound Came to Iowa," summarizes the origin of movies and radio and their early beginnings in Iowa. Using old photographs and measurement charts, the viewing, reading, and listening habits of young people in 1950 and 1958 are

  11. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    USGS Publications Warehouse

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  12. Simultaneously measured lightning return stroke channel-base current and luminosity

    NASA Astrophysics Data System (ADS)

    Carvalho, F. L.; Jordan, D. M.; Uman, M. A.; Ngin, T.; Gamerota, W. R.; Pilkey, J. T.

    2014-11-01

    The time delay between lightning return stroke current and the resultant luminosity was measured for 22 return strokes in eight lightning flashes triggered by the rocket-and-wire technique during the summer of 2014 in Florida. The current-to-luminosity delay measured at the channel base at the 20% amplitude level ranged from 30 to 200 ns with an average of 90 ns and at the 50% amplitude level ranged from 30 to 180 ns with an average of 94 ns. The delays are significantly shorter than that predicted by Liang et al. (2014) from theory. The current-to-luminosity delays increase with increasing current risetime, current risetime varying from 190 ns to 570 ns, but the delay appears not to depend on the peak current value.

  13. Purity of Gaussian states: Measurement schemes and time evolution in noisy channels

    SciTech Connect

    Paris, Matteo G.A.; Illuminati, Fabrizio; Serafini, Alessio; De Siena, Silvio

    2003-07-01

    We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme are tested by means of Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general Gaussian states both in thermal and in squeezed thermal baths. We show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the input state.

  14. Bulk velocity measurements by video analysis of dye tracer in a macro-rough channel

    NASA Astrophysics Data System (ADS)

    Ghilardi, T.; Franca, M. J.; Schleiss, A. J.

    2014-03-01

    Steep mountain rivers have hydraulic and morphodynamic characteristics that hinder velocity measurements. The high spatial variability of hydraulic parameters, such as water depth (WD), river width and flow velocity, makes the choice of a representative cross-section to measure the velocity in detail challenging. Additionally, sediment transport and rapidly changing bed morphology exclude the utilization of standard and often intrusive velocity measurement techniques. The limited technical choices are further reduced in the presence of macro-roughness elements, such as large, relatively immobile boulders. Tracer tracking techniques are among the few reliable methods that can be used under these conditions to evaluate the mean flow velocity. However, most tracer tracking techniques calculate bulk flow velocities between two or more fixed cross-sections. In the presence of intense sediment transport resulting in an important temporal variability of the bed morphology, dead water zones may appear in the few selected measurement sections. Thus a technique based on the analysis of an entire channel reach is needed in this study. A dye tracer measurement technique in which a single camcorder visualizes a long flume reach is described and developed. This allows us to overcome the problem of the presence of dead water zones. To validate this video analysis technique, velocity measurements were carried out on a laboratory flume simulating a torrent, with a relatively gentle slope of 1.97% and without sediment transport, using several commonly used velocity measurement instruments. In the absence of boulders, salt injections, WD and ultrasonic velocity profiler measurements were carried out, along with dye injection technique. When boulders were present, dye tracer technique was validated only by comparison with salt tracer. Several video analysis techniques used to infer velocities were developed and compared, showing that dye tracking is a valid technique for bulk velocity measurements. RGB Euclidean distance was identified as being the best measure of the average flow velocity.

  15. Secondary circulation cells in river channel confluences: measurement artefacts or coherent flow structures?

    NASA Astrophysics Data System (ADS)

    Lane, S. N.; Bradbrook, K. F.; Richards, K. S.; Biron, P. M.; Roy, A. G.

    2000-07-01

    This paper is concerned with the representation of secondary circulation in river channel confluences. Recent research has emphasized the complex three-dimensional flow fields that exist where two river channels join. Field and laboratory measurements have been developed to describe time-averaged flow fields in terms of primary and secondary circulation, and to interpret these in terms of key generating processes. Central to this research is the need to understand the effect that flow structures have upon both mixing processes and confluence geomorphology, notably the development of scour-holes within the junction zone. One of the common problems faced by this research is the dependence of observed secondary flow structures upon the rotation plane for which they are determined. Different researchers have used different rotation planes, such that intercomparison of results from different field sites is difficult. Problems also arise when only two-dimensional measurements (e.g. downstream and cross-stream) are available, and vertical velocities need to be inferred from analysis of secondary circulation patterns. If different analytical methods produce different patterns, so different inferences could be reached. This paper uses a numerical model to show: (i) that different analytical methods do result in very different estimates of the strength of secondary circulation; (ii) that there are problems in inferring vertical velocities from secondary circulation cells identified using these methods in confluences, most notably as a result of the effects of planform acceleration and deceleration; and (iii) that field and laboratory measurements suffer from being unable to measure the three-dimensional flow field instantaneously, and hence allow understanding of the evolution of flow structures through time. A three-dimensional solution of the Navier-Stokes equations for open channel flow, combined with a free surface approximation and an unsteady turbulence model, allows representation of the three-dimensional time-averaged flow field, and some aspects of the unsteady evolution of these flow structures. Hence, the researcher can be freed from the dependence of results obtained upon the analytical method chosen. This emphasizes the downstream transport of mass in the form of a helix, which will be central in zones of flow convergence or divergence, rather than the more traditional recognition of closed helical circulation cells.

  16. The 'Brick Wall' radio loss approximation and the performance of strong channel codes for deep space applications at high data rates

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin

    2001-01-01

    In order to evaluate performance of strong channel codes in presence of imperfect carrier phase tracking for residual carrier BPSK modulation in this paper an approximate 'brick wall' model is developed which is independent of the channel code type for high data rates. It is shown that this approximation is reasonably accurate (less than 0.7dB for low FERs for (1784,1/6) code and less than 0.35dB for low FERs for (5920,1/6) code). Based on the approximation's accuracy, it is concluded that the effects of imperfect carrier tracking are more or less independent of the channel code type for strong channel codes. Therefore, the advantage that one strong channel code has over another with perfect carrier tracking translates to nearly the same advantage under imperfect carrier tracking conditions. This will allow the link designers to incorporate projected channel code performance of strong channel codes into their design tables without worrying about their behavior in the face of imperfect carrier phase tracking.

  17. Measuring the influence of channel-skewed bedforms on flow structure in high curvature meander bends using a profiling ADV

    NASA Astrophysics Data System (ADS)

    Bryk, A.; Best, J. L.; Abad, J. D.; Garcia, M. H.

    2012-12-01

    Natural meandering alluvial channels contain macroscale bed roughness that introduces a form-drag component to frictional energy losses. Accelerating flow around a meander bend often generates asymmetric roughness elements that are skewed downstream with respect to the channel cross-section. These bedforms can have a significant influence on secondary flow in the bend, which may be important for sediment routing and residence time within and between meander bends. This paper examines the influence of bedform planform skewness (obliquity) on the dynamics of flow within meandering channels, using high resolution ADV acoustic data collected in the University of Illinois Kinoshita experimental meandering channel. Stacked velocity measurements were taken using a Nortek Vectrino-II Profiling Acoustic Doppler Velocimeter (PADV) at 0.05m intervals across 12 channel cross-sections (minimum of 830 ADV points per cross-section). Individual profiles were sampled over three fixed bed morphologies for 5 minutes with a user-defined acoustic pulse frequency: fR = 50Hz. Initial results show the marked influence of channel-skewed bedforms on both the location of the maximum velocity filament (MVF) and the strength of secondary flow within the channel. Channel-wide, bend generated, secondary circulation is significantly dampened downstream of obliquely-oriented dunes and the MVF is forced against the outer bank. Disruption of the main secondary circulation cell and deflection of the MVF due to oblique bedforms will likely alter depositional patterns of sedimentary facies on the point-bar.

  18. Novel method to classify hemodynamic response obtained using multi-channel fNIRS measurements into two groups: exploring the combinations of channels

    PubMed Central

    Ichikawa, Hiroko; Kitazono, Jun; Nagata, Kenji; Manda, Akira; Shimamura, Keiichi; Sakuta, Ryoichi; Okada, Masato; Yamaguchi, Masami K.; Kanazawa, So; Kakigi, Ryusuke

    2014-01-01

    Near-infrared spectroscopy (NIRS) in psychiatric studies has widely demonstrated that cerebral hemodynamics differs among psychiatric patients. Recently we found that children with attention-deficit/hyperactivity disorder (ADHD) and children with autism spectrum disorders (ASD) showed different hemodynamic responses to their own mother’s face. Based on this finding, we may be able to classify the hemodynamic data into two those groups and predict to which diagnostic group an unknown participant belongs. In the present study, we proposed a novel statistical method for classifying the hemodynamic data of these two groups. By applying a support vector machine (SVM), we searched the combination of measurement channels at which the hemodynamic response differed between the ADHD and the ASD children. The SVM found the optimal subset of channels in each data set and successfully classified the ADHD data from the ASD data. For the 24-dimensional hemodynamic data, two optimal subsets classified the hemodynamic data with 84% classification accuracy, while the subset contained all 24 channels classified with 62% classification accuracy. These results indicate the potential application of our novel method for classifying the hemodynamic data into two groups and revealing the combinations of channels that efficiently differentiate the two groups. PMID:25071510

  19. Novel method to classify hemodynamic response obtained using multi-channel fNIRS measurements into two groups: exploring the combinations of channels.

    PubMed

    Ichikawa, Hiroko; Kitazono, Jun; Nagata, Kenji; Manda, Akira; Shimamura, Keiichi; Sakuta, Ryoichi; Okada, Masato; Yamaguchi, Masami K; Kanazawa, So; Kakigi, Ryusuke

    2014-01-01

    Near-infrared spectroscopy (NIRS) in psychiatric studies has widely demonstrated that cerebral hemodynamics differs among psychiatric patients. Recently we found that children with attention-deficit/hyperactivity disorder (ADHD) and children with autism spectrum disorders (ASD) showed different hemodynamic responses to their own mother's face. Based on this finding, we may be able to classify the hemodynamic data into two those groups and predict to which diagnostic group an unknown participant belongs. In the present study, we proposed a novel statistical method for classifying the hemodynamic data of these two groups. By applying a support vector machine (SVM), we searched the combination of measurement channels at which the hemodynamic response differed between the ADHD and the ASD children. The SVM found the optimal subset of channels in each data set and successfully classified the ADHD data from the ASD data. For the 24-dimensional hemodynamic data, two optimal subsets classified the hemodynamic data with 84% classification accuracy, while the subset contained all 24 channels classified with 62% classification accuracy. These results indicate the potential application of our novel method for classifying the hemodynamic data into two groups and revealing the combinations of channels that efficiently differentiate the two groups. PMID:25071510

  20. Skin-Friction Measurements on Mathematically Generated Roughness in a Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Barros, Julio; Schultz, Michael; Flack, Karen

    2015-11-01

    Engineering systems are affected by surface roughness, however, predicting frictional drag has proven to be challenging. One open question is how roughness topography, whether it is idealized 2D and 3D or irregular with multi-scale features, impacts the frictional drag. A previous study from Flack and Schultz (2010) presented a new model to estimate frictional drag based on surfaces statistics. The present work takes a systematic approach by generating and manufacturing surfaces roughness where surface statistics, such as rms, skewness and power-spectral density can be controlled. Skin-friction measurements are conducted in a high Reynolds number turbulent channel flow facility, where the experiments cover all roughness regimes, from hydraulic-smooth to fully-rough. The surface roughness studied herein is produced using the random Fourier modes method with a varying power-law spectral slope, whereas the rms and surface amplitude are kept constant (krms ~ 45 μm and kt ~ 200 μm) while still possessing a Gaussian probability-density-function. These surfaces are then 3D-printed and replicated using a mold/cast technique to generate the top and bottom walls of the channel flow facility. Department of Mechanical Engineering.

  1. Analysis of the parameters of the upper atmosphere and ionosphere based on radio occultation, ionosonde measurements, IRI and NeQuick model data

    NASA Astrophysics Data System (ADS)

    Andreeva, E. S.; Lokota, M. V.

    2013-05-01

    In April 2006, a new satellite system FormoSat-3/COSMIC (Taiwan's Formosa Satellite Mission ♯3 and Constellation Observing System for Meteorology, Ionosphere and Climate) was put into operation. The system consists of 6 low-orbital satellites with an orbital altitude of the order of 800 km. FormoSat-3/COSMIC satellites are capable of receiving radio signals transmitted from GPS navigation system. The Formosat-3/COSMOS radio occultation measurements provide, on average, 1800 electron density profiles of the ionosphere worldwide per day. We present the results of verifying the FormoSat-3/COSMIC radio occultation electron density profiles with the measurements by ionosondes in different regions of the world during 2006-2008. In many cases, the necessary (or missing) information on the ionosphere is derived from global empirical ionospheric models, the IRI (International Reference Ionosphere), and NeQuick. The aim of our work is to compare the data provided by the IRI-2001, IRI-2007 and NeQuick models with the radio occultation electron density profiles from the data of FormoSat-3/COSMIC system. The results of this comparison are valuable for the elaboration and improvement of ionospheric models, as well as for many radiophysical and geophysical applications. The results of comparisons of the IRI-2001, IRI-2007, NeQuick models with the radio occultation profiles for different geomagnetic conditions are reported.

  2. Educational Radio.

    ERIC Educational Resources Information Center

    Arafeh, Sousan

    1999-01-01

    Examines the effectiveness of the radio in education and the crucial role of the radio in distance education in first half of the 20th century; dramatic social changes in the 1960s that led to a review of educational institutions and of educational media; and the radio today as a neglected but inexpensive medium of communication that should be…

  3. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of a Baseline System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, a baseline system which utilizes dual-channel sensor measurements for aircraft engine on-line diagnostics is developed. This system is composed of a linear on-board engine model (LOBEM) and fault detection and isolation (FDI) logic. The LOBEM provides the analytical third channel against which the dual-channel measurements are compared. When the discrepancy among the triplex channels exceeds a tolerance level, the FDI logic determines the cause of the discrepancy. Through this approach, the baseline system achieves the following objectives: (1) anomaly detection, (2) component fault detection, and (3) sensor fault detection and isolation. The performance of the baseline system is evaluated in a simulation environment using faults in sensors and components.

  4. X-Ray Measurement of the Spin-down of Calvera: A Radio- and Gamma-Ray-Quiet Pulsar

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Bogdanov, S.; Gotthelf, E. V.

    2013-12-01

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is \\dot{P}=(3.19+/- \\,0.08)\\times 10^{-15}, which corresponds to spin-down luminosity \\dot{E}=6.1\\times 10^{35} erg s-1, characteristic age \\tau _c\\equiv P/2\\dot{P}=2.9\\times 10^5 yr, and surface dipole magnetic field strength Bs = 4.4 × 1011 G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy γ-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d < 2 kpc inferred from X-ray spectra implies a γ-ray luminosity limit of <3.3 × 1032 erg s-1, which is less than that of any pulsar of comparable \\dot{E}. Calvera shares some properties with PSR J1740+1000, a young radio pulsar that we show by virtue of its lack of proper motion was born outside of the Galactic disk. As an energetic, high-Galactic-latitude pulsar, Calvera is unique in being undetected in both radio and γ-rays to faint limits, which should place interesting constraints on models for particle acceleration and beam patterns in pulsar magnetospheres.

  5. Radio measurements of the energy and the depth of the shower maximum of cosmic-ray air showers by Tunka-Rex

    NASA Astrophysics Data System (ADS)

    Bezyazeekov, P. A.; Budnev, N. M.; Gress, O. A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Konstantinov, E. N.; Korosteleva, E. E.; Kostunin, D.; Krömer, O.; Kuzmichev, L. A.; Lubsandorzhiev, N.; Mirgazov, R. R.; Monkhoev, R.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Schröder, F. G.; Wischnewski, R.; Zagorodnikov, A.

    2016-01-01

    We reconstructed the energy and the position of the shower maximum of air showers with energies E gtrsim 100 PeV applying a method using radio measurements performed with Tunka-Rex. An event-to-event comparison to air-Cherenkov measurements of the same air showers with the Tunka-133 photomultiplier array confirms that the radio reconstruction works reliably. The Tunka-Rex reconstruction methods and absolute scales have been tuned on CoREAS simulations and yield energy and Xmax values consistent with the Tunka-133 measurements. The results of two independent measurement seasons agree within statistical uncertainties, which gives additional confidence in the radio reconstruction. The energy precision of Tunka-Rex is comparable to the Tunka-133 precision of 15%, and exhibits a 20% uncertainty on the absolute scale dominated by the amplitude calibration of the antennas. For Xmax, this is the first direct experimental correlation of radio measurements with a different, established method. At the moment, the Xmax resolution of Tunka-Rex is approximately 40 g/cm2. This resolution can probably be improved by deploying additional antennas and by further development of the reconstruction methods, since the present analysis does not yet reveal any principle limitations.

  6. Low temperature radio-frequency transverse susceptibility measurements using a CMOS oscillator circuit

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; Bartolomé, J.; García del Pozo, J. M.; Arauzo, A.; Guerrero, E.; Téllez, P.; Bartolomé, F.; García, L. M.

    2012-08-01

    A transverse susceptibility (TS) measurement system based on a simple inverter CMOS cell oscillator cross-coupled to a LC tank is presented. The system has been implemented to operate at a Quantum Design Physical Properties Measurement System (PPMS). We introduce several improvements with respect to similar currently operating TS measurement equipments. The electronics have been redesigned to use CMOS transistors as active devices, which simplifies the circuit design and enlarge the tuning range, thus making the proposed electronic block more feasible, predictable, and precise. Additionally, we propose a newly designed sample holder, which facilitates the procedure to change a sample and improves reproducibility of the circuit. Our design minimizes the thermal leak of the measuring probe by one order of magnitude, allowing to measure from 1.8 K in standard PPMS systems, thanks to the use of a low temperature beryllium-copper coaxial cable instead of the conventional RG402 Cu coaxial cable employed in the insert for the PPMS in similar systems. The data acquisition method is also simplified, so that the measuring sequences are implemented directly in the PPMS controller computer by programming them in the Quantum Design MultiVu software that controls the PPMS. We present the test measurements performed on the system without sample to study the background signal and stability of the circuit. Measurements on a Gd2O3 calibrating sample yield to the estimation of the system sensitivity, which is found to be on the order of 10-6 emu. Finally, measurements on a TmCo2 Laves phase sample with a ferrimagnetic transition temperature around 4 K are described, demonstrating that the developed system is well suited to explore interesting magnetic phenomena at this temperature scale.

  7. A novel method for measuring the polarization angle of satellite radio waves

    NASA Technical Reports Server (NTRS)

    Antoniadis, D. A.

    1974-01-01

    One of the most important parameters for the study of the physics of the ionosphere is the columnar electron content. This can be obtained indirectly by measuring the Faraday rotation of signals emitted from satellites. Many different types of polarimeters have been developed for this purpose. Efforts to develop a new type of polarimeter, suitable for extensive network operation, led to a novel technique for measuring the polarization angle.

  8. Test of isospin purity by measuring cross correlations in mirror channel reactions

    NASA Astrophysics Data System (ADS)

    Glasner, K.; Bohle, D.; Domogala, G.; Ricken, L. M.; Weismüller, J. A.; Kuhlmann, E.

    1983-06-01

    Strong mirror channel correlations have been observed in the reactions 16O(6Li, p)21Ne and 16O(6Li, p)21Na. The linear cross correlation coefficient r is found to be of the order of 0.6, indicating a high degree of isospin conservation. For the compound nucleus 22Na the isospin mixing matrix element is estimated to be about 1 keV at Ex≅19 MeV. NUCLEAR REACTIONS 16O(6Li, p)21Ne, 16O(6Li, nγ)21Na E=4.0-8.0 MeV; measured σ(E, θ). 22Na deduced isospin mixing. Hauser-Feshbach calculations.

  9. Top-quark mass measurement in the dilepton channel using in situ jet energy scale calibration

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Su

    2012-09-01

    We employ a top-quark mass measurement technique in the dilepton channel with in situ jet energy scale calibration. Three variables having different jet energy scale dependences are used simultaneously to extract not only the top-quark mass but also the energy scale of the jet from a single likelihood fit. Monte Carlo studies with events corresponding to an integrated luminosity of 5fb-1 proton-proton collisions at the Large Hadron Collider s=7TeV are performed. Our analysis suggests that the overall jet energy scale uncertainty can be significantly reduced and the top-quark mass can be determined with a precision of less than 1GeV/c2, including jet energy scale uncertainty, at the Large Hadron Collider.

  10. Characterization and Absolute QE Measurements of Delta-Doped N-Channel and P-Channel CCDs

    NASA Technical Reports Server (NTRS)

    Jacquot, Blake C.; Monacos, Steve P.; Jones, Todd J.; Blacksberg, Jordana; Hoenk, Michael E.; Nikzad, Shouleh

    2010-01-01

    In this paper we present the methodology for making absolute quantum efficiency (QE) measurements from the vacuum ultraviolet (VUV) through the near infrared (NIR) on delta-doped silicon CCDs. Delta-doped detectors provide an excellent platform to validate measurements through the VUV due to their enhanced UV response. The requirements for measuring QE through the VUV are more strenuous than measurements in the near UV and necessitate, among other things, the use of a vacuum monochromator, and good camera vacuum to prevent chip condensation, and more stringent handling requirements. The system used for these measurements was originally designed for deep UV characterization of CCDs for the WF/PC instrument on Hubble and later for Cassini CCDs.

  11. Firefighters' Radios

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Public Technology Inc. asked for NASA assistance to devise the original firefighter's radio. Good short-range radio communications are essential during a fire to coordinate hose lines, rescue victims, and otherwise increase efficiency. Useful firefighting tool is lower cost, more rugged short range two-way radio. Inductorless electronic circuit replaced inductances and coils in radio circuits with combination of transistors and other low-cost components. Substitution promises reduced circuit size and cost. Enhanced electrical performance made radio more durable and improved maintainability by incorporating modular construction.

  12. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel

    PubMed Central

    Jun Kang, Yang; Ryu, Jeongeun; Lee, Sang-Joon

    2013-01-01

    The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio (RJL/RL, fluidic resistance in the junction channel (RJL) to fluidic resistance in the side channel (RL)) strongly affects the measurement accuracy. The microfluidic device with smaller RJL/RL values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed method was also successfully applied to measure viscosities of blood with varying hematocrits, chemically fixed RBCS, and channel sizes. Based on these experimental results, the proposed method can be effectively used to measure the viscosities of various fluids easily, without any fluorescent labeling and tedious calibration procedures. PMID:24404040

  13. Three-channel three-dimensional self-mixing thin-slice solid-state laser-Doppler measurements.

    PubMed

    Ohtomo, Takayuki; Sudo, Seiichi; Otsuka, Kenju

    2009-01-20

    We report successful real-time three-channel self-mixing laser-Doppler measurements with extreme optical sensitivity using a laser-diode-pumped thin-slice Nd:GdVO(4) laser in the carrier-frequency-division-multiplexing scheme with three pairs of acoustic optical modulators (i.e., frequency shifters) and a three-channel FM-wave demodulation circuit. We demonstrate (1) simultaneous independent measurement of three different nanometer-vibrating targets, (2) simultaneous measurements of small particles in Brownian motion from three directions, and (3) identification of the velocity vector of small particles moving in water flowing in a small-diameter glass pipe. PMID:19151832

  14. Three-channel three-dimensional self-mixing thin-slice solid-state laser-Doppler measurements

    SciTech Connect

    Ohtomo, Takayuki; Sudo, Seiichi; Otsuka, Kenju

    2009-01-20

    We report successful real-time three-channel self-mixing laser-Doppler measurements with extreme optical sensitivity using a laser-diode-pumped thin-slice Nd:GdVO4 laser in the carrier-frequency-division-multiplexing scheme with three pairs of acoustic optical modulators (i.e., frequency shifters) and a three-channel FM-wave demodulation circuit. We demonstrate (1) simultaneous independent measurement of three different nanometer-vibrating targets, (2) simultaneous measurements of small particles in Brownian motion from three directions, and (3) identification of the velocity vector of small particles moving in water flowing in a small-diameter glass pipe.

  15. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    SciTech Connect

    Lafleur, T.; Charles, C.; Boswell, R. W.; Takahashi, K.

    2011-08-15

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm and a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.

  16. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 1

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1973-01-01

    An extensive set of ground-based measurements of the diurnal variation of medium frequency radio wave adsorption and virtual height is analyzed in terms of current understanding of the D- and lower E-region ion production and loss process. When this is done a gross discrepancy arises, the source of which is not known.

  17. Channel probe measurements for the American sector clutter experiment, January, 1994

    SciTech Connect

    Fitzgerald, T.J.

    1994-05-20

    The ionospheric phenomenon called Equatorial Spread F encompasses a variety of effects associated with plasma irregularities occurring in the post-sunset and nighttime ionosphere near the magnetic equator. These irregularities can seriously degrade the performance of systems which involve either of necessity or inadvertently radio propagation through the equatorial ionosphere. One such system is Over-the-Horizon (OTH) radars which operate in the high-frequency (hf) band and use ionospheric reflection for forward and backscatter propagation to ranges of thousands of kilometers. When such radars are directed towards the equator, Spread F irregularities can cause scintillation effects which may be aliased into the ranges of interest and have the effect of causing, excess clutter in which targets may be hidden. In January, 1994 Los Alamos participated in a campaign to measure Spread F effects on OTH propagation from the United States looking towards South America in conjunction with local diagnostics in Peru. During the campaign Los Alamos fielded a 1600 km bistatic path between Piura, Peru, and Arequipa, Peru-, the one-hop reflection region for this path was near the magnetic equator, We obtained four types of measurements: an oblique ionogram between Piura and Arequipa every three minutes; Doppler spread and spatial correlation for a single frequency cw path between Piura and Arequipa; Doppler spread, time-delay spread, and spatial coherence for a 10 kHz bandwidth path between Piura and Arequipa-, and Doppler spread and time-delay spread for the one-way path between the AVA radar in New York and Arequipa, Peru. This report describes the diagnostic experiments that we carried out and gives a brief description of some of the data we obtained.

  18. MTF and PSF measurements of the CCD273-84 detector for the Euclid visible channel

    NASA Astrophysics Data System (ADS)

    Swindells, I.; Wheeler, R.; Darby, S.; Bowring, S.; Burt, D.; Bell, R.; Duvet, L.; Walton, D.; Cole, R.

    2014-08-01

    The European Space Agency (ESA) and e2v, together with the Euclid Imaging Consortium, have designed and manufactured pre-development models of a novel imaging detector for the visible channel of the Euclid space telescope. The new detector is an e2v back-illuminated, 4k x 4k, 12 micron square pixel CCD designated CCD273-84. The backilluminated detectors have been characterised for many critical performance parameters such as read noise, charge transfer efficiency, quantum efficiency, Modulation Transfer Function and Point Spread Function. Initial analysis of the MTF and PSF performance of the detectors has been performed by e2v and at MSSL and the results have enabled the Euclid VIS CCD project to move in to the C/D or flight phase delivery contract. This paper describes the CCD273-84 detector, the test method used for MTF measurements at e2v and the test method used for PSF measurements at MSSL. Results are presented for MTF measurements at e2v over all pre development devices. Also presented is a cross comparison of the data from the MTF and PSF measurement techniques on the same device. Good agreement between the measured PSF Full Width Half Maximum and the equivalent Full Width Half Maximum derived from the MTF images and test results is shown, with results that indicate diffusion FWHM values at or below 10 micron for the CCD273-84 detectors over the spectral range measured. At longer wavelengths the diffusion FWHM is shown to be in the 6-8 micron range.

  19. Application of left- and right-looking SAR stereo to depth measurements of the Ammavaru outflow channel, Lada Terra, Venus

    NASA Technical Reports Server (NTRS)

    Parker, T. J.

    1992-01-01

    Venusian channels are too narrow to be resolved by Magellan's radar altimeter, so they are not visible in the standard topographic data products. Stereo image data, in addition to their benefit to geologic mapping of Venus structures as a whole, are indispensible in measuring the topography across the channels. These measurements can then be used in conjunction with the regional topographic maps based on the altimeter data to produce cross-sectional areas for the channels and estimate the fluid discharge through them. As an example of the application of the stereo image data to venusian channels, a number of test depth and profile measurements were made of the large outflow channel system in Lada Terra, centered at 50 deg S latitude, 21 deg E longitude (F-MIDR 50S021). These measurements were made by viewing the cycle 1 and 2 digital FMIDRs in stereo on a display monitor, so as to minimize the errors in measuring parallax displacement as much as possible. The MIDRs are produced at a scale of 75 m/pixel. This corresponds to a vertical scale of about 17 m/pixel, when calculating the height of a feature from its parallax displacement. An error in placement determination of 1 pixel was assumed to characterize the vertical accuracy as plus or minus 17 m. When this technique was applied to the outflow channel, it was noted that the walls of the collapsed terrain source and 'trough reach' of the channel are laid over in both the cycle 1 and 2 images. This is evident when examining the distance between features on the plateau and the cliff walls in the two images. The layover 'shifts' the features closer to the apparent edge of the wall relative to the oppositely illuminated image.

  20. Measurement of radio wave reflection due to temperature rising from rock salt and ice irradiated by an electron beam for an ultra-high-energy neutrino detector

    SciTech Connect

    Tanikawa, Takahiro; Chiba, Masami; Kamijo, Toshio; Yabuki, Fumiaki; Yasuda, Osamu; Akiyama, Hidetoshi; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Utsumi, Michiaki; Fujii, Masatoshi

    2012-11-12

    An ultra-high-energy neutrino (UHE{nu}) gives temperature rise along the hadronic and electromagnetic shower when it enters into rock salt or ice. Permittivities of them arise with respect the temperatures at ionization processes of the UHE{nu} shower. It is expected by Fresnel's formula that radio wave reflects at the irregularity of the permittivity in the medium. We had found the radio wave reflection effect in rock salt. The reflection effect and long attenuation length of radio wave in rock salt and ice would yield a new UHE{nu} detection method. An experiment for ice was performed to study the reflection effect. A coaxial tube was filled with rock salt powder or ice. Open end of the coaxial tube was irradiated by a 2 MeV electron beam. Radio wave of 435 MHz was introduced to the coaxial tube. We measured the reflection wave from the open end. We found the radio wave reflection effect due to electron beam irradiation in ice as well as in rock salt.

  1. Increasing fluxes of S5 1044+71 measured with RATAN-600 radio telescope

    NASA Astrophysics Data System (ADS)

    Trushkin, S. T.; Mingaliev, M. G.; Sotnikova, Yu. V.; Erkenov, A.; Udovitskij, R. Yu.; Mufakharov, T. V.

    2014-02-01

    We report about the growing fluxes of the quasar S5 1044+71, identified with the FERMI source 2FGL J1048.3+714, since detection of the high state in the rest of January 2014 (ATEL #5792). We continue measurements and again detect the increase of the flux densities at frequencies 8.2-21.7 GHz in February.

  2. Delay time measurements of the propagation of radio waves in the atmosphere

    NASA Technical Reports Server (NTRS)

    Rohde, F.

    1972-01-01

    The characteristics and operation of the Geodetic Secor System are described. The precision of the ionospheric radiation measurements was determined by a collocation experiment. The EGRS-13 satellite, which was used in the experiment, is discussed. The geodetic network is shown in a diagram form. Conclusions resulting from the experiments are reported.

  3. A new emissive-probe method for electron temperature measurement in radio-frequency plasmas

    SciTech Connect

    Kusaba, Kouta; Shindo, Haruo

    2007-12-15

    A new method to measure electron temperature by an emissive probe has been proposed. The method is based on measurement of the functional relationship between the floating potential and the heating voltage of emissive probe. From the measured data of the floating potential change as a function of the heating voltage, the electron temperature could be determined by comparing with the theoretical curve obtained under the assumption of Maxwellian distribution. The overall characteristic of the floating potential change could be explained as a function of the heating voltage. The electron temperatures obtained by the present method were consistent with those measured by the rf-compensated Langmuir probe within the error. These experimental verifications were made in the electron density range of 2.6x10{sup 11}-2.8x10{sup 12} cm{sup -3}. It was stressed that the present method is advantageous in that the probe is operated in a floating condition, hence applicable to plasmas produced in an insulated container.

  4. A new emissive-probe method for electron temperature measurement in radio-frequency plasmas.

    PubMed

    Kusaba, Kouta; Shindo, Haruo

    2007-12-01

    A new method to measure electron temperature by an emissive probe has been proposed. The method is based on measurement of the functional relationship between the floating potential and the heating voltage of emissive probe. From the measured data of the floating potential change as a function of the heating voltage, the electron temperature could be determined by comparing with the theoretical curve obtained under the assumption of Maxwellian distribution. The overall characteristic of the floating potential change could be explained as a function of the heating voltage. The electron temperatures obtained by the present method were consistent with those measured by the rf-compensated Langmuir probe within the error. These experimental verifications were made in the electron density range of 2.6x10(11)-2.8x10(12) cm(-3). It was stressed that the present method is advantageous in that the probe is operated in a floating condition, hence applicable to plasmas produced in an insulated container. PMID:18163728

  5. Measurements of relative BCl density in BCl{sub 3}-containing inductively coupled radio frequency plasmas

    SciTech Connect

    Fleddermann, C.B.; Hebner, G.A.

    1998-04-01

    The relative density of BCl radicals in inductively coupled plasmas has been studied using laser-induced fluorescence (LIF), and the BCl excited state has been studied using plasma-induced emission (PIE). Measurements were made as a function of input power, pressure, position, and as a function of gas ratio for industry-relevant metal-etch gas mixtures containing BCl{sub 3}, Cl{sub 2}, Ar, and N{sub 2}. LIF was used to measure the ground state BCl population, whereas PIE monitored the BCl A{sup 1}{Pi} excited state; the LIF and PIE intensities varied differently as the plasma parameters were changed. Between 150 and 400 W input power at 20 mTorr pressure, there was no variation in BCl density, indicating that the dissociation fraction for BCl{sub 3} to BCl was constant with power. No significant interactions between BCl{sub 3} and Cl{sub 2} or Ar were evident in the LIF measurements. However, the BCl density was suppressed by addition of nitrogen to the plasma. The BCl density was radially uniform for all gas mixtures, but axial measurements showed a slight decrease in BCl density near the upper electrode. After running the reactor with a BCl{sub 3}/N{sub 2} mixture, BCl was observed for up to an hour after the discharge was switched to Cl{sub 2}: this is attributed to buildup of BN films on reactor surfaces and subsequent etching of the film by Cl.

  6. Measurement of interior ballistic performance using FM/FM radio telemetry techniques

    NASA Astrophysics Data System (ADS)

    Evans, J. W.

    1985-12-01

    The continuous measurement of ballistic performance during the interior ballistic cycle of cannon launched projectiles is important to on-going research programs being conducted at the Ballistic Research Laboratory (BRL). These measurements, such as propelling gas pressure, projectile acceleration, and projectile-bore interactions, are necessary to evaluate existing weapon systems and validate newly formulated interior ballistic models. Of particular interest is the resistance to projectile motion and the behavior of the projectile during the engraving process. The measurement of forces on projectiles and projectile-bore interactions requires that transducers be located on-board the projectile. In-bore measurements of ballistic performance are made at the BRL using an FM/FM, S-band telemeter. Standard artillery projectiles are modified and instrumented with telemetry transmitting systems. These projectiles are test fired and data extracted via the real time telemetry link. The projectile systems are expendable free-flight rounds and those modified for recovery in the BRL Large Caliber Soft Recovery System (LCSRS). The instrumentation package for the recoverable rounds is configured so it can be removed from the projectile, recalibrated after exposure to the launch environment, and used on subsequent rounds.

  7. A multi-channel magnetic induction tomography measurement system for human brain model imaging.

    PubMed

    Xu, Zheng; Luo, Haijun; He, Wei; He, Chuanhong; Song, Xiaodong; Zahng, Zhanglong

    2009-06-01

    This paper proposes a multi-channel magnetic induction tomography measurement system for biological conductivity imaging in a human brain model. A hemispherical glass bowl filled with a salt solution is used as the human brain model; meanwhile, agar blocks of different conductivity are placed in the solution to simulate the intracerebral hemorrhage. The excitation and detection coils are fixed co-axially, and the axial gradiometer is used as the detection coil in order to cancel the primary field. On the outer surface of the glass bowl, 15 sensor units are arrayed in two circles as measurement parts, and a single sensor unit for cancelling the phase drift is placed beside the glass bowl. The phase sensitivity of our system is 0.204 degrees /S m(-1) with the excitation frequency of 120 kHz and the phase noise is in the range of -0.03 degrees to +0.05 degrees . Only the coaxial detection coil is available for each excitation coil; therefore, 15 phase data are collected in each measurement turn. Finally, the two-dimensional images of conductivity distribution are obtained using an interpolation algorithm. The frequency-varying experiment indicates that the imaging quality becomes better as the excitation frequency is increased. PMID:19491435

  8. Microplate-compatible biamperometry array for parallel 48-channel amperometric or coulometric measurements.

    PubMed

    Mann, Thomas S; O'Hagan, Liam; Ertl, Peter; Sparkes, Douglas I; Mikkelsen, Susan R

    2008-04-15

    We report a new reusable electrochemical array for parallel biamperometric measurements that has been designed for use with standard microplates. The 48-channel array uses half of the available 96 wells and has 48 pairs of Pt wire electrodes. Applications to the quantitation of a variety of oxidizable species, including acetaminophen, ascorbic acid, hydroquinone, trolox, and uric acid, are demonstrated in assays that use potassium ferricyanide as an oxidant to produce a mixture of ferri- and ferrocyanide. Hydrogen peroxide quantitation is also demonstrated, based on an assay in which ferrocyanide is oxidized, again to produce a mixture of ferri- and ferrocyanide. Detection limits (signal-to-noise ratio (S/N) = 3) in these assays range from 1 (acetaminophen, R2 = 0.994) to 8 microM (ascorbic acid, R2 = 0.967), and linearity was observed to analyte concentrations of at least 100 microM. We also demonstrate the application of the biamperometric array to enzymatic assays, using the glucose oxidase reaction as an example; following a 20 min enzyme reaction time, a detection limit of 0.1 mM glucose was obtained. These results indicate that applications to other oxidase-based assays are feasible in this high-throughput format. The new electrochemical array employs standard, inexpensive microplates, and the biamperometric measurements are simple, precise, and rapid, requiring only 2 min for 48 parallel measurements. PMID:18341302

  9. Two-dimensional profile measurement of plasma parameters in radio frequency-driven argon atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Seo, B. H.; Kim, D. W.; Kim, J. H.; You, S. J.

    2015-09-01

    The two-dimensional profiles of the electron density, electron temperature, neutral translational temperature, and molecular rotational temperature are investigated in an argon atmospheric pressure plasma jet, which is driven by the radio frequency of 13.56 MHz by means of the laser scattering methods of Thomson, Rayleigh, and Raman. All measured parameters have maximum values at the center of the discharge and decrease toward the plasma edge. The results for the electron temperature profile are contrary to the results for the microwave-driven plasma. From our experimental results, the profiles of the plasma parameters arise from the radial contraction of plasmas and the time averaged profile of the electric field, which is obtained by a microwave simulation performed under identical conditions to the plasma jet. In the case of the neutral temperature, a higher translational temperature than the rotational temperature is measured, and its discrepancy is tentatively explained in terms of the low ion-neutral charge exchange rate and the additional degrees of freedom of the molecules. The description of our experimental results and the underlying physics are addressed in detail.

  10. Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots

    PubMed Central

    House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.

    2015-01-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon. PMID:26548556

  11. Radio frequency measurements of tunnel couplings and singlet-triplet spin states in Si:P quantum dots

    NASA Astrophysics Data System (ADS)

    House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.

    2015-11-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet-triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot-lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon.

  12. Ionosphere plasma electron parameters from radio frequency sweeping impedance probe measurements

    NASA Astrophysics Data System (ADS)

    Spencer, E.; Patra, S.

    2015-09-01

    In this work we will describe the technique of using an RF sweeping impedance probe (SIP) to measure the AC impedance of an electrically short monopole immersed in a plasma. We analyze the SIP measurements which are taken from the payload of the Storms sounding rocket, launched from Wallops Island, Virginia, in 2007. The scientific objective of the Storms mission was to concentrate on whether density irregularities observed in midlatitude spread F could arise from ionospheric coupling to terrestrial weather. As such, independent measurements of the electron density profile are crucial. Since the inherent nature of the SIP technique makes it relatively insensitive to errors introduced through spacecraft charging, probe contamination, and other DC effects, it is an ideal instrument to employ under disturbed plasma conditions. The instrument measures both the magnitude and phase of the AC impedance from 100 kHz to 20 MHz in 128 frequency steps, performing 45,776 sweeps over the entire flight. From these measurements we infer both the absolute electron density ne and the electron neutral collision frequencies νen throughout the flight trajectory. The SIP data can be approximately analyzed using a fluid formulation and thin sheath approximation particularly at altitudes below 200 km, which allows us to match the measurements to quasi-static analytical formulas. At about 265 km on the upleg, the magnitude data transitioned to a highly damped response with increasing altitude. The phase data, on the other hand, continued to indicate increased plasma density and reduced collisionality as expected. For a large portion of the flight, the payload of the Storms mission exhibited an uncontrolled coning motion, making the local magnetic field orientation with respect to the dipole difficult to decipher. Despite these difficulties, we were able to obtain robust estimates of the electron density profile, using the phase information from each sweep. In addition, the electron neutral collision frequency obtained from matching to phase data alone was on the correct order of magnitude with respect to Naval Research Laboratory Mass Spectrometer Incoherent Scatter-Extended model values in the ionosphere between 100 km and 150 km.

  13. Functional reconstitution and channel activity measurements of purified wildtype and mutant CFTR protein.

    PubMed

    Eckford, Paul D W; Li, Canhui; Bear, Christine E

    2015-01-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates. PMID:25867140

  14. 77 FR 28797 - Redundancy of Communications Systems: Backup Power Private Land Mobile Radio Services: Selection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Radio Services: Selection and Assignment of Frequencies, and Transition of the Upper 200 Channels in the... Telecommunication Radio Service (BETRS) but expressly cautions that a pending FCC proposal could remove this..., Communications common carriers, Communications equipment, Radio, Telecommunications, Telephone,...

  15. Quantum state measurement in double quantum dots with a radio-frequency quantum point contact

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Wang, Hai-Xia; Yin, Wen; Wang, Fang-Wei

    2014-02-01

    We study the dynamics of two electron spins in coupled quantum dots (CQDs) monitored by a quantum point contact (QPC) detector. Their quantum state can be measured by embedding the QPC in an LC circuit. We derive the Bloch-type rate equations of the reduced density matrix for CQDs. Special attention is paid to the numerical results for the weak measurement condintion under a strong Coulomb interaction. It is shown that the evolution of QPC current always follows that of electron occupation in the right dot. In addition, we find that the output voltage of the circuit can reflect the evolution of QPC current when the circuit and QPC are approximately equal in frequency. In particular, the wave shape of the output voltage can be improved by adjusting the circuit resonance frequency and bandwidth.

  16. The Rotation Period and Magnetic Field of the T Dwarf 2MASSI J1047539+212423 Measured from Periodic Radio Bursts

    NASA Astrophysics Data System (ADS)

    Williams, P. K. G.; Berger, E.

    2015-08-01

    Periodic radio bursts from very low mass stars and brown dwarfs simultaneously probe their magnetic and rotational properties. The brown dwarf 2MASSI J1047539+212423 (2M 1047+21) is currently the only T dwarf (T6.5) detected at radio wavelengths. Previous observations of this source with the Arecibo observatory revealed intermittent, 100%-polarized radio pulses similar to those detected from other brown dwarfs, but were unable to constrain a pulse periodicity; previous Very Large Array (VLA) observations detected quiescent emission a factor of ∼100 times fainter than the Arecibo pulses but no additional events. Here we present 14 hr of VLA observations of this object that reveal a series of pulses at ∼6 GHz with highly variable profiles, showing that the pulsing behavior evolves on time scales that are both long and short compared to the rotation period. We measure a periodicity of ∼1.77 hr and identify it with the rotation period. This is just the sixth rotation period measurement in a late T dwarf, and the first obtained in the radio. We detect a pulse at 10 GHz as well, suggesting that the magnetic field strength of 2 M 1047+21 reaches at least 3.6 kG. Although this object is the coolest and most rapidly rotating radio-detected brown dwarf to date, its properties appear continuous with those of other such objects, suggesting that the generation of strong magnetic fields and radio emission may continue to even cooler objects. Further studies of this kind will help to clarify the relationships between mass, age, rotation, and magnetic activity at and beyond the end of the main sequence, where both theories and observational data are currently scarce.

  17. Characteristics of four-channel Cherenkov-type detector for measurements of runaway electrons in the ISTTOK tokamak

    SciTech Connect

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C.

    2010-10-15

    A diagnostics capable of characterizing the runaway and superthermal electrons has been developing on the ISTTOK tokamak. In previous paper, a use of single-channel Cherenkov-type detector with titanium filter for runaway electron studies in ISTTOK was reported. To measure fast electron populations with different energies, a prototype of a four-channel detector with molybdenum filters was designed. Test-stand studies of filters with different thicknesses (1, 3, 7, 10, 20, 50, and 100 {mu}m) have shown that they should allow the detection of electrons with energies higher than 69, 75, 87, 95, 120, 181, and 260 keV, respectively. First results of measurements with the four-channel detector revealed the possibility to measure reliably different fast electrons populations simultaneously.

  18. First operation of the multi-channel Fourier Transform spectrometer for perpendicular and oblique ECE measurements at JET

    NASA Astrophysics Data System (ADS)

    Sozzi, Carlo; Garavaglia, Saul; Grossetti, Giovanni; Nowak, Silvana; Simonetto, Alessandro; de La Luna, Elena; Fessey, John; Zerbini, Marco

    2006-10-01

    The upgraded 6 channels Martin Puplett interferometer for Electron Cyclotron Emission measurements has entered operation during 2006 experimental campaign at JET. The instrument provides the ECE spectra for three lines of sight at different toroidal angles (0, 10 and 22 degrees with respect to the perpendicular to the toroidal field) and two linear polarizations over an extended bandwidth to avoid aliasing (75-800 GHz), with 11 ms/profile time resolution and 7.5 GHz single line equivalent spectral resolution. While the absolute in-vessel calibration of the whole system is foreseen for the next shutdown, at present the data of the perpendicular channel are relatively calibrated on the Michelson interferometer. As preliminary step of the oblique channels validation the measured data are compared with the calculated emission and cross-checked with the local characterization measurements. The process of data validation and the first physics results obtained will be discussed.

  19. Direct measurements by submersible of surge-type turbidity currents in a fjord channel, southeast Alaska

    SciTech Connect

    Cowan, E.A. . Dept. of Geology); Powell, R.D. . Geology Dept.); Lawson, D.E. ); Carlson, P.R. )

    1992-01-01

    High density, high-speed turbidity currents were observed and their properties measured in submarine channels in Queen Inlet, southeast Alaska during June, 1990 and 1991. A ROV submersible fitted with two video cameras, a CTD, an optical backscatter turbidity monitor (OBS), and electromagnetic current meter, and sidescan sonar was used to collect data from within and above the flows. Multiple flows were recorded during a ROV dive at 2.3 km from the delta front in a channel at 104 m depth. Flows were marked by sudden increases in turbidity and current velocity. In one flow, turbidity increased from 300 to 1,600 OBS units (instrument maximum) in 10 sec, and within 9.4 min, salinity (S) steadily decreased by 12.1 ppt, with only a 0.2 C temperature (T) increase. Density differences between the flow and ambient water require a minimum sediment concentration of 97 g/l. Maximum flow velocity exceeded 3.3 m/s. A vertical ROV profile indicated a flow thickness of 10 m. The upper surface was visually identified by billowing suspended sediment and by fluctuating OBS and T as ambient and flow water mixed in turbulent eddies. A faster S decrease and slower T increase with distance into and away from the flow indicate that thermal diffusive processes were less efficient than convective mass transfer. The S change indicates that flow water and ambient water mixed well beyond the flow defined by high turbidity. Warm water temperatures within the flow and low meltwater stream discharge suggest that these flows originated from the delta front and are not continuous underflows.

  20. Effect of elbow position on radiographic measurements of radio-capitellar alignment

    PubMed Central

    Sandman, Emilie; Canet, Fanny; Petit, Yvan; Laflamme, G-Yves; Athwal, George S; Rouleau, Dominique M

    2016-01-01

    AIM: To evaluate the effect of different elbow and forearm positions on radiocapitellar alignment. METHODS: Fifty-one healthy volunteers were recruited and bilateral elbow radiographs were taken to form a radiologic database. Lateral elbow radiographs were taken with the elbow in five different positions: Maximal extension and forearm in neutral, maximal flexion and forearm in neutral, elbow at 90° and forearm in neutral, elbow at 90° and forearm in supination and elbow at 90° and forearm in pronation. A goniometer was used to verify the accuracy of the elbow’s position for the radiographs at a 90° angle. The radiocapitellar ratio (RCR) measurements were then taken on the collected radiographs using the SliceOmatic software. An orthopedic resident performed the radiographic measurements on the 102 elbows, for a total of 510 lateral elbow radiographic measures. ANOVA paired t-tests and Pearson coefficients were used to assess the differences and correlations between the RCR in each position. RESULTS: Mean RCR values were -2% ± 7% (maximal extension), -5% ± 9% (maximal flexion), and for elbow at 90° and forearm in neutral -2% ± 5%, supination 1% ± 6% and pronation 1% ± 5%. ANOVA analyses demonstrated significant differences between the RCR in different elbow and forearm positions. Paired t-tests confirmed significant differences between the RCR at maximal flexion and flexion at 90°, and maximal extension and flexion. The Pearson coefficient showed significant correlations between the RCR with the elbow at 90° - maximal flexion; the forearm in neutral-supination; the forearm in neutral-pronation. CONCLUSION: Overall, 95% of the RCR values are included in the normal range (obtained at 90° of flexion) and a value outside this range, in any position, should raise suspicion for instability. PMID:26925383

  1. 1. VIEW TO NORTHWEST WITH RADIO CONTROL HOUSE (RIGHT), TRANSMITTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW TO NORTHWEST WITH RADIO CONTROL HOUSE (RIGHT), TRANSMITTER TOWER (CENTER), AND NORTH BREAKWATER LIGHT IN DISTANCE AT LEFT - Frankfort Coast Guard Station, Radio Control House, Second Street at ship channel, Frankfort, Benzie County, MI

  2. Evaluating the use of drone photogrammetry for measurement of stream channel morphology and response to high flow events

    NASA Astrophysics Data System (ADS)

    Price, Katie; Ballow, William

    2015-04-01

    Traditional high-precision survey methods for stream channel measurement are labor-intensive and require wadeability or boat access to streams. These conditions limit the number of sites researchers are able to study and generally prohibit the possibility of repeat channel surveys to evaluate short-term fluctuations in channel morphology. In recent years, unmanned aerial vehicles (drones) equipped with photo and video capabilities have become widely available and affordable. Concurrently, developments in photogrammetric software offer unprecedented mapping and 3D rendering capabilities of drone-captured photography. In this study, we evaluate the potential use of drone-mounted cameras for detailed stream channel morphometric analysis. We used a relatively low-cost drone (DJI Phantom 2+ Vision) and commercially available, user friendly software (Agisoft Photscan) for photogrammetric analysis of drone-captured stream channel photography. Our test study was conducted on Proctor Creek, a highly responsive urban stream in Atlanta, Georgia, within the crystalline Piedmont region of the southeastern United States. As a baseline, we performed traditional high-precision survey methods to collect morphological measurements (e.g., bankfull and wetted width, bankfull and wetted thalweg depth) at 11 evenly-spaced transects, following USGS protocols along reaches of 20 times average channel width. We additionally used the drone to capture 200+ photos along the same reaches, concurrent with the channel survey. Using the photogrammetry software, we generated georeferenced 3D models of the stream channel, from which morphological measurements were derived from the 11 transects and compared with measurements from the traditional survey method. We additionally explored possibilities for novel morphometric characterization available from the continuous 3D surface, as an improvement on the limited number of detailed cross-sections available from standard methods. These results showed great promise for the drone photogrammetry methods, which encouraged the exploration of the possibility of repeat aerial surveys to evaluate channel response to high flow events. Repeat drone surveys were performed following a sequence of high-flow events in Proctor Creek to evaluate the possibility of using these methods for assessment of stream channel response to flooding.

  3. Turbulence Measurements from a Moored Platform at Mid-Depth in a Swift Tidal Channel

    NASA Astrophysics Data System (ADS)

    Hay, Alex; Lueck, Rolf; Wolk, Fabian; McMillan, Justine

    2014-05-01

    Results are presented from a turbulence experiment with a 3-m long streamlined floatation body, instrumented with velocity shear probes, fast-response thermistors, a 1 MHz Acoustic Doppler Current Profiler (AD2CP), and an Acoustic Doppler Velocimeter (ADV). The system was deployed over seven tidal cycles at mid-depth in a 30-m deep tidal channel in the lower Bay of Fundy, Canada. Peak flow speeds exceeded 2 m s-1, and while 10-min time scale average speeds were similar between ebb and flood, the variances were markedly higher during flood. Turbulent kinetic energy (TKE) dissipation rates measured with the shear probes exhibit a pronounced flood/ebb contrast: O(10-4) W kg-1 peak values during flood, but lower by an order of magnitude during ebb. Dissipation rates follow u3 scaling over a wide range of flow speeds between 0.5 and 2.5 m s-1. Below 0.5 m s-1 an asymmetry in the mounting arrangement caused the floatation body to pitch upward, biasing the measured dissipation values high. The ADV on the platform registered mean speed - used to implement Taylor's hypothesis - which was corroborated with the platform-mounted ADCP. Additional ADCPs were also deployed on a nearby bottom pod, sampling at turbulence resolving rates - up to 8 Hz. Comparisons between the shear probe and acoustic estimates of the TKE spectrum and dissipation rate - at comparable depths - are presented.

  4. Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel

    NASA Astrophysics Data System (ADS)

    Sung, Yongjin; Lue, Niyom; Hamza, Bashar; Martel, Joseph; Irimia, Daniel; Dasari, Ramachandra R.; Choi, Wonshik; Yaqoob, Zahid; So, Peter

    2014-02-01

    The refractive index of biological specimens is a source of intrinsic contrast that can be explored without any concerns of photobleaching or harmful effects caused by extra contrast agents. In addition, the refractive index contains rich information related to the metabolism of cells at the cellular and subcellular levels. Here, we report a no-moving-parts approach that provides three-dimensional refractive-index maps of biological samples continuously flowing in a microfluidic channel. Specifically, we use line illumination and off-axis digital holography to record the angular spectra of light scattered from flowing samples at high speed. Applying the scalar diffraction theory, we obtain accurate refractive-index maps of the samples from the measured spectra. Using this method, we demonstrate label-free three-dimensional imaging of live RKO human colon cancer cells and RPMI8226 multiple myeloma cells, and obtain the volume, dry mass, and density of these cells from the measured three-dimensional refractive-index maps. Our results show that the reported method, alone or in combination with the existing flow cytometry techniques, shows promise as a quantitative tool for stain-free characterization of a large number of cells.

  5. Three-channel imaging fabry-perot interferometer for measurement of mid-latitude airglow.

    PubMed

    Shiokawa, K; Kadota, T; Ejiri, M K; Otsuka, Y; Katoh, Y; Satoh, M; Ogawa, T

    2001-08-20

    We have developed a three-channel imaging Fabry-Perot interferometer with which to measure atmospheric wind and temperature in the mesosphere and thermosphere through nocturnal airglow emissions. The interferometer measures two-dimensional wind and temperature for wavelengths of 630.0 nm (OI, altitude, 200-300 km), 557.7 nm (OI, 96 km), and 839.9 nm (OH, 86 km) simultaneously with a time resolution of 20 min, using three cooled CCD detectors with liquid-N(2) Dewars. Because we found that the CCD sensor moves as a result of changes in the level of liquid N(2) in the Dewars, the cooling system has been replaced by thermoelectric coolers. The fringe drift that is due to changes in temperature of the etalon is monitored with a frequency-stabilized He-Ne laser. We also describe a data-reduction scheme for calculating wind and temperature from the observed fringes. The system is fully automated and has been in operation since June 1999 at the Shigaraki Observatory (34.8N, 136.1E), Shiga, Japan. PMID:18360466

  6. Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel

    PubMed Central

    Sung, Yongjin; Lue, Niyom; Hamza, Bashar; Martel, Joseph; Irimia, Daniel; Dasari, Ramachandra R.; Choi, Wonshik; Yaqoob, Zahid; So, Peter

    2014-01-01

    Refractive index of biological specimens is a source of intrinsic contrast that can be explored without any concerns of photobleaching or harmful effects caused by extra contrast agents. In addition, RI contains rich information related to the metabolism of cells at the cellular and subcellular levels. Here, we report a no-moving parts approach that provides three-dimensional refractive index maps of biological samples continuously flowing in a microfluidic channel. Specifically, we use line illumination and off-axis digital holography to record the angular spectra of light scattered from flowing samples at high speed. Applying the scalar diffraction theory, we obtain accurate RI maps of the samples from the measured spectra. Using this method, we demonstrate label-free 3-D imaging of live RKO human colon cancer cells and RPMI8226 multiple myeloma cells, and obtain the volume, dry mass and density of these cells from the measured 3-D refractive index maps. Our results show that the reported method, alone or in combination with the existing flow cytometry techniques, promises as a quantitative tool for stain-free characterization of large number of cells. PMID:25419536

  7. The atmosphere of Uranus - Results of radio occultation measurements with Voyager 2

    NASA Technical Reports Server (NTRS)

    Lindal, G. F.; Lyons, J. R.; Sweetnam, D. N.; Eshleman, V. R.; Hinson, D. P.

    1987-01-01

    The Uranian atmosphere is investigated on the basis of S-band and X-band occultation observations (including measurements of Doppler frequency perturbations) obtained during the Voyager 2 encounter with Uranus in January 1986. The data are presented in extensive tables and graphs and characterized in detail. The atmosphere is assumed to have an H2/He abundance ratio of about 85/15, but also to contain small amounts of CH4 at above-cloud relative humidity 30 percent, cloud-base relative humidity 78 percent, and below-cloud mixing ratio 2.3 percent by number density. Other parameters estimated include magnetic-field rotation period 17.24 h, 1-bar equatorial radius 25,559 + or - 4 km, polar radius 24,973 + or - 20 km, equatorial acceleration of gravity 8.69 + or - 0.01 m/sec sq, and atmospheric temperature 76 + or - 2 K (assuming 85 + or - 3 percent H2).

  8. Range difference multilateration for obtaining precision geodetic and trajectory measurements. [by radio interferometry

    NASA Technical Reports Server (NTRS)

    Escobal, P. R.; Ong, K. M.; Von Roos, O. H.

    1975-01-01

    The theoretical aspects of a new multilateration technique suitable for precision geodesy and orbit determination applications are examined. The multilateration technique considered herein makes use of the differential time of arrival of signals at an ensemble of ground stations from a spacecraft or aircraft as the fundamental data type. It is demonstrated that simultaneous measurements give rise to a system of equations which upon solution permits the determination of the three-dimensional vehicle coordinates plus the three-dimensional coordinates of the station net relative to an arbitrarily adopted origin (which may be taken to be one of the stations). A solution to these equations can be obtained without any a priori knowledge of the locations of the stations and vehicle. The necessary conditions for obtaining all of these coordinates in the same solution are discussed, and it is indicated that at least five stations are required in the station ensemble.

  9. Coronal electron density distributions estimated from CMEs, DH type II radio bursts, and polarized brightness measurements

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Ok; Moon, Y.-J.; Lee, Jin-Yi; Lee, Kyoung-Sun; Kim, R.-S.

    2016-04-01

    We determine coronal electron density distributions (CEDDs) by analyzing decahectometric (DH) type II observations under two assumptions. DH type II bursts are generated by either (1) shocks at the leading edges of coronal mass ejections (CMEs) or (2) CME shock-streamer interactions. Among 399 Wind/WAVES type II bursts (from 1997 to 2012) associated with SOHO/LASCO (Large Angle Spectroscopic COronagraph) CMEs, we select 11 limb events whose fundamental and second harmonic emission lanes are well identified. We determine the lowest frequencies of fundamental emission lanes and the heights of leading edges of their associated CMEs. We also determine the heights of CME shock-streamer interaction regions. The CEDDs are estimated by minimizing the root-mean-square error between the heights from the CME leading edges (or CME shock-streamer interaction regions) and DH type II bursts. We also estimate CEDDs of seven events using polarized brightness (pB) measurements. We find the following results. Under the first assumption, the average of estimated CEDDs from 3 to 20 Rs is about 5-fold Saito's model (NSaito(r)). Under the second assumption, the average of estimated CEDDs from 3 to 10 Rs is 1.5-fold NSaito(r). While the CEDDs obtained from pB measurements are significantly smaller than those based on the first assumption and CME flank regions without streamers, they are well consistent with those on the second assumption. Our results show that not only about 1-fold NSaito(r) is a proper CEDD for analyzing DH type II bursts but also CME shock-streamer interactions could be a plausible origin for generating DH type II bursts.

  10. Multicolor Photometric Observation of Lightning from Space: Comparison with Radio Measurements

    NASA Technical Reports Server (NTRS)

    Adachi, Toru; Cohen, Morris; Said, Ryan; Blakeslee, Richard J.; Cummer, Steven A.; Li, Jingbo; Lu, Geopeng; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred Bing-Chih; Takahashi, Yukihiro; Frey, Harald U.; Mende, Stephen B.

    2011-01-01

    This study evaluates the effectiveness of spectrophotometric measurements from space in revealing properties of lightning flash. The multicolor optical waveform data obtained by FORMOSAT-2/Imager of Sprites and Upper Atmospheric Lightning (ISUAL) were analyzed in relation to National Lightning Detection Network (NLDN), North Alabama Lightning Mapping Array (LMA). As of July 2011, we found six lightning events which were observed by ISUAL and North Alabama LMA. In two of these events, NLDN showed clear positive cloud-to-ground (CG) discharges with peak current of +139.9 kA and +41.6 kA and, around that time, LMA showed continuous intra-cloud (IC) leader activities at 4-6 km altitudes. ISUAL also observed consistent optical waveforms of the IC and CG components and, interestingly, it was found that the blue/red spectral ratio clearly decreased by a factor of 1.5-2.5 at the time of CG discharges. Other four lightning events in which NLDN did not detect any CG discharges were also investigated, but such a feature was not found in any of these cases. These results suggest that the optical color of CG component is more reddish than that of IC component and we explain this as a result of more effective Rayleigh scattering in blue light emissions coming from lower-altitude light source. This finding suggests that spectral measurements could be a new useful technique to characterize ICs and CGs from space. In this talk, we will also present a result from lightning statistical analysis of ISUAL spectrophotometric data and ULF magnetic data.

  11. Radio wave.

    PubMed

    Elkin, V

    1992-01-01

    In developing countries with high rates of poverty and illiteracy, radio is emerging as an excellent medium for delivering information on health issues, family planning, nutrition, and agricultural development. Since radio does not require wired electricity, it can reach remote rural populations. Surveys have found that between 50-75% of poor rural households in developing countries own radios, and the majority listen to educational radio at least once a week. A program that reaches the urban poor outside of Lima, Peru, has been instrumental in controlling the spread of cholera. A Bolivian station broadcasts 8 hours of literacy, health, agricultural, and cultural programming a day to an audience of more than 2 million Aymara Indians. Small village radio stations with a broadcast range of 15 miles can be established for under US$400 and can generally achieve sustainability through local fundraising events such as raffles. In many cases, listeners have become broadcasters at their local radio stations. PMID:12286181

  12. A Comparative Study of Measured Amplitude and Phase Perturbations of VLF and LF Radio Signals Induced by Solar Flares

    NASA Astrophysics Data System (ADS)

    Sulic, D. M.; Sreckovic, V. A.

    2014-06-01

    Very Low Frequency (VLF) and Low Frequency (LF) signal perturbations were examined to study ionospheric disturbances induced by solar X-ray flares in order to understand processes involved in propagation of VLF/LF radio signals over short paths and to estimate specific characteristics of each short path. The receiver at the Belgrade station is constantly monitoring the amplitude and phase of a coherent and subionospherically propagating LF signal operated in Sicily NSC at 45.90 kHz, and a VLF signal operated in Isola di Tavolara ICV at 20.27 kHz, with the great circle distances of 953 km and 976 km, respectively. A significant number of similarities between these short paths is a direct result of both transmitters and the receiver's geographic location. The main difference is in transmitter frequencies. From July 2008 to February 2014 there were about 200 events that were chosen for further examination. All selected examples showed that the amplitude and phase of VLF and LF signals were perturbed by solar X-ray flares occurrence. This six-year period covers both minimum and maximum of solar activity. Simultaneous measurement of amplitude and phase of the VLF/LF signals during a solar flare occurrence was applied to evaluate the electron density profile versus altitude, to carry out the function of time over the middle Europe.

  13. Radio-Frequency Illuminated Superconductive Disks: Reverse Josephson Effects and Implications for Precise Measuring of Proposed Gravity Effects

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Koczor, Ronald J.

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. It have been indicated three essential components to achieve anomalous gravity effects, namely large, two-layer high-temperature YBCO superconductors, magnetic levitation and AC input in the form of radio-frequency (RF) electromagnetic fields. We report experiments on RF-illuminated (1-15 MHz) superconducting disks with corresponding gravity readings indicating an apparent increase in observed gravity of approximately 3-5 x l0(exp -5)cm/sq s, above and to the side of the superconductor. In this preliminary study, RF- illumination is achieved using a series of large radius (15 cm) spiral antenna with RF power inputs equal to or greater than 90 W. The observed gravitational modification range is significantly lower than the 2.1% gravity modification. The error analyses of thermal and electromagnetic interference in a magnetically shielded gravimeter with vacuum enclosures, Faraday cages and shielded instrument leads, are outlined both experimentally and theoretically. The nearly exact correspondence between the peak gravity effects reported and the well-known peak in AC resistance in superconductors (2-7 MHz, owing to reverse Josephson quantum effects) suggests that electrical resistance will arise in this frequency range and subsequently any trapped magnetic fields in the superconductor may disperse partially into the measuring instrument's local environment. Implications for propulsion initiatives and RF-heating in superconductors will be discussed.

  14. Wuhan Atmosphere Radio Exploration (WARE) radar: System design and online winds measurements

    NASA Astrophysics Data System (ADS)

    Zhengyu, Zhao; Chen, Zhou; Haiyin, Qing; Guobin, Yang; Yuannong, Zhang; Gang, Chen; Yaogai, Hu

    2013-05-01

    The basic configuration of the Wuhan MST (mesosphere-stratosphere-troposphere) radar, which was designed and constructed by the School of Electronic Information, Wuhan University, is preliminarily described in this paper. The Wuhan MST radar operates at very high frequency (VHF) band (53.8 MHz) by observing the real-time characteristics of turbulence and the wind field vector in the height range of 3.5-90 km (not including 25-60 km) with high temporal and height resolutions. This all-solid-state, all-coherent pulse Doppler radar is China's first independent development of an MST radar focusing on atmospheric observation. The subsystems of the Wuhan MST radar include an antenna system, a feeder line system, all-solid-state radar transmitters, digital receivers, a beam control system, a signal processing system, a data processing system, a product generation system, and a user terminal. Advanced radar technologies are used, including highly reliable all-solid-state transmitters, low-noise large dynamic range digital receivers, an active phased array, high-speed digital signal processing, and real-time graphic terminals. This paper describes the design and implementation of the radar. Preliminary online wind measurements and results of the comparison to simultaneous observations by a GPS rawinsonde are presented as well.

  15. The measurement of the ionospheric total content variations caused by a powerful radio emission of "Sura" facility on a network of GNSS-receivers

    NASA Astrophysics Data System (ADS)

    Nasyrov, I. A.; Kogogin, D. A.; Shindin, A. V.; Grach, S. M.; Zagretdinov, R. V.

    2016-02-01

    Observations of the perturbations of total electron content (TEC) caused by a powerful radio emission of "Sura" facility (Radio Physical Research Institute, N. Novgorod) were carried out during several experimental campaigns from March of 2010 to March 2013. In this paper the data of experimental measurements of TEC-variations conducted on March, 15, 2010 and on March, 12, 2013, are presented. Parameters of TEC-variations were obtained by dual-frequency global navigation satellite systems (GNSS) diagnostics. Registration of signal parameters from GNSS-transmitters was performed at spatially separated sites along the geomagnetic latitude: Vasilsursk (56 °08‧ N, 46 °05‧ E), Zelenodolsk (55 °52‧ N, 48 °33‧ E) and Kazan (55 °48‧ N, 49 °08‧ E). In the experiments radio path from GNSS satellite to Vasilsursk passed over the disturbed region of ionosphere, but radio paths to Zelenodolsk and to Kazan did not. However, TEC-variations correlated with pumping of ionosphere by "Sura" facility were detected for all up to three ground measurements sites. Magnitudes of TEC-variations reached up to ∼ 0.6 - 0.7 TECU. The speculation that a sharp gradient of the electron density formed at the border of the main lobe of "Sura" facility may cause the generation of IGW is presented.

  16. Measurement of the ttbar production cross section in the MET+jets channel at CDF

    SciTech Connect

    Compostella, Gabriele; /INFN, Trento

    2008-03-01

    This thesis is focused on an inclusive search of the t{bar t} {yields} E{sub T} + jets decay channel by means of neural network tools in proton antiproton collisions at {radical}s = 1.96 TeV recorded by the Collider Detector at Fermilab (CDF). At the Tevatron p{bar p} collider top quarks are mainly produced in pairs through quark-antiquark annihilation and gluon-gluon fusion processes; in the Standard Model description, the top quark then decays to a W boson and a b quark almost 100% of the times, so that its decay signatures are classified according to the W decay modes. When only one W decays leptonically, the t{bar t} event typically contains a charged lepton, missing transverse energy due to the presence of a neutrino escaping from the detector, and four high transverse momentum jets, two of which originate from b quarks. In this thesis we describe a t{bar t} production cross section measurement which uses data collected by a 'multijet' trigger, and selects this kind of top decays by requiring a high-P{sub T} neutrino signature and by using an optimized neural network to discriminate top quark pair production from backgrounds. In Chapter 1, a brief review of the Standard Model of particle physics will be discussed, focusing on top quark properties and experimental signatures. In Chapter 2 will be presented an overview of the Tevatron accelerator chain that provides p{bar p} collisions at the center-of-mass energy of {radical}s = 1.96 TeV, and proton and antiproton beams production procedure will be discussed. The CDF detector and its components and subsystems used for the study of p{bar p} collisions provided by the Tevatron will be described in Chapter 3. Chapter 4 will detail the reconstruction procedures used in CDF to detect physical objects exploiting the features of the different detector subsystems. Chapter 5 will provide an overview of the main concepts regarding Artificial Neural Networks, one of the most important tools we will use in the analysis. Chapter 6 will be devoted to the description of the main characteristics of the t{bar t} {yields} E{sub T} + jets decay channel used to train our neural network to discriminate the top pair production from background processes. We will discuss the event selection method and the technique used for background prediction, that will rely on b-jets identification rate parameterization. Finally, Chapter 7 will provide a description of the final data sample and a detailed discussion of the systematic uncertainties before determining the cross section measurement by means of a likelihood maximization.

  17. Characteristics of tropopause-penetrating convection determined by TRMM and COSMIC GPS radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Xian, Tao; Fu, Yunfei

    2015-07-01

    Distribution and influence of convection in the upper troposphere and lower stratosphere have been investigated case by case or on regional to global scale. However, previous studies were limited by using proxies for convection or the bias of the tropopause data. Here the tropopause-penetrating convection is investigated based on the sole use of observational products from Tropical Rainfall Measuring Mission (TRMM) precipitation radar data and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). The result shows that the frequency of precipitation-top heights above the monthly mean tropopause in the tropics is reduced logarithmically if the cold-point tropopause is adopted instead of the lapse-rate tropopause. Using the collocated COSMIC and precipitation radar observations, the tropopause-penetrating convection, i.e., the convection with the precipitation-top height above the lapse-rate tropopause, can be found over the summer monsoon regions and some continental regions. The averaged relative precipitation-top heights of tropopause-penetrating convective clusters are about 0.2-0.5 km without significant land-ocean difference, while equivalent radii of clusters are 2.7-3.5 km over land and 0.2-0.5 km larger than those over ocean. These areal and vertical extents are smaller than those reported by previous studies. Furthermore, the collocated temperature profiles show that the tropopause-penetrating convection generates warming in the upper troposphere and cooling near the lapse-rate tropopause and in the lower stratosphere. Moreover, the tropopause-penetrating convection leads to a rapid (within 20 min) lift of the lapse-rate tropopause by the adiabatic lofting within the convection (within a 10 km radius).

  18. Providing hydrogen maser timing stability to orbiting VLBI radio telescope observations by post-measurement compensation of linked frequency standard imperfections

    NASA Technical Reports Server (NTRS)

    Springett, James C.

    1994-01-01

    Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later introduced as compensations adjunct to the VLBI correlation process. Accordingly, this paper examines the technique for stable frequency/time transfer within the OVLBI system, together with a critique of the types of link degradation components which must be compensated, and the figures of merit known as coherence factors.

  19. Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Charlot, P.; Finger, M. H.; Williams, J. G.; Sovers, O. J.; Newhall, XX; Standish, E. M., Jr.

    1994-01-01

    Very Long Baseline Interferometry (VLBI) observations of extragalactic radio sources provide the basis for defining an accurate non-rotating reference frame in terms of angular positions of the sources. Measurements of the distance from the Earth to the Moon and to the inner planets provide the basis for defining an inertial planetary ephemeris reference frame. The relative orientation, or frame tie, between these two reference frames is of interest for combining Earth orientation measurements, for comparing Earth orientation results with theories referred to the mean equator and equinox, and for determining the positions of the planets with respect to the extragalactic reference frame. This work presents an indirect determination of the extragalactic-planetary frame tie from a combined reduction of VLBI and Lunar Laser Ranging (LLR) observations. For this determination, data acquired by LLR tracking stations since 1969 have been analyzed and combined with 14 years of VLBI data acquired by NASA's Deep Space Network since 1978. The frame tie derived from this joint analysis, with an accuracy of 0.003 sec, is the most accurate determination obtained so far. This result, combined with a determination of the mean ecliptic (defined in the rotating sense), shows that the mean equinox of epoch J2000 is offset from the x-axis of the extragalactic frame adopted by the International Earth Rotation Service for astrometric and geodetic applications by 0.078 sec +/- 0.010 sec along the y-direction and y 0.019 sec +/- 0.001 sec. along the z-direction.

  20. Measurement of light charged particles in the decay channels of medium-mass excited compound nuclei

    NASA Astrophysics Data System (ADS)

    Valdré, S.; Barlini, S.; Casini, G.; Pasquali, G.; Piantelli, S.; Carboni, S.; Cinausero, M.; Gramegna, F.; Marchi, T.; Baiocco, G.; Bardelli, L.; Benzoni, G.; Bini, M.; Blasi, N.; Bracco, A.; Brambilla, S.; Bruno, M.; Camera, F.; Corsi, A.; Crespi, F.; D'Agostino, M.; Degerlier, M.; Kravchuk, V. L.; Leoni, S.; Million, B.; Montanari, D.; Morelli, L.; Nannini, A.; Nicolini, R.; Poggi, G.; Vannini, G.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Dudek, J.; Fornal, B.; Kmiecik, M.; Maj, A.; Matejska-Minda, M.; Mazurek, K.; Męczyński, W. M.; Myalski, S.; Styczeń, J.; Ziębliński, M.

    2014-03-01

    The 48Ti on 40Ca reactions have been studied at 300 and 600 MeV focusing on the fusion-evaporation (FE) and fusion-fission (FF) exit channels. Energy spectra and multiplicities of the emitted light charged particles have been compared to Monte Carlo simulations based on the statistical model. Indeed, in this mass region (A ~ 100) models predict that shape transitions can occur at high spin values and relatively scarce data exist in the literature about coincidence measurements between evaporation residues and light charged particles. Signals of shape transitions can be found in the variations of the lineshape of high energy gamma rays emitted from the de-excitation of GDR states gated on different region of angular momenta. For this purpose it is important to keep under control the FE and FF processes, to regulate the statistical model parameters and to control the onset of possible pre-equilibrium emissions from 300 to 600 MeV bombarding energy.

  1. Determination of the manning coefficient from measured bed roughness in natural channels

    USGS Publications Warehouse

    Limerinos, John Thomas

    1970-01-01

    This report presents the results of a study to test the hypothesis that basic values of the Manning roughness coefficient of stream channels may be related to (1) some characteristic size of the streambed particles and to (2) the distribution of particle size. These two elements involving particle size can be combined into a single element by weighting characteristic particle sizes. The investigation was confined to channels with coarse bed material to avoid the complication of bed-form roughness that is associated with alluvial channels composed of fine bed material. Fifty current-meter measurements of discharge and appropriate field surveys were made at 11 sites on California streams for the purpose of computing the roughness coefficient, n, by the Manning formula. The test sites were selected to give a wide range in average size of bed material, and the discharge measurements and surveys were made at such times as to provide data covering a suitable range in stream depth. The sites selected were relatively free of the extraneous flow-retarding effects associated with irregular channel conformation and streambank vegetation. The characteristic bed-particle sizes used in the analyses were the 16,- 50,- and 84-percentile sizes as obtained from a cumulative frequency distribution of the diameters of randomly sampled surficial bed material. Separate distributions were computed for the minimum and intermediate values of the three diameters of a particle. The minimum diameters of the streambed particles were used in the study because a particle at rest on the bed invariably has its minimum diameter in the vertical position; this diameter is, therefore, the most representative measure of roughness height. The intermediate diameter was also studied because this is the diameter most easily measurable-either by sieve analysis or by photographic techniques--and--because it is the diameter that had been used in previous studies by other investigators. No significant difference in reliability was found between the results obtained using minimum diameters and those obtained using intermediate diameters. In analyzing the field data, the roughness parameter, n/R1/6 (where R is hydraulic radius), was related to relative smoothness, R/d (where d is a characteristic, or weighted characteristic, particle size). The parameter n/R1/6, rather than n, was used because it is directly proportional to the square root of the Darcy-Weisbach friction factor, f, which is more widely used in theoretical studies of hydraulic friction. If the transformation of n/R1/6 to vf is made, the relations obtained in this study are of a form that is identical with that of the theoretical friction equation obtained by several investigators and that derived from field data by Leopold and Wolman (1957). The constants in the equation vary, of course, with the characteristic particle size used. The relations best fitting the field data for this study were obtained by using either a characteristic particle diameter equal to the 84-percentile size (d84, the size equal to, or exceeding, that of 84 percent of the streambed particles), or a diameter obtained by weighting three characteristic particle sizes (dw, the size obtained by assigning a weight of 0.1 to d16 , a weight of 0.3 to d50 , and a weight of 0.6 to d84). The use of d84 alone gave slightly better results than the use of dw, and, in addition, the use of d84 alone is attractive from a standpoint of simplicity. It is difficult, however, to rationalize the use of d84 alone because of the implication that the distribution of sizes is irrelevant, and it matters not at all whether 84 percent of the bed material is sand or whether it is large cobbles, as long as 16 percent of the material is of greater size. Consequently, the author recommends the use of dw rather than d84 , although there was no unanimity of opinion on this recommendation among his colleagues who reviewed this paper. The reader is free to

  2. High-mobility transparent thin-film transistors with ZnSnLiO channel layer prepared by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Li, Bin; Hu, Zuofu; Wu, Huaihao; Zhou, Dongzhan; Peng, Yunfei; Gao, Song; Yi, Lixin; Wang, Yongsheng; Zhang, Xiqing

    2015-03-01

    We have fabricated transparent thin-film transistors with ZnSnLiO as active layers deposited by radio frequency magnetron sputtering at room temperature. The TFTs structure used in this study was a staggered bottom-gate, which consists of SiO2 as a gate insulator and heavily doped p-type Si(1 1 1) as a gate electrode. In order to optimize the performance of the ZnSnLiO thin-film transistors, the thermal annealing is investigated. We find that appropriate annealing temperature is very beneficial for the ZnSnLiO TFTs, and when the annealing temperature is 500 °C, the transistor exhibited the high field-effect mobility of 45.1 cm2/V s and a large I on/off ratio of 6.0 × 107.

  3. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of an Enhanced System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.

  4. Measuring and Evaluating the Role of ATP-Sensitive K+ Channels in Cardiac Muscle

    PubMed Central

    Kefaloyianni, Eirini; Bao, Li; Rindler, Michael J.; Hong, Miyoun; Patel, Tejaskumar; Taskin, Eylem; Coetzee, William A.

    2012-01-01

    Since ion channels move electrical charge during their activity, they have traditionally been studied using electrophysiological approaches. This was sometimes combined with mathematical models, for example with the description of the ionic mechanisms underlying the initiation and propagation of action potentials in the squid giant axon by Hodgkin and Huxley. The methods for studying ion channels also have strong roots in protein chemistry (limited proteolysis, the use of antibodies, etc). The advent of the molecular cloning and the identification of genes coding for specific ion channel subunits in the late 1980s introduced a multitude of new techniques with which to study ion channels and the field has been rapidly expanding ever since (e.g. antibody development against specific peptide sequences, mutagenesis, the use of gene targeting in animal models, determination of their protein structures) and new methods are still in development. This review focuses on techniques commonly employed to examine ion channel function in a electrophysiological laboratory. The focus is on the KATP channel, but many of the techniques described are also used to study other ion channels. PMID:22245446

  5. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  6. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  7. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Schaffer, R. D.; Gorenstein, M. V.

    1981-01-01

    The activities of the Deep Space Network in support of Radio Astronomy Operations during April and May 1981 are reported. Work in progres in support of an experiment selected for use of the DSN by the Radio Astronomy Experiment Selection Panel, Twin Quasi-Stellar Object VLBI, is reported.

  8. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Gulkis, S.

    1981-01-01

    The activities of the Deep Space Network in support of radio astronomy operations during the first quarter of 1981 are reported. Results of the use of a low noise maser are presented, as well as updates in DSN support of experiments sanctioned by the Radio Astronomy Experiment Selection Panel.

  9. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Niell, A. E.

    1981-01-01

    The activities of the DSN in support of Radio and Radar Astronomy Operations during September through December 1980 are described. Emphasis is on a report of an experiment selected for use of the DSN by the radio Astronomy Experiment Selection Panel: that of VLBI observations of the energetic galactic object SS-433.

  10. The Effect of a Chandra-measured Merger-related Gas Component on the Lobes of a Dead Radio Galaxy

    NASA Astrophysics Data System (ADS)

    Worrall, D. M.; Birkinshaw, M.; Kraft, R. P.; Hardcastle, M. J.

    2007-04-01

    We use Chandra data to infer that an X-ray-bright component of gas is in the process of separating the radio lobes of 3C 442A. This is the first radio galaxy with convincing evidence that central gas, overpressured with respect to the lobe plasma and not simply a static atmosphere, is having a major dynamical effect on the radio structure. We speculate that the expansion of the gas also reexcites electrons in the lobes of 3C 442A through compression and adiabatic heating. Two features of 3C 442A contribute to its dynamical state. First, the radio source is no longer being powered by a detected active jet, so that the dynamical state of the radio plasma is at the mercy of the ambient medium. Second, the two early-type galaxies, NGC 7236 and NGC 7237, one of which was the original host of 3C 442A, are undergoing a merger and have already experienced a close encounter, suggesting that the X-ray-bright gas is mostly the heated combined galaxy atmospheres. The lobes have been swept apart for ~108 yr by the pressure-driven expansion of the X-ray-bright inner gas.

  11. Measurements of the upper troposphere and lower stratosphere during tropical cyclones using the GPS radio occultation technique

    NASA Astrophysics Data System (ADS)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig; Nielsen, Johannes

    2011-01-01

    Water vapour transport to the upper troposphere and lower stratosphere by deep convective storms affects the radiation balance of the atmosphere and has been proposed as an important component of climate change. The aim of the work presented here is to understand if the GPS radio occultation technique is useful for characterization of this process. Our assessment addresses the question if severe storms leave a significant signature in radio occultation profiles in the upper troposphere/lower stratosphere. Radio occultation data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) were analyzed, focusing on two particular tropical cyclones with completely different characteristics, the hurricane Bertha, which formed in the Atlantic Basin during July 2008 and reached a maximum intensity of Category 3, and the typhoon Hondo, which formed in the south Indian Ocean during 2008 reaching a maximum intensity of Category 4. The result is positive, suggesting that the bending angle of a GPS radio occultation signal contains interesting information on the atmosphere around the tropopause, but not any information regarding the water vapour. The maximum percentage anomaly of bending angle between 14 and 18 km of altitude during tropical cyclones is typically larger than the annual mean by 5-15% and it can reach 20% for extreme cases. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space (ACES) payload on the International Space Station.

  12. Simple measures of channel habitat complexity predict transient hydraulic storage in streams

    EPA Science Inventory

    Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...

  13. An innovative approach to recognizing and parameterizing sparse channel networks in fractured rocks based on field measurements

    NASA Astrophysics Data System (ADS)

    Black, J. H.

    2009-12-01

    Groundwater flow through fractured crystalline rocks has long been recognized as flow through a network of channels. Our new approach to the concept is to recognize that real channel systems at depth are composed of long distances between intersections, much larger than the intersection of recognizable fractures. We term them 'sparse channel networks'. Sparse channel networks have some key attributes. They percolate at much lower area to volume densities than equidimensional fracture networks. They are less well interconnected than equidimensional fracture networks. Above all they are less capable of adhering to imposed boundary conditions than any other system of flowing groundwater. The concept has been arrived at by re-examining 25 year old experiments in the Stripa Underground Research Laboratory in Sweden. It has been discovered that what was previously interpreted as a low permeability skin around underground openings caused by damage during excavation is, in reality, a direct outcome of the sparseness of the channel network and its inability to conform to the radial flow assumption inherent in the interpretation. Skin is therefore a direct field measure of the parameters defining the network. In the Stripa case, channels appear to extend in the order of 10 or 20 metres without intersection or bifurcation. Other characteristics of sparse channel networks are the tendency to form well connected patches (or compartments) separated by occasional 'chokes'. These compartments, sometimes of head, and often of individual water chemistry, are the second method of parameterization in the field. A further characteristic is the tendency for exploratory boreholes to behave as significant components of the systems because they are so sparse. The paper briefly describes how such systems were recognized in the Stripa experiments and how they have been modelled using a specially constructed lattice network model. The paper concludes with some ideas on how to conduct tests to parameterize such systems in boreholes and a straightforward URL experiment to demonstrate the theory.

  14. Multiplexing of Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We present results on wavelength division multiplexing of radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. A two-channel demonstration of this concept using discrete components successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  15. The First measurement of the top quark mass at CDF II in the lepton+jets and dilepton channels simultaneously

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, Michael G.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, J.; Apollinari, G.; /Fermilab /Purdue U.

    2008-09-01

    The authors present a measurement of the mass of the top quark using data corresponding to an integrated luminosity of 1.9 fb{sup -1} of p{bar p} collisions collected at {radical}s = 1.96 TeV with the CDF II detector at Fermilab's Tevatron. This is the first measurement of the top quark mass using top-antitop pair candidate events in the lepton + jets and dilepton decay channels simultaneously. They reconstruct two observables in each channel and use a non-parametric kernel density estimation technique to derive two-dimensional probability density functions from simulated signal and background samples. The observables are the top quark mass and the invariant mass of two jets from the W decay in the lepton + jets channel, and the top quark mass and the scalar sum of transverse energy of the event in the diletpon channel. They perform a simultaneous fit for the top quark mass and the jet energy scale, which is constrained in situ by the hadronic W boson mass. using 332 lepton + jets candidate events and 144 diletpon candidate events, they measure the top quark mass to be m{sub top} = 171.9 {+-} 1.7 (stat. + JES) {+-} 1.1 (other sys.) GeV/c{sup 2} = 171.9 {+-} 2.0 GeV/c{sup 2}.

  16. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  17. Emissions of SO2, NOx, and CO2 from the Houston Ship Channel Measured by the NOAA WP-3

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Brock, C. A.; Frost, G. J.; Holloway, J. S.; Peischl, J. W.; Ryerson, T. B.; Trainer, M.; Fehsenfeld, F. C.

    2007-12-01

    The Port of Houston is made up of the Houston Ship Channel and Galveston Bay. Together these comprise a 25- mile long complex of diversified public and private facilities, including a petrochemical complex that is among the largest in the world. The Houston Ship Channel is a major source of industrial pollution, emitting sulfur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), carbon dioxide (CO2), and volatile organic compounds (VOC). Unlike a single large power plant, the Houston Ship Channel consists of numerous sources that can be difficult to quantify in inventories. In order to evaluate and predict air quality in the Houston area, it is important to understand the magnitude and variability of sources in the Houston Ship Channel, and how these sources are evolving over time. We examine fluxes of SO2, NOx, and CO2 from the Houston Ship Channel observed onboard the NOAA WP-3 during September - October 2006. We report the magnitude of these sources, and compare these results to aircraft measurements from 2000 to identify trends.

  18. Variable temperature film and contact resistance measurements on operating n-channel organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Chesterfield, Reid J.; McKeen, John C.; Newman, Christopher R.; Frisbie, C. Daniel; Ewbank, Paul C.; Mann, Kent R.; Miller, Larry L.

    2004-06-01

    We report structural and electrical properties in thin films of an n-channel organic semiconductor, N,N'-dipentyl-3,4,9,10-perylene tetracarboxylic dimide (PTCDI-C5). The structure of polycrystalline thin films of PTCDI-C5 was studied using x-ray diffraction and atomic force microscopy. Films order with single crystal-like packing, and the direction of π-π overlap is in the substrate plane. Organic thin film transistors (OTFTs) based on PTCDI-C5 were fabricated on hydrophobic and hydrophilic substrates. OTFTs showed effective mobility as high as 0.1 cm2/V s. Contact resistance of operating OTFTs was studied using resistance versus length plots and a four-probe method for three different contact metals (Au, Ag, Ca). Typical OTFTs had a specific contact resistance of 8×104 Ω cm at high gate voltage. There was no dependence of contact resistance with contact metal. Variable temperature measurements revealed that film resistance in the OTFT was activated in the temperature range 100-300 K, with typical activation energies of 60-80 meV. Contact resistance showed similar activated behavior, implying that the Schottky barrier at the contact is not the limiting resistance for the contact. Film resistance data showed a Meyer-Neldel relationship with characteristic energy EMN=20-25 meV, for various samples. The common TFT instability of threshold voltage shift (TVS) was observed in PTCDI-C5 OTFTs. A model is proposed to explain positive TVS in gate bias stress and oxygen exposure experiments. The model is based on the formation of a metastable complex between PTCDI-C5 and oxygen, which creates a deep acceptor-like trap state.

  19. A 16 QAM modem for a 140 Mbit/sec radio relay system

    NASA Astrophysics Data System (ADS)

    Lorek, W.

    1981-05-01

    Various frequency-economical modulation procedures for the planned change-over of the 4 GHz radio-relay band to 140 Mbit/s digital signals are compared. The structure of a 16 QAM modem, and the circuit design are described. The functions of the individual components are illustrated by measurement results or circuit diagrams. For the carrier recovery, the received 16 QAM signal is converted into a 4 PSK signal, from which a fixed reference phase for the phase control of the carrier can be derived with the aid of frequency quadruplication. First measurements of the error rate by means of an analog radio-relay channel show an acceptable approximation to the theoretical expectation. It is demonstrated that, with the aid of 16 QAM, 140 Mbit/s signals will probably fit in with the analog 80 MHz channel bandwidth of the radio-relay system.

  20. Fading channel simulator

    DOEpatents

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  1. Measurement of the Shear Lift Force on a Bubble in a Channel Flow

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Motil, Brian; Skor, Mark

    2005-01-01

    Two-phase flow systems play vital roles in the design of some current and anticipated space applications of two-phase systems which include: thermal management systems, transfer line flow in cryogenic storage, space nuclear power facilities, design and operation of thermal bus, life support systems, propulsion systems, In Situ Resource Utilization (ISRU), and space processes for pharmaceutical applications. The design of two-phase flow systems for space applications requires a clear knowledge of the behaviors of the dispersed phase (bubble), its interaction with the continuous phase (liquid) and its effect on heat and mass transfer processes, The need to understand the bubble generation process arises from the fact that for all space applications, the size and distribution of bubbles are extremely crucial for heat and mass transfer control. One important force in two-phase flow systems is the lift force on a bubble or particle in a liquid shear flow. The shear lift is usually overwhelmed by buoyancy in normal gravity, but it becomes an important force in reduced gravity. Since the liquid flow is usually sheared because of the confining wall, the trajectories of bubbles and particles injected into the liquid flow are affected by the shear lift in reduced gravity. A series of experiments are performed to investigate the lift force on a bubble in a liquid shear flow and its effect on the detachment of a bubble from a wall under low gravity conditions. Experiments are executed in a Poiseuille flow in a channel. An air-water system is used in these experiments that are performed in the 2.2 second drop tower. A bubble is injected into the shear flow from a small injector and the shear lift is measured while the bubble is held stationary relative to the fluid. The trajectory of the bubble prior, during and after its detachment from the injector is investigated. The measured shear lift force is calculated from the trajectory of the bubble at the detachment point. These values for the shear lift are then compared with the theoretical predictions from various published works on shear lift in the open literature, which include asymptotic solutions at low bubble Reynolds number, potential flow predictions and numerical studies that deal with intermediate bubble Reynolds numbers.

  2. AG Channel Measurement and Modeling Results for Over-Water and Hilly Terrain Conditions

    NASA Technical Reports Server (NTRS)

    Matolak, David W.; Sun, Ruoyu

    2015-01-01

    This report describes work completed over the past year on our project, entitled "Unmanned Aircraft Systems (UAS) Research: The AG Channel, Robust Waveforms, and Aeronautical Network Simulations." This project is funded under the NASA project "Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS)." In this report we provide the following: an update on project progress; a description of the over-freshwater and hilly terrain initial results on path loss, delay spread, small-scale fading, and correlations; complete path loss models for the over-water AG channels; analysis for obtaining parameter statistics required for development of accurate wideband AG channel models; and analysis of an atypical AG channel in which the aircraft flies out of the ground site antenna main beam. We have modeled the small-scale fading of these channels with Ricean statistics, and have quantified the behavior of the Ricean K-factor. We also provide some results for correlations of signal components, both intra-band and inter-band. An updated literature review, and a summary that also describes future work, are also included.

  3. Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernov, S. V.; Gwinn, C. R.; Tchekhovskoy, A. A.

    2015-10-01

    Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.

  4. PRIDE - Passive Radio Ice Depth Experiment - An Instrument to Measure Outer Planet Lunar Ice Depths from Orbit using Neutrinos

    NASA Astrophysics Data System (ADS)

    Miller, T.; Schaefer, R. K.; Sequeira, B.

    2012-12-01

    We describe a concept for an instrument to measure the thickness of the ice shell on a planetary body such as Jupiter's moon Europa. Unlike a high powered and massive device such as an ice-penetrating radar, the described instrument is a passive receiver of a naturally occurring signal generated by interactions of deep penetrating cosmic ray neutrinos. We discuss the basic concept and consider the instrument design requirements from the perspective of a NASA Outer Planet Orbiter Mission. We show results of simulations, compare signal-to-noise estimates, and examine possible components and configurations for the antenna, receiver, and electronics. We note some options that can be used to reduce mass and power. Finally, we present a list of issues that would need further study to produce a more concrete design. In the world of astrophysics, difficult problems can occasionally benefit from the use of results derived from seemingly unrelated areas. In the case at hand we explore how results from the world of high energy cosmic rays could potentially help solve a difficult measurement problem in planetary geology. Europa, one of the Galilean moons of Jupiter, is believed to be covered with an ice shell of unknown thickness, likely ranging from a few kilometers to tens of kilometers. Indirect measurements imply that under the ice is an ocean, which is warmed by tidal and volcanic heating, and is thought to be one of the best locations for life to have formed in the solar system outside of Earth. It is therefore of high scientific priority to gain a better understanding of the geology and structure of Europa by measuring the ice shell thickness. The question is then: "How can we best probe ice that is tens of km thick given the stringent mass and power requirements of a Europan explorer satellite?" The work described here was performed to determine whether the preceding measurement question could be answered with a reasonable instrument built to use the Extreme High Energy (EHE) cosmic ray neutrino signal to extract the ice depth on a planetary-sized body. All aspects of the instrument design are covered - the expected signal, the detector configuration, the sampling electronics, etc. Our expectation was that we would encounter a "show-stopper" that would make this instrument untenable, but to our surprise we did not find any obvious major shortcomings. We present here the overall concept and suggest ways PRIDE (Passive Radio [frequency] Ice Depth Experiment) could be realized. We begin with an examination of the expected neutrino signal, then look at antenna/detector characteristics, move on to detector configuration, and end with a discussion of the signal sampling electronics. Lastly, we present conclusions and identify issues for further study.

  5. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  6. The ionosphere as a focusing lens - A case study involving simultaneous type III solar radio storm measurements from the ISIS 1 and 2 and ISEE 3 satellites

    SciTech Connect

    James, H.G.; Benson, R.F.; Fainberg, J.; Stone, R.G. NASA, Goddard Space Flight Center, Greenbelt, MD )

    1990-06-01

    The possibility of using terrestrial ionospheric focusing to improve the directivity of electric dipoles on space missions has been investigated by comparing simultaneous observations of a solar radio storm by the ISIS 1 and ISIS 2 spacecraft, in near earth orbit, and the ISEE 3 spacecraft located beyond the magnetosphere. To this end, a three-dimensional ray tracing in a spherically stratified ionosphere has been carried out for conditions appropriate to the observations by the ISIS spacecraft of a solar radio storm in September 1983. The procedure allows Poynting flux spectral densities measured on ISIS to be converted to spectral densities well outside the ionosphere where they can be compared directly with simultaneous observations on ISEE 3. The results demonstrate good agreement over their common observing frequency range (1-2 MHz). 21 refs.

  7. The ionosphere as a focusing lens - A case study involving simultaneous type III solar radio storm measurements from the ISIS 1 and 2 and ISEE 3 satellites

    NASA Technical Reports Server (NTRS)

    James, H. G.; Benson, R. F.; Fainberg, J.; Stone, R. G.

    1990-01-01

    The possibility of using terrestrial ionospheric focusing to improve the directivity of electric dipoles on space missions has been investigated by comparing simultaneous observations of a solar radio storm by the ISIS 1 and ISIS 2 spacecraft, in near earth orbit, and the ISEE 3 spacecraft located beyond the magnetosphere. To this end, a three-dimensional ray tracing in a spherically stratified ionosphere has been carried out for conditions appropriate to the observations by the ISIS spacecraft of a solar radio storm in September 1983. The procedure allows Poynting flux spectral densities measured on ISIS to be converted to spectral densities well outside the ionosphere where they can be compared directly with simultaneous observations on ISEE 3. The results demonstrate good agreement over their common observing frequency range (1-2 MHz).

  8. Galileo radio science investigations

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Eshleman, V. R.; Hinson, D. P.; Kliore, A. J.; Lindal, G. F.; Woo, R.; Bird, M. K.; Volland, H.; Edenhoffer, P.; Paetzold, M.

    1992-01-01

    Galileo radio-propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements can be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system provides linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. A highly-stable, dual-frequency, spacecraft radio system is developed that is suitable for simultaneous measurements of all the parameters normally attributed to radio waves.

  9. An episode of rapid bedrock channel incision during the last glacial cycle, measured with 10Be

    USGS Publications Warehouse

    Reusser, L.; Bierman, P.; Pavich, M.; Larsen, J.; Finkel, R.

    2006-01-01

    We use 10Be to infer when, how fast, and why the Susquehanna River incised through bedrock along the U.S. Atlantic seaboard, one of the world's most prominent and ancient passive margins. Although the rate at which large rivers incise rock is a fundamental control on the development of landscapes, relatively few studies have directly measured how quickly such incision occurs either in tectonically active environments or along passive margins. Exposure ages of fluvially carve d, bedrock strath terraces, preserved along the lower Susquehanna River, demonstrate that even along a passive margin, large rivers are capable of incising through rock for short periods of time at rates approaching those recorded in tectonically active regions, such as the Himalayas. Over eighty samples, collected along and between three prominent levels of strath terraces within Holtwood Gorge, indicate that the Susquehanna River incised more than 10 meters into the Appalachian Piedmont during the last glacial cycle. Beginning ???36 ka, incision rates increased dramatically, and remained elevated until ???14 ka. The northern half of the Susquehanna basin was glaciated during the late Wisconsinan; however, similar rates and timing of incision occurred in the unglaciated Potomac River basin immediately to the south. The concurrence of incision periods on both rivers suggests that glaciation and associated meltwater were not the primary drivers of incision. Instead, it appears that changing climatic conditions during the late Pleistocene promoted an increase in the frequency and magnitude of flood events capable of exceeding thresholds for rock detachment and bedrock erosion, thus enabling a short-lived episode of rapid incision into rock. Although this study has constraine d the timing and rate of bedrock incision along the largest river draining the Atlantic passive margin, the dates alone cannot explain fully why, or by what processes, this incision occurred. However, cosmogenic dating offers compelling evidence that episodes of rapid incision into bedrock are tied to glacial cycles and changes in global climate. These results, and the methods we employ, provide valuable insights into the nature of bedrock channel incision, not only along the Susquehanna River and passive margins, but also across a wide range of settings around the globe. Because river incision into bedrock transmits the effects of changing climate and tectonics through fluvial networks to hillslopes, comprehending when, where, and why rivers incise has important implications for the evolution of landscapes.

  10. Measurement of Differential Cross-Sections in the ttbar -> l+jets Channel

    SciTech Connect

    Kvita, J.; /Charles U.

    2009-04-01

    The analysis presented in this thesis focuses on kinematic distributions in the t{bar t} system and studies in detail selected differential cross sections of top quarks as well as the reconstructed t{bar t} pair, namely the top quark transverse momentum and the t{bar t} system mass. The structure of the thesis is organized as follows: first the Standard Model of the particle physics is briefly introduced in Chapter 1, with relevant aspects of electroweak and strong interactions discussed. The physics of the top quark and its properties are then outlined in Chapter 2, together with the motivation for measuring the transverse top quark momentum and other kinematic-related variables of the t{bar t} system. The concepts of present-day high energy physics collider experiments and the explicit example of Fermilab Tevatron collider and the D0 detector in Chapters 3 and 4 are followed by the description of basic detector-level objects, i.e. tracks, leptons and jets, in Chapter 5; their identification and calibration following in next chapter with the emphasis on the jet energy scale in Chapter 6 and jet identification at the D0. The analysis itself is outlined in Chapter 7 and is structured so that first the data and simulation samples and the basic preselection are described in Chapter 8 and 9, followed by the kinematic reconstruction part in Chapter 10. Chapter 11 on background normalization and Chapter 12 with raw reconstructed spectra results (at the detector-smeared level) are followed by the purity-based background subtraction method and examples of signal-level corrected spectra in Chapter 13. Next, the procedure of correcting measured spectra for detector effects (unfolding) is described in Chapters 14-15, including migration matrix studies, acceptance correction determination as well as the regularized unfolding procedure itself. Final differential cross sections are presented in Chapter 16 with the main results in Figures 16.19-16.20. Summary and discussion close the main analysis part in Chapter 17, supplemented by appendices on the wealthy of analysis control plots of the t{bar t} {yields} {ell} + jets channel, selected D0 event displays and finally the list of publications and references. Preliminary results of this analysis have been documented in D0 internal notes [UnfoldTop], [p17Top], [p14Top]; as well as presented at conferences [APS08], [APS05]. The author has also been a co-author of more than 135 D0 collaboration publications since 2005. The author has taken part in the jet energy scale calibration efforts performing final closure tests and deriving a correction to jet energy offset due to the suppression of the calorimeter signal. The author has also co-performed the {phi}-intercalibration of the hadronic calorimeter and co-supervised the electromagnetic {phi}-intercalibration; recently has also been involved in maintaining the jet identification efficiencies measurement as a JetID convener. During the years in Fermilab, many events have taken place in the course of the analysis in persuasion, including more than 170 shifts served for the D0 detector with or without the beam, 168 talks presented with mixed results and reactions; and tens of thousands of code lines in C (and sometimes perhaps even really C++) written while terabytes of data were processed, analyzed, and sometimes also lost. It has been a long but profoundly enriching chapter of my life.

  11. RadioBOT: A spatial cognitive radio testbed

    NASA Astrophysics Data System (ADS)

    Beck, Brian M.; Kim, Joseph H.; Baxley, Robert J.; Walkenhorst, Brett T.

    This paper introduces RadioBOT, a flexible system of mobile robots for acquisition of radio frequency data. The motivation for such a test system is described, namely the difficulty in acquiring real world data for the purpose of spatial cognitive radio (CR) research. Some current areas of CR research are presented for which RadioBOT can gather data. We then describe the hardware and software components of our system. As a demonstration of the system's capability, we present here the results of a spectrum mapping experiment. In this experiment, we uniformly sample average signal power in a laboratory hallway where an emitter is present. From this data, we form an interpolated spectrum map of the signal power as a function of space. Knowledge of the area's spectrum map is then used to optimize the relay channel communication rate between a transmitter and receiver, by optimally positioning the relay node.

  12. The FIELDS Instrument Suite for Solar Probe Plus - Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Astrophysics Data System (ADS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J. F.; Farrell, W. M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S. E.; Hayes, L. M.; Hinze, J. J.; Hollweg, J. V.; Horbury, T. S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J. C.; Kellogg, P. J.; Kien, M.; Klimchuk, J. A.; Krasnoselskikh, V. V.; Krucker, S.; Lynch, J. J.; Maksimovic, M.; Malaspina, D. M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D. J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S. J.; Mozer, F. S.; Murphy, S. D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E. N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S. W.; Salem, C.; Seitz, D.; Sheppard, D. A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J. R.

    2016-03-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  13. Constraining the Post-Shock Magnetic Field Strength of SN1006 from the Rotation Measure of Radio Galaxy ESO 328-13

    NASA Astrophysics Data System (ADS)

    Flewellen, Lilly; Dills, Sidney; Moffett, David A.

    2015-01-01

    In a radio polarization study of the supernova remnant (SNR) of SN1006, we found evidence for variable Faraday rotation toward the FR-I radio galaxy ESO 328-13. The background source lies on the eastern edge of the SNR, and its jets are aligned east to west. The core and western lobe lie within the remnant's interior, and the eastern lobe extends from the interior to the exterior of the SNR's shell. The rotation measure (RM) of the eastern lobe experiences a shift of 20 rad/m2 as it traverses the shell, then exhibits a gradient whose magnitude decreases toward the interior so that the RM is the same for the edges of the radio galaxy's eastern and western lobes. After rotating the field vectors to zero wavelength, we found that the magnetic field orientation of the SNR is radial with respect to the shell, while the magnetic vectors of the radio jets are perpendicular to their axes, a typical trait of FR-I sources. These results suggest the variation in RM is not intrinsic to the radio galaxy; rather, the variation is a direct effect of SN1006's post-shock environment.This discovery presents us with a unique opportunity to constrain the post-shock magnetic field and electron density distribution of SN1006. The SNR behaves as a magnetized plasma screen partially covering the background radio galaxy. The Faraday depth of the screen is a maximum at the edge of the shell and decreases toward the interior. Assuming an electron density of 0.20 cm-3 (estimated from IR and X-ray observations) and a path length of 6 pc through the SNR, we derive a line-of-sight magnetic field of 20 μG at the edge of the shell. For a range of aspect angles with respect to the line of sight, from zero to 80 degrees, the magnitude of the field could range from 20 to > 100 μG. This result compares well with theoretical estimates of 14 to 130 μG, extracted from SN1006's synchrotron emissivity at multiple wavelengths. While the complexity of the post-shock magnetic field and electron density could have a significant impact on estimates of the field strength, we are encouraged by this simple result.

  14. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works. PMID:26828488

  15. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    PubMed Central

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488

  16. 47 CFR 95.1211 - Channel use policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Channel use policy. 95.1211 Section 95.1211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Medical Device Radiocommunication Service (MedRadio) 95.1211 Channel use policy. (a)...

  17. Distributed radio interferometric calibration

    NASA Astrophysics Data System (ADS)

    Yatawatta, Sarod

    2015-06-01

    Increasing data volumes delivered by a new generation of radio interferometers require computationally efficient and robust calibration algorithms. In this paper, we propose distributed calibration as a way of improving both computational cost as well as robustness in calibration. We exploit the data parallelism across frequency that is inherent in radio astronomical observations that are recorded as multiple channels at different frequencies. Moreover, we also exploit the smoothness of the variation of calibration parameters across frequency. Data parallelism enables us to distribute the computing load across a network of compute agents. Smoothness in frequency enables us to reformulate calibration as a consensus optimization problem. With this formulation, we enable flow of information between compute agents calibrating data at different frequencies, without actually passing the data, and thereby improving robustness. We present simulation results to show the feasibility as well as the advantages of distributed calibration as opposed to conventional calibration.

  18. Development of a wall-shear-stress sensor and measurements in mini-channels with partial blockages

    NASA Astrophysics Data System (ADS)

    Afara, Samer; Medvescek, James; Mydlarski, Laurent; Baliga, Bantwal R.; MacDonald, Mark

    2014-05-01

    The design, construction, operation and validation of a wall-shear-stress sensor, and measurements obtained using this sensor in air flows downstream of partial blockages in a mini-channel are presented. The sensor consisted of a hot wire mounted over a small rectangular slot and operated using a constant-temperature anemometer. It was used to investigate flows similar to those within the mini-channels inside notebook computers. The overall goal of the present work was to develop a sensor suitable for measurements of the wall-shear stress in such flows, which can be used to validate corresponding numerical simulations, as the latter are known to be often surprisingly inaccurate. To this end, measurements of the wall-shear stress, and the corresponding statistical moments and power spectral densities, were obtained at different distances downstream of the partial blockage, with blockage ratios of 39.7, 59.2, and 76.3 %. The Reynolds number (based on average velocity and hydraulic diameter) ranged from 100 to 900. The results confirmed the presence of unsteadiness, separation, reattachment, and laminar-turbulent transition in the ostensibly laminar flow of air in mini-channels with partial blockages. The present results demonstrate why accurate numerical predictions of cooling air flows in laptop and notebook computers remain a challenging task.

  19. Locating Radio Noise from Sprites

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Mezentsev, A.; Watson, R.; Gaffet, S.; Astin, I.; Evans, A.

    2014-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into exponentially growing streamer tips (McHarg et al., 2010). The acceleration of the electrons to a few eV results in the radiation of a small amount of electromagnetic energy. The incoherent superposition of many streamers causes the low frequency radio noise from sprites near ~40 km height (Qin et al., 2012). The presence of this theoretically predicted radiation was recently confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). To locate the radio noise from sprites in the sky, an interferometric network of low frequency radio receivers was developed (Mezentsev and Fullekrug, JGR, 2013). The key parameter for the interferometric signal processing is the frequency dependent wave propagation velocity of the radio waves within the Earth's atmosphere. This wave propagation velocity is determined by the wave number vector which needs to be inferred from the measurements. Here we adapt and subsequently apply array analyses which have been developed for seismic and infrasound arrays to determine the horizontal wave number vectors of ~20-24 kHz radio waves measured with an array of ten radio receivers distributed over an area of ~1 km × 1 km. It is found that the horizontal slowness of ~20-24 kHz radio waves ranges from ~2.7 ns/m to ~4.1 ns/m depending on the arrival azimuth of the radio wave. For comparison, an electromagnetic wave in vacuum has a slowness of ~3.34 ns/m. A larger slowness indicates an apparent velocity which is smaller than the speed of light and a smaller slowness indicates that the radio wave arrives at the array from an elevation angle. The observed variability of the observed slowness almost certainly results from the distance dependent superposition of the transverse electric and magnetic TEn and TMn radio wave propagation modes.

  20. 76 FR 36384 - Radio Broadcasting Services; Brackettville, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... Making proposed the deletion of vacant Channel 234A at Brackettville. See 75 FR 4037, published January... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Brackettville, TX AGENCY: Federal Communications..., see 5 U.S.C. 801(a)(1)(A). List of Subjects in 47 CFR Part 73 Radio, Radio broadcasting....

  1. First measurements of atmospheric water abundance and opacity in Rondônia with MOPS, a dual channel microwave radiometer

    NASA Astrophysics Data System (ADS)

    Berg, H.; Abraham, Z.; Raffaelli, J.; Hochschild, G.; Morales, C.

    2003-08-01

    MOPS, the Microwave Opacity Sounder, is a passive, ground-based microwave radiometer that is under development at IAG since August 2001. It consists of two independent Dicke receivers that detect the thermal atmospheric emission at 22 and 31 GHz. MOPS provides data about the atmospheric attenuation and enables the assessment of radio astronomical observation sites as well as the correction of radio astronomical observations. The technical details have been presented at last year's SAB meeting. During 13 September to 11 October 2002 MOPS participated in the DRYTOWET-AMC/LBA field campaign in the brazilian state Rondônia (AMC: Atmospheric Mesoscale Campaign, LBA: Large Scale Biosphere-Atmosphere Experiment in Amazonia). For the first time, a series of elevation scans and zenith soundings of the atmospheric brightness temperature have been performed. The collected data is used for the retrieval of atmospheric water abundance and opacity in the microwave regime. The poster will describe the measurements and the data analysis. The availability of radiosoundings of meteorological parameters at the same site allows for the simulation of the radiative transfer through the atmosphere. For this purpose ARTS, the Atmospheric Radiative Transfer System, has been applied. By this the retrieved quantities are validated and potential improvements of MOPS can be spotted.

  2. Measurements and modeling of cosmic noise absorption changes due to radio heating of the D region ionosphere

    NASA Astrophysics Data System (ADS)

    Senior, A.; Rietveld, M. T.; Honary, F.; Singer, W.; Kosch, M. J.

    2011-04-01

    Powerful high-frequency radio waves can heat the electrons in the D region of the ionosphere. This heating increases the electron-neutral collision frequency which modifies the absorption of other radio waves propagating through the heated plasma. A high spatial resolution imaging riometer was used to observe changes in cosmic radio noise absorption (CNA) induced by heating from the European Incoherent Scatter (EISCAT) HF facility, and the results were compared to a theoretical model using observed electron densities as an input. The model is found to overestimate the observed effect by a factor close to 2, despite different background electron density profiles and heater powers. However, the model reproduced the spatial morphology of the change in CNA rather well, and the same absorption calculation used in the heating model also reproduced the changes in CNA due to electron precipitation in the absence of heating well. When the assumption of a perfectly conducting ground is replaced with a more realistic model in the calculation of the HF radiated power, the power is reduced to about 75% of its original value, and the model overestimate of the CNA change is reduced to a factor of about 1.3.

  3. 77 FR 38210 - Channel Spacing and Bandwidth Limitations for Certain Economic Area (EA)-Based 800 MHz...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... MHz Specialized Mobile Radio Licensees AGENCY: Federal Communications Commission. ACTION: Final rule... Specialized Mobile Radio (SMR) licensees to exceed a legacy channel spacing requirement and...

  4. Measuring inorganic nitrate species with short time resolution from an aircraft platform by dual-channel ozone chemiluminescence

    NASA Astrophysics Data System (ADS)

    Tanner, Roger L.; Valente, Ralph J.; Meagher, James F.

    1998-09-01

    A measurement technique for determining nitrate (the sum of nitric acid and particulate nitrate) with a few seconds time resolution in plumes is needed to resolve within-plume features. A technique using dual ozone-chemiluminescent NO detectors with a selective nitrate scrubber in one sampling train is promising if used with an appropriate sampling inlet, and if nitrate is the desired analyte. We report the design of, and preliminary results from a dual channel ozone-chemiluminescent system, each channel containing a gold-CO catalyzed converter which reduces all odd nitrogen species (NOy) quantitatively to NO; one channel also contains a nylon filter to remove nitrate from the air stream prior to the converter (this signal is termed NOy*). This system was deployed successfully in a Bell 205 helicopter during the 1995 Southern Oxidants Study Nashville Ozone Study. The converters were mounted forward near the air intake, and zero air and calibration gases admitted simultaneously to both channels during flight operations. The difference signal between the two channels (NOy-NOy*) indicated apparent nitrate levels in the sampled air with a time resolution of <5 s and a limit of detection of about 1 ppbv. Nitrate levels observed with this system in plumes and background air during the Nashville Ozone Study were highly correlated with ozone and varied from below detection limits to ≈20 ppbv. Nitrate levels were also highly correlated with the calculated difference between NOy and the sum of NO and NO2 (NOz). Higher nitrate levels as a fraction of NOz were found in power plant plumes (≥60%) compared with urban plumes (≈50%) and background air, consistent with apparently lower ozone production efficiencies in power plant plumes vis-à-vis urban plumes.

  5. 75 FR 52649 - Radio Broadcasting Services; DeBeque, Colorado

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... substitution of Channel 247C3 for vacant Channel 275C3 at DeBeque, Colorado. See 75 FR 4036, published January... COMMISSION 47 CFR Part 73 . Radio Broadcasting Services; DeBeque, Colorado AGENCY: Federal Communications... Congressional Review Act, see 5 U.S.C. 801(a)(1)(A). List of Subjects in 47 CFR Part 73 Radio,...

  6. 47 CFR 95.1211 - Channel use policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the most effective use of the authorized facilities, MedRadio transmitters must share the spectrum in... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1211 Channel use policy. (a)...

  7. Measurement of Ca channel activity of isolated adult rat heart cells using /sup 54/Mn

    SciTech Connect

    Haworth, R.A.; Goknur, A.B.; Berkoff, H.A.

    1989-02-01

    Isolated adult rat heart cells incubated with 5 microM Mn in a medium with 1 mM Ca showed a rapid phase of Mn binding plus a slow phase of Mn uptake. The rapid phase was extracellular binding, as judged by its temperature-insensitive removal by ethylene glycol bis(beta-aminoethyl ether) N, N'-tetraacetic acid. The slow linear phase represented cellular uptake, as judged by its release with digitonin plus the ionophore A23187. Isoproterenol increased the linear rate of Mn uptake and induced spontaneous beating activity in some cells. Both effects were inhibited by nitrendipine. Electrical stimulation of the cells in suspension increased the linear rate of cellular Mn uptake. The increase was potentiated by isoproterenol, and inhibited by nitrendipine or verapamil. Stimulation-dependent Mn uptake (per milligram protein) was greater for cells from 5- to 6-week-old rats than for 8- to 9-month-old female retired breeder rats, in the presence of isoproterenol. Ryanodine increased the stimulation-dependent Mn uptake in the presence of isoproterenol, but not in its absence. We conclude: (i) that cellular uptake of /sup 54/Mn is a good probe of Ca channel function; (ii) that isoproterenol promotes Mn influx by the channel in isolated heart cells; (iii) that cells from young rats (5-6 weeks) have a higher beta-adrenergically induced Ca channel activity than cells from mature rats (8-9 months); and (iv) that ryanodine promotes Ca channel activity (perhaps indirectly) in the presence of isoproterenol.

  8. 47-channel burst-mode recording hydrophone system enabling measurements of the dynamic echolocation behavior of free-swimming dolphins.

    PubMed

    Starkhammar, Josefin; Amundin, Mats; Nilsson, Johan; Jansson, Tomas; Kuczaj, Stan A; Almqvist, Monica; Persson, Hans W

    2009-09-01

    Detailed echolocation behavior studies on free-swimming dolphins require a measurement system that incorporates multiple hydrophones (often >16). However, the high data flow rate of previous systems has limited their usefulness since only minute long recordings have been manageable. To address this problem, this report describes a 47-channel burst-mode recording hydrophone system that enables highly resolved full beamwidth measurements on multiple free-swimming dolphins during prolonged recording periods. The system facilitates a wide range of biosonar studies since it eliminates the need to restrict the movement of animals in order to study the fine details of their sonar beams. PMID:19739708

  9. Comparative measurements of natural convection heat transfer in channels by holographic interferometry and schlieren

    NASA Astrophysics Data System (ADS)

    Ambrosini, Dario; Tanda, Giovanni

    2006-01-01

    In this work, natural convection heat transfer in vertical channels is experimentally investigated by applying different optical techniques, namely holographic interferometry and schlieren. Both these techniques are based on the temperature dependence of the air refractive index but they detect different optical quantities and their use involves different instrumentation and optical components. Optical methods, non-intrusive in nature, are particularly suitable for the visualization of flow and thermal fields as witnessed by their increasing use in a range of scientific and engineering disciplines; for this reason, the introduction of these experimental tools into a laboratory course can be of high value. Physics and engineering students can get familiarized with optical techniques, grasp the basics of thermal phenomena, usually elusive, which can be more easily understood if they are made visible, and begin to master digital image analysis, a key skill in laboratory activities. A didactic description of holographic interferometry and schlieren is provided and experimental results obtained for vertical, smooth and rib-roughened channels with asymmetrical heating are presented. A comparison between distributions of the local heat transfer coefficient (or its dimensionless counterpart, the Nusselt number) revealed good agreement between the results separately obtained by the two techniques, thus proving their suitability for investigating free convection heat transfer in channels.

  10. Direct magnetic field measurement of flow dynamics in magnetized coaxial accelerator channels

    SciTech Connect

    Black, D.C.; Mayo, R.M.; Caress, R.W.

    1997-08-01

    A miniature magnetic probe array, consisting of ten spatially separated coils, has been used to obtain profile information on the time-varying magnetic field within the 2.54 cm wide flow channel of the Coaxial Plasma Source experiment (CPS-1) [R. M. Mayo {ital et al.}, Plasma Sources Sci. Technol. {bold 4}, 47 (1995)] at the North Carolina State University. Two-dimensional (2-D) current profiles within the annular flow channel, which were constructed from the time-varying magnetic field data, reveal several complex features reflecting the influence of gun inductance, the Hall effect, and the applied magnetic field. When an external, electrode linking magnetic field is applied, the evolution of the 2-D current profile shows evidence of an ionizing shock front identified by a narrow current sheet propagating through the channel during the first few microseconds of the discharge. The thickness of this current sheet is on the same order as both the collisional mean-free path and the ion electromagnetic skin depth. In this applied field case, the plasma is prevented from advancing ahead of the current sheet by the applied magnetic field, which turns the ions and electrons without collisions. In the absence of an applied field, plasma is able to advance ahead of the current sheet, where it may initiate ionization downstream before the advance of the ionization front. {copyright} {ital 1997 American Institute of Physics.}

  11. Combining in-situ measurements and altimetry to estimate volume, heat and salt transport variability through the Faroe Shetland Channel

    NASA Astrophysics Data System (ADS)

    Berx, B.; Hansen, B.; Østerhus, S.; Larsen, K. M.; Sherwin, T.; Jochumsen, K.

    2013-01-01

    From 1994 to 2011, instruments measuring ocean currents (ADCPs) have been moored on a section crossing the Faroe-Shetland Channel. Together with CTD (Conductivity Temperature Depth) measurements from regular research vessel occupations, they describe the flow field and water mass structure in the channel. Here, we use these data to calculate the average volume transport and properties of the flow of warm water through the channel from the Atlantic towards the Arctic, termed the Atlantic inflow. We find the average volume transport of this flow to be 2.7 ± 0.5 Sv (1 Sv = 106 m3 s-1) between the shelf edge on the Faroe side and the 150 m isobath on the Shetland side. The average heat transport (relative to 0 °C) was estimated to be 107 ± 21 TW and the average salt import to be 98 ± 20 × 106 kg s-1. Transport values for individual months, based on the ADCP data, include a large level of variability, but can be used to calibrate sea level height data from satellite altimetry. In this way, a time series of volume transport has been generated back to the beginning of satellite altimetry in December 1992. The Atlantic inflow has a seasonal variation in volume transport that peaks around the turn of the year and has an amplitude of 0.7 Sv. The Atlantic inflow has become warmer and more saline since 1994, but no equivalent trend in volume transport was observed.

  12. Interior channels in Martian valleys: Constraints on fluvial erosion by measurements of the Mars Express High Resolution Stereo Camera

    USGS Publications Warehouse

    Jaumann, R.; Reiss, D.; Frei, S.; Neukum, G.; Scholten, F.; Gwinner, K.; Roatsch, T.; Matz, K.-D.; Mertens, V.; Hauber, E.; Hoffmann, H.; Kohler, U.; Head, J.W.; Hiesinger, H.; Carr, M.H.

    2005-01-01

    In High Resolution Stereo Camera (HRSC) images of the Mars Express Mission a 130 km long interior channel is identified within a 400 km long valley network system located in the Lybia Montes. Ages of the valley floor and the surroundings as derived from crater counts define a period of ???350 Myrs during which the valley might have been formed. Based on HRSC stereo measurements the discharge of the interior channel is estimated at ???4800 in m3/S, corresponding to a runoff production rate of ??? cm/day. Mass balances indicate erosion rates of a few cm/year implying the erosion activity in the valley to a few thousand years for continuous flow, or one or more orders of magnitude longer time spans for more intermittent flows. Therefore, during the Hesperian, relatively brief but recurring episodes of erosion intervals are more likely than sustained flow. Copyright 2005 by the American Geophysical Union.

  13. Non-invasive cerebral blood volume measurement during seizures using multi-channel near infrared spectroscopic topography

    NASA Astrophysics Data System (ADS)

    Watanabe, Eiju; Maki, Atsushi; Kawaguchi, Fumio; Yamashita, Yuichi; Koizumi, Hideaki; Mayanagi, Yoshiaki

    2000-07-01

    Near infrared spectroscopic topography (NIRS) is widely recognized as a noninvasive method to measure the regional cerebral blood volume (rCBV) dynamics coupled with neuronal activities. We analyzed the rCBV change in the early phase of epileptic seizures in 12 consecutive patients with medically intractable epilepsy. Seizure was induced by bemegride injection. We used eight-channel NIRS in nine cases and 24 channel in three cases. In all of the cases, rCBV increased rapidly after the seizure onset on the focus side. The increased rCBV was observed for about 30 - 60 s. The NIRS method can be applied to monitor the rCBV change continuously during seizures. Therefore, this method may be combined with ictal SPECT as one of the most reliable noninvasive methods of focus diagnosis.

  14. Initial Measurement of Intrapixel Variations in Back-Illuminated, High-Resistivity, p-Channel, Charge Coupled Device

    NASA Astrophysics Data System (ADS)

    Puls, Jason; Oluseyi, Hakeem M.

    2008-05-01

    In 1929 Edwin Hubble discovered the universe's expansion. Seventy years later it was unexpectedly found that the rate of expansion is accelerating due to some vast cosmic energy. This cosmic energy, apparently gravitationally repulsive and spread homogeneously through the universe, has come to be known as dark energy. To better understand this universal force, scientists utilize Type Ia supernovae and weak gravitational lensing as cosmological probes. Lawrence Berkeley National Laboratory (LBNL) is developing the Supernova Acceleration Probe (SNAP), a proposed space-based telescope that will be used to identify and measure supernovae and measure weak gravitational lensing signals across fifteen square degrees of the sky. The SNAP telescope will incorporate an innovative camera that consists of back-illuminated, high-resistivity, p-channel charged coupled devices (CCDs) for visible to near-infrared light detection. Presented are results obtained from the measurement and analysis of a 10.5 μm pixel pitch, 1.4k by 1.4k format, p-channel CCD fabricated on high-resistivity silicon at LBNL. The fully depleted device is 300 μm thick and backside illuminated. We report on the first measurement of the intrapixel sensitivity and spatial variations of these CCDs. We also report measurements of electric field distortions near the edges of the CCD active area.

  15. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  16. Agesotrophic and quasi-geostrophic circulation in the Gulf of Tehuantepec, México. HF-Radio measurements

    NASA Astrophysics Data System (ADS)

    Flores-Vidal, X.; Chavanne, C. P.; Durazo, R.; Flament, P. J.

    2010-12-01

    Using High Frequency Radios the ocean's surface currents in the inner Gulf of Tehuantepec GT, were mapped every half hour. The GT is characterized by wind outbursts that blow through a gap in the Mexican mountain chain. In this work we show evidence of the relationship between the wind-stress magnitude and the size of eddies excited by the wind-stress. While for wind-stress less than 0.25 N/m2 the mean flow was not modified, for wind stress between 0.25 and 0.5 N/m2 a dipole-like structure was observed with diameter between 10 and 80 km. The anticyclonic gyre was located in the western side of the GT, and apparently was advected towards the southwest. The cyclonic gyre was in the eastern side and disappear after a few hours of its formation. The vertical structure of these gyres was measured using a thermistor chain moored on the wind axis. During wind events of ≈0.5 N/m2 the thermocline was pump up from ≈60 m depth in a few hours. The relative vorticity maps showed that the cyclonic gyre disappear in a matter of hours, possibly due to the northern limit of the GT, that blocks motion towards the north to conserve vorticity, and to the shallow thermocline. Cyclonic gyres may thus be short-lived in the inner GT. On the other hand the anticyclonic gyres gains negative vorticity by moving towards the south and by thermocline deeping. Wind outburst with wind-stress > 0.6 N/m2 reflected no eddies within the radar's foot print, instead the flow was toward the south. These could be evidence for bigger scale gyres that the HFR were unable to map. Using a transfer function between the wind-stress and the surface currents, we extracted the wind-stress component from the surface currents. In this fashion we separated the ageostrophic and the quasi-geostrophic currents. The ageostrophic current moved most of the time towards the west, in agreement with the expected Ekman transport, while the quasi-geostrophic component was southward, apparently defined by the offshore pressure gradient imposed by the wind-stress. The sum of the two components gives a mean flow towards the south-west, coincident with the path that the anticyclonic gyres tend to follow. On the other hand, under periods of calm winds, both the ageostrophic and quasi-geostrophic components were westward, penetrating the inner GT, intensifying during autumn and decreasing during summer. The importance of these westward currents is found in the relationship with the Costa Rica Current and the Costa Rica Dome, and may be evidence of the interaction between the Eastern Tropical Pacific Ocean and the coastal dynamic in the GT.

  17. Study of multi-acoustic channel supersonic Doppler flowmeter for measuring coal slurry-coal log pipeline

    NASA Astrophysics Data System (ADS)

    Lin, Yu; Yang, Jie; Tang, Jun

    2006-11-01

    Coal slurry-coal log pipeline is a new technology for long distance transportation of coal logs (cylindrical coal briquettes) by using coal slurry as carrier and pump as power set. Because of the difficulty of measuring flow rate of coal slurry-coal log pipeline, the study of measuring technology and the development of flowmeter are necessary. In consideration of the characteristics of transportation of coal logs in coal slurry pipeline, a non-contacting measuring method and the supersonic Doppler effect are selected and used. By detecting frequency drifts produced by reflecting supersonic wave from moving coal particles and coal logs in pipeline the flow rate of coal slurry-coal log pipeline (the total quantity of coal transported by the pipeline) can be measured. Based on the concept of liner concentration of coal logs in pipeline and characteristics of Doppler frequency drifts of coal particles and coal logs moved in pipeline, the measuring method of supersonic wave and the transportation principle of coal slurry-coal log pipeline are discussed and a multi-acoustic channel supersonic Doppler flowmeter is designed for measuring the total quantity of coal transported by pipeline. The flowmeter is composed of supersonic transducer, electron circuit, flow rate indication and integral calculation system. The multi-acoustic channel technique and a suitable acoustic wedge with a certain shape and special solid material are selected and used for increasing the measuring precision. In this paper the Doppler signal is measured and analyzed by using mixing-frequency technique and FPT (rapid Fourier transformation), and some designed circuits and signal measurement process are also offered.

  18. Volume transport and mixing of the Faroe Bank Channel overflow from one year of moored measurements

    NASA Astrophysics Data System (ADS)

    Ullgren, J. E.; Darelius, E.; Fer, I.

    2015-10-01

    One-year long time series of current velocity and temperature from ten moorings deployed in the Faroe Bank Channel (FBC) are analysed to describe the structure and variability of the dense overflow plume on daily to seasonal time scales. Mooring arrays are deployed in two sections: located 25 km downstream of the main sill, in the channel that geographically confines the overflow plume at both edges (section C), and 60 km further downstream, over the slope (section S). At section C, the average volume transport of overflow waters (< 3 °C) from the Nordic Seas towards the Iceland Basin is 1.3 ± 0.3 Sv; at Section S, transport of modified overflow water (< 6 °C) is 1.8 ± 0.7 Sv. The volume transport through the slope section is dominated by mesoscale variability at 3-5 day time scale. A simplified view of along-path entrainment of a gravity current is not accurate for the FBC overflow. As the plume proceeds into the stratified ambient water, there is substantial detrainment from the deeper layer (bounded by the 3 °C isotherm), of comparable magnitude to the entrainment into the interfacial layer (between the 3 and 6 °C isotherms). Time series of gradient Richardson number suggests a quiescent plume core capped by turbulent near bottom and interfacial layers in the channel. At section S, in contrast, the entire overflow plume is turbulent. Based on a two-layer heat budget constructed for the overflow, mean diffusivities across the top of the bottom layer, and across the interfacial layer are (30 ± 15) × 10-4 m2 s-1 and (119 ± 43) × 10-4 m2 s-1, respectively.

  19. Volume transport and mixing of the Faroe Bank Channel overflow from one year of moored measurements

    NASA Astrophysics Data System (ADS)

    Ullgren, Jenny E.; Darelius, Elin; Fer, Ilker

    2016-03-01

    One-year long time series of current velocity and temperature from eight moorings deployed in the Faroe Bank Channel (FBC) are analysed to describe the structure and variability of the dense overflow plume on daily to seasonal timescales. Mooring arrays were deployed in two sections: located 25 km downstream of the main sill, in the channel that geographically confines the overflow plume at both edges (section C), and 60 km further downstream, over the slope (section S). At section C, the average volume transport of overflow waters ( < 3 °C) from the Nordic Seas towards the Iceland Basin was 1.3 ± 0.3 Sv; at section S, transport of modified overflow water ( < 6 °C) was 1.7 ± 0.7 Sv. The volume transport through the slope section was dominated by mesoscale variability at 3-5-day timescales. A simplified view of along-path entrainment of a gravity current may not be accurate for the FBC overflow. As the plume proceeds into the stratified ambient water, there is substantial detrainment from the deeper layer (bounded by the 3 °C isotherm), of comparable magnitude to the entrainment into the interfacial layer (between the 3 and 6 °C isotherms). A time series of gradient Richardson numbers suggests a quiescent plume core capped by turbulent near bottom and interfacial layers in the channel. At section S, in contrast, the entire overflow plume is turbulent. Based on a two-layer heat budget constructed for the overflow, time mean vertical diffusivities across the top of the bottom layer and across the interfacial layer were (30 ± 15) × 10-4 and (120 ± 43) × 10-4 m2 s-1, respectively.

  20. A photoelectric technique for measuring lightning-channel propagation velocities from a mobile laboratory

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Rust, W. David

    1989-01-01

    The present device for lightning channel propagation-velocity determination employs eight photodetectors mounted behind precision horizontal slits in the focal plane of a photographic camera lens. The eight photodetector pulses, IRIG-B time, and slow and fast electric field-change waveforms are recorded on a 14-track analog tape recorder. A comparison of the present results with those obtained by a streaking camera shows no significant differences between the velocities obtained from the same strokes with the two systems; neither is there any difference in pulse characteristics or in the velocities calculated from them.

  1. An ensemble average method to estimate absolute TEC using radio beacon-based differential phase measurements: Applicability to regions of large latitudinal gradients in plasma density

    NASA Astrophysics Data System (ADS)

    Thampi, Smitha V.; Bagiya, Mala S.; Chakrabarty, D.; Acharya, Y. B.; Yamamoto, M.

    2014-12-01

    A GNU Radio Beacon Receiver (GRBR) system for total electron content (TEC) measurements using 150 and 400 MHz transmissions from Low-Earth Orbiting Satellites (LEOS) is fabricated in house and made operational at Ahmedabad (23.04°N, 72.54°E geographic, dip latitude 17°N) since May 2013. This system receives the 150 and 400 MHz transmissions from high-inclination LEOS. The first few days of observations are presented in this work to bring out the efficacy of an ensemble average method to convert the relative TECs to absolute TECs. This method is a modified version of the differential Doppler-based method proposed by de Mendonca (1962) and suitable even for ionospheric regions with large spatial gradients. Comparison of TECs derived from a collocated GPS receiver shows that the absolute TECs estimated by this method are reliable estimates over regions with large spatial gradient. This method is useful even when only one receiving station is available. The differences between these observations are discussed to bring out the importance of the spatial differences between the ionospheric pierce points of these satellites. A few examples of the latitudinal variation of TEC during different local times using GRBR measurements are also presented, which demonstrates the potential of radio beacon measurements in capturing the large-scale plasma transport processes in the low-latitude ionosphere.

  2. A Novel Field-Circuit FEM Modeling and Channel Gain Estimation for Galvanic Coupling Real IBC Measurements

    PubMed Central

    Gao, Yue-Ming; Wu, Zhu-Mei; Pun, Sio-Hang; Mak, Peng-Un; Vai, Mang-I; Du, Min

    2016-01-01

    Existing research on human channel modeling of galvanic coupling intra-body communication (IBC) is primarily focused on the human body itself. Although galvanic coupling IBC is less disturbed by external influences during signal transmission, there are inevitable factors in real measurement scenarios such as the parasitic impedance of electrodes, impedance matching of the transceiver, etc. which might lead to deviations between the human model and the in vivo measurements. This paper proposes a field-circuit finite element method (FEM) model of galvanic coupling IBC in a real measurement environment to estimate the human channel gain. First an anisotropic concentric cylinder model of the electric field intra-body communication for human limbs was developed based on the galvanic method. Then the electric field model was combined with several impedance elements, which were equivalent in terms of parasitic impedance of the electrodes, input and output impedance of the transceiver, establishing a field-circuit FEM model. The results indicated that a circuit module equivalent to external factors can be added to the field-circuit model, which makes this model more complete, and the estimations based on the proposed field-circuit are in better agreement with the corresponding measurement results. PMID:27049386

  3. A Novel Field-Circuit FEM Modeling and Channel Gain Estimation for Galvanic Coupling Real IBC Measurements.

    PubMed

    Gao, Yue-Ming; Wu, Zhu-Mei; Pun, Sio-Hang; Mak, Peng-Un; Vai, Mang-I; Du, Min

    2016-01-01

    Existing research on human channel modeling of galvanic coupling intra-body communication (IBC) is primarily focused on the human body itself. Although galvanic coupling IBC is less disturbed by external influences during signal transmission, there are inevitable factors in real measurement scenarios such as the parasitic impedance of electrodes, impedance matching of the transceiver, etc. which might lead to deviations between the human model and the in vivo measurements. This paper proposes a field-circuit finite element method (FEM) model of galvanic coupling IBC in a real measurement environment to estimate the human channel gain. First an anisotropic concentric cylinder model of the electric field intra-body communication for human limbs was developed based on the galvanic method. Then the electric field model was combined with several impedance elements, which were equivalent in terms of parasitic impedance of the electrodes, input and output impedance of the transceiver, establishing a field-circuit FEM model. The results indicated that a circuit module equivalent to external factors can be added to the field-circuit model, which makes this model more complete, and the estimations based on the proposed field-circuit are in better agreement with the corresponding measurement results. PMID:27049386

  4. Simultaneous Measurement of Temperature and Emissivity of Lunar Regolith Simulant using Dual-Channel Millimeter-Wave Radiometry

    SciTech Connect

    McCloy, John S.; Sundaram, S. K.; Matyas, Josef; Woskov, Paul P.

    2011-05-19

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). PNNL’s state-of-the-art dual channel millimeter-wave passive radiometer with active interferometric capabilities allows for radiometric measurements of sample temperature and emissivity up to at least 1600˚C. Interferometric capabilities through the mixed “video” channels at 137 GHz allow simultaneous measurement of additional parameters, e.g., volume expansion/level change and viscosity. These capabilities have been used to demonstrate measurement of melting of simulated lunar regolith. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Observed phenomena include melting and foaming of regolith with oxygen evolution. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave coupling factors, which provide corroboratory evidence to the interferometric data of the processes observed. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.

  5. DAMSON: A system to measure multipath dispersion, Doppler spread and Doppler shift on multi-mechanism communications channels

    NASA Astrophysics Data System (ADS)

    Davies, Nigel C.; Cannon, Paul S.

    1994-07-01

    The performance of communications equipment (especially data modems) designed to work over high frequency paths which can propagate by a number of different mechanisms is dependent on their ability to work with a wide range of signal to noise conditions and with varying degrees of frequency and time dispersion. The latter phenomena are a particular problem for systems operating over high latitude paths and yet there appears to be little available data documenting their severity or frequency of occurrence. DAMSON (Doppler And Multipath SOunding Network) is an oblique channel sounding system which has been developed by the UK Defence Research Agency (DRA) to measure a number of real-time channel parameters using low power pulse compression waveform transmissions. Extensive use is made of digital signal processing techniques. The system will allow signal time-of-flight, time dispersion (multipath dispersion), frequency dispersion (Doppler spread and Doppler shift) and signal strength to be measured over point-point communications paths. The DAMSON experiment is to be deployed to make measurements over a number of mid and high-latitude paths. This paper provides an introduction to the DAMSON system, its basic operation and measurement performance. The initial experiments to be conducted and the associated system deployment are presented.

  6. Spectral filtering optimization of a measuring channel of an x-ray broadband spectrometer

    NASA Astrophysics Data System (ADS)

    Emprin, B.; Troussel, Ph.; Villette, B.; Delmotte, F.

    2013-05-01

    A new channel of an X-ray broadband spectrometer has been developed for the 2 - 4 keV spectral range. It uses a spectral filtering by using a non-periodic multilayer mirror. This channel is composed by a filter, an aperiodic multilayer mirror and a detector. The design and realization of the optical coating mirror has been defined such as the reflectivity is above 8% in almost the entire bandwidth range 2 - 4 keV and lower than 2% outside. The mirror is optimized for working at 1.9° grazing incidence. The mirror is coated with a stack of 115 chromium / scandium (Cr / Sc) non-periodic layers, between 0.6 nm and 7.3 nm and a 3 nm thick top SiO2 layer to protect the stack from oxidization. To control thin thicknesses, we produced specific multilayer mirrors which consist on a superposition of two periodic Cr / Sc multilayers with the layer to calibrate in between. The mirror and subnanometric layers characterizations were made at the "Laboratoire Charles Fabry" (LCF) with a grazing incidence reflectometer working at 8.048 keV (Cu Kα radiation) and at the synchrotron radiation facility SOLEIL on the hard X-ray branch of the "Metrology" beamline. The reflectivity of the mirrors as a function of the photon energy was obtained in the Physikalisch Technische Bundesanstalt (PTB) laboratory at the synchrotron radiation facility Bessy II.

  7. Measuring Temperature-Dependent Propagating Disturbances in Coronal Fan Loops Using Multiple SDO-AIA Channels and Surfing Transform Technique

    NASA Technical Reports Server (NTRS)

    Uritskiy, Vadim M.; Davila, Joseph M.; Viall, Nicholeen M.; Ofman, Leon

    2013-01-01

    A set of co-aligned high resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling quantitative description of sub visual coronal motions with low signal-to-noise ratios of the order of 0.1. The technique operates with a set of one-dimensional surfing signals extracted from position-timeplots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency - velocity space which exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square root dependence predicted for the slow mode magneto-acoustic wave which seems to be the dominating wave mode in the studied loop structures. This result extends recent observations by Kiddie et al. (2012) to a more general class of fan loop systems not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.

  8. Radio emissions from Uranus

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Evans, D. R.; Romig, J. H.; Sawyer, C. B.

    1987-01-01

    The hardware of the Planetary Radio Astronomy Experiment aboard Voyager 2 and the results of the measurements of radio emissions from Uranus are described. Strong 40-kHz to 850-kHz radio emissions were detected after closest approach on the day-side of Uranus. The time variations of these emissions were periodic, with a period of 17.24 h closely matching that of Uranus's rotation and evidently being controlled by the strength and shape of its magnetic field. The instrument also recorded possible Uranian electrostatic discharges, vertex early arcs occurring in sequences of more than a dozen events with approximately 10-min period, and very intense isolated bursts lasting tens of minutes.

  9. Measurements of distributed polarized radio sources from spinning spacecraft - Effect of a tilted axial antenna ISEE-3 application and results

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Hoang, S.; Manning, R.

    1985-01-01

    An analysis is presented of the system response of a satellite receiver-antenna system to locate a radio source when the satellite is tilted on its axis. The satellite is spin stabilized but experiences a tilt due to either a mechanical misalignment or a shift in the electrical axis caused by parasitic currents in other spacecraft structures. The shorter the antenna, the more significant the effects. Numerical techniques are developed for obtaining the Stokes parameters and the angular parameters of a uniform conical source sensed by a linear antenna in order to derive the average power response of a synthesized dipole to a point on a distributed polarized source. Relative gains are calculated along the antenna at different angles to the source. The techniques are applied to sample ISEE-3 satellite data for Type III solar radio bursts which were sensed by an axial and an equatorial antenna. The two antennas permit localization of the source and quantification of the polarization and angular extent of the source. The resulting high precision in calculations of all three source parameters commends use of the model in analyses of data from the planned ULYSSES mission.

  10. Increasing Accuracy: A New Design and Algorithm for Automatically Measuring Weights, Travel Direction and Radio Frequency Identification (RFID) of Penguins.

    PubMed

    Afanasyev, Vsevolod; Buldyrev, Sergey V; Dunn, Michael J; Robst, Jeremy; Preston, Mark; Bremner, Steve F; Briggs, Dirk R; Brown, Ruth; Adlard, Stacey; Peat, Helen J

    2015-01-01

    A fully automated weighbridge using a new algorithm and mechanics integrated with a Radio Frequency Identification System is described. It is currently in use collecting data on Macaroni penguins (Eudyptes chrysolophus) at Bird Island, South Georgia. The technology allows researchers to collect very large, highly accurate datasets of both penguin weight and direction of their travel into or out of a breeding colony, providing important contributory information to help understand penguin breeding success, reproductive output and availability of prey. Reliable discrimination between single and multiple penguin crossings is demonstrated. Passive radio frequency tags implanted into penguins allow researchers to match weight and trip direction to individual birds. Low unit and operation costs, low maintenance needs, simple operator requirements and accurate time stamping of every record are all important features of this type of weighbridge, as is its proven ability to operate 24 hours a day throughout a breeding season, regardless of temperature or weather conditions. Users are able to define required levels of accuracy by adjusting filters and raw data are automatically recorded and stored allowing for a range of processing options. This paper presents the underlying principles, design specification and system description, provides evidence of the weighbridge's accurate performance and demonstrates how its design is a significant improvement on existing systems. PMID:25894763

  11. Increasing Accuracy: A New Design and Algorithm for Automatically Measuring Weights, Travel Direction and Radio Frequency Identification (RFID) of Penguins

    PubMed Central

    Afanasyev, Vsevolod; Buldyrev, Sergey V.; Dunn, Michael J.; Robst, Jeremy; Preston, Mark; Bremner, Steve F.; Briggs, Dirk R.; Brown, Ruth; Adlard, Stacey; Peat, Helen J.

    2015-01-01

    A fully automated weighbridge using a new algorithm and mechanics integrated with a Radio Frequency Identification System is described. It is currently in use collecting data on Macaroni penguins (Eudyptes chrysolophus) at Bird Island, South Georgia. The technology allows researchers to collect very large, highly accurate datasets of both penguin weight and direction of their travel into or out of a breeding colony, providing important contributory information to help understand penguin breeding success, reproductive output and availability of prey. Reliable discrimination between single and multiple penguin crossings is demonstrated. Passive radio frequency tags implanted into penguins allow researchers to match weight and trip direction to individual birds. Low unit and operation costs, low maintenance needs, simple operator requirements and accurate time stamping of every record are all important features of this type of weighbridge, as is its proven ability to operate 24 hours a day throughout a breeding season, regardless of temperature or weather conditions. Users are able to define required levels of accuracy by adjusting filters and raw data are automatically recorded and stored allowing for a range of processing options. This paper presents the underlying principles, design specification and system description, provides evidence of the weighbridge’s accurate performance and demonstrates how its design is a significant improvement on existing systems. PMID:25894763

  12. Radio Hazard Safety Assessment for Marine Ship Transmitters: Measurements Using a New Data Collection Method and Comparison with ICNIRP and ARPANSA Limits

    PubMed Central

    Halgamuge, Malka N.

    2015-01-01

    We investigated the levels of radio frequency electromagnetic fields (RF EMFs) emitted from marine ship transmitters. In this study, we recorded the radio frequency (RF) electric field (EF) levels emitted from transmitters from a marine vessel focusing on the areas normally occupied by crew members and passengers. Previous studies considered radiation hazard safety assessment for marine vessels with a limited number of transmitters, such as very high-frequency (VHF) transceivers, radar and communication transmitters. In our investigation, EF levels from seven radio transmitters were measured, including: VHF, medium frequency/high frequency (MF/HF), satellite communication (Sat-Com C), AISnavigation, radar X-band and radar S-band. Measurements were carried out in a 40 m-long, three-level ship (upper deck, bridge deck and bridge roof) at 12 different locations. We developed a new data-collection protocol and performed it under 11 different scenarios to observe and measure the radiation emissions from all of the transmitters. In total, 528 EF field measurements were collected and averaged over all three levels of the marine ship with RF transmitters: the measured electric fields were the lowest on the upper deck (0.82–0.86 V/m), the highest on the bridge roof (2.15–3.70 V/m) and in between on the bridge deck (0.47–1.15 V/m). The measured EF levels were then assessed for compliance with the occupational and general public reference levels of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) standards. The ICNIRP and the ARPANSA limits for the general public were exceeded on the bridge roof; nevertheless, the occupational limits were respected everywhere. The measured EF levels, hence, complied with the ICNIRP guidelines and the ARPANSA standards. In this paper, we provide a new data collection model for future surveys, which could be conducted with larger samples to verify our observations. Furthermore, this new method could be useful as a reference for researchers and industry professionals without direct access to the necessary equipment. PMID:25996887

  13. Radio Hazard Safety Assessment for Marine Ship Transmitters: Measurements Using a New Data Collection Method and Comparison with ICNIRP and ARPANSA Limits.

    PubMed

    Halgamuge, Malka N

    2015-05-01

    We investigated the levels of radio frequency electromagnetic fields (RF EMFs) emitted from marine ship transmitters. In this study, we recorded the radio frequency (RF) electric field (EF) levels emitted from transmitters from a marine vessel focusing on the areas normally occupied by crew members and passengers. Previous studies considered radiation hazard safety assessment for marine vessels with a limited number of transmitters, such as very high-frequency (VHF) transceivers, radar and communication transmitters. In our investigation, EF levels from seven radio transmitters were measured, including: VHF, medium frequency/high frequency (MF/HF), satellite communication (Sat-Com C), AISnavigation, radar X-band and radar S-band. Measurements were carried out in a 40 m-long, three-level ship (upper deck, bridge deck and bridge roof) at 12 different locations. We developed a new data-collection protocol and performed it under 11 different scenarios to observe and measure the radiation emissions from all of the transmitters. In total, 528 EF field measurements were collected and averaged over all three levels of the marine ship with RF transmitters: the measured electric fields were the lowest on the upper deck (0.82-0.86 V/m), the highest on the bridge roof (2.15-3.70 V/m) and in between on the bridge deck (0.47-1.15 V/m). The measured EF levels were then assessed for compliance with the occupational and general public reference levels of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) standards. The ICNIRP and the ARPANSA limits for the general public were exceeded on the bridge roof; nevertheless, the occupational limits were respected everywhere. The measured EF levels, hence, complied with the ICNIRP guidelines and the ARPANSA standards. In this paper, we provide a new data collection model for future surveys, which could be conducted with larger samples to verify our observations. Furthermore, this new method could be useful as a reference for researchers and industry professionals without direct access to the necessary equipment. PMID:25996887

  14. Two-photon absorption laser-induced fluorescence measurements of atomic nitrogen in a radio-frequency atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Wagenaars, E.; Gans, T.; O'Connell, D.; Niemi, K.

    2012-08-01

    The first direct measurements of atomic nitrogen species in a radio-frequency atmospheric-pressure plasma jet (APPJ) are presented. Atomic nitrogen radicals play a key role in new plasma medicine applications of APPJs. The measurements were performed with a two-photon absorption laser-induced fluorescence diagnostic, using 206.65 nm laser photons for the excitation of ground-state N atoms and observing fluorescence light around 744 nm. The APPJ was run with a helium gas flow of 1 slm and varying small admixtures of molecular nitrogen of 0-0.7 vol%. A maximum in the measured N concentration was observed for an admixture of 0.25 vol% N2.

  15. MULTIMOMENT RADIO TRANSIENT DETECTION

    SciTech Connect

    Spitler, L. G.; Cordes, J. M.; Chatterjee, S.; Stone, J.

    2012-04-01

    We present a multimoment technique for signal classification and apply it to the detection of fast radio transients in incoherently dedispersed data. Specifically, we define a spectral modulation index in terms of the fractional variation in intensity across a spectrum. A signal whose intensity is distributed evenly across the entire band has a lower modulation index than a spectrum whose intensity is localized in a single channel. We are interested in broadband pulses and use the modulation index to excise narrowband radio frequency interference by applying a modulation index threshold above which candidate events are removed. The technique is tested both with simulations and using data from known sources of radio pulses (RRAT J1928+15 and giant pulses from the Crab pulsar). The method is generalized to coherent dedispersion, image cubes, and astrophysical narrowband signals that are steady in time. We suggest that the modulation index, along with other statistics using higher order moments, should be incorporated into signal detection pipelines to characterize and classify signals.

  16. Multimoment Radio Transient Detection

    NASA Astrophysics Data System (ADS)

    Spitler, L. G.; Cordes, J. M.; Chatterjee, S.; Stone, J.

    2012-04-01

    We present a multimoment technique for signal classification and apply it to the detection of fast radio transients in incoherently dedispersed data. Specifically, we define a spectral modulation index in terms of the fractional variation in intensity across a spectrum. A signal whose intensity is distributed evenly across the entire band has a lower modulation index than a spectrum whose intensity is localized in a single channel. We are interested in broadband pulses and use the modulation index to excise narrowband radio frequency interference by applying a modulation index threshold above which candidate events are removed. The technique is tested both with simulations and using data from known sources of radio pulses (RRAT J1928+15 and giant pulses from the Crab pulsar). The method is generalized to coherent dedispersion, image cubes, and astrophysical narrowband signals that are steady in time. We suggest that the modulation index, along with other statistics using higher order moments, should be incorporated into signal detection pipelines to characterize and classify signals.

  17. Visible and near-infrared channel calibration of the GOES-6 VISSR using high-altitude aircraft measurements

    NASA Technical Reports Server (NTRS)

    Smith, Gilbert R.; Levin, Robert H.; Koyanagi, Robert S.; Wrigley, Robert C.

    1989-01-01

    Present and future visible and near-infrared wavelength sensors mounted on operational satellites do not have on-board absolute calibration devices. One means of establishing an in-orbit calibration for a satellite sensor is to make simultaneous measurements of a bright, relatively uniform scene along the satellite view vector from a calibrated instrument on board a high altitude aircraft. Aircraft data were recorded over White Sands, New Mexico, and the coincident aircraft and orbiting satellite data is compared for the visible and near-infrared wavelength channel of the GOES-6 Visible Infrared Spin-Scan Radiometer.

  18. On the subjective evaluation of the interference protection ratios' measurements for co-channel FM-TV signals

    NASA Technical Reports Server (NTRS)

    Groumpos, P. P.; Whyte, W.

    1983-01-01

    Results of subjective measurements made to determine the relationship between the image impairment grade and the wanted-signal to interference power ratios (C/I) for co-channel FM television signals are presented. The variation of C/I ratio with picture impairment grade is investigated for three different noise levels. The assessment of impairment grade due to thermal noise only and to picture content is also investigated. A statistical analysis for performed experiments is presented. The results presented here may be used by communication system designers to determine the required system characteristics.

  19. Characterization of the transport properties of channel delta-doped structures by light-modulated Shubnikov-de Haas measurements

    NASA Astrophysics Data System (ADS)

    Mena, R. A.; Schacham, S. E.; Haugland, E. J.; Alterovitz, S. A.; Young, P. G.; Bibyk, S. B.; Ringel, S. A.

    1995-12-01

    The transport properties of channel delta-doped quantum-well structures were characterized by conventional Hall effect and light-modulated Shubnikov-de Haas (SdH) effect measurements. The large number of carriers that become available due to the delta doping of the channel, leads to an apparent degeneracy in the well. As a result of this degeneracy, the carrier mobility remains constant as a function of temperature from 300 down to 1.4 K. The large amount of impurity scattering, associated with the overlap of the charge carriers and the dopants, resulted in low carrier mobilities and restricted the observation of the oscillatory magnetoresistance used to characterize the two-dimensional electron gas by conventional SdH measurements. By light modulating the carriers, we were able to observe the SdH oscillation at low magnetic fields, below 1.4 T, and derive a value for the quantum scattering time. Our results for the ratio of the transport and quantum scattering times are lower than those previously measured for similar structures using much higher magnetic fields.

  20. Characterization of the transport properties of channel delta-doped structures by light-modulated Shubnikov-de Haas measurements

    NASA Astrophysics Data System (ADS)

    Mena, R. A.; Schacham, S. E.; Haugland, E. J.; Alterovitz, S. A.; Young, P. G.; Bibyk, S. B.; Ringel, S. A.

    1995-08-01

    The transport properties of channel delta-doped quantum well structures were characterized by conventional Hall effect and light-modulated Shubnikov-de Haas (SdH) effect measurements. The large number of carriers that become available due to the delta-doping of the channel, leads to an apparent degeneracy in the well. As a result of this degenera