Science.gov

Sample records for radio channel measurements

  1. Microwave line-of-sight channel measurements, channel modelling, and application of channel models to digital radio performance prediction

    NASA Astrophysics Data System (ADS)

    Haeggman, Sven-Gustav

    1991-07-01

    Time and frequency domain measurements with pulse and sweep techniques, derivation of channel models from the results, and application of the model to performance prediction are studied. The measuring systems and the methods leading to channel models are reviewed. Statistical models are obtained only from the frequency domain results. Single and two channel models for signal level equivalent three path models are derived. The latter single and two channel models are also available as parameter time history. Three performance prediction approaches are tried. The first approach is based on Rummler's channel model and on signature sets for various interference conditions. The second approach is based on the derived channel models. Several methods are used, also a new method where time is divided into mutually exclusive flat and dispersive fade time. The total outage can be summed, but normally flat fading outage can be neglected. The third approach is based on the time history model. Outage state is determined from signature sets, and cumulative outage is obtained from the stored time information. The method can be extended to calculation of the performance measures defined by CCIR.

  2. A radio frequency device for measurement of minute dielectric property changes in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Song, Chunrong; Wang, Pingshan

    2009-01-01

    We demonstrate a sensitive radio frequency (rf) device to detect small dielectric property changes in microfluidic channel. The device consists of an on-chip Wilkinson power divider and a rat-race hybrid, which are built with planar microstrip lines and thin film chip resistors. Interference is used to cancel parasitic background signals. As a result, the measurement sensitivity is improved by more than 20 dB compared with conventional transmission lines. Compared with an ultrasensitive slot antenna/cuvette assembly [K. M. Taylor and D. W. van der Weide, IEEE Trans. Microwave Theory Tech. 53, 1576 (2005)], the proposed rf device is two times more sensitive.

  3. Radio Channel Simulator (RCSM)

    Energy Science and Technology Software Center (ESTSC)

    2007-01-31

    This is a simulation package for making site specific predictions of radio signal strength. The software computes received power at discrete grid points as a function of the transmitter location and propagation environment. It is intended for use with wireless network simulation packages and to support wireless network deployments.

  4. Mexart Measurements of Radio Sources

    NASA Astrophysics Data System (ADS)

    Gonzlez-Esparza, A.; Andrade, E.; Carrillo, A.; Jeyakumar, S.; Ananthakrishnan, S.; Praveenkumar, A.; Sankarasubramanian, G.; Sureshkumar, S.; Sierra, P.; Vazquez, S.; Perex-Enriguez, R.; Kurtz, S.

    2005-09-01

    The Mexican Array Radio Telescope (MEXART) consists of a 64x64 array of full-wave dipoles operating at 139.65 MHz. The primary aim of the array is to perform Interplanetary Scintillations (IPS) observations of radio sources to track large-scale solar wind perturbations within 1 AU. We describe the initial measurements of radio sources and the advances in the calibration of the antenna.

  5. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725...

  6. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725...

  7. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725...

  8. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725...

  9. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725...

  10. Development of a fast sampling system for estimation of impulse responses of mobile radio channels

    NASA Astrophysics Data System (ADS)

    Melancon, Pierre

    1994-07-01

    This paper describes the features of measurement equipment developed to measure impulse response estimates of mobile radio channels in less than a ms per measurement. The development of such equipment was required to measure mobile radio channels in realistic operating scenarios, in a normal sized vehicle moving at typical speeds in different environments. Up to speeds of 70 km/hr, the measurement period is short enough to assume the equipment is measuring the same channel during the whole sampling interval. AT the transmitter end of the measurement system, a wideband signal (10 MHz) is produced by modulating a carrier frequency with a 511 bit pseudo random sequence at 5 Mb/s and transmitted through the radio channel. The received signal is down-converted to 70 MHz and demodulated by a complex demodulator. The quadrature baseband signals at the demodulator outputs are then filtered and sampled at high speed by two fast digitizers. During this process, the data are stored in large memory banks to allow a fast sampling rate during a long period of time. Data are transferred to laser disks for further processing in the laboratory. Impulse response of radio channels are estimated by performing a software correlation between a measurement system back to back reference and real time measurements. A minivan was modified to hold the receiver, digitizers, memory banks and the computer. A shaft encoder was attached to its rear left wheel to trigger measurements while moving. Features of the system are discussed along with the effects of data block length, signal to noise ratio, sampling rate, memory size and phase stability on the design of the measurement equipment. Finally, some measurement results are presented and discussed.

  11. Channel Assignment Scheme in Multi-Channel Multi-Radio Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Zeng, Yingzhi; Xin, Qin; Gong, Zhenghu

    2010-09-01

    An important issue of multi-channel multi-radio wireless mesh network is how to assign multiple available channels to the radios in order to minimize the wireless communication interference and maximize the network throughput. In this work, we study the problem of channel assignment in MRMC-WMN, and the optimization problem is known to be NP-complete. We propose a novel dynamic channel assignment scheme, which is based on network coding (NC) and data flow. Our scheme can be performed in distributed manner and is suitable for both unicast and multicast communication. Compared with the basic dynamic CA scheme, the analysis and comparison demonstrates that our proposed scheme has less communication cost and less interference.

  12. Radio Science Measurements with Suppressed Carrier

    NASA Technical Reports Server (NTRS)

    Asmar, Sami; Divsalar, Dariush; Oudrhiri, Kamal

    2013-01-01

    Radio Science started when it became apparent with early Solar missions that occultations by planetary atmospheres would affect the quality of radio communications. Since then the atmospheric properties and other aspects of planetary science, solar science, and fundamental physics were studied by scientists. Radio Science data was always extracted from a received pure residual carrier (without data modulation). For some missions, it is very desirable to obtain Radio Science data from a suppressed carrier modulation. In this paper we propose a method to extract Radio Science data when a coded suppressed carrier modulation is used in deep space communications. Type of modulation can be BPSK, QPSK, OQPSK, MPSK or even GMSK. However we concentrate mostly on BPSK modulation. The proposed method for suppressed carrier simply tries to wipe out data that acts as an interference for Radio Science measurements. In order to measure the estimation errors in amplitude and phase of the Radio Science data we use Cramer-Rao bound (CRB). The CRB for the suppressed carrier modulation with non-ideal data wiping is then compared with residual carrier modulation under the same noise condition. The method of derivation of CRB for non-ideal data wiping is an innovative method that presented here. Some numerical results are provided for coded system.

  13. Multimedia Transmission Over Cognitive Radio Channels Under Sensing Uncertainty

    NASA Astrophysics Data System (ADS)

    Ye, Chuang; Ozcan, Gozde; Gursoy, M. Cenk; Velipasalar, Senem

    2016-02-01

    This paper studies the performance of hierarchical modulation-based multimedia transmission in cognitive radio (CR) systems with imperfect channel sensing results under constraints on both transmit and interference power levels. Unequal error protection (UEP) of data transmission using hierarchical quadrature amplitude modulation (HQAM) is considered in which high priority (HP) data is protected more than low priority (LP) data. In this setting, closed-form bit error rate (BER) expressions for HP data and LP data are derived in Nakagami-$m$ fading channels in the presence of sensing errors. Subsequently, the optimal power control that minimizes weighted sum of average BERs of HP bits and LP bits or its upper bound subject to peak/average transmit power and average interference power constraints is derived and a low-complexity power control algorithm is proposed. Power levels are determined in three different scenarios, depending on the availability of perfect channel side information (CSI) of the transmission and interference links, statistical CSI of both links, or perfect CSI of the transmission link and imperfect CSI of the interference link. The impact of imperfect channel sensing decisions on the error rate performance of cognitive transmissions is also evaluated. In addition, tradeoffs between the number of retransmissions, the severity of fading, and peak signal-to-noise ratio (PSNR) quality are analyzed numerically. Moreover, performance comparisons of multimedia transmission with conventional quadrature amplitude modulation (QAM) and HQAM, and the proposed power control strategies are carried out in terms of the received data quality and number of retransmissions.

  14. Adaptation of the Electra Radio to Support Multiple Receive Channels

    NASA Technical Reports Server (NTRS)

    Satorius, Edgar H.; Shah, Biren N.; Bruvold, Kristoffer N.; Bell, David J.

    2011-01-01

    Proposed future Mars missions plan communication between multiple assets (rovers). This paper presents the results of a study carried out to assess the potential adaptation of the Electra radio to a multi-channel transceiver. The basic concept is a Frequency Division multiplexing (FDM) communications scheme wherein different receiver architectures are examined. Options considered include: (1) multiple IF slices, A/D and FPGAs each programmed with an Electra baseband modem; (2) common IF but multiple A/Ds and FPGAs and (3) common IF, single A/D and single or multiple FPGAs programmed to accommodate the FDM signals. These options represent the usual tradeoff between analog and digital complexity. Given the space application, a common IF is preferable; however, multiple users present dynamic range challenges (e.g., near-far constraints) that would favor multiple IF slices (Option 1). Vice versa, with a common IF and multiple A/Ds (Option 2), individual AGC control of the A/Ds would be an important consideration. Option 3 would require a common AGC control strategy and would entail multiple digital down conversion paths within the FPGA. In this paper, both FDM parameters as well as the different Electra design options will be examined. In particular, signal channel spacing as a function of user data rates and transmit powers will be evaluated. In addition, tradeoffs between the different Electra design options will be presented with the ultimate goal of defining an augmented Electra radio architecture for potential future missions.

  15. Extragalactic dispersion measures of fast radio bursts

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Han, J. L.

    2015-10-01

    Fast radio bursts show large dispersion measures, much larger than the Galactic dispersion measure foreground. Therefore, they evidently have an extragalactic origin. We investigate possible contributions to the dispersion measure from host galaxies. We simulate the spatial distribution of fast radio bursts and calculate the dispersion measures along the sightlines from fast radio bursts to the edge of host galaxies by using the scaled NE2001 model for thermal electron density distributions. We find that contributions to the dispersion measure of fast radio bursts from the host galaxy follow a skew Gaussian distribution. The peak and the width at half maximum of the dispersion measure distribution increase with the inclination angle of a spiral galaxy, to large values when the inclination angle is over 70. The largest dispersion measure produced by an edge-on spiral galaxy can reach a few thousand pc cm?3, while the dispersion measures from dwarf galaxies and elliptical galaxies have a maximum of only a few tens of pc cm?3. Notice, however, that additional dispersion measures of tens to hundreds of pc cm?3 can be produced by high density clumps in host galaxies. Simulations that include dispersion measure contributions from the Large Magellanic Cloud and the Andromeda Galaxy are shown as examples to demonstrate how to extract the dispersion measure from the intergalactic medium.

  16. Probing Ion Channel Insertion into a Bilipid Membranes with a Radio Frequency Tank Circuit

    NASA Astrophysics Data System (ADS)

    Shin, Hyun Cheol; Stava, Eric; Yu, Minrui; Qin, Hua; Kim, Hyun-Seok; Blick, Robert

    2009-03-01

    We fabricated a radio frequency resonant circuit which can be applied for probing ion channels formed in bilipid membranes. The insertion of ion channels can be probed by monitoring the resonant response of the tank circuit. The circuit itself is realized on a glass chip, which simultaneously uses DC channel recordings (i.e. conventional on-chip patch clamping) and RF detection. The direct current recordings of the ion channels responses allows for the calibration of the radio frequency signal. Such radio frequency recordings of ion channel activity have great potential for high-throughput drug screening.

  17. Radio occultation measurements of the lunar ionosphere.

    NASA Astrophysics Data System (ADS)

    Pluchino, S.; Schillirò, F.; Salerno, E.; Pupillo, G.; Maccaferri, G.; Cassaro, P.

    Radio occultation measurements by using interplanetary probes is a well known technique to obtain information on planetary atmospheres. To further understand the morphology of the lunar ionosphere we performed radio occultation experiments by using the radio sounding technique. This method mainly consists in the analisys of the effects produced on the radio wave transmitted from the spacecraft to the Earth when it crosses the atmosphere. The wave amplitude and phase undergo modifications that are correlated to the physical parameters - i.e. electron density - of the crossed medium. The first data set was obtained during the lunar occultations of the European probe SMART-1 shortly before impacting the lunar soil on September 3rd, 2006. During this experiment several radio occultation measurements of the signal transmitted by the spacecraft were performed in S and X band by using the 32 meters radiotelescopes (at Medicina and Noto) of the Istituto di Radioastronomia - Istituto Nazionale di Astrofisica. Further experiments were performed during lunar occultations of Saturn and Venus. On May 22nd and June 18th 2007 the Cassini spacecraft, orbiting Saturn, and the Venus Express spacecraft, orbiting Venus, respectively were occulted by the Moon. The variation of the Total Electron Content (TEC) measured by our instruments (˜ 1013 el/m2) on this occasion is in agreement with values of the electron number density acquired by in situ measuments of the US Apollo missions and the USSR Luna 19 and 22 probes.

  18. New approaches in cellular radio systems using dynamic radio channel management

    NASA Astrophysics Data System (ADS)

    Yilmaz, Nusret; Ergul, F. R.

    2004-09-01

    New approaches are presented to facilitate dynamic radio bandwidth management for mobile communication systems. The aim is achieve an overall high level of QoS for both handoff calls and new calls. At the same time, the utilization of wireless network resources, i.e. the revenues earned by the operator. The simultaneous satisfaction of these two conflicting interests, under varying mobility and network traffic conditions, will be difficult. However, a balanced operation could be obtained by applying two novel approaches in system management. First, apriori information about possible handoffs, in the form of cell transition probabilities could be provided by the mobile, which is based on data collected by the mobile itself. This information is used to make handoff reservation requests in neighboring cells. Second, simultaneously controlling the radio resource reservation and new call admission to the system. This approach controls both the amount of reserved channels and the number of new calls admitted in a dynamic way. A theoretical analysis and a simulation have been used to study these approaches and it has been demonstrated that these approaches perform better then other reported approaches in the literature.

  19. Design and Implementation of an Underlay Control Channel for Cognitive Radios

    SciTech Connect

    Daryl Wasden; Hussein Moradi; Behrouz Farhang-Boroujeny

    2012-11-01

    Implementation of any cognitive radio network requires an effective control channel that can operate under various modes of activity from the primary users. This paper reports the design and implementation of a filter bank multicarrier spread spectrum (FBMC-SS) system for use as the control channel in cognitive radio networks. The proposed design is based on a filtered multitone (FMT) implementation. Carrier and timing acquisition and tracking methods as well as a blind channel estimation method are developed for the proposed control channel. We also report an implementation of the proposed FBMC-SS system on a hardware platform; a FlexRIO FPGA module from National Instruments.

  20. A review of radio channel models for body centric communications

    NASA Astrophysics Data System (ADS)

    Cotton, Simon L.; D'Errico, Raffaele; Oestges, Claude

    2014-06-01

    The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing some of the advanced topics which are currently being addressed in the field of body centric communications.

  1. A review of radio channel models for body centric communications

    PubMed Central

    Cotton, Simon L; D'Errico, Raffaele; Oestges, Claude

    2014-01-01

    The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing some of the advanced topics which are currently being addressed in the field of body centric communications. PMID:26430285

  2. Radio frequency sensing measurements and methods for location classification in wireless networks

    NASA Astrophysics Data System (ADS)

    Maas, Dustin C.

    The wireless radio channel is typically thought of as a means to move information from transmitter to receiver, but the radio channel can also be used to detect changes in the environment of the radio link. This dissertation is focused on the measurements we can make at the physical layer of wireless networks, and how we can use those measurements to obtain information about the locations of transceivers and people. The first contribution of this work is the development and testing of an open source, 802.11b sounder and receiver, which is capable of decoding packets and using them to estimate the channel impulse response (CIR) of a radio link at a fraction of the cost of traditional channel sounders. This receiver improves on previous implementations by performing optimized matched filtering on the field-programmable gate array (FPGA) of the Universal Software Radio Peripheral (USRP), allowing it to operate at full bandwidth. The second contribution of this work is an extensive experimental evaluation of a technology called location distinction, i.e., the ability to identify changes in radio transceiver position, via CIR measurements. Previous location distinction work has focused on single-input single-output (SISO) radio links. We extend this work to the context of multiple-input multiple-output (MIMO) radio links, and study system design trade-offs which affect the performance of MIMO location distinction. The third contribution of this work introduces the "exploiting radio windows" (ERW) attack, in which an attacker outside of a building surreptitiously uses the transmissions of an otherwise secure wireless network inside of the building to infer location information about people inside the building. This is possible because of the relative transparency of external walls to radio transmissions. The final contribution of this dissertation is a feasibility study for building a rapidly deployable radio tomographic (RTI) imaging system for special operations forces (SOF). We show that it is possible to obtain valuable tracking information using as few as 10 radios over a single floor of a typical suburban home, even without precise radio location measurements.

  3. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.

    PubMed

    Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2015-08-10

    A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800MHz and 2.6GHz, evinces reliability with <8% of EVM in a turbulent channel. Based on the results, we show that transmitting the LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals. PMID:26368379

  4. An analysis of the materiel fielding plan for the SINCGARS (Single Channel Ground and Airborne Radio System) radio

    NASA Astrophysics Data System (ADS)

    Tegen, C. M.

    1984-12-01

    This thesis is an analysis of the materiel fielding plan (MFP) for the Army's Single Channel Ground and Airborne Radio System (SINCGARS). Objectives of the study are to identify major potential problem areas in the MFP, and to generate recommendations for resolving these problems. The study involves a specific analysis of the maintenance and supply support aspects of the MFP within the context of the Major System acquisition framework. Research included extensive field interviews with personnel in the functional management areas of the Communications and Electronics Command (CECOM), the Project Office, and the Department of Army Staff. Potential problems identified concern the redistribution of VRC-12 series and PRC-77 radios, the imbedded COMSEC modification, and the issue of warranties. Recommendations include purchasing a warranty for the original production contract, improving the planning for redistribution of old radios, and providing strict control over the design of the imbedded COMSEC modification.

  5. Multi-channel distributed coordinated function over single radio in wireless sensor networks.

    PubMed

    Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band. PMID:22346614

  6. Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks

    PubMed Central

    Campbell, Carlene E.-A.; Loo, Kok-Keong (Jonathan); Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band. PMID:22346614

  7. Spectrum Handover Mechanism Based on Channel Scheduling in Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    Ma, Bin; Xie, Xianzhong

    In this study, we address the spectrum handover mechanism for proactive-decision in cognitive radio networks. Spectrum handover occurs when the primary users suddenly appear and the secondary users are using the particular primary user's licensed channel. The proactive-sensing spectrum handover which the target channel is pre-determined. And handover avoid the sensing time, but the pre-determined target channel may not be available. So we develop a spectrum handover mechanism by using an efficient channel-scheduling algorithm to reduce disabled channel. Its basic idea is in that a new packet is scheduled by migrating some packets to other channels if none of any idle channels can accommodate it; otherwise repeating the other migrate or stay channel processes.

  8. Energy-Efficient Channel Handoff for Sensor Network-Assisted Cognitive Radio Network

    PubMed Central

    Usman, Muhammad; Sajjad Khan, Muhammad; Vu-Van, Hiep; Insoo, Koo

    2015-01-01

    The visiting and less-privileged status of the secondary users (SUs) in a cognitive radio network obligates them to release the occupied channel instantly when it is reclaimed by the primary user. The SU has a choice to make: either wait for the channel to become free, thus conserving energy at the expense of delayed transmission and delivery, or find and switch to a vacant channel, thereby avoiding delay in transmission at the expense of increased energy consumption. An energy-efficient decision that considers the tradeoff between energy consumption and continuous transmission needs to be taken as to whether to switch the channels. In this work, we consider a sensor network-assisted cognitive radio network and propose a backup channel, which is sensed by the SU in parallel with the operating channel that is being sensed by the sensor nodes. Imperfect channel sensing and residual energy of the SU are considered in order to develop an energy-efficient handoff strategy using the partially observable Markov decision process (POMDP), which considers beliefs about the operating and backup channels and the remaining energy of the SU in order to take an optimal channel handoff decision on the question “Should we switch the channel?” The objective is to dynamically decide in each time slot whether the SU should switch the channel or not in order to maximize throughput by utilizing energy efficiently. Extensive simulations were performed to show the effectiveness of the proposed channel handoff strategy, which was demonstrated in the form of throughput with respect to various parameters, i.e., detection probability, the channel idle probabilities of the operating and backup channels, and the maximum energy of the SU. PMID:26213936

  9. Energy-Efficient Channel Handoff for Sensor Network-Assisted Cognitive Radio Network.

    PubMed

    Usman, Muhammad; Khan, Muhammad Sajjad; Vu-Van, Hiep; Insoo, Koo

    2015-01-01

    The visiting and less-privileged status of the secondary users (SUs) in a cognitive radio network obligates them to release the occupied channel instantly when it is reclaimed by the primary user. The SU has a choice to make: either wait for the channel to become free, thus conserving energy at the expense of delayed transmission and delivery, or find and switch to a vacant channel, thereby avoiding delay in transmission at the expense of increased energy consumption. An energy-efficient decision that considers the tradeoff between energy consumption and continuous transmission needs to be taken as to whether to switch the channels. In this work, we consider a sensor network-assisted cognitive radio network and propose a backup channel, which is sensed by the SU in parallel with the operating channel that is being sensed by the sensor nodes. Imperfect channel sensing and residual energy of the SU are considered in order to develop an energy-efficient handoff strategy using the partially observable Markov decision process (POMDP), which considers beliefs about the operating and backup channels and the remaining energy of the SU in order to take an optimal channel handoff decision on the question "Should we switch the channel?" The objective is to dynamically decide in each time slot whether the SU should switch the channel or not in order to maximize throughput by utilizing energy efficiently. Extensive simulations were performed to show the effectiveness of the proposed channel handoff strategy, which was demonstrated in the form of throughput with respect to various parameters, i.e., detection probability, the channel idle probabilities of the operating and backup channels, and the maximum energy of the SU. PMID:26213936

  10. Measurement of radio emission from extensive air showers with LOPES

    NASA Astrophysics Data System (ADS)

    Hrandel, J. R.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Badea, F.; Bhren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blmer, J.; Bozdog, H.; Brancus, I. M.; Brggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Ender, M.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Krmer, O.; Kuijpers, J.; Lafebre, S.; Link, K.; ?uczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschlger, J.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schrder, F.; Sima, O.; Singh, K.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.

    2011-02-01

    A new method is explored to detect extensive air showers: the measurement of radio waves emitted during the propagation of the electromagnetic shower component in the magnetic field of the Earth. Recent results of the pioneering experiment LOPES are discussed. It registers radio signals in the frequency range between 40 and 80 MHz. The intensity of the measured radio emission is investigated as a function of different shower parameters, such as shower energy, angle of incidence, and distance to shower axis. In addition, new antenna types are developed in the framework of LOPESstar and new methods are explored to realize a radio self-trigger algorithm in real time.

  11. SINCGARS (Single-Channel Ground/Airborne Radio System) operator performance decay

    NASA Astrophysics Data System (ADS)

    Palmer, Richard L.; Buckalew, Louis W.

    1988-11-01

    The Single-Channel Ground/Airborne Radio System (SINCGARS) is scheduled to replace the Army's VRC-12 and PRC-77 radios. However, SINCGARS is more complex to operate and requires more training. This study examined the decay of operational skills and knowledge in two groups of recently trained operators who went without exposure to SINCGARS for several weeks. Performance levels were measured with the SINCGARS Learning-Retention Test (SLRT), a simulated hands-on performance test emphasizing skills and operational knowledge retention. The results provided tentative indications that operators may lose about 10 percent of their prior performance levels within the first few weeks. This figure is expected to vary considerably, depending on the type of soldier, the length of the nonexposure period, and other conditions. It was also found that performance level was correlated with soldiers' Armed Services Vocational Aptitude Battery (ASVAB) General Technical (GT) scores. Correlations between GT and SLRT scores obtained at two different times were .43 and .50, respectively. However, no relation was observed between performance decay and GT. Further evaluation of operator performance decay needs to be done to determine the effect of longer periods of nonexposure (e.g., 60 and 90 days).

  12. MEXART Measurements of Radio Sources. Interplanetary Scintillation Array in Mexico

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; Carrillo, A.; Andrade, E.; Jeyakumar, S.; Ananthakrishnan, S.; Praveenkumar, A.; Sankarasubramanian, G.; Sureshkumar, S.; Sierra, P.; Vazquez, S.; Perez-Enriquez, R.; Kurtz, S.

    2005-12-01

    The Mexican Array Radio Telescope (MEXART) consists of a 64x64 array of full-wave dipoles operating at 139.65 MHz. The primary aim of the array is to perform Interplanetary Scintillations (IPS) observations of radio sources to track large-scale solar wind perturbations within 1~AU. We describe the initial measurements of radio sources and the advances in the calibration of the antenna.

  13. AUTOMATIC RADIO TRACKING OF FISH IN EXPERIMENTAL CHANNELS

    EPA Science Inventory

    An automatic tracking system controlled by an RCA 1802 microprocessor was developed to locate fish in a 400 m outdoor experimental channel at the U.S. EPA Monticello Ecological Research Station. The monitoring network consisted of 12 horizontally polarized antennas spaced at 30 m...

  14. Soft-decision feedback equalizer for continuous phase modulated signals in wideband mobile radio channels

    NASA Astrophysics Data System (ADS)

    Cheung, Joseph C. S.; Steele, Raymond

    1994-02-01

    A combination of a decision feedback equalizer (DFE) and a Viterbi processor for the equalization of continuous phase modulated (CPM) signals transmitted over wideband mobile radio channels is described. The equalizer structure allows soft-decision to be made and incorrect decisions to be changed in the feedback filter of the DFE.

  15. The disturbances of ionospheric radio channel during magnetic storm on March 17-19, 2015

    NASA Astrophysics Data System (ADS)

    Ponomarchuk, S. N.; Polekh, N. M.; Romanova, E. B.; Zolotukhina, N. A.; Kurkin, V. I.; Podlesniy, A. V.

    2015-11-01

    The disturbances of ionospheric radio channel during 17-24 March 2015 magnetic storm are investigated. The heliospheric sources which caused the storm are considered. Based on space-distributed multipurpose chirp ionosonde data effects of geomagnetic disturbances influence on conditions of HF signal propagation are studied.

  16. Information capacities of quantum measurement channels

    NASA Astrophysics Data System (ADS)

    Holevo, A. S.

    2013-03-01

    We study the relation between the unassisted and entanglement-assisted classical capacities C and Cea of entanglement-breaking channels. We argue that the gain of entanglement assistance Cea/C > 1 generically for measurement channels with unsharp observables; in particular for the measurements with pure posterior states the information loss in the entanglement-assisted protocol is zero, resulting in an arbitrarily large gain for very noisy or weak signal channels. This is illustrated by examples of continuous observables corresponding to state tomography in finite dimensions and heterodyne measurement. In contrast, state preparations are characterized by the property of having no gain of entanglement assistance, Cea/C = 1.

  17. Entanglement in channel discrimination with restricted measurements

    SciTech Connect

    Matthews, William; Piani, Marco; Watrous, John

    2010-09-15

    We study the power of measurements implementable with local quantum operations and classical communication (LOCC) measurements in the setting of quantum channel discrimination. More precisely, we consider discrimination procedures that attempt to identify an unknown channel, chosen uniformly from two known alternatives, that take the following form: (i) the input to the unknown channel is prepared in a possibly entangled state with an ancillary system, (ii) the unknown channel is applied to the input system, and (iii) an LOCC measurement is performed on the output and ancillary systems, resulting in a guess for which of the two channels was given. The restriction of the measurement in such a procedure to be an LOCC measurement is of interest because it isolates the entanglement in the initial input-ancillary systems as a resource in the setting of channel discrimination. We prove that there exist channel discrimination problems for which restricted procedures of this sort can be at either of the two extremes: they may be optimal within the set of all discrimination procedures (and simultaneously outperform all strategies that make no use of entanglement), or they may be no better than unentangled strategies (and simultaneously suboptimal within the set of all discrimination procedures).

  18. Optical radio-photonic channel for transmission of a coherent narrowband analog signal

    NASA Astrophysics Data System (ADS)

    Zhuk, D. I.; Denisyuk, I. Yu.; Fokina, M. I.

    2015-10-01

    The channel of an optical transmission line of coherent narrowband analog signal consisting of a continuous-wave laser, an electro-optic modulator, and a vector phase rotator based on electrically controlled fiber-optical 1 2 splitter and fixed delay lines is analyzed. The scheme is constructed from commercially available components used in digital optical communication systems. The applicability of components for analog and small-signal circuits is determined. Variation of radio signal phase in the range from 0 to 170 for radio signal frequencies between 1 and 2 GHz is demonstrated experimentally. It is shown that phase variation is a linear function of frequency in this range.

  19. Measurements of the solar wind using spacecraft radio scattering observations

    NASA Technical Reports Server (NTRS)

    Woo, R.

    1977-01-01

    This paper reviews radio scattering measurements of the solar wind carried out with coherent, monochromatic, and point-source spacecraft signals. The observed phenomena which include spectral and angular broadening, and phase as well as intensity scintillations, have provided measurements of the solar wind previously not available from radio astronomical observations. These cover a wide range of heliocentric distances (as close as 1.7 solar radii), and large- as well as small-scale electron density fluctuations.

  20. Capacity of Cognitive Radio with Partial Channel Distribution Information in Rayleigh Fading Environments

    NASA Astrophysics Data System (ADS)

    Xu, D.; Li, Q.

    2015-11-01

    This paper investigates the capacity of the secondary user (SU) in a cognitive radio (CR) network in Rayleigh fading environments. Different from existing works where perfect channel state information (CSI) or channel distribution information (CDI) of the interference link from the SU to the primary user (PU) is assumed to be available, this paper assumes that only partial CDI is available. Specifically, we assume the distribution parameter is unknown and estimated from a set of channel gain samples. With such partial CDI, closed-form expressions for the ergodic and outage capacities of the SU are obtained under the transmit power and the interference outage constraints. It is shown that the capacity with partial CDI is not degraded compared to that with perfect CDI if the interference outage constraint is loose. It is also shown that the capacity can be significantly improved by increasing the number of channel gain samples.

  1. Monitoring the Communication Channel from Puschshino to Moscow in the Project of Space Radio Telescope "radioastron"

    NASA Astrophysics Data System (ADS)

    Dumsky, D. V.; Isaev, E. A.; Samodurov, V. A.; Isaev, K. A.

    The need for transmission and storage of large amounts of scientific data in the project space radio telescope "Radioastron" required us to organize a reliable communication channel between the tracking station in Pushchino and treatment centers in Moscow. Network management data requires us to an integrated approach and covers the organization secure access to manage network devices, timely replacement of equipment and software upgrades, backups, as well as documentation of the network infrastructure. The reliability of the channel is highly dependent on continuous monitoring of network and server equipment and communication lines.

  2. Air Shower Measurements with Radio Antennas: The LOPES Project

    SciTech Connect

    Haungs, Andreas

    2008-01-24

    LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and calibrate radio pulses from Extensive Air Showers. LOPES is designed as a digital radio interferometer using high bandwidths and fast data processing and profits from the reconstructed air shower observables of KASCADE-Grande. First results of the LOPES experiment are very promising for a future large scale application of the technique to detect cosmic rays of highest energies.

  3. Channel measurement decoding for troposcatter communications

    NASA Astrophysics Data System (ADS)

    Chase, D.

    1981-02-01

    The object of this program is to theoretically investigate and experimentally verify the performance improvement possible by the use of channel-measurement (soft-decision) information when decoding an interleaved (24,12) Golay code. The experimental results obtained during this effort indicate that under certain conditions, such as pulse jamming, significant gains can be achieved by the use of channel measurement decoding. For typical multipath profiles, coding gains in the 5 to 10 dB range have been achieved by fairly simple binary decoding techniques. Unfortunately, the predicted theoretical gains due to the use of channel measurement decoding have not been achieved by the experimental results. While channel measurement decoding did offer a 3-dB gain over binary decoding for flat fading, this gain is well below the theoretical prediction of 7.2 dB. The discrepancy between the theoretical and experimental results is still an open question which may be resolved by future work in this area. Nevertheless, in the presence of pulse jamming, channel measurement decoding doubled the effective pulse duration that can be handled by the Golay code. This result is in agreement with theory and a strong indication of the importance of optimum decoding techniques in an ECCM environment.

  4. Measurement of solar magnetic fields from radio observations

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1990-01-01

    Measurements of magnetic fields in the sun's atmosphere using radio observations are discussed. Radio measurements of magnetic fields in the chromosphere and the corona are indirect. In the chromosphere, these are based upon the measurement of polarization of active regions at millimeter wavelengths. In the transition region and the corona, the properties of gyroresonance radiation of active regions at centimeter wavelengths are used. Total intensity and polarization maps and modeling are used to determine which harmonic (second or third) is predominant in the active region emission. A direct method of measuring coronal magnetic fields using cyclotron line emission is discussed, and the relevant data as presently available are presented.

  5. Measuring the radio emission of cosmic ray air showers with LOPES

    NASA Astrophysics Data System (ADS)

    Schrder, F. G.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Badea, F.; Bhren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blmer, J.; Bozdog, H.; Brancus, I. M.; Brggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hrandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Krmer, O.; Kuijpers, J.; Lafebre, S.; ?uczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschlger, J.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Sima, O.; Singh, K.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.

    2010-05-01

    When ultra high energy cosmic rays hit the atmosphere, they produce a shower of millions of secondary particles. Thereby the charged particles in the shower emit a radio pulse whilst deflected in the Earth's magnetic field. LOPES is a digital antenna array measuring these radio pulses in the frequency range from 40 to 80 MHz. It is located at the site of and triggered by the air shower experiment KASCADE-Grande at Karlsruhe Institute of Technology (KIT), Germany. In its present configuration, it consists of 15 east-west-polarized and 15 north-south-polarized, absolutely calibrated short dipole antennas, as well as 10 LPDAs (with two channels each). Furthermore, it serves as a test bench for technological developments, like new antenna types or a radio-based self-triggering ( LOPESSTAR). To achieve a good angular reconstruction and to digitally form a beam into the arrival direction of the shower, it has a precise time calibration.

  6. Measurement technique of the Giotto radio science experiment

    NASA Technical Reports Server (NTRS)

    Edenhofer, P.; Buschert, H.; Bird, M. K.; Esposito, P. B.; Porsche, H.

    1987-01-01

    The paper describes the technique used to record time delay and waveform measurements for the Giotto radio science experiment of ESA's mission to comet Halley. The data were taken by using either two-way measurements (during pre- and post-encounter) or one-way measurements (during encounter with comet Halley), the downlink of the radio signal of the Giotto spacecraft being received at 8.4 GHz by the 64 m tracking stations of NASA's Deep Space Network (DSN). The waveform measurements were obtained at a sampling frequency of 50 kHz with an open-loop receiver assembly at DSN station Canberra as recently used for the Voyager/Uranus fly-by. Performance and calibration data are given as relevant to the radio subsystems on the ground and aboard Giotto.

  7. Air shower measurements with the LOPES radio antenna array

    NASA Astrophysics Data System (ADS)

    Lopes Collaboration; Haungs, A.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bhren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blmer, J.; Bozdog, H.; Brancus, I. M.; Brggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Heck, D.; Hrandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Kolotaev, Y.; Krmer, O.; Kuijpers, J.; Lafebre, S.; ?uczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschlger, J.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schrder, F.; Sima, O.; Singh, K.; Stmpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2009-06-01

    LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from extensive air showers. Since radio waves suffer very little attenuation, radio measurements allow the detection of very distant or highly inclined showers. These waves can be recorded day and night, and provide a bolometric measure of the leptonic shower component. LOPES is designed as a digital radio interferometer using high bandwidths and fast data processing and profits from the reconstructed air shower observables of KASCADE-Grande. The LOPES antennas are absolutely amplitude calibrated allowing to reconstruct the electric field strength which can be compared with predictions from detailed Monte-Carlo simulations. We report about the analysis of correlations present in the radio signals measured by the LOPES 30 antenna array. Additionally, LOPES operates antennas of a different type (LOPESSTAR) which are optimized for an application at the Pierre Auger Observatory. Status, recent results of the data analysis and further perspectives of LOPES and the possible large scale application of this new detection technique are discussed.

  8. 802.11s based multi-radio multi-channel mesh networking for fractionated spacecraft

    NASA Astrophysics Data System (ADS)

    Michel, Tony; Thapa, Bishal; Taylor, Steve

    802.11s is a new IEEE standard for mesh networking. It defines the protocols needed to build mobile ad hoc networks that operate over 802.11a, b, g and n waveforms running on inexpensive, and high performance commercial WiFi stations. We have developed a new capability to add to the 802.11s that uses multiple directional radio links that can operate simultaneously within a single mesh node. This is the basis of our multi-channel multi-radio mesh network used in the DARPA F6 program called F6Net. We have developed an analysis and emulation facility that lets us model the F6Net and evaluate the performance in a real world experimentation setup. This paper presents an “ Over-the-Air” experimentation testbed that uses standard Commercial Off-The-Shelf (COTS) 2.4GHz WiFi dongles in an indoor environment, and a shared-code simulation testbed that uses hardware simulated drivers within NS3's channel simulation facility to test 80211s network. To the best of our knowledge, this is the first work that provides a comprehensive evaluation platform with a full-fledged COTS hardware/software prototype to evaluate 802.11s network. Furthermore, we explain the design and development of multi-radio mesh extension for 802.11s that yields a robust and scalable mesh network suitable for clusters of LEO satellites.

  9. OFDR based distributed temperature sensor using the three-channel simultaneous radio-frequency lock-in technique

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Zhou, Xinlei; Peng, Wei; Yu, Qingxu

    2015-09-01

    Weak signal detection for single-mode fiber-optic distributed temperature sensor (DTS) is a key technology to achieve better performance. A hybrid technique combining the incoherent optical frequency domain reflectometry (IOFDR) and the three-channel simultaneous radio-frequency (RF) lock-in amplifier (LIA) is presented to improve the signal-to-noise ratio (SNR) of the measured spontaneous Raman backscattered light. The field programmable gate array (FPGA) based RF-LIA is designed with a novel and simple structure. The measurement frequency range is achieved from 1 kHz to 100 MHz. Experimental results show that the backscattered light signal of picowatt level can be detected with high SNR. With a 2.5 km single-mode fiber, a 1064 nm laser source, and the measurement time of 500 s, this sensing system can reach a spatial resolution of 0.93 m and a temperature resolution of about 0.2°C.

  10. Channel direction information probing for multi-antenna cognitive radio system

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Villardi, Gabriel Porto; Kojima, Fumihide; Yano, Hiroyuki

    2015-12-01

    This work studies the problem of channel direction information (CDI) probing for multi-antenna cognitive radio system. The CDI of the channel from the secondary transmitter (ST) to primary receiver (PR) is elementary information in designing the beamforming at the ST for mitigating the interference to the PR. However, lacking the explicit cooperation between primary and secondary systems, the CDI has to be acquired by probing at the ST, which is challenging. To solve this, we consider the line of sight (LoS) channel between the ST and the PR, and propose one CDI probing scheme for the ST. Specifically, the ST sends two types of probing signals by beamforming towards an interested region where both the secondary receiver (SR) and the PR are located and then actively learns the hidden feedback information from the primary system to acquire the CDI. The proposed scheme has a closed-form solution, and avoids the iteration between the probing and acquisition, which is desirable for practical system. Moreover, we show that the proposed probing scheme can be extended for primary systems working under multi-access channel and broadcasting channel. Simulation results demonstrate that the proposed scheme can improve the accuracy of the acquired CDI at the ST in cognitive ratio system remarkably.

  11. Application of the Hardman methodology to the Single Channel Ground-Airborne Radio System (SINCGARS)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The HARDMAN methodology was applied to the various configurations of employment for an emerging Army multipurpose communications system. The methodology was used to analyze the manpower, personnel and training (MPT) requirements and associated costs, of the system concepts responsive to the Army's requirement for the Single Channel Ground-Airborne Radio System (SINCGARS). The scope of the application includes the analysis of two conceptual designs Cincinnati Electronics and ITT Aerospace/Optical Division for operating and maintenance support addressed through the general support maintenance echelon.

  12. Measurements of gravity driven granular channel flows

    NASA Astrophysics Data System (ADS)

    Facto, Kevin

    This dissertation presents experiments that studied two gravity driven granular channel flows. The first experiment used magnetic resonance imaging to measure the density and displacement distributions of poppy seeds flowing in a rough walled channel. Time-averaged measurements of normalized velocity and density showed little flow speed dependence. Instantaneous measurements, however, showed marked velocity dependence in the displacement distributions. There was evidence of aperiodic starting and stopping at lower flow speeds and the onset of density waves on a continuous flow at higher speeds. The second experiment measured forces in all three spatial directions at the boundary of a flow of steel balls. The relationship between the normal and the tangential forces were examined statistically and compared to the Coulomb friction model. For both large and small forces, the tangential and normal forces are unrelated, as there appears to be a strong tendency for the tangential force to maintain a value that will bear the weight the weight of the particles in flow.

  13. Rocket radio measurement of electron density in the nighttime ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, B. E.; Smith, L. G.

    1979-01-01

    One experimental technique based on the Faraday rotation effect of radio waves is presented for measuring electron density in the nighttime ionosphere at midlatitudes. High frequency linearly-polarized radio signals were transmitted to a linearly-polarized receiving system located in a spinning rocket moving through the ionosphere. Faraday rotation was observed in the reference plane of the rocket as a change in frequency of the detected receiver output. The frequency change was measured and the information was used to obtain electron density data. System performance was evaluated and some sources of error were identified. The data obtained was useful in calibrating a Langmuir probe experiment for electron density values of 100/cu cm and greater. Data from two rocket flights are presented to illustrate the experiment.

  14. ATS6-satellite radio beacon measurements at Ootacamund, India

    NASA Technical Reports Server (NTRS)

    Davies, K.; Donnelly, R. F.; Grubb, R. N.; Rama Rao, P. V. S.; Rastogi, R. G.; Deshpande, M. R.; Chandra, H.; Vats, H. O.; Sethia, G.

    1978-01-01

    In August 1975 the ATS6 was repositioned at 35 deg E. Radio beacon measurements of time delay, Faraday rotation and signal amplitude, made at Ootacamund, India in October 1975, are discussed with emphasis on the problem of determining the Faraday content under essentially transverse propagation conditions. It is shown that at the low geomagnetic latitude of Ootacamund the use of a fixed conversion coefficient gives an unreliable Faraday content. It is shown also that corrections to the measured Faraday rotation are important because of pitch and yaw of the satellite, particularly at night when the rotation on 140 MHz can be of the order of 10 to 20 deg. The shape factor shows a low predawn minimum indicating the nearly complete erosion of the F2 layer peak. Amplitude scintillation usually decreases with increase of radio frequency but exceptions are discussed.

  15. Measurement of stream channel habitat using sonar

    USGS Publications Warehouse

    Flug, M.; Seitz, H.; Scott, J.

    1998-01-01

    An efficient and low cost technique using a sonar system was evaluated for describing channel geometry and quantifying inundated area in a large river. The boat-mounted portable sonar equipment was used to record water depths and river width measurements for direct storage on a laptop computer. The field data collected from repeated traverses at a cross-section were evaluated to determine the precision of the system and field technique. Results from validation at two different sites showed average sample standard deviations (S.D.s) of 0.12 m for these complete cross-sections, with coefficient of variations of 10%. Validation using only the mid-channel river cross-section data yields an average sample S.D. of 0.05 m, with a coefficient of variation below 5%, at a stable and gauged river site using only measurements of water depths greater than 0.6 m. Accuracy of the sonar system was evaluated by comparison to traditionally surveyed transect data from a regularly gauged site. We observed an average mean squared deviation of 46.0 cm2, considering only that portion of the cross-section inundated by more than 0.6 m of water. Our procedure proved to be a reliable, accurate, safe, quick, and economic method to record river depths, discharges, bed conditions, and substratum composition necessary for stream habitat studies. ?? 1998 John Wiley & Sons, Ltd.

  16. Precise Radio-Telescope Measurements Advance Frontier Gravitational Physics

    NASA Astrophysics Data System (ADS)

    2009-09-01

    Scientists using a continent-wide array of radio telescopes have made an extremely precise measurement of the curvature of space caused by the Sun's gravity, and their technique promises a major contribution to a frontier area of basic physics. "Measuring the curvature of space caused by gravity is one of the most sensitive ways to learn how Einstein's theory of General Relativity relates to quantum physics. Uniting gravity theory with quantum theory is a major goal of 21st-Century physics, and these astronomical measurements are a key to understanding the relationship between the two," said Sergei Kopeikin of the University of Missouri. Kopeikin and his colleagues used the National Science Foundation's Very Long Baseline Array (VLBA) radio-telescope system to measure the bending of light caused by the Sun's gravity to an accuracy of 0.03 percent. With further observations, the scientists say their precision technique can make the most accurate measure ever of this phenomenon. Bending of starlight by gravity was predicted by Albert Einstein when he published his theory of General Relativity in 1916. According to relativity theory, the strong gravity of a massive object such as the Sun produces curvature in the nearby space, which alters the path of light or radio waves passing near the object. The phenomenon was first observed during a solar eclipse in 1919. Though numerous measurements of the effect have been made over the intervening 90 years, the problem of merging General Relativity and quantum theory has required ever more accurate observations. Physicists describe the space curvature and gravitational light-bending as a parameter called "gamma." Einstein's theory holds that gamma should equal exactly 1.0. "Even a value that differs by one part in a million from 1.0 would have major ramifications for the goal of uniting gravity theory and quantum theory, and thus in predicting the phenomena in high-gravity regions near black holes," Kopeikin said. To make extremely precise measurements, the scientists turned to the VLBA, a continent-wide system of radio telescopes ranging from Hawaii to the Virgin Islands. The VLBA offers the power to make the most accurate position measurements in the sky and the most detailed images of any astronomical instrument available. The researchers made their observations as the Sun passed nearly in front of four distant quasars -- faraway galaxies with supermassive black holes at their cores -- in October of 2005. The Sun's gravity caused slight changes in the apparent positions of the quasars because it deflected the radio waves coming from the more-distant objects. The result was a measured value of gamma of 0.9998 +/- 0.0003, in excellent agreement with Einstein's prediction of 1.0. "With more observations like ours, in addition to complementary measurements such as those made with NASA's Cassini spacecraft, we can improve the accuracy of this measurement by at least a factor of four, to provide the best measurement ever of gamma," said Edward Fomalont of the National Radio Astronomy Observatory (NRAO). "Since gamma is a fundamental parameter of gravitational theories, its measurement using different observational methods is crucial to obtain a value that is supported by the physics community," Fomalont added. Kopeikin and Fomalont worked with John Benson of the NRAO and Gabor Lanyi of NASA's Jet Propulsion Laboratory. They reported their findings in the July 10 issue of the Astrophysical Journal.

  17. Stochastic Wireless Channel Modeling, Estimation and Identification from Measurements

    SciTech Connect

    Olama, Mohammed M; Djouadi, Seddik M; Li, Yanyan

    2008-07-01

    This paper is concerned with stochastic modeling of wireless fading channels, parameter estimation, and system identification from measurement data. Wireless channels are represented by stochastic state-space form, whose parameters and state variables are estimated using the expectation maximization algorithm and Kalman filtering, respectively. The latter are carried out solely from received signal measurements. These algorithms estimate the channel inphase and quadrature components and identify the channel parameters recursively. The proposed algorithm is tested using measurement data, and the results are presented.

  18. Montblanc1: GPU accelerated radio interferometer measurement equations in support of Bayesian inference for radio observations

    NASA Astrophysics Data System (ADS)

    Perkins, S. J.; Marais, P. C.; Zwart, J. T. L.; Natarajan, I.; Tasse, C.; Smirnov, O.

    2015-09-01

    We present Montblanc, a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. BIRO uses Bayesian inference to select sky models that best match the visibilities observed by a radio interferometer. To accomplish this, BIRO evaluates the RIME multiple times, varying sky model parameters to produce multiple model visibilities. χ2 values computed from the model and observed visibilities are used as likelihood values to drive the Bayesian sampling process and select the best sky model. As most of the elements of the RIME and χ2 calculation are independent of one another, they are highly amenable to parallel computation. Additionally, Montblanc caters for iterative RIME evaluation to produce multiple χ2 values. Modified model parameters are transferred to the GPU between each iteration. We implemented Montblanc as a Python package based upon NVIDIA's CUDA architecture. As such, it is easy to extend and implement different pipelines. At present, Montblanc supports point and Gaussian morphologies, but is designed for easy addition of new source profiles. Montblanc's RIME implementation is performant: On an NVIDIA K40, it is approximately 250 times faster than MEQTREES on a dual hexacore Intel E5-2620v2 CPU. Compared to the OSKAR simulator's GPU-implemented RIME components it is 7.7 and 12 times faster on the same K40 for single and double-precision floating point respectively. However, OSKAR's RIME implementation is more general than Montblanc's BIRO-tailored RIME. Theoretical analysis of Montblanc's dominant CUDA kernel suggests that it is memory bound. In practice, profiling shows that is balanced between compute and memory, as much of the data required by the problem is retained in L1 and L2 caches.

  19. Indoor radio channel modeling and mitigation of fading effects using linear and circular polarized antennas in combination for smart home system at 868 MHz

    NASA Astrophysics Data System (ADS)

    Wunderlich, S.; Welpot, M.; Gaspard, I.

    2014-11-01

    The markets for smart home products and services are expected to grow over the next years, driven by the increasing demands of homeowners considering energy monitoring, management, environmental controls and security. Many of these new systems will be installed in existing homes and offices and therefore using radio based systems for cost reduction. A drawback of radio based systems in indoor environments are fading effects which lead to a high variance of the received signal strength and thereby to a difficult predictability of the encountered path loss of the various communication links. For that reason it is necessary to derive a statistical path loss model which can be used to plan a reliable and cost effective radio network. This paper presents the results of a measurement campaign, which was performed in six buildings to deduce realistic radio channel models for a high variety of indoor radio propagation scenarios in the short range devices (SRD) band at 868 MHz. Furthermore, a potential concept to reduce the variance of the received signal strength using a circular polarized (CP) patch antenna in combination with a linear polarized antenna in an one-to-one communication link is presented.

  20. PAD-MAC: Primary User Activity-Aware Distributed MAC for Multi-Channel Cognitive Radio Networks

    PubMed Central

    Ali, Amjad; Piran, Md. Jalil; Kim, Hansoo; Yun, Jihyeok; Suh, Doug Young

    2015-01-01

    Cognitive radio (CR) has emerged as a promising technology to solve problems related to spectrum scarcity and provides a ubiquitous wireless access environment. CR-enabled secondary users (SUs) exploit spectrum white spaces opportunistically and immediately vacate the acquired licensed channels as primary users (PUs) arrive. Accessing the licensed channels without the prior knowledge of PU traffic patterns causes severe throughput degradation due to excessive channel switching and PU-to-SU collisions. Therefore, it is significantly important to design a PU activity-aware medium access control (MAC) protocol for cognitive radio networks (CRNs). In this paper, we first propose a licensed channel usage pattern identification scheme, based on a two-state Markov model, and then estimate the future idle slots using previous observations of the channels. Furthermore, based on these past observations, we compute the rank of each available licensed channel that gives SU transmission success assessment during the estimated idle slot. Secondly, we propose a PU activity-aware distributed MAC (PAD-MAC) protocol for heterogeneous multi-channel CRNs that selects the best channel for each SU to enhance its throughput. PAD-MAC controls SU activities by allowing them to exploit the licensed channels only for the duration of estimated idle slots and enables predictive and fast channel switching. To evaluate the performance of the proposed PAD-MAC, we compare it with the distributed QoS-aware MAC (QC-MAC) and listen-before-talk MAC schemes. Extensive numerical results show the significant improvements of the PAD-MAC in terms of the SU throughput, SU channel switching rate and PU-to-SU collision rate. PMID:25831084

  1. PAD-MAC: primary user activity-aware distributed MAC for multi-channel cognitive radio networks.

    PubMed

    Ali, Amjad; Piran, Md Jalil; Kim, Hansoo; Yun, Jihyeok; Suh, Doug Young

    2015-01-01

    Cognitive radio (CR) has emerged as a promising technology to solve problems related to spectrum scarcity and provides a ubiquitous wireless access environment. CR-enabled secondary users (SUs) exploit spectrum white spaces opportunistically and immediately vacate the acquired licensed channels as primary users (PUs) arrive. Accessing the licensed channels without the prior knowledge of PU traffic patterns causes severe throughput degradation due to excessive channel switching and PU-to-SU collisions. Therefore, it is significantly important to design a PU activity-aware medium access control (MAC) protocol for cognitive radio networks (CRNs). In this paper, we first propose a licensed channel usage pattern identification scheme, based on a two-state Markov model, and then estimate the future idle slots using previous observations of the channels. Furthermore, based on these past observations, we compute the rank of each available licensed channel that gives SU transmission success assessment during the estimated idle slot. Secondly, we propose a PU activity-aware distributed MAC (PAD-MAC) protocol for heterogeneous multi-channel CRNs that selects the best channel for each SU to enhance its throughput. PAD-MAC controls SU activities by allowing them to exploit the licensed channels only for the duration of estimated idle slots and enables predictive and fast channel switching. To evaluate the performance of the proposed PAD-MAC, we compare it with the distributed QoS-aware MAC (QC-MAC) and listen-before-talk MAC schemes. Extensive numerical results show the significant improvements of the PAD-MAC in terms of the SU throughput, SU channel switching rate and PU-to-SU collision rate. PMID:25831084

  2. ATS-6 satellite radio beacon measurements at Ootacamund, India

    NASA Technical Reports Server (NTRS)

    Davies, K.; Donnelly, R. F.; Grubb, R. N.; Rao, P. V. S. R.; Rastogi, R. G.; Deshpande, M. R.; Chandra, H.; Vats, H. O.; Sethia, G.

    1979-01-01

    ATS-6 radio beacon measurements of modulation phase and Faraday rotation made at Ootacamund, India in 1975-1976 are discussed with emphasis on the measurement and analysis errors. The modulation-phase errors are insensitive to the geomagnetic field and provide an accurate determination of the total columnar electron content. Comparison of modulation-phase measurements at different frequencies shows a minor sensitivity to the ATS-6 pitch angle. For the low geomagnetic latitude and nearly transverse propagation conditions of Ootacamund, the use of a fixed conversion coefficient gives an unreliable Faraday content. However, the Faraday rotation measurements may be used to determine the shape factor F, which provides information about the electron density height profile.

  3. Validation of GPS Radio Occultation Measurements From Champ

    NASA Astrophysics Data System (ADS)

    Jakowski, N.; Wehrenpfennig, A.; Heise, S.

    The ionospheric radio occultation (IRO) technique is a powerful tool for deriving vertical profiles of electron density on global scale. In this talk we report results of ionospheric radio occultation measurements carried out onboard the German CHAMP (CHAllenging Minisatellite Payload) satellite mission that contributes also to essen- tial improvements of gravity and magnetic field models of the Earth. Electron density profiles are derived from the IRO data by applying a new model assisted retrieval tech- nique that is briefly described. This retrieval technique was developed to overcome the serious upper boundary problem due to the rather low orbit height of CHAMP of less than 450 km height. Since the first IRO measurements were performed onboard CHAMP on 11 April 2001 we have retrieved more than 5000 electron density pro- files in 2001. These data are systematically compared with vertical sounding derived profiles and key parameters such as f0F2 and hmF2 to draw conclusions on reliability and accuracy of IRO derived electron density profiles. The extracted f0F2 values de- viate from corresponding ionosonde data with an absolute rms error in the order of 1 MHz. Potentials and limitations of the retrieval technique in particular for low-altitude missions like CHAMP will be addressed.

  4. Radio Telescopes' Precise Measurements Yield Rich Scientific Payoffs

    NASA Astrophysics Data System (ADS)

    2008-01-01

    Having the sharpest pictures always is a big advantage, and a sophisticated radio-astronomy technique using continent-wide and even intercontinental arrays of telescopes is yielding extremely valuable scientific results in a wide range of specialties. That's the message delivered to the American Astronomical Society's meeting in Austin, Texas, by Mark Reid of the Harvard-Smithsonian Center for Astrophysics, a leading researcher in the field of ultra-precise astronomical position measurements. Very Long Baseline Interferometry provides extremely high precision that can extend use of the parallax technique to many more celestial objects. Parallax is a direct means of measuring cosmic distances by detecting the slight shift in an object’s apparent position in the sky caused by Earth’s orbital motion. Credit: Bill Saxton, NRAO/AUI/NSF "Using radio telescopes, we are measuring distances and motions of celestial bodies with unprecedented accuracy. That's helping us better understand many processes ranging from star formation to the scale of the entire Universe," Reid said. The observing technique, called Very Long Baseline Interferometry (VLBI), was pioneered in 1967, but has come into continuous use only in the past 10-15 years. The National Science Foundation's Very Long Baseline Array (VLBA), a system of 10 radio-telescope antennas ranging from Hawaii to the Caribbean, was dedicated in 1993. There are other VLBI systems in Europe and Asia, and large radio telescopes around the world cooperate regularly to increase sensitivity. VLBI observations routinely produce images hundreds of times more detailed than those made at visible-light wavelengths by the Hubble Space Telescope. Several groups of researchers from across the globe use the VLBA to study stellar nurseries in our own Milky Way Galaxy and measure distances to regions where new stars are forming. The key has been to improve measurement accuracy to a factor of a hundred times better than that produced by the highly successful Hipparcos satellite. Using small clouds of gas in star-forming regions that strongly amplify radio waves, called cosmic masers, the astronomers measured the tiny shift in the object's position in the sky caused by the Earth's orbit around the sun. This, in turn, yielded highly-accurate distances by the simple surveying technique of triangulation, the "gold standard" of distance measuring techniques available to astronomers. Dr. Mark Reid Dr. Mark Reid Credit: CfA Click image for high-resolution file (1.02 MB) "Knowing the distance accurately means we also know the luminosities, masses and ages of the young stars much more accurately, and that is vital to understanding how star formation works," Reid said. In addition, he pointed out, the VLBA observations have shown the motions of the young stars in the Milky Way are much more complicated than simple circular motion. Massive young stars appear to be born orbiting the Milky Way considerably slower than older stars. "This might be explained by the interaction of giant molecular clouds, the ultimate sites of massive star formation, as they "surf" spiral density waves in the Milky Way." An international team of scientists led by Reid has used VLBI to detect the slight change in apparent position of the object at the Milky Way's center caused by our Solar System's orbit around that center. "It takes our Solar System more than 200 million years to circle the center of our Galaxy, and yet we can detect that motion in only a couple weeks with the VLBA -- truly astounding!" Reid said. The VLBA studies of the Galactic Center have shown that an object called Sagittarius A* is at the exact gravitational center of our Galaxy. That means, the scientists say, that the object must be incredibly massive. "The VLBA measurements, combined with infrared observations of stellar orbits around this object, provide overwhelming evidence that it's a supermassive black hole," Reid explained. "These observations are also going to make it possible to re-define the coordinate system used to map the entire Galaxy," Reid added. Looking farther outward, astronomers achieved a longstanding goal of measuring the spin of another galaxy. In 2005, Reid and his colleagues measured both the rotational spin and the motion in space of the galaxy M33, nearly 2.4 million light-years from Earth. Astronomers in the 1920s had attempted such a feat, but their results were not accurate enough. "This achievement had to wait for the VLBA," Reid said. This and subsequent work has put strong limits on the amount of unseen "dark matter" around the giant Andromeda galaxy, which M33 orbits. A continuing goal is to use VLBI observations to measure the orbits of these and other galaxies within the Local Group of galaxies to which our own Milky Way belongs. VLBA The Very Long Baseline Array (VLBA), the National Radio Astronomy Observatory’s continent-wide radio-telescope system. The VLBA provides the greatest resolving power, or ability to see detail, of any instrument in astronomy. Credit: NRAO/AUI/NSF In 1999, astronomers set a new standard for a distance measurement outside the Local Group of galaxies when they used the VLBA to make a direct geometric distance measurement to a galaxy called NGC 4258, 23.5 million light-years from Earth. That measurement, accurate to within 7 percent, caused other scientists to revise their indirect-measurement techniques for the rest of the Universe. The NGC 4258 distance was calculated by measuring the motion of masers in a disk of gas containing water molecules and orbiting a supermassive black hole at the galaxy's center. "Now, other galaxies are being observed in hopes of extending direct distance measurement even farther out in the Universe," Reid said. "One candidate, called UGC 3789, at a distance of about 160 million light-years, will be measured with about 10 percent accuracy. Our goal is to further improve these measurements and to measure 5 to 10 other galaxies in order to determine the Hubble constant (the expansion rate of the Universe) to 3 percent accuracy. This would put limits on key parameters of the dark energy that apparently is accelerating the expansion of the Universe," Reid added. The kind of accurate measurement of distances and motions that VLBI observations provide can benefit numerous other areas of astronomy, Reid pointed out. For example, the distances to pulsars have been measured directly with the VLBA, yielding better understanding of their characteristics. The technique also could reveal planets circling some nearby stars. "Anytime you can do something as dramatic as improving measurement accuracy by a hundredfold, you're bound to get a great scientific payoff," Reid said. "We're looking forward to exciting new results in the coming years," he added. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  5. Radio-frequency probe for bubble size and velocity measurements.

    PubMed

    Abuaf, N; Feierabend, T P; Zimmer, G A; Jones, O C

    1979-10-01

    A radio frequency (rf) probe that can provide local void fraction and interface velocity measurements in a gas-liquid two-phase flow was developed. The probe response to bubble passage was investigated with single-bubble controlled experiments. For a fixed geometry, the probe response was dependent on the dielectric constant of the medium surrounding the probe tip (air or water) and on the frequency of the carrier signal supplied to the probe. Bubble lengths (< 1 cm) and average bubble approach velocities (< 160 cm/s) were independently measured by two light sources and detectors placed at a known distance from each other and sensing the passage of each bubble. By choosing a sensitive probe tip length of 2.75-3 mm, the rf probe output provided enough information to determine the bubble length and velocity. The results obtained by the two independent methods show reasonable agreement (+/-10%). PMID:18699371

  6. Indoor radio measurement and planning for UMTS/HSDPA with antennas

    NASA Astrophysics Data System (ADS)

    Eheduru, Marcellinus

    Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, approximately 70-80% of the HSDPA traffic is estimated to originate from inside buildings. Thus for network operators, indoor coverage has become a necessity for technical and business reasons. Macro-cellular (outdoor) to indoor coverage is a natural inexpensive way of providing network coverage inside the buildings. However, it does not guarantee sufficient link quality required for optimal HSDPA operation. On the contrary, deploying a dedicated indoor system may be far too expensive from an operator's point of view. In this thesis, the concept is laid for the understanding of indoor radio wave propagation in a campus building environment which could be used to plan and improve outdoor-to-indoor UMTS/HSDPA radio propagation performance. It will be shown that indoor range performance depends not only on the transmit power of an indoor antenna, but also on the product's response to multipath and obstructions in the environment along the radio propagation path. An extensive measurement campaign will be executed in different indoor environments analogous to easy, medium and hard radio conditions. The effects of walls, ceilings, doors and other obstacles on measurement results would be observed. Chapter one gives a brief introduction to the evolution of UMTS and HSDPA. It goes on to talk about radio wave propagation and some important properties of antennas which must be considered when choosing an antenna for indoor radio propagation. The challenges of in-building network coverage and also the objectives of this thesis are also mentioned in this chapter. The evolution and standardization, network architecture, radio features and most importantly, the radio resource management features of UMTS/HSDPA are given in chapter two. In this chapter, the reason why Wideband Code Division Multiple Access (WCDMA) was specified and selected for 3G (UMTS) systems would be seen. The architecture of the radio access network, interfaces with the radio access network between base stations and radio network controllers (RNC), and the interface between the radio access network and the core network are also described in this chapter. The main features of HSDPA are mentioned at the end of the chapter. In chapter three the principles of the WCDMA air interface, including spreading, Rake reception, signal fading, power control and handovers are introduced. The different types and characteristics of the propagation environments and how they influence radio wave propagation are mentioned. UMTS transport, logical and physical channels are also mentioned, highlighting their significance and relationship in and with the network. Radio network planning for UMTS is discussed in chapter four. The outdoor planning process which includes dimensioning, detailed planning, optimization and monitoring is outlined. Indoor radio planning with distributed antenna systems (DAS), which is the idea and motivation behind this thesis work, is also discussed. The various antennas considered and the antenna that was selected for this thesis experiment was discussed in chapter five. The antenna radiation pattern, directivity, gain and input impedance were the properties of the antenna that were taken into consideration. The importance of the choice of the antenna for any particular type of indoor environment is also mentioned. In chapter six, the design and fabrication of the monopole antennas used for the experimental measurement is mentioned. The procedure for measurement and the equipment used are also discussed. The results gotten from the experiment are finally analyzed and discussed. In this chapter the effect of walls, floors, doors, ceilings and other obstacles on radio wave propagation will be seen. Finally, chapter seven concludes this thesis work and gives some directions for future work.

  7. Initial results from radio occultation measurements with Mars Global Surveyor

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Simpson, R. A.; Twicken, J. D.; Tyler, G. L.; Flasar, F. M.

    A series of radio occultation experiments conducted with Mars Global Surveyor in early 1998 has yielded 88 vertical profiles of the neutral atmosphere. The measurements cover latitudes of 29N to 64S and local times from 0600 through midnight to 1800 during early summer in the southern hemisphere (Ls=264-308). Retrieved profiles of pressure and temperature versus radius and geopotential extend from the surface to the 10-Pa pressure level. Near-surface uncertainties in temperature and pressure are about 1 K and 2 Pa, respectively, far smaller than in previous radio occultation measurements at Mars. The profiles resolve the radiative-convective boundary layer adjacent to the surface and also reveal gravity waves, particularly at northern and equatorial latitudes, which appear to be breaking in some cases. Distinctive meridional gradients of pressure and temperature indicate the presence of a low-altitude westerly jet at latitudes of 15-30S at southern summer solstice. This jet appears in predictions of general circulation models in connection with the strong, seasonal, cross-equatorial Hadley circulation. The pressure gradient at ~2 km altitude implies a wind speed of 33 m s-1, stronger than predicted, which may help explain the occurrence of numerous local dust storms within this latitude band in late southern spring. These measurements also characterize the response of the atmosphere to stationary thermal forcing at midsouthern latitudes, where high terrain south of Tharsis and low terrain in Hellas Planitia produce large, zonal temperature variations in the lowest scale height above the surface. Pressure measured at constant geopotential decreases at an average rate of 0.13% per degree Ls, due primarily to condensation of CO2 at the North Pole.

  8. Super-Sharp Radio "Vision" Measures Galaxy's Motion in Space

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) have measured the motion across the sky of a galaxy nearly 2.4 million light-years from Earth. While scientists have been measuring the motion of galaxies directly toward or away from Earth for decades, this is the first time that the transverse motion (called proper motion by astronomers) has been measured for a galaxy that is not a satellite of our own Milky Way Galaxy. M33 Radio/Optical Image of M33 CREDIT: NRAO/AUI/NSF, NOAO/AURA/NSF (Click on image for more files) An international scientific team analyzed VLBA observations made over two and a half years to detect minuscule shifts in the sky position of the spiral galaxy M33. Combined with previous measurements of the galaxy's motion toward Earth, the new data allowed the astronomers to calculate M33's movement in three dimensions for the first time. "A snail crawling on Mars would appear to be moving across the surface more than 100 times faster than the motion we measured for this galaxy," said Mark Reid, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. M33 is a satellite of the larger galaxy M31, the well-known Andromeda Galaxy that is the most distant object visible to the naked eye. Both are part of the Local Group of galaxies that includes the Milky Way. In addition to measuring the motion of M33 as a whole, the astronomers also were able to make a direct measurement of the spiral galaxy's rotation. Both measurements were made by observing the changes in position of giant clouds of molecules inside the galaxy. The water vapor in these clouds acts as a natural maser, strengthening, or amplifying, radio emission the same way that lasers amplify light emission. The natural masers acted as bright radio beacons whose movement could be tracked by the ultra-sharp radio "vision" of the VLBA. Reid and his colleagues plan to continue measuring M33's motion and also to make similar measurements of M31's motion. This will allow them to answer important questions about the composition, history and fates of the two galaxies as well as of the Milky Way. "We want to determine the orbits of M31 and M33. That will help us learn about their history, specifically, how close have they come in the past?" Reid explained. "If they have passed very closely, then maybe M33's small size is a result of having material pulled off it by M31 during the close encounter," he added. Accurate knowledge of the motions of both galaxies also will help determine if there's a collision in their future. In addition, orbital analysis can give astronomers valuable clues about the amount and distribution of dark matter in the galaxies. M33's motion in space M33's motion in space, relative to M31 and the Milky Way CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) The direct measurement of M33's transverse angular spin is the first time such a measurement has been done accurately. In the 1920s, some astronomers thought they had measured the spin of spiral galaxies, but their results proved to be in error. More recently, radio astronomers have measured the Doppler shift of hydrogen gas in galaxies to determine the spin speed, which, when combined with the angular spin, gives a direct estimate of the distance of the galaxy. The astronomers' task was not simple. Not only did they have to detect an impressively tiny amount of motion across the sky, but they also had to separate the actual motion of M33 from the apparent motion caused by our Solar System's motion around the center of the Milky Way. The motion of the Solar System and the Earth around the Galactic center, some 26,000 light-years away, has been accurately measured using the VLBA over the last decade. "The VLBA is the only telescope system in the world that could do this work," Reid said. "Its extraordinary ability to resolve fine detail is unmatched and was the absolute prerequisite to making these measurements." Reid worked with Andreas Brunthaler of the Max Planck

  9. Polarized radio emission from extensive air showers measured with LOFAR

    SciTech Connect

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J.E.; Falcke, H.; Hrandel, J.R.; Krause, M.; Nelles, A.; Rachen, J.P.; Veen, S. ter; Thoudam, S.

    2014-10-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.31.0)% for very inclined air showers at 25 m to (20.31.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.

  10. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an estimate of the age of the universe. In order to do this, you need an unambiguous, absolute distance to another galaxy. We are pleased that the NSF's VLBA has for the first time determined such a distance, and thus provided the calibration standard astronomers have always sought in their quest for accurate distances beyond the Milky Way," said Morris Aizenman, Executive Officer of the National Science Foundation's (NSF) Division of Astronomical Sciences. "For astronomers, this measurement is the golden meter stick in the glass case," Aizenman added. The international team of astronomers used the VLBA to measure directly the motion of gas orbiting what is generally agreed to be a supermassive black hole at the heart of NGC 4258. The orbiting gas forms a warped disk, nearly two light-years in diameter, surrounding the black hole. The gas in the disk includes water vapor, which, in parts of the disk, acts as a natural amplifier of microwave radio emission. The regions that amplify radio emission are called masers, and work in a manner similar to the way a laser amplifies light emission. Determining the distance to NGC 4258 required measuring motions of extremely small shifts in position of these masers as they rotate around the black hole. This is equivalent to measuring an angle one ten-thousandth the width of a human hair held at arm's length. "The VLBA is the only instrument in the world that could do this," said Moran. "This work is the culmination of a 20-year effort at the Harvard Smithsonian Center for Astrophysics to measure distances to cosmic masers," said Irwin Shapiro, Director of that institution. Collection of the data for the NGC 4258 project was begun in 1994 and was part of Herrnstein's Ph.D dissertation at Harvard University. Previous observations with the VLBA allowed the scientists to measure the speed at which the gas is orbiting the black hole, some 39 million times more massive than the Sun. They did this by observing the amount of change in the wavelength of the radio waves caused by the Doppler effect. The gas is orbiting at a speed of more than two million miles per hour. The orbiting disk of gas is almost edge-on as viewed from Earth. The astronomers obtained the orbital speeds and the positions of the masers in the disk by measuring the Doppler Shift of the masers at the disk's sides, where the gas is moving almost directly away from the Earth on one side and toward the Earth on the other. Measurements of the different orbital speeds at different distances from the black hole, made in 1994, allowed them to determine the mass of the black hole. These measurements required the great resolving power, or ability to see fine detail, of the VLBA. This picture of an orbiting disk was confirmed by measurement of centrifugal acceleration, according to the scientists. The newest observations were focused on maser "spots" on the near edge of the disk, where orbital motion shifts their position in the sky, though by an extremely small amount. The VLBA, however, was able to detect this extremely small movement, called "proper motion" by astronomers. This motion was detected by observing the galaxy at 4- to 8-month intervals over more than three years. "By knowing the speed at which the gas is orbiting and then measuring its motion across the sky, we can use plain old trigonometry to calculate the distance," Greenhill said. He added, however, that "you need a bit of luck to be able to do this. So far, we know of only 22 galaxies with water masers in their nuclear regions that also are relatively nearby. Then, the geometry of the disk, relative to Earth, has to be right to allow us to make such a measurement" The VLBA measurement of NGC 4258's distance differs significantly from the distance to that galaxy determined through HST observations of Cepheid variable stars. Using such stars, a team of astronomers led by University of California-Berkeley scientist Eyal Maoz has made preliminary and as-yet unpublished estimates of the distance to NGC 4258 as either 27 or 29 million light-years, depending on assumptions about the characteristics of this type of star in that galaxy. Other Cepheid-based galaxy distances were used to calculate the expansion rate of the universe, called the Hubble Constant, announced by a team of HST observers last week. "This difference could mean that there may be more uncertainty in Cepheid-determined distances than people have realized," said Moran. "Providing this directly-determined distance to one galaxy -- a distance that can serve as a milestone -- should be helpful in determining distances to other galaxies, and thus the Hubble Constant and the size and age of the universe" The VLBA is a system of ten radio-telescope antennas, each 25 meters (82 feet) in diameter, stretching some 5,000 miles from Mauna Kea in Hawaii to St. Croix in the U.S. Virgin Islands. Operated from NRAO's Array Operations Center in Socorro, NM, the VLBA offers astronomers the greatest resolving power of any telescope anywhere. The NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Background information: Determining Cosmic Distances Determining cosmic distances obviously is vital to understanding the size of the universe. In turn, knowing the size of the universe is an important step in determining its age. "The size puts a limit on how much expansion could have occurred since the Big Bang, and thus tells us something about the age," said Moran. However, determining cosmic distances has proven to be a particularly thorny problem for astronomers. In the third century, B.C., the Greek astronomer Aristarchus devised a method of using trigonometry to determine the relative distances of the Moon and Sun, but in practice his method was difficult to use. Though a great first step, he missed the mark by a factor of 20. It wasn't until 1761 that trigonometric methods produced a relatively accurate distance to Venus, thus calibrating the size of the Solar System. The first accurate distance to another star was determined trigonometrically by Friedrich Wilhelm Bessel in 1838. Traditional trigonometric methods of measuring celestial distances require extremely accurate measurement of an object's position in the sky. By measuring the apparent shift in an object's position, called parallax, caused by the Earth's journey around the Sun, the distance to the object can be calculated. Until recent years, such measurements were limited by the atmosphere's degrading effect on optical observations. Recently, the Hipparcos satellite has measured stellar distances accurate to within 10 percent out to about 300 light-years. Beyond the range of parallax measurements, astronomers were forced to use indirect methods of estimating distances. Many of these methods make presumptions about the intrinsic brightness of objects, then estimate the distance by measuring how much fainter they appear on Earth. The faintness is presumed to be caused by the distance, according to the inverse-square law (doubling of the distance reduces brightness by a factor of four). Thus, stars of a particular spectral class are all presumed to be of the same intrinsic brightness. Such techniques have been used to estimate distances of stars out to about 25,000 light-years, still not far enough to estimate distance beyond our own Milky Way Galaxy. Early in the 20th Century, Henrietta Leavitt, of Harvard College Observatory, discovered that variable-brightness stars known as Cepheid variables showed a useful property -- the longer their pulsation periods, the brighter they are intrinsically. Once the absolute distance to a few Cepheids was determined, these stars were used to measure distances beyond the Milky Way. In the 1920s, Edwin Hubble used Cepheid-variable distance determinations to show that, contrary to then-prevalent opinion, many "nebulae" were, in fact, other galaxies far distant from our own. Distances determined using Cepheid variables, along with measurements of the Doppler shift of other galaxies' light, allowed Hubble to discover the expansion of the universe, the basis of the Big Bang theory. The Cepheid technique still is one of the building blocks of the extragalactic distance scale. However, because of absorption of light by interstellar dust and subtle differences among the stars themselves, this technique is subject to considerable uncertainty. Similarly, techniques that use a specific type of supernova (Type Ia) presumed to be of uniform intrinsic brightness, while able to make distance estimates farther than the Cepheid technique, still are subject to uncertainties. The NSF's VLBA, with resolving power hundreds of times better than even the Hubble Space Telescope, has allowed direct trigonometric techniques to be applied in measuring much greater distances than ever before. The VLBA measured the expansion of the shell of exploding debris from the supernova SN 1993J in the galaxy M81, 11 million light- years away. This information, combined with optical observations that measured the speed of the expanding debris by the Doppler shift of its emitted spectral lines, allowed a trigonometric calculation of the distance to M81. Now, with the VLBA's direct measurement of motions in the gas disk surrounding NGC 4258, trigonometric measurement, not subject to the vagaries of dust absorption and other uncertaintities in an object's brightness, has been extended to a distance of more than 23 million light-years.

  11. New measurements of cosmic ray air showers with the digital radio interferometer LOPES

    NASA Astrophysics Data System (ADS)

    Schrder, F. G.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Bhren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blmer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hrandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krmer, O.; Kuijpers, J.; Lafebre, S.; Link, K.; ?uczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschlger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rhle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.

    2011-08-01

    LOPES is a digital radio interferometer which measures the radio emission of extensive cosmic ray air showers. It mainly consists of 30 dipole antennas installed in co-location with KASCADE-Grande at the Karlsruhe Institute of Technology (KIT) in Germany. KASCADE-Grande measures the secondary air shower particles at ground. Whenever KASCADE-Grande detects a high-energy cosmic ray event (?1016 eV), it triggers LOPES which then digitally records the radio signal in the frequency band from 40 to 80 MHz. Using interferometric methods, LOPES is able to successfully detect air shower induced radio pulses, even in the noisy environment at the KIT. In the present studies, a considerable progress in understanding the radio emission mechanism is shown: The latest version of the "radio emission in air shower" simulation program, REAS3, seems to be the first Monte Carlo tool which is able to reproduce the magnitude and slope of most of the measured lateral distributions.

  12. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate

  13. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  14. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Mahoney, M. J.; Jacobson, A. R.; Knowles, S. H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities.

  15. An in situ measurement of the radio-frequency attenuation in ice at Summit Station, Greenland

    NASA Astrophysics Data System (ADS)

    Avva, Jessica; Kovac, John M.; Miki, Christian; Saltzberg, David; Vieregg, Abigail G.

    2015-11-01

    We report an in situ measurement of the electric field attenuation length at radio frequencies for the bulk ice at Summit Station, Greenland, made by broadcasting radio-frequency signals vertically through the ice and measuring the relative power in the return ground bounce signal. We find the depth-averaged field attenuation length to be 947 +92/-85 meters at 75 MHz. While this measurement has clear radioglaciological applications, the radio clarity of the ice also has implications for the detection of ultra-high energy (UHE) astrophysical particles via their radio emission in dielectric media such as ice. Assuming a reliable extrapolation to higher frequencies, the measured attenuation length at Summit Station is comparable to previously measured radio-frequency attenuation lengths at candidate particle detector sites around the world, and strengthens the case for Summit Station as a promising northern site for UHE neutrino detection.

  16. Spectroscopic Measurements of Radio Frequency Plasmas in Supercritical Fluids

    SciTech Connect

    Maehara, Tsunehiro; Iwamae, Atsushi; Kawashima, Ayato

    2010-10-29

    Spectroscopic measurements of radio frequency (rf) plasma were performed under high pressure CO{sub 2} conditions (5 and 7 MPa) and supercritical (sc)CO{sub 2} conditions (8-20 MPa). The temperatures evaluated from C{sub 2} Swan bands increased from 3600 K to 4600 K with increasing pressure. The broadening and shifting of the O I line profile ({approx}777 nm) of rf plasma was observed under scCO{sub 2} conditions. The width of the line profile increased with increasing pressure. The reason for the broadening and shifting is still unclear because the present theory used to explain them is not valid for such high pressure conditions. Further, the broadening of the Ar I line profile ({approx}811.5 nm) in rf plasmas was observed under atmospheric Ar (0.1 MPa), high pressure Ar conditions (1-4 MPa), and scAr condition (5 MPa); the observation of the O I line profile in CO{sub 2} plasmas is difficult in this pressure range owing to its weak intensity therein. Similar to the case of the O I line in CO{sub 2} plasmas, the reason for the broadening of the Ar I line profile at 5 MPa is unclear.

  17. Summary of interference measurements at selected radio observatories

    NASA Technical Reports Server (NTRS)

    Tarter, Jill C.

    1990-01-01

    Results are presented from a series of RF interference (RFI) observations conducted during 1989 and 1990 at selected radio astronomy observatories in order to choose a site for the SETI, where the local and orbital RFI would be as benign as possible for observations of weak electromagnetic signals. These observatories included the DSS13 at Goldstone (California), the Arecibo Observatory (Puerto Rico), the Algonquin Radio Observatory in Ottawa (Canada), the Ohio State University Radio Observatory in Columbus (Ohio), and the NRAO in Green Bank (West Virginia). The observations characterize the RFI environment at these sites from 1 to 10 GHz, using radio astronomy antennas, feeds, and receivers; SETI signal processors; and stand-alone equipment built specifically for this purpose. The results served as part of the basis for the selection (by the NASA SETI Microwave Observing Project) of NRAO as the site of choice for SETI observations.

  18. MEASURING THE JET POWER OF FLAT-SPECTRUM RADIO QUASARS

    SciTech Connect

    Shabala, S. S.; Santoso, J. S.; Godfrey, L. E. H.

    2012-09-10

    We use frequency-dependent position shifts of flat-spectrum radio cores to estimate the kinetic power of active galactic nucleus (AGN) jets. We find a correlation between the derived jet powers and AGN narrow-line luminosity, consistent with the well-known relation for radio galaxies and steep spectrum quasars. This technique can be applied to intrinsically weak jets even at high redshift.

  19. At-sea distribution of radio-marked Ashy Storm-Petrels Oceanodroma homochroa captured on the California Channel Islands

    USGS Publications Warehouse

    Adams, J.; Takekawa, J.Y.

    2008-01-01

    Small, rare and wide-ranging pelagic birds are difficult to locate and observe at sea; little is therefore known regarding individual movements and habitat affinities among many of the world's storm-petrels (Family Hydrobatidae). We re-located 57 of 70 radio-marked Ashy Storm-Petrels Oceanodroma homochroa captured at three colonies in the California Channel Islands: Scorpion Rocks (2004, 2005), Santa Barbara Island (2004) and Prince Island (2005). Between 23 July and 22 September 2004, and 5 July and 4 August 2005, we flew 29 telemetry surveys, covered more than 65 000 km2 (2004) and 43 000 km2 (2005) of open ocean from San Nicolas Island north to the Farallon Islands and obtained 215 locations from 57 storm-petrels at sea. In both years, radio-marked storm-petrels were aggregated over the continental slope from Point Conception to Point Buchon, within the western Santa Barbara Channel, and over the Santa Cruz Basin between Santa Cruz, San Nicolas and Santa Barbara islands. Individuals captured in the Channel Islands ranged more than 600 km and were located as far north as Gulf of the Farallones National Marine Sanctuary. This is the first study to use radiotelemetry to determine the at-sea distribution and movements for any storm-petrel species.

  20. Residence times and diel passage distributions of radio-tagged juvenile spring chinook salmon and steelhead in a gatewell and fish collection channel of a Columbia River Dam

    USGS Publications Warehouse

    Beeman, J.W.; Maule, A.G.

    2001-01-01

    The amount of time radio-tagged juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead O. mykiss spent within a gatewell and the juvenile collection channel at McNary Dam, Columbia River, USA, was measured to determine the diel passage behavior and residence times within these portions of the juvenile bypass system. The median gatewell residence times were 8.9 h for juvenile chinook salmon and 3.2 h for steelhead. Juvenile spring chinook salmon spent 83% of their time in the 18-m-deep gatewell at depths of 9 m or less, and juvenile steelhead spent 96% of their time in the upper 11 m. Fish released during midday and those released in the evening generally exited the gatewell in the evening, indicating that fish entering the gatewell during daylight will have prolonged residence times. Median collection-channel residence times of juvenile chinook salmon were much shorter (2.3 min) than those of steelhead (28.0 min), most likely because of the greater size of the steelhead and the high water velocities within the channel (2.1 m/s). This and other studies indicate most juvenile salmonids enter gatewells of several Columbia and Snake river dams in the evening and pass into the collection channels quickly. However, this is not consistent with the natural in-river migration patterns of these species and represents a delay in dam passage.

  1. Radio Frequency (RF) Attenuation Measurements of the Space Shuttle Vehicle

    NASA Technical Reports Server (NTRS)

    Scully, R. C.; Kent, B. M.; Kempf, D. R.; Johnk, R. T.

    2006-01-01

    Following the loss of Columbia, the Columbia Accident Investigation Board (CAIB) provided recommendations to be addressed prior to Return To Flight (RTF). As a part of CAIB Recommendation 3.4.1 - Ground Based Imagery, new C-band and X-band radars were added to the array of ground-based radars and cameras already in-situ at Kennedy Space Center. Because of higher power density considerations and new operating frequencies, the team of Subject Matter Experts (SMEs) assembled to investigate the technical details of introducing the new radars recommended a series of radio frequency (RF) attenuation tests be performed on the Space Shuttle vehicle to establish the attenuation of the vehicle outer mold line structure with respect to its external RF environment. Because of time and complex logistical constraints, it was decided to split the test into two separate efforts. The first of these would be accomplished with the assistance of the Air Force Research Laboratory (AFRL), performing RF attenuation measurements on the aft section of OV-103 (Discovery) while in-situ in Orbiter Processing Facility (OPF) 3, located at Kennedy Space Center. The second would be accomplished with the assistance of the National Institute of Standards and Technology (NIST) and the electromagnetic interference (EMI) laboratory out of the Naval Air Warfare Center, Patuxent River, Maryland (PAX River), performing RF attenuation measurements on OV-105 (Endeavour) in-situ inside the Space Shuttle Landing Facility (SLF) hangar, also located at Kennedy Space Center. This paper provides a summary description of these efforts and their results.

  2. Magellan radio occultation measurements of atmospheric waves on Venus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Jenkins, J. M.

    1995-01-01

    Radio occultation experiments were conducted at Venus on three consecutive orbits of the Magellan spacecraft in October 1991. Each occultation occurred over the same topography (67 deg N, 127 deg E) and at the same local time (22 hr 5 min), but the data are sensitive to zonal variations because the atmosphere rotates significantly during one orbit. Through comparisons between observations and predictions of standard wave theory, we have demonstrated that small-scale oscillations in retrieved temperature profiles as well as scintillations in received signal intensity are caused by a spectrum of vertically propagating internal gravity waves. There is a strong similarity between the intensity scintillations observed here and previous measurements, which pertain to a wide range of locations and experiment dates. This implies that the same basic phenomenon underlies all the observations and hence that gravity waves are a persistent, global feature of Venus' atmosphere. We obtained a fairly complete characterization of a gravity wave that appears above the middle cloud in temperature measurements on all three orbits. The amplitude and vertical wavelength are about 4 K and 2.5 km respectively, at 65 km. A model for radiative damping implies that the wave intrinsic frequency is approximately 2 x 10(exp 4) rad/sec, the corresponding ratio between horizontal and vertical wavelengths is approximately 100. The wave is nearly stationary relative to the surface or the Sun. Radiative attenuation limits the wave amplitude at altitudes above approximately 65 km, leading to wave drag on the mean zonal winds of about +0.4 m/sec per day (eastward). The sign, magnitude, and location of this forcing suggest a possible role in explaining the decrease with height in the zonal wind speed that is believed to occur above the cloud tops. Temperature oscillations with larger vertical wavelengths (5-10 km) were also observed on all three orbits, but we are able unable to interpret these unambiguously.

  3. Optimal throughput for cognitive radio with energy harvesting in fading wireless channel.

    PubMed

    Vu-Van, Hiep; Koo, Insoo

    2014-01-01

    Energy resource management is a crucial problem of a device with a finite capacity battery. In this paper, cognitive radio is considered to be a device with an energy harvester that can harvest energy from a non-RF energy resource while performing other actions of cognitive radio. Harvested energy will be stored in a finite capacity battery. At the start of the time slot of cognitive radio, the radio needs to determine if it should remain silent or carry out spectrum sensing based on the idle probability of the primary user and the remaining energy in order to maximize the throughput of the cognitive radio system. In addition, optimal sensing energy and adaptive transmission power control are also investigated in this paper to effectively utilize the limited energy of cognitive radio. Finding an optimal approach is formulated as a partially observable Markov decision process. The simulation results show that the proposed optimal decision scheme outperforms the myopic scheme in which current throughput is only considered when making a decision. PMID:24574885

  4. An RF frontend circuit design of a Compass and GPS dual-mode dual-channel image rejection radio receiver

    NASA Astrophysics Data System (ADS)

    Gong, Zhang; Honglin, Chen; Wei, Liu; Hanbing, Yang; Lijuan, Zhang; Xiangwei, Wang; Lei, Shi; Sijmg, Hu; Mingzhao, Wang; Zhuojian, Fu

    2013-08-01

    This paper introduces a fully integrated low power consumption radio receiver frontend circuit for a Compass (Beidou) and GPS dual mode dual channel system with 2.5 dB NF, 1.02 mm2 areas, and 8 mA of current in 0.18 ?m TSMC CMOS process. Except for a few passive components for input matching, other components such as an off-chip low noise amplifier or a balun are not required. With a non-tunable passive image rejection filter, the receiver frontend can achieve around 60 dB gain and 34 dB image rejection.

  5. Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization.

    PubMed

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2015-01-01

    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption. PMID:25664434

  6. Analysis of Wireless Sensor Network Topology and Estimation of Optimal Network Deployment by Deterministic Radio Channel Characterization

    PubMed Central

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2015-01-01

    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption. PMID:25664434

  7. Analysis of satellite measurements of terrestrial radio noise

    NASA Technical Reports Server (NTRS)

    Bakalyar, G.; Caruso, J. A.; Vargas-Vila, R.; Ziemba, E.

    1974-01-01

    Worldwide distributions of terrestrial radio noise as monitored by Radio Astronomy Explorer 1 (RAE 1) generated and compared with CCIR predictions. These contour maps show the global morphology of radio noise at 6.55 and 9.18 MHz for fall, winter, spring and summer during the local time blocks of 00-08 LT and 16-24 LT. These computer produced maps show general agreement with CCIR predictions over large land masses. The RAE and CCIR maps diverge at high latitudes over Asia and frequently over ocean regions. Higher noise levels observed by RAE at high latitudes are attributed to magnetospheric emission while higher noise levels observed by RAE over Asia are attributable to high power transmitters. Analysis of RAE noise observations in conjunction with various geophysical phenomena showed no obvious correlation.

  8. The Radio JOVE Project: A New Multi-channel Spectrum Analyzer

    NASA Astrophysics Data System (ADS)

    Flagg, D.; Sky, J.; Reyes, F.; Thieman, J.; Higgins, C.

    2004-05-01

    A new radio spectrograph is now operational at the University of Florida Radio Observatory (UFRO) via the education and public outreach project called the Radio JOVE project(http://radiojove.gsfc.nasa.gov). The UFRO telescope is a 16-element 10-40 MHz log spiral array which is sensitive to both right-hand and left-hand circular polarization. Another spectrograph is connected to a 17-30 MHz log-periodic antenna located at Windward Community College in Hawaii (http://jupiter.wcc.hawaii.edu). Freely available software from Radio-Sky Publishing (http://www.radiosky.com) allows students, teachers, and radio astronomy enthusiasts to view the spectral data in real time via the Internet. Ultimately team members will be able to log on to the telescope and control the antenna and spectrometer's total sweep range, polarization, and calibrations. The software and telescope controls are discussed, and recent data results are shown. These data are of high quality and can lead to research applications.

  9. Multi-channel multi-radio using 802.11 based media access for sink nodes in wireless sensor networks.

    PubMed

    Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives. PMID:22163883

  10. Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks

    PubMed Central

    Campbell, Carlene E.-A.; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives. PMID:22163883

  11. Measurement of multipath delay profile in land mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi; Arakaki, Yoshiya; Wakana, Hiromitsu; Suzuki, Ryutaro

    1993-01-01

    Mobile satellite communication channel has been evaluated mainly with fading statistics of signal. When bandwidth of transmitting signal becomes wider, frequency selectivity of fading becomes a significant factor of the channel. Channel characteristics, not only signal variation but multipath delay spread should be evaluated. A multipath measurement system is proposed and developed for mobile satellite applications. With this system and ETS-V satellite, multipath delay profiles are measured in various environments including Tokyo metropolis and Sapporo city at 1.5 GHz. Results show that the maximum excess delay is within 1 microsec and the maximum delay spread is 0.2 microsecs at elevation angles of 40 to 47 degrees. In wideband signal transmission of about 1 MHz and more, designers should consider the effect of selective fading due to the multipath of land mobile satellite channel.

  12. On noise treatment in radio measurements of cosmic ray air showers

    NASA Astrophysics Data System (ADS)

    Schrder, F. G.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Bhren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blmer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hrandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krmer, O.; Kuijpers, J.; Lafebre, S.; Link, K.; ?uczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschlger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rhle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.

    2012-01-01

    Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can also be transferred to other experiments in radio and acoustic detection of cosmic rays and neutrinos.

  13. Morphology of the Solar Corona from Radio Occultation Measurements: Implications for Solar Probe

    NASA Technical Reports Server (NTRS)

    Woo, R.

    1996-01-01

    This paper summarizes the latest results on the morphology of the near-Sun solar wind obtained from radio occultation measurements, and their impact on the planning and conduct of a mission to the Sun such as Solar Probe.

  14. A wireless multi-channel bioimpedance measurement system for personalized healthcare and lifestyle.

    PubMed

    Ramos, Javier; Ausn, Jos Luis; Lorido, Antonio Manuel; Redondo, Francisco; Duque-Carrillo, Juan Francisco

    2013-01-01

    Miniaturized, noninvasive, wearable sensors constitute a fundamental prerequisite for pervasive, predictive, and preventive healthcare systems. In this sense, this paper presents the design, realization, and evaluation of a wireless multi-channel measurement system based on a cost-effective high-performance integrated circuit for electrical bioimpedance (EBI) measurements in the frequency range from 1 kHz to 1 MHz. The resulting on-chip spectrometer provides high measuring EBI capabilities and together with a low-cost, commercially available radio frequency transceiver device. It provides reliable wireless communication, constitutes the basic node to build EBI wireless sensor networks (EBI-WSNs). The proposed EBI-WSN behaves as a high-performance wireless multi-channel EBI spectrometer, where the number of channels is completely scalable and independently configurable to satisfy specific measurement requirements of each individual. A prototype of the EBI node leads to a very small printed circuit board of approximately 8 cm2 including chip-antenna, which can operate several years on one 3-V coin cell battery and make it suitable for long-term preventive healthcare monitoring. PMID:23739358

  15. Seventy Years of Radio Science, Technology, Standards, and Measurement at the National Bureau of Standards

    NASA Astrophysics Data System (ADS)

    Gillmor, C. Stewart

    This large volume describes all the forms of radio research done at the National Bureau of Standards (now, National Institute of Standards and Technology) from its founding in 1901 until about 1980. The volume truly reflects its subtitle; it describes in great detail research in radio propagation and all its connections with geophysics and geospace, but also radio as instrument for discovery and application in meteorology, navigation, and in standards of measurement and testing in electronics.The book is a bit unwieldy and some of its chapters will be of most interest to former NBS employees. For example, there is a lengthy chapter on the transfer of radio research work from Washington, D.C, to Boulder, Colo., in the early 1950s, complete with photostat of the quit claim deed to NBS from the Boulder Chamber of Commerce. On the other hand, radio research developed and flourished in this country in the early days at industrial (Bell Telephone, General Electric, Westinghouse) and government (NBS, Naval Research Laboratory) labs more than in academia, and it is very interesting to learn how the labs interacted and to read details of the organizational structure. I can attest personally to the great difficulties in locating materials concerning radio history. While we have numerous volumes devoted to certain popular radio heroes, little is available concerning government radio pioneers such as L. W. Austin, who directed the U.S. Navy's radio research for many years while situated physically at the Bureau of Standards, or J. H. Dellinger, long-time chief of the Radio Section and head spokesman on radio for the U.S. government until the 1930s.

  16. Radio emission of energetic cosmic ray air showers: Polarization measurements with LOPES

    NASA Astrophysics Data System (ADS)

    Lopes Collaboration; Isar, P. G.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bhren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blmer, J.; Bozdog, H.; Brancus, I. M.; Brggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hrandel, J. R.; Horneffer, A.; Huang, X.; Huege, T.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Kolotaev, Y.; Krmer, O.; Kuijpers, J.; Lafebre, S.; ?uczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschlger, J.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schrder, F.; Sima, O.; Singh, K.; Stmpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2009-06-01

    LOPES is a radio antenna array co-located with the Karlsruhe Shower Core and Array DEtector, KASCADE-Grande in Forschungszentrum Karlsruhe, Germany, which provides well-calibrated trigger information and air shower parameters for primary energies up to 10eV. By the end of 2006, the radio antennas were re-configured to perform polarization measurements of the radio signal of cosmic ray air showers, recording in the same time both, the East-West and North-South polarization directions of the radio emission. The main goal of these measurements is to reconstruct the polarization characteristics of the emitted signal. This will allow a detailed comparison with theoretical predictions. The current status of these measurements is reported here.

  17. Navigation Signal Disturbances by Multipath Propagation - Scaled Measurements with a Universal Channel Sounder Architecture

    NASA Astrophysics Data System (ADS)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg

    2015-11-01

    The performance of navigation systems is always reduced by unwanted multipath propagation. This is especially of practical importance for airborne navigation systems like the instrument landing system (ILS) or the VHF omni directional radio range (VOR). Nevertheless, the quantitative analysis of corresponding, potentially harmful multipath propagation disturbances is very difficult due to the large parameter space. Experimentally difficulties arise due to very expensive, real scale measurement campaigns and numerical simulation techniques still have shortcomings which are briefly discussed. In this contribution a new universal approach is introduced on how to measure very flexibly multipath propagation effects for arbitrary navigation systems using a channel sounder architecture in a scaled measurement environment. Two relevant scenarios of multipath propagation and the impact on navigation signals are presented. The first describes disturbances of the ILS due to large taxiing aircraft. The other example shows the influence of rotating wind turbines on the VOR.

  18. Marine information systems and new measuring channels for hydrophysical parameters

    NASA Astrophysics Data System (ADS)

    Smirnov, G. V.; Olenin, A. L.

    2015-03-01

    The results of the development and implementation of oceanographic information-measuring systems in the 1960s to 1970s and 1980s to 1990s are analytically treated and the basic principles of present-day systems for collecting data on oceanographic parameters are considered. We present the design of a technological platform for multichannel complexes aimed at concurrent measurements of hydrological, optical, and chemical characteristics. The platform allows one to combine the conventional and new channels for measuring oceanographic parameters.

  19. Technique to determine location of radio sources from measurements taken on spinning spacecraft

    NASA Technical Reports Server (NTRS)

    Fainberg, J.

    1979-01-01

    The procedure developed to extract average source direction and average source size from spin-modulated radio astronomy data measured on the IMP-6 spacecraft is described. Because all measurements are used, rather than just finding maxima or minima in the data, the method is very sensitive, even in the presence of large amounts of noise. The technique is applicable to all experiments with directivity characteristics. It is suitable for onboard processing on satellites to reduce the data flow to Earth. The application to spin-modulated nonpolarized radio astronomy data is made and includes the effects of noise, background, and second source interference. The analysis was tested with computer simulated data and the results agree with analytic predictions. Applications of this method with IMP-6 radio data have led to: (1) determination of source positions of traveling solar radio bursts at large distances from the Sun; (2) mapping of magnetospheric radio emissions by radio triangulation; and (3) detection of low frequency radio emissions from Jupiter and Saturn.

  20. Equivalence and Accuracy of MOSFET Channel Length Measurement Techniques

    NASA Astrophysics Data System (ADS)

    Jain, Sanjay

    1989-02-01

    It is shown that the MOSFET channel length measurement techniques of Terada and Muta, Peng et al., Whitfield, Suciu and Johnston, and De La Moneda et al. are actually equivalent, i.e. merely different expressions of the same formula for channel length in terms of measured resistance, and that some of the transresistance methods of Jain, although not equivalent, are also related to the same formula. The accuracy of this formula is evaluated for the general case and related to the error components due to source and drain resistance asymmetry, short channel geometry effect, and variation of series resistance with bias. No independent error component due to field-induced mobility degradation is found. Finally the errors in the methods of Terada and Muta, Chen et al., Sheu et al., Wordeman et al. and Jain, are determined and compared. The gate transresistance technique is found to be the most accurate method.

  1. Modelling the transfer function in medium bandwidth radio channels during multipath propagation

    NASA Astrophysics Data System (ADS)

    Sylvain, M.; Lavergnat, J.

    1985-12-01

    The computation of the effects of a multipath propagation channel on a line-of-sight link requires a statistical model of the channel transfer function. The various steps in the construction and validation of such a model are discussed, and several proposed models are compared from the point of view of their applications. The selection of data for the model is examined, and the results of modelling are considered in terms of a Rummler model, a complex polynomial expansion, and a normalized two-ray model. The use of the complete two-ray model is addressed. Results from the PACEM I experiment are used by way of illustration.

  2. Method for automatic absolute calibration of sodar measurement channels

    NASA Astrophysics Data System (ADS)

    Kamardin, A. P.; Odintsov, S. L.

    2015-11-01

    We discuss a method for continuous absolute calibration of "Volna-4M" meteorological acoustic radar (sodar) measurement channels. Accelerometers, placed on paraboloids of sodar antennas, are suggested to use for automatic calibration. Results of testing the module of continuous sodar calibration are presented.

  3. Measurement and Modeling of Narrowband Channels for Ultrasonic Underwater Communications

    PubMed Central

    Cañete, Francisco J.; López-Fernández, Jesús; García-Corrales, Celia; Sánchez, Antonio; Robles, Encarnación; Rodrigo, Francisco J.; Paris, José F.

    2016-01-01

    Underwater acoustic sensor networks are a promising technology that allow real-time data collection in seas and oceans for a wide variety of applications. Smaller size and weight sensors can be achieved with working frequencies shifted from audio to the ultrasonic band. At these frequencies, the fading phenomena has a significant presence in the channel behavior, and the design of a reliable communication link between the network sensors will require a precise characterization of it. Fading in underwater channels has been previously measured and modeled in the audio band. However, there have been few attempts to study it at ultrasonic frequencies. In this paper, a campaign of measurements of ultrasonic underwater acoustic channels in Mediterranean shallow waters conducted by the authors is presented. These measurements are used to determine the parameters of the so-called κ-μ shadowed distribution, a fading model with a direct connection to the underlying physical mechanisms. The model is then used to evaluate the capacity of the measured channels with a closed-form expression. PMID:26907281

  4. Measurement and Modeling of Narrowband Channels for Ultrasonic Underwater Communications.

    PubMed

    Cañete, Francisco J; López-Fernández, Jesús; García-Corrales, Celia; Sánchez, Antonio; Robles, Encarnación; Rodrigo, Francisco J; Paris, José F

    2016-01-01

    Underwater acoustic sensor networks are a promising technology that allow real-time data collection in seas and oceans for a wide variety of applications. Smaller size and weight sensors can be achieved with working frequencies shifted from audio to the ultrasonic band. At these frequencies, the fading phenomena has a significant presence in the channel behavior, and the design of a reliable communication link between the network sensors will require a precise characterization of it. Fading in underwater channels has been previously measured and modeled in the audio band. However, there have been few attempts to study it at ultrasonic frequencies. In this paper, a campaign of measurements of ultrasonic underwater acoustic channels in Mediterranean shallow waters conducted by the authors is presented. These measurements are used to determine the parameters of the so-called κ-μ shadowed distribution, a fading model with a direct connection to the underlying physical mechanisms. The model is then used to evaluate the capacity of the measured channels with a closed-form expression. PMID:26907281

  5. Amplitude calibration of a digital radio antenna array for measuring cosmic ray air showers

    NASA Astrophysics Data System (ADS)

    Nehls, S.; Hakenjos, A.; Arts, M. J.; Blümer, J.; Bozdog, H.; van Cappellen, W. A.; Falcke, H.; Haungs, A.; Horneffer, A.; Huege, T.; Isar, P. G.; Krömer, O.

    2008-05-01

    Radio pulses are emitted during the development of air showers, where air showers are generated by ultra-high energy cosmic rays entering the Earth's atmosphere. These nano-second short pulses are presently investigated by various experiments for the purpose of using them as a new detection technique for cosmic particles. For an array of 30 digital radio antennas (LOPES experiment) an absolute amplitude calibration of the radio antennas including the full electronic chain of the data acquisition system is performed, in order to estimate absolute values of the electric field strength for these short radio pulses. This is mandatory, because the measured radio signals in the MHz frequency range have to be compared with theoretical estimates and with predictions from Monte Carlo simulations to reconstruct features of the primary cosmic particle. A commercial reference radio emitter is used to estimate frequency dependent correction factors for each single antenna of the radio antenna array. The expected received power is related to the power recorded by the full electronic chain. Systematic uncertainties due to different environmental conditions and the described calibration procedure are of order 20%.

  6. Precision measurement of top quark mass in dilepton channel

    SciTech Connect

    Jayatilaka, Bodhitha; /Michigan U.

    2006-01-01

    We present recent measurements of the top quark mass using events collected at the CDF and D0 detectors from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron. These analyses are performed using events consistent with the decay channel t{bar t} {yields} {bar b}{ell}{sup -}{bar v}{sub {ell}}b{ell}' + v'{sub {ell}}, or the dilepton channel. 230-360 pb{sup -1} of data are used.

  7. Radio spectrum measurements of artificial ball lightning and testing the hypothesis on its plasmochemical nature

    NASA Astrophysics Data System (ADS)

    Kopeikin, V. V.

    2014-01-01

    Spectral measurements of radiowaves emitted by artificial ball lightning are presented. The measurements were carried out using two different facilities: a pulsed power generator (PPG) and a three-contour Tesla transformer. The results of these measurements confirm the hypothesis that ball lightning is a self-oscillator of high-voltage pulses in the radio range.

  8. Inverting ionospheric radio occultation measurements using maximum entropy

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.

    2007-08-01

    Practical aspects of the inversion of ionospheric radio occultation data using the Abel transform and its inverse are discussed. The linear inverse transform exhibits poor error propagation characteristics, producing significant artifacts preferentially at low altitudes where they might easily be mistaken for intermediate or sporadic layers in the ionosphere. Tikhonov regularization, which can be viewed as fixed linear filtering, reduces the artifacts at the expense of discarding fine structure in the profiles. Improved results are obtained using maximum entropy and Bayesian statistics. The maximum entropy algorithm can be viewed as a nonlinear adaptive filter which suppresses artifacts while preserving fine structure to the degree the data can support. Other advantages of and avenues for improving the basic maximum entropy algorithm are discussed.

  9. Method to measure the radio and chemosensitivity of human spheroids

    SciTech Connect

    Carlsson, J.; Nederman, T.

    1983-01-01

    A method based on the spontaneous outgrowth of cells from spheroids was tested. Different outgrowth patterns were seen depending on the types of spheroids and on the radiation or drug doses. The method allowed dose-effect relations to be determined. Spheroid survival was defined as when the outgrowing monolayers contained at least thousand cells within five weeks. The method was used as an alternative to cloning of isolated single cells. The glioma and osteosarcoma spheroids could not be disintegrated to single cell suspensions since they resisted enzymatic and mechanical treatments for cell separation. Detection of differences in radio and chemosensitivity between different types of spheroids of human origin might be valuable for the understanding of the large variations in therapeutical response often seen between different types of tumors.

  10. FOREGROUND PREDICTIONS FOR THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM FROM MEASUREMENTS OF FAINT INVERTED RADIO SOURCES AT 5 GHz

    SciTech Connect

    Schneider, Michael D.; Becker, Robert H.; De Vries, Willem; White, Richard L.

    2012-05-10

    We present measurements of a population of matched radio sources at 1.4 and 5 GHz down to a flux limit of 1.5 mJy in 7 deg{sup 2} of the NOAO Deep Field South. We find a significant fraction of sources with inverted spectral indices that all have 1.4 GHz fluxes less than 10 mJy and are therefore too faint to have been detected and included in previous radio source count models that are matched at multiple frequencies. Combined with the matched source population at 1.4 and 5 GHz in 1 deg{sup -2} in the ATESP survey, we update models for the 5 GHz differential number counts and distributions of spectral indices in 5 GHz flux bins that can be used to estimate the unresolved point source contribution to the cosmic microwave background temperature anisotropies. We find a shallower logarithmic slope in the 5 GHz differential counts than in previously published models for fluxes {approx}< 100 mJy as well as larger fractions of inverted spectral indices at these fluxes. Because the Planck flux limit for resolved sources is larger than 100 mJy in all channels, our modified number counts yield at most a 10% change in the predicted Poisson contribution to the Planck temperature power spectrum. For a flux cut of 5 mJy with the South Pole Telescope and a flux cut of 20 mJy with the Atacama Cosmology Telescope, we predict a {approx}30% and {approx}10% increase, respectively, in the radio source Poisson power in the lowest frequency channels of each experiment relative to that predicted by previous models.

  11. A Deterministic Indoor UWB Space-Variant Multipath Radio Channel Model

    NASA Astrophysics Data System (ADS)

    Lostanlen, Yves; Gougeon, Grgory; Corre, Yoann

    A full 3D indoor deterministic simulator aimed at illustrating low-bit or high-bit data-rate parameters in ultra-wideband (UWB) channels is presented in this chapter. This tool has been designed mainly for educational purposes. Physical phenomena like multipath and shadowing intervening in such complex indoor environments may be analyzed by this means. Special care has been taken in representing UWB characteristics like frequency dependence and in 3D antenna modeling at the transmitter and receiver Coupled to other deterministic and statistical methods, the method may also be used for global (outdoor and indoor) geolocation or for complex-system-design channel models (IEEE 802.15.x).

  12. FIBER AND INTEGRATED OPTICS: Analysis of the characteristics of a radio signal at the output of a multimode interference-type fiber channel

    NASA Astrophysics Data System (ADS)

    Bratchikov, A. N.; Glukhov, I. P.

    1992-02-01

    An analysis is made of a theoretical model of an interference fiber channel for transmission of microwave signals. It is assumed that the channel consists of a multimode fiber waveguide with a step or graded refractive-index profile. A typical statistic of a longitudinal distribution of inhomogeneities is also assumed. Calculations are reported of the interference losses, the spectral profile of the output radio signal, the signal/noise ratio in the channel, and of the dependences of these parameters on: the type, diameter, and the length of the multimode fiber waveguide; the spectral width of the radiation source; the frequency offset between the interfering optical signals.

  13. Measurements of the effects of humidity on radio-aerosol penetration through ultrafine capillaries

    SciTech Connect

    Cullen, C.

    1996-08-01

    The purpose of this research was to examine the effects of humidity on radio-aerosol penetration through ultrafine capillaries. A number of tests were conducted at relative humidities of 20%, 50%, and 80%, with sampling times of 20, 40, and 60 min. The radio-aerosol consisted of polystyrene particles with a diameter of 0.1 {micro}m. The ultrafine capillaries had a diameter of 250 {micro}m. The data from these tests varied significantly. These results made the identification of radio-aerosol penetration trends inconclusive. The standard deviation for all penetration data ranged from 3% to 30%. The results of this study suggest that a better control of the experimental parameters was needed to obtain more accurate data from experiments associated with radio-aerosol penetration in the presence of moisture. The experimental parameters that may have contributed to the wide variance of data, include aerosol flow, radio-aerosol generation, capillary characteristics, humidity control, and radiation measurements. It was the uncertainty of these parameters that contributed to the poor data which made conclusive deductions about radio-aerosol penetration dependence on humidity difficult. The application of this study is to ultrafine leaks resulting from stress fractures in high-level nuclear waste transportation casks under accident scenarios.

  14. Strain tensors in layer systems by precision ion channeling measurements

    SciTech Connect

    Trinkaus, H.; Buca, D.; Hollaender, B.; Minamisawa, R. A.; Mantl, S.; Hartmann, J. M.

    2010-06-15

    A powerful method for analyzing general strain states in layer systems is the measurement of changes in the ion channeling directions. We present a systematic derivation and compilation of the required relations between the strain induced angle changes and the components of the strain tensor for general crystalline layer systems of reduced symmetry compared to the basic (cubic) crystal. It is shown that, for the evaluation of channeling measurements, virtually all layers of interest may be described as being 'pseudo-orthorhombic'. The commonly assumed boundary conditions and the effects of surface misorientations on them are discussed. Asymmetric strain relaxation in layers of reduced symmetry is attributed to a restriction in the slip system of the dislocations inducing it. The results are applied to {l_brace}110{r_brace}SiGe/Si layer systems.

  15. Occupational exposure of personnel operating military radio equipment: measurements and simulation.

    PubMed

    Paljanos, Annamaria; Miclaus, Simona; Munteanu, Calin

    2015-09-01

    Technical literature provides numerous studies concerning radiofrequency exposure measurements for various radio communication devices, but there are few studies related to exposure of personnel operating military radio equipment. In order to evaluate exposure and identify cases when safety requirements are not entirely met, both measurements and simulations are needed for accurate results. Moreover, given the technical characteristics of the radio devices used in the military, personnel mainly operate in the near-field region so both measurements and simulation becomes more complex. Measurements were made in situ using a broadband personal exposimeter equipped with two isotropic probes for both electric and magnetic components of the field. The experiment was designed for three different operating frequencies of the same radio equipment, while simulations were made in FEKO software using hybrid numerical methods to solve complex electromagnetic field problems. The paper aims to discuss the comparative results of the measurements and simulation, as well as comparing them to reference levels specified in military or civilian radiofrequency exposure standards. PMID:26444196

  16. Weighted sum-rate maximization for multi-user SIMO multiple access channels in cognitive radio networks

    NASA Astrophysics Data System (ADS)

    He, Peter; Zhao, Lian; Lu, Jianhua

    2013-12-01

    In this article, an efficient distributed and parallel algorithm is proposed to maximize the sum-rate and optimize the input distribution policy for the multi-user single input multiple output multiple access channel (MU-SIMO MAC) system with concurrent access within a cognitive radio (CR) network. The single input means that every user has a single antenna and multiple output means that base station(s) has multiple antennas. The main features are: (i) the power distribution for the users is updated by using variable scale factors which effectively and efficiently maximize the objective function at each iteration; (ii) distributed and parallel computation is employed to expedite convergence of the proposed distributed algorithm; and (iii) a novel water-filling with mixed constraints is investigated, and used as a fundamental block of the proposed algorithm. Due to sufficiently exploiting the structure of the proposed model, the proposed algorithm owns fast convergence. Numerical results verify that the proposed algorithm is effective and fast convergent. Using the proposed approach, for the simulated range, the required number of iterations for convergence is two and this number is not sensitive to the increase of the number of users. This feature is quite desirable for large scale systems with dense active users. In addition, it is also worth noting that the proposed algorithm is a monotonic feasible operator to the iteration. Thus, the stop criterion for computation could be easily set up.

  17. Reliable intraocular pressure measurement using automated radio-wave telemetry

    PubMed Central

    Paschalis, Eleftherios I; Cade, Fabiano; Melki, Samir; Pasquale, Louis R; Dohlman, Claes H; Ciolino, Joseph B

    2014-01-01

    Purpose To present an autonomous intraocular pressure (IOP) measurement technique using a wireless implantable transducer (WIT) and a motion sensor. Methods The WIT optical aid was implanted within the ciliary sulcus of a normotensive rabbit eye after extracapsular clear lens extraction. An autonomous wireless data system (AWDS) comprising of a WIT and an external antenna aided by a motion sensor provided continuous IOP readings. The sensitivity of the technique was determined by the ability to detect IOP changes resulting from the administration of latanoprost 0.005% or dorzolamide 2%, while the reliability was determined by the agreement between baseline and vehicle (saline) IOP. Results On average, 12 diurnal and 205 nocturnal IOP measurements were performed with latanoprost, and 26 diurnal and 205 nocturnal measurements with dorzolamide. No difference was found between mean baseline IOP (13.082.2 mmHg) and mean vehicle IOP (13.272.1 mmHg) (P=0.45), suggesting good measurement reliability. Both antiglaucoma medications caused significant IOP reduction compared to baseline; latanoprost reduced mean IOP by 10% (1.33.54 mmHg; P<0.001), and dorzolamide by 5% (0.622.22 mmHg; P<0.001). Use of latanoprost resulted in an overall twofold higher IOP reduction compared to dorzolamide (P<0.001). Repeatability was 1.8 mmHg, assessed by the variability of consecutive IOP measurements performed in a short period of time (?1 minute), during which the IOP is not expected to change. Conclusion IOP measurements in conscious rabbits obtained without the need for human interactions using the AWDS are feasible and provide reproducible results. PMID:24531415

  18. Measurement of cosmic-ray air showers with the Tunka Radio Extension (Tunka-Rex)

    NASA Astrophysics Data System (ADS)

    Bezyazeekov, P. A.; Budnev, N. M.; Gress, O. A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Konstantinov, E. N.; Korosteleva, E. E.; Kostunin, D.; Krömer, O.; Kuzmichev, L. A.; Levinson, E.; Lubsandorzhiev, N.; Mirgazov, R. R.; Monkhoev, R.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Rühle, C.; Schröder, F. G.; Wischnewski, R.; Zagorodnikov, A.

    2015-12-01

    Tunka-Rex is a radio detector for cosmic-ray air showers in Siberia, triggered by Tunka-133, a co-located air-Cherenkov detector. The main goal of Tunka-Rex is the cross-calibration of the two detectors by measuring the air-Cherenkov light and the radio signal emitted by the same air showers. This way we can explore the precision of the radio-detection technique, especially for the reconstruction of the primary energy and the depth of the shower maximum. The latter is sensitive to the mass of the primary cosmic-ray particles. In this paper we describe the detector setup and explain how electronics and antennas have been calibrated. The analysis of data of the first season proves the detection of cosmic-ray air showers and therefore, the functionality of the detector. We confirm the expected dependence of the detection threshold on the geomagnetic angle and the correlation between the energy of the primary cosmic-ray particle and the radio amplitude. Furthermore, we compare reconstructed amplitudes of radio pulses with predictions from CoREAS simulations, finding agreement within the uncertainties.

  19. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    SciTech Connect

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-10-15

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  20. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry

    SciTech Connect

    Le Floch, Sebastien; Salvade, Yves; Mitouassiwou, Rostand; Favre, Patrick

    2008-06-01

    We present a new technique applied to the variable optical synthetic wavelength generation in optical interferometry. It consists of a chain of optical injection locking among three lasers: first a distributed-feedback laser is used as a master to injection lock an intensity-modulated laser that is directly modulated around 15 GHz by a radio frequency generator on a sideband. A second distributed-feedback laser is injection locked on another sideband of the intensity-modulated laser. The variable synthetic wavelength for absolute distance measurement is simply generated by sweeping the radio frequency over a range of several hundred megahertz, which corresponds to the locking range of the two slave lasers. In this condition, the uncertainty of the variable synthetic wavelength is equivalent to the radio frequency uncertainty. This latter has a relative accuracy of 10{sup -7} or better, resulting in a resolution of {+-}25 {mu}m for distances exceeding tens of meters. The radio frequency generator produces a linear frequency sweep of 1 ms duration (i.e., exactly equal to one absolute distance measurement acquisition time), with frequency steps of about 1 MHz. Finally, results of absolute distance measurements for ranges up to 10 m are presented.

  1. Ultrasound Doppler Velocimetry Measurements in Turbulent Liquid Metal Channel Flow

    NASA Astrophysics Data System (ADS)

    Rivero, Michel; Jian, Dandan; Karcher, Christian; Cuevas, Sergio

    2010-11-01

    Control of molten metal flow using magnetic fields is important in industrial applications. The Electromagnetic Flow Control Channel (EFCO) is an experimental test facility, located at Ilmenau University of Technology, for the development of such kind of control systems. The working fluid is the low-melting liquid metal alloy GaInSn in eutectic composition. In this channel, flow control is realized by combining and coupling the non-contact flow driving technology of electromagnetic pumps based on rotating permanent magnets and the non-contact flow rate measurement technology termed Lorentz Force Velocimetry (LFV). The flow rate is adjusted by controlling the rotation rate of the permanent magnet system. Physically, LFV is based on measuring the force acting on a magnet system. This force is induced by the melt flow passing through the static magnetic field generated by the system and is proportional to the flow. To calibrate such flow meters, we apply UDV technique to measure and analyse both turbulent hydrodynamic and MHD flow profiles in EFCO at various Reynolds numbers.

  2. Microfabricated Patch Clamp Electrodes for Improved Ion Channel Protein Measurements

    NASA Astrophysics Data System (ADS)

    Klemic, James; Klemic, Kathryn; Reed, Mark; Sigworth, Frederick

    2002-03-01

    Ion channels are trans-membrane proteins that underlie many cell functions including hormone and neurotransmitter release, muscle contraction and cell signaling cascades. Ion channel proteins are commonly characterized via the patch clamp method in which an extruded glass tube containing ionic solution, manipulated by an expert technician, is brought into contact with a living cell to record ionic current through the cell membrane. Microfabricated planar patch electrodes, micromolded in the silicone elastomer poly-dimethylsiloxane (PDMS) from microlithographically patterned structures, have been developed that improve on this method. Microfabrication techniques allow arrays of patch electrodes to be fabricated, increasing the throughput of the measurement technique. Planar patch electrodes readily allow the automation of cell sealing, further increasing throughput. Microfabricated electrode arrays may be readily integrated with microfluidic structures to allow fast, in situ solution exchange. Miniaturization of the electrode geometry should increase both the signal to noise and the bandwidth of the measurement. Microfabricated patch electrode arrays have been fabricated and measurements have been taken.

  3. Radio observations of the planets - The importance of laboratory measurements

    NASA Astrophysics Data System (ADS)

    de Pater, I.; Mitchell, D. L.

    1993-03-01

    Laboratory data on the line broadening parameters of H2S gas under Uranian/Neptunian conditions, on the far wings of the H2S and NH3 line profiles, and on the dielectric properties of CH4-, NH3-, H2S-, and NH4SH-ice are needed to constrain elemental abundances and understand the dynamics and cloud physics in the atmospheres of the giant planets. Measurements of the absorption coefficient of gaseous H2SO4 at millimeter wavelengths are needed in order to obtain a better understanding of Venus' atmosphere. To determine wind velocity fields in Venus' and Mars' atmospheres, accurate measurements of the center frequencies of the CO lines are necessary. The absorption and scattering properties of lunar soils and/or terrestrial rock powders at frequencies from approximately 1 to 200 GHz, determined in laboratory experiments, would provide a valuable addition to existing data at 450 MHz, 35 GHz, and far infrared frequencies. These data would be used to analyze the microwave spectra of planetary surfaces. Such studies may be helpful in distinguishing the effects of radiative transfer from those of nonlinear heat conduction and internal heat sources.

  4. Measurements of turbulence in the Venus atmosphere deduced from Pioneer Venus multiprobe radio scintillations

    NASA Technical Reports Server (NTRS)

    Woo, R.; Armstrong, J. W.; Kendall, W. B.

    1979-01-01

    The 2.3-GHz log-amplitude fluctuations observed in the radio links of the Pioneer Venus entry probes during Venus encounter have been used to study turbulence in the Venus atmosphere. The deduced estimates of the upper bound of the structure constant of the refractive index fluctuations (less than approximately 4 x 10 to the -8th/cu root cm) are inconsistent with similar entry probe measurements by Veneras 4 to 8 but are consistent with the radio occultation measurements by flyby (Mariners 5 and 10) and orbiting (Venera 9) spacecraft. The Pioneer Venus measurements therefore provide a resolution of the long-standing order of magnitude discrepancy between these earlier measurements of the structure constant.

  5. The Accuracy of Radio Interferometric Measurements of Earth Rotation

    NASA Technical Reports Server (NTRS)

    Eubanks, T. M.; Steppe, J. A.; Spieth, M. A.

    1985-01-01

    The accuracy of very long base interferometry earth rotation (UT1) measurements is examined by intercomparing TEMPO and POLARIS data for 1982 and the first half of 1983. None of these data are simultaneous, and so a proper intercomparison requires accounting for the scatter introduced by the rapid, unpredictable, UT1 variations driven by exchanges of angular momentum with the atmosphere. A statistical model of these variations, based on meteorological estimates of the Atmospheric Angular Momentum is derived, and the optimal linear (Kalman) smoother for this model is constructed. The scatter between smoothed and independent raw data is consistent with the residual formal errors, which do not depend upon the actual scatter of the UT1 data. This represents the first time that an accurate prediction of the scatter between UT1 data sets were possible.

  6. Record-Breaking Radio Astronomy Project to Measure Sky with Extreme Precision

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Astronomers will tie together the largest collection of the world's radio telescopes ever assembled to work as a single observing tool in a project aimed at improving the precision of the reference frame scientists use to measure positions in the sky. The National Science Foundation's Very Long Baseline Array (VLBA) will be a key part of the project, which is coordinated by the International VLBI Service for Geodesy and Astrometry. For 24 hours, starting Wednesday, November 18, and ending Thursday, November 19, 35 radio telescopes located on seven continents will observe 243 distant quasars. The quasars, galaxies with supermassive black holes at their cores, are profuse emitters of radio waves, and also are so distant that, despite their actual motions in space, they appear stationary as seen from Earth. This lack of apparent motion makes them ideal celestial landmarks for anchoring a grid system, similar to earthly latitude and longitude, used to mark the positions of celestial objects. Data from all the radio telescopes will be combined to make them work together as a system capable of measuring celestial positions with extremely high precision. The technique used, called very long baseline interferometry (VLBI), has been used for decades for both astronomical and geodetic research. However, no previous position-measuring observation has used as many radio telescopes or observed as many objects in a single session. The previous record was a 23-telescope observation. At a meeting in Brazil last August, the International Astronomical Union adopted a new reference frame for celestial positions that will be used starting on January 1. This new reference frame uses a set of 295 quasars to define positions, much like surveyor's benchmarks in a surburban subdivision. Because even with 35 radio telescopes around the world, there are some gaps in sky coverage, the upcoming observation will observe 243 of the 295. By observing so many quasars in a single observing session, problems of linking positions from one observing session to another can be avoided, the astronomers say. The result will be a much stronger, more precise, reference grid. Telescopes in Asia, Australia, Europe, North America, South America, Antarctica, and in the Pacific will participate. Improving the celestial positional grid will allow astronomers better to pinpoint the locations and measure the motions of objects in the sky. As astronomers increasingly study objects using multiple telescopes observing at different wavelengths, such as visible light, radio, infrared, etc., the improved positional grid will allow more accurate overlaying of the different images. The improved celestial reference frame also strengthens a terrestrial reference frame used for radio-telescope measurements that contribute to geophysical research. The precise geodetic measurements help geophysicists understand phenomena such as plate tectonics, earth tides, and processes that affect our planet's orientation in space. The VLBA is a continent-wide radio telescope system with 10, 240-ton dish antennas ranging from Hawaii to the Virgin Islands. Operated from the National Radio Astronomy Observatory's Pete V. Domenici Science Operations Center in Socorro, New Mexico, the VLBA offers the greatest resolving power, or ability to see fine detail, of any telescope in astronomy. The multi-telescope observation will be accompanied by public-outreach activities in celebration of the International Year of Astronomy. A public web page devoted to the observation will be hosted at Bordeaux Observatory, and some of the participating telescopes will have webcams available.

  7. Lateral distribution of the radio signal in extensive air showers measured with LOPES

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Asch, T.; Badea, A. F.; Bhren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blmer, J.; Bozdog, H.; Brancus, I. M.; Brggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hrandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Krmer, O.; Kuijpers, J.; Lafebre, S.; ?uczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschlger, J.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schrder, F.; Sima, O.; Singh, K.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2010-01-01

    The antenna array LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from extensive air showers. The coincident measurements allow us to reconstruct the electric field strength at observation level in dependence of general EAS parameters. In the present work, the lateral distribution of the radio signal in air showers is studied in detail. It is found that the lateral distributions of the electric field strengths in individual EAS can be described by an exponential function. For about 20% of the events a flattening towards the shower axis is observed, preferentially for showers with large inclination angle. The estimated scale parameters R0, describing the slope of the lateral profiles range between 100 and 200 m. No evidence for a direct correlation of R0 with shower parameters like azimuth angle, geomagnetic angle, or primary energy can be found. This indicates that the lateral profile is an intrinsic property of the radio emission during the shower development which makes the radio detection technique suitable for large scale applications.

  8. Point-to-point measurement of radio frequency attenuation in South Polar ice

    NASA Astrophysics Data System (ADS)

    Richman, Michael; Hoffman, Kara

    2011-04-01

    For ultra high energy (UHE) electromagnetic showers in a dense medium, radio frequency Cherenkov emission is enhanced due to the Askaryan effect. Present and future detectors such as RICE, ANITA, ARIANNA and the Askaryan Radio Array (ARA) exploit this effect to detect UHE neutrinos interacting with Antarctic ice. The radio frequency electromagnetic wave attenuation length (the distance over which signal amplitude diminishes by a factor of 1 / e due to absorption or scattering) is of tantamount importance as it determines the size scale and effective volume of these detectors. Previous attenuation measurements rely on reflections off the bedrock of signals from a surface-mounted transmitter. Using RICE in-ice transmitters and IceCube Radio Extension in-ice receivers, we are conducting a point-to-point attenuation measurement in the upper 1500 meters of South Polar ice, the region of interest for planned near-surface detectors such as ARA. We will present the analysis method as well as preliminary results.

  9. Magnetization of the ionospheres of Venus and Mars: Results from radio occultation measurements

    SciTech Connect

    Woo, R.; Kliore, A.J. )

    1991-07-01

    In situ measurements by the Pioneer Venus orbiting spacecraft, conducted during solar maximum only, have shown that magnetization (permeation of large-scale magnetic fields) of the ionosphere of Venus occurs under high solar wind dynamic pressure and that this takes place most frequently near the subsolar region. In this paper, the authors use remote sensing radio occultation measurements to study magnetization of the ionospheres of Venus and Mars based on these characteristics. For Venus they take advantage of the unique data set consisting of 148 electron density profiles deduced from Pioneer Venus radio occultation measurements. They demonstrate that radio occultation measurements yield results on frequency of occurrence of magnetization during solar maximum that are similar to those obtained from the Pioneer Venus in situ magnetic field measurements. During solar minimum, for which direct ionospheric measurements have never been made, they find that magnetization of the Venus ionosphere is more pervasive than at solar maximum. Magnetization extends to higher solar zenith angles (SZA) and appears stronger than at solar maximum. These results confirm that during solar minimum, the high solar wind dynamic pressure state is more prevalent at Venus because the ionospheric plasma pressure is weaker than at solar maximum. Comparison of a large number of electron density profiles of Mars (deduced from radio occultation measurements by the Viking 1 and 2 and Mariner 9 spacecraft for SZA > 46{degrees}) with those of Venus shows an absence of the ledge and disturbed topside plasma observed in the Venus profiles. These results, however, do not constitute evidence against magnetization of the ionosphere of Mars, as Shinagawa and Cravens (1989) have shown on their one-dimensional MHD models that, even when the ionosphere of Mars is highly magnetized, the magnetic structure differs from that at Venus, and a ledge does not form in its electron density profiles.

  10. Wide Range Neutron Flux Measuring Channel for Aerospace Application

    SciTech Connect

    Cibils, R. M.; Busto, A.; Gonella, J. L.; Martinez, R.; Chielens, A. J.; Otero, J. M.; Nunez, M.; Tropea, S. E.

    2008-01-21

    The use of classical techniques for neutron flux measurements in nuclear reactors involves the switching between several detection chains as the power grows up to 10 decades. In space applications where mass and size constraints are of key significance, such volume of hardware represents a clear disadvantage. Instead of requiring different instruments for each reactor operating range (start-up, ramping-up, and nominal power), a single instrument chain should be desirable. A Wide Range Neutron Detector (WRND) system, combining a classic pulse Counting Channel with a Campbell's theorem based Fluctuation Channel can be implemented for the monitoring and control of a space nuclear reactor. Such an instrument will allow for a reduction in the complexity of space-based nuclear instrumentation and control systems. In this presentation we will discuss the criteria and tradeoffs involved in the development of such a system. We will focus particularly on the characteristics of the System On Chip (SOC) and the DSP board used to implement this instrument.

  11. An electrodeless system for measurement of liquid sample dielectric properties in radio frequency band.

    PubMed

    Hartwig, V; Giovannetti, G; Vanello, N; Costantino, M; Landini, L; Benassi, A

    2006-01-01

    An electrodeless measurement system based on a resonant circuit is proposed for the measurement of dielectric properties of liquid samples at RF (radio frequency). Generally, properties as dielectric constant, loss factor and conductivity are measured by parallel plate capacitor cells: this method has several limitations in the case of particular liquid samples and in the range of radiofrequencies. Our method is based on the measurements of resonance frequency and quality factor of a LC resonant circuit in different measuring conditions, without and with the liquid sample placed inside a test tube around which the home made coil is wrapped. The measurement is performed using a network analyzer and a dual loop probe, inductively coupled with the resonant circuit. One of the advantages of this method is the contactless between the liquid sample and the measurement electrodes. In this paper the measurement system is described and test measurements of conventional liquids dielectric properties are reported. PMID:17946603

  12. Measurement of the top quark mass in the dilepton channel

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Hefei, CUST /Andes U., Bogota /Charles U.

    2006-09-01

    We present a measurement of the top quark mass in the dilepton channel based on approximately 370 pb{sup -1} of data collected by the D0 experiment during Run II of the Fermilab Tevatron collider. We employ two different methods to extract the top quark mass. We show that both methods yield consistent results using ensemble tests of events generated with the D0 Monte Carlo simulation. We combine the results from the two methods to obtain a top quark mass m{sub t} = 178.1 {+-} 8.2 GeV. The statistical uncertainty is 6.7 GeV and the systematic uncertainty is 4.8 GeV.

  13. Morphometry of streamlined forms in terrestrial and Martian channels. [dimensional measurements of outflow channels

    NASA Technical Reports Server (NTRS)

    Baker, V. R.; Kochel, R. C.

    1978-01-01

    Streamlined erosional forms in the Channeled Scabland are compared with streamline features recognized in the region of the Kasei Vallis on Mars shown in Viking imagery. The morphometric analysis considers three physical parameters, length, measured parallel to the suggested flow direction; width, taken as the maximum width of the streamlined form perpendicular to the flow direction; and area, measured with a grid placed over the surface. These parameters are used to calculate a dimensionless parameter k, defined as the square of the length multiplied by pi over four times the area. For the 137 Scabland forms studied k values range from 1.0 to 8.3 with an average of 3.2. The k values for 47 Martian streamlined forms range from 1.5 to 12.0 with an average of 3.8. The rough similarity of these results suggests that the terrestrial and Martian features were formed by similar processes. The forms appear to have developed an ideal shape, sufficiently elongated to reduce pressure drag in the fluid creating them, but not so long as to create excessive skin resistance.

  14. Assessment of the Impacts of Radio Frequency Interference on SMAP Radar and Radiometer Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Curtis W.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Hirad Ghaemi

    2012-01-01

    The NASA Soil Moisture Active and Passive (SMAP) mission will measure soil moisture with a combination of Lband radar and radiometer measurements. We present an assessment of the expected impact of radio frequency interference (RFI) on SMAP performance, incorporating projections based on recent data collected by the Aquarius and SMOS missions. We discuss the impacts of RFI on the radar and radiometer separately given the differences in (1) RFI environment between the shared radar band and the protected radiometer band, (2) mitigation techniques available for the different measurements, and (3) existing data sources available that can inform predictions for SMAP.

  15. Venus - Mass, gravity field, atmosphere, and ionosphere as measured by the Mariner 10 dual-frequency radio system

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Tyler, G. L.; Fjeldbo, G.; Kliore, A. J.; Levy, G. S.; Brunn, D. L.; Dickinson, R.; Edelson, R. E.; Martin, W. L.; Postal, R. B.

    1974-01-01

    The unique properties of the Mariner 10 radio system, and the preliminary scientific results obtained from the analysis of the radio signals are described. In the normal two-way communication mode, a command- and range-modulated 2115-MHz signal is transmitted to the spacecraft for reception on its omnidirectional antenna. As implemented for Mariner 10, the dual-frequency system has proven fully capable of performing interplanetary columnar electron content measurements while achieving the prime goals of the celestial mechanics and radio science team. The determination of the mass and gravitational potential of Venus is one of the major objectives of the radio science experiments. Information on Venus's atmosphere was deduced from analysis of the radio signals during occultation. Open-loop receiver differential Doppler data were used to measure the nightside and dayside ionospheres of Venus.

  16. Conceptual Background to Radio

    NASA Astrophysics Data System (ADS)

    Ponsonby, J. E. B.

    2004-06-01

    The International Telecommunications Union (ITU) conceives the radio spectrum as primarily a resource for telecommunications. Indeed most applications of radio are for communications and other radio services, particularly the Radio Astronomy Service, are deemed to be `pretend'communication serviceas for spectrum amnagement purposes. The language of Radio Spectrum Management is permeated by the terminology ofcommunications, some derived from the physics of radio and some from aspects of information theory. This contribution touches on all the essential concepts of radiocommunications which the author thinks should be the common mental equipment of the Spectrum Manager. The fundamental capacity of a communication channel is discussed in terms of the degrees of freedom and bandwidth of a signal, and the signal to noise ratio. It is emphasized that an information bearing signal is inherently unpredictable, and must, at some level, be discontinuous. This has important consequences for the form of its power spectrum. The effect of inserting filters is discussed particularly with regard to constant amplitude signals and, in the context of non-linear power amplifiers, the phenomenon of`sideband recovery'. All the common generic forms of modulation are discussed including the very different case of `no-modulation' which applies in all forms of passive remote sensing. Whilst all are agreed that the radio spectrum should be used `efficiently', there is no quantitative measure of spectral efficiency which embraces all relevant aspects of spectral usage. These various aspects are dicussed. Finally a brief outline of some aspects of antennae are reviewed. It is pointed out that the recent introduction of so-called `active antennnae', which have properties unlike traditional passive antennae, has confused the interpretation of those ITU Radio Regulations which refer to antennae.

  17. Bilayer Measurement of Endoplasmic Reticulum Ca2+ Channels

    PubMed Central

    Bezprozvanny, Ilya

    2015-01-01

    Reconstitution of ion channels into planar lipid bilayers (also called black lipid membranes or BLM) is the most widely used method to conduct physiological studies of intracellular ion channels, including endoplasmic reticulum (ER) calcium (Ca2+) channels. The two main types of Ca2+ release channels in the ER membrane are ryanodine receptors (RyanRs) and inositol(1,4,5)-trisphosphate receptors (InsP3Rs). Use of the BLM reconstitution technique enabled the initial description of the functional properties of InsP3R and RyanR at the single-channel level more than 20 years ago. Since then, BLM reconstitution methods have been used to study physiological modulation and to perform structure–function analysis of these channels, and to study pathological changes in the function of InsP3R and RyanR in various disease states. The BLM technique has also been useful for studies of other intracellular Ca2+ channels, such as ER Ca2+ leak presenilin channels and NAADP-gated lysosomal Ca2+ channels encoded by TPC2. In this article, basic protocols used for BLM studies of ER Ca2+ channels are introduced. PMID:24184754

  18. The upper ionosphere of Mars: A comparison of Mariner 9 radio occultation and MARSIS measurements

    NASA Astrophysics Data System (ADS)

    Vogt, M. F.; Withers, P.

    2014-12-01

    Electron density profiles of the Martian ionosphere show that the dayside ionosphere can be divided into two regions, one controlled by diffusion where the electron density decreases exponentially with altitude, and one at lower altitudes in which electron densities follow the basic predictions of Chapman theory. Models and data generally place the transition between the two regions near 200 km, but measurements from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) on Mars Express suggest that the transition occurs closer to 275 km. This altitude also marks the transition between the two MARSIS operational modes: the electron density above 275 km is determined from local plasma frequency measurements, while at lower altitudes it is obtained remotely from radio sounding. In this study we compare Mariner 9 radio occultation electron density profiles to the Němec et al. (2011) empirical model based on MARSIS data to evaluate the accuracy and biases of the MARSIS measurements. We investigate whether the Mariner 9 electron density profiles can be well described by the Němec et al. (2011) empirical model. We also identify the typical Mariner 9 transition region altitude, as measured by a change in scale height, to determine whether the transition at 275 km observed by MARSIS is a consequence of differences in the two MARSIS operational modes or is physically meaningful. The Mariner 9 radio occultation measurements of the Martian ionosphere have recently been digitized and reanalyzed and are ideal for our study because they extend as high as 400 km, spanning the transition region between the two MARSIS data types, while similar measurements from Mars Global Surveyor rarely extend beyond 200 km. Our findings will help resolve discrepancies between the two MARSIS data types and validate the MARSIS electron density measurements.

  19. The New Horizons Bistatic Radio Science Experiment to Measure Pluto's Surface Properties

    NASA Astrophysics Data System (ADS)

    Linscott, I.; Hinson, D. P.; Tyler, G. L.; Vincent, M.

    2014-12-01

    The New Horizons (NH) payload includes a Radio Science Experiment (REX) for principally occultation and radiometric measurement of Pluto and Charon during the flyby in July 2015. The REX subsystem is contained, together with the NH X-Band radio, in the Integrated Electronics Module (IEM) in the New Horizons spacecraft. REX samples and records in two polarizations both total RF power in a 4.5 MHz bandwidth, and radio signal waveforms in a narrow, 1.25 kHz band. During the encounter, and at closest approach to Pluto, the spacecraft's high gain antenna (HGA) will scan Pluto's equatorial latitudes, intercepting the specular zone, a region near Pluto's limb that geometrically favors reflection from the earth's direction. At the same time, a powerful 80 kW uplink beacon will have been transmitted from earth by the DSN to arrive at Pluto during spacecraft closest approach. Reflection from the specular zone is expected to be sufficiently strong to observe the bistatic uplink in the REX narrowband record. Measurements in both polarizations will then be combined to yield surface reflectivity, roughness and limits on the dielectric constant in the specular zone.

  20. Over-The-Air Measurements of Small Radio Terminals Using Spheroidal Coupler

    NASA Astrophysics Data System (ADS)

    Teshirogi, Tasuku; Kawamura, Takashi; Yamamoto, Aya; Sakuma, Toru; Nago, Yasuhiko; Mattori, Shigenori

    We propose a novel method for measuring the matched total radiated power (TRP) and matched total radiated sensitivity (TRS) of small radio terminals, called over-the-air (OTA) measurement, using a spheroidal coupler (SC). To measure these parameters accurately in a multiple-reflection environment, such as in an SC, we developed two key techniques, i.e. displacement method and reflection compensation method, and verified their effectiveness by several simulations and fundamental experiments on a test transmitter. We also describe an absolute method for measuring antenna radiation efficiency using the displacement method. Furthermore, we describe TRP and TRS measurements for actual UMTS (Universal Mobile Telecommunications System) terminals, and verify that the proposed method achieves quick measurements with good accuracy. The SC provides a compact, low-cost OTA measurement system with high sensitivity and high speed.

  1. Astrometric measurements of radio sources optical counterparts. OATo campaign: some final results

    NASA Astrophysics Data System (ADS)

    Bucciarelli, B.; Crosta, M. T.; Lattanzi, M. G.; Massone, G.; Morbidelli, R.; Jin, W.; Tang, Z., Deiana, G.; Poma, A.; Uras, S.

    2005-01-01

    Positions to better than 0.1"" of optical counterparts of some extragalactic radio sources taken from the IERS list are obtained via photographic astrometry. These objects are part of an observational campaign carried out at Torino Observatory (OATo) a few years ago with the aim of improving the ERF optical link. The full data archive (about 350 plates for approximately 90 radio sources) has been digitized at Cagliari Observatory with the automatized Torino-Cagliari Measuring Machine (TO.CA.M.M.). Some preliminary results on the astrometric quality of these data have already been published; presently the reduction procedures are being revised also in view of high-quality reference catalogues recently made available and all the digitized images are consistently being re-calibrated. In this contribution we present some final results on the stability of TO.CA.M.M. discuss the adopted calibration methods and give precise positions in the ICRF system of a few selected targets.

  2. 47 CFR 22.725 - Channels for conventional rural radiotelephone stations and basic exchange telephone radio systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... frequencies in MegaHertz. Centraloffice Rural subscriber Centraloffice Rural subscriber VHF Channels 152.03... the Virgin Islands, channels in the 154.04-154.46 MHz and 161.40-161.85 MHz frequency ranges may...

  3. 47 CFR 22.725 - Channels for conventional rural radiotelephone stations and basic exchange telephone radio systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... frequencies in MegaHertz. Central office Rural subscriber Central office Rural subscriber VHF Channels 152.03... the Virgin Islands, channels in the 154.04-154.46 MHz and 161.40-161.85 MHz frequency ranges may...

  4. 47 CFR 22.725 - Channels for conventional rural radiotelephone stations and basic exchange telephone radio systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... frequencies in MegaHertz. Central office Rural subscriber Central office Rural subscriber VHF Channels 152.03... the Virgin Islands, channels in the 154.04-154.46 MHz and 161.40-161.85 MHz frequency ranges may...

  5. 47 CFR 22.725 - Channels for conventional rural radiotelephone stations and basic exchange telephone radio systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... frequencies in MegaHertz. Centraloffice Rural subscriber Centraloffice Rural subscriber VHF Channels 152.03... the Virgin Islands, channels in the 154.04-154.46 MHz and 161.40-161.85 MHz frequency ranges may...

  6. 47 CFR 22.725 - Channels for conventional rural radiotelephone stations and basic exchange telephone radio systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... frequencies in MegaHertz. Centraloffice Rural subscriber Centraloffice Rural subscriber VHF Channels 152.03... the Virgin Islands, channels in the 154.04-154.46 MHz and 161.40-161.85 MHz frequency ranges may...

  7. VLF Radio Field Strength Measurement of power line carrier system in San Diego, California

    NASA Technical Reports Server (NTRS)

    Mertel, H. K.

    1981-01-01

    The radio frequency interference (RFI) potential was evaluated for a Powerline Carriet (PLC) installed in San Diego which monitors the performance of an electrical power system. The PLC system generated 30 amperes at 5.79 kHz. The RF radiations were measured to be (typically) 120 dBuV/m at the beginning of the 12 kV powerline and 60 dBuV/m at the end of the powerline. The RF fields varied inversely as the distance squared. Measurements were also performed with a 45 kHz PLC system. The RF fields were of similar amplitude.

  8. Generalized evaluation of environmental radioactivity measurements with UncertRadio Part II: Methods with linear unfolding.

    PubMed

    Kanisch, Günter

    2016-04-01

    For the software UncertRadio (UR), designed for a generalized evaluation of environmental radioactivity measurements, the evaluation procedure is given if least squares-fitting is involved. UR is then applied to the simultaneous detection of Strontium-89 and Strontium-90. This method is easily extendable over recent approaches based on the evaluation of two measurements, i.e. on two unknowns with two equations. The evaluation within UR includes ISO 11929 decision thresholds and detection limits. The propagation of distributions with MC simulation is described. PMID:26773816

  9. Radio science

    NASA Astrophysics Data System (ADS)

    1984-10-01

    Radio science experiments use electromagnetic waves to probe or study the solar system. Three major research areas were identified within this discipline: radio astronomy, radar astronomy, and celestial mechanics. Radio astronomy (or radiometry) is the detection and measurement of naturally produced radio frequency emissions. Sources include surfaces, atmospheres, rings, and plasmas. Radar astronomy is the observation of man-made signals after their interaction with a target. Both imaging and non-imaging results. Celestial mechanics includes all studies related to the motions of (and gravity fields of) bodies within the solar system. These should not be considered rigid separations, but aid in the discussion of the data sets.

  10. Near-Sun solar wind consequences of solar structure and dynamic phenomena observed by radio scintillation measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1994-01-01

    Since radio propagation measurements using either natural or spacecraft radio signals are used for probing the solar wind in the vicinity of the sun, they represent a key tool for studying the interplanetary consequences of solar structure and dynamic phenomena. New information on the near sun consequences was obtained from radio scintillation observations of coherent spacecraft signals. The results covering density fluctuations, fractional density fluctuations, coronal streamers, heliospheric current sheets, coronal mass ejections and interplanetary shocks are reviewed. A joint ICE S-band (13 cm wavelength) Doppler scintillation measurement with the SOHO white-light coronograph (LASCO) is described.

  11. GIS technology for spatiotemporal measurements of gully channel width evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field observations of gully evolution in active croplands have often revealed the presence of a less erodible soil layer that is typically associated with tillage practices (i.e. plowpan). This more erosion-resistant layer limits channel incision forcing the gully channel to expand laterally through...

  12. The radio waves & thermal electrostatic noise spectroscopy (SORBET) experiment on BepiColombo/MMO/PWI and the importance of radio HF measurements at Mercury

    NASA Astrophysics Data System (ADS)

    Moncuquet, M.; Matsumoto, H.; Bougeret, J.-L.; Issautier, K.; Kojima, H.; Maksimovic, M.; Meyer-Vernet, N.; Zarka, P.

    SORBET (Spectroscopie des Ondes Radio & du Bruit Electrostatique Thermique) is a radio HF spectrometer designed for the radio and Plasma Waves Instrument (PWI) onboard BepiColombo/Mercury Magnetospheric Orbiter (MMO), which performs remote and in-situ measurements of waves (electromagnetic and electrostatic). Technically, SORBET includes a plasma wave spectrometer, with two E-field inputs from the two perpendicular electric antennas and one B-field input from a search coil, in the range 2.5 kHz - 640 kHz. This frequency band includes the local gyrofrequency and plasma frequency expected on most part of the MMO orbits. SORBET also includes a higher frequency radio receiver for remote sensing in the range 500kHz-10.2MHz. Owing to its capabilities, SORBET will be able to address the following scientific objectives: High resolution mapping ( 30 km) of electron density and temperature in the solar wind and Hermean magnetosphere and exo-ionosphere, via the technique of Quasi-Thermal Noise (QTN) spectroscopy. It is noteworthy that the QTN technique is weakly sensitive to spacecraft potential and photoelectron perturbations, a point highly in favour of this technique at Mercury. These QTN measurements will be determinant for the dynamic modeling of the magnetosphere and will provide a fundamental input for the chemistry of cold ionized species (Na, K, O ...) in Mercury's environment. Detection and study of Hermean radio emissions, including possible cyclotron emissions (up to 10-20 kHz) from mildly energetic electrons in highly magnetized (polar?) regions, and possible synchrotron radiation (up to a few MHz?) from more energetic electrons. Monitoring of solar radio emissions up to ~10 MHz, in order to create a solar activity index from the view point of Mercury, allowing to correlate it with the Hermean magnetospheric response. We propose to further discuss these scientific objectives and to underline that such radio HF measurements are a clue for understanding the structure and dynamics (regions, boundaries, acceleration, dissipation processes ...) of the Hermean magnetosphere/exo-ionosphere system and its interaction with the solar wind.

  13. Measurements and modeling of radio frequency field structures in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Lee, Charles A.; Chen, Guangye; Arefiev, Alexey V.; Bengtson, Roger D.; Breizman, Boris N.

    2011-01-01

    Measurements of the radio frequency (rf) field structure, plasma density, and electron temperature are presented for a 1 kW argon helicon plasma source. The measured profiles change considerably when the equilibrium magnetic field is reversed. The measured rf fields are identified as fields of radially localized helicon waves, which propagate in the axial direction. The rf field structure is compared to the results of two-dimensional cold plasma full-wave simulations for the measured density profiles. Electron collision frequency is adjusted in the simulations to match the simulated and measured field profiles. The resulting frequency is anomalously high, which is attributed to the excitation of an ion-acoustic instability. The calculated power deposition is insensitive to the collision frequency and accounts for most of the power supplied by the rf-generator.

  14. An interlaboratory comparison programme on radio frequency electromagnetic field measurements: the second round of the scheme.

    PubMed

    Nicolopoulou, E P; Ztoupis, I N; Karabetsos, E; Gonos, I F; Stathopulos, I A

    2015-04-01

    The second round of an interlaboratory comparison scheme on radio frequency electromagnetic field measurements has been conducted in order to evaluate the overall performance of laboratories that perform measurements in the vicinity of mobile phone base stations and broadcast antenna facilities. The participants recorded the electric field strength produced by two high frequency signal generators inside an anechoic chamber in three measurement scenarios with the antennas transmitting each time different signals at the FM, VHF, UHF and GSM frequency bands. In each measurement scenario, the participants also used their measurements in order to calculate the relative exposure ratios. The results were evaluated in each test level calculating performance statistics (z-scores and En numbers). Subsequently, possible sources of errors for each participating laboratory were discussed, and the overall evaluation of their performances was determined by using an aggregated performance statistic. A comparison between the two rounds proves the necessity of the scheme. PMID:25205832

  15. Study of Cassini Radio Occultation Sensitivity to Atmospheric Constituents Based on New Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Steffes, P. G.; Mohammed, P. N.

    2002-09-01

    As described in an accompanying paper by Mohammed and Steffes (BAAS, DPS-02), new laboratory measurements of the 9 mm opacity of phosphine and ammonia under simulated conditions for Saturn have recently been completed. Using these results, plus previous results for the centimeter-wavelength opacity of these constituents (see, e.g., Hoffman et al. ICARUS 152, 172-184, 2001), studies of the sensitivity of the Cassini radio link to atmospheric constituents encountered during radio occultations are being conducted. Preliminary results suggest that for orbits with favorable occultation geometry, the Ka-Band (32 GHz, or 9.3 mm) downlink will encounter measurable absorption from PH3 at the 0.5 Bar pressure level, and will be capable of profiling phosphine down to altitudes with pressures up to 0.8 Bars, where the opacity from ammonia would then dominate followed by loss of signal (LOS) at about 0.9 Bars. As with the Voyager 2 radio occultation experiment, the X-Band (8.4 GHz, or 3.6 cm) downlink is expected to encounter measurable absorption at the 0.8 Bar pressure level from both PH3 and NH3, before losing the signal at the 1 Bar pressure level, and the S-Band (2.3 GHz or 13 cm) downlink is expected to encounter measurable absorption from both PH3 and NH3 at the 1.1 Bar pressure level with profiling capability down to the 1.6 Bar pressure level. A computer model to simulate the ray paths and attenuation encountered during Saturn occultations is currently under development. This work is supported by the NASA Planetary Atmospheres Program under grant NAG5-12122.

  16. Measurement of the linear polarization of channeling radiation in silicon and diamond

    SciTech Connect

    Rzepka, M.; Buschhorn, G.; Diedrich, E.; Kotthaus, R.; Kufner, W.; Roessl, W.; Schmidt, K.H.; Hoffmann-Stascheck, P.; Genz, H.; Nething, U.; Richter, A.; Sellschop, J.P.F.

    1995-07-01

    Utilizing 90{degree} Compton scattering the linear polarization of channeling radiation produced at the superconducting accelerator S-DALINAC with 62 MeV electrons in silicon and diamond has been measured in the energy range between 50 and 400 keV. Planar channeling radiation due to transitions involving transversal bound as well as unbound states is completely linearly polarized perpendicular to the channeling plane. Axial channeling radiation does not show linear polarization.

  17. Patch-clamp measurement of ICRAC and ORAI channel activity.

    PubMed

    Alansary, Dalia; Kilch, Tatiana; Holzmann, Christian; Peinelt, Christine; Hoth, Markus; Lis, Annette

    2014-06-01

    Depletion of internal Ca(2+) stores activates store-operated Ca(2+) channels. The most prominent members of this class of channels are Ca(2+) release-activated Ca(2+) (CRAC) channels, which are present in a variety of cell types including immune cells. CRAC channels are composed of ORAI proteins, which are activated by endoplasmic reticulum-bound STIM proteins on Ca(2+) store depletion. The underlying Ca(2+) current is called ICRAC, which is required for many cellular functions including T-cell activation, mast cell activation, Ca(2+)-dependent gene expression, and refilling of internal Ca(2+) stores. To analyze ICRAC or the Ca(2+) current through heterologously expressed ORAI channels, whole-cell patch clamp is the technique of choice. It allows the direct analysis of ion currents through CRAC/ORAI channels. The patch-clamp technique has been used to determine selectivity, permeability, rectification, inactivation, and several other biophysical and pharmacological properties of the channels, and is the most direct and reliable technique to analyze ICRAC. PMID:24890214

  18. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    SciTech Connect

    Woo, R.; Sjogren, W.L.; Kliore, A.J. ); Luhmann, J.G. ); Brace, L.H. )

    1989-02-01

    This paper presents the first S-band (2.3 GHz) radio scintillations observed in the ionosphere of Venus and discovered when the Pioneer Venus Orbiter spacecraft traversed the ionosphere of Venus. In situ plasma measurements as well as propagation calculations confirm that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. While these topside plasma irregularities have not been studied before, simultaneous magnetic field measurements presented here reveal that they are associated with the penetration of large-scale magnetic fields in the ionosphere. Previous studies based on extensive magnetic field measurements have shown that the presence of large-scale magnetic fields occurs in the subsolar region when the solar wind dynamic pressure exceeds the ionospheric plasma pressure. As with the large-scale magnetic fields, the disturbed plasma and resulting scintillations are therefore a manifestation of high-dynamic solar wind interaction with the ionosphere. Since the scintillations only occur in the subsolar region of Venus, the global morphology of ionospheric scintillations at Venus is different from that of the terrestrial ionosphere, where scintillations are observed in both polar and equatorial regions, with peaks occurring during nighttime. This difference apparently stems from the fact that Venus is not a magnetic planet. The authors also demonstrate that the disturbed plasma produced by the high-dynamic solar wind interaction can be remotely sensed by scintillations during radio occultation measurements, that is, when the spacecraft is outside the ionosphere.

  19. Induced current measurements in whole body exposure condition to radio frequency electric fields.

    PubMed

    Wilén, J; Mild, K H; Paulsson, L E; Anger, G

    2001-12-01

    The current induced in a human exposed to radio frequency electric fields has been studied by the use of a stripline, in which whole body exposure to vertical electric fields (3-27 MHz) can be produced. We have examined two different techniques to measure the induced current; parallel plate meters and current probes. When the subject has good connection to the ground, the choice of measurement technique is not crucial, since there are only minor differences in readings between the instruments. But when the subject is wearing shoes and/or standing on a wooden plate, the difference between the instruments increases considerably. The difference can mainly be explained by the capacitive coupling between the parallel plate meters and the ground; therefore, the current probes are preferred when the subject does not have perfect contact with the ground. Since the International Commission on Non-Ionizing Radiation Protection guidelines demand measurements of induced current in humans exposed to radio frequency fields in the range of 10-110 MHz, the importance of finding an appropriate measurement procedure becomes apparent. PMID:11748673

  20. HF Channel Availability under Ionospheric Disturbances: Model, Method and Measurements as Contributions

    NASA Astrophysics Data System (ADS)

    Tulunay, E.; Senalp, E. T.; Tulunay, Y.; Warrington, E. M.; Sari, M. O.

    2009-04-01

    A small group at METU has been developing data driven models in order to forecast some critical parameters, which affect the communication and navigation systems, since 1990. The background on the subjects supports new achievements in terms of theoretical and experimental basis contributing the COST 296 WG2 activities. This work mentions the representative contributions. (i) A method has been proposed for the assessment of HF Channel Availability under ionospheric disturbances. Signal to Noise Ratio (SNR), Doppler Spread and Modified Power Delay Spread were considered. The study relates the modem performance to ionospheric disturbances. Ionospheric disturbance was characterised by Disturbance Storm Type (DST) index. Radar data including Effective Multipath Spread, Composite Doppler Spread and SNR values were obtained from the experiment conducted between Leicester UK (52.63° N; 1.08° W) and Uppsala, Sweden (59.92° N; 17.63° E) in the year 2001. First, joint probability density function (PDF) of SNR, Doppler Spread, and Effective Multipath Spread versus DST were considered. It was demonstrated by determining the conditional PDFs, and by using Bayes' Theorem, that there were dependencies between DST and the above mentioned parameters [Sari, 2006]. Thus, it is concluded that the availability of the HF channel is a function of DST. As examples of modem characterizations, Military Standards were considered. Given a magnetic condition, the modem availability was calculated. The model developed represents the ionospheric HF channel, and it is based on a stochastic approach. Depending on the new experimental data, the conditional PDFs could be updated continuously. The HF channel availability under various ionospheric Space Weather (SW) conditions can be determined using the model. The proposed method is general and can include other indices as well. The method can also be applied to a variety of other processes. (ii) The effects of space weather conditions on the variation of group range and line-of-sight Doppler velocity of the HF Radar echo signal were investigated. HF radar system under ionospheric disturbances has been identified globally and some operational suggestions have been presented. It is possible for the HF radar operator to estimate the possible skip distance and possible single hop group ranges for the given frequencies of 11 MHz and 14 MHz [Buyukpabuscu, 2007]. (iii) The measurements over the HF band during the 29 March 2006 total solar eclipse in Antalya (36° N; 30° E) Turkey was conducted from the channel occupancy and atmospheric noise points of view. The whole HF band ranging from 1 to 30 MHz has been swept using 10 kHz peak and 200 Hz average detectors of a certified EMI receiver equipped with a calibrated active monopole antenna. The changes in the atmospheric noise during the eclipse were reported [Tulunay, 2006]. The model based, theoretical and experimental works mentioned are promising and have potential for future research and developments. References Buyukpabuscu S.O. (2007), System Identification with Particular Interest On The High Frequency Radar Under Ionospheric Disturbances, MS Thesis, Electrical and Electronics Eng., Middle East Technical Univ., Ankara, Turkey, February 2007. Sari M.O. (2006), A New Approach For The Assessment Of Hf Channel Availability Under Ionospheric Disturbances, MS Thesis, Electrical and Electronics Eng., Middle East Technical Univ., Ankara, Turkey, September 2006. Tulunay E., E. M. Warrington, Y. Tulunay, Y. Bahadırlar, A.S. Türk, R. Çaputçu, T. Yapıcı , E.T. Şenalp (2006), Propagation Related Measurements during Three Solar Eclipses in Turkey, IET 10th International Conference on Ionospheric Radio Systems & Techniques, IRST 2006, 18-21 July 2006, London, UK.

  1. Measurement of Single Channel Currents from Cardiac Gap Junctions

    NASA Astrophysics Data System (ADS)

    Veenstra, Richard D.; Dehaan, Robert L.

    1986-08-01

    Cardiac gap junctions consist of arrays of integral membrane proteins joined across the intercellular cleft at points of cell-to-cell contact. These junctional proteins are thought to form pores through which ions can diffuse from cytosol to cytosol. By monitoring whole-cell currents in pairs of embryonic heart cells with two independent patch-clamp circuits, the properties of single gap junction channels have been investigated. These channels had a conductance of about 165 picosiemens and underwent spontaneous openings and closings that were independent of voltage. Channel activity and macroscopic junctional conductance were both decreased by the uncoupling agent 1-octanol.

  2. Rayleigh beacon for measuring the surface profile of a radio telescope

    NASA Astrophysics Data System (ADS)

    Padin, S.

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A ?=3 mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.

  3. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Sjogren, William L.; Kliore, Arvydas J.; Luhmann, Janet G.; Brace, Larry H.

    1989-01-01

    The observation of S-band (2.3 GHz) radio scintillations in the ionosphere of Venus by the Pioneer Venus Orbiter is reported. In situ plasma measurements and propagation calculations show that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. It is suggested that these topside plasma irregularities are associated with the penetration of large-scale magnetic fields in the ionosphere. It is found that the disturbed plasma and the scintillations are a manifestation of high-dynamic solar wind interaction with the ionosphere.

  4. Rayleigh beacon for measuring the surface profile of a radio telescope.

    PubMed

    Padin, S

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A ?=3??mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds. PMID:25607971

  5. The detection of the ionospheric irregularities by GNSS signal and the incoherent scatter radio measurements

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Shagimuratov, Irk; Krankowski, Andrzej; Sieradsky, Rafal; Zakharenkova, Irina; Rietveld, Michael; Kapcia, Jacek

    2013-04-01

    The high-latitude ionosphere has a very complicated structure and high dynamics. The ionospheric irregularities can produce scintillations of radio waves that occur predominantly in the ionosphere F-layer. The strong fluctuations can influence on the performance of the different space communication and navigation radio systems. The fluctuations of GPS/GLONASS signals are caused by the ionospheric irregularities with spatial dimensions more than 10 km. These structures can be detected by high potential incoherent scatter radars. It was proposed and carried out at the beginning of June 2012 experiment for a detailed study of the nature of the ionospheric irregularities, influencing on GPS/GLONASS signals parameters, by incoherent scatter and trans-ionospheric radio measurements simultaneously. The EISCAT facilities position provides the unique opportunity to study the ionospheric irregularities' parameters associated with TEC fluctuations and GPS/GLONASS signals scintillations. The EISCAT heating facility provides unique possibility to generate the artificial ionospheric irregularities and to estimate the impact factor of these irregularities on GPS/GLONASS signals transionospheric propagation. In order to detect the ionosphere irregularities it is used the IS radar measurements (electron density and plasma temperatures profiles) and simultaneously registered on EISCAT site amplitude and phase fluctuations in GPS/GLONASS signals by use of the Javad multi-constellation GPS/GLONASS receiver with high samples rate (100 Hz) and special scintillation GPS receiver PolaRxS PRO that dedicated to ionospheric monitoring and space weather applications and provides TEC and S4 scintillation index measurements. The low frequency fluctuations can be directly measured due to the electron density changes along the radio ray path between a GPS/GLONASS satellite and a ground-based receiver on EISCAT site. The raw data (under scintillating conditions) obtained by use of the high samples rate GPS/GLONASS receiver are processed in order to derive the scintillation parameters. The practical aspect of this investigation is a detailed study of nature and impact level of the ionospheric irregularities that can influence on the GPS/GLONASS performance especially at high latitudes and during geomagnetically disturbed period and to obtain new knowledge that may improve the reliability of the global navigation systems in Arctic and Antarctic regions. The authors are grateful to the EISCAT Scientific Association for observing time on the EISCAT facilities within the framework of Peer-reviewed Program.

  6. Generalized evaluation of environmental radioactivity measurements with UncertRadio. Part I: Methods without linear unfolding.

    PubMed

    Kanisch, Günter

    2016-04-01

    It is shown how a generalized evaluation of a large variety of environmental radioactivity measurements, without and with using linear unfolding, can be performed with a single program, UncertRadio (UR). Using a function parser allows deriving numerical partial derivatives for ISO GUM compatible uncertainty propagation. The evaluation within UR is extended to include ISO 11929 decision thresholds and detection limits. Alternatively, propagation of distributions with MC simulation is included. Part I gives an overview considering evaluations without using linear unfolding. PMID:26748020

  7. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    NASA Astrophysics Data System (ADS)

    Woo, R.; Sjogren, W. L.; Luhmann, J. G.; Kliore, A. J.; Brace, L. H.

    1989-02-01

    The observation of S-band (2.3 GHz) radio scintillations in the ionosphere of Venus by the Pioneer Venus Orbiter is reported. In situ plasma measurements and propagation calculations show that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. It is suggested that these topside plasma irregularities are associated with the penetration of large-scale magnetic fields in the ionosphere. It is found that the disturbed plasma and the scintillations are a manifestation of high-dynamic solar wind interaction with the ionosphere.

  8. Radio frequency coupling apparatus and method for measuring minority carrier lifetimes in semiconductor materials

    DOEpatents

    Johnston, Steven W.; Ahrenkiel, Richard K.

    2002-01-01

    An apparatus for measuring the minority carrier lifetime of a semiconductor sample using radio-frequency coupling. The measuring apparatus includes an antenna that is positioned a coupling distance from a semiconductor sample which is exposed to light pulses from a laser during sampling operations. A signal generator is included to generate high frequency, such as 900 MHz or higher, sinusoidal waveform signals that are split into a reference signal and a sample signal. The sample signal is transmitted into a sample branch circuit where it passes through a tuning capacitor and a coaxial cable prior to reaching the antenna. The antenna is radio-frequency coupled with the adjacent sample and transmits the sample signal, or electromagnetic radiation corresponding to the sample signal, to the sample and receives reflected power or a sample-coupled-photoconductivity signal back. To lower impedance and speed system response, the impedance is controlled by limiting impedance in the coaxial cable and the antenna reactance. In one embodiment, the antenna is a waveguide/aperture hybrid antenna having a central transmission line and an adjacent ground flange. The sample-coupled-photoconductivity signal is then transmitted to a mixer which also receives the reference signal. To enhance the sensitivity of the measuring apparatus, the mixer is operated to phase match the reference signal and the sample-coupled-photoconductivity signal.

  9. Direction of Arrival Measurements of Auroral Medium Frequency Burst Radio Emissions at Toolik Lake, AK

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J. W.; Hughes, J. M.; Weatherwax, A. T.; Ye, S.; Lummerzheim, D.

    2007-12-01

    MF burst is an impulsive radio emission of auroral origin detected by ground-based instruments approximately between 1,300 and 3,700 kHz, and associated with substorm onsets. Its exact generation mechanism is unknown, though it has been speculated that it arises from mode conversion radiation. To discover the generation mechanism and the relation of MF burst to auroral processes, Dartmouth has deployed radio interferometers in Alaska, Northern Canada, Greenland, and Antarctica, including a three-element interferometer deployed at Toolik Lake Field Station in Alaska in 2006. This instrument measured spectra, amplitudes, and directions of arrival (DOA's) of over 47 MF burst events occurring between November 30, 2006 and May 26, 2007. These represent the first DOA measurements ever reported for the impulsive MF burst phenomenon. Preliminary analysis shows that the events originated from a wide range of directions in the sky, with all azimuths represented in the distribution of DOA's. The DOA of each individual event is well-defined, however. Many events show apparent motion, with southward motions more common than northward among the subset of events analyzed so far. Some of the events were detected simultaneously on an interferometer deployed at Kaktovik, Alaska, 400 km away. The all-sky imager at Toolik Lake was also operational for some events. Further analysis of these data promises to reveal first information about the locations and motions of MF burst sources, a first step towards discovering the generation mechanism of this mysterious radio emission and its relation to auroral processes.

  10. Channel Bow in Boiling Water Reactors - Hot Cell Examination Results and Correlation to Measured Bow

    SciTech Connect

    Mahmood, S.T.; Lin, Y.P.; Dubecky, M.A.; Mader, E.V.

    2007-07-01

    An increase in frequency of fuel channel-control blade interference has been observed in Boiling Water Reactors (BWR) in recent years. Many of the channels leading to interference were found to bow towards the control blade in a manner that was inconsistent with the expected bow due to other effects. The pattern of bow appeared to indicate a new channel bow mechanism that differed from the predominant bow mechanism caused by differential growth due to fast-fluence gradients. In order to investigate this new type of channel bow, coupons from several channels with varying degrees of bow were returned to the GE Vallecitos Nuclear Center (VNC) for Post-Irradiation Examination (PIE). This paper describes the characteristics of channel corrosion and hydrogen pickup observed, and relates the observations to the channel exposure level, control history, and measured channel bow. The channels selected for PIE had exposures in the range of 36-48 GWd/MTU and covered a wide range of measured bow. The coupons were obtained at 4 elevations from opposing channel sides adjacent and away from the control blade. The PIE performed on these coupons included visual examination, metallography, and hydrogen concentration measurements. A new mechanism of control-blade shadow corrosion-induced channel bow was found to correlate with differences in the extent of corrosion and corresponding differences in the hydrogen concentration between opposite sides of the channels. The increased corrosion on the control blade sides was found to be dependent on the level of control early in the life of the channel. The contributions of other potential factors leading to increased channel bow and channel-control blade interference are also discussed in this paper. (authors)

  11. Magnetization of the ionospheres of Venus and Mars - Results from radio occultation measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Kliore, Arvydas J.

    1991-01-01

    Remote sensing radio occultation measurements are used here to study magnetization of the ionospheres of Venus and Mars. For Venus, the measurements yield results on frequency of occurrence of magnetization during solar maximum that are similar to those obtained from Pioneer Venus in situ magnetic field measurements. During solar minimum, magnetization of the Venus ionosphere is more pervasive than at solar maximum. Magnetization extends to higher solar zenith angles and appears stronger than at solar maximum. These results confirm that during solar minimum the high solar wind dynamic pressure state is more prevalent at Venus because the ionospheric plasma pressure is weaker than at solar maximum. Comparison of a large number of electron density profiles of Mars with those of Venus shows an absence of the ledge and disturbed topside plasma observed in the Venus profiles. These results do not constitute evidence against magnetization of the ionosphere of Mars.

  12. Method of measuring nitric oxide release by vascular endothelial cells grown in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Hosseinpour, S.; Liu, A. C.; Barakat, A. I.; Choy, J. C.; Gray, B. L.

    2014-03-01

    In this paper, a simple and versatile method is presented which enables detection of nitric oxide (NO) released from vascular endothelial cells (ECs) cultured in microfluidic structures. The culturing system and NO measurement method allow cell shape to be controlled in a non-invasive manner using microfluidic structures while NO release is monitored for cell shape versus function studies. The culturing system consists of arrays of polydimethylsiloxane (PDMS) fluidic channels 120 micrometers in depth and ranging from 100 micrometers to 3 mm in width. The number of channels in each array is varied to yield a constant cell culture surface area (75 mm2) independent of channel width. The channel surfaces are collagen-coated and ECs are cultured to confluence within the channels. A cell scraper is then used to scrape extraneous cells cultured between channels, and NO measurements are made 18 to 24 hours later. A chemiluminescence-based sensor system (NOA 280i, Sievers NO Analyzer) is utilized to measure sample NO. Initial results indicate that NO concentrations can be measured from different microfluidic channel-containing samples using this method. It is shown that there is no significant difference in NO concentration derived from channels of different widths even though the degree of cell elongation varies due to physical constraint by microfluidic channel walls. However, cells treated with TNF? release more NO than untreated cells in fluidic channels, which is comparable to the function of ECs cultured in conventional culturing systems such as culturing dishes.

  13. Spectral-Selective Radiometer Unit with Radio-Interference Protection

    NASA Astrophysics Data System (ADS)

    Grenkov, S. A.; Kol'tsov, N. E.

    2015-12-01

    We consider the operation principle of a spectral-selective radiometer unit with a bandwidth of up to 1 GHz, which calculates the spectra of the signals received by the antenna in real time with the subsequent exclusion of spectral components at the radio-interference frequencies. The latter allows one to perform radiometric measurements in continuum when exposed to radio-frequency interference without using the filtering methods of its selection in the widedband radiometer receiving channel. Under the radio-interference action, the observation results confirm the high accuracy of the radiometric measurements in continuum, which were conducted using the radio telescopes of the "Kvazar-KVO" complex.

  14. The Atacama Cosmology Telescope: measuring radio galaxy bias through cross-correlation with lensing

    NASA Astrophysics Data System (ADS)

    Allison, Rupert; Lindsay, Sam N.; Sherwin, Blake D.; de Bernardis, Francesco; Bond, J. Richard; Calabrese, Erminia; Devlin, Mark J.; Dunkley, Joanna; Gallardo, Patricio; Henderson, Shawn; Hincks, Adam D.; Hlozek, Renée; Jarvis, Matt; Kosowsky, Arthur; Louis, Thibaut; Madhavacheril, Mathew; McMahon, Jeff; Moodley, Kavilan; Naess, Sigurd; Newburgh, Laura; Niemack, Michael D.; Page, Lyman A.; Partridge, Bruce; Sehgal, Neelima; Spergel, David N.; Staggs, Suzanne T.; van Engelen, Alexander; Wollack, Edward J.

    2015-07-01

    We correlate the positions of radio galaxies in the FIRST survey with the cosmic microwave background lensing convergence estimated from the Atacama Cosmology Telescope over 470 deg2 to determine the bias of these galaxies. We remove optically cross-matched sources below redshift z = 0.2 to preferentially select active galactic nuclei (AGN). We measure the angular cross-power spectrum C_l^{κ g} at 4.4σ significance in the multipole range 100 < l < 3000, corresponding to physical scales within ≈2-60 Mpc at an effective redshift zeff = 1.5. Modelling the AGN population with a redshift-dependent bias, the cross-spectrum is well fitted by the Planck best-fitting Λ cold dark matter cosmological model. Fixing the cosmology and assumed redshift distribution of sources, we fit for the overall bias model normalization, finding b(zeff) = 3.5 ± 0.8 for the full galaxy sample and b(zeff) = 4.0 ± 1.1(3.0 ± 1.1) for sources brighter (fainter) than 2.5 mJy. This measurement characterizes the typical halo mass of radio-loud AGN: we find log (M_halo / M_{⊙}) = 13.6^{+0.3}_{-0.4}.

  15. Measurements of Antenna Surface for Millimeter-Wave Space Radio Telescope

    NASA Astrophysics Data System (ADS)

    Kamegai, Kazuhisa; Tsuboi, Masato; Doi, Akihiro; Sato, Eiichi

    2011-06-01

    In the construction of a space radio telescope, it is essential to use materials with a low noise factor and high mechanical robustness for the antenna surface. We present the results of measurements of the reflection performance of two candidates for antenna surface materials for use in a radio telescope installed in a new millimeter-wave astronomical satellite, ASTRO-G. To estimate the amount of degradation caused by fluctuations in the thermal environment in the projected orbit of the satellite, a thermal cycle test was carried out for two candidates, namely, copper foil carbon fiber reinforced plastic (CFRP) and aluminum-coated CFRP. At certain points during the thermal cycle test, the reflection loss of the surfaces was measured precisely by using a radiometer in the 41-45 GHz band. In both candidates, cracks appeared on the surface after the thermal cycle test, where the number density of the cracks increased as the thermal cycle progressed. The reflection loss also increased in proportion to the number density of the cracks. Nevertheless, the loss of the copper foil surface met the requirements of ASTRO-G at the end of the equivalent life, whereas that of the aluminum-coated surface exceeded the maximal value in the requirement even before the end of the cycle.

  16. Frequency spectra of cosmic ray air shower radio emission measured with LOPES

    NASA Astrophysics Data System (ADS)

    Nigl, A.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bhren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blmer, J.; Bozdog, H.; Brancus, I. M.; Brggemann, M.; Buchholz, P.; Buitink, S.; Butcher, H.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hrandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kickelbick, D.; Kolotaev, Y.; Krmer, O.; Kuijpers, J.; Lafebre, S.; ?uczak, P.; Manewald, M.; Mathes, H. J.; Mayer, H. J.; Meurer, C.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschlger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schrder, F.; Sima, O.; Singh, K.; Stmpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.

    2008-09-01

    Aims: We wish to study the spectral dependence of the radio emission from cosmic-ray air showers around 100 PeV (1017 eV). Methods: We observe short radio pulses in a broad frequency band with the dipole-interferometer LOPES (LOFAR Prototype Station), which is triggered by a particle detector array named Karlsruhe Shower Core and Array Detector (KASCADE). LOFAR is the Low Frequency Array. For this analysis, 23 strong air shower events are selected using parameters from KASCADE. The radio data are digitally beam-formed before the spectra are determined by sub-band filtering and fast Fourier transformation. Results: The resulting electric field spectra fall off to higher frequencies. An average electric field spectrum is fitted with an exponential E?=K\\cdotexp (?/MHz/?) and ?=-0.0170.004, or alternatively, with a power law ??=K\\cdot?? and a spectral index of ?=-10.2. The spectral slope obtained is not consistent within uncertainties and it is slightly steeper than the slope obtained from Monte Carlo simulations based on air showers simulated with CORSIKA (Cosmic Ray Simulations for KASCADE). For the analyzed sample of LOPES events, we do not find any significant dependence of the spectral slope on the electric field amplitude, the azimuth angle, the zenith angle, the curvature radius, nor on the average distance of the antennae from the shower core position. But one of the strongest events was measured during thunderstorm activity in the vicinity of LOPES and shows the longest pulse length measured of 110 ns and a spectral slope of ?=-3.6. Conclusions: We show with two different methods that frequency spectra from air shower radio emission can be reconstructed on event-by-event basis, with only two dozen dipole antennae simultaneously over a broad range of frequencies. According to the obtained spectral slopes, the maximum power is emitted below 40 MHz. Furthermore, the decrease in power to higher frequencies indicates a loss in coherence determined by the shower disc thickness. We conclude that a broader bandwidth, larger collecting area, and longer baselines, as will be provided by LOFAR, are necessary to further investigate the relation of the coherence, pulse length, and spectral slope of cosmic ray air showers. Table 2 and Fig. 14 are only available in electronic form at http://www.aanda.org

  17. Rapid estimation of recharge potential in ephemeral-stream channels using electromagnetic methods, and measurements of channel and vegetation characteristics

    USGS Publications Warehouse

    Callegary, J.B.; Leenhouts, J.M.; Paretti, N.V.; Jones, C.A.

    2007-01-01

    To classify recharge potential (RCP) in ephemeral-stream channels, a method was developed that incorporates information about channel geometry, vegetation characteristics, and bed-sediment apparent electrical conductivity (??a). Recharge potential is not independently measurable, but is instead formulated as a site-specific, qualitative parameter. We used data from 259 transects across two ephemeral-stream channels near Sierra Vista, Arizona, a location with a semiarid climate. Seven data types were collected: ??a averaged over two depth intervals (0-3 m, and 0-6 m), channel incision depth and width, diameter-at-breast-height of the largest tree, woody-plant and grass density. A two-tiered system was used to classify a transect's RCP. In the first tier, transects were categorized by estimates of near-surface-sediment hydraulic permeability as low, moderate, or high using measurements of 0-3 m-depth ??a. Each of these categories was subdivided into low, medium, or high RCP classes using the remaining six data types, thus yielding a total of nine RCP designations. Six sites in the study area were used to compare RCP and ??a with previously measured surrogates for hydraulic permeability. Borehole-averaged percent fines showed a moderate correlation with both shallow and deep ??a measurements, however, correlation of point measurements of saturated hydraulic conductivity, percent fines, and cylinder infiltrometer measurements with ??a and RCP was generally poor. The poor correlation was probably caused by the relatively large measurement volume and spatial averaging of ??a compared with the spatially-limited point measurements. Because of the comparatively large spatial extent of measurement transects and variety of data types collected, RCP estimates can give a more complete picture of the major factors affecting recharge at a site than is possible through point or borehole-averaged estimates of hydraulic permeability alone. ?? 2007 Elsevier B.V. All rights reserved.

  18. Sub-micrometer fluidic channel for measuring photon emitting entities

    DOEpatents

    Stavis, Samuel M; Edel, Joshua B; Samiee, Kevan T; Craighead, Harold G

    2014-11-18

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  19. Measurement of Ensemble TRPV1 Ion Channel Currents Using Droplet Bilayers

    PubMed Central

    Vijayvergiya, Viksita; Acharya, Shiv; Wilson, Sidney P.; Schmidt, Jacob J.

    2015-01-01

    Electrophysiological characterization of ion channels is useful for elucidation of channel function as well as quantitative assessment of pharmaceutical effects on ion channel conductance. We used droplet bilayers to measure ensemble ion channel currents from membrane preparations made from TRPV1-expressing HEK cells. Conductance measurements showed rectification, activation by acid and capsaicin, and inhibition by capsazepine, SB 452533, and JNJ 17293212. We also quantitatively measured concentration-dependent inhibition of channel conductance through determination of capsazepine IC50 in agreement with previously published studies using patch clamp. These results, combined with the reduced apparatus and material requirements of droplet bilayers, indicate that this platform could be used for study of other physiologically relevant ion channels. PMID:26513481

  20. The Q/U Imaging Experiment: Polarization Measurements of Radio Sources at 43 and 95 GHz

    NASA Astrophysics Data System (ADS)

    Huffenberger, K. M.; Araujo, D.; Bischoff, C.; Buder, I.; Chinone, Y.; Cleary, K.; Kusaka, A.; Monsalve, R.; Næss, S. K.; Newburgh, L. B.; Reeves, R.; Ruud, T. M.; Wehus, I. K.; Zwart, J. T. L.; Dickinson, C.; Eriksen, H. K.; Gaier, T.; Gundersen, J. O.; Hasegawa, M.; Hazumi, M.; Miller, A. D.; Radford, S. J. E.; Readhead, A. C. S.; Staggs, S. T.; Tajima, O.; Thompson, K. L.; QUIET Collaboration

    2015-06-01

    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ˜480 such sources within QUIET’s four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30-40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources in Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%-20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps.

  1. Ion movement through gramicidin A channels. Interfacial polarization effects on single-channel current measurements.

    PubMed Central

    Andersen, O S

    1983-01-01

    Gramicidin A single-channel current-voltage characteristics were studied at low permeant ion concentrations and very high applied potentials. The purpose of these experiments was to elucidate the basis for the small, but definite, voltage dependence observed under these circumstances. It was found that this residual voltage dependence is a reflection of interfacial polarization effects, similar to those proposed by Walz et al. (Biophys. J. 9:1150-1159). It will be concluded that there exists an effectively voltage-independent step in the association reaction between a gramicidin A channel and the permeating ion. Some consequences of interfacial polarization effects for the analysis of conductance vs. activity relations will be discussed. PMID:6188501

  2. Optical positions of 22 radio stars measured by photoelectric astrolabe Mark-1 in Irkutsk

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Mei; Lu, Chun-Lin; Li, Dong-Ming; Xu, Jia-Yan

    2004-06-01

    The observation of star position for catalogue compiling had been made in Irkutsk for 5 years with the Chinese photoelectric astrolabe Mark-1 according to the agreement of scientific cooperation between CSAO and VS NIITRI. This cooperation has taken the advantage of combination of the large zenith distance (45°) of almucantar for the astrolabe Mark-1 with the high latitude (52°) for Irkutsk, which could eliminate the blind zone existing in declination measurements for all the astrolabe catalogues. Based on the cooperation, a star catalogue containing positions of 817 stars had been completed; besides, the positions of 22 radio stars had been measured precisely in both right ascension and declination, which are given in this paper.

  3. Measuring a Cherenkov ring in the radio emission from air showers at 110-190 MHz with LOFAR

    NASA Astrophysics Data System (ADS)

    Nelles, A.; Schellart, P.; Buitink, S.; Corstanje, A.; de Vries, K. D.; Enriquez, J. E.; Falcke, H.; Frieswijk, W.; Hrandel, J. R.; Scholten, O.; ter Veen, S.; Thoudam, S.; van den Akker, M.; Anderson, J.; Asgekar, A.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Best, P.; Bregman, J.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brggen, M.; Butcher, H. R.; Ciardi, B.; Deller, A.; Duscha, S.; Eislffel, J.; Fallows, R. A.; Garrett, M. A.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Mann, G.; Mevius, M.; Norden, M. J.; Paas, H.; Pandey-Pommier, M.; Pietka, G.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Rttgering, H.; Scaife, A. M. M.; Schwarz, D.; Smirnov, O.; Stappers, B. W.; Steinmetz, M.; Stewart, A.; Tagger, M.; Tang, Y.; Tasse, C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijnholds, S. J.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2015-05-01

    Measuring radio emission from air showers offers a novel way to determine properties of the primary cosmic rays such as their mass and energy. Theory predicts that relativistic time compression effects lead to a ring of amplified emission which starts to dominate the emission pattern for frequencies above ? 100 MHz. In this article we present the first detailed measurements of this structure. Ring structures in the radio emission of air showers are measured with the LOFAR radio telescope in the frequency range of 110-190 MHz. These data are well described by CoREAS simulations. They clearly confirm the importance of including the index of refraction of air as a function of height. Furthermore, the presence of the Cherenkov ring offers the possibility for a geometrical measurement of the depth of shower maximum, which in turn depends on the mass of the primary particle.

  4. Investigation of the plasmasphere electron content on the base of radio-measurements

    NASA Astrophysics Data System (ADS)

    Cherniak, I.; Zakharenkova, I.; Krankowski, A.

    2013-12-01

    The electron densities in plasmasphere are several orders of magnitude less than in ionosphere and the plasmasphere is often ignored at analysis and estimation of GPS TEC data, however the plasmaspheric contribution to the GPS TEC can became significant under certain conditions. This paper presents results of study of the plasmaspheric electron content variations for such cases - period of very low solar activity and during strong geomagnetic storm. Estimates of IEC can be retrieved as a result of integration of ionospheric electron density profiles (EDP). For this aim one can use EDPs derived from satellite radio occultation (RO) or ground-based radio-physical measurements. For case of the extended solar minimum of 23/24 cycle, 2009 the PEC was estimated by combination of GPS TEC observations and FORMOSAT-3/COSMIC RO measurements. It was analyzed the monthly medians of TEC and PEC for different seasons (equinoxes and solstices). Results shows that for mid-latitudinal points PEC estimates varied weakly with the time of a day and reached the value of several TECU for the condition of solar minimum. Percentage contribution of PEC to GPS TEC indicated the clear dependence from the time with maximal values (more than 50-60%) during night-time and lesser values (25-45%) during day-time. The variations of PEC during strong geomagnetic storms at November 2004 were estimated by combining of mid-latitude Kharkov Incoherent Scatter Radar observations and GPS TEC data. The comparison between two independent measurements was performed by analysis of the height-temporal distribution for specific point corresponded to the mid-latitudes of Europe. Percentage contribution of PEC to GPS TEC indicated the clear dependence from the time with maximal values (more than 70%) during night-time and smaller values (30-45%) during day-time for weak disturbance and quite time and rather high values during strong negative storm (up to 90%) with small changes in time. These changes can be explained by the competing effects of electric fields and winds which tend to raise the layer to the region with lower loss rate and movement of ionospheric plasma to protonosphere. The results of our investigations can be further used for GNSS applications as well as for long base low frequency radio astronomical facilities (like LOFAR) during high precision measurements campaigns.

  5. Emissive sheath measurements in the afterglow of a radio frequency plasma

    SciTech Connect

    Sheehan, J. P. Hershkowitz, N.; Barnat, E. V.; Weatherford, B. R.; Kaganovich, I. D.

    2014-01-15

    The difference between the plasma potential and the floating potential of a highly emissive planar surface was measured in the afterglow of a radio frequency discharge. A Langmuir probe was used to measure the electron temperature and an emissive probe was used to measure the spatial distribution of the potential using the inflection point in the limit of zero emission technique. Time-resolved measurements were made using the slow-sweep method, a technique for measuring time-resolved current-voltage traces. This was the first time the inflection point in the limit of zero emission was used to make time-resolved measurements. Measurements of the potential profile of the presheath indicate that the potential penetrated approximately 50% farther into the plasma when a surface was emitting electrons. The experiments confirmed a recent kinetic theory of emissive sheaths, demonstrating that late in the afterglow as the plasma electron temperature approached the emitted electron temperature, the emissive sheath potential shrank to zero. However, the difference between the plasma potential and the floating potential of a highly emissive planar surface data appeared to be much less sensitive to the electron temperature ratio than the theory predicts.

  6. New expansion rate measurements of the Crab nebula in radio and optical

    NASA Astrophysics Data System (ADS)

    Bietenholz, M. F.; Nugent, R. L.

    2015-12-01

    We present new radio measurements of the expansion rate of the Crab nebula's synchrotron nebula over a ˜30-yr period. We find a convergence date for the radio synchrotron nebula of CE 1255 ± 27. We also re-evaluated the expansion rate of the optical-line-emitting filaments, and we show that the traditional estimates of their convergence date are slightly biased. Using an unbiased Bayesian analysis, we find a convergence date for the filaments of CE 1091 ± 34 (˜40 yr earlier than previous estimates). Our results show that both the synchrotron nebula and the optical-line-emitting filaments have been accelerated since the explosion in CE 1054, but that the synchrotron nebula has been relatively strongly accelerated, while the optical filaments have been only slightly accelerated. The finding that the synchrotron emission expands more rapidly than the filaments supports the picture that the latter are the result of the Rayleigh-Taylor instability at the interface between the pulsar-wind nebula and the surrounding freely expanding supernova ejecta, and rules out models where the pulsar-wind bubble is interacting directly with the pre-supernova wind of the Crab's progenitor.

  7. Plan View and Profile Relations: Measuring Correlation Between Channel Profile and Network Morphology

    NASA Astrophysics Data System (ADS)

    Shelef, E.; Hilley, G. E.

    2010-12-01

    In this research, we explore the relationships between channel network attributes and the corresponding channel profile geometries using high-resolution digital topography and model-generated synthetic topographies. This combined analysis addresses one of the long-standing questions in geomorphology relating to the mechanistic significance of various plan-view channel network geometry measures. Statistically based numerical studies suggest that Hortonian measures of channel network architecture (e.g. bifurcation ratio, area ratio, and length ratio) describe virtually all possible network geometries, and so are not diagnostic when evaluating the origins of the geometry of a particular network. We further explore this hypothesis by examining the correlation between Hack exponent, the channel profile characteristics, and process changes (i.e debris flow vs. fluvial flows) within the landscape. Analysis of high resolution DEMs as well as modeled landscapes, suggests that the Hack exponent is likewise insensitive to changes in the channel profile concavity. In contrast, we find that changes in the concavity of channel profiles apparently impacts the spatial distribution of plan-view junction angles of joining stream segments throughout a catchment. In the context of previous work, this angle might be expected to be a function of the ratio between the slopes of the adjoined channels. Channel concavity determines downstream change in this ratio for channel segments throughout the basin, and so such a metric might be used to explicitly link profile channel geometries to plan-view network geometries. Because profile geometries may change with different advective mass transport processes, such a metric may provide a link between the processes that transport material across a landscape, the profile geometry of channels through which these flows traverse, and the overall drainage network geometry. Additional numerical and field data based analysis are required to further explore the sensitivity of the junction angle, as well as other measures, to process changes along the channel network.

  8. SHORT COMMUNICATION: Some considerations related to the evaluation of measurement uncertainty for complex-valued quantities in radio frequency measurements

    NASA Astrophysics Data System (ADS)

    Hall, B. D.

    2007-12-01

    Several issues are discussed that relate to the evaluation of measurement uncertainty for complex-valued quantities in radio frequency measurements. In situations where there is information about the magnitude of a complex quantity, but not phase, uniform distributions in the form of a disc or a ring may be appropriate representations for the uncertainty. Variance-covariance matrices for these distributions are given for use in bivariate uncertainty calculations. The situation in which an uncertainty statement is provided in polar coordinates is also discussed. Such uncertainty statements need to be transformed into the real-imaginary coordinate system for the preferred method of uncertainty calculation. A simple transformation procedure is described together with a method to assess its accuracy.

  9. Lunar occultation of the diffuse radio sky: LOFAR measurements between 35 and 80 MHz

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.; de Bruyn, A. G.; Wijnholds, S. J.; Brentjens, M.; Abdalla, F. B.; Asad, K. M. B.; Bernardi, G.; Bus, S.; Chapman, E.; Ciardi, B.; Daiboo, S.; Fernandez, E. R.; Ghosh, A.; Harker, G.; Jelic, V.; Jensen, H.; Kazemi, S.; Lambropoulos, P.; Martinez-Rubi, O.; Mellema, G.; Mevius, M.; Offringa, A. R.; Pandey, V. N.; Patil, A. H.; Thomas, R. M.; Veligatla, V.; Yatawatta, S.; Zaroubi, S.; Anderson, J.; Asgekar, A.; Bell, M. E.; Bentum, M. J.; Best, P.; Bonafede, A.; Breitling, F.; Broderick, J.; Brggen, M.; Butcher, H. R.; Corstanje, A.; de Gasperin, F.; de Geus, E.; Deller, A.; Duscha, S.; Eislffel, J.; Engels, D.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Griemeier, J.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Hrandel, J.; Iacobelli, M.; Juette, E.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Norden, M. J.; Orru, E.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Renting, A.; Rttgering, H.; Schwarz, D.; Shulevski, A.; Smirnov, O.; Stappers, B. W.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Thoudam, S.; Toribio, C.; Vocks, C.; Wise, M. W.; Wucknitz, O.; Zarka, P.

    2015-07-01

    We present radio observations of the Moon between 35 and 80 MHz to demonstrate a novel technique of interferometrically measuring large-scale diffuse emission extending far beyond the primary beam (global signal) for the first time. In particular, we show that (i) the Moon appears as a negative-flux source at frequencies 35 < ? < 80 MHz since it is `colder' than the diffuse Galactic background it occults, (ii) using the (negative) flux of the lunar disc, we can reconstruct the spectrum of the diffuse Galactic emission with the lunar thermal emission as a reference, and (iii) that reflected RFI (radio-frequency interference) is concentrated at the centre of the lunar disc due to specular nature of reflection, and can be independently measured. Our RFI measurements show that (i) Moon-based Cosmic Dawn experiments must design for an Earth-isolation of better than 80 dB to achieve an RFI temperature <1 mK, (ii) Moon-reflected RFI contributes to a dipole temperature less than 20 mK for Earth-based Cosmic Dawn experiments, (iii) man-made satellite-reflected RFI temperature exceeds 20 mK if the aggregate scattering cross-section of visible satellites exceeds 175 m2 at 800 km height, or 15 m2 at 400 km height. Currently, our diffuse background spectrum is limited by sidelobe confusion on short baselines (10-15 per cent level). Further refinement of our technique may yield constraints on the redshifted global 21 cm signal from Cosmic Dawn (40 > z > 12) and the Epoch of Reionization (12 > z > 5).

  10. Stability measurements of the radio science system at the 34-m high-efficiency antennas

    NASA Technical Reports Server (NTRS)

    Pham, T. T.; Breidenthal, J. C.; Peng, T. K.; Abbate, S. F.; Rockwell, S. T.

    1993-01-01

    From 1991 to 1993 the fractional frequency stability of the operational Radio Science System was measured at DSS's 15, 45, and 65. These stations are designed to have the most stable uplink and downlink equipment in the Deep Space Network (DSN). Some measurements were performed when the antenna was moving and the frequency was ramped. The stability, including contributions of all elements in the station except for the antenna and the hydrogen maser, was measured to be 0.3 to 1.3 x 10(exp -15) when the frequency was fixed, and 0.6 to 6.0 x 10(exp -15) when the frequency was ramped (sample interval, 1000 sec). Only one measurement out of fifteen exceeded specification. In all other cases, when previous measurements on the antenna and the hydrogen maser were added, a total system stability requirement of 5.0 x 10(exp -15) as met. In addition, ambient temperature was found to cause phase variation in the measurements at a rate of 5.5 deg of phase per deg C.

  11. Mariners 6 and 7: radio occultation measurements of the atmosphere of Mars.

    PubMed

    Kliore, A; Fjeldbo, G; Seidel, B L; Rasool, S I

    1969-12-12

    Radio occultation measurements with Mariners 6 and 7 provided refractivity data in the atmosphiere of Mars at four points above its surface. For an atmosphere consisting predominantly of carbon dioxide, surface pressures between 6 and 7 millibars are obtained at three of the points of measurement, and 3.8 at the fourth, indicating an elevation of 5 to 6 kilometers. The temperature profile measured by Mariner 6 near the equator in the daytime indicates temperatures in the stratosphere about 100 degrees K warmer than those predicted by theory. The measurements of Mariner 6 taken at 79 degrees N at the beginning of polar night indicate that conditions are favorable for the condensation of carbon dioxide at almost all altitudes. Mariner 7 measurements taken at 58 degrees S in daytime and 38 degrees N at night also show that carbon dioxide condensation is possible at altitudes above about 25 kilometers. Measurements of the electron density in the ionosphere show that the upper atmosphere is substantially warmer than it was in 1965, possibly because of increased solar activity and closer proximity to the sun. PMID:17744965

  12. HIGH-RESOLUTION RADIO CONTINUUM MEASUREMENTS OF THE NUCLEAR DISKS OF Arp 220

    SciTech Connect

    Barcos-Muñoz, L.; Evans, A. S.; Privon, G. C.; Stierwalt, S.; Leroy, A. K.; Condon, J.; Reichardt, A.; Armus, L.; Mazzarella, J. M.; Murphy, E. J.; Meier, D. S.; Momjian, E.; Ott, J.; Sakamoto, K.; Sanders, D. B.; Schinnerer, E.; Walter, F.; Surace, J. A.; Thompson, T. A.

    2015-01-20

    We present new Karl G. Jansky Very Large Array radio continuum images of the nuclei of Arp 220, the nearest ultra-luminous infrared galaxy. These new images have both the angular resolution to study the detailed morphologies of the two nuclei that power the galaxy merger and sensitivity to a wide range of spatial scales. At 33 GHz, we achieve a resolution of 0.''081 × 0.''063 (29.9 × 23.3 pc) and resolve the radio emission surrounding both nuclei. We conclude from the decomposition of the radio spectral energy distribution that a majority of the 33 GHz emission is synchrotron radiation. The spatial distributions of radio emission in both nuclei are well described by exponential profiles. These have deconvolved half-light radii (R {sub 50d}) of 51 and 35 pc for the eastern and western nuclei, respectively, and they match the number density profile of radio supernovae observed with very long baseline interferometry. This similarity might be due to the fast cooling of cosmic rays electrons caused by the presence of a strong (∼mG) magnetic field in this system. We estimate extremely high molecular gas surface densities of 2.2{sub −1.0}{sup +2.1}×10{sup 5} (east) and 4.5{sub −1.9}{sup +4.5}×10{sup 5} (west) M {sub ☉} pc{sup –2}, corresponding to total hydrogen column densities of N {sub H} = 2.7{sub −1.2}{sup +2.7}×10{sup 25} (east) and 5.6{sub −2.4}{sup +5.5}×10{sup 25} cm{sup –2} (west). The implied gas volume densities are similarly high, n{sub H{sub {sub 2}}}∼3.8{sub −1.6}{sup +3.8}×10{sup 4} (east) and ∼11{sub −4.5}{sup +12}×10{sup 4} cm{sup –3} (west). We also estimate very high luminosity surface densities of Σ{sub IR}∼4.2{sub −0.7}{sup +1.6}×10{sup 13} (east) and Σ{sub IR}∼9.7{sub −2.4}{sup +3.7}×10{sup 13} (west) L{sub ⊙} kpc{sup −2}, and star formation rate surface densities of Σ{sub SFR} ∼ 10{sup 3.7} {sup ±} {sup 0.1} (east) and Σ{sub SFR} ∼ 10{sup 4.1} {sup ±} {sup 0.1}(west) M {sub ☉} yr{sup –1}kpc{sup –2}. These values, especially for the western nucleus are, to our knowledge, the highest luminosity surface densities and star formation rate surface densities measured for any star-forming system. Despite these high values, the nuclei appear to lie below the dusty Eddington limit in which radiation pressure is balanced only by self-gravity. The small measured sizes also imply that at wavelengths shorter than λ = 1 mm, dust absorption effects must play an important role in the observed light distribution while below 5 GHz free-free absorption contributes substantial opacity. According to these calculations, the nuclei of Arp 220 are only transparent in the frequency range ∼5-350 GHz. Our results offer no clear evidence that an active galactic nucleus dominates the emission from either nucleus at 33 GHz.

  13. Portable Wireless LAN Device and Two-way Radio Threat Assessment for Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.

    2003-01-01

    Measurement processes, data and analysis are provided to address the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. A radiated emission measurement process is developed and spurious radiated emissions from various devices are characterized using reverberation chambers. Spurious radiated emissions in aircraft radio frequency bands from several wireless network devices are compared with baseline emissions from standard computer laptops and personal digital assistants. In addition, spurious radiated emission data in aircraft radio frequency bands from seven pairs of two-way radios are provided, A description of the measurement process, device modes of operation and the measurement results are reported. Aircraft interference path loss measurements were conducted on four Boeing 747 and Boeing 737 aircraft for several aircraft radio systems. The measurement approach is described and the path loss results are compared with existing data from reference documents, standards, and NASA partnerships. In-band on-channel interference thresholds are compiled from an existing reference document. Using these data, a risk assessment is provided for interference from wireless network devices and two-way radios to aircraft systems, including Localizer, Glideslope, Very High Frequency Omnidirectional Range, Microwave Landing System and Global Positioning System. The report compares the interference risks associated with emissions from wireless network devices and two-way radios against standard laptops and personal digital assistants. Existing receiver interference threshold references are identified as to require more data for better interference risk assessments.

  14. Martian electron density profiles retrieved from Mars Express dual-frequency radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Zhang, S. J.; Cui, J.; Guo, P.; Li, J. L.; Ping, J. S.; Jian, N. C.; Zhang, K. F.

    2015-05-01

    The S- and X-band dual-frequency Doppler radio occultation observations obtained by the Mars Express Radio Science (MaRS) experiments are reduced in this study. A total of 414 Martian electron density profiles are retrieved covering the period from DOY 93 2004 to DOY 304 2012. These observations are well distributed over both longitude and latitude, with Sun-Mars distance varying from 1.38 AU to 1.67 AU, the solar zenith angle (SZA) ranging from 52 to 122 . Due to the improved vertical resolution for the MaRS experiments, the vertical structures of the retrieved profiles appear to be more complicated than those revealed by early radio occultation experiments. Dayside electron density profiles have primary peaks (M2) typically around 130 km and secondary peaks (M1) around 110 km. Nightside electron density profiles are highly variable, many of which do not have double layer structures. Both the dayside and nightside electron density profiles reveal some atypical features such as topside layering above M2 and bottom-side layering below M1. The former likely represent the plasma fluctuations in response to the solar wind (SW) interactions with the Martian ionosphere, whereas the latter is thought to be induced by the meteoric influx. We fit the peak electron density of profiles up to terminator with a simple power relation (Nm =N0 Chk (?) ) , with the best-fit subsolar peak electron density being N0 = (1.499 0.002) 105cm-3 , and the best-fit power index being k = 0.513 0.001 . The measured total electron content (TEC) is obtained by integrating the observed electron density profile vertically from 50 km to 400 km, which is then compared with the ideal TEC computed from the one-layer Chapman model. We find that the one-layer Chapman model can generally underestimate the measured TEC up to ? 0.1 TECU (1TECU = 1.0 1016m-2) for 55

  15. The structure of the Venus ionosphere from Venera-15,-16 radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Gavrik, Anatoly; Kopnina, Tatyana; Samoznaev, Lev

    Between 1975 and 1994, regular research of the Venus ionosphere was carried out by Venera-9,-10, Pioneer-Venus, Venera-15,-16 and Magellan spacecrafts. Over 600 altitude distributions of electron densities were derived from occultation data under various conditions. Nowadays, occultations are performed by the Venus-Express spacecraft. The high coherence and stability of radio signals from Venera-15,-16 (1 and 4 GHz), along with the fact that the refraction of the 1 GHz signal in the ionosphere exceeds the refraction of the signals used by other researchers by a factor of 6, allowed one to carry out a more accurate analysis of the radiophysical parameters of the Venus ionosphere. The method used in these investigations is based on the theoretical linear relation between the refraction attenuation and the frequency gradient. It is correct only when the powers and phases of the signals are measured with high-precision in a dual frequency radio sounding. The agreement between the variations in the measured refraction attenuation and the refraction attenuation calculated from frequency data testifies to the influence of the plasma on radio signals in spite of the fact that the refraction effects are comparable with noise. The good correlation of the Venera-15,-16 data indicates the existence of the bottom part of the daytime Venus ionosphere at altitudes of 80-120 km. When the noise level was low, we observed the bottom ionosphere in all 19 occultations at solar zenith angles between 56 and 87 . We also observed the bottom ionosphere in 6 out of 9 occultations near the planet's terminator, but the effect was comparable with noise. In the night ionosphere, none of 25 occultations revealed the bottom plasma layer. Thus, the bottom layer of the daytime Venus ionosphere is permanent. The properties of the bottom ionosphere of Venus depend on the solar zenith angle. Considerable variations in the bottom layer properties of the Venus daytime ionosphere can be associated with some wave processes in the top atmosphere and in the bottom ionosphere.

  16. Climate comparison of reference upper-air measurements: GPS radio occultation and GRUAN radiosondes

    NASA Astrophysics Data System (ADS)

    Ladstdter, Florian; Steiner, Andrea K.; Schwrz, Marc; Kirchengast, Gottfried

    2015-04-01

    The confidence in the vertical structure of the rate of temperature change in the upper-air region is still low. To change this, measurements of suitable quality are required. Observations from the GPS radio occultation (GPSRO) satellite technique and from the newly established GCOS Reference Upper Air Network (GRUAN) are both candidates to serve as reference observations. GPSRO is currently the only self-calibrated and SI-traceable satellite measurement system, where the observations can be traced back to precise time measurements. These observations possess the required high quality with global coverage, but common physical parameters such as temperature are only available after a sophisticated retrieval process. GRUAN on the other hand delivers data only from a sparse network of radiosonde stations (16 stations at present), with a more straight-forward measurement principle and careful bias corrections applied. Owing to the strongly differing techniques, GPSRO and GRUAN have their unique strengths and weaknesses. In this study, we compare collocated profiles from these two datasets for the time period 2011 to 2013, with a special focus on day/night biases, and use interpolated ERA-Interim data as an additional source of background information. The GRUAN effort is a vital contribution to the goal of anchoring less accurate upper-air measurements to reference data. GPSRO adds to this global coverage and more stratospheric extend, and, as an observing system independent from radiosondes, serves as another fundamentally needed source of thermodynamic reference data in the free atmosphere.

  17. Beam emittance measurements and simulations of injector line for radio frequency quadrupole.

    PubMed

    Mathew, Jose V; Rao, S V L S; Pande, Rajni; Singh, P

    2015-07-01

    A 400 keV deuteron (D(+)) radio frequency quadrupole (RFQ) accelerator has been designed, built, and commissioned at the Bhabha Atomic Research Centre, India. A beam line has been developed for injecting deuterons into the 400 keV RFQ. This comprises of a RF plasma ion source and a low energy beam transport (LEBT) system, consisting of two solenoid magnets and two steerer magnets. The ion source is characterized in terms of transverse beam emittance. A slit-wire scanner based emittance measurement setup has been developed for the transverse emittance measurements of H(+) and D(+) beams. The measured emittance values are found to be well within the acceptance value for the RFQ. These measured emittance parameters are used to optimize the solenoid fields in LEBT to match the beam from the ion source to RFQ. TRACEWIN simulation code is used for the beam transport simulations. The simulations show 99% transmission of D(+) beam through the RFQ, while 95% transmission has been measured experimentally. PMID:26233371

  18. Beam emittance measurements and simulations of injector line for radio frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Mathew, Jose V.; Rao, S. V. L. S.; Pande, Rajni; Singh, P.

    2015-07-01

    A 400 keV deuteron (D+) radio frequency quadrupole (RFQ) accelerator has been designed, built, and commissioned at the Bhabha Atomic Research Centre, India. A beam line has been developed for injecting deuterons into the 400 keV RFQ. This comprises of a RF plasma ion source and a low energy beam transport (LEBT) system, consisting of two solenoid magnets and two steerer magnets. The ion source is characterized in terms of transverse beam emittance. A slit-wire scanner based emittance measurement setup has been developed for the transverse emittance measurements of H+ and D+ beams. The measured emittance values are found to be well within the acceptance value for the RFQ. These measured emittance parameters are used to optimize the solenoid fields in LEBT to match the beam from the ion source to RFQ. TRACEWIN simulation code is used for the beam transport simulations. The simulations show 99% transmission of D+ beam through the RFQ, while 95% transmission has been measured experimentally.

  19. Temporally resolved ion velocity distribution measurements in a radio-frequency plasma sheath

    SciTech Connect

    Jacobs, B.; Gekelman, W.; Pribyl, P.; Barnes, M.

    2011-05-15

    The ion velocity distribution function (IVDF) above and within a radio-frequency (RF) biased plasma sheath is studied experimentally with a pulsed laser-induced fluorescence diagnostic in an industrial plasma etch tool. Temporally resolved measurements taken at eight different phases of the 2.2 MHz bias waveform show that the ion dynamics vary dramatically throughout the RF cycle (the ratio of the average ion transit time through the sheath to the RF period is {tau}{sub ion}/{tau}{sub RF} = 0.3). The position of the presheath/sheath edge is constant throughout the RF cycle and the time-averaged ion flux is conserved within the sheath region. The characteristic bimodal structure of the time-averaged ion distributions found in previous experiments is observed to arise from the time-dependent ion dynamics, in accord with existing theory. The large temporal variation of the IVDF has implications for the plasma chemistry and etching quality.

  20. Electric field and radio frequency measurements for rocket engine health monitoring applications

    NASA Technical Reports Server (NTRS)

    Valenti, Elizabeth L.

    1992-01-01

    Electric-field (EF) and radio-frequency (RF) emissions generated in the exhaust plumes of the diagnostic testbed facility thruster (DTFT) and the SSME are examined briefly for potential applications to plume diagnostics and engine health monitoring. Hypothetically, anomalous engine conditions could produce measurable changes in any characteristic EF and RF spectral signatures identifiable with a 'healthly' plumes. Tests to determine the presence of EF and RF emissions in the DTFT and SSME exhaust plumes were conducted. EF and RF emissions were detected using state-of-the-art sensors. Analysis of limited data sets show some apparent consistencies in spectral signatures. Significant emissions increases were detected during controlled tests using dopants injected into the DTFT.

  1. LDV measurements of Rayleigh streaming in channels of rectangular cross-section

    NASA Astrophysics Data System (ADS)

    Bessis, R.; Bailliet, H.; Reyt, I.; Valire, J.-Ch.

    2015-10-01

    Rayleigh streaming, suspected to hamper the efficiency of thermoacoustic engines, has been the subject of numerous theoretical and experimental studies in the last decades. This phenomenon is well characterized in the case of two-dimensional channels, but streaming in three-dimensional enclosures, such as rectangular channels, is a usually described using a two-dimensional theoretical model, although such predictions have rarely been confronted to measurements. We present results of LDV measurements in rectangular channels with different aspect ratios. The axial particle velocity is estimated from velocity measurements and axial acoustic and streaming velocity evolutions along transverse axes are considered. Results for different channel heights are used to discuss the limit of validity of the usual 2D channel hypothesis when considering a rectangular enclosure.

  2. Channeling of high-power radio waves under conditions of strong anomalous absorption in the presence of an averaged electron heating source

    SciTech Connect

    Vas'kov, V. V.; Ryabova, N. A.

    2010-02-15

    Strong anomalous absorption of a high-power radio wave by small-scale plasma inhomogeneities in the Earth's ionosphere can lead to the formation of self-consistent channels (solitons) in which the wave propagates along the magnetic field, but has a soliton-like intensity distribution across the field. The structure of a cylindrical soliton as a function of the wave intensity at the soliton axis is analyzed. Averaged density perturbations leading to wave focusing were calculated using the model proposed earlier by Vas'kov and Gurevich (Geomagn. Aeron. 16, 1112 (1976)), in which an averaged electron heating source was used. It is shown that, under conditions of strong electron recombination, the radii of individual solitons do not exceed 650 m.

  3. Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Ekers, Ron; Wilson, Thomas L.

    ``Radio Telescopes" starts with a brief historical introduction from Jansky's1931 discovery of radio emission from the Milky Way through the development ofradio telescope dishes and arrays to aperture synthesis imaging. It includessufficient basics of electromagnetic radiation to provide some understanding of thedesign and operation of radio telescopes. The criteria such as frequencyrange, sensitivity, survey speed, angular resolution, and field of view thatdetermine the design of radio telescopes are introduced. Because it is soeasy to manipulate the electromagnetic waves at radio frequencies, radiotelescopes have evolved into many different forms, sometimes with "wire"structures tuned to specific wavelengths, which look very different from anykind of classical telescope. To assist astronomers more familiar with otherwavelength domains, the appendix A.1. includes a comparison of radioand optical terminology. Some of the different types of radio telescopesincluding the filled aperture dishes, electronically steered phased arrays, andaperture synthesis radio telescopes are discussed, and there is a sectioncomparing the differences between dishes and arrays. Some of the morerecent developments including hierarchical beam forming, phased arrayfeeds, mosaicing, rotation measure synthesis, digital receivers, and longbaseline interferometers are included. The problem of increasing radiofrequency interference is discussed, and some possible mitigation strategies areoutlined.

  4. Dense solar wind cloud geometries deduced from comparisons of radio signal delay and in situ plasma measurements

    NASA Technical Reports Server (NTRS)

    Landt, J. A.

    1974-01-01

    The geometries of dense solar wind clouds are estimated by comparing single-location measurements of the solar wind plasma with the average of the electron density obtained by radio signal delay measurements along a radio path between earth and interplanetary spacecraft. Several of these geometries agree with the current theoretical spatial models of flare-induced shock waves. A new class of spatially limited structures that contain regions with densities greater than any observed in the broad clouds is identified. The extent of a cloud was found to be approximately inversely proportional to its density.

  5. Shallow water radio-magnetotelluric (RMT) measurements in urban environment: A case study from Stockholm city

    NASA Astrophysics Data System (ADS)

    Mehta, Suman; Bastani, Mehrdad; Malehmir, Alireza; Wang, Shunguo; Pedersen, Laust

    2014-05-01

    The Radio-MagnetoTelluric (RMT) method uses the electromagnetic signal from distant radio transmitters in the frequency range 15 to 250 kHz. RMT applications in near-surface studies have already been well established. Two components of electric field and three components of magnetic field are measured. These measured components are related to each other via transfer functions which contain detailed information about the variation of electrical resistivity of the subsurface. The present study is carried out in the frame of TRUST (TRansparent Underground STructure) project supported by several research and public organizations as well as industry. The study area is located close to central Stockholm in Sweden where the Swedish traffic authority has planned to construct a 21-km long motorway to bypass the city. In order to reduce the impact on natural and cultural environments, 18 km of the motorway will be located in tunnels. The main objective of this study is thus to identify potential fracture zones and faults as well as the general geological settings. The proposed path of the tunnel partly passes under the Lake Mlaren at a depth of about 60 m. Thus a challenge was posed on the applicability of RMT method in shallow water environments. Successful applications of RMT measurements using the Uppsala University's EnviroMT system on land encouraged us to modify the system to acquire data over lake water especially in urban areas. Pioneered by the Geological Survey of Sweden (SGU), RMT data were collected over the Lake Mlaren in spring 2012. The prototype acquisition system did not only turn out to be appropriate for such a challenging environment, but it was also much more efficient as compared with land surveys. Fifty two lines including 1160 stations with an average spacing of 15 m were covered in three days. Cultural noise associated with the city-related environment had to be identified and filtered out before inversion could be carried out. Reliable estimates of the impedance tensor were obtained by the parametric representation combined with a Truncated Singular Value Decomposition (TSVD) regularization of Bastani and Pedersen (2001). The processed data were then inverted to obtain 2D resistivity models. The resulting models along 23 lines correlate well and image variation of water depth, thickness of subaqueous sediments as well as the depth to crystalline bedrock. Low resistivity zones observed in the bedrock coincide well with the low velocity zones identified in refraction seismic surveys available along the RMT lines, indicating the presence of possible fracture zones in the bedrock. The experiment illustrates that the RMT methods can be well adapted to this type of environment; it is fast and cost-effective in shallow water especially in urban settings. Acknowledgments: Formas, SGU, BeFo, SBUF, Skanska, Boliden, FQM and NGI References: Bastani, M., 2001, EnviroMT - a new Controlled Source/Radio Magnetotelluric System: Ph.D. thesis, ISBN 91-554-5051-2, Uppsala University. Bastani, M. and Pedersen, L. B., 2001, Estimation of magnetotelluric transfer functions from radio transmitters. GEOPHYSICS, 66, 1038-1051.

  6. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  7. Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: A phantom validation at 7 T

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Liu, Jiaen; Schmitter, Sebastian; He, Bin

    2014-12-01

    Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate the feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.

  8. Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: A phantom validation at 7 T

    SciTech Connect

    Zhang, Xiaotong; Liu, Jiaen; Van de Moortele, Pierre-Francois; Schmitter, Sebastian; He, Bin

    2014-12-15

    Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate the feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.

  9. Radio Occultation Measurements of Pluto’s Atmosphere with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, David P.; Linscott, Ivan; Tyler, Len; Bird, Mike; Paetzold, Martin; Strobel, Darrell; Summers, Mike; Woods, Will; Stern, Alan; Weaver, Hal; Olkin, Cathy; Young, Leslie; Ennico, Kimberly; Gladstone, Randy; Greathouse, Tommy; Kammer, Josh; Parker, Alex; Parker, Joel; Retherford, Kurt; Schindhelm, Eric; Singer, Kelsi; Steffl, Andrew; Tsang, Con; Versteeg, Maarten

    2015-11-01

    The reconnaissance of the Pluto System by New Horizons included radio occultations at both Pluto and Charon. This talk will present the latest results from the Pluto occultation. The REX instrument onboard New Horizons received and recorded uplink signals from two 70-m antennas and two 34-m antennas of the NASA Deep Space Network - each transmitting 20 kW at 4.2-cm wavelength - during a diametric occultation by Pluto. At the time this was written only a short segment of data at occultation entry (193°E, 17°S) was available for analysis. The REX measurements extend unequivocally to the surface, providing the first direct measure of the surface pressure and the temperature structure in Pluto’s lower atmosphere. Data from occultation exit (16°E, 15°N) are scheduled to arrive on the ground in late August 2015. Those observations will yield an improved estimate of the surface pressure, a second temperature profile, and a measure of the diameter of Pluto with a precision of a few hundred meters. This work is supported by the NASA New Horizons Mission.

  10. Conductive Sphere in a Radio Frequency Field: Theory and Applications to Positioners, Heating, and Noncontact Measurements

    NASA Technical Reports Server (NTRS)

    Jackson, H. W.; Watkins, J. L.; Chung, S.; Wagner, P.

    1996-01-01

    An electrically conductive spherical sample located in an electromagnetic field excited by rf (radio frequency) current in a system of coaxial coils is treated theoretically. Maxwell's equations are solved exactly and all integrals in the formulas for the fields are evaluated analytically for the case where the sphere is on the axis and the coil system is modeled by a stack of filamentary circular loops. Formulas are also derived for electromagnetic force exerted on the sphere, excess impedance in the coil system due to the presence of the sphere, and power absorbed by the sphere. All integrals in those formulas have been evaluated analytically. Force measurements are presented and they are in excellent agreement with the new theory. A low-power electromagnetic levitator that is accurately described by the theory has been demonstrated and is discussed. Experimental measurements of excess impedance are presented and compared with theory, and those results are used to demonstrate an accurate noncontact method for determining electrical conductivity. Theoretical formulas for power absorption are evaluated numerically and their usefulness in both rf heating and in making noncontact measurements of a number of thermophysical properties of materials is discussed.

  11. Efficiency of neutrino-induced radio measurements to inspect local areas of Enceladus

    NASA Astrophysics Data System (ADS)

    Shoji, D.; Kurita, K.; Tanaka, H. K. M.

    2012-03-01

    The Cassini probe observed a young and smooth surface around the south pole of Enceladus, while around the north pole the surface was found to be relatively old and inactive (Porco, C.C. et al. [2006]. Science 311, 1393-1401). This heterogeneous surface implies that the ice thickness of Enceladus is not uniform between the north and south polar regions. Determining the thickness of the icy layer is important to confirm the existence of an internal ocean as well as to reveal the heating mechanism of Enceladus. We show that the measurement of radio waves induced by cosmic neutrinos can be an effective method to constrain the ice thickness of a localized area where conventional gravity or electromagnetic field measurements cannot be used. This method could be used to constrain the thickness of the icy layer on Enceladus even if the ice is a few tens of kilometers thick, measuring over a period of several years, which greatly exceeds the ability of radar sounding, and hence could be used in future orbiter missions.

  12. Intrinsic noise measurement of an ultra-sensitive radio-frequency single electron transistor

    NASA Astrophysics Data System (ADS)

    Xue, W. W.; Ji, Z.; Pan, Feng; Rimberg, A. J.

    2008-03-01

    The radio-frequency single electron transistor (rf-SET) has been the focus of intense interest since its invention in 1998[1]. Using cryogenic ultra-thin film evaporation techniques [2] and an improved on-chip superconducting matching network [3], we have consistently fabricated rf-SETs with charge sensitivity of 1.7--5?e/?Hz and uncoupled energy sensitivity 1.1--5. Using our 1GHz resonant circuit, intrinsic noise in the SET arising from a dc voltage bias was measured in the white noise limit. We measured the offset charge dependence of the intrinsic noise in the vicinity of the Josephson-quasiparticle and double Josephson-quasiparticle transport cycles. In regions for which the offset charge and resistance noise are strongly suppressed, we can determine the SET shot noise in the sup-gap regime. We discuss the effects of correlations between charge carriers on the measured Fano factor. [1] R.J.Schoelkopf et al., Science 280,1238 (1998); [2] N.A.Court et al., Cond-mat 0706.4150 (2007); [3] W.W.Xue et al., Appl.Phys.Lett. 91, 093511 (2007).

  13. In situ measurement of gas composition changes in radio frequency plasmas using a quartz sensor

    SciTech Connect

    Suzuki, Atsushi; Nonaka, Hidehiko

    2009-09-15

    A simple method using a quartz sensor (Q-sensor) was developed to observe gas composition changes in radio frequency (rf) plasmas. The output depends on the gases' absolute pressure, molecular weight, and viscosity. The pressure-normalized quartz sensor output depends only on the molecular weight and viscosity of the gas. Consequently, gas composition changes can be detected in the plasmas if a sensor can be used in the plasmas. Influences imparted by the plasmas on the sensor, such as those by reactive particles (e.g., radicals and ions), excited species, electrons, temperature, and electric potentials during measurements were investigated to test the applicability of this quartz sensor measurement to plasma. The Q-sensor measurement results for rf plasmas with argon, hydrogen, and their mixtures are reproducible, demonstrating that the Q-sensor measurement is applicable for plasmas. In this work, pressure- and temperature-normalized Q-sensor output (NQO) were used to obtain the gas composition information of plasma. Temperature-normalization of the Q-sensor output enabled quartz sensor measurements near plasma electrodes, where the quartz sensor temperature increases. The changes in NQO agreed with results obtained by gas analysis using a quadrupole mass spectrometer. Results confirmed that the change in NQO is mainly attributable to changes in the densities and kinds of gas molecules in the plasma gas phase, not by other extrinsic influences of plasma. For argon, hydrogen, and argon-hydrogen plasmas, these changes correspond to reduction in nitrogen, production of carbon monoxide, and dissociation of hydrogen molecules, respectively. These changes in NQO qualitatively and somewhat quantitatively agreed with results obtained using gas analysis, indicting that the measurement has a potential application to obtain the gas composition in plasmas without disturbing industrial plasma processes.

  14. Measuring the Impact on Farmers of Agricultural Radio and Television Programs in Southwest Nigeria.

    ERIC Educational Resources Information Center

    Yahaya, Mohammed Kuta; Badiru, Olabode Idris

    2002-01-01

    A survey examined the effectiveness of two long-running Nigerian agricultural programs on television and radio as perceived by 198 farmers. Results indicate a positive assessment of their value for improving agricultural production. Although more listen to the radio, the television program also received high marks. (Contains 17 references.) (JOW)

  15. The New Horizons Radio Science Experiment: Expected Performance in Measurements of Pluto's Atmospheric Structure, Surface Pressure, and Surface Temperature

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Linscott, I.; Woods, W. W.; Tyler, G. L.; Bird, M. K.; Paetzold, M.; Strobel, D. F.

    2014-12-01

    The New Horizons (NH) payload includes a Radio Science Experiment (REX) for investigating key characteristics of Pluto and Charon during the upcoming flyby in July 2015. REX flight equipment augments the NH radio transceiver used for spacecraft communications and tracking. The REX hardware implementation requires 1.6 W and 160 g. This presentation will focus on the final design and the predicted performance of two high-priority observations. First, REX will receive signals from a pair of 70-m antennas on Earth - each transmitting 20 kW at 4.2-cm wavelength - during a diametric radio occultation by Pluto. The data recorded by REX will reveal the surface pressure, the temperature structure of the lower atmosphere, and the surface radius. Second, REX will measure the thermal emission from Pluto at 4.2-cm wavelength during two linear scans across the disk at close range when both the dayside and the nightside are visible, allowing the surface temperature and its spatial variations to be determined. Both scans extend from limb to limb with a resolution of about 10 pixels; one bisects Pluto whereas the second crosses the winter pole. We will illustrate the capabilities of REX by reviewing the method of analysis and the precision achieved in a lunar occultation observed by New Horizons in May 2011. Re-analysis of radio occultation measurements by Voyager 2 at Triton is also under way. More generally, REX objectives include a radio occultation search for Pluto's ionosphere; examination of Charon through both radio occultation and radiometry; a search for a radar echo from Pluto's surface; and improved knowledge of the Pluto system mass and the Pluto-Charon mass ratio from a combination of two-way and one-way Doppler frequency measurements.

  16. Parametric Channeling Radiation and its Application to the Measurement of Electron Beam Energy

    SciTech Connect

    Takabayashi, Y.

    2010-06-23

    We have proposed a method for observing parametric channeling radiation (PCR) and of applying it to the measurement of electron beam energy. The PCR process occurs if the energy of the channeling radiation coincides with the energy of the parametric X-ray radiation (PXR). The PCR process can be regarded as the diffraction of 'virtual channeling radiation'. We developed a scheme for beam energy measurement and designed an experimental setup. We also estimated the beam parameters, and calculated the angular distributions of PXR and PCR. These considerations indicate that the observation of PCR is promising.

  17. Peak radiated power measurement of the DOE Mark II container tag with integrated ST-676 sensor radio frequency identification device.

    SciTech Connect

    Jursich, Mark

    2010-04-01

    The total peak radiated power of the Department of Energy Mark II container tag was measured in the electromagnetic reverberation chamber facility at Sandia National Laboratories. The tag's radio frequency content was also evaluated for possible emissions outside the intentional transmit frequency band. No spurious emissions of any significance were found, and the radiated power conformed to the manufacturer's specifications.

  18. First measurements of radar coherent scatter by the Radio Aurora Explorer CubeSat

    NASA Astrophysics Data System (ADS)

    Bahcivan, H.; Cutler, J. W.; Bennett, M.; Kempke, B.; Springmann, J. C.; Buonocore, J.; Nicolls, M.; Doe, R.

    2012-07-01

    The Radio Aurora Explorer CubeSat detected the first radar echoes during the solar storm of March 8, 2012. The 300 s ground-to-space bi-static radar experiment was conducted in conjunction with the Poker Flat Incoherent Scatter Radar in the local morning (˜8 am) over Poker Flat, Alaska. The geomagnetic conditions for the E region field-aligned irregularity generation were optimal due to strong (about 1500 m/s) F region ion drifts and sufficient E region ionization (electron densities were ˜2 × 1011 m-3). The corresponding E region electric field of ˜80 mV/m was larger than the excitation threshold for the Farley-Buneman instability. An auto-correlation analysis resolved, for the first time, the distribution of auroral E region backscatter with 3 km resolution in altitude and sub-degree resolution in aspect angle. Moreover, the measured Doppler velocities of the UHF scatter shows the phase speed saturation of the meter-scale plasma waves. The measured Doppler velocity is in excellent agreement with the Cs cos θ formula for auroral E region irregularities.

  19. The Huygens Doppler Wind Experiment - Titan Winds Derived from Probe Radio Frequency Measurements

    NASA Astrophysics Data System (ADS)

    Bird, M. K.; Dutta-Roy, R.; Heyl, M.; Allison, M.; Asmar, S. W.; Folkner, W. M.; Preston, R. A.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Wohlmuth, R.; Iess, L.; Tyler, G. L.

    2002-07-01

    A Doppler Wind Experiment (DWE) will be performed during the Titan atmospheric descent of the ESA Huygens Probe. The direction and strength of Titan's zonal winds will be determined with an accuracy better than 1 m s-1 from the start of mission at an altitude of 160 km down to the surface. The Probe's wind-induced horizontal motion will be derived from the residual Doppler shift of its S-band radio link to the Cassini Orbiter, corrected for all known orbit and propagation effects. It is also planned to record the frequency of the Probe signal using large ground-based antennas, thereby providing an additional component of the horizontal drift. In addition to the winds, DWE will obtain valuable information on the rotation, parachute swing and atmospheric buffeting of the Huygens Probe, as well as its position and attitude after Titan touchdown. The DWE measurement strategy relies on experimenter-supplied Ultra-Stable Oscillators to generate the transmitted signal from the Probe and to extract the frequency of the received signal on the Orbiter. Results of the first in-flight checkout, as well as the DWE Doppler calibrations conducted with simulated Huygens signals uplinked from ground (Probe Relay Tests), are described. Ongoing efforts to measure and model Titan's winds using various Earth-based techniques are briefly reviewed.

  20. The Huygens Doppler Wind Experiment - Titan Winds Derived from Probe Radio Frequency Measurements

    NASA Astrophysics Data System (ADS)

    Bird, M. K.; Dutta-Roy, R.; Heyl, M.; Allison, M.; Asmar, S. W.; Folkner, W. M.; Preston, R. A.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Wohlmuth, R.; Iess, L.; Tyler, G. L.

    2002-07-01

    A Doppler Wind Experiment (DWE) will be performed during the Titan atmospheric descent of the ESA Huygens Probe. The direction and strength of Titan's zonal winds will be determined with an accuracy better than 1 m s-1 from the start of mission at an altitude of ~160 km down to the surface. The Probe's wind-induced horizontal motion will be derived from the residual Doppler shift of its S-band radio link to the Cassini Orbiter, corrected for all known orbit and propagation effects. It is also planned to record the frequency of the Probe signal using large ground-based antennas, thereby providing an additional component of the horizontal drift. In addition to the winds, DWE will obtain valuable information on the rotation, parachute swing and atmospheric buffeting of the Huygens Probe, as well as its position and attitude after Titan touchdown. The DWE measurement strategy relies on experimenter-supplied Ultra-Stable Oscillators to generate the transmitted signal from the Probe and to extract the frequency of the received signal on the Orbiter. Results of the first in-flight checkout, as well as the DWE Doppler calibrations conducted with simulated Huygens signals uplinked from ground (Probe Relay Tests), are described. Ongoing efforts to measure and model Titan's winds using various Earth-based techniques are briefly reviewed.

  1. Measurement of the t-channel single top quark production cross section

    SciTech Connect

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Abolins, Maris A.; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Aguilo, Ernest; Ahsan, Mahsana; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

    2009-07-01

    The D0 collaboration reports direct evidence for electroweak production of single top quarks through the t-channel exchange of a virtual W boson. This is the first analysis to isolate an individual single top quark production channel. We select events containing an isolated electron or muon, missing transverse energy, and two, three or four jets from 2.3 fb{sup -1} of p{bar p} collisions at the Fermilab Tevatron Collider. One or two of the jets are identified as containing a b hadron. We combine three multivariate techniques optimized for the t-channel process to measure the t- and s-channel cross sections simultaneously. We measure cross sections of 3.14{sub -0.80}{sup +0.94} pb for the t-channel and 1.05 {+-} 0.81 pb for the s-channel. The measured t-channel result is found to have a significance of 4.8 standard deviations and is consistent with the standard model prediction.

  2. Remote, PCM-controlled, multi-channel radio frequency FM telemetry system for cryogenic wind tunnel application

    NASA Technical Reports Server (NTRS)

    Diamond, John K.

    1989-01-01

    A telemetry system used in the NASA-Langley cryogenic transonic wind tunnel to obtain rotational strain and temperature data is described. The system consists of four FM transmitters allowing for a remotely controlled PCM combination. A rotating four-contact mercury slip-ring is used as an interface between the fixed and rotating mechnical structures. Over 60 channels of data on the main fan disk and blade structures have been obtained. These data are studied to verify computer predictions and mechanical life. A series of block diagrams are included.

  3. A Measurement of the Millimeter Emission and the Sunyaev-zel'dovich Effect Associated with Low-frequency Radio Sources

    NASA Technical Reports Server (NTRS)

    Gralla, Megan B.; Crichton, Devin; Marriage, Tobias A.; Mo, Wenli; Aguirre, Paula; Addison, Graeme E.; Asboth, V.; Battaglia, Nick; Bock, James; Bond, J. Richard; Devlin, Mark J.; Duenner, Rolando; Hajian, Amir; Halpern, Mark; Hilton, Matt; Hincks, Adam D.; Hlozek Renee A.; Huffenberger, Kevin M.; Hughes, John P.; Ivison, R. J.; Kosowsky, Arthur; Lin, Yen-Ting; Switzer, Eric R.; Wollack, Edward J.; Zemcov, Michael B.

    2013-01-01

    We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel'dovich Effect associated with the halos that host them. The Atacama Cosmology Telescope (ACT) has conducted a survey at 148 GHz, 218 GHz and 277 GHz along the celestial equator. Using samples of radio sources selected at 1.4 GHz from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) Survey and the National Radio Astronomy Observatory Very Large Array Sky Survey (NVSS), we measure the stacked 148, 218 and 277 GHz flux densities for sources with 1.4 GHz flux densities ranging from 5 to 200 mJy. At these flux densities, the radio source population is dominated by active galactic nuclei (AGN), with both steep and at spectrum populations, which have combined radio-to-millimeter spectral indices ranging from 0.5 to 0.95, reecting the prevalence of steep spectrum sources at high flux densities and the presence of at spectrum sources at lower flux densities. The thermal Sunyaev-Zelapos;dovich (SZ) eect associated with the halos that host the AGN is detected at the 5 level through its spectral signature. When we compare the SZ eect with weak lensing measurements of radio galaxies, we find that the relation between the two is consistent with that measured by Planck for local bright galaxies. We present a detection of the SZ eect in some of the lowest mass halos (average M(sub 200) approx. equals 10(exp 13) solar M h(sup-1) (sub 70) ) studied to date. This detection is particularly important in the context of galaxy evolution models, as it confirms that galaxies with radio AGN also typically support hot gaseous halos. With Herschel* observations, we show that the SZ detection is not significantly contaminated by dusty galaxies or by dust associated with the AGN or galaxies hosting the AGN. We show that 5 mJy < S(sub 1:4) < 200 mJy radio sources contribute l(l +1)C(sub l)/(2 pi ) = 0:37+/- 0:03 micro K(exp 2) to the angular power spectrum at l = 3000 at 148 GHz, after accounting for the SZ effect associated with their host halos.

  4. Measurements of reduced-density air channels produced by a double-pulsed electron beam

    SciTech Connect

    Bieniosek, F.M.; Cartier, S.L.

    1995-05-15

    Single-pulse and noncollinear double-pulse channels formed by intense relativistic electron beams were studied by using a laser deflection probe for times up to 100 ms. The first of two pulsed electron beams propagating in a 30-cm-diam tube was magnetically deflected to generate an off-axis neutral-density channel of {similar_to}40% depth in moist air at 250 Torr. Subsequently after a time delay of 1.36 ms, a similar electron beam pulse (1.2 MeV, 13 kA, 10 ns full width at half maximum) was injected along the tube axis. After injection of the second pulse, the rate of channel decay was enhanced, and a large-scale convective motion of the hot channel gas toward the second pulse ensued. Measurements of the channel motion are compared with the predictions of a simple hydrodynamic model.

  5. Inconsistencies in Tropical Tropopause Temperatures Between Radiosonde and GPS Radio Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Spackman, J. R.; Leroy, S. S.; Moyer, E. J.; Ao, C. O.; Weinstock, E. M.; Anderson, J. G.

    2004-12-01

    Accurate temperature measurements at the tropical tropopause are critical to diagnosing the relationship between water vapor saturation mixing ratio and stratospheric water vapor and, accordingly, the mechanisms for stratosphere-troposphere exchange. The radiosonde network has provided the most accurate temperature record in the tropics to date, but a self-consistent temperature mapping of the tropical tropopause layer (TTL) with radiosonde data is impaired by (i) very limited spatial sampling, especially over the predominantly marine tropics, (ii) differences in radiosonde instrument packages, and (iii) solar radiation effects on reported temperatures. Global positioning system (GPS) radio occultation measurements offer a powerful approach to examining the temperature structure of the TTL that provides homogeneous spatial coverage of the tropics while still maintaining high vertical resolution. We use a GPS occultation data set obtained from the CHAMP satellite for 2001-2003 with retrievals performed at the Jet Propulsion Laboratory (JPL) and subjected to objective quality control. These occultations are compared with radiosonde measurements from the WMO global network that have been processed through the complex quality control of NCEP. GPS occultations and radiosondes show significant differences in (i) the mean cold-point tropopause temperature, (ii) the distribution of cold-point temperatures, and (iii) the height of the cold-point tropopause. We investigate differences between radiosonde and occultation climatologies of the TTL, paying special attention to the merits and deficiencies of each measurement approach. We also compare the GPS occultation retrievals of JPL to other retrieval algorithms to investigate potential biases. The temperature differences between GPS occultations and radiosondes at the cold-point tropopause could have profound implications for the water vapor budget of the stratosphere.

  6. Controlling of Entropic Uncertainty in Qubits System Under the Generalized Amplitude Damping Channel via Weak Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Yang; Fang, Mao-Fa; Yu, Min

    2016-03-01

    We study the effect of weak measurements on the entropic uncertainty in two-qubit system under the generalized amplitude damping channel. Our results show that, the entropic uncertainty in qubits system can be reduced under weak measurements by choosing appropriate measuring strength, which provides a new method to break through the restriction of uncertainty relation in quantum mechanics.

  7. Controlling of Entropic Uncertainty in Qubits System Under the Generalized Amplitude Damping Channel via Weak Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Yang; Fang, Mao-Fa; Yu, Min

    2015-10-01

    We study the effect of weak measurements on the entropic uncertainty in two-qubit system under the generalized amplitude damping channel. Our results show that, the entropic uncertainty in qubits system can be reduced under weak measurements by choosing appropriate measuring strength, which provides a new method to break through the restriction of uncertainty relation in quantum mechanics.

  8. Optimal Policy of Cross-Layer Design for Channel Access and Transmission Rate Adaptation in Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    He, Hao; Wang, Jun; Zhu, Jiang; Li, Shaoqian

    2010-12-01

    In this paper, we investigate the cross-layer design of joint channel access and transmission rate adaptation in CR networks with multiple channels for both centralized and decentralized cases. Our target is to maximize the throughput of CR network under transmission power constraint by taking spectrum sensing errors into account. In centralized case, this problem is formulated as a special constrained Markov decision process (CMDP), which can be solved by standard linear programming (LP) method. As the complexity of finding the optimal policy by LP increases exponentially with the size of action space and state space, we further apply action set reduction and state aggregation to reduce the complexity without loss of optimality. Meanwhile, for the convenience of implementation, we also consider the pure policy design and analyze the corresponding characteristics. In decentralized case, where only local information is available and there is no coordination among the CR users, we prove the existence of the constrained Nash equilibrium and obtain the optimal decentralized policy. Finally, in the case that the traffic load parameters of the licensed users are unknown for the CR users, we propose two methods to estimate the parameters for two different cases. Numerical results validate the theoretic analysis.

  9. Morphology of solar wind fluctuations and structure in the vicinity of the Sun from radio propagation measurements

    NASA Technical Reports Server (NTRS)

    Woo, R.

    1995-01-01

    Radio propagation measurements represent a powerful means for remote probing of electron density and solar wind speed in the acceleration region of the solar wind not yet explored by in situ measurements. Recent investigations based on radio propagation measurements have led to considerable progress in our knowledge of the general morphology of solar wind fluctuations and structure, especially in terms of their relationship to solar wind properties that have been observed directly by fields and particles measurements, and to coronal features observed in white-light measurements. The purpose of this paper is to present an overview of the latest results on quasi-stationary structure covering the large scale variation of solar wind speed over the streamer belt and coronal hole regions, coronal streamers (source of slow solar wind) and their associated small-scale electron density structure, plumes, density and fractional or relative density fluctuations, and the spectral characteristics of the electron density fluctuations. The radio propagation measurements not only reveal new information on the structure near the Sun, but also show that the structure appears to undergo substantial evolution on its way to 0.3 AU, the closest radial distance for which direct in situ spacecraft measurements are available.

  10. Radio frequency interference measurement in site testing programs for the future multi-wavelength observatory in Indonesia

    NASA Astrophysics Data System (ADS)

    Hidayat, T.; Dermawan, B.; Mahasena, P.; Munir, A.; Nurzaman, M. Z.; Jaelani, A. T.

    2015-09-01

    A new multi-wavelength astronomical observatory in Indonesia is currently under preparation. To pave the way the presence of radio astronomical facilities in the planned observatory, we conduct a series of radio frequency interference (RFI) measurements as part of its site testing programs. The corresponding sites, instruments as well as its measurement set up must be selected, planned, and implemented accordingly. This work presents our preparation set up and considers the RFI measurement at meter and centimeter wavelengths (or frequencies from 50 MHz up to 6 GHz). In this frequency range, it is relevant to adopt the Square Kilometre Array (SKA) Protocol as our measurement method. The first results using the Mode 1 of the SKA Protocol are used as reference in this work. Preparation of the Mode 2 is currently undertaken and its preliminary results are presented.

  11. RECONCILING MODELS OF LUMINOUS BLAZARS WITH MAGNETIC FLUXES DETERMINED BY RADIO CORE-SHIFT MEASUREMENTS

    SciTech Connect

    Nalewajko, Krzysztof; Begelman, Mitchell C.; Sikora, Marek

    2014-11-20

    Estimates of magnetic field strength in relativistic jets of active galactic nuclei, obtained by measuring the frequency-dependent radio core location, imply that the total magnetic fluxes in those jets are consistent with the predictions of the magnetically arrested disk (MAD) scenario of jet formation. On the other hand, the magnetic field strength determines the luminosity of the synchrotron radiation, which forms the low-energy bump of the observed blazar spectral energy distribution (SED). The SEDs of the most powerful blazars are strongly dominated by the high-energy bump, which is most likely due to the external radiation Compton mechanism. This high Compton dominance may be difficult to reconcile with the MAD scenario, unless (1) the geometry of external radiation sources (broad-line region, hot-dust torus) is quasi-spherical rather than flat, or (2) most gamma-ray radiation is produced in jet regions of low magnetization, e.g., in magnetic reconnection layers or in fast jet spines.

  12. THE CORRELATION BETWEEN DISPERSION MEASURE AND X-RAY COLUMN DENSITY FROM RADIO PULSARS

    SciTech Connect

    He, C.; Ng, C.-Y.; Kaspi, V. M.

    2013-05-01

    Pulsars are remarkable objects that emit across the entire electromagnetic spectrum, providing a powerful probe of the interstellar medium. In this study, we investigate the relation between dispersion measure (DM) and X-ray absorption column density N{sub H} using 68 radio pulsars detected at X-ray energies with the Chandra X-Ray Observatory or XMM-Newton. We find a best-fit empirical linear relation of N{sub H} (10{sup 20} cm{sup -2})= 0.30{sup +0.13}{sub -0.09} DM (pc cm{sup -3}), which corresponds to an average ionization of 10{sup +4}{sub -3}%, confirming the ratio of one free electron per 10 neutral hydrogen atoms commonly assumed in the literature. We also compare different N{sub H} estimates and note that some N{sub H} values obtained from X-ray observations are higher than the total Galactic H I column density along the same line of sight, while the optical extinction generally gives the best N{sub H} predictions.

  13. A bending angle forward operator for global positioning system radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Cucurull, L.; Derber, J. C.; Purser, R. J.

    2013-01-01

    Applications for space-based GPS technology have extended to the atmospheric field during the last two decades. More recently, numerical weather prediction (NWP) centers started incorporating global positioning system (GPS) radio occultation (RO) soundings into their operational assimilation algorithms, resulting in a significant improvement in weather forecasting skill. The main reasons for such benefits are the unbiased nature of the GPS RO measurements, high accuracy and precision, all-weather capability, and equal accuracy over either land or ocean. Profiles of refractivity or bending angle are typically used, owing to the relative simplicity of their forward operators and the computational economy this implies. Although the NOAA National Centers for Environmental Prediction (NCEP) are using refractivities in their operational configuration, a bending angle forward operator has been developed, tested, and implemented and was scheduled to replace the assimilation of refractivities operationally in May, 2012. Results from the NCEP's bending angle method (NBAM) show improvement over the assimilation of refractivities in all atmospheric fields being evaluated. A detailed description and evaluation of NBAM is presented in this article, as well as the advantages this code offers over the assimilation of refractivities and other existing algorithms that assimilate GPS RO bending angles.

  14. Inferences from the Distributions of Fast Radio Burst Pulse Widths, Dispersion Measures, and Fluences

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2016-02-01

    The widths, dispersion measures (DMs), dispersion indices, and fluences of Fast Radio Bursts (FRBs) impose coupled constraints that all models must satisfy. The non-monotonic dependence of burst widths (after deconvolution of instrumental effects) on DMs excludes the intergalactic medium as the location of scattering that broadens the FRBs in time. Temporal broadening far greater than that of pulsars at similar high Galactic latitudes implies that scattering occurs close to the sources where high densities and strong turbulence or heterogeneity are plausible. FRB energetics are consistent with supergiant pulses from young, fast, high-field pulsars at cosmological distances. The distribution of FRB DMs is: (1) inconsistent with that of expanding clouds (such as SNRs); (2) inconsistent with space-limited source populations (such as the local Supercluster); and (3) consistent with intergalactic dispersion of a homogeneous source population at cosmological distances. Finally, the FRB {log}\\N–{log} S relation also indicates a cosmological distribution aside from the anomalously bright Lorimer burst.

  15. 78 FR 71557 - Radio Broadcasting Services; Tohatchi, New Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Priority. A staff engineering analysis indicates that Channel 268C2 can be allotted to Tohatchi consistent... Radio, Radio broadcasting. Federal Communications Commission. Nazifa Sawez, Assistant Chief,...

  16. Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels

    SciTech Connect

    Fedorko, Wojciech T.; /Chicago U.

    2008-09-01

    The authors present the first measurement of the top quark mass using simultaneously data from two decay channels. They use a data sample of {radical}s = 1.96 TeV collisions with integrated luminosity of 1.9 fb{sup -1} collected by the CDF II detector. They select dilepton and lepton + jets channel decays of t{bar t} pairs and reconstruct two observables in each topology. They use non-parametric techniques to derive probability density functions from simulated signal and background samples. The observables are the reconstructed top quark mass and the scalar sum of transverse energy of the event in the dilepton topology and the reconstructed top quark mass and the invariant mass of jets from the W boson decay in lepton + jets channel. They perform a simultaneous fit for the top quark mass and the jet energy scale which is constrained in situ by the hadronic W boson resonance from the lepton + jets channel. Using 144 dilepton candidate events and 332 lepton + jets candidate events they measure: M{sub top} = 171.9 {+-} 1.7 (stat. + JES) {+-} 1.1 (other sys.) GeV/c{sup 2} = 171.9 {+-} 2.0 GeV/c{sup 2}. The measurement features a robust treatment of the systematic uncertainties, correlated between the two channels and develops techniques for a future top quark mass measurement simultaneously in all decay channels. Measurements of the W boson mass and the top quark mass provide a constraint on the mass of the yet unobserved Higgs boson. The Higgs boson mass implied by measurement presented here is higher than Higgs boson mass implied by previously published, most precise CDF measurements of the top quark mass in lepton + jets and dilepton channels separately.

  17. Quantitative Measurement of Vocal Fold Vibration in Male Radio Performers and Healthy Controls Using High-Speed Videoendoscopy

    PubMed Central

    Warhurst, Samantha; McCabe, Patricia; Heard, Rob; Yiu, Edwin; Wang, Gaowu; Madill, Catherine

    2014-01-01

    Purpose Acoustic and perceptual studies show a number of differences between the voices of radio performers and controls. Despite this, the vocal fold kinematics underlying these differences are largely unknown. Using high-speed videoendoscopy, this study sought to determine whether the vocal vibration features of radio performers differed from those of non-performing controls. Method Using high-speed videoendoscopy, recordings of a mid-phonatory/i/ in 16 male radio performers (aged 25–52 years) and 16 age-matched controls (aged 25–52 years) were collected. Videos were extracted and analysed semi-automatically using High-Speed Video Program, obtaining measures of fundamental frequency (f0), open quotient and speed quotient. Post-hoc analyses of sound pressure level (SPL) were also performed (n = 19). Pearson's correlations were calculated between SPL and both speed and open quotients. Results Male radio performers had a significantly higher speed quotient than their matched controls (t = 3.308, p = 0.005). No significant differences were found for f0 or open quotient. No significant correlation was found between either open or speed quotient with SPL. Discussion A higher speed quotient in male radio performers suggests that their vocal fold vibration was characterised by a higher ratio of glottal opening to closing times than controls. This result may explain findings of better voice quality, higher equivalent sound level and greater spectral tilt seen in previous research. Open quotient was not significantly different between groups, indicating that the durations of complete vocal fold closure were not different between the radio performers and controls. Further validation of these results is required to determine the aetiology of the higher speed quotient result and its implications for voice training and clinical management in performers. PMID:24971625

  18. A Measurement of the Millimeter Emission and the Sunyaev-Zel'dovich Effect Associated with Low-Frequency Radio Sources

    NASA Technical Reports Server (NTRS)

    Gralla, Megan B.; Crichton, Devin; Marriage, Tobias; Mo, Wenli; Aguirre, Paula; Addison, Graeme E.; Asboth, V.; Battaglia, Nick; Bock, James; Bond, J. Richard; Devlin, Mark; Dunner, Rolando; Hajian, Amir; Halpern, Mark; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee A.; Huffenberger, Kevin M.; Hughes, John P.; Ivison, R.J.; Kosowsky, Arthur; Lin, Yen-Ting; Marsden, Danica; Menanteau, Felipe; Wollack, Edward J.

    2014-01-01

    We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel'dovich effect associated with the halos that host them. We stack data at 148, 218 and 277 GHz from the Atacama Cosmology Telescope at the positions of a large sample of radio AGN selected at 1.4 GHz. The thermal Sunyaev-Zel'dovich (SZ) effect associated with the halos that host the AGN is detected at the 5 sigma level through its spectral signature, representing a statistical detection of the SZ effect in some of the lowest mass halos (average M(sub 200) approximately equals 10(sup 13) solar mass h(sub 70)(exp -1) ) studied to date. The relation between the SZ effect and mass (based on weak lensing measurements of radio galaxies) is consistent with that measured by Planck for local bright galaxies. In the context of galaxy evolution models, this study confirms that galaxies with radio AGN also typically support hot gaseous halos. Adding Herschel observations allows us to show that the SZ signal is not significantly contaminated by dust emission. Finally, we analyze the contribution of radio sources to the angular power spectrum of the cosmic microwave background.

  19. Determining atmospheric electric fields from the radio footprint of cosmic-ray induced extensive air showers as measured with LOFAR

    NASA Astrophysics Data System (ADS)

    Ebert, U.; Trinh, G. T. N.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Horandel, J.; Koehn, C.; Nelles, A.; Rachen, J. P.; Rutjes, C.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.

    2014-12-01

    Energetic cosmic rays impinging on the atmosphere create a particle avalanche called extensive air shower. In the leading plasma of this shower, electric currents are induced that generate the emission of radio waves which have been detected with LOFAR (www.lofar.org), an array of a large number of simple antennas primarily developed for radio-astronomy observations. Events have been collected under fair-weather conditions as well as under atmospheric conditions where thunderstorms occur. Of the 196 radio pulses detected under fair weather conditions, the intensity as well as the polarization can be reproduced rather accurately for 192 events with the standard model [1] using a superposition of a geomagnetically-induced transverse current and charge excess contributions. This indicates that the emission process is well understood. However, for most of the events measured under thunderstorm conditions as well as for 4 fair weather events we observe large differences in intensity and polarization pattern from the fair weather model. For these events it is not possible to get a good fit of the measured intensity pattern. The dominant polarization direction differs from the expected v x B orientation. We show that this difference is a consequence of atmospheric electric fields. We also show that the effects of atmospheric electric fields are understood, and that from the cosmic-ray radio footprint the atmospheric electric field can be deduced. [1] P. Schellart et al., submitted for publication, [arXiv:1406.1355].

  20. Atmospheric peroxy radical measurements using dual-channel chemical amplification cavity ringdown spectroscopy.

    PubMed

    Liu, Yingdi; Zhang, Jingsong

    2014-06-01

    Peroxy (HO2 and RO2) radicals are important intermediates in tropospheric oxidation of hydrocarbons, and their accurate atmospheric measurements remain challenging. In this work, the peroxy radical chemical amplification (PERCA) method was combined with cavity ringdown spectroscopy (CRDS) to develop a dual-channel instrument for measurements of atmospheric peroxy radicals. In the amplification channel, the peroxy radicals were converted in an excess amount of NO and CO into a higher level of NO2 and measured along with the background NO2, while in the reference channel, only the background NO2 (ambient NO2 and NO2 converted from O3 reaction with NO) was monitored. The NO2 levels from both channels were measured simultaneously at a high time resolution (~1 s) using two identical CRDS systems with one 408.5-nm diode laser, and their difference gave the amplified NO2 from PERCA. The peroxy radical concentration was obtained from the amplified NO2 and the calibrated amplification factor or chain length (CL). The optimized CL was 190 20 (1?) using laboratory-generated HO2 and CH3O2 radical sources. The detection sensitivity was 4 ppt/10 s (3?). Ambient measurements in Riverside, CA were carried out. This dual-channel diode-laser PERCA-CRDS instrument was compact and capable of providing real-time, in situ, and sensitive measurements of atmospheric peroxy radicals with fast time response. PMID:24798952

  1. A New Top Mass Measurement in The Dilepton Channel

    SciTech Connect

    Trovato, Marco

    2008-01-01

    The top quark discovery completed the present picture of the fundamental constituents of the nature. Since then, the Collider Detector at Fermilab and D0 Collaborations have been spending great efforts to measure its properties better. About 30 times larger than the second heaviest quark, the mass of the top has been measured with increased statistic and more and more sophisticated techniques in order to reduce as much as possible its uncertainty. This is because the top is expected to play a fundamental role in the Standard Model. The value of its mass sets boundaries on the mass of the unobserved Higgs boson, and perhaps more appealing, studies of its properties might lead to the discovery of new physics.

  2. A technique for measurement of earth station antenna G/T by radio stars and Applications Technology Satellites.

    NASA Technical Reports Server (NTRS)

    Kochevar, H. J.

    1972-01-01

    A new technique has been developed to accurately measure the G/T of a small aperture antenna using geostationary satellites and the well established radio star method. A large aperture antenna having the capability of accurately measuring its G/T by using a radio star of known power density is used to obtain an accurate G/T to use as a reference. The CNR of both the large and small aperture antennas are then measured using an Applications Technology Satellite (ATS). After normalizing the two C/N ratios to the large antenna system noise temperature the G/T or the gain G of the small aperture antenna can then be determined.

  3. Revisiting the dispersion measure of fast radio bursts associated with gamma-ray burst afterglows

    SciTech Connect

    Yu, Yun-Wei

    2014-12-01

    Some fast radio bursts (FRBs) are expected to be associated with the afterglow emission of gamma-ray bursts (GRBs), while a short-lived, supermassive neutron star (NS) forms during the GRBs. I investigate the possible contributions to the dispersion measure (DM) of the FRBs from the GRB ejecta and the wind blown from the precollapsing NS. On the one hand, sometimes an internal X-ray plateau afterglow could be produced by the NS wind, which indicates that a great number of electron-positron pairs are carried by the wind. If the pair-generation radius satisfies a somewhat rigorous condition, the relativistic and dense wind would contribute a high DM to the associated FRB, which can be comparable to and even exceed the DM contributed by the intergalactic medium. On the other hand, if the wind only carries a Goldreich-Julian particle flux, its DM contribution would become negligible; meanwhile, the internal plateau afterglow would not appear. Alternatively, the FRB should be associated with a GRB afterglow produced by the GRB external shock, i.e., an energy-injection-caused shallow-decay afterglow or a normal single-power-law afterglow if the impulsive energy release of the GRB is high enough. In the latter case, the DM contributed by the high-mass GRB ejecta could be substantially important, in particular, for an environment of main-sequence stellar wind. In summary, a careful assessment on the various DM contributors could be required for the cosmological application of the expected FRB-GRB association. The future DM measurements of GRB-associated FRBs could provide a constraint on the physics of NS winds.

  4. Revisiting the Dispersion Measure of Fast Radio Bursts Associated with Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Yu, Yun-Wei

    2014-12-01

    Some fast radio bursts (FRBs) are expected to be associated with the afterglow emission of gamma-ray bursts (GRBs), while a short-lived, supermassive neutron star (NS) forms during the GRBs. I investigate the possible contributions to the dispersion measure (DM) of the FRBs from the GRB ejecta and the wind blown from the precollapsing NS. On the one hand, sometimes an internal X-ray plateau afterglow could be produced by the NS wind, which indicates that a great number of electron-positron pairs are carried by the wind. If the pair-generation radius satisfies a somewhat rigorous condition, the relativistic and dense wind would contribute a high DM to the associated FRB, which can be comparable to and even exceed the DM contributed by the intergalactic medium. On the other hand, if the wind only carries a Goldreich-Julian particle flux, its DM contribution would become negligible; meanwhile, the internal plateau afterglow would not appear. Alternatively, the FRB should be associated with a GRB afterglow produced by the GRB external shock, i.e., an energy-injection-caused shallow-decay afterglow or a normal single-power-law afterglow if the impulsive energy release of the GRB is high enough. In the latter case, the DM contributed by the high-mass GRB ejecta could be substantially important, in particular, for an environment of main-sequence stellar wind. In summary, a careful assessment on the various DM contributors could be required for the cosmological application of the expected FRB-GRB association. The future DM measurements of GRB-associated FRBs could provide a constraint on the physics of NS winds.

  5. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements.

    PubMed

    Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O(3+) ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured. PMID:26628167

  6. Temperature and Pressure Measurements and Visualization of He II Cavitation Flow through Venturi Channel

    SciTech Connect

    Ishii, T.; Murakami, M.; Harada, K.

    2004-06-23

    He II cavitation flow through a Venturi channel was experimentally investigated through temperature and pressure measurements and optical visualization. So far some distinctive features of cavitation between He II and He I flows were clarified. Then, detailed measurements were added for further investigation, such as the measurements of the temperature drop distribution throughout the flow channel and the void fraction. Further considerations were given on the cavitation inception with emphasis on the superheating of liquid helium, and the effect of the flow separation on cavitation.

  7. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    NASA Astrophysics Data System (ADS)

    Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  8. Interplay between Appearance and Disappearance Channels for Precision Measurements of θ₂₃ and δ

    SciTech Connect

    Coloma, Pilar; Minakata, Hisakazu; Parke, Stephen J.

    2014-11-01

    We discuss how the CP violating phase δ and the mixing angle θ₂₃ can be measured precisely in an environment where there are strong correlations between them. This is achieved by paying special attention to the mutual roles and the interplay between the appearance and the disappearance channels in long-baseline neutrino oscillation experiments. We analyze and clarify the general structure of the θ₂₃ - θ₁₃ - δ degeneracy for both the appearance and disappearance channels in a more complete fashion than what has previously been discussed in the literature. A full understanding of this degeneracy is of vital importance if θ₂₃ is close to maximal mixing. The relative importance between the appearance and disappearance channels depends upon the particular setup and how close to maximal mixing Nature has chosen the value for θ₂₃. For facilities that operate with a narrow band beam or a wide band beam centered on the first oscillation extremum, the contribution of the disappearance channel depends critically on the systematic uncertainties assumed for this channel. Whereas for facilities that operate at energies above the first oscillation extremum or at the second oscillation extremum the appearance channels dominate. On the other hand, for δ we find that the disappearance channel usually improves the sensitivity, modestly for facilities around the first oscillation extremum and more significantly for facilities operating at an energy above the first oscillation extremum, especially near δ ~ ± π/2.

  9. Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Park, J. S.; Ibrahim, M. Y.

    1986-01-01

    Periodic rib turbulators were used in advanced turbine cooling designs to enhance the internal heat transfer. The objective of the present project was to investigate the combined effects of the rib angle of attack and the channel aspect ratio on the local heat transfer and pressure drop in rectangular channels with two opposite ribbed walls for Reynolds number varied from 10,000 to 60,000. The channel aspect ratio (W/H) was varied from 1 to 2 to 4. The rib angle of attack (alpha) was varied from 90 to 60 to 45 to 30 degree. The highly detailed heat transfer coefficient distribution on both the smooth side and the ribbed side walls from the channel sharp entrance to the downstream region were measured. The results showed that, in the square channel, the heat transfer for the slant ribs (alpha = 30 -45 deg) was about 30% higher that of the transverse ribs (alpha = 90 deg) for a constant pumping power. However, in the rectangular channels (W/H = 2 and 4, ribs on W side), the heat transfer at alpha = 30 -45 deg was only about 5% higher than 90 deg. The average heat transfer and friction correlations were developed to account for rib spacing, rib angle, and channel aspect ratio over the range of roughness Reynolds number.

  10. A high-frequency warm shallow water acoustic communications channel model and measurements.

    PubMed

    Chitre, Mandar

    2007-11-01

    Underwater acoustic communication is a core enabling technology with applications in ocean monitoring using remote sensors and autonomous underwater vehicles. One of the more challenging underwater acoustic communication channels is the medium-range very shallow warm-water channel, common in tropical coastal regions. This channel exhibits two key features-extensive time-varying multipath and high levels of non-Gaussian ambient noise due to snapping shrimp-both of which limit the performance of traditional communication techniques. A good understanding of the communications channel is key to the design of communication systems. It aids in the development of signal processing techniques as well as in the testing of the techniques via simulation. In this article, a physics-based channel model for the very shallow warm-water acoustic channel at high frequencies is developed, which are of interest to medium-range communication system developers. The model is based on ray acoustics and includes time-varying statistical effects as well as non-Gaussian ambient noise statistics observed during channel studies. The model is calibrated and its accuracy validated using measurements made at sea. PMID:18189549

  11. Measurement and statistical analysis of wideband MF atmospheric radio noise. I - Structure and distribution and time variation of noise power

    NASA Astrophysics Data System (ADS)

    Herman, J. R.; Deangelis, X. A.; Giordano, A. A.; Marzotto, K. F.; Hsu, F. M.

    1986-02-01

    Wideband measurements (100 kHz) of medium frequency atmospheric noise have been made over the past several years in the southwestern United States. In part 1 of a two-part paper the measurement and data transcription system and the statistical analysis software used to analyze the data are presented. In part 2, representative first- and higher-order statistics and the impact of the data on bandwidth and system performance are described. Measurement results presented in part 1 include the temporal structure of atmospheric noise, the distribution and time variation of the measured average noise power, and comparisons with predictions by the International Radio Consultative Committee (CCIR).

  12. Multifrequency channel microwave reflectometer with frequency hopping operation for density fluctuation measurements in Large Helical Device.

    PubMed

    Tokuzawa, T; Ejiri, A; Kawahata, K

    2010-10-01

    In order to measure the internal structure of density fluctuations using a microwave reflectometer, the broadband frequency tunable system, which has the ability of fast and stable hopping operation, has been improved in the Large Helical Device. Simultaneous multipoint measurement is the key issue of this development. For accurate phase measurement, the system utilizes a single sideband modulation technique. Currently, a dual channel heterodyne frequency hopping reflectometer system has been constructed and applied to the Alfve?n eigenmode measurements. PMID:21033938

  13. Multifrequency channel microwave reflectometer with frequency hopping operation for density fluctuation measurements in Large Helical Device

    SciTech Connect

    Tokuzawa, T.; Kawahata, K.; Ejiri, A.

    2010-10-15

    In order to measure the internal structure of density fluctuations using a microwave reflectometer, the broadband frequency tunable system, which has the ability of fast and stable hopping operation, has been improved in the Large Helical Device. Simultaneous multipoint measurement is the key issue of this development. For accurate phase measurement, the system utilizes a single sideband modulation technique. Currently, a dual channel heterodyne frequency hopping reflectometer system has been constructed and applied to the Alfven eigenmode measurements.

  14. Effect of weak measurement on entanglement distribution over noisy channels

    PubMed Central

    Wang, Xin-Wen; Yu, Sixia; Zhang, Deng-Yu; Oh, C. H.

    2016-01-01

    Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence. PMID:26935775

  15. Confirmatory measurement channels for LIF-based bioaerosol instrumentation

    NASA Astrophysics Data System (ADS)

    Bisson, Scott E.; Crocker, Robert W.; Kulp, Thomas J.; Reichardt, Thomas A.; Reilly, Peter T. A.; Whitten, William B.

    2008-04-01

    As part of the U.S. Department of Homeland Security Detect-to-Protect (DTP) program, a multilab [Sandia National Laboratories (SNL), Lawrence Livermore National Laboratories (LLNL), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), and Los Alamos National Laboratory (LANL)] effort is addressing the need for useable detect-to-warn bioaerosol sensors for public facility protection. Towards this end, the SNL team is investigating the use of rapid fluorogenic staining to infer the protein content of bioaerosols. This is being implemented in a flow cytometer wherein each particle detected generates coincident signals of correlated forward scatter, side scatter, and fluorescence. Several thousand such coincident signal sets are typically collected to generate a distribution describing the probability of observing a particle with certain scattering and fluorescence values. These data are collected for sample particles in both a stained and unstained state. A linear unmixing analysis is performed to differentiate components in the mixture. In this paper, we discuss the implementation of the staining process and the cytometric measurement, the results of their application to the analysis of known and blind samples, and a potential instrumental implementations that would use staining.

  16. Effect of weak measurement on entanglement distribution over noisy channels.

    PubMed

    Wang, Xin-Wen; Yu, Sixia; Zhang, Deng-Yu; Oh, C H

    2016-01-01

    Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence. PMID:26935775

  17. Effect of weak measurement on entanglement distribution over noisy channels

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Wen; Yu, Sixia; Zhang, Deng-Yu; Oh, C. H.

    2016-03-01

    Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence.

  18. Venus: ionosphere and atmosphere as measured by dual-frequency radio occultation of mariner v.

    PubMed

    1967-12-29

    Venus has daytime and nighttime ionospheres at the positions probed by radio occulation. The main layers are thin by terrestrial standards, with the nighttime peak concentration of electrons being about two orders of magnitude below that of the daytime peak. Above the nighttime peak were several scale-height regimes extending to a radius of at least 7500, and probably to 9700, kilometers from the center of Venus. Helium and hydrogen at plasma temperatures of 600 degrees to 1100 degrees K seem indicated in the regimes from 6300 to 7500 kilometers, with cooler molecular ions in lower regions. Above the daytime peak a sharp plasmapause was discovered, marking a sudden transition from appreciable ionization concentrations near Venus to the tenuous conditions of the solar wind. This may be indicative of a kind of interaction of the magnetized solar wind with a planetary body that differs from the two different kinds of interaction characterized by Earth and by Moon. For Venus and probably for Mars, the magnetic field of the solar wind may pile up in front of the conducting ionosphere, form an induced magnetosphere that ends at the plasmapause, above which any ionosphere that tends to form is swept away by the shocked solar wind that flows between the stand-off bow-shock and the magnetopause. The neutral atmosphere was also probed and a surface reflection may have been detected, but the data have not yet been studied in detail. Results are consistent with a super-refractive atmosphere, as expected from Soviet measurements near the surface. Thus, two unusual features of Venus can be described in terms of a light trap in the lower atmosphere, and a magnetic trap in the conducting ionosphere. PMID:17749790

  19. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel

    PubMed Central

    Ishida, Itzel G.; Rangel-Yescas, Gisela E.; Carrasco-Zanini, Julia

    2015-01-01

    Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ?25% less than the well-established 1314 eo in Shaker. Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ?50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker, where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shakers, accounting for the smaller Kv1.2 gating charge. PMID:25779871

  20. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel.

    PubMed

    Ishida, Itzel G; Rangel-Yescas, Gisela E; Carrasco-Zanini, Julia; Islas, Len D

    2015-04-01

    Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ?25% less than the well-established 13-14 eo in Shaker. Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ?50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker, where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shaker's, accounting for the smaller Kv1.2 gating charge. PMID:25779871

  1. First Results from The New Horizons Radio Science Experiment: Measurements of Pluto's Atmospheric Structure, Surface Pressure, and Microwave Brightness Temperature

    NASA Astrophysics Data System (ADS)

    Linscott, Ivan; Stern, Alan; Weaver, Hal; Young, Leslie; Olkin, Cathy; Ennico, Kim

    2015-11-01

    The Radio Science Experiment (REX), on board the New Horizons spacecraft, measured key characteristics of Pluto and Charon during the July 14, 2015, flyby. The REX flight instrument is integrated into the NH X-band radio transceiver and provides high precision, narrow band recording of powerful uplink transmissions from Earth stations, as well as a record of broadband radiometric power. This presentation reviews the performance and initial results of the radio occultation of Pluto, the radiometric temperature profiles, and gravity measurements during the encounter. REX received two pair of 20-kW uplink signals, one pair per polarization, transmitted from the DSN at 4.2- cm wavelength during a diametric radio occultation of Pluto. The REX recording of the uplinks affords a precise measurement of the surface pressure, the temperature structure of the lower atmosphere, and the surface radius of Pluto. The ingress portion of one polarization was played back from the spacecraft in July, while the egress portion of the same polarization was played back in August. Both ingress and egress segments of the occultation have been processed to obtain the pressure and temperature structure of Pluto’s atmosphere. In addition, REX measured the thermal emission from Pluto at 4.2- cm wavelength during two linear scans across the disk at close range when both the dayside and the night side were visible. Both scans extend from limb to limb with a resolution of one-tenth Pluto’s disk and temperature resolution of 0.1 K. A third radiometric scan was obtained during the dark side transit of the occultation. This work was supported by NASA’s New Horizons project.

  2. Measurement of the PPN Parameter (gamma) with radio signals from the Cassini Spacecraft at X- and Ka-Bands

    NASA Technical Reports Server (NTRS)

    Anderson, John D.; Lau, Eunice L.; Giampieri, Giacomo

    2005-01-01

    Radio Doppler data from the Cassini spacecraft during its solar conjunction in June 2002 can be used to measure the bending of light by solar gravitation. In terms of the standard post-Newtonian parameter (gamma), we find that (gamma) - 1 = (-1.3 +/- 5.2)x10^-5 in agreement with the theory of General Relativity. This result implies that the parameter (omega) in the Brans-Dicke theory is greater than 9000 at a 95% confidence level.

  3. Method and apparatus for measuring temperature of an earth formation in the presence of a radio frequency electromagnetic field

    SciTech Connect

    Kunetka, R.E.; Dowling, D.J.

    1984-09-04

    A method and apparatus for measuring the temperature in a subsurface earth formation that is being heated in situ by subjection to a radio frequency electromagnetic field. It includes lowering a maximum registering thermometer into the formation on a non-conductive flexible line, and holding it there long enough to reach the ambient temperature at that location. Then, the thermometer is raised to the surface fast enough to avoid any significant change on the way up to read that registered maximum.

  4. Analysis of the Capability and Limitations of Relativistic Gravity Measurements Using Radio Astronomy Methods

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.; Counselman, C. C., III

    1975-01-01

    The uses of radar observations of planets and very-long-baseline radio interferometric observations of extragalactic objects to test theories of gravitation are described in detail with special emphasis on sources of error. The accuracy achievable in these tests with data already obtained, can be summarized in terms of: retardation of signal propagation (radar), deflection of radio waves (interferometry), advance of planetary perihelia (radar), gravitational quadrupole moment of sun (radar), and time variation of gravitational constant (radar). The analyses completed to date have yielded no significant disagreement with the predictions of general relativity.

  5. Laser measurement of H{sup -} ions in a field-effect-transistor based radio frequency ion source

    SciTech Connect

    Tanaka, N.; Matsuno, T.; Funaoi, T.; Ando, A.; Tauchi, Y.; Nakano, H.; Tsumori, K.; Takeiri, Y.

    2012-02-15

    Hydrogen negative ion density measurements are required to clarify the characteristics of negative ion production and ion source performance. Both of laser photodetachment and cavity ring down (CRD) measurements have been implemented to a field-effect-transistor based radio-frequency ion source. The density ratio of negative hydrogen ions to electrons was successfully measured by laser photodetachment and effect of magnetic filter field on negative ion density was confirmed. The calculated CRD signal showed that CRD mirrors with >99.990% reflectivity are required and loss of reflectivity due to cesium contamination should be minimized.

  6. Three-channel amplifier for high-sensitivity voltage noise measurements

    NASA Astrophysics Data System (ADS)

    Giusi, Gino; Crupi, Felice; Ciofi, Carmine; Pace, Calogero

    2006-09-01

    This article describes a method for voltage noise measurements with a sensitivity superior to that of conventional methods. This is obtained by resorting to an original three-channel amplifier configuration and by following a four-step measurement procedure. A comparative analysis of this method and the conventional cross-correlation technique is presented. SPICE simulations and noise measurements performed on a prototype circuit demonstrate the validity of the proposed approach.

  7. A Radio-Polarisation and Rotation Measure Study of the Gum Nebula and Its Environment

    NASA Astrophysics Data System (ADS)

    Purcell, C. R.; Gaensler, B. M.; Sun, X. H.; Carretti, E.; Bernardi, G.; Haverkorn, M.; Kesteven, M. J.; Poppi, S.; Schnitzeler, D. H. F. M.; Staveley-Smith, L.

    2015-05-01

    The Gum Nebula is 36°-wide shell-like emission nebula at a distance of only ˜450 pc. It has been hypothesized to be an old supernova remnant, fossil H ii region, wind-blown bubble, or combination of multiple objects. Here we investigate the magneto-ionic properties of the nebula using data from recent surveys: radio-continuum data from the NRAO VLA and S-band Parkes All Sky Surveys, and H α data from the Southern H-Alpha Sky Survey Atlas. We model the upper part of the nebula as a spherical shell of ionized gas expanding into the ambient medium. We perform a maximum-likelihood Markov chain Monte Carlo fit to the NVSS rotation measure data, using the H α data to constrain average electron density in the shell ne. Assuming a latitudinal background gradient in rotation measure, we find {{n}e}=1.3-0.4+0.4 c{{m}-3}, angular radius {{φ }outer}=22\\buildrel{\\circ}\\over{.} 7-0.1+0.1, shell thickness dr=18.5-1.4+1.5 pc, ambient magnetic field strength {{B}0}=3.9-2.2+4.9 μ G, and warm gas filling factor f=0.3-0.1+0.3. We constrain the local, small-scale (˜260 pc) pitch-angle of the ordered Galactic magnetic field to +7{}^\\circ ≲ \\wp ≲ +44{}^\\circ , which represents a significant deviation from the median field orientation on kiloparsec scales (˜-7.°2). The moderate compression factor X=6.0-2.5+5.1 at the edge of the H α shell implies that the “old supernova remnant” origin is unlikely. Our results support a model of the nebula as a H ii region around a wind-blown bubble. Analysis of depolarization in 2.3 GHz S-PASS data is consistent with this hypothesis and our best-fitting values agree well with previous studies of interstellar bubbles.

  8. Instantaneous measure of EEG channel importance for improved patient-adaptive neonatal seizure detection.

    PubMed

    Temko, Andriy; Lightbody, Gordon; Thomas, Eoin M; Boylan, Geraldine B; Marnane, William

    2012-03-01

    A measure of bipolar channel importance is proposed for EEG-based detection of neonatal seizures. The channel weights are computed based on the integrated synchrony of classifier probabilistic outputs for the channels which share a common electrode. These estimated time-varying weights are introduced within a Bayesian probabilistic framework to provide a channel specific and, thus, adaptive seizure classification scheme. Validation results on a clinical dataset of neonatal seizures confirm the utility of the proposed channel weighting for the two patient-independent seizure detectors recently developed by this research group: one based on support vector machines (SVMs) and the other on Gaussian mixture models (GMMs). By exploiting the channel weighting, the receiver operating characteristic (ROC) area can be significantly increased for the most difficult patients, with the average ROC area across 17 patients increased by 22% (relative) for the SVM and by 15% (relative) for the GMM-based detector, respectively. It is shown that the system developed here outperforms the recent published studies in this area. PMID:22156948

  9. A Measurement of the Top Quark Mass in the Dilepton Decay Channel at CDF II

    SciTech Connect

    Jayatilaka, Bodhitha A

    2006-08-01

    The top quark, the most recently discovered quark, is the most massive known fundamental fermion. Precision measurements of its mass, a free parameter in the Standard Model of particle physics, can be used to constrain the mass of the Higgs Boson. In addition, deviations in the mass as measured in different channels can provide possible evidence for new physics. We describe a measurement of the top quark mass in the decay channel with two charged leptons, known as the dilepton channel, using data collected by the CDF II detector from p{bar p} collisions with {radical}s = 1.96 TeV at the Fermilab Tevatron. The likelihood in top mass is calculated for each event by convolving the leading order matrix element describing q{bar q} {yields} t{bar t} {yields} b{ell}{nu}{sub {ell}}{bar b}{ell}'{nu}{sub {ell}'} with detector resolution functions. The presence of background events in the data sample is modeled using similar calculations involving the matrix elements for major background processes. In a data sample with integrated luminosity of 1.0 fb{sup -1}, we observe 78 candidate events and measure M{sub t} = 164.5 {+-} 3.9(stat.) {+-} 3.9(syst.) GeV/c{sup 2}, the most precise measurement of the top quark mass in this channel to date.

  10. Venus: estimates of the surface temperature and pressure from radio and radar measurements.

    PubMed

    Wood, A T; Wattson, R B; Pollack, J B

    1968-10-01

    The radio brightness temperature and radar cross section spectra of Venus are in much better accord with surface boundary conditions deduced from a combination of the Mariner V results and the radar radius than those obtained by the Venera 4 space probe. The average surface temperature and pressure are approximately 750 degrees K and 90 atmospheres. PMID:17738181

  11. The Faroe Bank Channel overflow in one year of continuous current and hydrographic measurements

    NASA Astrophysics Data System (ADS)

    Ullgren, Jenny; Fer, Ilker; Darelius, Elin

    2014-05-01

    Cold, dense water from the Nordic Seas flows out into the North Atlantic across the shallow Iceland-Scotland ridge through a few deeper passages, the deepest of which (at 840 m) is the narrow Faroe Bank Channel. The overflow is swift, with velocities exceeding 1 m/s, and associated with strong vertical mixing. Here we present results from eight hydrographic and current meter moorings that were deployed in the Faroe Bank Channel overflow region during the period 28 May 2012 to 5 June 2013, measuring current velocity, temperature, and salinity at hourly or higher sampling frequencies. One array of three moorings - the channel section - was placed at about 8 30'W, just downstream of the sill in the channel. Another array, the slope section, with four moorings was located some 60 km further downstream, at about 9 40'W. At the easternmost (channel) section, the cold plume was thick, with water colder than 3C - considered as plume water - occupying the bottom 200 m at all times. At the slope section, the plume has thinned considerably as a result of entrainment of overlying warmer water. Mesoscale oscillations at periods of a few days dominated the temporal variability of velocity and temperature at both mooring sections. The mesoscale oscillation period, indicated by a peak in the energy density spectrum, was longer at the channel than the slope section (four and six days, respectively). A spectral peak at the diurnal tidal frequency is observed in the channel, but is absent on the slope. We will discuss these and other aspects of how the plume structure and variability develops along its path as the dense overflow exits the Faroe Bank Channel.

  12. Measurement and scaling of hydrodynamic interactions in the presence of draining channels.

    PubMed

    Gupta, Rohini; Frchette, Jolle

    2012-10-16

    Central to the adhesion and locomotion of tree frogs are their structured toe pads, which consist of an array of 10 ?m hexagonal epithelial cells separated by interconnected channels that are 1 ?m wide and 10 ?m deep. It has been proposed that the channels facilitate the drainage of excess fluid trapped between the toe pads and the contacting surface, and thus reduce the hydrodynamic repulsion during approach. We performed direct force measurement of the normal hydrodynamic interactions during the drainage of fluid from the gap between a structured and a smooth surface using surface force apparatus. The structured surface consisted of a hexagonal array of cylindrical posts to represent the network of interconnected channels. The measured hydrodynamic drainage forces agree with the predictions from Reynolds' theory for smooth surfaces at large separations. Deviations from theory, characterized by a reduction in the hydrodynamic repulsion, are observed below some critical separation (h(c)), which is independent of drive velocity. We employ a scaling analysis to establish the relationship between structural features (channel depth, width, and post diameter) and the critical separation for the onset of deviations. We find agreement between our experiments and the scaling analysis, which allows us to estimate a characteristic length scale that corresponds to the transition from the fluid being radially squeezed out of the nominal contact area to being squeezed out through the network of interconnected channels. PMID:23009050

  13. Streaming potential measurements in alphabetagamma-rat epithelial Na+ channel in planar lipid bilayers.

    PubMed

    Ismailov, I I; Shlyonsky, V G; Benos, D J

    1997-07-01

    Streaming potentials across cloned epithelial Na+ channels (ENaC) incorporated into planar lipid bilayers were measured. We found that the establishment of an osmotic pressure gradient (Deltapi) across a channel-containing membrane mimicked the activation effects of a hydrostatic pressure differential (DeltaP) on alphabetagamma-rENaC, although with a quantitative difference in the magnitude of the driving forces. Moreover, the imposition of a Deltapi negates channel activation by DeltaP when the Deltapi was directed against DeltaP. A streaming potential of 2.0 +/- 0.7 mV was measured across alphabetagamma-rat ENaC (rENaC)-containing bilayers at 100 mM symmetrical [Na+] in the presence of a 2 Osmol/kg sucrose gradient. Assuming single file movement of ions and water within the conduction pathway, we conclude that between two and three water molecules are translocated together with a single Na+ ion. A minimal effective pore diameter of 3 A that could accommodate two water molecules even in single file is in contrast with the 2-A diameter predicted from the selectivity properties of alphabetagamma-rENaC. The fact that activation of alphabetagamma-rENaC by DeltaP can be reproduced by the imposition of Deltapi suggests that water movement through the channel is also an important determinant of channel activity. PMID:9207147

  14. Ionizing radiation effects on a 64-channel charge measurement ASIC designed in CMOS 0.35 ?m technology

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Marchetto, F.; Pardo, J.; Donetti, M.; Attili, A.; Bourhaleb, F.; Cirio, R.; Garella, M. A.; Giordanengo, S.; Givehchi, N.; Iliescu, S.; Mazza, G.; Pecka, A.; Peroni, C.; Pitt, G.

    2008-08-01

    A 64-channel circuit Application Specific Integrated Circuit (ASIC) for charge measurement has been designed in CMOS 0.35 ?m technology and characterized with electrical tests. The ASIC has been conceived to be used as a front-end for dosimetry and beam monitoring detector read-out. For that application, the circuitry is housed at a few centimeters from the irradiated area of the detectors and therefore radiation damages can affect the chip performances. The ASIC has been tested on an X-ray beam. In this paper, the results of the test and an estimate of the expected lifetime of the ASIC in a standard radio-therapeutical treatment environment are presented. An increase of the background current of 2 fA/Gy has been observed at low doses, whilst the gain changes by less than 3% when irradiated up to 15 kGy. Furthermore it has been assessed that, when used as an on-line beam monitor and the annealing effect has been taken into account, the background current increase is 440 fA/year.

  15. 47 CFR 95.7 - Channel sharing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES General Mobile Radio Service (GMRS) § 95.7 Channel sharing. (a) Channels or channel pairs (one 462... and use of channels to reduce interference and to make the most effective use of the facilities....

  16. Analysis of Tracking Measuring Method of Focus Cabin of Five-hundred-meter Aperture Spherical radio Telescope(FAST)

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Zhu, Lichun

    2015-08-01

    FAST (Five-hundred-meter Aperture Spherical radio Telescope) project is one of the Chinese mega-Science Projects to build the largest single dish radio telescope in the world. FAST has three outstanding innovation aspects: in the karst depression which is large to host the 500-meter telescope, an active main reflector correcting for spherical aberration on the ground to achieve a full polarization is being built, the light-weight feed focus cabin in which a parallel robot as a secondary adjustable system to move with high precision is driven by cables and servomechanism plus. The part of main reflector which is illuminated by the feed is continually adjusted to fit the paraboloid of revolution in real time when tracking the radio source. How to get high precise real-time feedback data of moving focus cabin’s position when tracking the source is one of the crucial problems for the astronomical observation.At present 24 steady basis pillars for measurement whose position coordinates are already known, have been built in the construction field of FAST. Total stations will be installed on one of those pillars, and prisms will be installed on focus cabin. The purpose of this study was to assess the accuracy and reliability of two measuring method: the space distance intersection calculation method and polar measuring method. The space distance intersection calculation method is only using multiple measuring distances between three pillars and prism and known coordinates of pillars to calculate the prism’s coordinates, the polar measurement is using the measuring distance and angles to get the prism’s coordinate.

  17. Optical serial coherent analyzer of radio-frequency (OSCAR).

    PubMed

    Li, Ruiyue; Chen, Hongwei; Lei, Cheng; Yu, Ying; Chen, Minghua; Yang, Sigang; Xie, Shizhong

    2014-06-01

    Optical serial coherent analyzer of radio-frequency is a novel scheme that enables fast-scanning microwave signal measurements in a large bandwidth. The measurements are performed based on serial channelization realized by using a fast scanning laser source as the local oscillator to down-convert the to-be-measured radio-frequency (RF) signals. Optical coherent detection effectively removes interferences induced by RF's self-beating and guarantees the accuracy of measurements. In the experimental demonstration, instantaneous multi-frequency measurements and vector information acquisition of RF signals can be achieved by this scheme within 2.8 ?s over 14 GHz bandwidth. PMID:24921552

  18. A method to measure specific absorption rate of nanoparticles in colloidal suspension using different configurations of radio-frequency fields

    NASA Astrophysics Data System (ADS)

    Ketharnath, Dhivya; Pande, Rohit; Xie, Leiming; Srinivasan, Srimeenakshi; Godin, Biana; Wosik, Jarek

    2012-08-01

    We report a method for characterization of the efficiency of radio-frequency (rf) heating of nanoparticles (NPs) suspended in an aqueous medium. Measurements were carried out for water suspended 5 nm superparamagnetic iron-oxide NPs with 30 nm dextran matrix for three different configurations of rf electric and magnetic fields. A 30 MHz high-Q resonator was designed to measure samples placed inside a parallel plate capacitor and solenoid coil with or without an rf electric field shield. All components of rf losses were analyzed and rf electric and magnetic field induced heating of NPs and the dispersion medium was determined and discussed.

  19. Multi-channel transimpedance measurement of a planar electromagnetic sensor array

    NASA Astrophysics Data System (ADS)

    Chen, Dixiang; Xie, Ruifang; Zhou, Weihong; Hu, Hengjiang; Pan, Mengchun

    2015-02-01

    Planar electromagnetic sensor arrays have advantages such as nice coherence, fast response speed and high sensitivity, which can be used for micro damage inspection of crucial parts in equipment, and the key point in improving the inspection performance is to achieve a precise measurement of multi-channel transimpedances (the inductive voltages divided by the exciting current of the sensor). The principle and characteristics of planar electromagnetic sensor arrays are introduced in this paper, and a digital lock-in impedance measurement algorithm was investigated, with which the interference and noise in inductive voltage signals can be restrained effectively and the amplitude and phase of the transimpedance can be obtained with good repeatability. An eight channel impedance measurement system was established based on a field programmable gate array and utilized to inspect the micro damage in metal materials, and the experimental data were analyzed. The experimental results show that the impedance measurement has excellent repeatability when the sensor array is placed in air, and the maximum measurement error of the complete transimpedance measurement system is lower than 10%. A micro crack with a size of 1?mm (length) 0.1?mm (width) 1?mm (depth) can be detected through the measurement of multi-channel transimpedance in the planar electromagnetic sensor array.

  20. Reduction of flow-measurement uncertainties in laser velocimeters with nonorthogonal channels

    NASA Technical Reports Server (NTRS)

    Snyder, P. K.; Orloff, K. L.; Reinath, M. S.

    1983-01-01

    An analysis of certain geometrical limitations inherent in the application of laser velocimeters with nonorthogonal channels has led to the development of advanced-LDA-calibration and data-acquisition techniques that minimize systematic and statistical errors, respectively. The data-acquisition technique optimizes the number of velocity samples collected from three velocimeter channels as a function of local turbulence intensity, vector direction, and prescribed confidence interval. Linear velocity surveys and streamline traces measured in a turbulent flow field with a three-dimensional laser velocimeter are presented and the validity and accuracy of the theoretical analysis are discussed.

  1. In situ measurements of particle friction angles in steep, narrow channels

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Lamb, M. P.

    2013-12-01

    The persistent observation that sediment requires increased fluid stresses to move on steeper channels has inspired a wide range of explanations, which can loosely be divided into those that invoke increased grain stability (friction angle, ?) and those that require altered flow hydraulics in steep channels. Measurements of bulk fluid forces over a wide range of channel slopes (? ? 22) have been obtained using laboratory flume experiments that can control for grain stability and show that altered flow hydraulics do play a role in increased critical shear stress. However, measurements of grain stability are almost all limited to channel slopes less than a few degrees. These friction angle studies have been conducted by tilting a fixed gravel bed with a single loose particle until dislodgment, or by directly measuring the forces required to dislodge a particle using a load cell. The latter methodology is less common but offers the advantage of quickly measuring the friction angles of in situ grains in natural river channels. Indeed, it has enabled the collection of extremely large datasets at low slopes [e.g., Johnston et al., 1998]. We are adding to this dataset with measurements from several natural steep channels in the San Gabriel Mountains, CA to test if the particle friction angle changes systematically as a function of slope or width-to-grain size ratio (W/D50), which is thought to determine the propensity for particle jamming. Using a load cell that records peak forces we measure the minimum force required to pull a particle from its pocket in the downstream direction and the particle weight. Particles are sampled over a regular grid and we record the percentage of the particle buried by fines and the qualitative degree of interlocking. Preliminary results from three sites with bed slopes of ? = 2.9, 3.2, and 9.0 suggest that the at-a-site variability in friction angle is much higher than between-site variability, and that median values do not vary in a consistent manner with bed slope (? = 51, 67, and 65, respectively). At an individual site the degree of interlocking is the primary control on particle friction angle. However, the degree of interlocking was not higher in the steep (? = 9.0), narrow (W/D50 = 12.5) channel. This indicates that increased grain stability may not play a crucial role in increasing the threshold shear stresses required for sediment motion on very steep slopes.

  2. Comparison of the Ionospheric Electron Density Profiles Obtained by COSMIC Radio Occultation with Ground-based Measurements

    NASA Astrophysics Data System (ADS)

    Zakharenkova, I.; Shagimuratov, I.; Krankowski, A.

    2009-04-01

    The Radio Occultation technique using GPS signals has been proven to be a promising technique to retrieve accurate profiles of the ionospheric electron density with high vertical resolution on a global scale. Formosat-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) is a joint scientific mission between Taiwan and the U.S.A. The mission placed six small micro-satellites into six different orbits at 700~800 kilometer above the earth surface. Each microsatellite has a GPS Occultation Experiment payload to operate the ionospheric radio occultation (RO). With the ability of performing both rising and setting occultation, Formosat-3/COSMIC has been producing about 2000 profiles of the ionospheric electron density per day - much more than ever before. In the given paper we used the ionograms recorded by European ionosonde stations for the cases of winter and summer solstices and time of quiet and geomagnetically disturbed days in March 2008 and compare these ground measured data with the GPS COSMIC radio occultation ionospheric profiles. This result is important to validate the reliability of the COSMIC ionospheric observations using the radio occultation technique. The comparison of RO data with measurements provided by European ionosondes (Pruhonice, Iuliusruh, Ebre, Rome) indicates that usually COSMIC RO profiles are in a good agreement with ionosonde's profiles both in the F2 layer peak electron density (NmF2) and the bottom side part of the profiles. The coincidence of profiles is better in the cases when projection of the ray path of tangent points is closer to the ionosonde location. But it is necessary to mention that practically for all analyzed cases there are observed the understated values of electron density in the topside part of the ionosonde's profiles in compare with RO profiles. As the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC radio occultation measurements can make an important contribution to the investigation of the topside part of the ionosphere. We acknowledge the Taiwan's National Space Organization (NSPO) and the University Corporation for Atmospheric Research (UCAR) for providing the COSMIC Data. We are grateful to European Digital Upper Atmosphere Server (DIAS) for providing the ionosondes' products.

  3. Measurement of Field Aligned Electron and Ion Densities and Ducts from the Whistler and Z Mode Radio Sounding from IMAGE

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Hazra, S.; Mayank, K.; Reddy, A.; Liu, Y.; Carpenter, D. L.

    2013-12-01

    We present recent results from the application of whistler mode (WM) and Z mode (ZM) radio sounding experiments from the IMAGE satellite to the magnetospheric plasma diagnostics. A recently developed WM radio sounding method [Sonwalkar et al., JGR, 116, A11210, doi:10.1029/2011JA016759, 2011] was applied to 200 cases of WM echoes observed within the plasmasphere to measure field aligned electron density (Ne) and ion densities (NH+, NHe+, NO+) for L~1.6 -4, altitude <5000 km, Kp ~1-7, and F10.7 ~ 72-110 (low solar activity). The measured plasma parameters are in general consistent with the past space borne (e.g. CHAMP, DMSP, Alouette, ISIS, AE) and ground (e.g. ionosonde) measurements, but show significant differences from those predicted by IRI-2012 and GCPM models. We believe our measurements will lead to an improved model of electron and ion densities at <5000 km within the plasmasphere. The WM radio sounding method was applied to a case study of the variation of plasma parameters at L~2 during the development of a major storm, from quiet conditions and subsequent recovery, followed by a moderate and minor storm. Our study showed that relative to the preceding quiet time: (1) There was depletion in electron density, H+, He+ and enhancement in O+ ions leading to increase in O+-H+ transition height; (2) The recovery period of electrons and individual ions was different; (3) A similar trend in the variation of electron density, H+, O+ was observed after the moderate storm and the minor storm but He+ was not affected. Following a ray tracing technique originally developed for whistler mode sounding, we analyzed the fast nonducted and ducted Z mode echoes to obtain field aligned electron density and duct parameters (duct width and enhancement) from the measured dispersion of Z mode echoes. With the help of two case studies, we illustrate that fast Z mode echoes provide measurement of electron density at altitudes <10,000 km and duct width and enhancement within an uncertainty of ~0.05 L and a few percent, respectively. Application of ZM radio sounding method presented here to a large number (~2000) case observed at low- to mid-latitudes should provide distribution of electron density and duct parameters in this latitude range for altitude <10,000 km. Our measurements will contribute towards a better understanding of the ionosphere-magnetosphere coupling.

  4. Design and measurements of 64-channel ASIC for neural signal recording.

    PubMed

    Kmon, P; Zoladz, M; Grybos, P; Szczygiel, R

    2009-01-01

    This paper presents the design and measurements of a low noise multi-channel front-end electronics for recording extra-cellular neuronal signals using microelectrode arrays. The integrated circuit contains 64 readout channels and was fabricated in CMOS 0.18 microm technology. A single readout channel is built of an AC coupling circuit at the input, a low noise preamplifier, a band-pass filter and a second amplifier. In order to reduce the number of output lines, the 64 analog signals from readout channels are multiplexed to a single output by an analog multiplexer. The chip is optimized for low noise and matching performance with the possibility of cut-off frequencies tuning. The low cut-off frequency can be tuned in the 1 Hz-60 Hz range and the high cut-off frequency can be tuned in the 3.5 kHz-15 kHz range. For the nominal gain setting at 44 dB and power dissipation per single channel of 220 microW the equivalent input noise is in the range from 6 microV-11 microV rms depending on the band-pass filter settings. The chip has good uniformity concerning the spread of its electrical parameters from channel to channel. The spread of gain calculated as standard deviation to mean value is about 4.4% and the spread of the low cut-off frequency is on the same level. The chip occupies 5x2.3 mm(2) of silicon area. PMID:19964226

  5. Single channel and ensemble hERG conductance measured in droplet bilayers.

    PubMed

    Vijayvergiya, Viksita; Acharya, Shiv; Poulos, Jason; Schmidt, Jacob

    2015-02-01

    The human ether-a-go-go related gene (hERG) encodes the potassium channel Kv11.1, which plays a key role in the cardiac action potential and has been implicated in cardiac disorders as well as a number of off-target pharmaceutical interactions. The electrophysiology of this channel has been predominantly studied using patch clamp, but lipid bilayers have the potential to offer some advantages, including apparatus simplicity, ease of use, and the ability to control the membrane and solution compositions. We made membrane preparations from hERG-expressing cells and measured them using droplet bilayers, allowing measurement of channel ensemble currents and 13.5 pS single channel currents. These currents were ion selective and were blockable by E-4031 and dofetilide in a dose-dependent manner, allowing determination of IC50 values of 17 nM and 9.65 μM for E-4031 and dofetilide, respectively. We also observed time- and voltage- dependent currents following step changes in applied potential that were similar to previously reported patch clamp measurements. PMID:25653065

  6. Coupled Radon and Water Temperature Measurements to Characterize the Effects of Altered Stream Channel Planform

    NASA Astrophysics Data System (ADS)

    Amerson, B. E.; Poole, G. C.; O'Daniel, S. J.

    2013-12-01

    In summer 2011, a 2.6 km reach of Meacham Creek, Oregon, USA, was altered from a straight, steep wall-based channel to more a sinuous, low-gradient channel. Key objectives of this restoration project were to increase the rate and magnitude of hyporheic exchange. The overarching goal was to initiate increased buffering and lagging of water temperature in the subsurface to mitigate warm surface water temperature in Meacham Creek, an important spawning and rearing stream for depressed populations of Chinook salmon and summer steelhead. To evaluate progress toward project goals and objectives, stream temperature and groundwater temperature in 22 wells have been measured hourly at the restoration site since March 2011. In addition, the radioactive isotope 222Rn was measured in each well and in the surface water on two occasions. The relative residence time of down welling stream water measured in the wells can be determined by ranked amplitude depression and lagged phase of annual temperature signals in the wells relative to that of the open channel flow. Residence times predicted by annual temperature signal dynamics are corroborated by 222Rn concentrations in each well. The data collected to date provide a foundation for developing a groundwater thermal model to predict the effects of channel reconfiguration on ground-surface water exchange and associated temperature effects at the reach scale.

  7. Radio-frequency measurements of coherent transition and Cherenkov radiation: Implications for high-energy neutrino detection

    NASA Astrophysics Data System (ADS)

    Gorham, Peter W.; Saltzberg, David P.; Schoessow, Paul; Gai, Wei; Power, John G.; Konecny, Richard; Conde, M. E.

    2000-12-01

    We report on measurements of (11-18)-cm wavelength radio emission from interactions of 15.2 MeV pulsed electron bunches at the Argonne Wakefield Accelerator. The electrons were observed both in a configuration where they produced primarily transition radiation from an aluminum foil, and in a configuration designed for the electrons to produce Cherenkov radiation in a silica sand target. Our aim was to emulate the large electron excess expected to develop during an electromagnetic cascade initiated by an ultrahigh-energy particle. Such charge asymmetries are predicted to produce strong coherent radio pulses, which are the basis for several experiments to detect high-energy neutrinos from the showers they induce in Antarctic ice and in the lunar regolith. We detected coherent emission which we attribute both to transition and possibly Cherenkov radiation at different levels depending on the experimental conditions. We discuss implications for experiments relying on radio emission for detection of electromagnetic cascades produced by ultrahigh-energy neutrinos.

  8. e-MERLIN Radio Continuum Measurements of OB Star Winds in Cyg OB2

    NASA Astrophysics Data System (ADS)

    Morford, Jack; Prinja, Raman; Fenech, Danielle Marie

    2015-08-01

    We report on the first results from the e-MERLIN Cyg OB2 Radio Survey (COBRaS), which is designed to exploit e-MERLIN's enhanced capabilities to conduct deep-field mapping of the tremendously rich Cyg OB2 association in our Galaxy. The project aims to deliver the most detailed radio census of the most massive OB association in the northern hemisphere.There is considerable evidence for structure (clumping) in the radiatively driven stellar winds of hot stars. The existence of clumping has important consequences for mass-loss rate determinations. Mass-loss rates that are not corrected for clumping provide incorrect inputs for stellar and Galactic evolution models. Radio observations are ideally suited to study the effect of clumping in the outer regions of the wind. We present the first 20 cm (L-band) continuum detections of OB stars in Cyg OB2. These data substantially increase the observational detections of the outer wind of massive stars. In combination with other observations at different wavelengths COBRaS will greatly advance our knowledge of clumping as a function of radial distance around massive stars. The observations allow us to quantify the amount of clumping and search for possible relations with stellar and/or wind parameters.

  9. Effects of horizontal velocity variations on ultrasonic velocity measurements in open channels

    USGS Publications Warehouse

    Swain, E.D.

    1992-01-01

    Use of an ultrasonic velocity meter to determine discharge in open channels involves measuring the velocity in a line between transducers in the stream and relating that velocity to the average velocity in the stream. The standard method of calculating average velocity in the channel assumes that the velocity profile in the channel can be represented by the one-dimensional von Karman universal velocity profile. However, the velocity profile can be described by a two-dimensional equation that accounts for the horizontal velocity variations induced by the channel sides. An equation to calculate average velocity accounts for the two-dimensional variations in velocity within a stream. The use of this new equation to calculate average velocity was compared to the standard method in theoretical trapezoidal cross sections and in the L-31N and Snapper Creek Extension Canals near Miami, Florida. These comparisons indicate that the two-dimensional variations have the most significant effect in narrow, deep channels. Also, the two-dimensional effects may be significant in some field situations and need to be considered when determining average velocity and discharge with an ultrasonic velocity meter.

  10. A liquid He cooled two-axis goniometer for channeling measurements down to 5 K

    NASA Astrophysics Data System (ADS)

    Kaufmann, R.; Geerk, J.; Ratzel, F.

    1983-01-01

    A liquid He cooled two-axis goniometer was built to perform channeling measurements at temperatures down to 5 K. The rotation about the vertical axis is achieved by a rotatable He-vessel. The rotation about the sample surface normal is possible by a sample holder which is pressed against the He-vessel and driven via a worm gear. The precision of the vertical rotation is 0.02, the precision of the horizontal rotation is 0.2. To test the goniometer channeling measurements with 2 MeV He + ions on a Mo-single crystal at temperatures of 295 K, 77 K and 5 K have been performed. The measured minimum yields and critical angles are compared with calculated parameters obtained by Monte Carlo methods.

  11. Heat transfer and pressure drop measurement in wavy channels with flow disturbers

    SciTech Connect

    Dini, S.; Veronesi, R.; Hryniewicz, E.V.

    1999-07-01

    In the current work, the transient method was employed to obtain the local heat transfer coefficient for a 6 in. x 3/8 in. x 12 in. (15.24cm x .9525cm x 30.48cm) Plexiglas {reg_sign} wavy channel with and without flow disturbers. A short duration transient test was performed to measure the heat transfer coefficient by introducing heated air over test specimen that had been sprayed with calibrated thermochromic liquid crystals. This technique allowed the experimenter to observe the temperature changes using a video camera. because a Plexiglas surface has a low thermal diffusivity, a one-dimensional assumption is a reasonable approximation because the surface temperature response is limited to a thin layer near the surface and lateral conduction is small. The heat transfer coefficient using the transient technique is then determined from the response of the surface temperature to a step change in the local temperature. Using this method, the axial variation in the heat transfer coefficient for Reynolds numbers in the laminar (1100) and turbulent region (2900) were obtained. These Reynolds numbers were based on the hydraulic diameter at the inlet of the wavy channel. Also, in this investigation, the region of greatest heat transfer and the pressure drop were both experimentally and analytically determined and the friction factor across an in-phase corrugated wall channel (wavy channel) at Reynolds numbers of 1100 and 2900 were obtained. A manometer and a pressure transducer were employed to measure pressure drop across the channel. The effect of flow disturbers mounted on each peak, alternate peaks and the first six peaks of a twelve-peak channel were also investigated. For all cases, the pressure drop and friction factor were shown to moderately increase with rib placement in the test section when compared to the results obtained from a similar smooth wavy channel without ribs. Additionally, for all cases, the friction factor also decreased with an increase in the Reynolds number. If the ratio of pumping power to heat transfer rate was selected as the primary criteria, the channel with a flow disturber placed on alternate peaks was determined to be the best configuration. The following figure illustrates the color changes of the liquid crystals.

  12. 47 CFR 95.628 - MedRadio transmitters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... human body, radiated emissions and EIRP measurements for transmissions by stations authorized under this section may be made in accordance with a Commission-approved human body simulator and test technique. A... from a medical implant or medical body-worn device on that channel. The MedRadio communications...

  13. 47 CFR 95.628 - MedRadio transmitters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... human body, radiated emissions and EIRP measurements for transmissions by stations authorized under this section may be made in accordance with a Commission-approved human body simulator and test technique. A... from a medical implant or medical body-worn device on that channel. The MedRadio communications...

  14. Radio-frequency measurements of UNiX compounds (X= Al, Ga, Ge) in high magnetic fields

    SciTech Connect

    Mielke, Charles H; Mcdonald, David R; Zapf, Vivien; Altarawneh, Moaz M; Lacerda, Alex H; Adak, Sourav; Karunakar, Kothapalli; Nakotte, Heinrich; Chang, S; Alsmadi, A M; Alyones, S

    2009-01-01

    We performed radio-frequency (RF) skin-depth measurements of antiferromagnetic UNiX compounds (X=Al, Ga, Ge) in magnetic fields up to 60 T and at temperatures between 1.4 to {approx}60 K. Magnetic fields are applied along different crystallographic directions and RF penetration-depth was measured using a tunnel-diode oscillator (TDO) circuit. The sample is coupled to the inductive element of a TDO resonant tank circuit, and the shift in the resonant frequency {Delta}f of the circuit is measured. The UNiX compounds exhibit field-induced magnetic transitions at low temperatures, and those transitions are accompanied by a drastic change in {Delta}f. The results of our skin-depth measurements were compared with previously published B-T phase diagrams for these three compounds.

  15. Sensitivity analysis of a new SWIR-channel measuring tropospheric CH 4 and CO from space

    NASA Astrophysics Data System (ADS)

    Jongma, Rienk T.; Gloudemans, Annemieke M. S.; Hoogeveen, Ruud W. M.; Aben, Ilse; de Vries, Johan; Escudero-Sanz, Isabel; van den Oord, Gijsbertus; Levelt, Pieternel F.

    2006-08-01

    In preparation for future atmospheric space missions a consortium of Dutch organizations is performing design studies on a nadir viewing grating-based imaging spectrometer using OMI and SCIAMACHY heritage. The spectrometer measures selected species (O 3, NO II, HCHO, H IIO, SO II, aerosols (optical depth, type and absorption index), CO and CH4) with sensitivity down to the Earth's surface, thus addressing science issues on air quality and climate. It includes 3 UV-VIS channels continuously covering the 270-490 nm range, a NIR-channel covering the 710-775 nm range, and a SWIR-channel covering the 2305-2385 nm range. This instrument concept is, named TROPOMI, part of the TRAQ-mission proposal to ESA in response to the Call for Earth Explorer Ideas 2005, and, named TROPI, part of the CAMEO-proposal prepared for the US NRC decadal study-call on Earth science and applications from space. The SWIR-channel is optional in the TROPOMI/TRAQ instrument and included as baseline in the TROPI/CAMEO instrument. This paper focuses on derivation of the instrument requirements of the SWIR-channel by presenting the results of retrieval studies. Synthetic detector spectra are generated by the combination of a forward model and an instrument simulator that includes the properties of state-of-the-art detector technology. The synthetic spectra are input to the CO and CH 4 IMLM retrieval algorithm originally developed for SCIAMACHY. The required accuracy of the Level-2 SWIR data products defines the main instrument parameters like spectral resolution and sampling, telescope aperture, detector temperature, and optical bench temperature. The impact of selected calibration and retrieval errors on the Level-2 products has been characterized. The current status of the SWIR-channel optical design with its demanding requirements on ground-pixel size, spectral resolution, and signal-to-noise ratio will be presented.

  16. Solar gravitational deflection of radio waves measured by very-long-baseline interferometry

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Kent, S. M.; Knight, C. A.; Shapiro, I. I.; Clark, T. A.; Hinteregger, H. F.; Rogers, A. E. E.; Whitney, A. R.

    1974-01-01

    Utilizing a four-antenna technique, simultaneous observations were made, at each end of an 845-km baseline, of the radio sources 3C279 and 3C273B, which are 10 deg apart in the sky. Differences in interferometric phases at 3.7-cm wavelength monitored near the time of the 1972 occultation of 3C279 by the sun, yielded a gravitational deflection of 0.99 plus or minus 0.03 times the value predicted by general relativity, corresponding to gamma = 0.98 plus or minus 0.06 (standard error).

  17. Measurements of the Suitability of Large Rock Salt Formations for Radio Detection of High-Energy Neutrinos

    SciTech Connect

    Odian, Allen C.

    2001-09-14

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant (WIPP), located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors.

  18. Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionization

    NASA Astrophysics Data System (ADS)

    Geil, Paul M.; Gaensler, B. M.; Wyithe, J. Stuart B.

    2011-11-01

    Measurement of redshifted 21-cm emission from neutral hydrogen promises to be the most effective method for studying the reionization history of hydrogen and, indirectly, the first galaxies. These studies will be limited not by raw sensitivity to the signal, but rather, by bright foreground radiation from Galactic and extragalactic radio sources and the Galactic continuum. In addition, leakage due to gain errors and non-ideal feeds conspire to further contaminate low-frequency radio observations. This leakage leads to a portion of the complex linear polarization signal finding its way into Stokes I, and inhibits the detection of the non-polarized cosmological signal from the epoch of reionization. In this work, we show that rotation measure synthesis can be used to recover the signature of cosmic hydrogen reionization in the presence of contamination by polarized foregrounds. To achieve this, we apply the rotation measure synthesis technique to the Stokes I component of a synthetic data cube containing Galactic foreground emission, the effect of instrumental polarization leakage and redshifted 21-cm emission by neutral hydrogen from the epoch of reionization. This produces an effective Stokes I Faraday dispersion function for each line of sight, from which instrumental polarization leakage can be fitted and subtracted. Our results show that it is possible to recover the signature of reionization in its late stages (z? 7) by way of the 21-cm power spectrum, as well as through tomographic imaging of ionized cavities in the intergalactic medium.

  19. Eratosthenes via Ham Radio

    ERIC Educational Resources Information Center

    Koser, John F.

    1975-01-01

    A secondary geology class used Eratosthenes' method for measuring the circumference of the earth by comparing their measurements of the shadow of a vertical rod to the measurements made by another person contacted by ham radio. (MLH)

  20. Isothermal mass flow measurements in microfabricated rectangular channels over a very wide Knudsen range

    NASA Astrophysics Data System (ADS)

    Anderson, John M.; Moorman, Matthew W.; Brown, Jason R.; Hochrein, James M.; Thornberg, Steven M.; Achyuthan, Komandoor E.; Gallis, Michael A.; Torczynski, John R.; Khraishi, Tariq; Manginell, Ronald P.

    2014-05-01

    Measurement and modeling of gas flows in microelectromechanical systems (MEMS) scale channels are relevant to the fundamentals of rarefied gas dynamics (RGD) and the practical design of MEMS-based flow systems and micropumps. We describe techniques for building robust, leak-free, rectangular microchannels which are relevant to micro- and nanofluidic devices, while the channels themselves are useful for fundamental RGD studies. For the first time, we report the isothermal steady flow of helium (He) gas through these channels from the continuum to the free-molecular regime in the unprecedented Knudsen range of 0.03-1000. On the high end, our value is 20-fold larger than values previously reported by Ewart et al (2007 J. Fluid Mech. 584 337-56). We accomplished this through a dual-tank accumulation technique which enabled the monitoring of very low flow rates, below 10-14 kg s-1. The devices were prebaked under vacuum for 24 h at 100 C in order to reduce outgassing and attain high Kn. We devised fabrication methods for controlled-depth micro-gap channels using silicon for both channel ceiling and floor, thereby allowing direct comparisons to models which utilize this simplifying assumption. We evaluated the results against a closed-form expression that accurately reproduces the continuum, slip, transition, and free-molecular regimes developed partly by using the direct simulation Monte Carlo method. The observed data were in good agreement with the expression. For Kn > 100, we observed minor deviations between modeled and experimental flow values. Our fabrication processes and experimental data are useful to fundamental RGD studies and future MEMS microflow devices with respect to extremely low-flow measurements, model validation, and predicting optimal designs.

  1. Measurement of top quark polarisation in t-channel single top quark production

    SciTech Connect

    Khachatryan, Vardan

    2015-11-09

    Our first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in t-channel single top quark production is presented. It is based on a sample of pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb-1. A high-purity sample of t-channel single top quark events with an isolated muon is selected. Signal and background components are estimated using a fit to data. Furthermore, a differential cross section measurement, corrected for detector effects, of an angular observable sensitive to the top quark polarisation is performed. The differential distribution is used to extract a top quark spin asymmetry of 0.26 ± 0.03 (stat) ± 0.10 (syst), which is compatible with a p-value of 4.6% with the standard model prediction of 0.44.

  2. Measurements of mixed convective heat transfer to low temperature helium in a horizontal channel

    NASA Technical Reports Server (NTRS)

    Yeroshenko, V. M.; Kuznetsov, Y. V.; Shevchenko, O. A.; Hendricks, R. C.; Daney, D. E.

    1979-01-01

    A horizontal 2.85 m long, 19 mm i.d. stainless steel heated circular channel was employed to measure coefficients of heat transfer to low temperature helium flow. Experimental parameters range from 6.5 to 15 K, from 0.12 to 0.3 MPa at heat fluxes up to 1000 W/m square and Reynolds numbers from 9,000 to 20,000. A significantly nonuniform distribution of heat transfer coefficients over the tube periphery is observed. Difference between temperatures on the upper and lower surfaces of the stainless steel channel wall was found to reach 9 K. It was noted that the highest temperature on the wall outer surface is displaced from its uppermost point. Measurements of local flow temperatures revealed vortical structure of the flow. The displacement of the point with the highest temperature is attributable to the effect of vortices. The relationships for calculating local and averaged coefficients of heat transfer are proposed.

  3. The equilibrium velocity of spherical particles in rectangular microfluidic channels for size measurement.

    PubMed

    Sommer, Christian; Quint, Stephan; Spang, Peter; Walther, Thomas; Bassler, Michael

    2014-07-01

    According to the Segré-Silberberg effect, spherical particles migrate to a lateral equilibrium position in parabolic flow profiles. Here, for the first time, the corresponding equilibrium velocity is studied experimentally for micro particles in channels with rectangular cross section. Micro channels are fabricated in PMMA substrate based on a hot embossing process. To measure individual particle velocities at very high precision, the technique of spatially modulated emission is applied. It is found that the equilibrium velocity is size-dependent and the method offers a new way to measure particle size in microfluidic systems. The method is of particular interest for microfluidic flow cytometry as it delivers an alternative to the scatter signal for cell size determination. PMID:24829932

  4. High fidelity wireless network evaluation for heterogeneous cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso

    2012-06-01

    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal-level interactions with real radios. This holistic wireless evaluation approach supports a large-scale, het- erogeneous, and dynamic CR network architecture and allows developing cross-layer network protocols under high fidelity, repeatable, and scalable wireless test scenarios suitable for heterogeneous space, air, and ground networks.

  5. THE RADIO-2 mm SPECTRAL INDEX OF THE CRAB NEBULA MEASURED WITH GISMO

    SciTech Connect

    Arendt, R. G.; George, J. V.; Staguhn, J. G.; Benford, D. J.; Fixsen, D. J.; Maher, S. F.; Moseley, S. H.; Sharp, E.; Wollack, E. J.; Devlin, M. J.; Dicker, S. R.; Korngut, P. M.; Irwin, K. D.; Jhabvala, C. A.; Miller, T. M.; Kovacs, A.; Mason, B. S.; Navarro, S.; Sievers, A.; Sievers, J. L.

    2011-06-10

    We present results of 2 mm observations of the Crab Nebula, obtained using the Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) bolometer camera on the IRAM 30 m telescope. Additional 3.3 mm observations with the MUSTANG bolometer array on the Green Bank Telescope are also presented. The integrated 2 mm flux density of the Crab Nebula provides no evidence for the emergence of a second synchrotron component that has been proposed. It is consistent with the radio power-law spectrum, extrapolated up to a break frequency of log ({nu}{sub b}[GHz]) = 2.84 {+-} 0.29 or {nu}{sub b} = 695{sup +651}{sub -336} GHz. The Crab Nebula is well resolved by the {approx}16.''7 beam (FWHM) of GISMO. Comparison to radio data at comparable spatial resolution enables us to confirm significant spatial variation of the spectral index between 21 cm and 2 mm. The main effect is a spectral flattening in the inner region of the Crab Nebula, correlated with the toroidal structure at the center of the nebula that is prominent in the near-IR through X-ray regime.

  6. The solar wind density spectrum near the Sun: Results from Voyager radio measurements

    SciTech Connect

    Coles, W.A.; Liu, W. ); Harmon, J.K.; Martin, C.L. )

    1991-02-01

    Spacecraft radio propagation data are analyzed to estimate the solar wind density fluctuation power spectrum across five decades of spatial wave number. The data were from radio science observations made during superior conjunctions of the Voyager 1 and Voyager 2 spacecrafts in 1979 and 1980. These data were analyzed to yield the wave structure function, a statistic which is related to, but obtained more readily than, the spectrum itself. Structure functions were obtained from a total of 28 observations spanning the heliocentric distance range 7-22 R{sub S}. Each structure function was a composite of two shorter segments estimated, respectively, from phase scintillation and spectral broadening analyses. The composite structure functions tend to be steep (approximately Kolmogorov) at large scales (10{sup 3}-10{sup 6} km) and nearly always show some flattening at smaller scales (10-100 km). The inflection between the steep and flatter regions is abrupt and occurs at scales of 100-300 km. Most of the structure functions also show some turnover at the very smallest scales. These results are in excellent agreement with the spectral shape model proposed by Coles and Harmon (1989). A few transients were seen in the Voyager data which were characterized by an overall increase in power at large scales and a steeping of the structure function at small scales. These transients were similar in appearance to transients reported earlier from Arecibo spectral broadening observations.

  7. Thermal measurements and flow visualization of heat convection in a tilted channel

    NASA Astrophysics Data System (ADS)

    Tisserand, Jean-Christophe; Creyssels, Mathieu; Riedinger, Xavier; Castaing, Bernard; Chill, Francesca

    2010-05-01

    Convection is the most important heat transport mechanism. We can find it not only in many natural situations such as stars, planet's atmosphere but also in half-natural situations such as industrial plants. Furthermore, the Rayleigh-Benard system, in which a fluid is cooled from above and heated from below, is one of the most studied systems in thermal convection. Nevertheless, in this configuration, the neighborhood of the plates controls the heat transfer. Therefore, we have to make a system in which the flow forgets the cold and the hot plate. We have built a vertical long channel which links two chambers : the hot one at the lower end and the cold one at the upper end. Moreover, this channel, which is hanged to a structure, can be tilted from an angle of 0 degree to 90 degrees. The experimental facility used for this purpose is a square channel with an inner area of 5*5 cm m and with a height of 20 cm. The cell is filled with water and is heated at the bottom by Joule effect. At the top, the temperature is regulated by a thermal bath and the mean temperature of the bulk is 25C . It is worth noticing that this configuration could correspond to heat pipes (without phase transformation) used in thermalisation systems or could model a vertical access pit of an underground carry. In this paper, we want to highlight how the thermal convection in the bulk of the channel is. In the first part, the paper will be focused on the visualization of the flow into the channel thanks to particle image velocimetry (PIV) technique. We look at the mean velocity field (transverse and axial components) , the fluctuations of the mean velocity field and the shear Reynolds stress. Besides, we analyze how the influence of the power supply and the dependance of the tilt angle are. At last, we will interpret the PIV measurements in terms of turbulent viscosity and effective heat conduction and we will deduce from the PIV measurements the axial mean profile of temperature. Then, in a second part, we present new thermal measurements. Thanks to a new sensor inserted into the channel and which is not too intrusive, we have measured the axial mean profile of temperature for several tilt angle and several different power supplies. At last, in a third part, a model which allows to account for the competition between stratification and turbulence will be developed.

  8. Lightning Return-Stroke Current Waveforms Aloft, from Measured Field Change, Current, and Channel Geometry

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; LeVine, D. M.; Idone, V. P.

    2006-01-01

    Three-dimensional reconstructions of six rocket-triggered lightning channels are derived from stereo photographs. These reconstructed channels are used to infer the behavior of the current in return strokes above the ground from current waveforms measured at the channel base and electric-field-change waveforms measured at a range of 5.2 kilometers for 24 return strokes in these channels. Streak photographs of 14 of the same strokes are analyzed to determine the rise times, propagation speeds, and amplitudes of relative light intensity for comparison with the electrical inferences. Results include the following: 1) The fine structure of the field-change waveforms that were radiated by these subsequent return strokes can be explained, in large part, by channel geometry. 2) The average 10 - 90% rise time of the stroke current increased by about a factor of seven in our sample, from an observed 0.31 plus or minus 0.17 microseconds at the surface to an inferred 2.2 plus or minus 0.5 microcseconds at 1 kilometer path length above the surface. 3) The three-dimensional propagation speed of the current front averaged 1.80 plus or minus 0.24 X 10(exp 8) meters per second over channel lengths typically greater than 1 kilometer. 4) Assuming that the measured current was entirely due to the return stroke forced an unreasonably large and abrupt reduction in inferred current amplitude over the first few tens of meters above the surface, especially in cases when the leader was bright relative to its stroke. Therefore, a significant fraction of the current at the surface was probably due to the leader, at least in such cases. 5) Peak return-stroke currents decreased by approximately 37 plus or minus 12% from 100 meters to 1 kilometer of path length above the surface. Because of uncertainty about how to partition the measured current between leader and return stroke, we are unable to infer the variation of current amplitude near the ground.

  9. Development of 200-channel mapping system for tissue oxygenation measured by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Niwayama, Masatsugu; Kohata, Daisuke; Shao, Jun; Kudo, Nobuki; Hamaoka, Takatumi; Katsumura, Toshihito; Yamamoto, Katsuyuki

    2000-07-01

    Near-infrared spectroscopy (NIRS) is a very useful technique for noninvasive measurement of tissue oxygenation. Among various methods of NIRS, continuous wave near-infrared spectroscopy (CW- NIRS) is especially suitable for real-time measurement and for practical use. CW-NIRS has recently been applied in vivo reflectance imaging of muscle oxygenation and brain activity. However, conventional mapping systems do not have a sufficient mapping area at present. Moreover, they do not enable quantitative measurement of tissue oxygenation because conventional NIRS is based on the inappropriate assumption that tissue is homogeneous. In this study, we developed a 200-channel mapping system that enables measurement of changes in oxygenation and blood volume and that covers a wider area (30 cm x 20 cm) than do conventional systems. The spatial resolution (source- detector separation) of this system is 15 mm. As for the effcts of tissue inhomogeneity on muscle oxygenation measurement, subcutaneous adipose tissue greatly reduces measurement sensitivity. Therefore, we also used a correction method for influence of the subcutaneous fat layer so that we could obtain quantitative changes in concentrations of oxy- and deoxy- hemoglobin. We conducted exercise tests and measured the changed in hemoglobin concentration in the thigh using the new system. The working muscles in the exercises could be imaged, and the heterogeneity of the muscles was shown. These results demonstrated the new 200-channel mapping system enables observation of the distribution of muscle metabolism and localization of muscle function.

  10. Wireless Charge Based Capacitance Measurement Circuits with On-Chip Spiral Inductor for Radio Frequency Identification Biosensor

    NASA Astrophysics Data System (ADS)

    Kim, Boram; Uno, Shigeyasu; Nakazato, Kazuo

    2012-04-01

    A wireless measuring system of charge based capacitance measurement (CBCM) circuit has been designed and demonstrated for biomedical applications. The radio frequency identification (RFID) chip that includes on-chip spiral inductor tag antenna, and RFID circuit, and CBCM sensor chip are fabricated within standard complementary metal oxide semiconductor (CMOS) process. The capacitance change caused by DNA detection can be converted into the voltage output using capacitance-to-voltage conversion circuit. To confirm the transmission of the capacitance, the poly-capacitor of fixed capacitance and on-chip spiral inductor tag antenna were fabricated using 1.2 m, 2-metal, 2-poly CMOS technology. As a result of measurement, three different capacitances (34, 141, 564 fF) were detected wirelessly.

  11. Effect of Vapor-Cell Geometry on Rydberg-Atom-Based Measurements of Radio-Frequency Electric Fields

    NASA Astrophysics Data System (ADS)

    Fan, Haoquan; Kumar, Santosh; Sheng, Jiteng; Shaffer, James P.; Holloway, Christopher L.; Gordon, Joshua A.

    2015-10-01

    A new approach to detect absolute radio-frequency (rf) electric fields (E-fields) that uses Rydberg atoms at room temperature in vapor cells has been demonstrated recently. The large-transition dipole moments between energetically adjacent Rydberg states enable this technique to make traceable E-field measurements with high sensitivity over a large frequency range from 1 GHz to 1 THz. In this paper, we experimentally investigate how the vapor-cell geometry affects the accuracy of the measurements. We find that the effects of the vapor cell on the measured rf E-field are minimized by making the vapor-cell size small compared to the wavelength of the rf E-field.

  12. The BepiColombo mission to Mercury and the Italian Spring Accelerometer (ISA) role in the Radio Science Experiments measurements

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Lucchesi, D. M.; Lucente, M.; Nozzoli, S.; Peron, R.; Santoli, F.; Argada, A.; Fiorenza, E.; Lefevre, C.; Magnafico, C.

    2011-10-01

    The BepiColombo mission to Mercury [1, 10] of the European Space Agency (ESA) aims to perform a set of experiments, the so called Radio Science Experiments (RSE), that will be devoted to the study of the gravity field and rotational state of Mercury [8] as well as to verify the theory of general relativity to an unprecedented level of accuracy [9]. One of the key ingredients in order to reach the very ambitious objectives of this mission, in the context of the RSE, is represented by the measurements of the onboard accelerometer [5, 2]. The Italian Spring Accelerometer (ISA) has been selected by ESA to measure and then allow to remove, a posteriori, the disturbing nongravitational accelerations acting on the Mercury Planetary Orbiter (MPO) surface. This paper is devoted to describe the accelerometer characteristics and performance and to introduce some of the experimental procedures in order to calibrate its measurements on ground and during the nominal phase of the mission.

  13. Measuring flood discharge in unstable stream channels using ground-penetrating radar

    USGS Publications Warehouse

    Spicer, K.R.; Costa, J.E.; Placzek, G.

    1997-01-01

    Field experiments were conducted to test the ability of ground-penetrating radar (GPR) to measure stream-channel cross sections at high flows without the necessity of placing instruments in the water. Experiments were conducted at four U.S. Geological Survey gaging stations in southwest Washington State. With the GPR antenna suspended above the water surface from a bridge or cableway, traverses were made across stream channels to collect radar profile plots of the streambed. Subsequent measurements of water depth were made using conventional depth-measuring equipment (weight and tape) and were used to calculate radar signal velocities. Other streamflow-parameter data were collected to examine their relation to radar signal velocity and to claritv of streambed definition. These initial tests indicate that GPR is capable of producing a reasonably accurate (??20%) stream-channel profile and discharge far more quickly than conventional stream-gaging procedures, while avoiding the problems and hazards associated with placing instruments in the water.

  14. Radio Journalism.

    ERIC Educational Resources Information Center

    Bittner, John R.; Bittner, Denise A.

    This book, a how-to-do-it guide for the novice and the professional alike, deals with several aspects of radio journalism: producing documentaries, preparing and announcing radio news, ethics and responsibility, regulation of radio journalism, and careers. It traces the history and growth of radio news, shows its impact on the public, and

  15. Frequency Allocation; The Radio Spectrum.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The Federal Communications Commission (FCC) assigns segments of the radio spectrum to categories of users, and specific frequencies within each segment to individual users. Since demand for channel space exceeds supply, the process is complex. The radio spectrum can be compared to a long ruler: the portion from 10-540 kiloHertz has been set aside…

  16. Four-channel ZnS scintillator measurements of escaping tritons in TFTR

    NASA Astrophysics Data System (ADS)

    Zweben, S. J.

    1989-04-01

    A four-channel scintillation detector capable of measuring tritons, protons, and alphas escaping from a tokamak plasma was operated during the 1986 run period of the Tokamak Fusion Test Reactor (TFTR). Signals consistent with the expected 1-MeV triton behavior have been observed during deuterium operation. Backgrounds associated with neutrons/gammas and soft x rays have been evaluated in situ and are shown to be at the ?10%-20% level for the present detector. Such a detector is capable of measuring escaping alphas in deuterium-tritium-fueled tokamaks such as TFTR.

  17. Error Vector Magnitude (EVM) Measurement to Characterize Tracking and Data Relay Satellite (TDRS) Channel Impairment

    NASA Technical Reports Server (NTRS)

    Mebratu, Derssie; Kegege, Obadiah; Shaw, Harry

    2016-01-01

    Digital signal transmits via a carrier wave, demodulates at a receiver and locates an ideal constellation position. However, a noise distortion, carrier leakage and phase noise divert an actual constellation position of a signal and locate to a new position. In order to assess a source of noise and carrier leakage, Bit Error Rate (BER) measurement technique is also used to evaluate the number of erroneous bit per bit transmitted signal. In addition, we present, Error Vector Magnitude (EVM), which measures an ideal and a new position, assesses a source of signal distortion, and evaluates a wireless communication system's performance with a single metric. Applying EVM technique, we also measure the performance of a User Services Subsystem Component Replacement (USSCR) modem. Furthermore, we propose EVM measurement technique in the Tracking and Data Relay Satellite system (TDRS) to measure and evaluate a channel impairment between a ground (transmitter) and the terminal (receiver) at White Sands Complex.

  18. Allometric relationships between traveltime channel networks, convex hulls, and convexity measures

    NASA Astrophysics Data System (ADS)

    Tay, Lea Tien; Sagar, B. S. Daya; Chuah, Hean Teik

    2006-06-01

    The channel network (S) is a nonconvex set, while its basin [C(S)] is convex. We remove open-end points of the channel connectivity network iteratively to generate a traveltime sequence of networks (Sn). The convex hulls of these traveltime networks provide an interesting topological quantity, which has not been noted thus far. We compute lengths of shrinking traveltime networks L(Sn) and areas of corresponding convex hulls C(Sn), the ratios of which provide convexity measures CM(Sn) of traveltime networks. A statistically significant scaling relationship is found for a model network in the form L(Sn) ˜ A[C(Sn)]0.57. From the plots of the lengths of these traveltime networks and the areas of their corresponding convex hulls as functions of convexity measures, new power law relations are derived. Such relations for a model network are CM(Sn) ˜ ? and CM(Sn) ˜ ?. In addition to the model study, these relations for networks derived from seven subbasins of Cameron Highlands region of Peninsular Malaysia are provided. Further studies are needed on a large number of channel networks of distinct sizes and topologies to understand the relationships of these new exponents with other scaling exponents that define the scaling structure of river networks.

  19. Phase distribution measurements in narrow rectangular channels using image-processing techniques

    SciTech Connect

    Bentley, C.L.; Ruggles, A.E.

    1992-06-01

    Phase distribution of air-water flow in a narrow rectangular channel is examined using image-processing techniques. Ink is added to the water, and clear channel walls were used to allow high-speed, still photographs and video tape to be taken of the air-water flow field. Flow field images are digitized and stored in a Macintosh IIci computer using a frame grabber board. Local grey levels are related to liquid thickness in the flow channel using a calibration fixture. Image-processing shareware is used to calculate the spatially averaged liquid thickness from the image of the flow field. Time-averaged spatial liquid distributions are calculated using image calculation algorithms. The spatially averaged liquid distribution is calculated from the time-averaged spatial liquid distribution to formulate the combined temporally and spatially averaged liquid fraction values. The temporally and spatially averaged liquid fractions measured using this technique compare well to those predicted from pressure gradient measurements at zero superficial liquid velocity. 11 refs.

  20. Pressure Drop Measurements for Turbulent Channel Flow over Superhydrophobic Surfaces with Superimposed Riblets

    NASA Astrophysics Data System (ADS)

    Perkins, Richard; Prince, Joseph; Vanderhoff, Julie; Maynes, Daniel

    2012-11-01

    We consider the combined drag reducing mechanisms of riblets and superhydrophobicity. Pressure drop measurements were acquired for turbulent channel flow over riblet surfaces, superhydrophobic surfaces, and surfaces with both drag reducing mechanisms. The riblets were nominally 80 μm tall, 16 μm wide, and spaced with a period of 160 μm. The superhydrophobic structuring was composed of alternating microribs (15 μm tall and 8 μm wide) and cavities (32 μm wide), aligned parallel to the flow. The channel consisted of a control section and a test section comprised of smooth and patterned wafers, respectively. In all cases, the test section walls were structured on top and bottom while the side walls were left smooth. The channel had a hydraulic diameter of 7.3 mm and an aspect ratio of 10:1. Seven pressure ports were precision machined into the walls of both the control and test sections. The pressure drop measurements were acquired simultaneously over both sections to eliminate uncertainty associated with the flow rate. The drag reduction for all test sections was then computed directly and data were obtained over a Reynolds number range of 11000 to 15000.

  1. Measurements of Shear Lift Force on a Bubble in Channel Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Motil, Brian J.; Skor, Mark

    2003-01-01

    Under microgravity conditions, the shear lift force acting on bubbles, droplets or solid particles in multiphase flows becomes important because under normal gravity, this hydrodynamic force is masked by buoyancy. This force plays an important role in furnishing the detachment process of bubbles in a setting where a bubble suspension is needed in microgravity. In this work, measurements of the shear lift force acting on a bubble in channel flow are performed. The shear lift force is deduced from the bubble kinematics using scaling and then compared with predictions from models in literature that address different asymptotic and numerical solutions. Basic trajectory calculations are then performed and the results are compared with experimental data of position of the bubble in the channel. A direct comparison of the lateral velocity of the bubbles is also made with the lateral velocity prediction from investigators, whose work addressed the shear lift on a sphere in different two-dimensional shear flows including Poiseuille flow.

  2. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    SciTech Connect

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-15

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and {+-}0.2{sup 0}, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ('Dee' voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  3. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and 0.20, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  4. Estimation of uncorrelated content in experimentally measured frequency response functions using three measurement channels

    NASA Astrophysics Data System (ADS)

    Cobb, R. E.; Mitchell, L. D.

    1990-11-01

    Experimental frequency response functions (FRF) measurements are normally made by measuring two signals: the force applied to the structure and the resulting response. If the coherence between these signals is less than unity, it is known only that there is uncorrelated content present in either or both signals. This paper presents, for the first time, a method for estimating the magnitude and source of any uncorrelated content present in a measurement system, provided that the original random signal is available for measurement. This is the case when a signal generator/amplifier/shaker set-up is used. However, this method cannot be applied to hammer impact testing. Measurements are made of the signals from the random noise generator, the force gauge, and the response transducer. From these measurements estimates can be made of uncorrelated content in the force and response measurements as well as in the amplification/shaker system. These estimates of uncorrelated content will be useful in improving the measurement system and in determining when the results from the 1Ĥ and 2Ĥ estimators are valid. They also can be used to estimate the s2 term in sĤ. The uncorrelated content estimators are applied in several different FRF measurements. Estimates of uncorrelated content from an inefficient non-linear shaker-to-force-gauge connection, from a ground-loop problem, and from leakage are shown. Limits on dynamic range are discussed.

  5. Viking radio occultation measurements of the atmosphere and topography of Mars - Data acquired during 1 Martian year of tracking

    NASA Technical Reports Server (NTRS)

    Lindal, G. F.; Hotz, H. B.; Sweetnam, D. N.; Shippony, Z.; Brenkle, J. P.; Hartsell, G. V.; Spear, R. T.

    1979-01-01

    The results of one Martian year of radio occultation measurements of the atmosphere and topography of Mars obtained using the Viking Orbiters are briefly summarized. Determinations of the vertical distribution of tropospheric gas refractivity and ionospheric electron density obtained from atmospheric Doppler frequency perturbations of the S and X band radio tracking frequencies indicate large meteorological variations, with near-surface temperatures ranging from 150 to 250 K, 5-km atmospheric pressure ranging from 3.5 to 4.8 mbar, inversion layers over the polar caps and dust storms, and seasonal pressure variations. Double- and single-layered upper atmospheric electron density profiles were observed on the sunlit and dark sides of the planet, respectively. A topographic map of the Martian surface, obtained from the limb diffraction effects observed at ingress and egress, is found to agree well with the elevation contours of US Geological survey map M 25M 3 RMC, with the exception of the south polar and Alba Patera regions.

  6. Nondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR.

    PubMed

    Nakazawa, Masataka; Yoshida, Masato; Hirooka, Toshihiko

    2012-05-21

    We propose and demonstrate a new technique for measuring mode couplings along a multi-core fiber (MCF) that employs a multi-channel optical time domain reflectometer (OTDR). The mode couplings along seven core fibers are successfully obtained using a synchronous seven-channel OTDR. PMID:22714241

  7. AG Channel Measurement and Modeling Results for Over-Sea Conditions

    NASA Technical Reports Server (NTRS)

    Matolak, David; Sun, Rouyu

    2014-01-01

    This report describes results from flight tests conducted in an over-sea environment, for the purpose of characterizing the air-to-ground (AG) channel, for future unmanned aircraft system (UAS) communication system analysis and design. These results are for the first of a set of several flight tests conducted in different ground site (GS) environments. An ultimate aim of all these tests is the development of models for the AG channel that can be used in communication system evaluation. In this report we provide measured results for propagation path loss, root-mean square delay spread (RMS-DS), and the correlation coefficient of the primary received signal components on the four antennas (two antennas for C-band, two for L-band). For path loss, the curved-earth two-ray model provides a reasonable fit to the measured data, altered by several dB at the shortest link distances by aircraft antenna pattern effects. This two-ray model also accounts for the majority of measured RMS-DS results of a few tens of nanoseconds, except for the occasional intermittent reflections from surface objects. These intermittent reflections yield RMS-DS values up to several hundred nanoseconds. For portions of the flight path that were over a harbor area highly populated with boats, the channel was found to be more "continuously dispersive," with RMS-DS reaching approximately 250 ns. A separate model will be developed for this over-harbor setting. The correlation coefficient results are still undergoing analysis; preliminary observations are that correlation between signals on the same-band antennas is generally large (>0.6) for the C-band straight flight paths, whereas for the L-band signals and for the oval-shaped flight paths the correlation is generally small (below 0.4). Inter-band correlations are typically very small, and are well modeled as zero-mean Gaussian in distribution, with a standard deviation less than 0.2. Hence the over-sea channel effects in the two bands can be considered uncorrelated, which will allow for good diversity gains in dual-band systems. We describe initial modeling approaches for the over-sea channel; complete models for this and the over-harbor setting will appear in a subsequent report.

  8. Quantum Markov chains, sufficiency of quantum channels, and Rényi information measures

    NASA Astrophysics Data System (ADS)

    Datta, Nilanjana; Wilde, Mark M.

    2015-12-01

    A short quantum Markov chain is a tripartite state {ρ }{ABC} such that system A can be recovered perfectly by acting on system C of the reduced state {ρ }{BC}. Such states have conditional mutual information I(A;B| C) equal to zero and are the only states with this property. A quantum channel {N} is sufficient for two states ρ and σ if there exists a recovery channel using which one can perfectly recover ρ from {N}(ρ ) and σ from {N}(σ ). The relative entropy difference D(ρ \\parallel σ )-D({N}(ρ )\\parallel {N}(σ )) is equal to zero if and only if {N} is sufficient for ρ and σ. In this paper, we show that these properties extend to Rényi generalizations of these information measures which were proposed in (Berta et al 2015 J. Math. Phys. 56 022205; Seshadreesan et al 2015 J. Phys. A: Math. Theor. 48 395303), thus providing an alternate characterization of short quantum Markov chains and sufficient quantum channels. These results give further support to these quantities as being legitimate Rényi generalizations of the conditional mutual information and the relative entropy difference. Along the way, we solve some open questions of Ruskai and Zhang, regarding the trace of particular matrices that arise in the study of monotonicity of relative entropy under quantum operations and strong subadditivity of the von Neumann entropy.

  9. Lightning Return-Stroke Current Waveforms Aloft, From Measured Field Change, Current, and Channel Geometry

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; LeVine, D. M.

    2002-01-01

    Direct current measurements are available near the attachment point from both natural cloud-to-ground lightning and rocket-triggered lightning, but little is known about the rise time and peak amplitude of return-stroke currents aloft. We present, as functions of height, current amplitudes, rise times, and effective propagation velocities that have been estimated with a novel remote-sensing technique from data on 24 subsequent return strokes in six different lightning flashes that were triggering at the NASA Kennedy Space Center, FL, during 1987. The unique feature of this data set is the stereo pairs of still photographs, from which three-dimensional channel geometries were determined previously. This has permitted us to calculate the fine structure of the electric-field-change (E) waveforms produced by these strokes, using the current waveforms measured at the channel base together with physically reasonable assumptions about the current distributions aloft. The computed waveforms have been compared with observed E waveforms from the same strokes, and our assumptions have been adjusted to maximize agreement. In spite of the non-uniqueness of solutions derived by this technique, several conclusions seem inescapable: 1) The effective propagation speed of the current up the channel is usually significantly (but not unreasonably) faster than the two-dimensional velocity measured by a streak camera for 14 of these strokes. 2) Given the deduced propagation speed, the peak amplitude of the current waveform often must decrease dramatically with height to prevent the electric field from being over-predicted. 3) The rise time of the current wave front must always increase rapidly with height in order to keep the fine structure of the calculated field consistent with the observations.

  10. Film, Radio, and Television.

    ERIC Educational Resources Information Center

    Hardesty, Carolyn, Ed.

    1990-01-01

    This journal issue covers the history of film, radio, and television in Iowa. The first article, "When Pictures and Sound Came to Iowa," summarizes the origin of movies and radio and their early beginnings in Iowa. Using old photographs and measurement charts, the viewing, reading, and listening habits of young people in 1950 and 1958 are

  11. Film, Radio, and Television.

    ERIC Educational Resources Information Center

    Hardesty, Carolyn, Ed.

    1990-01-01

    This journal issue covers the history of film, radio, and television in Iowa. The first article, "When Pictures and Sound Came to Iowa," summarizes the origin of movies and radio and their early beginnings in Iowa. Using old photographs and measurement charts, the viewing, reading, and listening habits of young people in 1950 and 1958 are…

  12. Measurements on diproton emission from the break-up channels of 23Al and 22Mg

    NASA Astrophysics Data System (ADS)

    Ma, YuGang; Fang, DeQing; Sun, XiaoYan; Zhou, Pei; Cai, XiangZhou; Chen, JinGen; Guo, Wei; Tian, WenDong; Wang, HongWei; Zhang, GuoQiang; Cao, XiGuang; Fu, Yao; Hu, ZhengGuo; Wang, JianSong; Wang, Meng; Togano, Y.; Aoi, N.; Baba, H.; Honda, T.; Okada, K.; Hara, Y.; Ieki, K.; Ishibashi, Y.; Itou, Y.; Iwasa, N.; Kanno, S.; Kawabata, T.; Kimura, H.; Kondo, Y.; Kurita, K.; Kurokawa, M.; Moriguchi, T.; Murakami, H.; Oishi, H.; Ota, S.; Ozawa, A.; Sakurai, H.; Shimoura, S.; Shioda, R.; Takeshita, E.; Takeuchi, S.; Yamada, K.; Yamada, Y.; Yasuda, Y.; Yoneda, K.; Motobayashi, T.

    2011-08-01

    Two-proton relative momentum distributions from the break-up channels 23Al→p+p+21Na and 22Mg→p+p+20Ne at an energy of 60-70 A MeV have been measured together with two-proton opening angles at the projectile fragment separator beamline (RIPS) in the RIKEN Ring Cyclotron Facility. The results demonstrate the existence of diproton emission component from single-step 2He for highly excited 23Al and 22Mg.

  13. A single-channel SQUID magnetometer for measuring magnetic field of human fetal heart

    NASA Astrophysics Data System (ADS)

    Bachir, Wesam; Grot, Przemyslaw; Dunajski, Zbigniew

    2004-07-01

    A non-invasive single-channel SQUID magnetometer for fetal magnetocardiography has been developed. The signal is picked-up with a wire wound third order gradiometer. The optimal configuration of the flux transformer is a trade-off between sufficient sensitivity for the magnetic field originated in fetal heart and effective immunity against the ambient magnetic noise. The over all system performance together with the measuring probe and SQUID electronics is described. The balancing of the third order flux transformer is discussed as well as the signal processing of fetal magnetocardiogram recordings.

  14. Multi-channel optical pyrometer for sub-nanosecond temperature measurements at NDCX-I/II

    SciTech Connect

    Ni, P.A.; Bieniosek, F.M.; Waldron, W.L.

    2011-04-13

    We present a detailed technical description of a fast multi-channel pyrometer designed for warm-dense-matter (WDM) experiments with intense heavy ion beams at the neutralized-drift-compression-experiment linear accelerator (NDCX-I/II) at Lawrence Berkeley National Laboratory (LBNL). The unique features of the described instrument are its sub-nanosecond temporal resolution (100 ps rise-time) and a broad range, 1,500 K - 12,000 K of measurable brightness temperatures in the visible and near-infrared regions of the spectrum. The working scheme, calibration procedure, experimental data obtained with the pyrometer and future applications are presented.

  15. Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal

    NASA Astrophysics Data System (ADS)

    He, Zhi; Yao, Chunmei; Zou, Jian

    2013-10-01

    Using the weak measurement (WM) and quantum measurement reversal (QMR) approach, robust state transfer and entanglement distribution can be realized in the spin-(1)/(2) Heisenberg chain. We find that the ultrahigh fidelity and long distance of quantum state transfer with certain success probability can be obtained using proper WM and QMR, i.e., the average fidelity of a general pure state from 80% to almost 100%, which is almost size independent. We also find that the distance and quality of entanglement distribution for the Bell state and the general Werner mixed state can be obviously improved by the WM and QMR approach.

  16. In situ measurements of subsurface contaminants with a multi-channel laser-induced fluorescence system

    NASA Astrophysics Data System (ADS)

    Wu Pepper, Jane; Wright, Andrew O.; Kenny, Jonathan E.

    2002-01-01

    A new multi-channel laser-induced fluorescence (LIF) probe with novel optical fiber probe geometry has been designed and integrated into a cone penetrometer testing (CPT) system for in situ contamination detection. The system is capable of collecting excitation and emission matrices (EEMs) of subsurface contaminants as a function of depth in seconds. Compared to our previous multi-channel LIF-CPT system, the new system is faster and more compact, with reduced probe size and sampling area. This article describes the first field demonstration of the system at Hanscom Air Force Base, Massachusetts. One contaminated site within the base was characterized through in situ measurements of 26 LIF-CPT pushes. To validate the LIF results, core samples taken at five locations were analyzed by both on-site LIF measurements and by off-site laboratory analyses with EPA methods. The comparison of the LIF and laboratory results is presented, along with the results of the in situ measurements.

  17. In situ measurements of subsurface contaminants with a multi-channel laser-induced fluorescence system.

    PubMed

    Pepper, Jane Wu; Wright, Andrew O; Kenny, Jonathan E

    2002-01-15

    A new multi-channel laser-induced fluorescence (LIF) probe with novel optical fiber probe geometry has been designed and integrated into a cone penetrometer testing (CPT) system for in situ contamination detection. The system is capable of collecting excitation and emission matrices (EEMs) of subsurface contaminants as a function of depth in seconds. Compared to our previous multi-channel LIF-CPT system, the new system is faster and more compact, with reduced probe size and sampling area. This article describes the first field demonstration of the system at Hanscom Air Force Base, Massachusetts. One contaminated site within the base was characterized through in situ measurements of 26 LIF-CPT pushes. To validate the LIF results, core samples taken at five locations were analyzed by both on-site LIF measurements and by off-site laboratory analyses with EPA methods. The comparison of the LIF and laboratory results is presented, along with the results of the in situ measurements. PMID:11808737

  18. USING RADIO HALOS AND MINIHALOS TO MEASURE THE DISTRIBUTIONS OF MAGNETIC FIELDS AND COSMIC RAYS IN GALAXY CLUSTERS

    SciTech Connect

    Keshet, Uri; Loeb, Abraham

    2010-10-10

    Some galaxy clusters show diffuse radio emission in the form of giant halos (GHs) on Mpc scales or minihalos (MHs) on smaller scales. Comparing Very Large Array and XMM-Newton radial profiles of several such clusters, we find a universal linear correlation between radio and X-ray surface brightness, valid in both types of halos. It implies a halo central emissivity {nu}j{sub {nu}} = 10{sup -31.4{+-}0.2}(n/10{sup -2}cm{sup -3}){sup 2}(T/T{sub 0}){sup 0.2{+-}0.5}ergs{sup -1}cm{sup -3}, where T and T{sub 0} are the local and central temperatures, respectively, and n is the electron number density. We argue that the tight correlation and the scaling of j{sub {nu}}, combined with morphological and spectral evidence, indicate that both GHs and MHs arise from secondary electrons and positrons, produced in cosmic-ray ion (CRI) collisions with a strongly magnetized B {approx}> 3{mu}G intracluster gas. When the magnetic energy density drops below that of the microwave background, the radio emission weakens considerably, producing halos with a clumpy morphology (e.g., RXC J2003.5 - 2323 and A2255) or a distinct radial break. We thus measure a magnetic field B = 3{mu}G at a radius r {approx_equal} 110kpc in A2029 and r {approx_equal} 50kpc in Perseus. The spectrum of secondaries, produced from hadronic collisions of {approx}20GeV CRIs, reflects the energy dependence of the collision cross section. We use the observed spectra of halos, in particular where they steepen with increasing radius or frequency, to (1) measure B {approx_equal} 10({nu}/700MHz){mu}G with {nu} the spectral break frequency, (2) identify a correlation between the average spectrum and the central magnetic field, and (3) infer a CRI spectral index s {approx}< -2.7 and energy fraction {xi}{sub p} {approx} 10{sup -3.6{+-}0.2} at particle energies above 10 GeV. Our results favor a model where CRIs diffuse away from their sources (which are probably supernovae, according to a preliminary correlation with star formation), whereas the magnetic fields are generated by mergers in GHs and by core sloshing in MHs.

  19. Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation.

    PubMed

    Dou, Haiyang; Jung, Euo Chang; Lee, Seungho

    2015-05-01

    Asymmetrical flow field-flow fractionation (AF4) has been considered to be a useful tool for simultaneous separation and characterization of polydisperse macromolecules or colloidal nanoparticles. AF4 analysis requires the knowledge of the channel thickness (w), which is usually measured by injecting a standard with known diffusion coefficient (D) or hydrodynamic diameter (dh). An accurate w determination is a challenge due to its uncertainties arising from the membrane's compressibility, which may vary with experimental condition. In the present study, influence of factors including the size and type of the standard on the measurement of w was systematically investigated. The results revealed that steric effect and the particles-membrane interaction by van der Waals or electrostatic force may result in an error in w measurement. PMID:25817708

  20. Using a novel flood prediction model and GIS automation to measure the valley and channel morphology of large river networks

    EPA Science Inventory

    Traditional methods for measuring river valley and channel morphology require intensive ground-based surveys which are often expensive, time consuming, and logistically difficult to implement. The number of surveys required to assess the hydrogeomorphic structure of large river n...

  1. Some applications of the STI-method in evaluating speech transmission channels

    NASA Astrophysics Data System (ADS)

    Steeneken, H. J. M.; Houtgast, T.

    1981-06-01

    A description is given of a measuring device for the application of the STI-method. The application of the device in evaluating speech communication channels as radio communication links, digital communication channels and microphones and telephones in noisy environments is demonstrated. Consequently the STI might well be used as a design specification for speech communication systems.

  2. Measurement setup and protocol for characterizing and testing radio frequency personal exposure meters.

    TOXLINE Toxicology Bibliographic Information

    Lauer O; Neubauer G; Rsli M; Riederer M; Frei P; Mohler E; Frhlich J

    2012-01-01

    Body-worn radiofrequency electromagnetic field (RF-EMF) personal exposure meters (PEMs) have been increasingly used for exposure assessment in epidemiological research. However, little research on the measurement accuracy of these devices is available. In this article a novel measurement setup and a measurement protocol are presented for characterizing and testing PEMs. The whole setup and procedure is tested using two EME SPY 120 devices. The performance of the PEM was analyzed for absolute measurements in an anechoic chamber. Modulated signals representing the different services as real signals generated by appropriate testers were used. Measurement results were evaluated with respect to a root mean square detector. We found that measurement accuracy depends strongly on the carrier frequency and also on the number of occupied time slots for Time Division Multiple Access (TDMA)-based services. Thus, correction factors can only be derived if the distribution of the network configuration over the measurement time for all measurement points is available. As a result of the simplicity of the measurement setup and the straightforward measurement protocol, the possibility of fast validation leads to a higher accuracy in the characterization and testing of PEMs.

  3. Measurement setup and protocol for characterizing and testing radio frequency personal exposure meters.

    PubMed

    Lauer, Oliver; Neubauer, Georg; Rsli, Martin; Riederer, Markus; Frei, Patrizia; Mohler, Evelyn; Frhlich, Jrg

    2012-01-01

    Body-worn radiofrequency electromagnetic field (RF-EMF) personal exposure meters (PEMs) have been increasingly used for exposure assessment in epidemiological research. However, little research on the measurement accuracy of these devices is available. In this article a novel measurement setup and a measurement protocol are presented for characterizing and testing PEMs. The whole setup and procedure is tested using two EME SPY 120 devices. The performance of the PEM was analyzed for absolute measurements in an anechoic chamber. Modulated signals representing the different services as real signals generated by appropriate testers were used. Measurement results were evaluated with respect to a root mean square detector. We found that measurement accuracy depends strongly on the carrier frequency and also on the number of occupied time slots for Time Division Multiple Access (TDMA)-based services. Thus, correction factors can only be derived if the distribution of the network configuration over the measurement time for all measurement points is available. As a result of the simplicity of the measurement setup and the straightforward measurement protocol, the possibility of fast validation leads to a higher accuracy in the characterization and testing of PEMs. PMID:21755521

  4. Measurement of the top quark mass in the and channels using ATLAS data

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; kesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; lvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; sman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimares da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.

    2015-07-01

    The top quark mass was measured in the channels $t\\bar{t} \\to \\mathrm{lepton+jets}$ and $t\\bar{t} \\to \\mathrm{dilepton}$ (lepton=$e, \\mu$) based on ATLAS data recorded in 2011. The data were taken at the LHC with a proton--proton centre-of-mass energy of $\\sqrt{s}=7$ TeV and correspond to an integrated luminosity of 4.6fb$^{-1}$. The $t\\bar{t} \\to \\mathrm{lepton+jets}$ analysis uses a three-dimensional template technique which determines the top quark mass together with a global jet energy scale factor (JSF), and a relative $b$-to-light-jet energy scale factor (bJSF), where the terms $b$-jets and light-jets refer to jets originating from $b$-quarks and $u, d, c, s$-quarks or gluons, respectively. The analysis of the $t\\bar{t} \\to \\mathrm{dilepton}$ channel exploits a one-dimensional template method using the $m_{\\ell b}$ observable, defined as the average invariant mass of the two lepton+$b$-jet pairs in each event. The top quark mass is measured to be $172.33\\pm 0.75(\\rm {stat}) \\pm 1.02(\\rm {syst})$ GeV, and $173.79 \\pm 0.54({\\rm stat}) \\pm 1.30({\\rm syst})$ GeV in the $t\\bar{t} \\to lepton+jets$ and $t\\bar{t} \\to dilepton$ channels, respectively. The combination of the two results yields $m_{\\mathrm top} = 172.99 \\pm 0.48({\\rm stat}) \\pm 0.78({\\rm syst})$ GeV, with a total uncertainty of $0.91$ GeV.

  5. Properties of the plasma channel in liquid discharges inferred from cathode local temperature measurements

    SciTech Connect

    Revaz, B.; Witz, G.; Fluekiger, R.

    2005-12-01

    The properties of the plasma channel at the cathode surface in a liquid discharge have been studied by means of temperature measurements and heat transfer numerical analysis. The studied discharge (current: 5 A; duration: 100 {mu}s; gap: 10 {mu}m) is typical of electrical discharge machining (EDM) in the semifinishing operation. The temperature information is obtained from two independent experiments: (1) microthermocouples patterned on the cathode, close to the discharge have been used to record the temperature variation caused by a single discharge with a high local resolution and large bandwidth; (2) the geometry of the resolidified layer, which gives the maximum extension of the melting point temperature isotherm, has been measured. These temperature data have then been compared to numerical simulation using inverse calculations allowing the experimental determination of two fundamental quantities of the discharge cathode interaction: (1) the power fraction transferred from the discharge to the sample, which was found to be close to 10% and (2) the exponent n of the power law expansion of the plasma channel r{sub plasma}{proportional_to}t{sup n}, which is n=0.2. The validity of the present analysis relies on the fact that the experimental temperature information is obtained for different values of the parameter r{sub plasma}/t{sub 0}{sup 2}, where t{sub 0}{sup 2} is the characteristic time of the experiment.

  6. Analysis of the parameters of the upper atmosphere and ionosphere based on radio occultation, ionosonde measurements, IRI and NeQuick model data

    NASA Astrophysics Data System (ADS)

    Andreeva, E. S.; Lokota, M. V.

    2013-05-01

    In April 2006, a new satellite system FormoSat-3/COSMIC (Taiwan's Formosa Satellite Mission ♯3 and Constellation Observing System for Meteorology, Ionosphere and Climate) was put into operation. The system consists of 6 low-orbital satellites with an orbital altitude of the order of 800 km. FormoSat-3/COSMIC satellites are capable of receiving radio signals transmitted from GPS navigation system. The Formosat-3/COSMOS radio occultation measurements provide, on average, 1800 electron density profiles of the ionosphere worldwide per day. We present the results of verifying the FormoSat-3/COSMIC radio occultation electron density profiles with the measurements by ionosondes in different regions of the world during 2006-2008. In many cases, the necessary (or missing) information on the ionosphere is derived from global empirical ionospheric models, the IRI (International Reference Ionosphere), and NeQuick. The aim of our work is to compare the data provided by the IRI-2001, IRI-2007 and NeQuick models with the radio occultation electron density profiles from the data of FormoSat-3/COSMIC system. The results of this comparison are valuable for the elaboration and improvement of ionospheric models, as well as for many radiophysical and geophysical applications. The results of comparisons of the IRI-2001, IRI-2007, NeQuick models with the radio occultation profiles for different geomagnetic conditions are reported.

  7. Radio-frequency electromagnetic fields associated with cellular-radio cell-site antennas.

    PubMed

    Petersen, R C; Testagrossa, P A

    1992-01-01

    Because of a heightened public awareness of issues pertaining to the use of electromagnetic energy, concurrent with a rapid growth of the cellular telephone industry, a study was initiated to characterize the electromagnetic environment associated with typical cell-site antennas. In particular, the radio-frequency electromagnetic (RF) fields in the vicinity of several antenna towers, ranging in height from 46-82 m, were characterized by measurement. In all cases, the antennas were omnidirectional co-linear arrays. The maximal power densities considered representative of public exposure were found to be less than 100 microW/m2 (10 nW/cm2) per radio channel. Comparison of measured values with the corresponding values that were calculated from the free-space transmission formula indicated that the analytical technique is conservative (i.e., overestimates field levels). The measured and corresponding analytical values were found to be well below accepted exposure limits even when extrapolated to simultaneous and continuous operation of the maximal number of transmitters that would be expected to be installed at a cell-site. Additional measurements were made in the near field of the same antenna type in a roof-mounted configuration. At a distance of 0.7 m from the antenna, the maximal power density in the main beam was found to be less than 30 W/m2 (3 mW/cm2) when normalized to sixteen radio channels (the maximal number used on a single antenna) and less than 30 mW/m2 (3 microW/m2) at 70 m. In all cases, the effective radiated power (ERP) by each radio channel was 100 W referenced to a half-wave dipole. This paper describes the instrumentation and measurement techniques used for this study and provides a summary of the results. PMID:1482416

  8. Observation and Measurement of the Higgs Boson with the H --> WW (*) --> l?l? Channel

    NASA Astrophysics Data System (ADS)

    Long, Jonathan; Atlas Collaboration

    2015-04-01

    We present the observation and measurement of the Higgs boson decaying to WW (*) in the leptonic final state using 25 fb-1 of data collected with the ATLAS detector at the LHC in 2011 and 2012. We find an excess over the background expectation for mH = 125 . 36 GeV corresponding to 6.1 standard deviations, while the expectation is 5.8. This is the first discovery level sensitivity to the H --> WW process. The ratio of the observed to expected number of signal-like events is 1.09-0.21+0.23, the most precise such single-channel measurement with ATLAS. These are the final Run I ATLAS H --> WW (*) --> l?l? results.

  9. Measurement of the conductance of the sodium channel from current fluctuations at the node of Ranvier.

    PubMed Central

    Conti, F; Hille, B; Neumcke, B; Nonner, W; Stmpfli, R

    1976-01-01

    Single myelinated nerve fibres of Rana esculenta were investigated under voltage clamp conditions at 13 degrees C. Fluctuations of steady-state membrane current were measured during the last 152 msec of 190-225 msec pulses depolarizing the membrane by 8-48 mV. Noise power spectral densities were calculated in the frequency range of 6-6-6757 Hz. 2. External application of 150 nM tetrodotoxin (TTX) and/or 10 mM tetraethylammonium (TEA) ion reduced the current fluctuations. The difference of current noise spectra measured in the presence and absence of TTX (TEA) was not changed by the presence of TEA (TTX) during both measurements, and was taken as the spectrum of the Na (K) current fluctuations. 3. Residual current noise during application of both TTX and TEA was, except for some excess noise at the low and high frequency ends of the spectrum, similar to the noise measured from a passive nerve model and could be understood in terms of Nyquist noise of the known resistances and the amplifier noise. 4. Na current fluctuation spectra were interpreted as the sum N/f+SNa(f) where SNa(F) represents the spectrum expected for a set of equal, independent Na channels with only two conductance states (open or closed) which follow Hodgkin-Huxley kinetics. With values of hinfinity, tauh and minfinity measured from macroscopic Na currents, the measured spectra were fitted well by optimizing N, SNa(0) and taum. Values of taum obtained by this method were in fair agreement with values found from macroscopic currents. 5. The 1/f component of Na current noise was roughly proportional to the square of the steady-state Na current, I2. The mean value of N/I2 was (1-1 +/- 0-3) X 10(-4). 6. The current carried by a single Na channel was calculated from fitted spectra and steady-state Na currents measured simultaneously with the current fluctuations. The single channel conductance gamma normalized to zero absolute membrane potential was calculated. The average gamma from twelve measurements at depolarizations of 8-40 mV was 7-9 +/- 0-9 pS (S.E. of mean). The apparent value of gamma was smallest with small depolarizations. Variations of the assumed kinetic properties of the model did not drastically affect the single channel conductance. 7. External application of 0-1 mM-Ni ion lengthened taum in the macroscopic currents and in the fluctuation spectra and enhanced both the steady-state Na current and the current fluctuations. In Ni-treated nodes gamma was smaller than in normal nodes. PMID:1087643

  10. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    USGS Publications Warehouse

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  11. Purity of Gaussian states: Measurement schemes and time evolution in noisy channels

    SciTech Connect

    Paris, Matteo G.A.; Illuminati, Fabrizio; Serafini, Alessio; De Siena, Silvio

    2003-07-01

    We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme are tested by means of Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general Gaussian states both in thermal and in squeezed thermal baths. We show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the input state.

  12. Propagation and amplification of short radio-frequency pulses in a plasma channel created in gaseous media by the intense laser radiation

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Popov, A. M.; Smetanin, I. V.; Volkova, E. A.

    2015-03-01

    The evolution of the electron energy distribution function (EEDF) in nonequilibrium plasma channel created in xenon by powerful KrF - femtosecond laser pulse is studied. It is demonstrated that such a plasma channel can be used as a waveguide for both transportation and amplification of the microwave radiation. The specific features of such a plasma waveguide are studied on the basis of the self-consistent solution of the kinetic Boltzmann equation for the EEDF in different spatial points of the gas media and the wave equation in slow-varying amplitude approximation for the microwave radiation guided and amplified in the channel.

  13. Radio measurements of the energy and the depth of the shower maximum of cosmic-ray air showers by Tunka-Rex

    NASA Astrophysics Data System (ADS)

    Bezyazeekov, P. A.; Budnev, N. M.; Gress, O. A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Konstantinov, E. N.; Korosteleva, E. E.; Kostunin, D.; Krömer, O.; Kuzmichev, L. A.; Lubsandorzhiev, N.; Mirgazov, R. R.; Monkhoev, R.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Schröder, F. G.; Wischnewski, R.; Zagorodnikov, A.

    2016-01-01

    We reconstructed the energy and the position of the shower maximum of air showers with energies E gtrsim 100 PeV applying a method using radio measurements performed with Tunka-Rex. An event-to-event comparison to air-Cherenkov measurements of the same air showers with the Tunka-133 photomultiplier array confirms that the radio reconstruction works reliably. The Tunka-Rex reconstruction methods and absolute scales have been tuned on CoREAS simulations and yield energy and Xmax values consistent with the Tunka-133 measurements. The results of two independent measurement seasons agree within statistical uncertainties, which gives additional confidence in the radio reconstruction. The energy precision of Tunka-Rex is comparable to the Tunka-133 precision of 15%, and exhibits a 20% uncertainty on the absolute scale dominated by the amplitude calibration of the antennas. For Xmax, this is the first direct experimental correlation of radio measurements with a different, established method. At the moment, the Xmax resolution of Tunka-Rex is approximately 40 g/cm2. This resolution can probably be improved by deploying additional antennas and by further development of the reconstruction methods, since the present analysis does not yet reveal any principle limitations.

  14. Voltage noise measurements across the pancreatic beta-cell membrane: calcium channel characteristics.

    PubMed Central

    Atwater, I; Dawson, C M; Eddlestone, G T; Rojas, E

    1981-01-01

    1. Membrane potential fluctuations were measured in cells from mouse Islets of Langerhans identified as beta-cells by the characteristic pattern of electrical activity induced by 11 mM-D-glucose. 2. The membrane potential was controlled by adjusting the external potassium concentration, [K+]o, keeping the sum [Na+]o plus [K+]o constant. In the absence of glucose, when [K+]o is raised, the resulting depolarization is accompanied by a significant increase in voltage noise. 3 The amplitude and time course of the voltage noise were measured under various experimental conditions. The variance of the fluctuating voltage decreased monotonically along the depolarization induced by sudden increase in [K+]o, suggesting a monotonic reduction in the number of elementary events. 4. The frequency characteristics of the excess noise could be analysed as the sum of 1/f and 1/f2 components. While the 1/f component remained unaffected by the external application of 20mM-tetraethylammonium (TEA) and either 2 mM-Mn2+ or 2 mM-Co2+, the 1/f2 component was suppressed by both Mn2+ and Co2+. 5. The corner frequency, fc, of the 1/f2 component depended on membrane potential, which was adjusted by adjusting the [K+]o jump. These results support the idea that fc in these experiments is a measure of the channel relaxation. 6. Measurements of the input resistance in the frequency range from 0 to 25 Hz were used to obtain a rough estimate of the size of the channel conductance as 5 x 10(-12) omega (-1). PMID:6273530

  15. Firefighters' Radios

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Public Technology Inc. asked for NASA assistance to devise the original firefighter's radio. Good short-range radio communications are essential during a fire to coordinate hose lines, rescue victims, and otherwise increase efficiency. Useful firefighting tool is lower cost, more rugged short range two-way radio. Inductorless electronic circuit replaced inductances and coils in radio circuits with combination of transistors and other low-cost components. Substitution promises reduced circuit size and cost. Enhanced electrical performance made radio more durable and improved maintainability by incorporating modular construction.

  16. A novel method for measuring the polarization angle of satellite radio waves

    NASA Technical Reports Server (NTRS)

    Antoniadis, D. A.

    1974-01-01

    One of the most important parameters for the study of the physics of the ionosphere is the columnar electron content. This can be obtained indirectly by measuring the Faraday rotation of signals emitted from satellites. Many different types of polarimeters have been developed for this purpose. Efforts to develop a new type of polarimeter, suitable for extensive network operation, led to a novel technique for measuring the polarization angle.

  17. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Takahashi, K.; Charles, C.; Boswell, R. W.

    2011-08-01

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s-1, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm and a flow rate of 1.65 mg s-1. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.

  18. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    SciTech Connect

    Lafleur, T.; Charles, C.; Boswell, R. W.; Takahashi, K.

    2011-08-15

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm and a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.

  19. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 1

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1973-01-01

    An extensive set of ground-based measurements of the diurnal variation of medium frequency radio wave adsorption and virtual height is analyzed in terms of current understanding of the D- and lower E-region ion production and loss process. When this is done a gross discrepancy arises, the source of which is not known.

  20. On the optimal frequency of observation of Cherenkov radiation in the radio astronomy method for measuring superhigh-energy cosmic-ray particle flux

    NASA Astrophysics Data System (ADS)

    Filonenko, A. D.

    2008-09-01

    Possible reasons for the absence of direct observations of individual events in measuring the super-high-energy particle flux by the radio astronomy technique are considered. One of these reasons is probably associated with the choice of extremely high frequencies (1.5 GHz) for detecting radio pulses. Calculations show that the radiation intensity attains its peak value at frequencies 500 600 MHz and then sharply decreases so that it becomes three orders of magnitude lower even at a frequency of 1.5 GHz. The effectiveness of particle detection in the range of high (600 MHz) and low (60 MHz) frequencies is analyzed.

  1. Twenty-channel grating polychromator for millimeter wave plasma emission measurements

    NASA Astrophysics Data System (ADS)

    Cavallo, A.; Cutler, R. C.; McCarthy, M. P.

    1988-06-01

    A 20-channel grating instrument based on the Ebert-Fastie grating monochromator has been built to measure electron temperature profiles and electron temperature fluctuations in TFTR (tokamak fusion test reactor). Second-harmonic electron cyclotron emission for the plasma over the frequency range of 120-400 GHz is utilized; this corresponds to a central tokamak magnetic field of 2.9-5 T. System sensitivity is typically 10-eV rms for a 2.5-kHz bandpass with a 2.5-cm radial resolution and a 5-cm antenna spot size at the plasma center. The ratio of the largest to smallest plasma radius observed by the instrument can be as large as 1.65, which maximizes spatial coverage of the plasma. Emission is detected by 20 liquid-helium-cooled indium antimonide hot-electron bolometers mounted in a long hold cryostat. The 6.5-l helium reservoir must be filled every 19 days, while the liquid-nitrogen reservoir is filled automatically once a day. This instrument has about twice the number of channels and much better spatial resolution than other instruments of this type used for plasma diagnostics.

  2. Time Resolved Tomographic PIV Measurements of Rough-Wall Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Miorini, Rinaldo; Zhang, Cao; Katz, Joseph

    2013-11-01

    Time resolved tomographic PIV is used to study flow structures in the outer region of a rough-wall turbulent boundary layer, focusing on imprints of the roughness on the outer layer. Measurements are performed in a transparent channel installed in the JHU optically index matched facility. The roughness consists of pyramids with height, k = 0.46 mm, and wavelength, ? = 3.2 mm, satisfying h/k = 55 (h = 25.4 mm is the channel half-height), k + = 64 and Re = 40000. The TPIV setup consists of four high-speed cameras operating at 3 kHz, which view the sample volume through acrylic prisms. The flow field is illuminated by an Nd:YLF laser. Following enhancement, calibration, and reconstruction, 643 voxels interrogation volumes with 0.75 overlap provide 3D velocity fields with spacing of 0.5883 mm3. Formation and transport of near-wall 3D U-shaped vortex structures, with base in front of the pyramids, and quasi-streamwise legs extending between pyramid crest lines are evident from the data. Extended streamwise regions of high wall-normal vorticity appear ``latched'' to the roughness elements close to the wall, but are transported downstream at higher elevations. Also evident are traveling streamwise low velocity streaks, which cover many roughness elements. Sponsored by NSF CBET and ONR.

  3. Lightning Return-Stroke Current Waveforms Aloft, From Measured Field Change, Current, and Channel Geometry

    NASA Astrophysics Data System (ADS)

    Willett, J. C.; Le Vine, D. M.

    2002-12-01

    Direct current measurements are available near the attachment point from both natural cloud-to-ground lightning and rocket-triggered lightning, but little is known about the rise time and peak amplitude of return-stroke currents aloft. We present, as functions of height, current amplitudes, rise times, and effective propagation velocities that have been estimated with a novel remote-sensing technique [Willett and Le Vine, Proceedings, 10th International Conference on Atmospheric Electricity, Osaka, Japan, 10-14 June 1996] from data on 24 subsequent return strokes in six different lightning flashes that were triggering at the NASA Kennedy Space Center, FL, during 1987. The unique feature of this data set is the stereo pairs of still photographs, from which three-dimensional channel geometries were determined previously [Willett and Le Vine, AGU Fall Meeting, San Francisco, CA, December, 1995]. This has permitted us to calculate the fine structure of the electric-field-change (E) waveforms produced by these strokes, using the current waveforms measured at the channel base [Leteinturier and Hamelin, IEEE Trans. EMC, 33, 351-357, 1991] together with physically reasonable assumptions about the current distributions aloft. The computed waveforms have been compared with observed E waveforms from the same strokes [Willett et al., J. Geophys. Res., 94, 13,275-13,286, 1989], and our assumptions have been adjusted to maximize agreement. In spite of the non-uniqueness of solutions derived by this technique, several conclusions seem inescapable: 1) The effective propagation speed of the current up the channel is usually significantly (but not unreasonably) faster than the two-dimensional velocity measured by a streak camera for 14 of these strokes. 2) Given the deduced propagation speed, the peak amplitude of the current waveform often must decrease dramatically with height to prevent the electric field from being over-predicted. 3) The rise time of the current wave front must always increase rapidly with height in order to keep the fine structure of the calculated field consistent with the observations.

  4. Increasing fluxes of S5 1044+71 measured with RATAN-600 radio telescope

    NASA Astrophysics Data System (ADS)

    Trushkin, S. T.; Mingaliev, M. G.; Sotnikova, Yu. V.; Erkenov, A.; Udovitskij, R. Yu.; Mufakharov, T. V.

    2014-02-01

    We report about the growing fluxes of the quasar S5 1044+71, identified with the FERMI source 2FGL J1048.3+714, since detection of the high state in the rest of January 2014 (ATEL #5792). We continue measurements and again detect the increase of the flux densities at frequencies 8.2-21.7 GHz in February.

  5. Delay time measurements of the propagation of radio waves in the atmosphere

    NASA Technical Reports Server (NTRS)

    Rohde, F.

    1972-01-01

    The characteristics and operation of the Geodetic Secor System are described. The precision of the ionospheric radiation measurements was determined by a collocation experiment. The EGRS-13 satellite, which was used in the experiment, is discussed. The geodetic network is shown in a diagram form. Conclusions resulting from the experiments are reported.

  6. Measurements of relative BCl density in BCl{sub 3}-containing inductively coupled radio frequency plasmas

    SciTech Connect

    Fleddermann, C.B.; Hebner, G.A.

    1998-04-01

    The relative density of BCl radicals in inductively coupled plasmas has been studied using laser-induced fluorescence (LIF), and the BCl excited state has been studied using plasma-induced emission (PIE). Measurements were made as a function of input power, pressure, position, and as a function of gas ratio for industry-relevant metal-etch gas mixtures containing BCl{sub 3}, Cl{sub 2}, Ar, and N{sub 2}. LIF was used to measure the ground state BCl population, whereas PIE monitored the BCl A{sup 1}{Pi} excited state; the LIF and PIE intensities varied differently as the plasma parameters were changed. Between 150 and 400 W input power at 20 mTorr pressure, there was no variation in BCl density, indicating that the dissociation fraction for BCl{sub 3} to BCl was constant with power. No significant interactions between BCl{sub 3} and Cl{sub 2} or Ar were evident in the LIF measurements. However, the BCl density was suppressed by addition of nitrogen to the plasma. The BCl density was radially uniform for all gas mixtures, but axial measurements showed a slight decrease in BCl density near the upper electrode. After running the reactor with a BCl{sub 3}/N{sub 2} mixture, BCl was observed for up to an hour after the discharge was switched to Cl{sub 2}: this is attributed to buildup of BN films on reactor surfaces and subsequent etching of the film by Cl.

  7. Measurement of radio wave reflection due to temperature rising from rock salt and ice irradiated by an electron beam for an ultra-high-energy neutrino detector

    SciTech Connect

    Tanikawa, Takahiro; Chiba, Masami; Kamijo, Toshio; Yabuki, Fumiaki; Yasuda, Osamu; Akiyama, Hidetoshi; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Utsumi, Michiaki; Fujii, Masatoshi

    2012-11-12

    An ultra-high-energy neutrino (UHE{nu}) gives temperature rise along the hadronic and electromagnetic shower when it enters into rock salt or ice. Permittivities of them arise with respect the temperatures at ionization processes of the UHE{nu} shower. It is expected by Fresnel's formula that radio wave reflects at the irregularity of the permittivity in the medium. We had found the radio wave reflection effect in rock salt. The reflection effect and long attenuation length of radio wave in rock salt and ice would yield a new UHE{nu} detection method. An experiment for ice was performed to study the reflection effect. A coaxial tube was filled with rock salt powder or ice. Open end of the coaxial tube was irradiated by a 2 MeV electron beam. Radio wave of 435 MHz was introduced to the coaxial tube. We measured the reflection wave from the open end. We found the radio wave reflection effect due to electron beam irradiation in ice as well as in rock salt.

  8. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of a Baseline System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, a baseline system which utilizes dual-channel sensor measurements for aircraft engine on-line diagnostics is developed. This system is composed of a linear on-board engine model (LOBEM) and fault detection and isolation (FDI) logic. The LOBEM provides the analytical third channel against which the dual-channel measurements are compared. When the discrepancy among the triplex channels exceeds a tolerance level, the FDI logic determines the cause of the discrepancy. Through this approach, the baseline system achieves the following objectives: (1) anomaly detection, (2) component fault detection, and (3) sensor fault detection and isolation. The performance of the baseline system is evaluated in a simulation environment using faults in sensors and components.

  9. Radio frequency measurements of tunnel couplings and singlet-triplet spin states in Si:P quantum dots

    NASA Astrophysics Data System (ADS)

    House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.

    2015-11-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet-triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot-lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon.

  10. Radio frequency measurements of tunnel couplings and singlet-triplet spin states in Si:P quantum dots.

    PubMed

    House, M G; Kobayashi, T; Weber, B; Hile, S J; Watson, T F; van der Heijden, J; Rogge, S; Simmons, M Y

    2015-01-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet-triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20??eV to 8?meV. We measure dot-lead tunnel rates by analysis of the reflected signal and show that they change from 100?MHz to 22?GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon. PMID:26548556

  11. Radio frequency measurements of tunnel couplings and singlettriplet spin states in Si:P quantum dots

    PubMed Central

    House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.

    2015-01-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlettriplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20??eV to 8?meV. We measure dotlead tunnel rates by analysis of the reflected signal and show that they change from 100?MHz to 22?GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon. PMID:26548556

  12. Ionosphere plasma electron parameters from radio frequency sweeping impedance probe measurements

    NASA Astrophysics Data System (ADS)

    Spencer, E.; Patra, S.

    2015-09-01

    In this work we will describe the technique of using an RF sweeping impedance probe (SIP) to measure the AC impedance of an electrically short monopole immersed in a plasma. We analyze the SIP measurements which are taken from the payload of the Storms sounding rocket, launched from Wallops Island, Virginia, in 2007. The scientific objective of the Storms mission was to concentrate on whether density irregularities observed in midlatitude spread F could arise from ionospheric coupling to terrestrial weather. As such, independent measurements of the electron density profile are crucial. Since the inherent nature of the SIP technique makes it relatively insensitive to errors introduced through spacecraft charging, probe contamination, and other DC effects, it is an ideal instrument to employ under disturbed plasma conditions. The instrument measures both the magnitude and phase of the AC impedance from 100 kHz to 20 MHz in 128 frequency steps, performing 45,776 sweeps over the entire flight. From these measurements we infer both the absolute electron density ne and the electron neutral collision frequencies νen throughout the flight trajectory. The SIP data can be approximately analyzed using a fluid formulation and thin sheath approximation particularly at altitudes below 200 km, which allows us to match the measurements to quasi-static analytical formulas. At about 265 km on the upleg, the magnitude data transitioned to a highly damped response with increasing altitude. The phase data, on the other hand, continued to indicate increased plasma density and reduced collisionality as expected. For a large portion of the flight, the payload of the Storms mission exhibited an uncontrolled coning motion, making the local magnetic field orientation with respect to the dipole difficult to decipher. Despite these difficulties, we were able to obtain robust estimates of the electron density profile, using the phase information from each sweep. In addition, the electron neutral collision frequency obtained from matching to phase data alone was on the correct order of magnitude with respect to Naval Research Laboratory Mass Spectrometer Incoherent Scatter-Extended model values in the ionosphere between 100 km and 150 km.

  13. Performance of a 600-channel aerodynamic pressure measurement system for turbine engine testing

    NASA Astrophysics Data System (ADS)

    Thompson, J. W., Jr.; McCarty, P. E.

    Altitude simulation testing of turbine engines in ground test facilities requires the steady-state measurement of up to 600 channels of aerodynamic pressures over the range of 0.5 to 500 psia. The time required to acquire the data and the data quality have a significant influence on total test time, hence cost, and turbine engine performance measurements, respectively. Traditionally, these large quantities of measurements have been accomplished by mechanically multiplexing 10 to 20 pneumatic signals to a single strain-gage pressure transducer. A new approach using a dedicated piezoresistive pressure transducer per cahnnel, electronic multiplexing, and rapid on-line calibration provides improved capabilities. The electronic versus pneumatic multiplexing reduces the steady-state acquisition time per test condition from a nominal 80 to 10 s and improves performance from a nominal 0.25 percent FS to 0.05 percent FS. The new system is described, with emphasis on operational characteristics, measurement uncertainty assessment, and the approach to system design and validation.

  14. The Rotation Period and Magnetic Field of the T Dwarf 2MASSI J1047539+212423 Measured from Periodic Radio Bursts

    NASA Astrophysics Data System (ADS)

    Williams, P. K. G.; Berger, E.

    2015-08-01

    Periodic radio bursts from very low mass stars and brown dwarfs simultaneously probe their magnetic and rotational properties. The brown dwarf 2MASSI J1047539+212423 (2M 1047+21) is currently the only T dwarf (T6.5) detected at radio wavelengths. Previous observations of this source with the Arecibo observatory revealed intermittent, 100%-polarized radio pulses similar to those detected from other brown dwarfs, but were unable to constrain a pulse periodicity; previous Very Large Array (VLA) observations detected quiescent emission a factor of ∼100 times fainter than the Arecibo pulses but no additional events. Here we present 14 hr of VLA observations of this object that reveal a series of pulses at ∼6 GHz with highly variable profiles, showing that the pulsing behavior evolves on time scales that are both long and short compared to the rotation period. We measure a periodicity of ∼1.77 hr and identify it with the rotation period. This is just the sixth rotation period measurement in a late T dwarf, and the first obtained in the radio. We detect a pulse at 10 GHz as well, suggesting that the magnetic field strength of 2 M 1047+21 reaches at least 3.6 kG. Although this object is the coolest and most rapidly rotating radio-detected brown dwarf to date, its properties appear continuous with those of other such objects, suggesting that the generation of strong magnetic fields and radio emission may continue to even cooler objects. Further studies of this kind will help to clarify the relationships between mass, age, rotation, and magnetic activity at and beyond the end of the main sequence, where both theories and observational data are currently scarce.

  15. Channel Strain in Advanced Complementary Metal-Oxide-Semiconductor Field Effect Transistors Measured Using Nano-Beam Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Toda, Akio; Nakamura, Hidetatsu; Fukai, Toshinori; Ikarashi, Nobuyuki

    2008-04-01

    Using high-precision nano-beam electron diffraction (NBD), we clarified the influences of stress liner and the stress of shallow trench isolation on channel strain in advanced metal-oxide-semiconductor field effect transistors (MOSFETs). For systematic strain measurements, we improved the precision of NBD by observing large reciprocal lattice vectors under appropriate diffraction conditions. The absolute value of the channel strain increases by stress liner as gate length decreases, although the drive current increase due to stress liner saturates at a shorter channel length. The normal strain in the gate length direction is inversely proportional to the distance from the gate electrode to the shallow trench isolation (STI). Furthermore, the relationship between measured channel strain induced by STI and drive current change was shown. The drive current of n- and p-MOSFET changes about 5% with 210-3 channel strain variation. This result suggests that reducing the shallow trench isolation stress is effective for controlling the drive current change, depending on the active region layout. We conclude that the experimental measurement of channel strain is necessary for device and circuit design.

  16. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel

    PubMed Central

    Jun Kang, Yang; Ryu, Jeongeun; Lee, Sang-Joon

    2013-01-01

    The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio (RJL/RL, fluidic resistance in the junction channel (RJL) to fluidic resistance in the side channel (RL)) strongly affects the measurement accuracy. The microfluidic device with smaller RJL/RL values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed method was also successfully applied to measure viscosities of blood with varying hematocrits, chemically fixed RBCS, and channel sizes. Based on these experimental results, the proposed method can be effectively used to measure the viscosities of various fluids easily, without any fluorescent labeling and tedious calibration procedures. PMID:24404040

  17. Effect of elbow position on radiographic measurements of radio-capitellar alignment

    PubMed Central

    Sandman, Emilie; Canet, Fanny; Petit, Yvan; Laflamme, G-Yves; Athwal, George S; Rouleau, Dominique M

    2016-01-01

    AIM: To evaluate the effect of different elbow and forearm positions on radiocapitellar alignment. METHODS: Fifty-one healthy volunteers were recruited and bilateral elbow radiographs were taken to form a radiologic database. Lateral elbow radiographs were taken with the elbow in five different positions: Maximal extension and forearm in neutral, maximal flexion and forearm in neutral, elbow at 90° and forearm in neutral, elbow at 90° and forearm in supination and elbow at 90° and forearm in pronation. A goniometer was used to verify the accuracy of the elbow’s position for the radiographs at a 90° angle. The radiocapitellar ratio (RCR) measurements were then taken on the collected radiographs using the SliceOmatic software. An orthopedic resident performed the radiographic measurements on the 102 elbows, for a total of 510 lateral elbow radiographic measures. ANOVA paired t-tests and Pearson coefficients were used to assess the differences and correlations between the RCR in each position. RESULTS: Mean RCR values were -2% ± 7% (maximal extension), -5% ± 9% (maximal flexion), and for elbow at 90° and forearm in neutral -2% ± 5%, supination 1% ± 6% and pronation 1% ± 5%. ANOVA analyses demonstrated significant differences between the RCR in different elbow and forearm positions. Paired t-tests confirmed significant differences between the RCR at maximal flexion and flexion at 90°, and maximal extension and flexion. The Pearson coefficient showed significant correlations between the RCR with the elbow at 90° - maximal flexion; the forearm in neutral-supination; the forearm in neutral-pronation. CONCLUSION: Overall, 95% of the RCR values are included in the normal range (obtained at 90° of flexion) and a value outside this range, in any position, should raise suspicion for instability. PMID:26925383

  18. Characterization and Absolute QE Measurements of Delta-Doped N-Channel and P-Channel CCDs

    NASA Technical Reports Server (NTRS)

    Jacquot, Blake C.; Monacos, Steve P.; Jones, Todd J.; Blacksberg, Jordana; Hoenk, Michael E.; Nikzad, Shouleh

    2010-01-01

    In this paper we present the methodology for making absolute quantum efficiency (QE) measurements from the vacuum ultraviolet (VUV) through the near infrared (NIR) on delta-doped silicon CCDs. Delta-doped detectors provide an excellent platform to validate measurements through the VUV due to their enhanced UV response. The requirements for measuring QE through the VUV are more strenuous than measurements in the near UV and necessitate, among other things, the use of a vacuum monochromator, and good camera vacuum to prevent chip condensation, and more stringent handling requirements. The system used for these measurements was originally designed for deep UV characterization of CCDs for the WF/PC instrument on Hubble and later for Cassini CCDs.

  19. 1. VIEW TO NORTHWEST WITH RADIO CONTROL HOUSE (RIGHT), TRANSMITTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW TO NORTHWEST WITH RADIO CONTROL HOUSE (RIGHT), TRANSMITTER TOWER (CENTER), AND NORTH BREAKWATER LIGHT IN DISTANCE AT LEFT - Frankfort Coast Guard Station, Radio Control House, Second Street at ship channel, Frankfort, Benzie County, MI

  20. Channel probe measurements for the American Sector Clutter Experiment, January 1994

    NASA Astrophysics Data System (ADS)

    Fitzgerald, T. J.

    1994-05-01

    The ionospheric phenomenon called Equatorial Spread F encompasses a variety of effects associated with plasma irregularities occurring in the post-sunset and nighttime ionosphere near the magnetic equator. These irregularities can seriously degrade the performance of systems which involve either of necessity or inadvertently radio propagation through the equatorial ionosphere. One such system is Over-the-Horizon (OTH) radars which operate in the high-frequency (hf) band and use ionospheric reflection for forward and backscatter propagation to ranges of thousands of kilometers. When such radars are directed towards the equator, Spread F irregularities can cause scintillation effects which may be aliased into the ranges of interest and have the effect of causing, excess clutter in which targets may be hidden. In January, 1994 Los Alamos participated in a campaign to measure Spread F effects on OTH propagation from the United States looking towards South America in conjunction with local diagnostics in Peru. During the campaign Los Alamos fielded a 1600 km bistatic path between Piura, Peru, and Arequipa, Peru, the one-hop reflection region for this path was near the magnetic equator. We obtained four types of measurements: an oblique ionogram between Piura and Arequipa every three minutes; Doppler spread and spatial correlation for a single frequency cw path between Piura and Arequipa; Doppler spread, time-delay spread, and spatial coherence for a 10 kHz bandwidth path between Piura and Arequipa, and Doppler spread and time-delay spread for the one-way path between the AVA radar in New York and Arequipa, Peru. This report describes the diagnostic experiments that we carried out and gives a brief description of some of the data we obtained.

  1. Channel probe measurements for the American sector clutter experiment, January, 1994

    SciTech Connect

    Fitzgerald, T.J.

    1994-05-20

    The ionospheric phenomenon called Equatorial Spread F encompasses a variety of effects associated with plasma irregularities occurring in the post-sunset and nighttime ionosphere near the magnetic equator. These irregularities can seriously degrade the performance of systems which involve either of necessity or inadvertently radio propagation through the equatorial ionosphere. One such system is Over-the-Horizon (OTH) radars which operate in the high-frequency (hf) band and use ionospheric reflection for forward and backscatter propagation to ranges of thousands of kilometers. When such radars are directed towards the equator, Spread F irregularities can cause scintillation effects which may be aliased into the ranges of interest and have the effect of causing, excess clutter in which targets may be hidden. In January, 1994 Los Alamos participated in a campaign to measure Spread F effects on OTH propagation from the United States looking towards South America in conjunction with local diagnostics in Peru. During the campaign Los Alamos fielded a 1600 km bistatic path between Piura, Peru, and Arequipa, Peru-, the one-hop reflection region for this path was near the magnetic equator, We obtained four types of measurements: an oblique ionogram between Piura and Arequipa every three minutes; Doppler spread and spatial correlation for a single frequency cw path between Piura and Arequipa; Doppler spread, time-delay spread, and spatial coherence for a 10 kHz bandwidth path between Piura and Arequipa-, and Doppler spread and time-delay spread for the one-way path between the AVA radar in New York and Arequipa, Peru. This report describes the diagnostic experiments that we carried out and gives a brief description of some of the data we obtained.

  2. Radio measurements in the fields of gamma-ray sources. III - The star formation region Rho-Ophiuchi

    NASA Technical Reports Server (NTRS)

    Schlickeiser, R.; Sieber, W.; Harwit, M.; Ozel, M. E.; Younis, S. M.

    1989-01-01

    The star-forming region Rho-Ophiuchi, which has been detected as a COS-B gamma-ray source, 2CG 353+16, is observed in the radio continuum at wavelengths between 1.3 cm and 21 cm. Various known and new radio sources are identified. Time variability on scales of weeks to years for two sources can be assessed with high confidence levels. The H II region origin for Oph 1, Oph 6, Oph 9 and Oph 10 is ruled out. Five new radio sources are proposed as H II region candidates on the basis of their flat frequency spectrum.

  3. 47 CFR 95.1211 - Channel use policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Channel use policy. 95.1211 Section 95.1211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Medical Device Radiocommunication Service (MedRadio) 95.1211 Channel use policy. (a) The channels authorized for...

  4. Radio wave.

    PubMed

    Elkin, V

    1992-01-01

    In developing countries with high rates of poverty and illiteracy, radio is emerging as an excellent medium for delivering information on health issues, family planning, nutrition, and agricultural development. Since radio does not require wired electricity, it can reach remote rural populations. Surveys have found that between 50-75% of poor rural households in developing countries own radios, and the majority listen to educational radio at least once a week. A program that reaches the urban poor outside of Lima, Peru, has been instrumental in controlling the spread of cholera. A Bolivian station broadcasts 8 hours of literacy, health, agricultural, and cultural programming a day to an audience of more than 2 million Aymara Indians. Small village radio stations with a broadcast range of 15 miles can be established for under US$400 and can generally achieve sustainability through local fundraising events such as raffles. In many cases, listeners have become broadcasters at their local radio stations. PMID:12286181

  5. Application of left- and right-looking SAR stereo to depth measurements of the Ammavaru outflow channel, Lada Terra, Venus

    NASA Technical Reports Server (NTRS)

    Parker, T. J.

    1992-01-01

    Venusian channels are too narrow to be resolved by Magellan's radar altimeter, so they are not visible in the standard topographic data products. Stereo image data, in addition to their benefit to geologic mapping of Venus structures as a whole, are indispensible in measuring the topography across the channels. These measurements can then be used in conjunction with the regional topographic maps based on the altimeter data to produce cross-sectional areas for the channels and estimate the fluid discharge through them. As an example of the application of the stereo image data to venusian channels, a number of test depth and profile measurements were made of the large outflow channel system in Lada Terra, centered at 50 deg S latitude, 21 deg E longitude (F-MIDR 50S021). These measurements were made by viewing the cycle 1 and 2 digital FMIDRs in stereo on a display monitor, so as to minimize the errors in measuring parallax displacement as much as possible. The MIDRs are produced at a scale of 75 m/pixel. This corresponds to a vertical scale of about 17 m/pixel, when calculating the height of a feature from its parallax displacement. An error in placement determination of 1 pixel was assumed to characterize the vertical accuracy as plus or minus 17 m. When this technique was applied to the outflow channel, it was noted that the walls of the collapsed terrain source and 'trough reach' of the channel are laid over in both the cycle 1 and 2 images. This is evident when examining the distance between features on the plateau and the cliff walls in the two images. The layover 'shifts' the features closer to the apparent edge of the wall relative to the oppositely illuminated image.

  6. Streaming potential measurements in Ca2+-activated K+ channels from skeletal and smooth muscle. Coupling of ion and water fluxes.

    PubMed Central

    Alcayaga, C; Cecchi, X; Alvarez, O; Latorre, R

    1989-01-01

    Streaming potentials arising across large-conductance Ca2+-activated K+ channels incorporated into planar lipid bilayers were measured. Ca2+-activated channels obtained either from skeletal muscle or from smooth muscle membranes were used. Streaming potentials were extracted from the current-voltage relationship for the open channel obtained in the presence of an osmotic gradient. The osmotic gradient was established by adding glucose to one side of the membrane. At 300 mM KCl, the average streaming potential was 0.72 mV/osmol per kg for t-tubule channels and 0.83 mV/osmol per kg for smooth muscle channels. Streaming potential values depend on KCl concentration, they decrease as KCl concentration increases, and the value obtained by extrapolation to zero KCl concentration is 0.85 mV/osmol per kg. Assuming that water and ions cannot pass each other, at least in a region of the channel, the streaming potential values obtained indicate that this region contains a minimum of two and a maximum of four water molecules. It is concluded that the channel has a narrow region with a length of 0.6-1.2 nm. PMID:2713449

  7. Plasma density mapping in the solar wind through use of VHF radio to measure electron content

    NASA Technical Reports Server (NTRS)

    Croft, T. A.

    1978-01-01

    How the electron content between the Solar probe and the earth can be observed with a minimum of equipment and give a quantitative rationale for the use of a signal near 400 MHz to supplement the telecommunications signal is described. The emphasis is on the method of making content observations and on their value. While far from the Sun, the electron content is so low that the S-X dual-frequency system is insufficiently sensitive and a UHF system is optimum. As the probe approaches the Sun, the UHF may be disrupted by scintillation and the variations of the telecommunications signal must be used for the content measurement. By operating the suggested system in different modes as the solar distance changes, operation during the entire mission is possible.

  8. A multi-channel magnetic induction tomography measurement system for human brain model imaging.

    PubMed

    Xu, Zheng; Luo, Haijun; He, Wei; He, Chuanhong; Song, Xiaodong; Zahng, Zhanglong

    2009-06-01

    This paper proposes a multi-channel magnetic induction tomography measurement system for biological conductivity imaging in a human brain model. A hemispherical glass bowl filled with a salt solution is used as the human brain model; meanwhile, agar blocks of different conductivity are placed in the solution to simulate the intracerebral hemorrhage. The excitation and detection coils are fixed co-axially, and the axial gradiometer is used as the detection coil in order to cancel the primary field. On the outer surface of the glass bowl, 15 sensor units are arrayed in two circles as measurement parts, and a single sensor unit for cancelling the phase drift is placed beside the glass bowl. The phase sensitivity of our system is 0.204 degrees /S m(-1) with the excitation frequency of 120 kHz and the phase noise is in the range of -0.03 degrees to +0.05 degrees . Only the coaxial detection coil is available for each excitation coil; therefore, 15 phase data are collected in each measurement turn. Finally, the two-dimensional images of conductivity distribution are obtained using an interpolation algorithm. The frequency-varying experiment indicates that the imaging quality becomes better as the excitation frequency is increased. PMID:19491435

  9. Radio sociology

    NASA Astrophysics Data System (ADS)

    Swenson, George W., Jr.

    1996-04-01

    A work was conducted, using radio telemetry, to locate a migrating, radio-tagged, sharp-shinned hawk. The hawk was monitored through the noise radiation it created. The hawk was found. During this study, it was found that the concentration of population corresponds with areas of increased noise temperature. Through this study, a bigger study was planned. The study would involved the relationship between a place's radiation signature and its other attributes, such as economic type, population, geographic concentration. The method of radio sociology would be used to track the sources of radio noise.

  10. A Comparative Study of Measured Amplitude and Phase Perturbations of VLF and LF Radio Signals Induced by Solar Flares

    NASA Astrophysics Data System (ADS)

    Sulic, D. M.; Sreckovic, V. A.

    2014-06-01

    Very Low Frequency (VLF) and Low Frequency (LF) signal perturbations were examined to study ionospheric disturbances induced by solar X-ray flares in order to understand processes involved in propagation of VLF/LF radio signals over short paths and to estimate specific characteristics of each short path. The receiver at the Belgrade station is constantly monitoring the amplitude and phase of a coherent and subionospherically propagating LF signal operated in Sicily NSC at 45.90 kHz, and a VLF signal operated in Isola di Tavolara ICV at 20.27 kHz, with the great circle distances of 953 km and 976 km, respectively. A significant number of similarities between these short paths is a direct result of both transmitters and the receiver's geographic location. The main difference is in transmitter frequencies. From July 2008 to February 2014 there were about 200 events that were chosen for further examination. All selected examples showed that the amplitude and phase of VLF and LF signals were perturbed by solar X-ray flares occurrence. This six-year period covers both minimum and maximum of solar activity. Simultaneous measurement of amplitude and phase of the VLF/LF signals during a solar flare occurrence was applied to evaluate the electron density profile versus altitude, to carry out the function of time over the middle Europe.

  11. Radio-Frequency Illuminated Superconductive Disks: Reverse Josephson Effects and Implications for Precise Measuring of Proposed Gravity Effects

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Koczor, Ronald J.

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. It have been indicated three essential components to achieve anomalous gravity effects, namely large, two-layer high-temperature YBCO superconductors, magnetic levitation and AC input in the form of radio-frequency (RF) electromagnetic fields. We report experiments on RF-illuminated (1-15 MHz) superconducting disks with corresponding gravity readings indicating an apparent increase in observed gravity of approximately 3-5 x l0(exp -5)cm/sq s, above and to the side of the superconductor. In this preliminary study, RF- illumination is achieved using a series of large radius (15 cm) spiral antenna with RF power inputs equal to or greater than 90 W. The observed gravitational modification range is significantly lower than the 2.1% gravity modification. The error analyses of thermal and electromagnetic interference in a magnetically shielded gravimeter with vacuum enclosures, Faraday cages and shielded instrument leads, are outlined both experimentally and theoretically. The nearly exact correspondence between the peak gravity effects reported and the well-known peak in AC resistance in superconductors (2-7 MHz, owing to reverse Josephson quantum effects) suggests that electrical resistance will arise in this frequency range and subsequently any trapped magnetic fields in the superconductor may disperse partially into the measuring instrument's local environment. Implications for propulsion initiatives and RF-heating in superconductors will be discussed.

  12. Functional reconstitution and channel activity measurements of purified wildtype and mutant CFTR protein.

    PubMed

    Eckford, Paul D W; Li, Canhui; Bear, Christine E

    2015-01-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates. PMID:25867140

  13. The atmosphere of Jupiter - An analysis of the Voyager radio occultation measurements

    NASA Technical Reports Server (NTRS)

    Lindal, G. F.; Wood, G. E.; Levy, G. S.; Anderson, J. D.; Sweetnam, D. N.; Hotz, H. B.; Buckles, B. J.; Holmes, D. P.; Doms, P. E.; Eshleman, V. R.

    1981-01-01

    Coherently related S and X band signals of 2.3 and 8.4 GHz, respectively, which were transmitted from Voyagers 1 and 2 were used to probe the Jovian atmosphere. Height profiles of the gas refractivity, molecular number density, pressure, temperature, and microwave absorption in the troposphere and stratosphere were observed at latitudes ranging from 0 to 70 deg S. At 1000 mbar, the temperature was + or - 5 K and the lapse rate was equal to the adiabatic value of 2.1 K/km within the resolution of the measurements. The ammonia abundance in this region was 0.022 + or - 0.008%, which is in good agreement with values derived from cosmic abundance considerations. The tropopause at the 140 mbar level had a temperature of 110 K, which increased with increasing altitude, reaching 160 + or - 20 K in the 10 to 1 mbar region. Significant horizontal density variations were detected in the stratosphere, which implies a nonuniform temperature and aerosol distribution across the Jovian disk or across high- and low-pressure regions due to local atmospheric dynamics.

  14. The measurement of the ionospheric total content variations caused by a powerful radio emission of "Sura" facility on a network of GNSS-receivers

    NASA Astrophysics Data System (ADS)

    Nasyrov, I. A.; Kogogin, D. A.; Shindin, A. V.; Grach, S. M.; Zagretdinov, R. V.

    2016-02-01

    Observations of the perturbations of total electron content (TEC) caused by a powerful radio emission of "Sura" facility (Radio Physical Research Institute, N. Novgorod) were carried out during several experimental campaigns from March of 2010 to March 2013. In this paper the data of experimental measurements of TEC-variations conducted on March, 15, 2010 and on March, 12, 2013, are presented. Parameters of TEC-variations were obtained by dual-frequency global navigation satellite systems (GNSS) diagnostics. Registration of signal parameters from GNSS-transmitters was performed at spatially separated sites along the geomagnetic latitude: Vasilsursk (56 °08‧ N, 46 °05‧ E), Zelenodolsk (55 °52‧ N, 48 °33‧ E) and Kazan (55 °48‧ N, 49 °08‧ E). In the experiments radio path from GNSS satellite to Vasilsursk passed over the disturbed region of ionosphere, but radio paths to Zelenodolsk and to Kazan did not. However, TEC-variations correlated with pumping of ionosphere by "Sura" facility were detected for all up to three ground measurements sites. Magnitudes of TEC-variations reached up to ∼ 0.6 - 0.7 TECU. The speculation that a sharp gradient of the electron density formed at the border of the main lobe of "Sura" facility may cause the generation of IGW is presented.

  15. Characteristics of tropopause-penetrating convection determined by TRMM and COSMIC GPS radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Xian, Tao; Fu, Yunfei

    2015-07-01

    Distribution and influence of convection in the upper troposphere and lower stratosphere have been investigated case by case or on regional to global scale. However, previous studies were limited by using proxies for convection or the bias of the tropopause data. Here the tropopause-penetrating convection is investigated based on the sole use of observational products from Tropical Rainfall Measuring Mission (TRMM) precipitation radar data and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). The result shows that the frequency of precipitation-top heights above the monthly mean tropopause in the tropics is reduced logarithmically if the cold-point tropopause is adopted instead of the lapse-rate tropopause. Using the collocated COSMIC and precipitation radar observations, the tropopause-penetrating convection, i.e., the convection with the precipitation-top height above the lapse-rate tropopause, can be found over the summer monsoon regions and some continental regions. The averaged relative precipitation-top heights of tropopause-penetrating convective clusters are about 0.2-0.5 km without significant land-ocean difference, while equivalent radii of clusters are 2.7-3.5 km over land and 0.2-0.5 km larger than those over ocean. These areal and vertical extents are smaller than those reported by previous studies. Furthermore, the collocated temperature profiles show that the tropopause-penetrating convection generates warming in the upper troposphere and cooling near the lapse-rate tropopause and in the lower stratosphere. Moreover, the tropopause-penetrating convection leads to a rapid (within 20 min) lift of the lapse-rate tropopause by the adiabatic lofting within the convection (within a 10 km radius).

  16. First operation of the multi-channel Fourier Transform spectrometer for perpendicular and oblique ECE measurements at JET

    NASA Astrophysics Data System (ADS)

    Sozzi, Carlo; Garavaglia, Saul; Grossetti, Giovanni; Nowak, Silvana; Simonetto, Alessandro; de La Luna, Elena; Fessey, John; Zerbini, Marco

    2006-10-01

    The upgraded 6 channels Martin Puplett interferometer for Electron Cyclotron Emission measurements has entered operation during 2006 experimental campaign at JET. The instrument provides the ECE spectra for three lines of sight at different toroidal angles (0, 10 and 22 degrees with respect to the perpendicular to the toroidal field) and two linear polarizations over an extended bandwidth to avoid aliasing (75-800 GHz), with 11 ms/profile time resolution and 7.5 GHz single line equivalent spectral resolution. While the absolute in-vessel calibration of the whole system is foreseen for the next shutdown, at present the data of the perpendicular channel are relatively calibrated on the Michelson interferometer. As preliminary step of the oblique channels validation the measured data are compared with the calculated emission and cross-checked with the local characterization measurements. The process of data validation and the first physics results obtained will be discussed.

  17. Characteristics of four-channel Cherenkov-type detector for measurements of runaway electrons in the ISTTOK tokamak

    SciTech Connect

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C.

    2010-10-15

    A diagnostics capable of characterizing the runaway and superthermal electrons has been developing on the ISTTOK tokamak. In previous paper, a use of single-channel Cherenkov-type detector with titanium filter for runaway electron studies in ISTTOK was reported. To measure fast electron populations with different energies, a prototype of a four-channel detector with molybdenum filters was designed. Test-stand studies of filters with different thicknesses (1, 3, 7, 10, 20, 50, and 100 {mu}m) have shown that they should allow the detection of electrons with energies higher than 69, 75, 87, 95, 120, 181, and 260 keV, respectively. First results of measurements with the four-channel detector revealed the possibility to measure reliably different fast electrons populations simultaneously.

  18. Direct measurements by submersible of surge-type turbidity currents in a fjord channel, southeast Alaska

    SciTech Connect

    Cowan, E.A. . Dept. of Geology); Powell, R.D. . Geology Dept.); Lawson, D.E. ); Carlson, P.R. )

    1992-01-01

    High density, high-speed turbidity currents were observed and their properties measured in submarine channels in Queen Inlet, southeast Alaska during June, 1990 and 1991. A ROV submersible fitted with two video cameras, a CTD, an optical backscatter turbidity monitor (OBS), and electromagnetic current meter, and sidescan sonar was used to collect data from within and above the flows. Multiple flows were recorded during a ROV dive at 2.3 km from the delta front in a channel at 104 m depth. Flows were marked by sudden increases in turbidity and current velocity. In one flow, turbidity increased from 300 to 1,600 OBS units (instrument maximum) in 10 sec, and within 9.4 min, salinity (S) steadily decreased by 12.1 ppt, with only a 0.2 C temperature (T) increase. Density differences between the flow and ambient water require a minimum sediment concentration of 97 g/l. Maximum flow velocity exceeded 3.3 m/s. A vertical ROV profile indicated a flow thickness of 10 m. The upper surface was visually identified by billowing suspended sediment and by fluctuating OBS and T as ambient and flow water mixed in turbulent eddies. A faster S decrease and slower T increase with distance into and away from the flow indicate that thermal diffusive processes were less efficient than convective mass transfer. The S change indicates that flow water and ambient water mixed well beyond the flow defined by high turbidity. Warm water temperatures within the flow and low meltwater stream discharge suggest that these flows originated from the delta front and are not continuous underflows.

  19. Evaluating the use of drone photogrammetry for measurement of stream channel morphology and response to high flow events

    NASA Astrophysics Data System (ADS)

    Price, Katie; Ballow, William

    2015-04-01

    Traditional high-precision survey methods for stream channel measurement are labor-intensive and require wadeability or boat access to streams. These conditions limit the number of sites researchers are able to study and generally prohibit the possibility of repeat channel surveys to evaluate short-term fluctuations in channel morphology. In recent years, unmanned aerial vehicles (drones) equipped with photo and video capabilities have become widely available and affordable. Concurrently, developments in photogrammetric software offer unprecedented mapping and 3D rendering capabilities of drone-captured photography. In this study, we evaluate the potential use of drone-mounted cameras for detailed stream channel morphometric analysis. We used a relatively low-cost drone (DJI Phantom 2+ Vision) and commercially available, user friendly software (Agisoft Photscan) for photogrammetric analysis of drone-captured stream channel photography. Our test study was conducted on Proctor Creek, a highly responsive urban stream in Atlanta, Georgia, within the crystalline Piedmont region of the southeastern United States. As a baseline, we performed traditional high-precision survey methods to collect morphological measurements (e.g., bankfull and wetted width, bankfull and wetted thalweg depth) at 11 evenly-spaced transects, following USGS protocols along reaches of 20 times average channel width. We additionally used the drone to capture 200+ photos along the same reaches, concurrent with the channel survey. Using the photogrammetry software, we generated georeferenced 3D models of the stream channel, from which morphological measurements were derived from the 11 transects and compared with measurements from the traditional survey method. We additionally explored possibilities for novel morphometric characterization available from the continuous 3D surface, as an improvement on the limited number of detailed cross-sections available from standard methods. These results showed great promise for the drone photogrammetry methods, which encouraged the exploration of the possibility of repeat aerial surveys to evaluate channel response to high flow events. Repeat drone surveys were performed following a sequence of high-flow events in Proctor Creek to evaluate the possibility of using these methods for assessment of stream channel response to flooding.

  20. Providing hydrogen maser timing stability to orbiting VLBI radio telescope observations by post-measurement compensation of linked frequency standard imperfections

    NASA Technical Reports Server (NTRS)

    Springett, James C.

    1994-01-01

    Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later introduced as compensations adjunct to the VLBI correlation process. Accordingly, this paper examines the technique for stable frequency/time transfer within the OVLBI system, together with a critique of the types of link degradation components which must be compensated, and the figures of merit known as coherence factors.

  1. Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel

    NASA Astrophysics Data System (ADS)

    Sung, Yongjin; Lue, Niyom; Hamza, Bashar; Martel, Joseph; Irimia, Daniel; Dasari, Ramachandra R.; Choi, Wonshik; Yaqoob, Zahid; So, Peter

    2014-02-01

    The refractive index of biological specimens is a source of intrinsic contrast that can be explored without any concerns of photobleaching or harmful effects caused by extra contrast agents. In addition, the refractive index contains rich information related to the metabolism of cells at the cellular and subcellular levels. Here, we report a no-moving-parts approach that provides three-dimensional refractive-index maps of biological samples continuously flowing in a microfluidic channel. Specifically, we use line illumination and off-axis digital holography to record the angular spectra of light scattered from flowing samples at high speed. Applying the scalar diffraction theory, we obtain accurate refractive-index maps of the samples from the measured spectra. Using this method, we demonstrate label-free three-dimensional imaging of live RKO human colon cancer cells and RPMI8226 multiple myeloma cells, and obtain the volume, dry mass, and density of these cells from the measured three-dimensional refractive-index maps. Our results show that the reported method, alone or in combination with the existing flow cytometry techniques, shows promise as a quantitative tool for stain-free characterization of a large number of cells.

  2. Turbulence Measurements from a Moored Platform at Mid-Depth in a Swift Tidal Channel

    NASA Astrophysics Data System (ADS)

    Hay, Alex; Lueck, Rolf; Wolk, Fabian; McMillan, Justine

    2014-05-01

    Results are presented from a turbulence experiment with a 3-m long streamlined floatation body, instrumented with velocity shear probes, fast-response thermistors, a 1 MHz Acoustic Doppler Current Profiler (AD2CP), and an Acoustic Doppler Velocimeter (ADV). The system was deployed over seven tidal cycles at mid-depth in a 30-m deep tidal channel in the lower Bay of Fundy, Canada. Peak flow speeds exceeded 2 m s-1, and while 10-min time scale average speeds were similar between ebb and flood, the variances were markedly higher during flood. Turbulent kinetic energy (TKE) dissipation rates measured with the shear probes exhibit a pronounced flood/ebb contrast: O(10-4) W kg-1 peak values during flood, but lower by an order of magnitude during ebb. Dissipation rates follow u3 scaling over a wide range of flow speeds between 0.5 and 2.5 m s-1. Below 0.5 m s-1 an asymmetry in the mounting arrangement caused the floatation body to pitch upward, biasing the measured dissipation values high. The ADV on the platform registered mean speed - used to implement Taylor's hypothesis - which was corroborated with the platform-mounted ADCP. Additional ADCPs were also deployed on a nearby bottom pod, sampling at turbulence resolving rates - up to 8 Hz. Comparisons between the shear probe and acoustic estimates of the TKE spectrum and dissipation rate - at comparable depths - are presented.

  3. Objectively measuring signal detectability, contrast, blur and noise in medical images using channelized joint observers

    NASA Astrophysics Data System (ADS)

    Goossens, Bart; Luong, Hip; Platia, Ljiljana; Philips, Wilfried

    2013-03-01

    To improve imaging systems and image processing techniques, objective image quality assessment is essential. Model observers adopting a task-based quality assessment strategy by estimating signal detectability measures, have shown to be quite successful to this end. At the same time, costly and time-consuming human observer experiments can be avoided. However, optimizing images in terms of signal detectability alone, still allows a lot of freedom in terms of the imaging parameters. More specifically, fixing the signal detectability defines a manifold in the imaging parameter space on which different "possible" solutions reside. In this article, we present measures that can be used to distinguish these possible solutions from each other, in terms of image quality factors such as signal blur, noise and signal contrast. Our approach is based on an extended channelized joint observer (CJO) that simultaneously estimates the signal amplitude, scale and detectability. As an application, we use this technique to design k-space trajectories for MRI acquisition. Our technique allows to compare the different spiral trajectories in terms of blur, noise and contrast, even when the signal detectability is estimated to be equal.

  4. Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Charlot, P.; Finger, M. H.; Williams, J. G.; Sovers, O. J.; Newhall, XX; Standish, E. M., Jr.

    1994-01-01

    Very Long Baseline Interferometry (VLBI) observations of extragalactic radio sources provide the basis for defining an accurate non-rotating reference frame in terms of angular positions of the sources. Measurements of the distance from the Earth to the Moon and to the inner planets provide the basis for defining an inertial planetary ephemeris reference frame. The relative orientation, or frame tie, between these two reference frames is of interest for combining Earth orientation measurements, for comparing Earth orientation results with theories referred to the mean equator and equinox, and for determining the positions of the planets with respect to the extragalactic reference frame. This work presents an indirect determination of the extragalactic-planetary frame tie from a combined reduction of VLBI and Lunar Laser Ranging (LLR) observations. For this determination, data acquired by LLR tracking stations since 1969 have been analyzed and combined with 14 years of VLBI data acquired by NASA's Deep Space Network since 1978. The frame tie derived from this joint analysis, with an accuracy of 0.003 sec, is the most accurate determination obtained so far. This result, combined with a determination of the mean ecliptic (defined in the rotating sense), shows that the mean equinox of epoch J2000 is offset from the x-axis of the extragalactic frame adopted by the International Earth Rotation Service for astrometric and geodetic applications by 0.078 sec +/- 0.010 sec along the y-direction and y 0.019 sec +/- 0.001 sec. along the z-direction.

  5. Measurement of the quenching and channeling effects in a CsI crystal used for a WIMP search

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Kim, G. B.; Seong, I. S.; Kim, B. H.; Kim, J. H.; Li, J.; Park, J. W.; Lee, J. K.; Kim, K. W.; Bhang, H.; Kim, S. C.; Choi, Seonho; Choi, J. H.; Joo, H. W.; Lee, S. J.; Olsen, S. L.; Myung, S. S.; Kim, S. K.; Kim, Y. D.; Kang, W. G.; So, J. H.; Kim, H. J.; Lee, H. S.; Hahn, I. S.; Leonard, D. S.; Li, J.; Li, Y. J.; Yue, Q.; Li, X. R.

    2015-05-01

    We have studied channeling effects in a cesium iodide (CsI) crystal that is similar in composition to the ones being used in a search for Weakly Interacting Massive Particles (WIMPs) dark matter candidates, and measured its energy-dependent quenching factor, the relative scintillation yield for electron and nuclear recoils. The experimental results are reproduced with a GEANT4 simulation that includes a model of the scintillation efficiency as a function of electronic stopping power. We present the measured and simulated quenching factors and the estimated effects of channeling.

  6. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  7. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  8. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Niell, A. E.

    1981-01-01

    The activities of the DSN in support of Radio and Radar Astronomy Operations during September through December 1980 are described. Emphasis is on a report of an experiment selected for use of the DSN by the radio Astronomy Experiment Selection Panel: that of VLBI observations of the energetic galactic object SS-433.

  9. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Schaffer, R. D.; Gorenstein, M. V.

    1981-01-01

    The activities of the Deep Space Network in support of Radio Astronomy Operations during April and May 1981 are reported. Work in progres in support of an experiment selected for use of the DSN by the Radio Astronomy Experiment Selection Panel, Twin Quasi-Stellar Object VLBI, is reported.

  10. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Gulkis, S.

    1981-01-01

    The activities of the Deep Space Network in support of radio astronomy operations during the first quarter of 1981 are reported. Results of the use of a low noise maser are presented, as well as updates in DSN support of experiments sanctioned by the Radio Astronomy Experiment Selection Panel.

  11. High-mobility transparent thin-film transistors with ZnSnLiO channel layer prepared by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Li, Bin; Hu, Zuofu; Wu, Huaihao; Zhou, Dongzhan; Peng, Yunfei; Gao, Song; Yi, Lixin; Wang, Yongsheng; Zhang, Xiqing

    2015-03-01

    We have fabricated transparent thin-film transistors with ZnSnLiO as active layers deposited by radio frequency magnetron sputtering at room temperature. The TFTs structure used in this study was a staggered bottom-gate, which consists of SiO2 as a gate insulator and heavily doped p-type Si(1 1 1) as a gate electrode. In order to optimize the performance of the ZnSnLiO thin-film transistors, the thermal annealing is investigated. We find that appropriate annealing temperature is very beneficial for the ZnSnLiO TFTs, and when the annealing temperature is 500 °C, the transistor exhibited the high field-effect mobility of 45.1 cm2/V s and a large I on/off ratio of 6.0 × 107.

  12. Measurement of the ttbar production cross section in the MET+jets channel at CDF

    SciTech Connect

    Compostella, Gabriele; /INFN, Trento

    2008-03-01

    This thesis is focused on an inclusive search of the t{bar t} {yields} E{sub T} + jets decay channel by means of neural network tools in proton antiproton collisions at {radical}s = 1.96 TeV recorded by the Collider Detector at Fermilab (CDF). At the Tevatron p{bar p} collider top quarks are mainly produced in pairs through quark-antiquark annihilation and gluon-gluon fusion processes; in the Standard Model description, the top quark then decays to a W boson and a b quark almost 100% of the times, so that its decay signatures are classified according to the W decay modes. When only one W decays leptonically, the t{bar t} event typically contains a charged lepton, missing transverse energy due to the presence of a neutrino escaping from the detector, and four high transverse momentum jets, two of which originate from b quarks. In this thesis we describe a t{bar t} production cross section measurement which uses data collected by a 'multijet' trigger, and selects this kind of top decays by requiring a high-P{sub T} neutrino signature and by using an optimized neural network to discriminate top quark pair production from backgrounds. In Chapter 1, a brief review of the Standard Model of particle physics will be discussed, focusing on top quark properties and experimental signatures. In Chapter 2 will be presented an overview of the Tevatron accelerator chain that provides p{bar p} collisions at the center-of-mass energy of {radical}s = 1.96 TeV, and proton and antiproton beams production procedure will be discussed. The CDF detector and its components and subsystems used for the study of p{bar p} collisions provided by the Tevatron will be described in Chapter 3. Chapter 4 will detail the reconstruction procedures used in CDF to detect physical objects exploiting the features of the different detector subsystems. Chapter 5 will provide an overview of the main concepts regarding Artificial Neural Networks, one of the most important tools we will use in the analysis. Chapter 6 will be devoted to the description of the main characteristics of the t{bar t} {yields} E{sub T} + jets decay channel used to train our neural network to discriminate the top pair production from background processes. We will discuss the event selection method and the technique used for background prediction, that will rely on b-jets identification rate parameterization. Finally, Chapter 7 will provide a description of the final data sample and a detailed discussion of the systematic uncertainties before determining the cross section measurement by means of a likelihood maximization.

  13. Radio Science in Africa

    NASA Astrophysics Data System (ADS)

    Lefeuvre, Francois; Mc Kinnel, Lee-Anne; Chukwuma, Victor; Amory-Mazaudier, Christine

    2010-05-01

    Radio science activities covered by URSI (International Radio Science Union) are briefly reviewed. They encompass the knowledge and study of all aspects of electromagnetic fields and waves in a wide frequency range running from micro pulsation frequencies (i.e. from ~1 mHz) to Terahertz. The topics include: electromagnetic measurements and standards, electromagnetic theory and applications, radio-communication systems and signal processing, electronics and Photonics, electromagnetic environment and interference, wave propagation and remote sensing, ionospheric radio and propagation, waves in plasmas, radio astronomy, and electromagnetics in biology and medicine. The main radio science activities conducted by the URSI national Committees of South Africa, Egypt and Nigeria, and by African radio scientists groups gathered in GIRGEA (Groupe International de Recherche en Gophysique Europe Afrique) are reviewed. The emphasis is put on the activities developed in the context of the IHY programme and of the SCINDA network for forecasting ionospheric irregularities that adversely impact communication and navigation systems in the low latitude regions.

  14. The Effect of a Chandra-measured Merger-related Gas Component on the Lobes of a Dead Radio Galaxy

    NASA Astrophysics Data System (ADS)

    Worrall, D. M.; Birkinshaw, M.; Kraft, R. P.; Hardcastle, M. J.

    2007-04-01

    We use Chandra data to infer that an X-ray-bright component of gas is in the process of separating the radio lobes of 3C 442A. This is the first radio galaxy with convincing evidence that central gas, overpressured with respect to the lobe plasma and not simply a static atmosphere, is having a major dynamical effect on the radio structure. We speculate that the expansion of the gas also reexcites electrons in the lobes of 3C 442A through compression and adiabatic heating. Two features of 3C 442A contribute to its dynamical state. First, the radio source is no longer being powered by a detected active jet, so that the dynamical state of the radio plasma is at the mercy of the ambient medium. Second, the two early-type galaxies, NGC 7236 and NGC 7237, one of which was the original host of 3C 442A, are undergoing a merger and have already experienced a close encounter, suggesting that the X-ray-bright gas is mostly the heated combined galaxy atmospheres. The lobes have been swept apart for ~108 yr by the pressure-driven expansion of the X-ray-bright inner gas.

  15. Measurements of the upper troposphere and lower stratosphere during tropical cyclones using the GPS radio occultation technique

    NASA Astrophysics Data System (ADS)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig; Nielsen, Johannes

    2011-01-01

    Water vapour transport to the upper troposphere and lower stratosphere by deep convective storms affects the radiation balance of the atmosphere and has been proposed as an important component of climate change. The aim of the work presented here is to understand if the GPS radio occultation technique is useful for characterization of this process. Our assessment addresses the question if severe storms leave a significant signature in radio occultation profiles in the upper troposphere/lower stratosphere. Radio occultation data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) were analyzed, focusing on two particular tropical cyclones with completely different characteristics, the hurricane Bertha, which formed in the Atlantic Basin during July 2008 and reached a maximum intensity of Category 3, and the typhoon Hondo, which formed in the south Indian Ocean during 2008 reaching a maximum intensity of Category 4. The result is positive, suggesting that the bending angle of a GPS radio occultation signal contains interesting information on the atmosphere around the tropopause, but not any information regarding the water vapour. The maximum percentage anomaly of bending angle between 14 and 18 km of altitude during tropical cyclones is typically larger than the annual mean by 5-15% and it can reach 20% for extreme cases. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space (ACES) payload on the International Space Station.

  16. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  17. Determining Electrical Properties Based on B1 Fields Measured in an MR Scanner Using a Multi-channel Transmit/Receive Coil: a General Approach

    PubMed Central

    Liu, Jiaen; Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Schmitter, Sebastian

    2013-01-01

    Electrical Property Tomography (EPT) is a recently developed noninvasive technology to image the electrical conductivity and permittivity of biological tissues at Larmor frequency in Magnetic Resonance (MR) scanners. The absolute phase of the complex radio-frequency (RF) magnetic field (B1) is necessary for electrical property calculation. However, due to the lack of practical methods to directly measure the absolute B1 phases, current EPT techniques have been achieved with B1 phase estimation based on certain assumptions on object anatomy, coil structure and/or electromagnetic wave behavior associated with the main magnetic field, limiting EPT from a larger variety of applications. In this study, using a multi-channel transmit/receive coil, the framework of a new general approach for EPT has been introduced, which is independent on the assumptions utilized in previous studies. Using a human head model with realistic geometry, a series of computer simulations at 7T were conducted to evaluate the proposed method under different noise levels. Results showed that the proposed method can be used to reconstruct the conductivity and permittivity images with noticeable accuracy and stability. The feasibility of this approach was further evaluated in a phantom experiment at 7T. PMID:23743673

  18. Determining electrical properties based on B1 fields measured in an MR scanner using a multi-channel transmit/receive coil: a general approach

    NASA Astrophysics Data System (ADS)

    Liu, Jiaen; Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Schmitter, Sebastian; He, Bin

    2013-07-01

    Electrical properties tomography (EPT) is a recently developed noninvasive technology to image the electrical conductivity and permittivity of biological tissues at Larmor frequency in magnetic resonance scanners. The absolute phase of the complex radio-frequency magnetic field (B1) is necessary for electrical property calculation. However, due to the lack of practical methods to directly measure the absolute B1 phases, current EPT techniques have been achieved with B1 phase estimation based on certain assumptions on object anatomy, coil structure and/or electromagnetic wave behavior associated with the main magnetic field, limiting EPT from a larger variety of applications. In this study, using a multi-channel transmit/receive coil, the framework of a new general approach for EPT has been introduced, which is independent on the assumptions utilized in previous studies. Using a human head model with realistic geometry, a series of computer simulations at 7 T were conducted to evaluate the proposed method under different noise levels. Results showed that the proposed method can be used to reconstruct the conductivity and permittivity images with noticeable accuracy and stability. The feasibility of this approach was further evaluated in a phantom experiment at 7 T.

  19. Measurement of light charged particles in the decay channels of medium-mass excited compound nuclei

    NASA Astrophysics Data System (ADS)

    Valdré, S.; Barlini, S.; Casini, G.; Pasquali, G.; Piantelli, S.; Carboni, S.; Cinausero, M.; Gramegna, F.; Marchi, T.; Baiocco, G.; Bardelli, L.; Benzoni, G.; Bini, M.; Blasi, N.; Bracco, A.; Brambilla, S.; Bruno, M.; Camera, F.; Corsi, A.; Crespi, F.; D'Agostino, M.; Degerlier, M.; Kravchuk, V. L.; Leoni, S.; Million, B.; Montanari, D.; Morelli, L.; Nannini, A.; Nicolini, R.; Poggi, G.; Vannini, G.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Dudek, J.; Fornal, B.; Kmiecik, M.; Maj, A.; Matejska-Minda, M.; Mazurek, K.; Męczyński, W. M.; Myalski, S.; Styczeń, J.; Ziębliński, M.

    2014-03-01

    The 48Ti on 40Ca reactions have been studied at 300 and 600 MeV focusing on the fusion-evaporation (FE) and fusion-fission (FF) exit channels. Energy spectra and multiplicities of the emitted light charged particles have been compared to Monte Carlo simulations based on the statistical model. Indeed, in this mass region (A ~ 100) models predict that shape transitions can occur at high spin values and relatively scarce data exist in the literature about coincidence measurements between evaporation residues and light charged particles. Signals of shape transitions can be found in the variations of the lineshape of high energy gamma rays emitted from the de-excitation of GDR states gated on different region of angular momenta. For this purpose it is important to keep under control the FE and FF processes, to regulate the statistical model parameters and to control the onset of possible pre-equilibrium emissions from 300 to 600 MeV bombarding energy.

  20. Measurements at a 61-km near-ground optical transmission channel

    NASA Astrophysics Data System (ADS)

    Giggenbach, Dirk; David, Florian; Landrock, Rainer; Pribil, Klaus; Fischer, Edgar W.; Buschner, Robert G.; Blaschke, Detlev

    2002-04-01

    An optical ground-to-ground direct-detection transmission experiment over 61 km is being performed by the German Aerospace Center (DLR) in cooperation with the European Aeronautic Defence and Space Company (EADS) and Contraves Space AG, Switzerland. Transmission direction is from the mountain Wallberg in the German Alps down to Oberpfaffenhofen (west of Munich). This beam path suffers strongly from optical turbulence especially at the near-ground part along the last kilometers before the receiver. This causes a very demanding situation regarding received-power scintillations. Transmit power from one data source is 1W at 980 nm. Of special interest is the effect of secondary transmitter apertures with 4m lateral offset to the first. Under strong turbulence conditions this provides statistically independent speckle patterns at the receiver thus improving system performance dramatically. This paper presents measurements at the transmission channel, with emphasise on statistical parameters of the scintillations and angle-of-arrival variations with one and two transmitter sources.

  1. Determination of the manning coefficient from measured bed roughness in natural channels

    USGS Publications Warehouse

    Limerinos, John Thomas

    1970-01-01

    This report presents the results of a study to test the hypothesis that basic values of the Manning roughness coefficient of stream channels may be related to (1) some characteristic size of the streambed particles and to (2) the distribution of particle size. These two elements involving particle size can be combined into a single element by weighting characteristic particle sizes. The investigation was confined to channels with coarse bed material to avoid the complication of bed-form roughness that is associated with alluvial channels composed of fine bed material. Fifty current-meter measurements of discharge and appropriate field surveys were made at 11 sites on California streams for the purpose of computing the roughness coefficient, n, by the Manning formula. The test sites were selected to give a wide range in average size of bed material, and the discharge measurements and surveys were made at such times as to provide data covering a suitable range in stream depth. The sites selected were relatively free of the extraneous flow-retarding effects associated with irregular channel conformation and streambank vegetation. The characteristic bed-particle sizes used in the analyses were the 16,- 50,- and 84-percentile sizes as obtained from a cumulative frequency distribution of the diameters of randomly sampled surficial bed material. Separate distributions were computed for the minimum and intermediate values of the three diameters of a particle. The minimum diameters of the streambed particles were used in the study because a particle at rest on the bed invariably has its minimum diameter in the vertical position; this diameter is, therefore, the most representative measure of roughness height. The intermediate diameter was also studied because this is the diameter most easily measurable-either by sieve analysis or by photographic techniques--and--because it is the diameter that had been used in previous studies by other investigators. No significant difference in reliability was found between the results obtained using minimum diameters and those obtained using intermediate diameters. In analyzing the field data, the roughness parameter, n/R1/6 (where R is hydraulic radius), was related to relative smoothness, R/d (where d is a characteristic, or weighted characteristic, particle size). The parameter n/R1/6, rather than n, was used because it is directly proportional to the square root of the Darcy-Weisbach friction factor, f, which is more widely used in theoretical studies of hydraulic friction. If the transformation of n/R1/6 to vf is made, the relations obtained in this study are of a form that is identical with that of the theoretical friction equation obtained by several investigators and that derived from field data by Leopold and Wolman (1957). The constants in the equation vary, of course, with the characteristic particle size used. The relations best fitting the field data for this study were obtained by using either a characteristic particle diameter equal to the 84-percentile size (d84, the size equal to, or exceeding, that of 84 percent of the streambed particles), or a diameter obtained by weighting three characteristic particle sizes (dw, the size obtained by assigning a weight of 0.1 to d16 , a weight of 0.3 to d50 , and a weight of 0.6 to d84). The use of d84 alone gave slightly better results than the use of dw, and, in addition, the use of d84 alone is attractive from a standpoint of simplicity. It is difficult, however, to rationalize the use of d84 alone because of the implication that the distribution of sizes is irrelevant, and it matters not at all whether 84 percent of the bed material is sand or whether it is large cobbles, as long as 16 percent of the material is of greater size. Consequently, the author recommends the use of dw rather than d84 , although there was no unanimity of opinion on this recommendation among his colleagues who reviewed this paper. The reader is free to

  2. Multiplexing of Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We present results on wavelength division multiplexing of radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. A two-channel demonstration of this concept using discrete components successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  3. Radio Frequency Interference: Radio Astronomy's Biggest Enemy

    NASA Astrophysics Data System (ADS)

    Acevedo, F.; Ghosh, Tapasi

    1997-12-01

    As technology progresses, the demand for the usage of the electromagnetic spectrum increases with it. The development is so fast and prolific that clean band space for passive users such as Radio Astronomy is becoming ever so scarce. Even though, several spectral bands have been protected for Radio Astronomy by Federal Communication Commission (in the USA) under the recommendations of the International Telecommunication Union (ITU), pressure for making more spectral space commercially usable is extreme. Although these commercial usages make our modern living at all possible, often the extreme vulnerability of passive users are are not fully appreciated, resulting in unwanted emissions (RFI) in the Radio Astronomy Bands. Another source of RFI is the fact that many of the electronic devices used in the observatories themselves generate radio waves. If proper precautions are not taken, these can be received back through the Radio Telescope itself. This problem is referred to as internal RFI. The focus of this paper is the search and diminution of internal RFI in the Arecibo Observatory in Arecibo, Puerto Rico. Using a simple setup of a log-periodic antenna and a Spectrum Analyzer, spectra spanning a frequency range of 100 - 1800 MHZ were recorded in some areas of the Observatory and the new Visitor Center (AOVEF). The measurements disclosed sources of radio emission among some of the digital electronic equipment in the Equipment room and a few displays in the AOVEF. Most prominent of these was a 2.5 MHz comb spanning the entire range of the measurements emitted from the SRENDIP and AOFTM machines. The respective groups were informed and corrective shielding & isolations were implemented immediately. In AOVEF, three displays, some audio-visual equipment, and video/digital cameras used by the visitors were found to be "leaky". In future, the use of such cameras will be prohibited and the exhibits will be screened appropriately.

  4. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of an Enhanced System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.

  5. Measuring and Evaluating the Role of ATP-Sensitive K+ Channels in Cardiac Muscle

    PubMed Central

    Kefaloyianni, Eirini; Bao, Li; Rindler, Michael J.; Hong, Miyoun; Patel, Tejaskumar; Taskin, Eylem; Coetzee, William A.

    2012-01-01

    Since ion channels move electrical charge during their activity, they have traditionally been studied using electrophysiological approaches. This was sometimes combined with mathematical models, for example with the description of the ionic mechanisms underlying the initiation and propagation of action potentials in the squid giant axon by Hodgkin and Huxley. The methods for studying ion channels also have strong roots in protein chemistry (limited proteolysis, the use of antibodies, etc). The advent of the molecular cloning and the identification of genes coding for specific ion channel subunits in the late 1980s introduced a multitude of new techniques with which to study ion channels and the field has been rapidly expanding ever since (e.g. antibody development against specific peptide sequences, mutagenesis, the use of gene targeting in animal models, determination of their protein structures) and new methods are still in development. This review focuses on techniques commonly employed to examine ion channel function in a electrophysiological laboratory. The focus is on the KATP channel, but many of the techniques described are also used to study other ion channels. PMID:22245446

  6. Measuring and evaluating the role of ATP-sensitive K+ channels in cardiac muscle.

    PubMed

    Kefaloyianni, Eirini; Bao, Li; Rindler, Michael J; Hong, Miyoun; Patel, Tejaskumar; Taskin, Eylem; Coetzee, William A

    2012-03-01

    Since ion channels move electrical charge during their activity, they have traditionally been studied using electrophysiological approaches. This was sometimes combined with mathematical models, for example with the description of the ionic mechanisms underlying the initiation and propagation of action potentials in the squid giant axon by Hodgkin and Huxley. The methods for studying ion channels also have strong roots in protein chemistry (limited proteolysis, the use of antibodies, etc.). The advent of the molecular cloning and the identification of genes coding for specific ion channel subunits in the late 1980s introduced a multitude of new techniques with which to study ion channels and the field has been rapidly expanding ever since (e.g. antibody development against specific peptide sequences, mutagenesis, the use of gene targeting in animal models, determination of their protein structures) and new methods are still in development. This review focuses on techniques commonly employed to examine ion channel function in an electrophysiological laboratory. The focus is on the K(ATP) channel, but many of the techniques described are also used to study other ion channels. PMID:22245446

  7. Simple measures of channel habitat complexity predict transient hydraulic storage in streams

    EPA Science Inventory

    Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...

  8. Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernov, S. V.; Gwinn, C. R.; Tchekhovskoy, A. A.

    2015-10-01

    Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.

  9. The First measurement of the top quark mass at CDF II in the lepton+jets and dilepton channels simultaneously

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, Michael G.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, J.; Apollinari, G.; /Fermilab /Purdue U.

    2008-09-01

    The authors present a measurement of the mass of the top quark using data corresponding to an integrated luminosity of 1.9 fb{sup -1} of p{bar p} collisions collected at {radical}s = 1.96 TeV with the CDF II detector at Fermilab's Tevatron. This is the first measurement of the top quark mass using top-antitop pair candidate events in the lepton + jets and dilepton decay channels simultaneously. They reconstruct two observables in each channel and use a non-parametric kernel density estimation technique to derive two-dimensional probability density functions from simulated signal and background samples. The observables are the top quark mass and the invariant mass of two jets from the W decay in the lepton + jets channel, and the top quark mass and the scalar sum of transverse energy of the event in the diletpon channel. They perform a simultaneous fit for the top quark mass and the jet energy scale, which is constrained in situ by the hadronic W boson mass. using 332 lepton + jets candidate events and 144 diletpon candidate events, they measure the top quark mass to be m{sub top} = 171.9 {+-} 1.7 (stat. + JES) {+-} 1.1 (other sys.) GeV/c{sup 2} = 171.9 {+-} 2.0 GeV/c{sup 2}.

  10. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  11. Emissions of SO2, NOx, and CO2 from the Houston Ship Channel Measured by the NOAA WP-3

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Brock, C. A.; Frost, G. J.; Holloway, J. S.; Peischl, J. W.; Ryerson, T. B.; Trainer, M.; Fehsenfeld, F. C.

    2007-12-01

    The Port of Houston is made up of the Houston Ship Channel and Galveston Bay. Together these comprise a 25- mile long complex of diversified public and private facilities, including a petrochemical complex that is among the largest in the world. The Houston Ship Channel is a major source of industrial pollution, emitting sulfur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), carbon dioxide (CO2), and volatile organic compounds (VOC). Unlike a single large power plant, the Houston Ship Channel consists of numerous sources that can be difficult to quantify in inventories. In order to evaluate and predict air quality in the Houston area, it is important to understand the magnitude and variability of sources in the Houston Ship Channel, and how these sources are evolving over time. We examine fluxes of SO2, NOx, and CO2 from the Houston Ship Channel observed onboard the NOAA WP-3 during September - October 2006. We report the magnitude of these sources, and compare these results to aircraft measurements from 2000 to identify trends.

  12. PRIDE - Passive Radio Ice Depth Experiment - An Instrument to Measure Outer Planet Lunar Ice Depths from Orbit using Neutrinos

    NASA Astrophysics Data System (ADS)

    Miller, T.; Schaefer, R. K.; Sequeira, B.

    2012-12-01

    We describe a concept for an instrument to measure the thickness of the ice shell on a planetary body such as Jupiter's moon Europa. Unlike a high powered and massive device such as an ice-penetrating radar, the described instrument is a passive receiver of a naturally occurring signal generated by interactions of deep penetrating cosmic ray neutrinos. We discuss the basic concept and consider the instrument design requirements from the perspective of a NASA Outer Planet Orbiter Mission. We show results of simulations, compare signal-to-noise estimates, and examine possible components and configurations for the antenna, receiver, and electronics. We note some options that can be used to reduce mass and power. Finally, we present a list of issues that would need further study to produce a more concrete design. In the world of astrophysics, difficult problems can occasionally benefit from the use of results derived from seemingly unrelated areas. In the case at hand we explore how results from the world of high energy cosmic rays could potentially help solve a difficult measurement problem in planetary geology. Europa, one of the Galilean moons of Jupiter, is believed to be covered with an ice shell of unknown thickness, likely ranging from a few kilometers to tens of kilometers. Indirect measurements imply that under the ice is an ocean, which is warmed by tidal and volcanic heating, and is thought to be one of the best locations for life to have formed in the solar system outside of Earth. It is therefore of high scientific priority to gain a better understanding of the geology and structure of Europa by measuring the ice shell thickness. The question is then: "How can we best probe ice that is tens of km thick given the stringent mass and power requirements of a Europan explorer satellite?" The work described here was performed to determine whether the preceding measurement question could be answered with a reasonable instrument built to use the Extreme High Energy (EHE) cosmic ray neutrino signal to extract the ice depth on a planetary-sized body. All aspects of the instrument design are covered - the expected signal, the detector configuration, the sampling electronics, etc. Our expectation was that we would encounter a "show-stopper" that would make this instrument untenable, but to our surprise we did not find any obvious major shortcomings. We present here the overall concept and suggest ways PRIDE (Passive Radio [frequency] Ice Depth Experiment) could be realized. We begin with an examination of the expected neutrino signal, then look at antenna/detector characteristics, move on to detector configuration, and end with a discussion of the signal sampling electronics. Lastly, we present conclusions and identify issues for further study.

  13. The ionosphere as a focusing lens - A case study involving simultaneous type III solar radio storm measurements from the ISIS 1 and 2 and ISEE 3 satellites

    NASA Technical Reports Server (NTRS)

    James, H. G.; Benson, R. F.; Fainberg, J.; Stone, R. G.

    1990-01-01

    The possibility of using terrestrial ionospheric focusing to improve the directivity of electric dipoles on space missions has been investigated by comparing simultaneous observations of a solar radio storm by the ISIS 1 and ISIS 2 spacecraft, in near earth orbit, and the ISEE 3 spacecraft located beyond the magnetosphere. To this end, a three-dimensional ray tracing in a spherically stratified ionosphere has been carried out for conditions appropriate to the observations by the ISIS spacecraft of a solar radio storm in September 1983. The procedure allows Poynting flux spectral densities measured on ISIS to be converted to spectral densities well outside the ionosphere where they can be compared directly with simultaneous observations on ISEE 3. The results demonstrate good agreement over their common observing frequency range (1-2 MHz).

  14. The ionosphere as a focusing lens - A case study involving simultaneous type III solar radio storm measurements from the ISIS 1 and 2 and ISEE 3 satellites

    SciTech Connect

    James, H.G.; Benson, R.F.; Fainberg, J.; Stone, R.G. NASA, Goddard Space Flight Center, Greenbelt, MD )

    1990-06-01

    The possibility of using terrestrial ionospheric focusing to improve the directivity of electric dipoles on space missions has been investigated by comparing simultaneous observations of a solar radio storm by the ISIS 1 and ISIS 2 spacecraft, in near earth orbit, and the ISEE 3 spacecraft located beyond the magnetosphere. To this end, a three-dimensional ray tracing in a spherically stratified ionosphere has been carried out for conditions appropriate to the observations by the ISIS spacecraft of a solar radio storm in September 1983. The procedure allows Poynting flux spectral densities measured on ISIS to be converted to spectral densities well outside the ionosphere where they can be compared directly with simultaneous observations on ISEE 3. The results demonstrate good agreement over their common observing frequency range (1-2 MHz). 21 refs.

  15. The SO2 atmosphere and ionosphere of Io - Ion chemistry, atmospheric escape, and models corresponding to the Pioneer 10 radio occultation measurements

    NASA Technical Reports Server (NTRS)

    Kumar, S.

    1985-01-01

    Some numerical models of the SO2 atmosphere and ionosphere of Io at the time of the Pioneer 10 fly-by are calculated. It is shown that the formation of the observed ionosphere in the downstream direction may have required the precipitation of electrons, and that solar EUV radiation alone cannot account for it. In a comparison with Pioneer 10 radio occultation measurements, an electron impact in the range 500-800 eV was found to agree with Pioneer 10 radio occultation data for a SO2 atmosphere with a surface density of 4 x 10 to the 10th per cu cm. The relatively narrow energy range and flux required for incident electrons suggests that a fraction of a torus plasma compresses the ionosphere. It is pointed out on the basis of the model calculations that a weak magnetic field may be associated with Io.

  16. Variable temperature film and contact resistance measurements on operating n-channel organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Chesterfield, Reid J.; McKeen, John C.; Newman, Christopher R.; Frisbie, C. Daniel; Ewbank, Paul C.; Mann, Kent R.; Miller, Larry L.

    2004-06-01

    We report structural and electrical properties in thin films of an n-channel organic semiconductor, N,N'-dipentyl-3,4,9,10-perylene tetracarboxylic dimide (PTCDI-C5). The structure of polycrystalline thin films of PTCDI-C5 was studied using x-ray diffraction and atomic force microscopy. Films order with single crystal-like packing, and the direction of ?-? overlap is in the substrate plane. Organic thin film transistors (OTFTs) based on PTCDI-C5 were fabricated on hydrophobic and hydrophilic substrates. OTFTs showed effective mobility as high as 0.1 cm2/V s. Contact resistance of operating OTFTs was studied using resistance versus length plots and a four-probe method for three different contact metals (Au, Ag, Ca). Typical OTFTs had a specific contact resistance of 8104 ? cm at high gate voltage. There was no dependence of contact resistance with contact metal. Variable temperature measurements revealed that film resistance in the OTFT was activated in the temperature range 100-300 K, with typical activation energies of 60-80 meV. Contact resistance showed similar activated behavior, implying that the Schottky barrier at the contact is not the limiting resistance for the contact. Film resistance data showed a Meyer-Neldel relationship with characteristic energy EMN=20-25 meV, for various samples. The common TFT instability of threshold voltage shift (TVS) was observed in PTCDI-C5 OTFTs. A model is proposed to explain positive TVS in gate bias stress and oxygen exposure experiments. The model is based on the formation of a metastable complex between PTCDI-C5 and oxygen, which creates a deep acceptor-like trap state.

  17. Galileo radio science investigations

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Eshleman, V. R.; Hinson, D. P.; Kliore, A. J.; Lindal, G. F.; Woo, R.; Bird, M. K.; Volland, H.; Edenhoffer, P.; Paetzold, M.

    1992-01-01

    Galileo radio-propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements can be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system provides linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. A highly-stable, dual-frequency, spacecraft radio system is developed that is suitable for simultaneous measurements of all the parameters normally attributed to radio waves.

  18. Fading channel simulator

    DOEpatents

    Argo, Paul E. (Los Alamos, NM); Fitzgerald, T. Joseph (Los Alamos, NM)

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  19. Measurement of the Shear Lift Force on a Bubble in a Channel Flow

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Motil, Brian; Skor, Mark

    2005-01-01

    Two-phase flow systems play vital roles in the design of some current and anticipated space applications of two-phase systems which include: thermal management systems, transfer line flow in cryogenic storage, space nuclear power facilities, design and operation of thermal bus, life support systems, propulsion systems, In Situ Resource Utilization (ISRU), and space processes for pharmaceutical applications. The design of two-phase flow systems for space applications requires a clear knowledge of the behaviors of the dispersed phase (bubble), its interaction with the continuous phase (liquid) and its effect on heat and mass transfer processes, The need to understand the bubble generation process arises from the fact that for all space applications, the size and distribution of bubbles are extremely crucial for heat and mass transfer control. One important force in two-phase flow systems is the lift force on a bubble or particle in a liquid shear flow. The shear lift is usually overwhelmed by buoyancy in normal gravity, but it becomes an important force in reduced gravity. Since the liquid flow is usually sheared because of the confining wall, the trajectories of bubbles and particles injected into the liquid flow are affected by the shear lift in reduced gravity. A series of experiments are performed to investigate the lift force on a bubble in a liquid shear flow and its effect on the detachment of a bubble from a wall under low gravity conditions. Experiments are executed in a Poiseuille flow in a channel. An air-water system is used in these experiments that are performed in the 2.2 second drop tower. A bubble is injected into the shear flow from a small injector and the shear lift is measured while the bubble is held stationary relative to the fluid. The trajectory of the bubble prior, during and after its detachment from the injector is investigated. The measured shear lift force is calculated from the trajectory of the bubble at the detachment point. These values for the shear lift are then compared with the theoretical predictions from various published works on shear lift in the open literature, which include asymptotic solutions at low bubble Reynolds number, potential flow predictions and numerical studies that deal with intermediate bubble Reynolds numbers.

  20. Multiplexing LigandReceptor Binding Measurements by Chemically Patterning Microfluidic Channels

    PubMed Central

    Shi, Jinjun; Yang, Tinglu; Cremer, Paul S.

    2012-01-01

    A method has been designed for patterning supported phospholipid bilayers (SLBs) on planar substrates and inside microfluidic channels. To do this, bovine serum albumin (BSA) monolayers were formed via adsorption at the liquid/solid interface. Next, this interfacial protein film was selectively patterned by using deep UV lithography. Subsequently, SLBs could be deposited in the patterned locations by vesicle fusion. By cycling through this process several times, spatially addressed bilayer arrays could be formed with intervening protein molecules serving as two-dimensional corrals. By employing this method, phospholipid bilayers containing various concentrations of ganglioside GM1 were addressed along the length of individual microfluidic channels. Therefore, the binding of GM1 with pentameric cholera toxin B (CTB) subunits could be probed. A seven-channel microfluidic device was fabricated for this purpose. Each channel was simultaneously patterned with four chemically distinct SLBs containing 0, 0.2, 0.5, and 2.0 mol % GM1, respectively. Varying concentrations of CTB were then introduced into each of the channels. With the use of total internal reflection fluorescence microscopy, it was possible to simultaneously abstract multiple equilibrium dissociation constants as a function of ligand density for the CTB-GM1 system in a single shot. PMID:18570383

  1. AG Channel Measurement and Modeling Results for Over-Water and Hilly Terrain Conditions

    NASA Technical Reports Server (NTRS)

    Matolak, David W.; Sun, Ruoyu

    2015-01-01

    This report describes work completed over the past year on our project, entitled "Unmanned Aircraft Systems (UAS) Research: The AG Channel, Robust Waveforms, and Aeronautical Network Simulations." This project is funded under the NASA project "Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS)." In this report we provide the following: an update on project progress; a description of the over-freshwater and hilly terrain initial results on path loss, delay spread, small-scale fading, and correlations; complete path loss models for the over-water AG channels; analysis for obtaining parameter statistics required for development of accurate wideband AG channel models; and analysis of an atypical AG channel in which the aircraft flies out of the ground site antenna main beam. We have modeled the small-scale fading of these channels with Ricean statistics, and have quantified the behavior of the Ricean K-factor. We also provide some results for correlations of signal components, both intra-band and inter-band. An updated literature review, and a summary that also describes future work, are also included.

  2. Distributed radio interferometric calibration

    NASA Astrophysics Data System (ADS)

    Yatawatta, Sarod

    2015-06-01

    Increasing data volumes delivered by a new generation of radio interferometers require computationally efficient and robust calibration algorithms. In this paper, we propose distributed calibration as a way of improving both computational cost as well as robustness in calibration. We exploit the data parallelism across frequency that is inherent in radio astronomical observations that are recorded as multiple channels at different frequencies. Moreover, we also exploit the smoothness of the variation of calibration parameters across frequency. Data parallelism enables us to distribute the computing load across a network of compute agents. Smoothness in frequency enables us to reformulate calibration as a consensus optimization problem. With this formulation, we enable flow of information between compute agents calibrating data at different frequencies, without actually passing the data, and thereby improving robustness. We present simulation results to show the feasibility as well as the advantages of distributed calibration as opposed to conventional calibration.

  3. Constraining the Post-Shock Magnetic Field Strength of SN1006 from the Rotation Measure of Radio Galaxy ESO 328-13

    NASA Astrophysics Data System (ADS)

    Flewellen, Lilly; Dills, Sidney; Moffett, David A.

    2015-01-01

    In a radio polarization study of the supernova remnant (SNR) of SN1006, we found evidence for variable Faraday rotation toward the FR-I radio galaxy ESO 328-13. The background source lies on the eastern edge of the SNR, and its jets are aligned east to west. The core and western lobe lie within the remnant's interior, and the eastern lobe extends from the interior to the exterior of the SNR's shell. The rotation measure (RM) of the eastern lobe experiences a shift of 20 rad/m2 as it traverses the shell, then exhibits a gradient whose magnitude decreases toward the interior so that the RM is the same for the edges of the radio galaxy's eastern and western lobes. After rotating the field vectors to zero wavelength, we found that the magnetic field orientation of the SNR is radial with respect to the shell, while the magnetic vectors of the radio jets are perpendicular to their axes, a typical trait of FR-I sources. These results suggest the variation in RM is not intrinsic to the radio galaxy; rather, the variation is a direct effect of SN1006's post-shock environment.This discovery presents us with a unique opportunity to constrain the post-shock magnetic field and electron density distribution of SN1006. The SNR behaves as a magnetized plasma screen partially covering the background radio galaxy. The Faraday depth of the screen is a maximum at the edge of the shell and decreases toward the interior. Assuming an electron density of 0.20 cm-3 (estimated from IR and X-ray observations) and a path length of 6 pc through the SNR, we derive a line-of-sight magnetic field of 20 μG at the edge of the shell. For a range of aspect angles with respect to the line of sight, from zero to 80 degrees, the magnitude of the field could range from 20 to > 100 μG. This result compares well with theoretical estimates of 14 to 130 μG, extracted from SN1006's synchrotron emissivity at multiple wavelengths. While the complexity of the post-shock magnetic field and electron density could have a significant impact on estimates of the field strength, we are encouraged by this simple result.

  4. X-ray measurement of electron and magnetic-field energy densities in the west lobe of the giant radio galaxy 3C 236

    NASA Astrophysics Data System (ADS)

    Isobe, Naoki; Koyama, Shoko

    2015-08-01

    X-ray emission associated with the west lobe of the giant radio galaxy 3C 236 was investigated with the Suzaku observatory to evaluate the energetics in the lobe. After removing contamination from point-like X-ray sources detected with Chandra and subtracting the X-ray and non-X-ray backgrounds, the Suzaku spectrum from the lobe was reproduced by a power-law model with a photon index of ? = 2.23_{-0.38-0.12}^{+0.44+0.14}, where the first and second errors represent the statistical and systematic ones, respectively. Within the errors, the X-ray index was consistent with the radio synchrotron one, ?R = 1.74 0.07, estimated in the 326-2695 MHz range. This agreement supports that the X-ray emission is attributed to the inverse-Compton radiation from the synchrotron electrons filling the lobe, where the cosmic microwave background photons are up-scattered. This result made 3C 236 the largest radio galaxy of which the lobe has ever been probed through the inverse-Compton X-ray photons. When the photon index was fixed at ?R, the X-ray flux density at 1 keV was measured as SX = 12.3 2.0 1.9 nJy. A comparison of the X-ray flux to the radio one (SR = 1.11 0.02 Jy at 608.5 MHz) yields the energy densities of the electrons and magnetic field in the west lobe as u_e = 3.9_{-0.7 -0.9}^{+0.6 +1.0} 10^{-14} erg cm-3 and u_m = 0.92_{-0.15 -0.35}^{+0.21 +0.52} 10^{-14} erg cm-3, respectively, indicating a mild electron dominance of u_e/u_m = 4.2_{-1.3 -2.3}^{+1.6 +4.1}. The latter corresponds to the magnetic field strength of B = 0.48_{-0.04 -0.10}^{+0.05 +0.12} ?G. These are typical among the lobes of giant radio galaxies. A summary of the ue-size relation for the inverse-Compton-detected radio galaxies implies that the west lobe of 3C 236 is still actively energized by its jet.

  5. Locating Radio Noise from Sprites

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Mezentsev, A.; Watson, R.; Gaffet, S.; Astin, I.; Evans, A.

    2014-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into exponentially growing streamer tips (McHarg et al., 2010). The acceleration of the electrons to a few eV results in the radiation of a small amount of electromagnetic energy. The incoherent superposition of many streamers causes the low frequency radio noise from sprites near ~40 km height (Qin et al., 2012). The presence of this theoretically predicted radiation was recently confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). To locate the radio noise from sprites in the sky, an interferometric network of low frequency radio receivers was developed (Mezentsev and Fullekrug, JGR, 2013). The key parameter for the interferometric signal processing is the frequency dependent wave propagation velocity of the radio waves within the Earth's atmosphere. This wave propagation velocity is determined by the wave number vector which needs to be inferred from the measurements. Here we adapt and subsequently apply array analyses which have been developed for seismic and infrasound arrays to determine the horizontal wave number vectors of ~20-24 kHz radio waves measured with an array of ten radio receivers distributed over an area of ~1 km 1 km. It is found that the horizontal slowness of ~20-24 kHz radio waves ranges from ~2.7 ns/m to ~4.1 ns/m depending on the arrival azimuth of the radio wave. For comparison, an electromagnetic wave in vacuum has a slowness of ~3.34 ns/m. A larger slowness indicates an apparent velocity which is smaller than the speed of light and a smaller slowness indicates that the radio wave arrives at the array from an elevation angle. The observed variability of the observed slowness almost certainly results from the distance dependent superposition of the transverse electric and magnetic TEn and TMn radio wave propagation modes.

  6. An episode of rapid bedrock channel incision during the last glacial cycle, measured with 10Be

    USGS Publications Warehouse

    Reusser, L.; Bierman, P.; Pavich, M.; Larsen, J.; Finkel, R.

    2006-01-01

    We use 10Be to infer when, how fast, and why the Susquehanna River incised through bedrock along the U.S. Atlantic seaboard, one of the world's most prominent and ancient passive margins. Although the rate at which large rivers incise rock is a fundamental control on the development of landscapes, relatively few studies have directly measured how quickly such incision occurs either in tectonically active environments or along passive margins. Exposure ages of fluvially carve d, bedrock strath terraces, preserved along the lower Susquehanna River, demonstrate that even along a passive margin, large rivers are capable of incising through rock for short periods of time at rates approaching those recorded in tectonically active regions, such as the Himalayas. Over eighty samples, collected along and between three prominent levels of strath terraces within Holtwood Gorge, indicate that the Susquehanna River incised more than 10 meters into the Appalachian Piedmont during the last glacial cycle. Beginning ???36 ka, incision rates increased dramatically, and remained elevated until ???14 ka. The northern half of the Susquehanna basin was glaciated during the late Wisconsinan; however, similar rates and timing of incision occurred in the unglaciated Potomac River basin immediately to the south. The concurrence of incision periods on both rivers suggests that glaciation and associated meltwater were not the primary drivers of incision. Instead, it appears that changing climatic conditions during the late Pleistocene promoted an increase in the frequency and magnitude of flood events capable of exceeding thresholds for rock detachment and bedrock erosion, thus enabling a short-lived episode of rapid incision into rock. Although this study has constraine d the timing and rate of bedrock incision along the largest river draining the Atlantic passive margin, the dates alone cannot explain fully why, or by what processes, this incision occurred. However, cosmogenic dating offers compelling evidence that episodes of rapid incision into bedrock are tied to glacial cycles and changes in global climate. These results, and the methods we employ, provide valuable insights into the nature of bedrock channel incision, not only along the Susquehanna River and passive margins, but also across a wide range of settings around the globe. Because river incision into bedrock transmits the effects of changing climate and tectonics through fluvial networks to hillslopes, comprehending when, where, and why rivers incise has important implications for the evolution of landscapes.

  7. 47 CFR 95.1211 - Channel use policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Channel use policy. 95.1211 Section 95.1211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Medical Device Radiocommunication Service (MedRadio) 95.1211 Channel use policy. (a)...

  8. 47 CFR 95.1211 - Channel use policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Channel use policy. 95.1211 Section 95.1211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Medical Device Radiocommunication Service (MedRadio) 95.1211 Channel use policy. (a)...

  9. 47 CFR 95.1211 - Channel use policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Channel use policy. 95.1211 Section 95.1211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Medical Device Radiocommunication Service (MedRadio) 95.1211 Channel use policy. Link to an amendment published at 77 FR...

  10. 47 CFR 95.1211 - Channel use policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Channel use policy. 95.1211 Section 95.1211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Medical Device Radiocommunication Service (MedRadio) 95.1211 Channel use policy. (a)...

  11. Measurement of Differential Cross-Sections in the ttbar -> l+jets Channel

    SciTech Connect

    Kvita, J.; /Charles U.

    2009-04-01

    The analysis presented in this thesis focuses on kinematic distributions in the t{bar t} system and studies in detail selected differential cross sections of top quarks as well as the reconstructed t{bar t} pair, namely the top quark transverse momentum and the t{bar t} system mass. The structure of the thesis is organized as follows: first the Standard Model of the particle physics is briefly introduced in Chapter 1, with relevant aspects of electroweak and strong interactions discussed. The physics of the top quark and its properties are then outlined in Chapter 2, together with the motivation for measuring the transverse top quark momentum and other kinematic-related variables of the t{bar t} system. The concepts of present-day high energy physics collider experiments and the explicit example of Fermilab Tevatron collider and the D0 detector in Chapters 3 and 4 are followed by the description of basic detector-level objects, i.e. tracks, leptons and jets, in Chapter 5; their identification and calibration following in next chapter with the emphasis on the jet energy scale in Chapter 6 and jet identification at the D0. The analysis itself is outlined in Chapter 7 and is structured so that first the data and simulation samples and the basic preselection are described in Chapter 8 and 9, followed by the kinematic reconstruction part in Chapter 10. Chapter 11 on background normalization and Chapter 12 with raw reconstructed spectra results (at the detector-smeared level) are followed by the purity-based background subtraction method and examples of signal-level corrected spectra in Chapter 13. Next, the procedure of correcting measured spectra for detector effects (unfolding) is described in Chapters 14-15, including migration matrix studies, acceptance correction determination as well as the regularized unfolding procedure itself. Final differential cross sections are presented in Chapter 16 with the main results in Figures 16.19-16.20. Summary and discussion close the main analysis part in Chapter 17, supplemented by appendices on the wealthy of analysis control plots of the t{bar t} {yields} {ell} + jets channel, selected D0 event displays and finally the list of publications and references. Preliminary results of this analysis have been documented in D0 internal notes [UnfoldTop], [p17Top], [p14Top]; as well as presented at conferences [APS08], [APS05]. The author has also been a co-author of more than 135 D0 collaboration publications since 2005. The author has taken part in the jet energy scale calibration efforts performing final closure tests and deriving a correction to jet energy offset due to the suppression of the calorimeter signal. The author has also co-performed the {phi}-intercalibration of the hadronic calorimeter and co-supervised the electromagnetic {phi}-intercalibration; recently has also been involved in maintaining the jet identification efficiencies measurement as a JetID convener. During the years in Fermilab, many events have taken place in the course of the analysis in persuasion, including more than 170 shifts served for the D0 detector with or without the beam, 168 talks presented with mixed results and reactions; and tens of thousands of code lines in C (and sometimes perhaps even really C++) written while terabytes of data were processed, analyzed, and sometimes also lost. It has been a long but profoundly enriching chapter of my life.

  12. Multi-channel integrated circuits for the detection and measurement of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Engel, G. L.; Duggireddi, N.; Vangapally, V.; Elson, J. M.; Sobotka, L. G.; Charity, R. J.

    2011-10-01

    The Integrated Circuits (IC) Design Research Laboratory at Southern Illinois University Edwardsville (SIUE) has collaborated with the Nuclear Reactions Group at Washington University (WU) to develop a family of multi-channel integrated circuits. To date, the collaboration has successfully produced two micro-chips. The first was an analog shaped and peak sensing chip with on-board constant-fraction discriminators and sparsified readout. This chip is known as Heavy-Ion Nuclear Physics-16 Channel (HINP16C). The second chip, christened PSD8C, was designed to logically complement (in terms of detector types) the HINP16C chip. Pulse Shape Discrimination-8 Channel (PSD8C), featuring three settable charge integration windows per channel, performs pulse shape discrimination (PSD). This paper summarizes the design, capabilities, and features of the HINP16C and PSD8C ICs. It proceeds to discuss the modifications, made to the ICs and their associated systems, which have attempted to improve ease of use, increase performance, and extend capabilities. The paper concludes with a brief discussion of what may be the next chip (employing a multi-sampling scheme) to be added to our CMOS ASIC "tool box" for radiation detection instrumentation.

  13. Monitoring and equalization of in-service QPSK/TDMA links by means of burst-mode channel impulse response measurement

    NASA Astrophysics Data System (ADS)

    Mazur, B.; Lyons, R.; Lodge, J.; Tiedemann, K.

    This paper presents a novel method for passive baseband-to-baseband channel frequency response measurement, suitable for the incremental commissioning and in-service monitoring of links in a QPSK/TDMA system. The method applies least squares estimation techniques to samples of the I and Q baseband components of received traffic bursts in order to derive a linear equivalent model for the satellite channel. Results obtained by computer simulation of an Intelsat V channel demonstrate that the method can provide a better basis for equalizing a nonlinear channel than the frequency response measurements provided by conventional techniques. A mathematical formulation and an implementation overview are also given.

  14. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  15. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works. PMID:26828488

  16. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    PubMed Central

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488

  17. Development of a wall-shear-stress sensor and measurements in mini-channels with partial blockages

    NASA Astrophysics Data System (ADS)

    Afara, Samer; Medvescek, James; Mydlarski, Laurent; Baliga, Bantwal R.; MacDonald, Mark

    2014-05-01

    The design, construction, operation and validation of a wall-shear-stress sensor, and measurements obtained using this sensor in air flows downstream of partial blockages in a mini-channel are presented. The sensor consisted of a hot wire mounted over a small rectangular slot and operated using a constant-temperature anemometer. It was used to investigate flows similar to those within the mini-channels inside notebook computers. The overall goal of the present work was to develop a sensor suitable for measurements of the wall-shear stress in such flows, which can be used to validate corresponding numerical simulations, as the latter are known to be often surprisingly inaccurate. To this end, measurements of the wall-shear stress, and the corresponding statistical moments and power spectral densities, were obtained at different distances downstream of the partial blockage, with blockage ratios of 39.7, 59.2, and 76.3 %. The Reynolds number (based on average velocity and hydraulic diameter) ranged from 100 to 900. The results confirmed the presence of unsteadiness, separation, reattachment, and laminar-turbulent transition in the ostensibly laminar flow of air in mini-channels with partial blockages. The present results demonstrate why accurate numerical predictions of cooling air flows in laptop and notebook computers remain a challenging task.

  18. 77 FR 38210 - Channel Spacing and Bandwidth Limitations for Certain Economic Area (EA)-Based 800 MHz...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... MHz Specialized Mobile Radio Licensees AGENCY: Federal Communications Commission. ACTION: Final rule... Specialized Mobile Radio (SMR) licensees to exceed a legacy channel spacing requirement and...

  19. Radio wave scattering observations of the solar corona: First-order measurements of expansion velocity and turbulence spectrum using Viking and Mariner 10 spacecraft

    SciTech Connect

    Tyler, G.L.; Vesecky, J.F.; Plume, M.A.; Howard, H.T.; Barnes, A.

    1981-10-01

    Solar conjunction of Mars on 1976 November 25 occurred very near the beginning of solar cycle 21, about 4 months after the first Viking spacecraft arrived at the planet. Radio wave scattering data were collected at 3.6 and 13 cm wavelengths, using the radio link between the Viking orbiters and the Earth. These data allow measurements of solar wind properties over a range of heliocentric radial distance from approx.6 to 44 R/sub sun/ with solar latitudes ranging from -17/sup 0/ to +7/sup 0/. Observations with Mariner 10 during a period of moderate solar activity in 1974 cover from 6 to 24 R/sub sun/ and from approx.20/sup 0/ to near 90/sup 0/. We have found that the temporal frequency variance spectrum of amplitude fluctuations is useful for characterizing the bulk motion of the plasma. This spectrum has an approximately constant low frequency plateau and a power-law high frequency asymptote; the plateau-asymptote intersection frequency provides a measure of the solar wind velocity V. We also obtain the spectral index p of electron density turbulence, Phi/sub N/approx.kappa/sup -p/, where kappa is spatial wavenumber. These results apply to a cylindrical region oriented with its axis along the radio ray path and its center at the point of closest approach to the Sun. The measurements of V and p cover some 78/sup d/ for Viking and 49/sup 2/ for Mariner 10 and show the combined effects of changing heliocentric distance rho, solar latitude theta, and solar longitude Psi, as well as solar activity. The Viking results can be regarded as a function primary of rho and Psi since the observations are concentrated in the equatorial regions when solar activity was near minimum. For Mariner 10, rho, theta, and Psi variations were important. The Viking results show an abrupt change in V(rho) and the turbulence spectral index at approx.15 R/sub sun/.

  20. Radio frequency-driven energetic tritium ion tail measurements in the Tokamak Fusion Test Reactor using the pellet charge exchange diagnostic

    NASA Astrophysics Data System (ADS)

    Duong, H. H.; Fisher, R. K.; McChesney, J. M.; Parks, P. B.; Medley, S. S.; Mansfield, D. K.; Roquemore, A. L.; Petrov, M. P.

    1997-01-01

    Charge exchange interactions of ions with the ablation cloud of an injected low-Z impurity pellet can be used to measure the energy spectrum and radial profile of confined fast ions in a fusion plasma. On the Tokamak Fusion Test Reactor we use this technique to directly measure energetic alphas from D-T reactions, tritons from D-D reactions, and radio frequency (rf)-driven minority tail ions (e.g., H, 3He, T). We describe the status of the pellet charge exchange (PCX) diagnostic including a brief description of the measurement technique and discussion of operational experience. PCX measurements of the energy spectrum, radial density distribution, and heating deposition profile of rf-driven tritium ions during 2?T heating of L-mode plasmas are presented.

  1. Hybrid Two-phase Flow Measurements in a Narrow Channel Using Neutron Radiography and Liquid Film Sensor

    NASA Astrophysics Data System (ADS)

    Ito, Daisuke; Saito, Yasushi; Kawabata, Yuji

    Gas-liquid two-phase flow in a narrow gap has been studied to develop a solid target cooling system for an accelerator driven system. Flow measurements are important to understand two-phase flow dynamics also in such a narrow channel. Although contact methods can measure detailed structure of two-phase flow, the intrusive effect on the flow becomes relatively larger in such a small channel. Therefore, non-intrusive measurement would be desirable. Neutron radiography (NRG) is one of the powerful tools for gas-liquid two-phase flow measurement and void fraction distribution can be estimated from the acquired images. However, the temporal resolution of NRG is about 100?1,000 Hz depending on the neutron flux and it should be increased to investigate flow dynamics. So the authors focused on a hybrid measurement of the NRG and a conductance liquid film sensor (LFS). The combination of these methods can complement the spatial and temporal information of the flow. In this study, the hybrid measurements were performed by NRG and LFS to visualize the detailed structure of narrow two-phase flow.

  2. A search for ultrahigh-energy neutrinos and measurement of cosmic ray radio emission with the Antarctic Impulsive Transient Antenna

    NASA Astrophysics Data System (ADS)

    Hoover, Stephen Lam Douglas

    2010-11-01

    New astronomical messengers may reveal unexpected aspects of the Universe and have often provided a unique source of fresh physical insights. Neutrinos are a promising new messenger particle, capable of carrying information from otherwise inaccessible sources. The ANtarctic Impulsive Transient Antenna (ANITA) seeks to make the first detection of an ultrahigh-energy (E > 1018 eV) neutrino flux. Such a neutrino flux almost certainly exists, produced in interactions of ultrahigh-energy cosmic rays with photons from the cosmic microwave background. ANITA is a balloon payload which monitors large volumes of the Antarctic ice sheet from an altitude of 38 km. An ultrahigh-energy neutrino which interacts in the ice sheet will produce a particle shower which will coherently radiate Cherenkov radiation in radio wavelengths (<3 GHz). Antennas on the balloon payload can then detect the resulting impulsive radio signal. The full ANITA flew for the first time from 15 December 2006 to 19 January 2007. In this dissertation, I will describe the ground calibration system used to transmit calibration signals to the payload in-flight. I will then describe techniques for analysis of ANITA data and give limits on the ultrahigh-energy neutrino flux implied by the null result of that analysis. Finally, I will demonstrate that ANITA is also sensitive to ultrahigh-energy cosmic rays and show the detection of 16 ultrahigh-energy cosmic-ray events during ANITA's first flight. This constitutes the highest frequency and widest bandwidth radio observations of cosmic-ray emission to date I show the average waveform and spectrum of these events and describe their polarization properties, which are strongly correlated with the geomagnetic field.

  3. Measuring inorganic nitrate species with short time resolution from an aircraft platform by dual-channel ozone chemiluminescence

    NASA Astrophysics Data System (ADS)

    Tanner, Roger L.; Valente, Ralph J.; Meagher, James F.

    1998-09-01

    A measurement technique for determining nitrate (the sum of nitric acid and particulate nitrate) with a few seconds time resolution in plumes is needed to resolve within-plume features. A technique using dual ozone-chemiluminescent NO detectors with a selective nitrate scrubber in one sampling train is promising if used with an appropriate sampling inlet, and if nitrate is the desired analyte. We report the design of, and preliminary results from a dual channel ozone-chemiluminescent system, each channel containing a gold-CO catalyzed converter which reduces all odd nitrogen species (NOy) quantitatively to NO; one channel also contains a nylon filter to remove nitrate from the air stream prior to the converter (this signal is termed NOy*). This system was deployed successfully in a Bell 205 helicopter during the 1995 Southern Oxidants Study Nashville Ozone Study. The converters were mounted forward near the air intake, and zero air and calibration gases admitted simultaneously to both channels during flight operations. The difference signal between the two channels (NOy-NOy*) indicated apparent nitrate levels in the sampled air with a time resolution of <5 s and a limit of detection of about 1 ppbv. Nitrate levels observed with this system in plumes and background air during the Nashville Ozone Study were highly correlated with ozone and varied from below detection limits to ≈20 ppbv. Nitrate levels were also highly correlated with the calculated difference between NOy and the sum of NO and NO2 (NOz). Higher nitrate levels as a fraction of NOz were found in power plant plumes (≥60%) compared with urban plumes (≈50%) and background air, consistent with apparently lower ozone production efficiencies in power plant plumes vis-à-vis urban plumes.

  4. Measurement of the ?-ray energy resolution function of EJ301 liquid scintillator using a dual channel ADC

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Donato, M.; Marini-Bettolo, C.; Conroy, S.; Sangaroon, S.; Ericsson, G.

    2014-07-01

    A comparison of three different methods for the energy calibration of liquid scintillators using ?-ray sources using only a delay unit and a dual channel ADC is presented. Single Compton edge measurements combined with MCNP simulations of the pulse height spectra are compared with the results obtained using Compton coincidence methods. Good agreement between the three methods is found. Measurements from the three different methods are then combined to provide the best estimate of the energy resolution function. The technique here presented could be easily used in laboratory courses as high performing ADCs become more common and affordable.

  5. An ensemble average method to estimate absolute TEC using radio beacon-based differential phase measurements: Applicability to regions of large latitudinal gradients in plasma density

    NASA Astrophysics Data System (ADS)

    Thampi, Smitha V.; Bagiya, Mala S.; Chakrabarty, D.; Acharya, Y. B.; Yamamoto, M.

    2014-12-01

    A GNU Radio Beacon Receiver (GRBR) system for total electron content (TEC) measurements using 150 and 400 MHz transmissions from Low-Earth Orbiting Satellites (LEOS) is fabricated in house and made operational at Ahmedabad (23.04N, 72.54E geographic, dip latitude 17N) since May 2013. This system receives the 150 and 400 MHz transmissions from high-inclination LEOS. The first few days of observations are presented in this work to bring out the efficacy of an ensemble average method to convert the relative TECs to absolute TECs. This method is a modified version of the differential Doppler-based method proposed by de Mendonca (1962) and suitable even for ionospheric regions with large spatial gradients. Comparison of TECs derived from a collocated GPS receiver shows that the absolute TECs estimated by this method are reliable estimates over regions with large spatial gradient. This method is useful even when only one receiving station is available. The differences between these observations are discussed to bring out the importance of the spatial differences between the ionospheric pierce points of these satellites. A few examples of the latitudinal variation of TEC during different local times using GRBR measurements are also presented, which demonstrates the potential of radio beacon measurements in capturing the large-scale plasma transport processes in the low-latitude ionosphere.

  6. Direct magnetic field measurement of flow dynamics in magnetized coaxial accelerator channels

    SciTech Connect

    Black, D.C.; Mayo, R.M.; Caress, R.W.

    1997-08-01

    A miniature magnetic probe array, consisting of ten spatially separated coils, has been used to obtain profile information on the time-varying magnetic field within the 2.54 cm wide flow channel of the Coaxial Plasma Source experiment (CPS-1) [R. M. Mayo {ital et al.}, Plasma Sources Sci. Technol. {bold 4}, 47 (1995)] at the North Carolina State University. Two-dimensional (2-D) current profiles within the annular flow channel, which were constructed from the time-varying magnetic field data, reveal several complex features reflecting the influence of gun inductance, the Hall effect, and the applied magnetic field. When an external, electrode linking magnetic field is applied, the evolution of the 2-D current profile shows evidence of an ionizing shock front identified by a narrow current sheet propagating through the channel during the first few microseconds of the discharge. The thickness of this current sheet is on the same order as both the collisional mean-free path and the ion electromagnetic skin depth. In this applied field case, the plasma is prevented from advancing ahead of the current sheet by the applied magnetic field, which turns the ions and electrons without collisions. In the absence of an applied field, plasma is able to advance ahead of the current sheet, where it may initiate ionization downstream before the advance of the ionization front. {copyright} {ital 1997 American Institute of Physics.}

  7. Laser Doppler cross-sectional velocity distribution measurement combining 16-channel spatial encoding and non-mechanical scanning

    NASA Astrophysics Data System (ADS)

    Maru, Koichi

    2015-08-01

    This paper presents a differential laser Doppler velocimeter (LDV) for measuring the velocity distribution on a two-dimensional cross section. The author has proposed the LDV that combines non-mechanical scanning and simultaneous multipoint measurement using spatial encoding. In this paper, this method is expanded to a 16-channel system that facilitates more dense two-dimensional cross-sectional velocity distribution measurements. The spatially encoded measurement points aligned in the transverse direction are generated and scanned in the axial direction in a non-mechanical manner using diffraction gratings and a tunable laser. Multichannel serrodyne frequency shifting using a LiNbO3 phase-shifter array is used to generate spatially encoded points with a simple structure. An asymmetrical push-pull configuration is introduced to increase the number of the spatially encoded points. The experimental results indicate that the two-dimensional velocity distribution was successfully measured by the proposed configuration.

  8. Radio emissions from Uranus

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Evans, D. R.; Romig, J. H.; Sawyer, C. B.

    1987-01-01

    The hardware of the Planetary Radio Astronomy Experiment aboard Voyager 2 and the results of the measurements of radio emissions from Uranus are described. Strong 40-kHz to 850-kHz radio emissions were detected after closest approach on the day-side of Uranus. The time variations of these emissions were periodic, with a period of 17.24 h closely matching that of Uranus's rotation and evidently being controlled by the strength and shape of its magnetic field. The instrument also recorded possible Uranian electrostatic discharges, vertex early arcs occurring in sequences of more than a dozen events with approximately 10-min period, and very intense isolated bursts lasting tens of minutes.

  9. Voltage-dependent calcium channels in skeletal muscle transverse tubules. Measurements of calcium efflux in membrane vesicles

    SciTech Connect

    Dunn, S.M. )

    1989-07-05

    Transverse tubule membranes isolated from rabbit skeletal muscle consist mainly of sealed vesicles that are oriented primarily inside out. These membranes contain a high density of binding sites for 1,4-dihydropyridine calcium channel antagonists. The presence of functional voltage-dependent calcium channels in these membranes has been demonstrated by their ability to mediate {sup 45}Ca2+ efflux in response to changes in membrane potential. Fluorescence changes of the voltage-sensitive dye, 3,3'-dipropyl-2,2'-thiadicarbocyanine, have shown that transverse tubule vesicles may generate and maintain membrane potentials in response to establishing potassium gradients across the membrane in the presence of valinomycin. A two-step procedure has been developed to measure voltage-dependent calcium fluxes. Vesicles loaded with {sup 45}Ca2+ are first diluted into a buffer designed to generate a membrane potential mimicking the resting state of the cell and to reduce the extravesicular Ca2+ to sub-micromolar levels. {sup 45}Ca2+ efflux is then measured upon subsequent depolarization. Flux responses are modulated with appropriate pharmacological specificity by 1,4-dihydropyridines and are inhibited by other calcium channel antagonists such as lanthanum and verapamil.

  10. Interior channels in Martian valleys: Constraints on fluvial erosion by measurements of the Mars Express High Resolution Stereo Camera

    USGS Publications Warehouse

    Jaumann, R.; Reiss, D.; Frei, S.; Neukum, G.; Scholten, F.; Gwinner, K.; Roatsch, T.; Matz, K.-D.; Mertens, V.; Hauber, E.; Hoffmann, H.; Kohler, U.; Head, J.W.; Hiesinger, H.; Carr, M.H.

    2005-01-01

    In High Resolution Stereo Camera (HRSC) images of the Mars Express Mission a 130 km long interior channel is identified within a 400 km long valley network system located in the Lybia Montes. Ages of the valley floor and the surroundings as derived from crater counts define a period of ???350 Myrs during which the valley might have been formed. Based on HRSC stereo measurements the discharge of the interior channel is estimated at ???4800 in m3/S, corresponding to a runoff production rate of ??? cm/day. Mass balances indicate erosion rates of a few cm/year implying the erosion activity in the valley to a few thousand years for continuous flow, or one or more orders of magnitude longer time spans for more intermittent flows. Therefore, during the Hesperian, relatively brief but recurring episodes of erosion intervals are more likely than sustained flow. Copyright 2005 by the American Geophysical Union.

  11. Measurements of distributed polarized radio sources from spinning spacecraft - Effect of a tilted axial antenna ISEE-3 application and results

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Hoang, S.; Manning, R.

    1985-01-01

    An analysis is presented of the system response of a satellite receiver-antenna system to locate a radio source when the satellite is tilted on its axis. The satellite is spin stabilized but experiences a tilt due to either a mechanical misalignment or a shift in the electrical axis caused by parasitic currents in other spacecraft structures. The shorter the antenna, the more significant the effects. Numerical techniques are developed for obtaining the Stokes parameters and the angular parameters of a uniform conical source sensed by a linear antenna in order to derive the average power response of a synthesized dipole to a point on a distributed polarized source. Relative gains are calculated along the antenna at different angles to the source. The techniques are applied to sample ISEE-3 satellite data for Type III solar radio bursts which were sensed by an axial and an equatorial antenna. The two antennas permit localization of the source and quantification of the polarization and angular extent of the source. The resulting high precision in calculations of all three source parameters commends use of the model in analyses of data from the planned ULYSSES mission.

  12. Increasing Accuracy: A New Design and Algorithm for Automatically Measuring Weights, Travel Direction and Radio Frequency Identification (RFID) of Penguins.

    PubMed

    Afanasyev, Vsevolod; Buldyrev, Sergey V; Dunn, Michael J; Robst, Jeremy; Preston, Mark; Bremner, Steve F; Briggs, Dirk R; Brown, Ruth; Adlard, Stacey; Peat, Helen J

    2015-01-01

    A fully automated weighbridge using a new algorithm and mechanics integrated with a Radio Frequency Identification System is described. It is currently in use collecting data on Macaroni penguins (Eudyptes chrysolophus) at Bird Island, South Georgia. The technology allows researchers to collect very large, highly accurate datasets of both penguin weight and direction of their travel into or out of a breeding colony, providing important contributory information to help understand penguin breeding success, reproductive output and availability of prey. Reliable discrimination between single and multiple penguin crossings is demonstrated. Passive radio frequency tags implanted into penguins allow researchers to match weight and trip direction to individual birds. Low unit and operation costs, low maintenance needs, simple operator requirements and accurate time stamping of every record are all important features of this type of weighbridge, as is its proven ability to operate 24 hours a day throughout a breeding season, regardless of temperature or weather conditions. Users are able to define required levels of accuracy by adjusting filters and raw data are automatically recorded and stored allowing for a range of processing options. This paper presents the underlying principles, design specification and system description, provides evidence of the weighbridge's accurate performance and demonstrates how its design is a significant improvement on existing systems. PMID:25894763

  13. Increasing Accuracy: A New Design and Algorithm for Automatically Measuring Weights, Travel Direction and Radio Frequency Identification (RFID) of Penguins

    PubMed Central

    Afanasyev, Vsevolod; Buldyrev, Sergey V.; Dunn, Michael J.; Robst, Jeremy; Preston, Mark; Bremner, Steve F.; Briggs, Dirk R.; Brown, Ruth; Adlard, Stacey; Peat, Helen J.

    2015-01-01

    A fully automated weighbridge using a new algorithm and mechanics integrated with a Radio Frequency Identification System is described. It is currently in use collecting data on Macaroni penguins (Eudyptes chrysolophus) at Bird Island, South Georgia. The technology allows researchers to collect very large, highly accurate datasets of both penguin weight and direction of their travel into or out of a breeding colony, providing important contributory information to help understand penguin breeding success, reproductive output and availability of prey. Reliable discrimination between single and multiple penguin crossings is demonstrated. Passive radio frequency tags implanted into penguins allow researchers to match weight and trip direction to individual birds. Low unit and operation costs, low maintenance needs, simple operator requirements and accurate time stamping of every record are all important features of this type of weighbridge, as is its proven ability to operate 24 hours a day throughout a breeding season, regardless of temperature or weather conditions. Users are able to define required levels of accuracy by adjusting filters and raw data are automatically recorded and stored allowing for a range of processing options. This paper presents the underlying principles, design specification and system description, provides evidence of the weighbridge’s accurate performance and demonstrates how its design is a significant improvement on existing systems. PMID:25894763

  14. Issues in packet radio network design

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.; Nielson, Donald L.; Tobagi, Fouad A.

    1987-01-01

    The physical aspects of a packet radio network design, the automated management of the network, and the interface of the network to the users are examined. The networks provide data communications to users located over a broad geographic region where direct radio or wire connection between the source and destination user is not practical; the network consists of a radio, antenna, and digital controller. The physical connectivity, bandwidth-time-space management, channel access, and data link control of the network are analyzed. Consideration is given to link determination and control, routing and packet forwarding, congestion and flow control, and supported users management. The operation and management of a packet radio network, in particular network deployment and maintenance, network access methods, and its effect on the radio spectrum, are discussed. The performance and cost of a packet radio network are evaluated.

  15. Radio Hazard Safety Assessment for Marine Ship Transmitters: Measurements Using a New Data Collection Method and Comparison with ICNIRP and ARPANSA Limits.

    PubMed

    Halgamuge, Malka N

    2015-05-01

    We investigated the levels of radio frequency electromagnetic fields (RF EMFs) emitted from marine ship transmitters. In this study, we recorded the radio frequency (RF) electric field (EF) levels emitted from transmitters from a marine vessel focusing on the areas normally occupied by crew members and passengers. Previous studies considered radiation hazard safety assessment for marine vessels with a limited number of transmitters, such as very high-frequency (VHF) transceivers, radar and communication transmitters. In our investigation, EF levels from seven radio transmitters were measured, including: VHF, medium frequency/high frequency (MF/HF), satellite communication (Sat-Com C), AISnavigation, radar X-band and radar S-band. Measurements were carried out in a 40 m-long, three-level ship (upper deck, bridge deck and bridge roof) at 12 different locations. We developed a new data-collection protocol and performed it under 11 different scenarios to observe and measure the radiation emissions from all of the transmitters. In total, 528 EF field measurements were collected and averaged over all three levels of the marine ship with RF transmitters: the measured electric fields were the lowest on the upper deck (0.82-0.86 V/m), the highest on the bridge roof (2.15-3.70 V/m) and in between on the bridge deck (0.47-1.15 V/m). The measured EF levels were then assessed for compliance with the occupational and general public reference levels of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) standards. The ICNIRP and the ARPANSA limits for the general public were exceeded on the bridge roof; nevertheless, the occupational limits were respected everywhere. The measured EF levels, hence, complied with the ICNIRP guidelines and the ARPANSA standards. In this paper, we provide a new data collection model for future surveys, which could be conducted with larger samples to verify our observations. Furthermore, this new method could be useful as a reference for researchers and industry professionals without direct access to the necessary equipment. PMID:25996887

  16. Radio Hazard Safety Assessment for Marine Ship Transmitters: Measurements Using a New Data Collection Method and Comparison with ICNIRP and ARPANSA Limits

    PubMed Central

    Halgamuge, Malka N.

    2015-01-01

    We investigated the levels of radio frequency electromagnetic fields (RF EMFs) emitted from marine ship transmitters. In this study, we recorded the radio frequency (RF) electric field (EF) levels emitted from transmitters from a marine vessel focusing on the areas normally occupied by crew members and passengers. Previous studies considered radiation hazard safety assessment for marine vessels with a limited number of transmitters, such as very high-frequency (VHF) transceivers, radar and communication transmitters. In our investigation, EF levels from seven radio transmitters were measured, including: VHF, medium frequency/high frequency (MF/HF), satellite communication (Sat-Com C), AISnavigation, radar X-band and radar S-band. Measurements were carried out in a 40 m-long, three-level ship (upper deck, bridge deck and bridge roof) at 12 different locations. We developed a new data-collection protocol and performed it under 11 different scenarios to observe and measure the radiation emissions from all of the transmitters. In total, 528 EF field measurements were collected and averaged over all three levels of the marine ship with RF transmitters: the measured electric fields were the lowest on the upper deck (0.82–0.86 V/m), the highest on the bridge roof (2.15–3.70 V/m) and in between on the bridge deck (0.47–1.15 V/m). The measured EF levels were then assessed for compliance with the occupational and general public reference levels of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) standards. The ICNIRP and the ARPANSA limits for the general public were exceeded on the bridge roof; nevertheless, the occupational limits were respected everywhere. The measured EF levels, hence, complied with the ICNIRP guidelines and the ARPANSA standards. In this paper, we provide a new data collection model for future surveys, which could be conducted with larger samples to verify our observations. Furthermore, this new method could be useful as a reference for researchers and industry professionals without direct access to the necessary equipment. PMID:25996887

  17. Radio-frequency-spectroscopy measurement of the Land gJ factor of the 5D5/2 state of Ba+ with a single trapped ion

    NASA Astrophysics Data System (ADS)

    Hoffman, Matthew R.; Noel, Thomas W.; Auchter, Carolyn; Jayakumar, Anupriya; Williams, Spencer R.; Blinov, Boris B.; Fortson, E. N.

    2013-08-01

    We report an improved measurement of the Land gJ factor of the 5D5/2 state of singly ionized barium. Measurements were performed on single Doppler-cooled 138Ba+ ions in linear Paul traps using two similar, independent apparatuses. Transitions between Zeeman sublevels of the 6S1/2 and 5D5/2 states were driven with two independent, stabilized radio-frequency synthesizers using a dedicated electrode within each ion trap chamber. State detection within each Zeeman manifold was achieved with a frequency-stabilized fiber laser operating at 1.76 ?m. By calculating the ratio of the two Zeeman splittings, and using the measured Land gJ factor of the 6S1/2 state, we find a value of 1.200 372(4stat)(7sys) for gD5/2.

  18. Study of multi-acoustic channel supersonic Doppler flowmeter for measuring coal slurry-coal log pipeline

    NASA Astrophysics Data System (ADS)

    Lin, Yu; Yang, Jie; Tang, Jun

    2006-11-01

    Coal slurry-coal log pipeline is a new technology for long distance transportation of coal logs (cylindrical coal briquettes) by using coal slurry as carrier and pump as power set. Because of the difficulty of measuring flow rate of coal slurry-coal log pipeline, the study of measuring technology and the development of flowmeter are necessary. In consideration of the characteristics of transportation of coal logs in coal slurry pipeline, a non-contacting measuring method and the supersonic Doppler effect are selected and used. By detecting frequency drifts produced by reflecting supersonic wave from moving coal particles and coal logs in pipeline the flow rate of coal slurry-coal log pipeline (the total quantity of coal transported by the pipeline) can be measured. Based on the concept of liner concentration of coal logs in pipeline and characteristics of Doppler frequency drifts of coal particles and coal logs moved in pipeline, the measuring method of supersonic wave and the transportation principle of coal slurry-coal log pipeline are discussed and a multi-acoustic channel supersonic Doppler flowmeter is designed for measuring the total quantity of coal transported by pipeline. The flowmeter is composed of supersonic transducer, electron circuit, flow rate indication and integral calculation system. The multi-acoustic channel technique and a suitable acoustic wedge with a certain shape and special solid material are selected and used for increasing the measuring precision. In this paper the Doppler signal is measured and analyzed by using mixing-frequency technique and FPT (rapid Fourier transformation), and some designed circuits and signal measurement process are also offered.

  19. 47 CFR 95.627 - FRS unit channel frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false FRS unit channel frequencies. 95.627 Section 95.627 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Technical Regulations Technical Standards 95.627 FRS unit channel frequencies. (a) The FRS unit channel frequencies...

  20. 47 CFR 95.626 - FRS unit channel frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false FRS unit channel frequencies. 95.626 Section 95.626 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Technical Regulations Technical Standards 95.626 FRS unit channel frequencies. (a) The FRS unit channel frequencies...

  1. 47 CFR 73.220 - Restrictions on use of channels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Restrictions on use of channels. 73.220 Section 73.220 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations 73.220 Restrictions on use of channels. (a) The frequency 89.1 MHz (channel 206) is revised in the...

  2. Volume transport and mixing of the Faroe Bank Channel overflow from one year of moored measurements

    NASA Astrophysics Data System (ADS)

    Ullgren, J. E.; Darelius, E.; Fer, I.

    2015-10-01

    One-year long time series of current velocity and temperature from ten moorings deployed in the Faroe Bank Channel (FBC) are analysed to describe the structure and variability of the dense overflow plume on daily to seasonal time scales. Mooring arrays are deployed in two sections: located 25 km downstream of the main sill, in the channel that geographically confines the overflow plume at both edges (section C), and 60 km further downstream, over the slope (section S). At section C, the average volume transport of overflow waters (< 3 C) from the Nordic Seas towards the Iceland Basin is 1.3 0.3 Sv; at Section S, transport of modified overflow water (< 6 C) is 1.8 0.7 Sv. The volume transport through the slope section is dominated by mesoscale variability at 3-5 day time scale. A simplified view of along-path entrainment of a gravity current is not accurate for the FBC overflow. As the plume proceeds into the stratified ambient water, there is substantial detrainment from the deeper layer (bounded by the 3 C isotherm), of comparable magnitude to the entrainment into the interfacial layer (between the 3 and 6 C isotherms). Time series of gradient Richardson number suggests a quiescent plume core capped by turbulent near bottom and interfacial layers in the channel. At section S, in contrast, the entire overflow plume is turbulent. Based on a two-layer heat budget constructed for the overflow, mean diffusivities across the top of the bottom layer, and across the interfacial layer are (30 15) 10-4 m2 s-1 and (119 43) 10-4 m2 s-1, respectively.

  3. Measurement of Magnetic Island Width by Multi-Channel ECE Radiometer on HT-7 Tokamak

    NASA Astrophysics Data System (ADS)

    Han, Xiang; Ling, Bili; Gao, Xiang; Liu, Yong; Ti, Ang; Li, Erzhong; Xu, Liqing; Wang, Yumin

    2013-03-01

    A 16-channel electron cyclotron emission (ECE) radiometer has been employed to observe the (m, n) = (2, 1) magnetic island structure on HT-7 tokamak, where m and n represent the poloidal and toroidal mode number respectively. The results indicate that the island width is about 7 cm when the magnetic island is saturated during the m/n = 2/1 mode. The location of resonance surface can be determined by plotting the contour of ECE relative fluctuation. This method could be applied to the HT-7 and EAST campaigns in the future for the research of neoclassical tearing modes (NTMs).

  4. A photoelectric technique for measuring lightning-channel propagation velocities from a mobile laboratory

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Rust, W. David

    1989-01-01

    The present device for lightning channel propagation-velocity determination employs eight photodetectors mounted behind precision horizontal slits in the focal plane of a photographic camera lens. The eight photodetector pulses, IRIG-B time, and slow and fast electric field-change waveforms are recorded on a 14-track analog tape recorder. A comparison of the present results with those obtained by a streaking camera shows no significant differences between the velocities obtained from the same strokes with the two systems; neither is there any difference in pulse characteristics or in the velocities calculated from them.

  5. 78 FR 27306 - Radio Broadcasting Services; Dermott, Arkansas, and Cleveland, Mississippi

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Dermott, Arkansas, and Cleveland, Mississippi AGENCY... Delta Radio Network, LLC, substitutes FM Channel 224A for 289A at Dermott, Arkansas, and substitutes FM... CFR part 73 Radio, Radio broadcasting. Federal Communications Commission. Nazifa Sawez,...

  6. Simultaneous Measurement of Temperature and Emissivity of Lunar Regolith Simulant using Dual-Channel Millimeter-Wave Radiometry

    SciTech Connect

    McCloy, John S.; Sundaram, S. K.; Matyas, Josef; Woskov, Paul P.

    2011-05-19

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). PNNLs state-of-the-art dual channel millimeter-wave passive radiometer with active interferometric capabilities allows for radiometric measurements of sample temperature and emissivity up to at least 1600?C. Interferometric capabilities through the mixed video channels at 137 GHz allow simultaneous measurement of additional parameters, e.g., volume expansion/level change and viscosity. These capabilities have been used to demonstrate measurement of melting of simulated lunar regolith. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Observed phenomena include melting and foaming of regolith with oxygen evolution. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave coupling factors, which provide corroboratory evidence to the interferometric data of the processes observed. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.

  7. The e-POP Radio Receiver Instrument on CASSIOPE

    NASA Astrophysics Data System (ADS)

    James, H. G.; King, E. P.; White, A.; Hum, R. H.; Lunscher, W. H. H. L.; Siefring, C. L.

    2015-06-01

    The Radio Receiver Instrument (RRI) is a four-channel digital receiver fed by four 3-metre monopoles, arranged in a crossed configuration, each connected to a high input impedance preamplifier. The RRI bandwidth extends from 10 Hz to 18 MHz. The receiver measures the electric fields of either spontaneous radio emissions or waves created by ground transmitters, such as ionosondes, high-frequency radars and ionospheric heaters. In order to measure accurately the intensity, frequency, direction of propagation and signal delay of such fields over the broad frequency range, modern digital receiver technology is employed. The amplified signals from the monopoles are digitized at a rate of 40 megasamples per second, and from there on, the signal is down-converted, filtered, time-stamped and communicated in digital form. The characterization results of the RRI flight model are reported. Formats for data commands for configuring the digital receiver and for data output are described.

  8. Measuring Temperature-Dependent Propagating Disturbances in Coronal Fan Loops Using Multiple SDO-AIA Channels and Surfing Transform Technique

    NASA Technical Reports Server (NTRS)

    Uritskiy, Vadim M.; Davila, Joseph M.; Viall, Nicholeen M.; Ofman, Leon

    2013-01-01

    A set of co-aligned high resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling quantitative description of sub visual coronal motions with low signal-to-noise ratios of the order of 0.1. The technique operates with a set of one-dimensional surfing signals extracted from position-timeplots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency - velocity space which exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square root dependence predicted for the slow mode magneto-acoustic wave which seems to be the dominating wave mode in the studied loop structures. This result extends recent observations by Kiddie et al. (2012) to a more general class of fan loop systems not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.

  9. MAARSY multiple receiver phase calibration using radio sources

    NASA Astrophysics Data System (ADS)

    Chau, Jorge L.; Renkwitz, Toralf; Stober, Gunter; Latteck, Ralph

    2014-10-01

    The Middle Atmosphere Alomar Radar System (MAARSY) on the Norwegian island of Andya is a 53.5 MHz monostatic radar with an active phased array antenna. The total array consists of 433 3-element linearly polarized Yagi antennas and can be configured to receive with multiple antenna sections (currently up to 16 complex receiving channels). In order to exploit its multiple-receiver capability for improving the space-time ambiguities of atmospheric/ionospheric targets, the phase difference between receiving channels has to be measured with good precision. Such phases are intrinsic to the system and are due to different cable lengths, pointing positions, filters, attenuators, amplifiers, antenna impedances, etc. In this work, we have operated MAARSY in a radio passive mode to observe the strong radio signals of Cassiopeia A and Cygnus A sources and calibrate the receiving system. By using the so-called fringe-stopping method, we have been able to calibrate the 16 complex channels, including the smaller antenna module that can be used, i.e., an Hexagon consisting of 7 Yagi antennas. The measured phases have been obtained with a mean standard deviation of ?5. We have tested the validity of such phases using meteor-head echoes with different configurations and pointing directions. Given that the procedure is easy to implement, it should be used in a routine manner either to corroborate the stability of the system or to measure new phases after upgrades or repairs.

  10. A compact, low cost, 7 channel polychromator for Thomson scattering measurements

    SciTech Connect

    Carlstrom, T.N.; DeBoo, J.C.; Evanko, R.; Greenfield, C.M.; Hsieh, C.-L.; Snider, R.T.; Trost, P.

    1990-10-01

    A seven channel polychromator, utilizing high performance interference filters, has been tested for use in the multi-Nd:YAG laser Thomson scattering system for the DIII-D tokamak. Unique features of this polychromator are the combination of high throughput, easy alignment, flexibility, compact size, and low cost when compared with other alternatives. Light is introduced to the polychromator (f/1.75) via a fiber optic bundle which permits the use of small (3.0 cm dia) optics and leads to a compact design, an important design consideration for multiple polychromator systems. The light is cascaded through a series of different bandpass interference filters and relay lenses which are mounted on two precision parallel rails in such a way that alignment is trivial. The relay lenses are positioned directly in front of the filters so that light reflected from the filter passes through the lens twice. This leads to an efficient, compact design and reduces the angle of incidence (4{degree}) and the cone angle of light (4.5{degree}) seen by the filter, an important factor for narrowband (3.0 nm) filters. The transmission was optimized for 700--1100 nm by using broadband coatings throughout. The output images of each channel (2.3 mm dia) can be directly coupled to large format (3 nm dia) RCA silicon avalanche photodiode detectors, avoiding the losses caused by fiber optic coupling.

  11. Spectral filtering optimization of a measuring channel of an x-ray broadband spectrometer

    NASA Astrophysics Data System (ADS)

    Emprin, B.; Troussel, Ph.; Villette, B.; Delmotte, F.

    2013-05-01

    A new channel of an X-ray broadband spectrometer has been developed for the 2 - 4 keV spectral range. It uses a spectral filtering by using a non-periodic multilayer mirror. This channel is composed by a filter, an aperiodic multilayer mirror and a detector. The design and realization of the optical coating mirror has been defined such as the reflectivity is above 8% in almost the entire bandwidth range 2 - 4 keV and lower than 2% outside. The mirror is optimized for working at 1.9° grazing incidence. The mirror is coated with a stack of 115 chromium / scandium (Cr / Sc) non-periodic layers, between 0.6 nm and 7.3 nm and a 3 nm thick top SiO2 layer to protect the stack from oxidization. To control thin thicknesses, we produced specific multilayer mirrors which consist on a superposition of two periodic Cr / Sc multilayers with the layer to calibrate in between. The mirror and subnanometric layers characterizations were made at the "Laboratoire Charles Fabry" (LCF) with a grazing incidence reflectometer working at 8.048 keV (Cu Kα radiation) and at the synchrotron radiation facility SOLEIL on the hard X-ray branch of the "Metrology" beamline. The reflectivity of the mirrors as a function of the photon energy was obtained in the Physikalisch Technische Bundesanstalt (PTB) laboratory at the synchrotron radiation facility Bessy II.

  12. The Radio JOVE Project - Shoestring Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  13. Advanced approaches to modeling and analysis of radio imaging data

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory; Nita, Gelu; Gary, Dale

    High-resolution imaging radio observations have an amazingly strong, but yet largely unexploited, potential for probing solar corona and chromosphere. The rich variety of radio emission processes offers multiple ways of detecting and tracking electron beams, studying chromospheric and coronal thermal structure, plasma processes, particle acceleration and transport, and measuring magnetic fields. Currently existing, real radio instruments have various kinds of imperfections that severely limit their diagnostics ability. Examples of the imperfections include a small number of spectral channels (low frequency resolution) or low (and frequency-dependent) spatial resolution. These and other issues call the practicality of the precise imaging diagnostics into question. To clarify this question the performance of a given radio instrument for quantitative diagnostics has to be properly evaluated, which can be done via realistic 3D modeling. This report presents advanced modeling and forward fitting tools, which are based on realistic (extrapolated) 3D magnetic structure and powerful, recently developed fast gyrosynchrotron and gyroresonant computing codes. We are going to demonstrate creation of a 3D model in real time and compute different emissions from this modelradio, EUV, and X-ray. Then, we show how this ideal imaging data will look when folded with a point spread function of a given radio interferometer (Expanded Owens Valley Solar Array, EOVSA, to give a specific example), and finally apply pixel-by-pixel forward fitting to give a quantitative assessment of the EOVSA ability to derive the magnetic field, fast electron, and thermal plasma data from the imaging spectropolarimetry measurements. To conclude, we also present the diagnostics derived from the use of real OVSA/EOVSA imaging spectroscopy data and discuss the microwave diagnostics perspectives in a broader context of modern solar physics.

  14. Antennas in Radio Telescope Systems

    NASA Astrophysics Data System (ADS)

    Ellingson, S. W.

    2015-03-01

    Radio astronomy is the study of the universe by measurement of radio frequency emission at frequencies ranging from a few MHz to the far infrared. Signals of interest are typically extraordinarily weak, necessitating large effective aperture and resulting in some of the world's largest antenna systems. Technologies now commonly employed include reflector antennas ("dishes") using horn-type feeds or feed arrays, beamforming arrays consisting of elements ranging from dipoles to large dishes, and interferometry. Many problems in radio astronomy also require very fine angular resolution, leading to aperture synthesis imaging instruments consisting of antennas distributed over apertures ranging from hundreds of meters to intercontinental distances. This chapter provides a brief review of antenna systems used in operational modern radio telescopes and in anticipated new radio telescopes.

  15. Planetary radio astronomy from Voyager

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.

    1983-01-01

    The technique of radio astronomy makes it possible for a remote observer to detect the presence of magnetic fields and plasmas in planetary environments. Prior to the flights of the Voyager spacecraft, radio astronomical studies of Jupiter from earth and from earth orbit had correctly predicted the strength and orientation of Jupiter's magnetic field and trapped radiation belts. The Voyager Planetary Radio Astronomy investigations have now provided measurements of the complete spectrum of low frequency radio emissions from both planets. Each Voyager instrument consists of a pair of orthogonal, 10-m, electric monopole antennas which are connected to a step-tuned, superheterodyne receiver operating over the frequency range from 1.2 kHz to 40.5 MHz. The Voyager trajectory provided observations from above both the sunlit and nightside hemispheres of Jupiter. Saturn's nonthermal radio emission has been observed at frequencies as low as 3 kHz and as high as 1.2 MHz.

  16. Space Telecommunications Radio System STRS Cognitive Radio

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  17. Fast ion energy distribution from third harmonic radio frequency heating measured with a single crystal diamond detector at the Joint European Torus.

    PubMed

    Nocente, M; Cazzaniga, C; Tardocchi, M; Binda, F; Eriksson, J; Giacomelli, L; Muraro, A; Rebai, M; Sharapov, S; Gorini, G

    2015-10-01

    Neutron spectroscopy measurements with a single crystal diamond detector have been carried out at JET, for the first time in an experiment aimed at accelerating deuterons to MeV energies with radio frequency heating at the third harmonic. Data are interpreted by means of the expected response function of the detector and are used to extract parameters of the highly non-Maxwellian distribution function generated in this scenario. A comparison with observations using a time of flight and liquid scintillator neutron spectrometers is also presented. The results demonstrate the capability of diamond detectors to contribute to fast ion physics studies at JET and are of more general relevance in view of the application of such detectors for spectroscopy measurements in the neutron camera of next step tokamak devices. PMID:26520949

  18. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    SciTech Connect

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-07-15

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  19. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    NASA Astrophysics Data System (ADS)</