Science.gov

Sample records for radio frequency applications

  1. Radio-Frequency Electronics, Circuits and Applications

    NASA Astrophysics Data System (ADS)

    Hagen, Jon B.

    This accessible and comprehensive book provides an introduction to the basic concepts and key circuits of radio frequency systems, covering fundamental principles which apply to all radio devices, from wireless data transceivers on semiconductor chips to high-power broadcast transmitters. Topics covered include filters, amplifiers, oscillators, modulators, low-noise amplifiers, phase-locked loops, and transformers. Applications of radio frequency systems are described in such areas as communications, radio and television broadcasting, radar, and radio astronomy. The book contains many exercises, and assumes only a knowledge of elementary electronics and circuit analysis. It will be an ideal textbook for advanced undergraduate and graduate courses in electrical engineering, as well as an invaluable reference for researchers and professional engineers in this area, or for those moving into the field of wireless communications.

  2. Radio frequency identification applications in hospital environments.

    PubMed

    Wicks, Angela M; Visich, John K; Li, Suhong

    2006-01-01

    Radio frequency identification (RFID) technology has recently begun to receive increased interest from practitioners and academicians. This interest is driven by mandates from major retailers such as Wal-Mart, Target and Metro Group, and the United States Department of Defense, in order to increase the efficiency and visibility of material and information flows in the supply chain. However, supply chain managers do not have a monopoly on the deployment of RFID. In this article, the authors discuss the potential benefits, the areas of applications, the implementation challenges, and the corresponding strategies of RFID in hospital environments. PMID:16913301

  3. Radio Frequency Plasma Applications for Space Propulsion

    SciTech Connect

    Baity, F.W., Jr.; Barber, G.C.; Carter, M.D.; Chang-Diaz, F.R.; Goulding, R.H.; Ilin, A.V.; Jaeger, E.F.; Sparks, D.O.; Squire, J.P.

    1999-09-13

    Recent developments in solid-state radio frequency (RF) power technologies allow for the practical consideration of RF heated plasmas for space propulsion. These technologies permit the use of any electrical power source, de-couple the power and propellant sources, and allow for the effcient use of both the propellant mass and power. Effcient use of the propellant is obtained by expelling the rocket exhaust at the highest possible velocity, which can be orders of magnitude higher than those achieved in chemical rockets. Handling the hot plasma exhaust requires the use of magnetic nozzles, and the basic physics of ion detachment from the magnetic eld is discussed. The plasma can be generated by RF using helicon waves to heat electrons. Further direct heating of the ions helps to reduce the line radiation losses, and the magnetic geometry is tailored to allow ion cyclotron resonance heating. RF eld and ion trajectory calculations are presented to give a reasonably self-consistent picture of the ion acceleration process.

  4. Applications of Radio Frequency Identification (RFID) in Mining Industries

    NASA Astrophysics Data System (ADS)

    Khairul Nizam Mahmad, Mohd; Z, Mohd Remy Rozainy M. A.; Baharun, Norlia

    2016-06-01

    RFID technology has recently become a dream of many companies or organizations because of its strategic potential in transforming mining operations. Now is the perfect time, for RFID technology arise as the next revolution in mining industries. This paper will review regarding the application of RFID in mining industries and access knowledge regarding RFID technology and overseen the opportunity of this technology to become an importance element in mining industries. The application of Radio-Frequency Identification (RFID) in mining industries includes to control of Personal Protective Equipment (PPE), control of personnel to access mining sites and RFID solutions for tracking explosives.

  5. Experimental radio frequency link for Ka-band communications applications

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene; Conray, Martin J.; Saunders, Alan L.; Pope, Dale E.

    1988-01-01

    An experimental radio frequency link has been demonstrated to provide two-way communication between a remote user ground terminal and a ground-based Ka-band transponder. Bit-error-rate performance and radio frequency characteristics of the communication link were investigated.

  6. Radio frequency detection assembly and method for detecting radio frequencies

    SciTech Connect

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  7. Microwave Sintering of Silver Nanoink for Radio Frequency Applications.

    PubMed

    Kim, Kwang-Seok; Park, Bum-Geun; Jung, Kwang-Ho; Kim, Jong-Woong; Jeong, Myung Yung; Jung, Seung-Boo

    2015-03-01

    Microwave sintering is a promising method for low-temperature processes, as it provides advantages such as uniform, fast, and volumetric heating. In this study, we investigated the electrical characteristics of inkjet-printed silver (Ag) circuits sintered by microwaves. The microstructural evolutions of inkjet-printed Ag circuits sintered at various temperatures for different durations were observed with a field emission scanning electron microscope. The electrical properties of the inkjet-printed Ag circuits were analysed by electrical resistivity measurements and radio frequency properties including scattering-parameters in the frequency range of 20 MHz to 20 GHz. The experimental results show that the signal losses of the Ag circuits sintered by microwave heating were lower than those sintered by conventional heating as microwave heating led to granular films which were nearly fully sintered without pores on the surfaces. When the inkjet-printed Ag circuits were sintered by microwaves at 300 °C for 4 min, their electrical resistivity was 5.1 µΩ cm, which is 3.2 times larger than that of bulk Ag. Furthermore, microwave sintering at 150 °C for 4 min achieved much lower signal losses (1.1 dB at 20 GHz) than conventional sintering under the same conditions. PMID:26413662

  8. Nanoionics-Based Switches for Radio-Frequency Applications

    NASA Technical Reports Server (NTRS)

    Nessel, James; Lee, Richard

    2010-01-01

    Nanoionics-based devices have shown promise as alternatives to microelectromechanical systems (MEMS) and semiconductor diode devices for switching radio-frequency (RF) signals in diverse systems. Examples of systems that utilize RF switches include phase shifters for electronically steerable phased-array antennas, multiplexers, cellular telephones and other radio transceivers, and other portable electronic devices. Semiconductor diode switches can operate at low potentials (about 1 to 3 V) and high speeds (switching times of the order of nanoseconds) but are characterized by significant insertion loss, high DC power consumption, low isolation, and generation of third-order harmonics and intermodulation distortion (IMD). MEMS-based switches feature low insertion loss (of the order of 0.2 dB), low DC power consumption (picowatts), high isolation (>30 dB), and low IMD, but contain moving parts, are not highly reliable, and must be operated at high actuation potentials (20 to 60 V) generated and applied by use of complex circuitry. In addition, fabrication of MEMS is complex, involving many processing steps. Nanoionics-based switches offer the superior RF performance and low power consumption of MEMS switches, without need for the high potentials and complex circuitry necessary for operation of MEMS switches. At the same time, nanoionics-based switches offer the high switching speed of semiconductor devices. Also, like semiconductor devices, nanoionics-based switches can be fabricated relatively inexpensively by use of conventional integrated-circuit fabrication techniques. More over, nanoionics-based switches have simple planar structures that can easily be integrated into RF power-distribution circuits.

  9. Rapid prototyping for radio-frequency geolocation applications

    SciTech Connect

    Briles, S. C.; Arrowood, J. L.; Braun, T. R.; Turcotte, D.; Fiset, E.

    2004-01-01

    Previous space-to-ground, single-platform geolocation experiments exploiting time-difference-of arrival (TDOA) via interferometry were successful at separating and quantitatively characterizing interfering radio frequency (RF) signals from expected RF transmissions. Much of the success of these experiments rested on the use of embedded processors to perform the required signal processing. The experiments handled data in a 'snapshot' fashion: digitized data was collected, the data was processed via a digital signal processing (DSP) microprocessor to yield differential phase measurements, and these measurements were transmitted to the Earth for geolocation processing. With the utilization of FPGAs (field programmable gate arrays) for the intensive number-crunching algorithms, the processing of streaming real-time data is feasible for bandwidths on the order of 20 MHz. By partitioning the signal processing algorithm so there is a significant reduction in the data rate as data flows through the FPGA, a DSP microprocessor can now be employed to perform further decision-oriented processing on the FPGA output. This hybrid architecture, employing both FPGAs and DSPs, typically requires an expensive and lengthy development cycle. However, the use of graphical development environments with auto-code generation and hardware-in-the-loop testing can result in rapid prototyping for geolocation experiments, which enables adaptation to emerging signals of interest in a cost and time effective manner.

  10. The Frequency Spectrum Radio.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1979-01-01

    This journal issue focuses on the frequency spectrum used in radio communication and on the World Administrative Radio Conference, sponsored by the International Telecommunication Union, held in Geneva, Switzerland, in the fall of 1979. Articles describe the World Administrative Radio Conference as the most important radio communication conference…

  11. Radio Frequency Mapping using an Autonomous Robot: Application to the 2.4 GHz Band

    NASA Astrophysics Data System (ADS)

    Lebreton, J. M.; Murad, N. M.; Lorion, R.

    2016-03-01

    Radio signal strength measurement systems are essential to build a Radio Frequency (RF) mapping in indoor and outdoor environments for different application scenarios. This paper presents an autonomous robot making the construction of a radio signal mapping, by collecting and forwarding different useful information related to all access point devices and inherent to the robot towards the base station. A real case scenario is considered by measuring the RF field from our department network. The RF signal mapping consistency is shown by fitting the measurements with the radio signal strength model in two-dimensional area, and a path-loss exponent of 2.3 is estimated for the open corridor environment.

  12. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  13. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1984-12-25

    Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.

  14. Development, diagnostic and applications of radio-frequency plasma reactor

    NASA Astrophysics Data System (ADS)

    Puac, N.

    2008-07-01

    In many areas of the industry, plasma processing of materials is a vital technology. Nonequilibrium plasmas proved to be able to produce chemically reactive species at a low gas temperature while maintaining highly uniform reaction rates over relatively large areas (Makabe and Petrovic 2006). At the same time nonequilibrium plasmas provide means for good and precise control of the properties of active particles that determine the surface modification. Plasma needle is one of the atmospheric pressure sources that can be used for treatment of the living matter which is highly sensitive when it comes to low pressure or high temperatures (above 40 C). Dependent on plasma conditions, several refined cell responses are induced in mammalian cells (Sladek et al. 2005). It appears that plasma treatment may find many biomedical applications. However, there are few data in the literature about plasma effects on plant cells and tissues. So far, only the effect of low pressure plasmas on seeds was investigated. It was shown that short duration pretreatments by non equilibrium low temperature air plasma were stimulative in light induced germination of Paulownia tomentosa seeds (Puac et al. 2005). As membranes of plants have different properties to those of animals and as they show a wide range of properties we have tried to survey some of the effects of typical plasma which is envisaged to be used in biotechnological applications on plant cells. In this paper we will make a comparison between two configurations of plasma needle that we have used in treatment of biological samples (Puac et al. 2006). Difference between these two configurations is in the additional copper ring that we have placed around glass tube at the tip of the needle. We will show some of the electrical characteristics of the plasma needle (with and without additional copper ring) and, also, plasma emission intensity obtained by using fast ICCD camera.

  15. Radio frequency heating of foods: principles, applications and related properties--a review.

    PubMed

    Piyasena, Punidadas; Dussault, Chantal; Koutchma, Tatiana; Ramaswamy, H S; Awuah, G B

    2003-01-01

    Radio frequency (RF) heating is a promising technology for food applications because of the associated rapid and uniform heat distribution, large penetration depth and lower energy consumption. Radio frequency heating has been successfully applied for drying, baking and thawing of frozen meat and in meat processing. However, its use in continuous pasteurization and sterilization of foods is rather limited. During RF heating, heat is generated within the product due to molecular friction resulting from oscillating molecules and ions caused by the applied alternating electric field. RF heating is influenced principally by the dielectric properties of the product when other conditions are kept constant. This review deals with the current status of RF heating applications in food processing, as well as product and system specific factors that influence the RF heating. It is evident that frequency level, temperature and properties of food, such as viscosity, water content and chemical composition affect the dielectric properties and thus the RF heating of foods. Therefore, these parameters should be taken into account when designing a radio frequency heating system for foods. PMID:14669879

  16. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    SciTech Connect

    Dhakal, Pashupati Ciovati, Gianluigi Myneni, Ganapati R.

    2015-12-04

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications.

  17. Comb-based radio frequency photonic filtering: Principles, applications and opportunities

    NASA Astrophysics Data System (ADS)

    Wu, Rui

    Photonic technologies have received tremendous attention for enhancement of radio-frequency (RF) systems, including control of phased arrays, analog-to-digital conversion, high-frequency analog signal transmission, and RF signal processing. Among the various applications, implementation of tunable electrical filters over broad RF bandwidths has been much discussed. However, realization of programmable filters with highly selective filter lineshapes, fast RF bandwidth reconfiguration and rapid passband frequency tunability has faced significant challenges. Phase modulated continuous-wave laser frequency combs have seen wide use in various applications such as wavelength division multiplexing networks, optical arbitrary waveform generation, and agile arbitrary millimeter wave generation. Using an optical frequency comb as a multiple carrier optical source offers new potential for achieving complex and tunable RF photonic filters. In this dissertation, I discuss about the generation and application of high-repetition-rate (10 GHz) electro-optic modulated optical frequency combs for our breakthroughs in implementing programmable RF photonic filters with highly selective filter lineshapes (>60 dB mainlobe-to-sidelobe suppression ratio), fast RF bandwidth reconfiguration (˜20 ns reconfiguration speed) and rapid RF passband frequency tunability (˜40 ns tuning speed).

  18. High resolution interrogation system for fiber Bragg grating (FBG) sensor application using radio frequency spectrum analyser

    NASA Astrophysics Data System (ADS)

    Muhammad, F. D.; Zulkifli, M. Z.; Harun, S. W.; Ahmad, H.

    2013-05-01

    In this paper, we propose a fiber Bragg grating (FBG) interrogation system for high resolution sensor application based on radio frequency (RF) generation technique by beating a single longitudinal mode (SLM) fiber ring laser with an external tunable laser source (TLS). The external TLS provides a constant wavelength (CW), functioning as the reference signal for the frequency beating technique. The TLS used has a constant output power and wavelength over time. The sensor signal is provided by the reflected wavelength of a typical fiber Bragg grating (FBG) in the SLM fiber ring laser, which consists of a 1 m long highly doped Erbium doped fiber as the gain medium. The key to ensure the SLM laser oscillation is the role of graphene as saturable absorber which is opposed to the commonly used unpumped erbiumdoped fiber and this consequently contributes to the simple and short cavity design of our proposed system. The signal from the SLM fiber ring laser, which is generated by the FBG in response to external changes, such as temperature, strain, air humidity and air movement, is heterodyned with the CW signal from the TLS at a 6 GHz photodetector using a 3-dB fused coupler to generate the frequency beating. This proposed system is experimentally demonstrated as a temperature sensor and the results shows that the frequency response of the system towards the changes in temperature is about 1.3 GHz/°C, taking into account the resolution bandwidth of 3 MHz of the radio frequency spectrum analyzer (RFSA).

  19. Micro-miniature radio frequency transmitter for communication and tracking applications

    SciTech Connect

    Crutcher, R.I.; Emery, M.S.; Falter, K.G.; Nowlin, C.H.; Rochelle, J.M.; Clonts, L.G.

    1996-12-31

    A micro-miniature radio frequency (rf) transmitter has been developed and demonstrated by the Oak Ridge National Laboratory. The objective of the rf transmitter development was to maximize the transmission distance while drastically shrinking the overall transmitter size, including antenna. Based on analysis and testing, an application-specific integrated circuit (ASIC) with a 16-GHz gallium arsenide (GaAs) oscillator and integrated on-chip antenna was designed and fabricated using microwave monolithic integrated circuit (MMIC) technology. Details of the development and the results of various field tests will be discussed. The rf transmitter is applicable to covert surveillance and tracking scenarios due to its small size of 2.2 x 2.2 mm, including the antenna. Additionally, the 16-GHz frequency is well above the operational range of consumer-grade radio scanners, providing a degree of protection from unauthorized interception. Variations of the transmitter design have been demonstrated for tracking and tagging beacons, transmission of digital data, and transmission of real-time analog video from a surveillance camera. Preliminary laboratory measurements indicate adaptability to direct-sequence spread-spectrum transmission, providing a low probability of intercept and/or detection. Concepts related to law enforcement applications will be presented.

  20. RADIO FREQUENCY ATTENUATOR

    DOEpatents

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  1. Electric field and radio frequency measurements for rocket engine health monitoring applications

    NASA Astrophysics Data System (ADS)

    Valenti, Elizabeth L.

    1992-10-01

    Electric-field (EF) and radio-frequency (RF) emissions generated in the exhaust plumes of the diagnostic testbed facility thruster (DTFT) and the SSME are examined briefly for potential applications to plume diagnostics and engine health monitoring. Hypothetically, anomalous engine conditions could produce measurable changes in any characteristic EF and RF spectral signatures identifiable with a 'healthly' plumes. Tests to determine the presence of EF and RF emissions in the DTFT and SSME exhaust plumes were conducted. EF and RF emissions were detected using state-of-the-art sensors. Analysis of limited data sets show some apparent consistencies in spectral signatures. Significant emissions increases were detected during controlled tests using dopants injected into the DTFT.

  2. Investigations and Applications of Field- and Photo-emitted Electron Beams from a Radio Frequency Gun

    SciTech Connect

    Panuganti, SriHarsha

    2015-08-01

    Production of quality electron bunches using e cient ways of generation is a crucial aspect of accelerator technology. Radio frequency electron guns are widely used to generate and rapidly accelerate electron beams to relativistic energies. In the current work, we primarily study the charge generation processes of photoemission and eld emission inside an RF gun installed at Fermilab's High Brightness Electron Source Laboratory (HBESL). Speci cally, we study and characterize second-order nonlinear photoemission from a Cesium Telluride (Cs2Te) semiconductor photocathode, and eld emission from carbon based cathodes including diamond eld emission array (DFEA) and carbon nanotube (CNT) cathodes located in the RF gun's cavity. Finally, we discuss the application experiments conducted at the facility to produce soft x-rays via inverse Compton scattering (ICS), and to generate uniformly lled ellipsoidal bunches and temporally shaped electron beams from the Cs2Te photocathode.

  3. Investigations and applications of field- and photo-emitted electron beams from a radio frequency gun

    NASA Astrophysics Data System (ADS)

    Panuganti, Sriharsha

    Production of quality electron bunches using efficient ways of generation is a crucial aspect of accelerator technology. Radio frequency electron guns are widely used to generate and rapidly accelerate electron beams to relativistic energies. In the current work, we primarily study the charge generation processes of photoemission and field emission inside an RF gun installed at Fermilab's High Brightness Electron Source Laboratory (HBESL). Specifically, we study and characterize second-order nonlinear photoemission from a Cesium Telluride (Cs2Te) semiconductor photocathode, and field emission from carbon based cathodes including diamond field emission array (DFEA) and carbon nanotube (CNT) cathodes located in the RF gun's cavity. Finally, we discuss the application experiments conducted at the facility to produce soft x-rays via inverse Compton scattering (ICS), and to generate uniformly filled ellipsoidal bunches and temporally-shaped electron beams from the Cs 2Te photocathode.

  4. Electric field and radio frequency measurements for rocket engine health monitoring applications

    NASA Technical Reports Server (NTRS)

    Valenti, Elizabeth L.

    1992-01-01

    Electric-field (EF) and radio-frequency (RF) emissions generated in the exhaust plumes of the diagnostic testbed facility thruster (DTFT) and the SSME are examined briefly for potential applications to plume diagnostics and engine health monitoring. Hypothetically, anomalous engine conditions could produce measurable changes in any characteristic EF and RF spectral signatures identifiable with a 'healthly' plumes. Tests to determine the presence of EF and RF emissions in the DTFT and SSME exhaust plumes were conducted. EF and RF emissions were detected using state-of-the-art sensors. Analysis of limited data sets show some apparent consistencies in spectral signatures. Significant emissions increases were detected during controlled tests using dopants injected into the DTFT.

  5. Large-signal model of the bilayer graphene field-effect transistor targeting radio-frequency applications: Theory versus experiment

    NASA Astrophysics Data System (ADS)

    Pasadas, Francisco; Jiménez, David

    2015-12-01

    Bilayer graphene is a promising material for radio-frequency transistors because its energy gap might result in a better current saturation than the monolayer graphene. Because the great deal of interest in this technology, especially for flexible radio-frequency applications, gaining control of it requires the formulation of appropriate models for the drain current, charge, and capacitance. In this work, we have developed them for a dual-gated bilayer graphene field-effect transistor. A drift-diffusion mechanism for the carrier transport has been considered coupled with an appropriate field-effect model taking into account the electronic properties of the bilayer graphene. Extrinsic resistances have been included considering the formation of a Schottky barrier at the metal-bilayer graphene interface. The proposed model has been benchmarked against experimental prototype transistors, discussing the main figures of merit targeting radio-frequency applications.

  6. Large-signal model of the bilayer graphene field-effect transistor targeting radio-frequency applications: Theory versus experiment

    SciTech Connect

    Pasadas, Francisco Jiménez, David

    2015-12-28

    Bilayer graphene is a promising material for radio-frequency transistors because its energy gap might result in a better current saturation than the monolayer graphene. Because the great deal of interest in this technology, especially for flexible radio-frequency applications, gaining control of it requires the formulation of appropriate models for the drain current, charge, and capacitance. In this work, we have developed them for a dual-gated bilayer graphene field-effect transistor. A drift-diffusion mechanism for the carrier transport has been considered coupled with an appropriate field-effect model taking into account the electronic properties of the bilayer graphene. Extrinsic resistances have been included considering the formation of a Schottky barrier at the metal-bilayer graphene interface. The proposed model has been benchmarked against experimental prototype transistors, discussing the main figures of merit targeting radio-frequency applications.

  7. Radio frequency coaxial feedthrough

    DOEpatents

    Owens, Thomas L.

    1989-01-17

    An improved radio frequency coaxial transmission line vacuum feed-through provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflections from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits voltage and power handling capabilities of a feedthrough.

  8. Stabilized radio-frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1982-09-29

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  9. New optical and radio frequency angular tropospheric refraction models for deep space applications

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Rockwell, S. T.

    1976-01-01

    The development of angular tropospheric refraction models for optical and radio frequency usage is presented. The models are compact analytic functions, finite over the entire domain of elevation angle, and accurate over large ranges of pressure, temperature, and relative humidity. Additionally, FORTRAN subroutines for each of the models are included.

  10. RAPID COMMUNICATION: On the applicability of Sato's equation to capacitative radio frequency sheaths

    NASA Astrophysics Data System (ADS)

    Balakrishnan, J.; Nagabhushana, G. R.

    2000-12-01

    We show that the time-dependent version of Sato's equation, when applied to capacitative radio frequency sheaths, is no longer independent of the electric field of the space charge, and we discuss the use of the equation for a specific sheath model.

  11. Radio Frequency Plasma Synthesis of Boron Nitride Nanotubes (BNNTs) for Structural Applications: Part I

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Alexa, Joel A.; Jensen, Brian J.; Thomsen, Donald L.

    2016-01-01

    It is evident that nanotubes, such as carbon, boron nitride and even silicon, offer great potential for many aerospace applications. The opportunity exists to harness the extremely high strength and stiffness exhibited by high-purity, low-defect nanotubes in structural materials. Even though the technology associated with carbon nanotube (CNT) development is mature, the mechanical property benefits have yet to be fully realized. Boron nitride nanotubes (BNNTs) offer similar structural benefits, but exhibit superior chemical and thermal stability. A broader range of potential structural applications results, particularly as reinforcing agents for metal- and ceramic- based composites. However, synthesis of BNNTs is more challenging than CNTs mainly because of the higher processing temperatures required, and mass production techniques have yet to emerge. A promising technique is radio frequency plasma spray (RFPS), which is an inductively coupled, very high temperature process. The lack of electrodes and the self- contained, inert gas environment lend themselves to an ultraclean product. It is the aim of this White Paper to survey the state of the art with regard to nano-material production by analyzing the pros and cons of existing methods. The intention is to combine the best concepts and apply the NASA Langley Research Center (LaRC) RFPS facility to reliably synthesize large quantities of consistent, high-purity BNNTs.

  12. Realization of stable and homogenous carbon nanotubes dispersion as ink for radio frequency identification applications

    NASA Astrophysics Data System (ADS)

    Bougot, M. Nicolas; Dung Dang, Thi My; Ngan Le, Nguyen; Chien Dang, Mau

    2013-06-01

    The use of carbon nanotubes (CNTs) in radio frequency identification (RFID) applications offers a very large range of possibilities to exploit the incredible properties of CNTs. However, due to their entanglement state, their size and the different interacting forces between nanotubes bundles present at nanometric scale, CNTs debundling is very hard to achieve, requiring specific equipment and chemicals. Our purpose was to reduce as small as possible CNTs bundles, in order to realize ink to print on an RFID antenna. The size of the head printer nozzles required very small particles, about a few micrometers, in order to be able to print on the sensitive position of the antenna. To reduce the size of the bundles and stabilize the solution, an ultrasonic horn with an ultrasonic bath were combined as mechanical stress for CNT dispersion, and some chemicals such as sodium dodecyl sulfate (SDS)—a surfactant, N-methyl-2-pyrrolidone (NMP)—a solvent, or chitosan were used to meet our requirements.

  13. Long electrodes for radio frequency ablation: comparative study of surface versus intramural application.

    PubMed

    Berjano, Enrique J; Hornero, Fernando; Atienza, Felipe; Montero, Anastasio

    2003-12-01

    There is increasing use of radio frequency (RF) ablation with long electrodes in the intraoperative treatment of atrial fibrillation. Nevertheless, the disparity in the lesion geometry in both depth and width is the major pitfall in the use of RF currents. The objective of this study was to differentiate the shape and size of long lesions created by three surface application electrodes (SAE) and two intramural electrodes (IE). The SAE included a standard multi-polar catheter, and two standard electrosurgical pencils. The IE consisted of a needle and a wire both intramurally buried. The lesions were created on fresh fragments of porcine ventricular tissue. The IE created lesions with a curved prism-like shape around the electrode body, with homogeneous characteristics along the lesion trajectory. On the contrary, the lesions created with the SAE were in the shape of an hourglass. They showed a different geometry between the central zone and the edge zone (p<0.001 for depth and surface width). Electrical impedance evolution was recorded during the RF heating. We observed a slow decrease of the impedance in all the electrodes, except in the wire electrode. In conclusion, the results suggest that the IE might be a more suitable option than SAE when it is necessary to create long and homogeneous thermal lesions. PMID:14630474

  14. Applications for radio-frequency identification technology in the perioperative setting.

    PubMed

    Zhao, Tiyu; Zhang, Xiaoxiang; Zeng, Lili; Xia, Shuyan; Hinton, Antentor Othrell; Li, Xiuyun

    2014-06-01

    We implemented a two-year project to develop a security-gated management system for the perioperative setting using radio-frequency identification (RFID) technology to enhance the management efficiency of the OR. We installed RFID readers beside the entrances to the OR and changing areas to receive and process signals from the RFID tags that we sewed into surgical scrub attire and shoes. The system also required integrating automatic access control panels, computerized lockers, light-emitting diode (LED) information screens, wireless networks, and an information system. By doing this, we are able to control the flow of personnel and materials more effectively, reduce OR costs, optimize the registration and attire-changing process for personnel, and improve management efficiency. We also anticipate this system will improve patient safety by reducing the risk of surgical site infection. Application of security-gated management systems is an important and effective way to help ensure a clean, convenient, and safe management process to manage costs in the perioperative area and promote patient safety. PMID:24875211

  15. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications

    SciTech Connect

    Huang, Xianjun; Leng, Ting; Zhang, Xiao; Hu, Zhirun; Chen, Jia Cing; Chang, Kuo Hsin; Geim, Andre K.; Novoselov, Kostya S.

    2015-05-18

    In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna by low temperature processing of graphene ink. The required ultra-low resistance is achieved by rolling compression of binder-free graphene laminate. With compression, the conductivity of graphene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene laminate with conductivity of 4.3 × 10{sup 4 }S/m and sheet resistance of 3.8 Ω/sq (with thickness of 6 μm) is presented. Moreover, the formation of graphene laminate from graphene ink reported here is simple and can be carried out in low temperature (100 °C), significantly reducing the fabrication costs. A dipole antenna based on the highly conductive graphene laminate is further patterned and printed on a normal paper to investigate its RF properties. The performance of the graphene laminate antenna is experimentally measured. The measurement results reveal that graphene laminate antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns, making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sensor networks.

  16. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications

    NASA Astrophysics Data System (ADS)

    Huang, Xianjun; Leng, Ting; Zhang, Xiao; Chen, Jia Cing; Chang, Kuo Hsin; Geim, Andre K.; Novoselov, Kostya S.; Hu, Zhirun

    2015-05-01

    In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna by low temperature processing of graphene ink. The required ultra-low resistance is achieved by rolling compression of binder-free graphene laminate. With compression, the conductivity of graphene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene laminate with conductivity of 4.3 × 104 S/m and sheet resistance of 3.8 Ω/sq (with thickness of 6 μm) is presented. Moreover, the formation of graphene laminate from graphene ink reported here is simple and can be carried out in low temperature (100 °C), significantly reducing the fabrication costs. A dipole antenna based on the highly conductive graphene laminate is further patterned and printed on a normal paper to investigate its RF properties. The performance of the graphene laminate antenna is experimentally measured. The measurement results reveal that graphene laminate antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns, making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sensor networks.

  17. Lightning detection from Space Science and Applications Team review. [optical and radio frequency sensors

    NASA Technical Reports Server (NTRS)

    Few, A. A., Jr.

    1981-01-01

    The various needs for lightning data that exist among potential users of satellite lightning data were identified and systems were defined which utilize the optical and radio frequency radiations from lightning to serve as the satellite based lightning mapper. Three teams worked interactively with NASA to develop a system concept. An assessment of the results may be summarized as follows: (1) a small sensor system can be easily designed to operate on a geostationary satellite that can provide the bulk of the real time user requirements; (2) radio frequency systems in space may be feasible but would be much larger and more costly; RF technology for this problem lags the optical technology by years; and (3) a hybrid approach (optical in space and RF on the ground) would provide the most complete information but is probably unreasonably complex and costly at this time.

  18. Frequency Allocation; The Radio Spectrum.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The Federal Communications Commission (FCC) assigns segments of the radio spectrum to categories of users, and specific frequencies within each segment to individual users. Since demand for channel space exceeds supply, the process is complex. The radio spectrum can be compared to a long ruler: the portion from 10-540 kiloHertz has been set aside…

  19. Executive summary. [application of laser oriented and radio frequency techniques for space communication

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The scope of Technology Forecasting for Space Communications is very wide, covering virtually every technology that can directly or indirectly affect space communications. The assigned effort, however, was directed toward a series of studies which individually examined important aspects of space communications and which collectively was interrelated. The contributions of the individual tasks and their interrelationship are indicated. The total effort of the tasks was fairly evenly divided between laser oriented and radio frequency tasks. The investigations show that laser communications have a current state of the art which would allow operational systems to be implemented in the 1975 to 1980 time frame. Further, these systems, when operated over ranges in the order of synchronous ranges (42,000 km)and transmitting data rates of 10 to the 8th power 10 to the 9th power bits per second will have a smaller total weight impact on a spacecraft than do radio systems.

  20. Blazars at Low Radio Frequencies

    NASA Astrophysics Data System (ADS)

    Trüstedt, J.; Kadler, M.; Brüggen, M.; Falcke, H.; Heald, G.; McKean, J.; Mueller, C.; Ros, E.; Schulz, R.; Wilms, J.

    We explore the low radio-frequency properties of the MOJAVE 1 blazar sample using the LOFAR Multi-Frequency Snapshot Sky Survey (MSSS). We find the characteristically flat blazar spectrum to extend down to the LOFAR bands, demonstrating that the emission at these low radio frequencies is still dominated by relativistically beamed emission. As most sources remain unresolved at the MSSS angular resolution, we are reimaging these data using LOFAR baselines beyond the standard MSSS uv-range resulting in an angular resolution of ~24 arcsec. We present first LOFAR images of MOJAVE sources from this project.

  1. A class of circular waveguiding structures containing cylindrically anisotropic metamaterials: Applications from radio frequency/microwave to optical frequencies

    NASA Astrophysics Data System (ADS)

    Pollock, Justin G.; Iyer, Ashwin K.; Pratap, Dheeraj; Anantha Ramakrishna, S.

    2016-02-01

    This paper investigates a class of circular waveguiding structures containing anisotropic metamaterials and explores their potential benefits in applications from RF to optical frequencies. The introduction of anisotropy in these waveguides is shown to provide substantial control of the dispersion and field distributions of several supported modes. For exotic material parameters such as permittivity and permeability that are typically associated with metamaterials, intriguing propagation phenomena such as backward-wave behavior, frequency-reduced modes, monomodal propagation, and field confinement are observed and provide enabling functionalities for a wide range of RF/microwave and optical applications.

  2. Laser polishing of niobium for superconducting radio-frequency accelerator applications

    SciTech Connect

    Zhao, Liang; Klopf, John M.; Reece, Charles E.; Kelley, Michael J.

    2014-08-01

    Interior surfaces of niobium cavities used in superconducting radio frequency accelerators are now obtained by buffered chemical polish and/or electropolish. Laser polishing is a potential alternative, having advantages of speed, freedom from noxious chemistry and availability of in-process inspection. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damage. Computational modeling was used to estimate the surface temperature and gain insight into the mechanism of laser polishing. Power spectral density analysis of surface topography measurements shows that laser polishing can produce smooth topography similar to that obtained by electropolish. This is a necessary first step toward introducing laser polishing as an alternative to the currently practiced chemical polishing.

  3. Laser polishing of niobium for application to superconducting radio frequency cavities

    SciTech Connect

    Singaravelu, Senthil; Klopf, John Michael; Xu, Chen; Krafft, Geoffrey; Kelley, Michael J.

    2012-09-01

    Superconducting radio frequency niobium cavities are at the heart of an increasing number of particle accelerators. Their performance is dominated by a several nanometer thick layer at the interior surface. Maximizing the smoothness of this surface is critical, and aggressive chemical treatments are now employed to this end. The authors describe laser-induced surface melting as an alternative 'greener' approach. Selection of laser parameters guided by modeling achieved melting that reduced the surface roughness from the fabrication process. The resulting topography was examined by scanning electron microscope and atomic force microscope (AFM). Plots of power spectral density computed from the AFM data give further insight into the effect of laser melting on the topography of the mechanically polished (only) niobium.

  4. Nanoporous Ti-metal film deposition using radio frequency magnetron sputtering technique for photovoltaic application.

    PubMed

    Sung, Youl-Moon; Paeng, Sung-Hwan; Moon, Byung-Ho; Kwak, Dong-Joo

    2012-02-01

    Nanoporous Ti-metal film electrode was fabricated by radio frequency (rf) magnetron sputtering technique on nanoporous TiO2 layer prepared by sol-gel combustion method and investigated with respect to its photo-anode properties of TCO-less DSCs. The porous Ti layer (approximately 1 microm) with low sheet resistance (approximately 17 Omega/sq.) can collect electrons from the TiO2 layer and allows the ionic diffusion of I(-)/I(3-) through the hole. The porous Ti layer with highly ordered columnar structure prepared by 8 mTorr sputtering shows the good impedance characteristics. The efficiency of prepared TCO-less DSCs sample is about 4.83% (ff: 0.6, Voc: 0.65 V, Jsc: 11.2 mA/cm2). PMID:22629960

  5. Qualification of niobium materials for superconducting radio frequency cavity applications: View of a condensed matter physicist

    SciTech Connect

    Roy, S. B.; Myneni, G. R.

    2015-12-04

    We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.

  6. Sharing Low Frequency Radio Emissions in the Virtual Observatory: Application for JUNO-Ground-Radio Observations Support.

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Savalle, R.; Zarka, P. M.; Anderson, M.; Andre, N.; Coffre, A.; Clarke, T.; Denis, L.; Ebert, R. W.; Erard, S.; Genot, V. N.; Girard, J. N.; Griessmeier, J. M.; Hess, S. L.; Higgins, C. A.; Hobara, Y.; Imai, K.; Imai, M.; Kasaba, Y.; Konovalenko, A. A.; Kumamoto, A.; Kurth, W. S.; Lamy, L.; Le Sidaner, P.; Misawa, H.; Nakajo, T.; Orton, G. S.; Ryabov, V. B.; Sky, J.; Thieman, J.; Tsuchiya, F.; Typinski, D.

    2015-12-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  7. Low Frequency Radio Experiment (LORE)

    NASA Astrophysics Data System (ADS)

    Manoharan, P. K.; Naidu, Arun; Joshi, B. C.; Roy, Jayashree; Kate, G.; Pethe, Kaiwalya; Galande, Shridhar; Jamadar, Sachin; Mahajan, S. P.; Patil, R. A.

    2016-03-01

    In this paper, we present a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii, i.e., at frequencies below 30 MHz. The LORE can be complimentary to the planned Indian solar mission, “Aditya-L1” and its other payloads as well as synergistic to ground-based interplanetary scintillation (IPS) observations, which are routinely carried out by the Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and its particular suitability for providing measurements on the detailed time and frequency structure of fast drifting type-III and slow drifting type-II radio bursts with unprecedented time and frequency resolutions. We also brief the gonio-polarimetry, which is possible with better-designed antennas and state-of-the-art electronics, employing FPGAs and an intelligent data management system. These would enable us to make a wide range of studies, such as nonlinear plasma processes in the Sun-Earth distance, in-situ radio emission from coronal mass ejections (CMEs), interplanetary CME driven shocks, nature of ICMEs driving decelerating IP shocks and space weather effects of solar wind interaction regions.

  8. Short channel effects in graphene-based field effect transistors targeting radio-frequency applications

    NASA Astrophysics Data System (ADS)

    Feijoo, Pedro C.; Jiménez, David; Cartoixà, Xavier

    2016-06-01

    Channel length scaling in graphene field effect transistors (GFETs) is key in the pursuit of higher performance in radio frequency electronics for both rigid and flexible substrates. Although two-dimensional (2D) materials provide a superior immunity to short channel effects (SCEs) than bulk materials, they could dominate in scaled GFETs. In this work, we have developed a model that calculates electron and hole transport along the graphene channel in a drift-diffusion basis, while considering the 2D electrostatics. Our model obtains the self-consistent solution of the 2D Poisson’s equation coupled to the current continuity equation, the latter embedding an appropriate model for drift velocity saturation. We have studied the role played by the electrostatics and the velocity saturation in GFETs with short channel lengths L. Severe scaling results in a high degradation of GFET output conductance. The extrinsic cutoff frequency follows a 1/{L}n scaling trend, where the index n fulfills n≤slant 2. The case n=2 corresponds to long-channel GFETs with low source/drain series resistance, that is, devices where the channel resistance is controlling the drain current. For high series resistance, n decreases down to n=1, and it degrades to values of n\\lt 1 because of the SCEs, especially at high drain bias. The model predicts high maximum oscillation frequencies above 1 THz for channel lengths below 100 nm, but, in order to obtain these frequencies, it is very important to minimize the gate series resistance. The model shows very good agreement with experimental current voltage curves obtained from short channel GFETs and also reproduces negative differential resistance, which is due to a reduction of diffusion current.

  9. Flying radio frequency undulator

    SciTech Connect

    Kuzikov, S. V.; Vikharev, A. A.; Savilov, A. V.

    2014-07-21

    A concept for the room-temperature rf undulator, designed to produce coherent X-ray radiation by means of a relatively low-energy electron beam and pulsed mm-wavelength radiation, is proposed. The “flying” undulator is a high-power short rf pulse co-propagating together with a relativistic electron bunch in a helically corrugated waveguide. The electrons wiggle in the rf field of the −1st spatial harmonic with the phase velocity directed in the opposite direction in respect to the bunch velocity, so that particles can irradiate high-frequency Compton's photons. A high group velocity (close to the speed of light) ensures long cooperative motion of the particles and the co-propagating rf pulse.

  10. Radio Frequency Interference and the National Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Smith, Sierra

    2014-01-01

    Radio frequency interference (RFI) and radio astronomy have been closely linked since the emergence of radio astronomy as a scientific discipline in the 1930s. Even before the official establishment of the National Radio Astronomy Observatory, protection against contemporary and future radio noise levels was seen as crucial to ensure success of any new observatory. My talk will examine the various local, regional, national, and international efforts enacted to protect NRAO and other American radio astronomy sites from RFI.

  11. SIDON: A simulator of radio-frequency networks. Application to WEST ICRF launchers

    NASA Astrophysics Data System (ADS)

    Helou, Walid; Dumortier, Pierre; Durodié, Frédéric; Goniche, Marc; Hillairet, Julien; Mollard, Patrick; Berger-By, Gilles; Bernard, Jean-Michel; Colas, Laurent; Lombard, Gilles; Maggiora, Riccardo; Magne, Roland; Milanesio, Daniele; Moreau, Didier

    2015-12-01

    SIDON (SImulator of raDiO-frequency Networks) is an in-house developed Radio-Frequency (RF) network solver that has been implemented to cross-validate the design of WEST ICRF launchers and simulate their impedance matching algorithm while considering all mutual couplings and asymmetries. In this paper, the authors illustrate the theory of SIDON as well as results of its calculations. The authors have built time-varying plasma scenarios (a sequence of launchers front-faces L-mode and H-mode Z-matrices), where at each time step (1 millisecond here), SIDON solves the RF network. At the same time, when activated, the impedance matching algorithm controls the matching elements (vacuum capacitors) and thus their corresponding S-matrices. Typically a 1-second pulse requires around 10 seconds of computational time on a desktop computer. These tasks can be hardly handled by commercial RF software. This innovative work allows identifying strategies for the launchers future operation while insuring the limitations on the currents, voltages and electric fields, matching and Load-Resilience, as well as the required straps voltage amplitude/phase balance. In this paper, a particular attention is paid to the simulation of the launchers behavior when arcs appear at several locations of their circuits using SIDON calculator. This latter work shall confirm or identify strategies for the arc detection using various RF electrical signals. One shall note that the use of such solvers in not limited to ICRF launchers simulations but can be employed, in principle, to any linear or linearized RF problem.

  12. Conductive Sphere in a Radio Frequency Field: Theory and Applications to Positioners, Heating, and Noncontact Measurements

    NASA Technical Reports Server (NTRS)

    Jackson, H. W.; Watkins, J. L.; Chung, S.; Wagner, P.

    1996-01-01

    An electrically conductive spherical sample located in an electromagnetic field excited by rf (radio frequency) current in a system of coaxial coils is treated theoretically. Maxwell's equations are solved exactly and all integrals in the formulas for the fields are evaluated analytically for the case where the sphere is on the axis and the coil system is modeled by a stack of filamentary circular loops. Formulas are also derived for electromagnetic force exerted on the sphere, excess impedance in the coil system due to the presence of the sphere, and power absorbed by the sphere. All integrals in those formulas have been evaluated analytically. Force measurements are presented and they are in excellent agreement with the new theory. A low-power electromagnetic levitator that is accurately described by the theory has been demonstrated and is discussed. Experimental measurements of excess impedance are presented and compared with theory, and those results are used to demonstrate an accurate noncontact method for determining electrical conductivity. Theoretical formulas for power absorption are evaluated numerically and their usefulness in both rf heating and in making noncontact measurements of a number of thermophysical properties of materials is discussed.

  13. Plasma discharge characteristics in compact SF6 radio-frequency plasma source for plasma etching application

    NASA Astrophysics Data System (ADS)

    Motomura, Taisei; Takahashi, Kazunori; Kasashima, Yuji; Uesugi, Fumihiko; Ando, Akira

    2015-09-01

    In order to create a compact plasma etching reactor, plasma discharge characteristics in compact SF6 radio-frequency (RF) plasma source which has a chamber diameter of 40 mm have been studied. Convergent magnetic field configuration produced by a solenoid coil and a permanent magnet located behind substrate is employed for efficient plasma transport downstream of plasma source. A discharge characteristics with the changes in relative emission intensity of fluorine atom of FI at 703.7 nm in compact SF6 plasma source are discussed: the dependence of relative emission intensity on the magnetic field strength, the RF input power, and the mass flow rate of the SF6 gas. The relative emission intensity was significantly increased when the RF input power is ~150 W. We present the fundamental etching performance (especially etching rate) of compact plasma source, and then the etching rate of 0.1-1.0 μm/min was obtained under the condition of a RF input power of 50-200 W, a mass flow rate of SF6 of 5.5 sccm and a bias RF power of 20 W. The results of test etching will be shown in presentation.

  14. Statistical properties of radio-frequency and envelope-detected signals with applications to medical ultrasound

    SciTech Connect

    Wagner, R.F.; Insana, M.F.; Brown, D.G.

    1987-05-01

    Both radio-frequency (rf) and envelope-detected signal anlayses have lead to successful tissue discrimination in medical ultrasound. The extrapolation from tissue discrimination to a description of the tissue structure requires an analysis of the statistics of complex signals. To that end, first- and second-order statistics of complex random signals are reviewed, and an example is taken from rf signal analysis of the backscattered echoes from diffuse scatterers. In this case the scattering form factor of small scatterers can be easily separated from long-range structure and corrected for the transducer characteristics, thereby yielding an instrument-independent tissue signature. The statistics of the more economical envelope- and square-law-detected signals are derived next and found to be almost identical when normalized autocorrelation functions are used. Of the two nonlinear methods of detection, the square-law or intensity scheme gives rise to statistics that are more transparent to physical insight. Moreover, an analysis of the intensity-correlation structure indicates that the contributions to the total echo signal from the diffuse scatter and from the steady and variable components of coherent scatter can still be separated and used for tissue characterization. However, this anlaysis is not system independent. Finally, the statistical methods of this paper may be applied directly to envelope signals in nuclear-magnetic-resonance imaging because of the approximate equivalence of second-order statistics for magnitude and intensity.

  15. Application of superconducting magnesium diboride (MGB2) in superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Tan, Teng

    The superconductivity in magnesium diboride (MgB2) was discovered in 2001. As a BCS superconductor, MgB2 has a record-high Tc of 39 K, high Jc of > 107 A/cm2 and no weak link behavior across the grain boundary. All these superior properties endorsed that MgB2 would have great potential in both power applications and electronic devices. In the past 15 years, MgB2 based power cables, microwave devices, and commercial MRI machines emerged and the next frontier are superconducting radio frequency (SRF) cavities. SRF cavities are one of the leading accelerator technologies. In SRF cavities, applied microwave power generates electrical fields that accelerate particle beams. Compared with other accelerator techniques, SRF cavity accelerators feature low loss, high acceleration gradients and the ability to accelerate continuous particle beams. However, current SRF cavities are made from high-purity bulk niobium and work at 2 K in superfluid helium. The construction and operational cost of SRF cavity accelerators are very expensive. The demand for SRF cavity accelerators has been growing rapidly in the past decade. Therefore, a lot of effort has been devoted to the enhancement of the performance and the reduction of cost of SRF cavities. In 2010, an acceleration gradient of over 50 MV/m has been reported for a Nb-based SRF cavity. The magnetic field at the inner surface of such a cavity is ~ 1700 Oe, which is close to the thermodynamic critical field of Nb. Therefore, new materials and technologies are required to raise the acceleration gradient of future SRF cavity accelerators. Among all the proposed approaches, using MgB2 thin films to coat the inner surface of SRF cavities is one of the promising tactics with the potential to raise both the acceleration gradient and the operation temperature of SRF cavity accelerators. In this work, I present my study on MgB2 thin films for their application in SRF cavities. C-epitaxial MgB2 thin films grown on SiC(0001) substrates

  16. Radio frequency power load and associated method

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2010-01-01

    A radio frequency power load and associated method. A radio frequency power load apparatus includes a container and a fluid having an ion source therein, the fluid being contained in the container. Two conductors are immersed in the fluid. A radio frequency transmission system includes a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus includes a fluid having an ion source therein, and two conductors immersed in the fluid. A method of dissipating power generated by a radio frequency transmission system includes the steps of: immersing two conductors of a radio frequency power load apparatus in a fluid having an ion source therein; and connecting the apparatus to an amplifier of the transmission system.

  17. Magnetic characterization of radio frequency heat affected micron size Fe3O4 powders: a bio-application perspective.

    PubMed

    Roul, B K; Mishra, D K; Ray, M; Sahu, D R; Mishra, P K; Srinivasu, V V; Pradhan, A K

    2009-05-01

    Micron size Fe3O4 powders were chemically prepared and processed by radio frequency (13.56 MHz) oxygen plasma irradiation technique at different elevated temperatures using low radio frequency (RF) power level. Low magnetic field RF superconducting quantum interference device (SQUID) magnetization studies were performed up to a maximum magnetic field of 100 Oe, which was well below the magnetic field tolerance factor of human beings and at different temperatures (down to 5 K). Heat-treated powders in RF oxygen plasma showed significant changes in blocking temperature, magnetization and susceptibility, which are important parameters for bio-applications. It is observed that blocking temperature is decreased under identical RF heat treatment in oxygen plasma and noted to be dependent on average particle size. Microscopic rise in electron temperature during RF heating may likely to enhance the electron-hopping rate between Fe(+2) and Fe(+3) in the octahedral site of Fe3O4 molecular crystal structure, which in turn exhibit changes in blocking temperature including low field magnetization and susceptibility. These properties of Fe3O4 fine powder are likely to play important role in generating and processing biocompatible Ferro-fluid down to nanoscopic size for biomaterials applications. PMID:19452992

  18. Low Frequency Radio Experiment (LORE)

    NASA Astrophysics Data System (ADS)

    Manoharan, Periasamy K.; Joshi, Bhal Chandra; Naidu, Arun Kumar

    High temporal and frequency resolution observations of solar generated disturbances below 15 MHz in the near-Sun region and at Sun-Earth distances in conjunction with optical and high energy observations of Sun are essential to understand the structure and evolution of eruptions, such as, flares, coronal mass ejections (CMEs), and their associated solar wind disturbances at heights above the photosphere and their consequences in the interplanetary medium. This talk presents a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii below 30 MHz. The LORE, although not part of Aditya-L1 mission, can be complimentary to planned Aditya-L1 coronagraph and its other on-board payloads as well as synergistic to ground based observations, which are routinely carried out by Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and it is particularly suitable for providing data on the detailed time and frequency structure of fast drifting Type-III and slow drifting Type-II radio bursts with unprecedented time and frequency resolution as well as goniopolarimetry, made possible with better designed antennas and state-of-art electronics, employing FPGAs and an intelligent data management system. This would enable wide ranging studies such as studies of nonlinear plasma processes, CME in-situ radio emission, CME driven phenomena, interplanetary CME driven shocks, ICMEs driven by decelerating IP shocks and space weather effects of Solar Wind interaction regions. The talk will highlight the science objectives as well as the proposed technical design features.

  19. Radio frequency coaxial feedthrough device

    DOEpatents

    Owens, Thomas L.; Baity, Frederick W.; Hoffman, Daniel J.; Whealton, John H.

    1987-01-01

    A radio frequency coaxial vacuum feedthrough is provided which utilizes a cylindrical ceramic vacuum break formed of an alumina ceramic. The cylinder is coaxially disposed and brazed between tapered coaxial conductors to form a vacuum sealed connection between a pressurized upstream coaxial transmission line and a utilization device located within a vacuum container. The feedthrough provides 50 ohm matched impedance RF feedthrough up to about 500 MHz at power levels in the multimegawatt range.

  20. Application of sub-micrometer patterned permalloy thin film in tunable radio frequency inductors

    SciTech Connect

    Rahman, B.M. Farid; Divan, Ralu; Rosenmann, Daniel; Wang, Tengxing; Peng, Yujia; Wang, Guoan

    2015-01-01

    Electrical tunable meander line inductor using coplanar waveguide structures with patterned permalloy (Py) thin film has been designed and implemented in this paper. High resistivity Si substrate is used to reduce the dielectric loss from the substrate. Inductor is implemented with a 60 nm thick Py deposited and patterned on top of the gold meander line, and Py film is patterned with dimension of 440 nm 10 lm to create the shape anisotropy field, which in turn increases the FMR frequency. Compared to a regular meanderline inductor without the application of sub-micrometer patterned Py thin film, the inductance density has been increased to 20% for the implemented inductor with patterned Py. Measured FMR frequency of the patterned Py is 4.51 GHz without the application of any external magnetic field. This has enabled the inductor application in the practical circuit boards, where the large external magnet is unavailable. Inductance tunability of the implemented inductor is demonstrated by applying a DC current. Applied DC current creates a magnetic field along the hard axis of the patterned Py thin film, which changes the magnetic moment of the thin film and thus, decreases the inductance of the line. Measured results show that the inductance density of the inductor can be varied 5% by applying 300 mA DC current, larger inductance tunability is achievable by increasing the thickness of Py film. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4918766

  1. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide.

    PubMed

    Giles, Kevin; Pringle, Steven D; Worthington, Kenneth R; Little, David; Wildgoose, Jason L; Bateman, Robert H

    2004-01-01

    The use of radio-frequency (RF)-only ion guides for efficient transport of ions through regions of a mass spectrometer where the background gas pressure is relatively high is widespread in present instrumentation. Whilst multiple collisions between ions and the background gas can be beneficial, for example in inducing fragmentation and/or decreasing the spread in ion energies, the resultant reduction of ion axial velocity can be detrimental in modes of operation where a rapidly changing influx of ions to the gas-filled ion guide needs to be reproduced at the exit. In general, the RF-only ion guides presently in use are based on multipole rod sets. Here we report investigations into a new mode of ion propulsion within an RF ion guide based on a stack of ring electrodes. Ion propulsion is produced by superimposing a voltage pulse on the confining RF of an electrode and then moving the pulse to an adjacent electrode and so on along the guide to provide a travelling voltage wave on which the ions can surf. Through appropriate choice of the travelling wave pulse height, velocity and gas pressure it will be shown that the stacked ring ion guide with the travelling wave is effective as a collision cell in a tandem mass spectrometer where fast mass scanning or switching is required, as an ion mobility separator at pressures around 0.2 mbar, as an ion delivery device for enhancement of duty cycle on an orthogonal acceleration time-of-flight (oa-TOF) mass analyser, and as an ion fragmentation device at higher wave velocities. PMID:15386629

  2. Superconducting NbTiN thin films for superconducting radio frequency accelerator cavity applications

    DOE PAGESBeta

    Burton, Matthew C.; Beebe, Melissa R.; Yang, Kaida; Lukaszew, Rosa A.; Valente-Feliciano, Anne -Marie; Reece, Charles

    2016-02-12

    Current superconducting radio frequency technology, used in various particle accelerator facilities across the world, is reliant upon bulk niobium superconducting cavities. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to a material-dependent limit, which is close to 50 MV/m for bulk Nb. One possible solution to improve upon this fundamental limitation was proposed a few years ago by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)], consisting of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities. The use of type-IImore » superconductors with Tc > TcNb and Hc > HcNb, (e.g., Nb3Sn, NbN, or NbTiN) could potentially greatly reduce the surface resistance (Rs) and enhance the accelerating field, if the onset of vortex penetration is increased above HcNb, thus enabling higher field gradients. Although Nb3Sn may prove superior, it is not clear that it can be grown as a suitable thin film for the proposed multilayer approach, since very high temperature is typically required for its growth, hindering achieving smooth interfaces and/or surfaces. On the other hand, since NbTiN has a smaller lower critical field (Hc1) and higher critical temperature (Tc) than Nb and increased conductivity compared to NbN, it is a promising candidate material for this new scheme. Here, the authors present experimental results correlating filmmicrostructure with superconducting properties on NbTiN thin film coupon samples while also comparing filmsgrown with targets of different stoichiometry. In conclusion, it is worth mentioning that the authors have achieved thin films with bulk-like lattice parameter and transition temperature while also achieving Hc1 values larger than bulk for films thinner than their London penetration depths.« less

  3. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    NASA Astrophysics Data System (ADS)

    Jahanbakhsh, Sina; Satir, Mert; Celik, Murat

    2016-02-01

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  4. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications.

    PubMed

    Jahanbakhsh, Sina; Satir, Mert; Celik, Murat

    2016-02-01

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate. PMID:26932094

  5. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  6. Radio Frequency Power Load and Associated Method

    NASA Technical Reports Server (NTRS)

    Srinivasan, V. Karthik (Inventor); Freestone, Todd M. (Inventor); Sims, William Herbert, III (Inventor)

    2014-01-01

    A radio frequency power load and associated method. A radio frequency power load apparatus may include a container with an ionized fluid therein. The apparatus may include one conductor immersed in a fluid and another conductor electrically connected to the container. A radio frequency transmission system may include a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus may include a fluid having an ion source therein, one conductor immersed in a fluid, and another conductor electrically connected to the container. A method of dissipating power generated by a radio frequency transmission system may include constructing a waveguide with ionized fluid in a container and connecting the waveguide to an amplifier of the transmission system.

  7. Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

    SciTech Connect

    Zhao, Liang

    2014-08-01

    Niobium cavities are important components in modern particle accelerators based on superconducting radio frequency (SRF) technology. The interior of SRF cavities are cleaned and polished in order to produce high accelerating field and low power dissipation on the cavity wall. Current polishing methods, buffered chemical polishing (BCP) and electro-polishing (EP), have their advantages and limitations. We seek to improve current methods and explore laser polishing (LP) as a greener alternative of chemical methods. The topography and removal rate of BCP at different conditions (duration, temperature, sample orientation, flow rate) was studied with optical microscopy, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). Differential etching on different crystal orientations is the main contributor to fine grain niobium BCP topography, with gas evolution playing a secondary role. The surface of single crystal and bi-crystal niobium is smooth even after heavy BCP. The topography of fine grain niobium depends on total removal. The removal rate increases with temperature and surface acid flow rate within the rage of 0~20 °C, with chemical reaction being the possible dominate rate control mechanism. Surface flow helps to regulate temperature and avoid gas accumulation on the surface. The effect of surface flow rate on niobium EP was studied with optical microscopy, atomic force microscopy (AFM), and power spectral density (PSD) analysis. Within the range of 0~3.7 cm/s, no significant difference was found on the removal rate and the macro roughness. Possible improvement on the micro roughness with increased surface flow rate was observed. The effect of fluence and pulse accumulation on niobium topography during LP was studied with optical microscopy, SEM, AFM, and PSD analysis. Polishing on micro scale was achieved within fluence range of 0.57~0.90 J/cm2, with pulse accumulation adjusted accordingly. Larger area treatment was proved possible by

  8. Low Radio Frequency Picosatellite Missions

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.

    2014-06-01

    The dramatic advances in cubesat and other picosatellite capabilities are opening the door for scientifically important observations at low radio frequencies. Because simple antennas are effective at low frequencies, and receiver technology allows low mass and low power instruments, these observations are an ideal match for very small spacecraft. A workshop on cubesat missions for low frequency radio astronomy was held at the Kiss Institute for Space Sciences, Caltech, to explore mission concepts involving one up to hundreds of picosatellites. One result from this workshop was that there are opportunities for viable missions throughout this large range. For example, the sky-integrated spectral signature of highly redshifted neutral hydrogen from the dark ages and cosmic dawn epochs can be measured by a single antenna on a single spacecraft. There are challenging issues of calibration, foreground removal, and RF interference that need to be solved, but the basic concept is appealingly simple. At the other extreme, imaging of angular structure in the high-redshift hydrogen signal will require an interferometer array with a very large number of antennas. In this case the primary requirement is a sufficiently low individual spacecraft mass that hundreds can be launched affordably. The technical challenges for large arrays are long-term relative station keeping and high downlink data rates. Missions using several to a few tens of picosatellites can image and track bright sources such as solar and planetary radio bursts, and will provide essential validation of technologies needed for much larger arrays.This work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  9. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, Salvatore

    1985-01-01

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  10. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, S.

    1984-02-09

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  11. Coping with Radio Frequency Interference

    NASA Astrophysics Data System (ADS)

    Lewis, B. M.

    2009-01-01

    The radio spectrum is a finite resource, on which humanity makes many demands. And pressure on it is ever increasing with the development of new technology and ideas for radio services. After all, we all benefit from wifi and cell phones. Radio astronomers have a small percentage of the spectrum allocated to them at octave intervals in the metre-centimetre bands, and at important frequencies, such as that of the 21cm line of HI. Signals from other services, as well as from our own poorly-engineered equipment, sometimes contaminate our bands: these signals constitute RFI. These may totally obliterate the astronomical signal, or, in the case of CLOUDSAT, may be capable of completely destroying a receiver, which introduces us to the new possibility of 'destructive interference'. A geo-stationary satellite can block access to a piece of sky from one site. Good equipment design eliminates self-inflicted interference, while physical separation often provides adequate practical mitigation at many frequencies. However, new observatories end up being located in the West Australian desert or Antarctica. In future they may be on the back side of the Moon. But there is no Earth-bound protection via physical separation against satellite signals. Some mitigation can be achieved by frequent data dumps and the excision of RFI, or by real-time detection and blanking of the receiver, or by more sophisticated algoriths. Astronomers of necessity aim to achieve mitigation via coordination, at the local level, and by participating in spectrum management at the national and international levels. This involves them spending a lot of time in Geneva at the International Telegraphic Union protecting their access to spectrum, and access to clean spectrum from the L3 point and the far side of the Moon.

  12. Application of the 50 {Omega} radio frequency technology in the automotive industry: Fast bonding of composite materials: Rear doors of the Citroen ZX and Citroen Xantia cars

    SciTech Connect

    Bernard, J.P.; Sabran, M.; Collett, L.

    1996-12-31

    In the field of plastic and composite materials the radio frequency dielectric heating is more and more used. Compared to traditional techniques such as conduction and convection heating, the radio frequency technology is interesting, because it allows fast heating of thick materials and heat insulation materials. As bonding techniques are more and more integrated in production lines, the polymerization of glues must be realized in a very short time. The 50 use of the {Omega} radio frequency technology makes this heating process possible. The authors describe the industrial application of this technology to the CITROEN ZX and CITROEN XANTIA cars. Steps involved in implementing this industrial process (laboratory-pilot-industrial equipment) are presented and analysis the technical and economic results of this application.

  13. Hollow electrode enhanced radio frequency glow plasma and its application to the chemical vapor deposition of microcrystalline silicon

    SciTech Connect

    Tabuchi, Toshihiro; Mizukami, Hiroyuki; Takashiri, Masayuki

    2004-09-01

    A hollow electrode enhanced radio frequency (rf) glow plasma excitation technique and its application to the chemical vapor deposition of microcrystalline silicon films have been studied. In this technique, the reactor has two types of hollow structure. One is a hollow counterelectrode, and the other serves as both a hollow counterelectrode and a hollow rf electrode. The application of these discharge types to semiconductor processing is studied in the case of plasma enhanced chemical vapor deposition of hydrogenated microcrystalline silicon thin films. High crystallinity, photosensitivity and a maximum deposition rate of 6.0 nm/s can all be achieved at plasma excitation frequency of 13.56 MHz and substrate temperature of 300 deg. C. Properties of these plasmas are investigated by observing the plasma emission pattern, optical emission spectrum analysis and electrical parameters of the rf electrode. It is found that the plasma technique using both types of hollow discharge not only results in higher intensity of SiH{sup *} and H{alpha} but also in much smaller self-bias voltage of the rf electrode. Faster processing of device grade hydrogenated microcrystalline silicon films can also be achieved under lower rf power compared to use of the hollow counterelectrode technique alone.

  14. The piezoelectronic stress transduction switch for very large-scale integration, low voltage sensor computation, and radio frequency applications

    NASA Astrophysics Data System (ADS)

    Magdǎu, I.-B.; Liu, X.-H.; Kuroda, M. A.; Shaw, T. M.; Crain, J.; Solomon, P. M.; Newns, D. M.; Martyna, G. J.

    2015-08-01

    The piezoelectronic transduction switch is a device with potential as a post-CMOS transistor due to its predicted multi-GHz, low voltage performance on the VLSI-scale. However, the operating principle of the switch has wider applicability. We use theory and simulation to optimize the device across a wide range of length scales and application spaces and to understand the physics underlying its behavior. We show that the four-terminal VLSI-scale switch can operate at a line voltage of 115 mV while as a low voltage-large area device, ≈200 mV operation at clock speeds of ≈2 GHz can be achieved with a desirable 104 On/Off ratio—ideal for on-board computing in sensors. At yet larger scales, the device is predicted to operate as a fast (≈250 ps) radio frequency (RF) switch exhibiting high cyclability, low On resistance and low Off capacitance, resulting in a robust switch with a RF figure of merit of ≈4 fs. These performance benchmarks cannot be approached with CMOS which has reached fundamental limits. In detail, a combination of finite element modeling and ab initio calculations enables prediction of switching voltages for a given design. A multivariate search method then establishes a set of physics-based design rules, discovering the key factors for each application. The results demonstrate that the piezoelectronic transduction switch can offer fast, low power applications spanning several domains of the information technology infrastructure.

  15. A radio frequency coaxial feedthrough

    DOEpatents

    Owens, T.L.

    1987-12-07

    An improved radio frequency coaxial transmission line vacuum feedthrough is provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflection from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits the voltage and power handling capabilities of a feedthrough.

  16. Radio frequency sustained ion energy

    DOEpatents

    Jassby, Daniel L.; Hooke, William M.

    1977-01-01

    Electromagnetic (E.M.) energy injection method and apparatus for producing and sustaining suprathermal ordered ions in a neutral, two-ion-species, toroidal, bulk equilibrium plasma. More particularly, the ions are produced and sustained in an ordered suprathermal state of existence above the average energy and velocity of the bulk equilibrium plasma by resonant rf energy injection in resonance with the natural frequency of one of the ion species. In one embodiment, the electromagnetic energy is injected to clamp the energy and velocity of one of the ion species so that the ion energy is increased, sustained, prolonged and continued in a suprathermal ordered state of existence containing appreciable stored energy that counteracts the slowing down effects of the bulk equilibrium plasma drag. Thus, selective deuteron absorption may be used for ion-tail creation by radio-frequency excitation alone. Also, the rf can be used to increase the fusion output of a two-component neutral injected plasma by selective heating of the injected deuterons.

  17. Reliable and integrated technique for determining resonant frequency in radio frequency resonators. Application to a high-precision resonant cavity-based displacement sensor

    NASA Astrophysics Data System (ADS)

    Jauregui, Rigoberto; Asua, Estibaliz; Portilla, Joaquin; Etxebarria, Victor

    2015-03-01

    This paper presents a reliable and integrated technique for determining the resonant frequency of radio frequency resonators, which can be of interest for different purposes. The approach uses a heterodyne scheme as phase detector coupled to a voltage-controlled oscillator. The system seeks the oscillator frequency that produces a phase null in the resonator, which corresponds to the resonant frequency. A complete explanation of the technique to determine the resonant frequency is presented and experimentally tested. The method has been applied to a high-precision displacement sensor based on resonant cavity, obtaining a theoretical nanometric precision.

  18. Radio frequency vacuum feedthroughs for high-power ICRF heating applications

    SciTech Connect

    Owens, T.L.; Baity, F.W.; Hoffman, D.J.; Whealton, J.H.

    1985-01-01

    Frequently, high-power pulsed ion cyclotron range of frequency experiments are limited by breakdown at the vacuum feedthrough. This paper describes the development and testing of vacuum feedthroughs to increase both reliability and capability. The ultimate goal of the program is to develop a continuous-wave feedthrough for the next generation of fusion experiments. A feedthrough concept currently under investigation consists of a simple, cylindrical alumina ceramic brazed between tapered coaxial conductors. A prototype has been tested to voltage levels in excess of 100 kV for 100-ms pulses and 70 kV for 5-s pulses at 28 MHz. Insertion-voltage-standing-wave ratios are <1.15:1 for frequencies below 450 MHz. An upgraded water-cooled version being fabricated for use on TEXTOR will be described.

  19. Engineered smart substrate with embedded patterned permalloy thin film for radio frequency applications

    NASA Astrophysics Data System (ADS)

    Peng, Yujia; Rahman, B. M. Farid; Wang, Tengxing; Nowrin, Chamok; Ali, Mohammod; Wang, Guoan

    2015-05-01

    Multifunctional and frequency-agile devices are promising components that satisfy multiple standards of modern wireless communication system. This paper provides a unique method to develop tunable RF components based on engineered smart substrate where the smart substrate contain patterned Permalloy (Py) thin film on high-resistivity silicon. The permeability of Py can be adjusted by changing the DC current, thus allowing tunable RF circuits and components. Single or multi-layer patterns can be developed. To demonstrate tunability of the smart substrate, a frequency reconfigurable patch antenna was fabricated on Liquid Crystal Polymer substrate and bonded to the proposed smart substrate. The patch antenna was tested, which revealed that the center frequency of operation could be tuned from 2.38 GHz to 2.43 GHz by changing the DC current from 0 mA to 500 mA. Similarly, a transmission line based phase shifter was also fabricated on another smart substrate, which showed that the phase shifter could provide continuous 90° phase shift from 2.35 GHz to 2.15 GHz under different DC current bias conditions.

  20. An Investigation of Radio Frequency Auditory Training Units

    ERIC Educational Resources Information Center

    Matkin, Noel D.; Olsen, Wayne

    1973-01-01

    Evaluated were the performances of eight radio frequency systems by means of a measurement procedure said to be applicable to the evaluation of auditory training systems in classrooms for the aurally handicapped. (DB)

  1. Nonthermal processing by radio frequency electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radio frequency electric fields (RFEF) processing is relatively new and has been shown to inactivate bacteria in apple juice, orange juice and apple cider at moderately low temperatures. Key equipment components of the process include a radio frequency power supply and a treatment chamber that is ca...

  2. Integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, Steven R.

    1989-01-01

    An improved radio frequency quadrupole (10) is provided having an elongate housing (11) with an elongate central axis (12) and top, bottom and two side walls (13a-d) symmetrically disposed about the axis, and vanes (14a-d) formed integrally with the walls (13a-d), the vanes (14a-d) each having a cross-section at right angles to the central axis (12) which tapers inwardly toward the axis to form electrode tips (15a-d) spaced from each other by predetermined distances. Each of the four walls (13a-d), and the vanes (14a-d) integral therewith, is a separate structural element having a central lengthwise plane (16) passing through the tip of the vane, the walls (13a-d) having flat mounting surfaces (17, 18) at right angles to and parallel to the control plane (16), respectively, which are butted together to position the walls and vane tips relative to each other.

  3. Inductive coupled radio frequency plasma bridge neutralizer.

    PubMed

    Scholze, F; Tartz, M; Neumann, H

    2008-02-01

    A 13.56 MHz radio frequency plasma bridge neutralizer (rf-PBN) for ion thruster applications as well as ion beam surface processing of insulating materials is presented. The energy for the plasma excitation is inductively coupled into the plasma chamber. Because no components are located inside the plasma, the lifetime of the rf-PBN is expected to be very long. A compact tuning system adapts the input power to the plasma impedance. The electron current may be controlled over a wide range by the rf input power. An electron current of up to 1.6 A has been extracted. PMID:18315215

  4. Variable radio frequency proton-electron double-resonance imaging: Application to pH mapping of aqueous samples

    NASA Astrophysics Data System (ADS)

    Efimova, Olga V.; Sun, Ziqi; Petryakov, Sergey; Kesselring, Eric; Caia, George L.; Johnson, David; Zweier, Jay L.; Khramtsov, Valery V.; Samouilov, Alexandre

    2011-04-01

    Proton-electron double-resonance imaging (PEDRI) offers rapid image data collection and high resolution for spatial distribution of paramagnetic probes. Recently we developed the concept of variable field (VF) PEDRI which enables extracting a functional map from a limited number of images acquired at pre-selected EPR excitation fields using specific paramagnetic probes (Khramtsov et al., J. Magn. Reson. 202 (2010) 267-273). In this work, we propose and evaluate a new modality of PEDRI-based functional imaging with enhanced temporal resolution which we term variable radio frequency (VRF) PEDRI. The approach allows for functional mapping (e.g., pH mapping) using specifically designed paramagnetic probes with high quality spatial resolution and short acquisition times. This approach uses a stationary magnetic field but different EPR RFs. The ratio of Overhauser enhancements measured at each pixel at two different excitation frequencies corresponding to the resonances of protonated and deprotonated forms of a pH-sensitive nitroxide is converted to a pH map using a corresponding calibration curve. Elimination of field cycling decreased the acquisition time by exclusion periods of ramping and stabilization of the magnetic field. Improved magnetic field homogeneity and stability allowed for the fast MRI acquisition modalities such as fast spin echo. In total, about 30-fold decrease in EPR irradiation time was achieved for VRF PEDRI (2.4 s) compared with VF PEDRI (70 s). This is particularly important for in vivo applications enabling one to overcome the limiting stability of paramagnetic probes and sample overheating by reducing RF power deposition.

  5. High thermal expansion sealing glass for use in radio frequency applications

    DOEpatents

    Kilgo, Riley D.; Brow, Richard K.; Kovacic, Larry

    1999-01-01

    The present invention provides a glass composition for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, and copper alloys, which includes between about 10 and about 25 mole percent Na.sub.2 O, between about 10 and about 25 mole percent K.sub.2 O, between about 4 and about 15 mole percent Al.sub.2 O.sub.3, between about 35 and about 50 mole percent P.sub.2 O.sub.5, B.sub.2 O.sub.3 in a concentration not exceeding 10 mole percent, and MXO in a concentration not exceeding 12 mole percent, wherein MXO is a metal oxide selected from the group consisting of PbO, BaO, CaO and MgO or a mixture thereof. This composition is suitable to hermetically seal to components for use in RF-interconnection applications.

  6. Multi-mode radio frequency device

    DOEpatents

    Gilbert, Ronald W.; Carrender, Curtis Lee; Anderson, Gordon A.; Steele, Kerry D.

    2007-02-13

    A transponder device having multiple modes of operation, such as an active mode and a passive mode, wherein the modes of operation are selected in response to the strength of a received radio frequency signal. A communication system is also provided having a transceiver configured to transmit a radio frequency signal and to receive a responsive signal, and a transponder configured to operate in a plurality of modes and to activate modes of operation in response to the radio frequency signal. Ideally, each mode of operation is activated and deactivated independent of the other modes, although two or more modes may be concurrently operational.

  7. High power radio frequency attenuation device

    DOEpatents

    Kerns, Quentin A.; Miller, Harold W.

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  8. All-optical frequency upconversion of a quasi optical single sideband signal utilizing a nonlinear semiconductor optical amplifier for radio-over-fiber applications.

    PubMed

    Park, Minho; Song, Jong-In

    2011-11-21

    An all-optical frequency upconversion technique using a quasi optical single sideband (q-OSSB) signal in a nonlinear semiconductor optical amplifier (NSOA) for radio-over-fiber applications is proposed and experimentally demonstrated. An optical radio frequency signal (f(RF) = 37.5 GHz) in the form of a q-OSSB signal is generated by mixing an optical intermediate frequency (IF) signal (f(IF) = 2.5 GHz) with an optical local oscillator signal (f(LO) = 35 GHz) utilizing coherent population oscillation and cross gain modulation effects in an NSOA. The phase noise, conversion efficiency, spurious free dynamic range (SFDR), and transmission characteristics of the q-OSSB signal are investigated. PMID:22109476

  9. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    PubMed Central

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  10. High spectral purity Kerr frequency comb radio frequency photonic oscillator.

    PubMed

    Liang, W; Eliyahu, D; Ilchenko, V S; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz(-1) at 10 Hz, -90 dBc Hz(-1) at 100 Hz and -170 dBc Hz(-1) at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10(-10) at 1-100 s integration time-orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  11. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    NASA Astrophysics Data System (ADS)

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-08-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz-1 at 10 Hz, -90 dBc Hz-1 at 100 Hz and -170 dBc Hz-1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10-10 at 1-100 s integration time--orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption.

  12. Radio frequency multicusp ion source development (invited)

    SciTech Connect

    Leung, K.N.

    1996-03-01

    The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H{sup {minus}} beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory. {copyright} {ital 1996 American Institute of Physics.}

  13. Radio-frequency quadrupole linear accelerator

    SciTech Connect

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented.

  14. All-optical frequency downconversion technique utilizing a four-wave mixing effect in a single semiconductor optical amplifier for wavelength division multiplexing radio-over-fiber applications.

    PubMed

    Kim, Hyoung-Jun; Song, Jong-In

    2012-03-26

    An all-optical frequency downconversion utilizing a four-wave mixing effect in a single semiconductor optical amplifier (SOA) was experimentally demonstrated for wavelength division multiplexing (WDM) radio-over-fiber (RoF) applications. Two WDM optical radio frequency (RF) signals having 155 Mbps differential phase shift keying (DPSK) data at 28.5 GHz were simultaneously down-converted to two WDM optical intermediate frequency (IF) signals having an IF frequency of 4.5 GHz by mixing with an optical local oscillator (LO) signal having a LO frequency of 24 GHz in the SOA. The bit-error-rate (BER) performance of the RoF up-links with different optical fiber lengths employing all-optical frequency downconversion was investigated. The receiver sensitivity of the RoF up-link with a 6 km single mode fiber and an optical IF signal in an optical double-sideband format was approximately -8.5 dBm and the power penalty for simultaneous frequency downconversion was approximately 0.63 dB. The BER performance showed a strong dependence on the fiber length due to the fiber dispersion. The receiver sensitivity of the RoF up-link with the optical IF signal in the optical single-sideband format was reduced to approximately -17.4 dBm and showed negligible dependence on the fiber length. PMID:22453476

  15. Electromechanical design and construction of a rotating radio-frequency coil system for applications in magnetic resonance.

    PubMed

    Trakic, Adnan; Weber, Ewald; Li, Bing Keong; Wang, Hua; Liu, Feng; Engstrom, Craig; Crozier, Stuart

    2012-04-01

    While recent studies have shown that rotating a single radio-frequency (RF) coil during the acquisition of magnetic resonance (MR) images provides a number of hardware advantages (i.e., requires only one RF channel, avoids coil-coil coupling and facilitates large-scale multinuclear imaging), they did not describe in detail how to build a rotating RF coil system. This paper presents detailed engineering information on the electromechanical design and construction of a MR-compatible RRFC system for human head imaging at 2 T. A custom-made (bladeless) pneumatic Tesla turbine was used to rotate the RF coil at a constant velocity, while an infrared optical encoder measured the selected frequency of rotation. Once the rotating structure was mechanically balanced and the compressed air supply suitably regulated, the maximum frequency of rotation measured ~14.5 Hz with a 2.4% frequency variation over time. MR images of a water phantom and human head were obtained using the rotating RF head coil system. PMID:22231668

  16. Progress on radio frequency auxiliary heating system designs in ITER

    SciTech Connect

    Makowski, M.; Bosia, G.; Elio, F.

    1996-09-01

    ITER will require over 100 MW of auxiliary power for heating, on- and off-axis current drive, accessing the H-mode, and plasma shut-down. The Electron Cyclotron Range of Frequencies (ECRF) and Ion Cyclotron Range of Frequencies (ICRF) are two forms of Radio Frequency (RF) auxiliary power being developed for these applications. Design concepts for both the ECRF and ICRF systems are presented, key features and critical design issues are discussed, and projected performances outlined.

  17. Solar emission levels at low radio frequencies

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.

    1990-01-01

    Solar radio emission could seriously interfere with observations made by a low frequency (1 to 10 MHz) array in space. International Sun-Earth Explorer (ISEE-3) radio data were used to determine solar emission level. The results indicate that solar emission should seriously disturb less than ten percent of the data, even during the years of solar maximum. Thus it appears that solar emission should not cause a disastrous loss of data. The information needed to design procedures to excise solar interference from the data produced by any low-frequency array is provided.

  18. Nonreciprocal Radio Frequency Transduction in a Parametric Mechanical Artificial Lattice.

    PubMed

    Huang, Pu; Zhang, Liang; Zhou, Jingwei; Tian, Tian; Yin, Peiran; Duan, Changkui; Du, Jiangfeng

    2016-07-01

    Generating nonreciprocal radio frequency transduction plays important roles in a wide range of research and applications, and an aspiration is to integrate this functionality into microcircuits without introducing a magnetic field, which, however, remains challenging. By designing a 1D artificial lattice structure with a neighbor interaction engineered parametrically, we predicted a nonreciprocity transduction with a large unidirectionality. We then experimentally demonstrated the phenomenon on a nanoelectromechanical chip fabricated by conventional complementary metal-silicon processing. A unidirectionality with isolation as high as 24 dB is achieved, and several different transduction schemes are realized by programing the control voltage topology. Apart from being used as a radio frequency isolator, the system provides a way to build a practical on-chip programmable device for broad research and applications in the radio frequency domain. PMID:27419591

  19. Nonreciprocal Radio Frequency Transduction in a Parametric Mechanical Artificial Lattice

    NASA Astrophysics Data System (ADS)

    Huang, Pu; Zhang, Liang; Zhou, Jingwei; Tian, Tian; Yin, Peiran; Duan, Changkui; Du, Jiangfeng

    2016-07-01

    Generating nonreciprocal radio frequency transduction plays important roles in a wide range of research and applications, and an aspiration is to integrate this functionality into microcircuits without introducing a magnetic field, which, however, remains challenging. By designing a 1D artificial lattice structure with a neighbor interaction engineered parametrically, we predicted a nonreciprocity transduction with a large unidirectionality. We then experimentally demonstrated the phenomenon on a nanoelectromechanical chip fabricated by conventional complementary metal-silicon processing. A unidirectionality with isolation as high as 24 dB is achieved, and several different transduction schemes are realized by programing the control voltage topology. Apart from being used as a radio frequency isolator, the system provides a way to build a practical on-chip programmable device for broad research and applications in the radio frequency domain.

  20. Monitoring Radio Frequency Interference in Southwest Virginia

    NASA Astrophysics Data System (ADS)

    Rapp, Steve

    2010-01-01

    The radio signals received from astronomical objects are extremely weak. Because of this, radio sources are easily shrouded by interference from devices such as satellites and cell phone towers. Radio astronomy is very susceptible to this radio frequency interference (RFI). Possibly even worse than complete veiling, weaker interfering signals can contaminate the data collected by radio telescopes, possibly leading astronomers to mistaken interpretations. To help promote student awareness of the connection between radio astronomy and RFI, an inquiry-based science curriculum was developed to allow high school students to determine RFI levels in their communities. The Quiet Skies Project_the result of a collaboration between the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the National Radio Astronomy Observatory (NRAO)_encourages students to collect and analyze RFI data and develop conclusions as a team. Because the project focuses on electromagnetic radiation, it is appropriate for physics, physical science, chemistry, or general science classes. My class-about 50 students from 15 southwest Virginia high schools-participated in the Quiet Skies Project and were pioneers in the use of the beta version of the Quiet Skies Detector (QSD), which is used to detect RFI. Students have been involved with the project since 2005 and have collected and shared data with NRAO. In analyzing the data they have noted some trends in RFI in Southwest Virginia.

  1. High performance tunable slow wave elements enabled with nano-patterned permalloy thin film for compact radio frequency applications

    NASA Astrophysics Data System (ADS)

    Farid Rahman, B. M.; Divan, Ralu; Zhang, Hanqiao; Rosenmann, Daniel; Peng, Yujia; Wang, Xuehe; Wang, Guoan

    2014-05-01

    Slow wave elements are promising structures to design compact RF (radio frequency) and mmwave components. This paper reports a comparative study on different types of coplanar wave-guide (CPW) slow wave structures (SWS). New techniques including the use of defected ground structure and the different signal conductor shape have been implemented to achieve higher slow wave effect with comparative loss. Results show that over 42% and 35% reduction in length is reported in the expense of only 0.3 dB and 0.1 dB insertion loss, respectively, which can end up with 66% and 58% area reduction for the design of a branch line coupler. Implementation of the sub micrometer patterned Permalloy (Py) thin film on top of the simple SWS has been demonstrated for the first time to increase the slow wave effect. Comparing with the traditional slow wave structure, with 100 nm thick Py patterns, the inductance per unit length of the SWS has been increased from 879 nH/m to 963 nH/m. The slow wave effect of the designed structure is also tunable by applied DC current. Measured results have shown that the phase shift can be changed from 94° to 90.5° by applying 150 mA DC current. This provides a solution in designing RF passive components which can work in multiple frequency bands.

  2. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  3. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  4. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  5. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  6. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  7. Radio Frequency-Tomography of Solar Flares

    NASA Astrophysics Data System (ADS)

    Aschwanden, M. J.

    2002-05-01

    The Frequency-Agile Solar Radiotelescope (FASR) is designed to produce simultaneous images of solar phenomena at many frequencies. A data cube with a stack of multiple frequency images can be used for tomographic reconstruction of the 3D density and temperature distribution of flares, based on the free-free emission at cm and mm wavelengths. We simulate a set of multi-frequency images for the Bastille-Day flare of 2000-July-14, based on EUV observations from TRACE and soft X-ray observations from Yohkoh. The 3D model consists of some 200 postflare loops with observationally constrained densities and temperatures. The temporal evolution involves flare plasma heating, a phase of conductive cooling, followed by a phase of radiative cooling. The images simulated at different microwave frequencies reveal a sequence of optically-thick free-free emission layers, which can be "pealed off" like onion shells with increasing radio frequency. We envision a tomographic method that yields information on the density and temperature structure of flare systems and their evolution. Comparison with EUV and soft X-ray based 3D models will also allow to quantify wave scattering at radio frequencies and provide information on small-scale inhomogeneities and wave turbulence. Besides the thermal free-free emission, radio images contain also information on coherent emission processes, such as plasma emission from electron beams and loss-cone emission from gyroresonant trapped particles, conveying information on particle acceleration processes.

  8. Radio frequency interference at the geostationary orbit

    NASA Technical Reports Server (NTRS)

    Sue, M. K.

    1981-01-01

    Growing demands on the frequency spectrum have increased the possibility of radio frequency interference (RFI). Various approaches to obtain in orbit RFI data are compared; this comparision indicates that the most practical way to obtain RFI data for a desired orbit (such as a geostationary orbit) is through the extrapolation of in orbit RFI measurements by a low orbit satellite. It is concluded that a coherent RFI program that uses both experimental data and analytical predictions provides accurate RFI data at minimal cost.

  9. Characteristics of Radio-Frequency Circuits Utilizing Ferroelectric Capacitors

    NASA Technical Reports Server (NTRS)

    Eskridge, Michael; Gui, Xiao; MacLeod, Todd; Ho, Fat D.

    2011-01-01

    Ferroelectric capacitors, most commonly used in memory circuits and variable components, were studied in simple analog radio-frequency circuits such as the RLC resonator and Colpitts oscillator. The goal was to characterize the RF circuits in terms of frequency of oscillation, gain, etc, using ferroelectric capacitors. Frequencies of oscillation of both circuits were measured and studied a more accurate resonant frequency can be obtained using the ferroelectric capacitors. Many experiments were conducted and data collected. A model to simulate the experimental results will be developed. Discrepancies in gain and frequency in these RF circuits when conventional capacitors are replaced with ferroelectric ones were studied. These results will enable circuit designers to anticipate the effects of using ferroelectric components in their radio- frequency applications.

  10. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications

    PubMed Central

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-01-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation & immersion (E & I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm2) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance. PMID:26631493

  11. Map of risks for the implementation of radio-frequency identification: application of ancillaries in the University Hospital Jean Verdier.

    PubMed

    Bertrand, E; Schlatter, J

    2010-01-01

    Ancillaries are surgical instruments, such as orthopedical instruments set for reconstruction of knee (a mounting arm...) used to implant or extract prosthesis. Their management involves the departments of sterilization and surgery as well as the suppliers. Such a long circuit exposes the instruments to potential risk hazards like a lack of traceability as the suspicion of Creutzfeldt-Jakob. In order to reduce the risk of errors we will propose the implementation of radio-frequency identification (RFID) to trace the ancillaries during each step of the supply chain. The objective of our study is to analyze and to map the risks associated with RFID implementation. A preliminary analysis of risks (APR) is conducted to map out the hazards for the implementation of RFID. The APR identifies 162 scenarios with a maximum risk connected to environment and technology. To reduce the risks identified, 22 courses of action are proposed, such as audits, training, and internal controls. For each action, a procedure has been designed and evaluated. This preliminary analysis of risks allows targeting the potential dangers for the RFID implementation applied to ancillaries and reduces them significantly. PMID:20187581

  12. Application of Au-Sn eutectic bonding in hermetic radio-frequency microelectromechanical system wafer level packaging

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Choa, Sung-Hoon; Kim, Woonbae; Hwang, Junsik; Ham, Sukjin; Moon, Changyoul

    2006-03-01

    Development of packaging is one of the critical issues toward realizing commercialization of radio-frequency-microelectromechanical system (RF-MEMS) devices. The RF-MEMS package should be designed to have small size, hermetic protection, good RF performance, and high reliability. In addition, packaging should be conducted at sufficiently low temperature. In this paper, a low-temperature hermetic wafer level packaging scheme for the RF-MEMS devices is presented. For hermetic sealing, Au-Sn eutectic bonding technology at temperatures below 300°C is used. Au-Sn multilayer metallization with a square loop of 70 µm in width is performed. The electrical feed-through is achieved by the vertical through-hole via filling with electroplated Cu. The size of the MEMS package is 1 mm × 1 mm × 700 µm. The shear strength and hermeticity of the package satisfies the requirements of MIL-STD-883F. Any organic gases or contamination are not observed inside the package. The total insertion loss for the packaging is 0.075 dB at 2 GHz. Furthermore, the robustness of the package is demonstrated by observing no performance degradation and physical damage of the package after several reliability tests.

  13. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-12-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation & immersion (E & I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm2) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance.

  14. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications.

    PubMed

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-01-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation &immersion (E &I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm(2)) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance. PMID:26631493

  15. Radio frequency telemetry system for sensors and actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Miranda, Felix A. (Inventor)

    2003-01-01

    The present invention discloses and teaches apparatus for combining Radio Frequency (RF) technology with novel micro-inductor antennas and signal processing circuits for RF telemetry of real time, measured data, from microelectromechanical system (MEMS) sensors, through electromagnetic coupling with a remote powering/receiving device. Such technology has many applications, but is especially useful in the biomedical area.

  16. Radio Frequency Telemetry System for Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Miranda, Felix A. (Inventor)

    2003-01-01

    The present invention discloses and teaches apparatus for combining Radio Frequency (RF) technology with novel micro-inductor antennas and signal processing circuits for RF telemetry of real time, measured data, from microelectromechanical system (MEMS) sensors, through electromagnetic coupling with a remote poweringheceiving device. Such technology has many applications, but is especially useful in the biomedical area.

  17. Wideband micromachined microphones with radio frequency detection

    NASA Astrophysics Data System (ADS)

    Hansen, Sean Thomas

    There are many commercial, scientific, and military applications for miniature wideband acoustic sensors, including monitoring the condition or wear of equipment, collecting scientific data, and identifying and localizing military targets. The application of semiconductor micromachining techniques to sensor fabrication has the potential to transform acoustic sensing with small, reproducible, and inexpensive silicon-based microphones. However, such sensors usually suffer from limited bandwidth and from non-uniformities in their frequency response due to squeeze-film damping effects and narrow air gaps. Furthermore, they may be too fragile to be left unattended in a humid or dusty outdoor environment. Silicon microphones that incorporate capacitive micromachined ultrasonic transducer membranes overcome some of the drawbacks of conventional microphones. These micromachined membranes are small and robust enough to be vacuum-sealed, and can withstand atmospheric pressure and submersion in water. In addition, the membrane mechanical response is flat from dc up to ultrasonic frequencies, resulting in a wideband sensor for accurate spectral analysis of acoustic signals. However, a sensitive detection scheme is necessary to detect the small changes in membrane displacement that result from using smaller, stiffer membranes than do conventional microphones. We propose a radio frequency detection technique, in which the capacitive membranes are incorporated into a transmission line. Variations in membrane capacitance due to impinging sound pressure are sensed through the phase variations of a carrier signal that propagates along the line. This dissertation examines the design, fabrication, modeling, and experimental measurements of wideband micromachined microphones using sealed ultrasonic membranes and RF detection. Measurements of fabricated microphones demonstrate less than 0.5 dB variation in their output responses between 0.1 Hz to 100 kHz under electrostatic actuation of

  18. Electromagnetic shielding properties of soft magnetic powder-polymer composite films for the application to suppress noise in the radio frequency range

    NASA Astrophysics Data System (ADS)

    Kim, Sang Woo; Yoon, Y. W.; Lee, S. J.; Kim, G. Y.; Kim, Y. B.; Chun, Yun Yeo; Lee, K. S.

    2007-09-01

    Electromagnetic absorption characteristics in the near- and the far-field regime were evaluated from measurements of power loss by the coaxial transmission and reflection method and the microstrip line method, respectively, for high-density soft magnetic Fe-Al-Si alloy-polymer composite films that were highly effective in the radio frequency (RF) range. The electromagnetic absorption in the near- and the far-field regime for the soft magnetic metal-polymer composite films was greatly dependent on the film density. The electromagnetic absorption in the RF range significantly increased with increasing film density, which was caused by the increase of the magnetic permeability and the electrical conductivity. As a result, the high-density soft magnetic film showed excellent electromagnetic absorption for the near- and the far-field electromagnetic shielding and was applicable as an electromagnetic absorber for high-frequency devices operated over 0.1 GHz.

  19. Detection of radio frequency interference over ocean

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoxu

    The geostationary satellite television (TV) signals that are reflected off the ocean surfaces could enter the AMSR-E antenna, resulting in RFI (Radio Frequency Interference) contamination in AMSR-E 10.65 and 18.7 GHz channels. If not detected, the presence of RFI signals can result in false retrievals of oceanic environmental parameters (e.g., sea surface temperature, sea surface wind speed, rain water path) from microwave imaging radiance measurements. This study first examined the geometric relationship between the RFI source, geostationary TV satellite, and AMSR-E observation. Then a normalized Principal Component Analysis (NPCA) method is proposed and applied for RFI detection over oceans in Advanced Microwave Scanning Radiometer (AMSR)-E observations. It is found that the RFI-contaminated observations on AMSR-E descending node at 10.65 and 18.7 GHz can be successively detected near coastal areas surrounding Europe and United States continents. The results yielded from the geometric examination at another angle verify those signals detected with NPCA. The proposed NPCA algorithm is applicable in an operational environment for fast data processing and data dissemination, and is different from earlier methods, which often require a priori information.

  20. SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY

    EPA Science Inventory

    Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. Contaminants are removed from in situ soils and transfe...

  1. 48 CFR 211.275 - Radio frequency identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Radio frequency identification....

  2. Sampling Downconverter For Radio-Frequency Signals

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.; Rayhrer, B.; Young, L. E.

    1990-01-01

    Phase and delay errors reduced greatly. Proposed GaAs integrated-circuit for receiver of radio signals at gigahertz frequencies samples incoming signal in phase and in quadrature, digitizes it, and down-converts it to baseband in single step. Incorporates both digital and analog components in design offering improved stability, versatility, and sampling bandwidth. Eliminates need for several components found in conventional analog designs, including mixers, postmixer filters, and 90 degree phase shifter.

  3. Passive radio frequency peak power multiplier

    DOEpatents

    Farkas, Zoltan D.; Wilson, Perry B.

    1977-01-01

    Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.

  4. 47 CFR 90.138 - Applications for itinerant frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.138 Applications for itinerant frequencies. An application for authority to conduct an itinerant operation in the...

  5. 47 CFR 90.138 - Applications for itinerant frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.138 Applications for itinerant frequencies. An application for authority to conduct an itinerant operation in the...

  6. 47 CFR 90.138 - Applications for itinerant frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.138 Applications for itinerant frequencies. An application for authority to conduct an itinerant operation in the...

  7. 47 CFR 90.138 - Applications for itinerant frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.138 Applications for itinerant frequencies. An application for authority to conduct an itinerant operation in the...

  8. 47 CFR 90.138 - Applications for itinerant frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations § 90.138 Applications for itinerant frequencies. An application for authority to conduct an itinerant operation in the...

  9. Radio frequency interference at QUASAR Network Observatories

    NASA Astrophysics Data System (ADS)

    Ilin, Gennadii

    2011-07-01

    Different sources of radio frequency interference (RFI) at Quasar-network observatories and their affect on VLBIsessions are discussed. For example, the stronger of them registered last time are UMTS mobile phone base stations which were built not far from Quasar-network observatories location. These stations emit signals near 2100MHz and produce RFI of critical level. To control RFI level regular spectral measurements of the intermediate frequency signals at the outputs of the receivers are conducted. As a result, real spread of RFI sources, including DORIS, have to be taken into account in planning of VLBI observation sessions and especially it is concerned VLBI 2010 project realization.

  10. A radio-frequency sheath model for complex waveforms

    SciTech Connect

    Turner, M. M.; Chabert, P.

    2014-04-21

    Plasma sheaths driven by radio-frequency voltages occur in contexts ranging from plasma processing to magnetically confined fusion experiments. An analytical understanding of such sheaths is therefore important, both intrinsically and as an element in more elaborate theoretical structures. Radio-frequency sheaths are commonly excited by highly anharmonic waveforms, but no analytical model exists for this general case. We present a mathematically simple sheath model that is in good agreement with earlier models for single frequency excitation, yet can be solved for arbitrary excitation waveforms. As examples, we discuss dual-frequency and pulse-like waveforms. The model employs the ansatz that the time-averaged electron density is a constant fraction of the ion density. In the cases we discuss, the error introduced by this approximation is small, and in general it can be quantified through an internal consistency condition of the model. This simple and accurate model is likely to have wide application.

  11. Radio-frequency scanning tunnelling microscopy.

    PubMed

    Kemiktarak, U; Ndukum, T; Schwab, K C; Ekinci, K L

    2007-11-01

    The scanning tunnelling microscope (STM) relies on localized electron tunnelling between a sharp probe tip and a conducting sample to attain atomic-scale spatial resolution. In the 25-year period since its invention, the STM has helped uncover a wealth of phenomena in diverse physical systems--ranging from semiconductors to superconductors to atomic and molecular nanosystems. A severe limitation in scanning tunnelling microscopy is the low temporal resolution, originating from the diminished high-frequency response of the tunnel current readout circuitry. Here we overcome this limitation by measuring the reflection from a resonant inductor-capacitor circuit in which the tunnel junction is embedded, and demonstrate electronic bandwidths as high as 10 MHz. This approximately 100-fold bandwidth improvement on the state of the art translates into fast surface topography as well as delicate measurements in mesoscopic electronics and mechanics. Broadband noise measurements across the tunnel junction using this radio-frequency STM have allowed us to perform thermometry at the nanometre scale. Furthermore, we have detected high-frequency mechanical motion with a sensitivity approaching approximately 15 fm Hz(-1/2). This sensitivity is on par with the highest available from nanoscale optical and electrical displacement detection techniques, and the radio-frequency STM is expected to be capable of quantum-limited position measurements. PMID:17972882

  12. Thermal performance and radio-frequency transmissivity of candidate ablation materials for S-band antenna window application on manned spacecraft

    NASA Technical Reports Server (NTRS)

    Tillian, D. J.; Cubley, H. D.

    1970-01-01

    A test program was conducted in the MSC 1.5 MW arc-heated facility to evaluate the thermal performance of ablation materials having potential application as radio frequency windows. These tests were conducted for the improvement of omnidirectional antenna operating characteristics during atmospheric reentry. Since a full scale model of the Apollo command service module was available for antenna tests, this mockup was used as a basic for the tests. Test models were subjected to heating conditions simulating the nominal lunar return trajectory (AS-501) and the design trajectories, high heat load and high heating rate. RF measurements were made before and after the arc jet tests to measure attenuation effects due to the thermal degradation of the materials under consideration. The test program demonstrated that additional development is required in materials technology to achieve an ablative system with both good RF transmission characteristics and thermal-structural integrity.

  13. A morphological algorithm for improving radio-frequency interference detection

    NASA Astrophysics Data System (ADS)

    Offringa, A. R.; van de Gronde, J. J.; Roerdink, J. B. T. M.

    2012-03-01

    A technique is described that is used to improve the detection of radio-frequency interference in astronomical radio observatories. It is applied on a two-dimensional interference mask after regular detection in the time-frequency domain with existing techniques. The scale-invariant rank (SIR) operator is defined, which is a one-dimensional mathematical morphology technique that can be used to find adjacent intervals in the time or frequency domain that are likely to be affected by RFI. The technique might also be applicable in other areas in which morphological scale-invariant behaviour is desired, such as source detection. A new algorithm is described, that is shown to perform quite well, has linear time complexity and is fast enough to be applied in modern high resolution observatories. It is used in the default pipeline of the LOFAR observatory.

  14. Addressed qubit manipulation in radio-frequency dressed lattices

    NASA Astrophysics Data System (ADS)

    Sinuco-León, G. A.; Garraway, B. M.

    2016-03-01

    Precise control over qubits encoded as internal states of ultracold atoms in arrays of potential wells is a key element for atomtronics applications in quantum information, quantum simulation and atomic microscopy. Here we theoretically study atoms trapped in an array of radio-frequency dressed potential wells and propose a scheme for engineering fast and high-fidelity single-qubit gates with low error due to cross-talk. In this proposal, atom trapping and qubit manipulation relies exclusively on long-wave radiation making it suitable for atom-chip technology. We demonstrate that selective qubit addressing with resonant microwaves can be programmed by controlling static and radio-frequency currents in microfabricated conductors. These results should enable studies of neutral-atom quantum computing architectures, powered by low-frequency electromagnetic fields with the benefit of simple schemes for controlling individual qubits in large ensembles.

  15. Radio frequency selection and interference prevention

    NASA Technical Reports Server (NTRS)

    Degroot, N. F.

    1982-01-01

    The bands available for deep-space communications, and the choice of particular mission frequencies are discussed. The more general susceptibility of deep-space Earth stations to various kinds of interference is then presented. An associated topic is the development of protection criteria that specify maximum allowable levels of interference. Next, the prediction of interference from near-Earth satellites is described, with particular emphasis on the problems and uncertainties of such predictions. Finally, a brief description of other activities aimed at the prevention or avoidance of interference to deep-space radio communications is given.

  16. The Mariner Mars 1971 radio frequency subsystem

    NASA Technical Reports Server (NTRS)

    Hughes, R. S.

    1972-01-01

    The radio frequency subsystem (RFS) for the Mariner Mars 1971 (MM'71) spacecraft is described. The MM'69 RFS was used as the baseline design for the MM'71 RFS, and the report describes the design changes made to the 1969 RFS for use on MM'71. It also cites various problems encountered during the fabrication and testing of the RFS, as well as the types of tests to which the RFS was subjected. In areas where significant problems were encountered, a detailed description of the problem and its solution is presented. In addition, some recommendations are given for modifications to the RFS and test techniques for future programs.

  17. High efficiency, oxidation resistant radio frequency susceptor

    DOEpatents

    Besmann, Theodore M.; Klett, James W.

    2004-10-26

    An article and method of producing an article for converting energy from one form to another having a pitch-derived graphitic foam carbon foam substrate and a single layer coating applied to all exposed surfaces wherein the coating is either silicon carbide or carbides formed from a Group IVA metal. The article is used as fully coated carbon foam susceptors that more effectively absorb radio frequency (RF) band energy and more effectively convert the RF energy into thermal band energy or sensible heat. The essentially non-permeable coatings also serve as corrosion or oxidation resistant barriers.

  18. Radio frequency ablation registration, segmentation, and fusion tool.

    PubMed

    McCreedy, Evan S; Cheng, Ruida; Hemler, Paul F; Viswanathan, Anand; Wood, Bradford J; McAuliffe, Matthew J

    2006-07-01

    The radio frequency ablation segmentation tool (RFAST) is a software application developed using the National Institutes of Health's medical image processing analysis and visualization (MIPAV) API for the specific purpose of assisting physicians in the planning of radio frequency ablation (RFA) procedures. The RFAST application sequentially leads the physician through the steps necessary to register, fuse, segment, visualize, and plan the RFA treatment. Three-dimensional volume visualization of the CT dataset with segmented three dimensional (3-D) surface models enables the physician to interactively position the ablation probe to simulate burns and to semimanually simulate sphere packing in an attempt to optimize probe placement. This paper describes software systems contained in RFAST to address the needs of clinicians in planning, evaluating, and simulating RFA treatments of malignant hepatic tissue. PMID:16871716

  19. Photonics-based tunable and broadband radio frequency converter

    NASA Astrophysics Data System (ADS)

    Borges, Ramon Maia; Mazzer, Daniel; Rufino Marins, Tiago Reis; Sodré, Arismar Cerqueira

    2016-03-01

    This paper is regarding the concept and development of a photonics-based tunable and broadband radio frequency converter (PBRC). It employs an external modulation technique to generate and reconfigure its output frequency, a digital circuit to manage the modulators' bias voltages, and an optical interface for connecting it to optical-wireless networks based on radio-over-fiber technology. The proposed optoelectronic device performs photonics-based upconversion and downconversion as a function of the local oscillator frequency and modulators' bias points. Experimental results demonstrate a radiofrequency (RF) carrier conversion with spectral purity over the frequency range from 750 MHz to 6.0 GHz, as well as the integration of the photonics-based converter with an optical backhaul based on a 1.5-km single-mode fiber from a geographically distributed optical network. Low phase noise and distortion absence illustrate its applicability for convergent and reconfigurable optical wireless communications. A potential application relies on the use of PBRC in convergent optical wireless networks to dynamically provide RF carriers as a function of the telecom operator demand and radio propagation environment.

  20. Radio frequency heating for in-situ remediation of DNAPL

    SciTech Connect

    Kasevich, R.S.

    1996-08-01

    In-situ radio frequency (RF) heating technology for treating soils contaminated with dense nonaqueous phase liquids (DNAPLs) is described. RF imparts heat to non-conducting materials through the application of carefully controlled RF transmissions, improving contaminant flow characteristics and facilitating separation and removal from subsurface soils. The paper outlines advantages and limitations of RF remediation, process operations, general technology considerations, low permeability media considerations, commercial availability, and costs. Two case histories of RF remediation are briefly summarized. 13 refs., 10 figs.

  1. Optical generation of radio-frequency power

    SciTech Connect

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100`s of mW`s at millimeter wave frequencies with a theoretical ``wall-plug`` efficiency approaching 34%.

  2. Plasma processing of superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  3. Radio Frequency Mass Gauging of Propellants

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Vaden, Karl R.; Herlacher, Michael D.; Buchanan, David A.; VanDresar, Neil T.

    2007-01-01

    A combined experimental and computer simulation effort was conducted to measure radio frequency (RF) tank resonance modes in a dewar partially filled with liquid oxygen, and compare the measurements with numerical simulations. The goal of the effort was to demonstrate that computer simulations of a tank's electromagnetic eigenmodes can be used to accurately predict ground-based measurements, thereby providing a computational tool for predicting tank modes in a low-gravity environment. Matching the measured resonant frequencies of several tank modes with computer simulations can be used to gauge the amount of liquid in a tank, thus providing a possible method to gauge cryogenic propellant tanks in low-gravity. Using a handheld RF spectrum analyzer and a small antenna in a 46 liter capacity dewar for experimental measurements, we have verified that the four lowest transverse magnetic eigenmodes can be accurately predicted as a function of liquid oxygen fill level using computer simulations. The input to the computer simulations consisted of tank dimensions, and the dielectric constant of the fluid. Without using any adjustable parameters, the calculated and measured frequencies agree such that the liquid oxygen fill level was gauged to within 2 percent full scale uncertainty. These results demonstrate the utility of using electromagnetic simulations to form the basis of an RF mass gauging technology with the power to simulate tank resonance frequencies from arbitrary fluid configurations.

  4. High density Al2O3/TaN-based metal insulator metal capacitors in application to radio frequency integrated circuits

    NASA Astrophysics Data System (ADS)

    Ding, Shi-Jin; Huang, Yu-Jian; Huang, Yue; Pan, Shao-Hui; Zhang, Wei; Wang, Li-Kang

    2007-09-01

    Metal-insulator-metal (MIM) capacitors with atomic-layer-deposited Al2O3 dielectric and reactively sputtered TaN electrodes in application to radio frequency integrated circuits have been characterized electrically. The capacitors exhibit a high density of about 6.05 fF/μm2, a small leakage current of 4.8×10-8 A/cm2 at 3V, a high breakdown electric field of 8.61MV/cm as well as acceptable voltage coefficients of capacitance (VCCs) of 795 ppm/V2 and 268ppm/V at 1 MHz. The observed properties should be attributed to high-quality Al2O3 film and chemically stable TaN electrodes. Further, a logarithmically linear relationship between quadratic VCC and frequency is observed due to the change of relaxation time with carrier mobility in the dielectric. The conduction mechanism in the high field ranges is dominated by the Poole-Frenkel emission, and the leakage current in the low field ranges is likely to be associated with trap-assisted tunnelling. Meanwhile, the Al2O3 dielectric presents charge trapping under low voltage stresses, and defect generation under high voltage stresses, and it has a hard-breakdown performance.

  5. Ultra-stable radio frequency dissemination in free space.

    PubMed

    Miao, J; Wang, B; Gao, C; Bai, Y; Zhu, X; Wang, L J

    2013-10-01

    We demonstrate an ultra-stable radio frequency (RF) dissemination scheme over 80 m free space. The frequency dissemination stability is 3.2 × 10(-13)/s and 4.4 × 10(-17)/day, which can be applied to transfer frequency signal without compromising its stability in a global navigation satellite system (GNSS) or radio astronomy. PMID:24182140

  6. Impact of contact and access resistances in graphene field-effect transistors on quartz substrates for radio frequency applications

    SciTech Connect

    Ramón, Michael E. E-mail: hemacp@utexas.edu; Movva, Hema C. P. E-mail: hemacp@utexas.edu; Fahad Chowdhury, Sk.; Parrish, Kristen N.; Rai, Amritesh; Akinwande, Deji; Banerjee, Sanjay K.; Magnuson, Carl W.; Ruoff, Rodney S.

    2014-02-17

    High-frequency performance of graphene field-effect transistors (GFETs) has been limited largely by parasitic resistances, including contact resistance (R{sub C}) and access resistance (R{sub A}). Measurement of short-channel (500 nm) GFETs with short (200 nm) spin-on-doped source/drain access regions reveals negligible change in transit frequency (f{sub T}) after doping, as compared to ∼23% f{sub T} improvement for similarly sized undoped GFETs measured at low temperature, underscoring the impact of R{sub C} on high-frequency performance. DC measurements of undoped/doped short and long-channel GFETs highlight the increasing impact of R{sub A} for larger GFETs. Additionally, parasitic capacitances were minimized by device fabrication using graphene transferred onto low-capacitance quartz substrates.

  7. Remote Sensing: Radio Frequency Detection for High School Physics Students

    NASA Astrophysics Data System (ADS)

    Huggett, Daniel; Jeandron, Michael; Maddox, Larry; Yoshida, Sanichiro

    2011-10-01

    In an effort to give high school students experience in real world science applications, we have partnered with Loranger High School in Loranger, LA to mentor 9 senior physics students in radio frequency electromagnetic detection. The effort consists of two projects: Mapping of 60 Hz noise around the Laser Interferometer Gravitational Wave Observatory (LIGO), and the construction of a 20 MHz radio telescope for observations of the Sun and Jupiter (Radio Jove, NASA). The results of the LIGO mapping will aid in strategies to reduce the 60 Hz line noise in the LIGO noise spectrum. The Radio Jove project will introduce students to the field of radio astronomy and give them better insight into the dynamic nature of large solar system objects. Both groups will work together in the early stages as they learn the basics of electromagnetic transmission and detection. The groups will document and report their progress regularly. The students will work under the supervision of three undergraduate mentors. Our program is designed to give them theoretical and practical knowledge in radiation and electronics. The students will learn how to design and test receiver in the lab and field settings.

  8. Simultaneous dual-frequency, round-trip calibration of Doppler data with application to radio science experiments

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1978-01-01

    Simultaneous dual-frequency, round-trip calibration of Doppler data is discussed in light of unequal spacecraft turnaround ratios at S- and X-band. The impact of unequal turnaround ratios on calibration accuracies in the specific cases of the Gravitational Wave Detection Experiment and the Solar Gravitational Quadrupole Moment Experiment is considered.

  9. Radio-frequency low-coherence interferometry.

    PubMed

    Fernández-Pousa, Carlos R; Mora, José; Maestre, Haroldo; Corral, Pablo

    2014-06-15

    A method for retrieving low-coherence interferograms, based on the use of a microwave photonics filter, is proposed and demonstrated. The method is equivalent to the double-interferometer technique, with the scanning interferometer replaced by an analog fiber-optics link and the visibility recorded as the amplitude of its radio-frequency (RF) response. As a low-coherence interferometry system, it shows a decrease of resolution induced by the fiber's third-order dispersion (β3). As a displacement sensor, it provides highly linear and slope-scalable readouts of the interferometer's optical path difference in terms of RF, even in the presence of third-order dispersion. In a proof-of-concept experiment, we demonstrate 20-μm displacement readouts using C-band EDFA sources and standard single-mode fiber. PMID:24978555

  10. Hybrid optical radio frequency airborne communications

    NASA Astrophysics Data System (ADS)

    Bagley, Zachary C.; Hughes, David H.; Juarez, Juan C.; Kolodzy, Paul; Martin, Todd; Northcott, Malcolm; Pike, H. Alan; Plasson, Ned D.; Stadler, Brian; Stotts, Larry B.; Young, David W.

    2012-05-01

    Optical RF Communications Adjunct Program flight test results provide validation of the theoretical models and hybrid optical radio frequency (RF) airborne system concepts developed by the Defense Advanced Research Projects Agency and the U.S. Air Force Research Laboratory. Theoretical models of the free-space optical communications (FSOC), RF, and network components accurately predict the flight test results under a wide range of day and night operating conditions. The FSOC system, including the adaptive optics and optical modem, can operate under high turbulence conditions. The RF and network mechanisms of Layer 2 retransmission and failover provide increased reliability, reducing end-to-end packet error rates. Overall the test results show that stable, long-range FSOC is possible and practical for near-term operations.

  11. Radio frequency field assisted cold collisions

    NASA Astrophysics Data System (ADS)

    Ding, Yijue; D'Incao, Jose; Greene, Chris

    2016-05-01

    The radio frequency (RF) field is a promising but less developed tool to control cold collisions. From the few-body perspective, we study cold atom collisions in an external magnetic field and a single-color RF field. We employ the multi-channel quantum defect theory and the hyperspherical toolkit to solve the two-body and three-body Schrödinger equations. Our results show that RF fields can effectively control the two-body scattering length through Feshbach resonances. Such RF induced Feshbach resonances can be applied to quenching experiments or spinor condensates. Analogous to photo association, RF fields can also associate cold atoms into molecules with a reasonable rate. Moreover, we will discuss the feasibility of using RF fields to control three-body recombination, which may improve the experimental timescale by suppressing three-body losses. This work is supported by the US National Science Foundation.

  12. An improved integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  13. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cao, Yu; Che, Yuchi; Seo, Jung-Woo T.; Gui, Hui; Hersam, Mark C.; Zhou, Chongwu

    2016-06-01

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ˜1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ˜100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailored diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.

  14. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna radio frequency indicator. 80.1019 Section 80.1019 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1019 Antenna radio...

  15. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna radio frequency indicator. 80.1019 Section 80.1019 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1019 Antenna radio...

  16. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna radio frequency indicator. 80.1019 Section 80.1019 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1019 Antenna radio...

  17. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna radio frequency indicator. 80.1019 Section 80.1019 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1019 Antenna radio...

  18. Trirotron: triode rotating beam radio frequency amplifier

    DOEpatents

    Lebacqz, Jean V.

    1980-01-01

    High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.

  19. Polarimetric Observations at Low Radio Frequencies

    NASA Astrophysics Data System (ADS)

    Farnes, J. S.

    2012-06-01

    Magnetic fields play a fundamental role in the evolution of astrophysical systems. These fields can be studied through wide-field spectropolarimetry, which allows for faint polarised signals to be detected at relatively low radio frequencies. An interferometric polarisation mode has recently become available at the Giant Metrewave Radio Telescope (GMRT). A detailed analysis of the GMRT's instrumental response is presented. The findings are used to create a polarisation pipeline, which in combination with rotation measure (RM) Synthesis is used for the detection of extended linearly polarised emission at 610 MHz. A number of compact sources are detected and their Faraday depth and polarisation fraction are reported. New holography observations of the GMRT's primary beam are presented. Instantaneous off-axis polarisation is substantial and scales with the Stokes I beam. The developed beam models are used to reduce direction-dependent instrumental polarisation, and the Stokes I beam is shown to deviate from circular symmetry. A new technique for electric vector polarisation angle calibration is developed that removes the need for known sources on the sky, eliminates ionospheric effects, and avoids a flaw in current methods which could erroneously yield multiple Faraday components for sources that are well-parameterised by a single RM. A sample of nine galaxies from two Southern Compact Groups are then presented, with constraints being placed on the polarised fraction, RM, spectral index, star formation rate, companion sources, and hydrodynamical state. One galaxy has a displaced peak of radio emission that is extended beyond the disk in comparison to the near-IR disk - suggesting the radio disturbance may be a consequence of ram pressure stripping. Linear polarisation is detected from the core of NGC 7552 at 610 MHz, while another three galaxies ESO 0353-G036, NGC 7590, and NGC 7599 are found to be unpolarised. An analysis of additional extended sources allows for an

  20. Effect of high current electron beam in a 30 MeV radio frequency linac for neutron-time-of-flight applications

    NASA Astrophysics Data System (ADS)

    Nayak, B.; Acharya, S.; Rajawat, R. K.; DasGupta, K.

    2016-01-01

    A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ˜1012-1013 n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentials are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.

  1. Design and measurement of an integrated wideband radio frequency low-noise amplifier for terrestrial digital television applications

    NASA Astrophysics Data System (ADS)

    Albasha, Lutfi

    2010-05-01

    In this article, the design and measurement details of a wideband low-noise amplifier (LNA) are presented. The LNA was successfully designed to operate over very high and ultra high frequency (VHF and UHF) ranges according to Digital TV (DVB-T) specifications. The novelty of the design lies in the achievement of low noise figure (NF) and high reverse isolation level across a wide bandwidth despite the resistive feedback topology. The latter was required in order to integrate the front-end block with a direct-conversion receiver. A measured large-signal compression point of P1dB = -10 dBm and a small-signal gain of 16 dB with gain flatness of <1 dB ripple, have all met commercial specifications tested over corners. The NF achieved was better than that specified and was less than 2 dB across the bandwidth. This front-end block was implemented in a commercial 0.25 μm Si BiCMOS process (f T = 20 GHz). The article discusses the measurement uncertainties imposed by the wide bandwidth, particularly in NF measurements, and the techniques adopted in this work to mitigate the errors imposed.

  2. Portable radio frequency hyperthermia instrumentation. [For heating tumor tissues in situ

    SciTech Connect

    Doss, J.D.; McCabe, C.W.

    1980-01-01

    Portable radio frequency hyperthermia instrumentation has been constructed for application in the localized heating of human and animal tumors. Tissue temperature is regulated by electronic feedback techniques. Audible and visual monitoring of tissue temperature is provided.

  3. POTENTIAL HUMAN STUDY POPULATIONS FOR NON-IONIZING (RADIO FREQUENCY) RADIATION HEALTH EFFECTS

    EPA Science Inventory

    This research project was initiated to identify potential human populations for future epidemiological studies of the health effects of radio frequency radiation. Through a literature search and contacts with various groups and organizations, numerous occupations and applications...

  4. IN SITU AND SOIL DECONTAMINATION BY RADIO FREQUENCY HEATING

    EPA Science Inventory

    In situ radio frequency heating is performed by applying electromagnetic energy in the radio frequency band to an array of electrodes placed in bore holes drilled through the contaminated soil. he process removes organic contaminants from large volumes of soil by volatilization, ...

  5. 48 CFR 211.275 - Passive radio frequency identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Passive radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Passive radio frequency identification....

  6. 48 CFR 211.275 - Passive radio frequency identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Passive radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Passive radio frequency identification....

  7. 48 CFR 211.275 - Passive radio frequency identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Passive radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Passive radio frequency identification....

  8. 48 CFR 211.275 - Passive radio frequency identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Passive radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Passive radio frequency identification....

  9. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - KAI TECHNOLOGIES, INC.

    EPA Science Inventory

    Radio frequency heating (RFH) is a process that uses electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by KAI Technologies, I...

  10. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna....

  11. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna....

  12. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna....

  13. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna....

  14. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna....

  15. Radio Frequency Ablation for Primary Liver Cancer

    PubMed Central

    2004-01-01

    Executive Summary Objective The Medical Advisory Secretariat undertook a review of the evidence on the safety, clinical effectiveness, and cost-effectiveness of radio frequency ablation (RFA) compared with other treatments for unresectable hepatocellular carcinoma (HCC) in Ontario. Background Liver cancer is the fifth most common type of cancer globally, although it is most prevalent in Asia and Africa. The incidence of liver cancer has been increasing in the Western world, primarily because of an increased prevalence of hepatitis B and C. Data from Cancer Care Ontario from 1998 to 2002 suggest that the age-adjusted incidence of liver cancer in men rose slightly from 4.5 cases to 5.4 cases per 100,000 men. For women, the rates declined slightly, from 1.8 cases to 1.4 cases per 100,000 women during the same period. Most people who present with symptoms of liver cancer have a progressive form of the disease. The rates of survival in untreated patients in the early stage of the disease range from 50% to 82% at 1 year and 26% to 32% at 2 years. Patients with more advanced stages have survival rates ranging from 0% to 36% at 3 years. Surgical resection and transplantation are the procedures that have the best prognoses; however, only 15% to 20% of patients presenting with liver cancer are eligible for surgery. Resection is associated with a 50% survival rate at 5 years. The Technology: Radio Frequency Ablation RFA is a relatively new technique for the treatment of small liver cancers that cannot be treated with surgery. This technique applies alternating high-frequency electrical currents to the cancerous tissue. The intense heat leads to thermal coagulation that can kill the tumour. RFA is done under general or local anesthesia and can be done percutaneously (through the skin with a small needle), laparoscopically (microinvasively, using a small video camera), or intraoperatively. Percutaneous RFA is usually a day procedure. Methods The leading international

  16. Extending the ICRF to Higher Radio Frequencies

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Jones, D. L.; Lanyi, G. E.; Lowe, S. T.; Naudet, C. J.; Resch, G. M.; Steppe, J. A.; Zhang, L. D.; Ulvestad, J. S.; Taylor, G. B.

    2002-01-01

    The ICRF forms the basis for all astrometry including use as the inertial coordinate system for navigating deep space missions. This frame was defined using S/X-band observations over the past 20+ years. In January 2002, the VLBA approved our proposal for observing time to extend the ICRF to K-band (24 GHz) and Q-band (43 GHz). The first step will be observations at K- and Q-bands on a subset of ICRF sources. Eventually, K- and Q-band multi-epoch observations will be used to estimate positions, flux density and source structure for a large fraction of the current S/X-band ICRF source list. This work will benefit the radio astronomy community by extending the VLBA calibrator list at these bands. In the longer term, we would also like to extend the ICRF to Ka-band (32 GHz). A celestial reference frame will be needed at this frequency to support deep space navigation. A navigation demonstration is being considered for NASA's Mars 2005 mission. The initial K- and Q-band work will serve to identify candidate sources at Ka-band for use with that mission.

  17. Directional Radio-Frequency Identification Tag Reader

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Taylor, John D.; Henderson, John J.

    2004-01-01

    A directional radio-frequency identification (RFID) tag reader has been designed to facilitate finding a specific object among many objects in a crowded room. The device could be an adjunct to an electronic inventory system that tracks RFID-tagged objects as they move through reader-equipped doorways. Whereas commercial RFID-tag readers do not measure directions to tagged objects, the device is equipped with a phased-array antenna and a received signal-strength indicator (RSSI) circuit for measuring direction. At the beginning of operation, it is set to address only the RFID tag of interest. It then continuously transmits a signal to interrogate that tag while varying the radiation pattern of the antenna. It identifies the direction to the tag as the radiation pattern direction of peak strength of the signal returned by the tag. An approximate distance to the tag is calculated from the peak signal strength. The direction and distance can be displayed on a screen. A prototype containing a Yagi antenna was found to be capable of detecting a 915.5-MHz tag at a distance of approximately equal to 15 ft (approximately equal to 4.6 m).

  18. Time frequency requirements for radio interferometric earth physics

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.; Fliegel, H. F.

    1973-01-01

    Two systems of VLBI (Very Long Baseline Interferometry) are now applicable to earth physics: an intercontinental baseline system using antennas of the NASA Deep Space Network, now observing at one-month intervals to determine UTI for spacecraft navigation; and a shorter baseline system called ARIES (Astronomical Radio Interferometric Earth Surveying), to be used to measure crustal movement in California for earthquake hazards estimation. On the basis of experience with the existing DSN system, a careful study has been made to estimate the time and frequency requirements of both the improved intercontinental system and of ARIES. Requirements for the two systems are compared and contrasted.

  19. Highly sensitive passive radio frequency identification based sensor systems

    NASA Astrophysics Data System (ADS)

    Wissenwasser, J.; Vellekoop, M.; Heer, R.

    2010-02-01

    A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments.

  20. Highly sensitive passive radio frequency identification based sensor systems.

    PubMed

    Wissenwasser, J; Vellekoop, M; Heer, R

    2010-02-01

    A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments. PMID:20192517

  1. Flicker of extragalactic radio sources at two frequencies

    SciTech Connect

    Simonetti, J.H.; Cordes, J.M.; Heeschen, D.S.

    1985-09-01

    Dual-frequency observations of flat and steep-spectrum extragalactic radio sources made at Arecibo Observatory over a 20-day period are analyzed. As first reported by Heeschen (1982, 1984), flat-spectrum sources generally have larger intensity variations than steep-spectrum ones. A structure function analysis demonstrates a qualitative difference in the time series of the sources. The case against interstellar scintillation is examined, including a review of applicable scintillation theory. Relativistic source motion is treated as a solution to the brightness-temperature problems which arise if the variations are assumed intrinsic to the sources. 16 references.

  2. Method and apparatus for radio frequency ceramic sintering

    DOEpatents

    Hoffman, Daniel J.; Kimrey, Jr., Harold D.

    1993-01-01

    Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents.

  3. Method and apparatus for radio frequency ceramic sintering

    DOEpatents

    Hoffman, D.J.; Kimrey, H.D. Jr.

    1993-11-30

    Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents. 6 figures.

  4. An all-optical frequency up-converter utilizing four-wave mixing in a semiconductor optical amplifier for sub-carrier multiplexed radio-over-fiber applications.

    PubMed

    Kim, Hyoung-Jun; Song, Jong-In; Song, Ho-Jin

    2007-03-19

    A novel all-optical frequency up-converter utilizing four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) was proposed and experimentally demonstrated. The frequency up-converter converted an optical intermediate frequency (IF) signal (f(IF) = 2.5 GHz) to an optical radio frequency (RF) signal (f(RF) = 35 and 40 GHz) through mixing with an optical local oscillator (LO) signal (f(LO) = 37.5 GHz). The up-converter showed positive conversion efficiency of 5.77 dB for the optical IF power of -22 dBm and the optical LO power of -13 dBm. This scheme showed broad bandwidths with respect to both LO and IF frequencies. The up-converter showed a phase noise of -84.5 dBc/Hz for the LO frequency of 37.5 GHz (f(LO)) and the offset frequency of 10 kHz after the frequency up-conversion. PMID:19532579

  5. Dynamics Of Ions In A Radio-Frequency Quadrupole Trap

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Williams, Angelyn P.; Maleki, Lutfollah

    1994-01-01

    Report describes computer-simulation study of motions of various numbers of ions in Paul trap. Study part of continuing effort to understand motions of trapped charged particles (atoms, ions, molecules, or dust particles). Motions characterized in terms of heating by radio-frequency fields, formation of crystallike structures in cold clouds of trapped particles, and other phenomena important in operation of radio-frequency traps in frequency standards.

  6. High-power radio-frequency attenuation device

    DOEpatents

    Kerns, Q.A.; Miller, H.W.

    1981-12-30

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  7. 78 FR 19311 - Certain Radio Frequency Identification (“RFID”) Products And Components Thereof; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... COMMISSION Certain Radio Frequency Identification (``RFID'') Products And Components Thereof; Institution of... importation, and the sale within the United States after importation of certain radio frequency identification... sale within the United States after importation of certain radio frequency identification...

  8. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator

    SciTech Connect

    Peng, Shixiang Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Zhang, Ailing; Chen, Jia'er; University of Chinese Academy of Sciences, Beijing 100049

    2014-02-15

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  9. Radio-frequency ion deflector for mass separation.

    PubMed

    Schlösser, Magnus; Rudnev, Vitaly; González Ureña, Ángel

    2015-10-01

    Electrostatic cylindrical deflectors act as energy analyzer for ion beams. In this article, we present that by imposing of a radio-frequency modulation on the deflecting electric field, the ion transmission becomes mass dependent. By the choice of the appropriate frequency, amplitude, and phase, the deflector can be used as mass filter. The basic concept of the new instrument as well as simple mathematic relations are described. These calculations and further numerical simulations show that a mass sensitivity is achievable. Furthermore, we demonstrate the proof-of-principle in experimental measurements, compare the results to those of from a 1 m linear time-of-flight spectrometer, and comment on the mass resolution of the method. Finally, some potential applications are indicated. PMID:26520948

  10. Radio-frequency ion deflector for mass separation

    SciTech Connect

    Schlösser, Magnus Rudnev, Vitaly; Ureña, Ángel González

    2015-10-15

    Electrostatic cylindrical deflectors act as energy analyzer for ion beams. In this article, we present that by imposing of a radio-frequency modulation on the deflecting electric field, the ion transmission becomes mass dependent. By the choice of the appropriate frequency, amplitude, and phase, the deflector can be used as mass filter. The basic concept of the new instrument as well as simple mathematic relations are described. These calculations and further numerical simulations show that a mass sensitivity is achievable. Furthermore, we demonstrate the proof-of-principle in experimental measurements, compare the results to those of from a 1 m linear time-of-flight spectrometer, and comment on the mass resolution of the method. Finally, some potential applications are indicated.

  11. Solar system radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1987-01-01

    The planetary radio-astronomy observations obtained with the two Voyager spacecraft since their launch in 1977 are briefly characterized and illustrated with graphs, diagrams, and sample spectra. Topics addressed include the spacecraft designs and trajectories, the wavelength coverage of the radio instruments, the Io-controlled LF emission of Jupiter, the solar-wind effect on the Saturn kilometric radiation, the Saturn electrostatic discharges, and the use of the clocklike feature of the Uranus emission to measure the planet's rotation period.

  12. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    NASA Astrophysics Data System (ADS)

    Ahmad, Mahmoud Al; Alshareef, H. N.

    2012-02-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates in the line it sets an alternating current in the actuator electrodes. This flowing current drives the piezoelectric cantilever to mechanical movement, especially when the frequency of the RF signal matches the mechanical resonant frequency of the cantilever. Output voltage signals versus frequency for both mechanical vibrational and RF signal excitations have been measured using different loads.

  13. Effect of economic techniques on radio frequency utilization

    NASA Astrophysics Data System (ADS)

    Fox, Richard N.

    1991-03-01

    This thesis compares the efficacy of spectrum assignment and allocation using a market based system with the current government controlled regulatory system. In making this comparison, a brief review of the spectrum and its radio communication uses is given. An examination of the current system--historical, organizational and political--is also presented. The spectrum is then discussed as a resource in relation to its economic characteristics: supply, demand, opportunity costs, prices, externalities and property rights. Although the spectrum is a unique resource as compared to most other natural resources, this conclusion is no valid reason for not allowing the establishment of a spectrum market exists. An examination of how such a market might be established and operated, and the implications of such a market are then discussed, with an example of how this market would operate in the Land Mobile Radio Services. To better illustrate this point, a brief history of land mobile radio, its technology and applications, and current allocation and assignment mechanisms is also presented. This study concludes by discussing the importance of the frequency spectrum to economic growth, summarizes the advantages and disadvantages of both marketplace and government regulation, and proposes that a market trial be instituted to test the viability of a spectral market.

  14. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - IIT RESEARCH INSTITUTE

    EPA Science Inventory

    Radio frequency heating (RFH) is a process that uses electromagnetic energy generated by radio waves to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by the IIT Research Institute ...

  15. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 80.1019 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must...

  16. Solar observations with a low frequency radio telescope

    NASA Astrophysics Data System (ADS)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  17. Radio frequency overview of the high explosive radio telemetry project

    SciTech Connect

    Bracht, R.; Dimsdle, J.; Rich, D.; Smith, F.

    1998-12-31

    High explosive radio telemetry (HERT) is a project that is being developed jointly by Los Alamos National Laboratory and AlliedSignal Federal Manufacturing and Technologies. The ultimate goal is to develop a small, modular telemetry system capable of high-speed detection of explosive events, with an accuracy on the order of 10 nanoseconds. The reliable telemetry of this data, from a high-speed missile trajectory, is a very challenging opportunity. All captured data must be transmitted in less than 20 microseconds of time duration. This requires a high bits/Hertz microwave telemetry modulation code to insure transmission of the data with the limited time interval available.

  18. Radio frequency identification enabled wireless sensing for intelligent food logistics.

    PubMed

    Zou, Zhuo; Chen, Qiang; Chen, Qing; Uysal, Ismail; Zheng, Lirong

    2014-06-13

    Future technologies and applications for the Internet of Things (IoT) will evolve the process of the food supply chain and create added value of business. Radio frequency identifications (RFIDs) and wireless sensor networks (WSNs) have been considered as the key technological enablers. Intelligent tags, powered by autonomous energy, are attached on objects, networked by short-range wireless links, allowing the physical parameters such as temperatures and humidities as well as the location information to seamlessly integrate with the enterprise information system over the Internet. In this paper, challenges, considerations and design examples are reviewed from system, implementation and application perspectives, particularly with focus on intelligent packaging and logistics for the fresh food tracking and monitoring service. An IoT platform with a two-layer network architecture is introduced consisting of an asymmetric tag-reader link (RFID layer) and an ad-hoc link between readers (WSN layer), which are further connected to the Internet via cellular or Wi-Fi. Then, we provide insights into the enabling technology of RFID with sensing capabilities. Passive, semi-passive and active RFID solutions are discussed. In particular, we describe ultra-wideband radio RFID which has been considered as one of the most promising techniques for ultra-low-power and low-cost wireless sensing. Finally, an example is provided in the form of an application in fresh food tracking services and corresponding field testing results. PMID:24797140

  19. Searching for Low-Frequency Radio Transients from Supernovae

    NASA Astrophysics Data System (ADS)

    Tsai-Wei, Jr.; Cutchin, Sean; Kothari, Manthan; Schmitt, Christian; Kavic, Michael; Simonetti, John

    2011-10-01

    Supernovae events may be accompanied by prompt emission of a low-frequency electromagnetic transient. These transient events are created by the interaction of a shock wave of charged particles created by SN core-collapse with a stars ambient magnetic field. Such events can be detected in low-frequency radio array. Here we discuss an ongoing search for such events using two radio arrays: the Long Wavelength Array (LWA) and Eight-meter-wavelength Transient Array (ETA).

  20. Application of disturbance observer-based control in low-level radio-frequency system in a compact energy recovery linac at KEK

    NASA Astrophysics Data System (ADS)

    Qiu, Feng; Michizono, Shinichiro; Miura, Takako; Matsumoto, Toshihiro; Omet, Mathieu; Sigit, Basuki Wibowo

    2015-09-01

    A disturbance observer (DOB)-based control for a digital low-level radio-frequency (LLRF) system in a compact energy recovery linac (cERL) at KEK has been developed. The motivation for this control approach is to compensate for or suppress the disturbance signal in the rf system such as beam loading, power supply ripples, and microphonics. Disturbance signals in specified frequency ranges were observed and reconstructed accurately in the field-programmable gate array and were then removed in the feedforward model in real time. The key component in this DOB controller is a disturbance observer, which includes the inverse mathematical model of the rf plant. In this paper, we have designed a DOB control-based approach in order to improve the LLRF system performance in disturbance rejection. We have confirmed this approach in the cERL beam commissioning.

  1. Radio-frequency Plasma Sheath Studies

    NASA Astrophysics Data System (ADS)

    Hicks, Nathaniel

    2015-09-01

    The response of ion-electron plasma as well as two-component plasma to RF fields is studied via PIC simulation. In each case, the light species responds strongly to the RF and the heavy species does not. By varying the external electrode geometry, RF waveform, and driving voltage and frequency, light species of certain charge-to-mass ratios may experience a trapping effect within the RF structure. The space charge of this species creates a potential well for the oppositely-charged, heavy species. Simulation results are presented, as well as plans for experimental investigation of the same effect. Applications to plasma processes in which a plasma boundary is subjected to external RF fields are discussed.

  2. Solar radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Dulk, George A.

    1990-01-01

    The characteristics of solar radio emissions at decametric to kilometric wavelengths are reviewed. Special attention is given to the radiation of the quiet sun at several metric and decametric wavelengths and to nonthermal radiation from the active sun, including radio bursts of type III (electron beams), type-III bursts from behind the sun, storms of type III bursts, the flare-associated radio bursts, type II bursts (shock waves), and shock-associated bursts. It is pointed out that almost no observations have been made so far of solar radiation between about 20 MHz and about 2 MHz. Below about 2 MHz, dynamic spectra of flux densities of solar burst have been recorded in space and observations were made of the directions of centroids and characteristic sizes of the emitting sources.

  3. Radio-frequency identification: its potential in healthcare.

    PubMed

    2005-05-01

    Radio-frequency identification (RFID) technology is just starting to make inroads into healthcare. RFID uses radio-frequency tags attached to people or objects to provide identification, tracking, security, and other functions that fall under the general heading of automatic identification and data capture (AIDC). In the retail supply chain, RFID is already well established as a way to reduce theft and track objects from manufacture through shipment to delivery. In healthcare, basic RFID is already being used to track patients for anti-elopement and anti-abduction programs. As more sophisticated systems move into hospitals, RFID is also beginning to see use to provide more extensive patient identification than traditional bar coding can, and to track and locate capital equipment within the hospital. In years to come, RFID could be used for a variety of applications, including tracking and matching blood for transfusions, tracking pharmaceuticals, and combating the counterfeiting of medical products. RFID may ultimately be used for many of the functions currently carried out using bar coding--but not until the cost of RFID comes down. For the foreseeable future, the two technologies are likely to be used in tandem in many hospitals. In this article, we describe the components and operation of RFID systems and detail the different ways in which these systems are being used, and could be used, in hospitals. PMID:16048121

  4. New method for recovering weak coherent radio frequency signals

    SciTech Connect

    Goree, J.

    1985-03-01

    A single radio frequency lock-in amplifier reduces broadband noise, but not rf pickup of the same frequency as the signal. If this pickup noise is at least 14 dB stronger than broadband noise, after both have passed through the lock-in, then the signal-to-noise ratio can be improved by applying the lock-in output to a second, low frequency lock-in which is synchronized to an independent modulation of the signal. Weak coherent radio frequency signals buried in both rf pickup and broadband nise can be recovered by using this double lock-in method, as demonstrated in a plasma diagnostics experiment.

  5. Photonic radio frequency phase-shift amplification by radio frequency interferometry.

    PubMed

    Ayun, Moshe Ben; Schwarzbaum, Arye; Rosenberg, Seva; Pinchas, Monika; Sternklar, Shmuel

    2015-11-01

    We present a new technique for radio frequency (RF) phase-shift amplification based on RF interferometry and demonstrate it in an optical system. A striking feature of this amplifier is that the input phase noise is not amplified together with the input phase signal, so the phase sensitivity improves with higher phase amplification. We also predict that in the case of correlated amplitude noise, the sensitivity is not affected by the amplitude noise. With 600 MHz of modulated light and a phase amplification of 100, we demonstrate a phase resolution of 0.2 mrad, giving a distance resolution of 8 μm. We postulate that nanometric distance resolution can be achieved with sub-gigahertz modulation. PMID:26512469

  6. The Radio Frequency Health Node Wireless Sensor System

    NASA Technical Reports Server (NTRS)

    Valencia, J. Emilio; Stanley, Priscilla C.; Mackey, Paul J.

    2009-01-01

    The Radio Frequency Health Node (RFHN) wireless sensor system differs from other wireless sensor systems in ways originally intended to enhance utility as an instrumentation system for a spacecraft. The RFHN can also be adapted to use in terrestrial applications in which there are requirements for operational flexibility and integrability into higher-level instrumentation and data acquisition systems. As shown in the figure, the heart of the system is the RFHN, which is a unit that passes commands and data between (1) one or more commercially available wireless sensor units (optionally, also including wired sensor units) and (2) command and data interfaces with a local control computer that may be part of the spacecraft or other engineering system in which the wireless sensor system is installed. In turn, the local control computer can be in radio or wire communication with a remote control computer that may be part of a higher-level system. The remote control computer, acting via the local control computer and the RFHN, cannot only monitor readout data from the sensor units but can also remotely configure (program or reprogram) the RFHN and the sensor units during operation. In a spacecraft application, the RFHN and the sensor units can also be configured more nearly directly, prior to launch, via a serial interface that includes an umbilical cable between the spacecraft and ground support equipment. In either case, the RFHN wireless sensor system has the flexibility to be configured, as required, with different numbers and types of sensors for different applications. The RFHN can be used to effect realtime transfer of data from, and commands to, the wireless sensor units. It can also store data for later retrieval by an external computer. The RFHN communicates with the wireless sensor units via a radio transceiver module. The modular design of the RFHN makes it possible to add radio transceiver modules as needed to accommodate additional sets of wireless sensor

  7. Quartz antenna for radio frequency ion source operation

    SciTech Connect

    Lee, Y.; Gough, R.A.; Leung, K.N.; Perkins, L.T.; Pickard, D.S.; Vujic, J.; Wu, L.K.; Olivo, M.; Einenkel, H.

    1998-02-01

    Radio-frequency (rf) driven multicusp ion sources developed at the Lawrence Berkeley National Laboratory use an internal induction coil (antenna) for plasma generation. The copper rf-antenna with a thin layer of porcelain coating, which is presently used, cannot fully satisfy the increasing demands on source cleanliness and antenna lifetime under high power cw or pulsed operation in applications where water cooling is not possible. A quartz antenna has been designed and operated in the multicusp ion source. It has been demonstrated that the overall performance of the new antenna exceeds that of the regular porcelain-coated antenna. It can be operated with a long lifetime in different discharge plasmas. The quartz antenna has also been tested at the Paul Scherrer Institute for cw source operation at rf power higher than 5 kW. Results demonstrated that the antenna can survive under dense plasma discharge operations. {copyright} {ital 1998 American Institute of Physics.}

  8. Near-least-squares radio frequency interference suppression

    NASA Astrophysics Data System (ADS)

    Miller, Timothy R.; McCorkle, John W.; Potter, Lee C.

    1995-06-01

    We present an algorithm for the removal of narrow-band interference from wideband signals. We apply the algorithm to suppress radio frequency interference encountered by ultra- wideband synthetic aperture radar systems used for foliage- and ground-penetrating imaging. For this application, we seek maximal reduction of interference energy, minimal loss and distortion of wideband target responses, and real-time implementation. To balance these competing objectives, we exploit prior information concerning the interference environment in designing an estimate-and-subtract-estimation algorithm. The use of prior knowledge allows fast, near-least-squares estimation of the interference and permits iterative target signature excision in the interference estimation procedure to decrease estimation bias. The results is greater interference suppression, less target signature loss and distortion, and faster computation than is provided by existing techniques.

  9. RFQ (radio-frequency quadrupole) accelerators for heating thermonuclear plasmas

    SciTech Connect

    Stokes, R.H.; Wangler, T.P.; Crandall, K.R.

    1987-01-01

    The radio-frequency quadrupole (RFQ) accelerator has been developed to generate high-current ion beams for a wide variety of applications. It has also been suggested that this type of accelerator could be used to produce megawatt ion beams to heat thermonuclear reactor plasmas. For a tokamak reactor, an RFQ accelerator can be designed to provide negative deuterium ions that are neutralized before injection through the tokamak magentic field. Also, it may be possible to use singly charged, positive, heavier ions that trasverse the magnetic field with minimal deflection and then become multiply ionized upon striking the tokamak plasma. We present preliminary RFQ beam-dynamics designs for both deuterium and oxygen ions.

  10. Radio frequency electromagnetic field compliance assessment of multi-band and MIMO equipped radio base stations.

    PubMed

    Thors, Björn; Thielens, Arno; Fridén, Jonas; Colombi, Davide; Törnevik, Christer; Vermeeren, Günter; Martens, Luc; Joseph, Wout

    2014-05-01

    In this paper, different methods for practical numerical radio frequency exposure compliance assessments of radio base station products were investigated. Both multi-band base station antennas and antennas designed for multiple input multiple output (MIMO) transmission schemes were considered. For the multi-band case, various standardized assessment methods were evaluated in terms of resulting compliance distance with respect to the reference levels and basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Both single frequency and multiple frequency (cumulative) compliance distances were determined using numerical simulations for a mobile communication base station antenna transmitting in four frequency bands between 800 and 2600 MHz. The assessments were conducted in terms of root-mean-squared electromagnetic fields, whole-body averaged specific absorption rate (SAR) and peak 10 g averaged SAR. In general, assessments based on peak field strengths were found to be less computationally intensive, but lead to larger compliance distances than spatial averaging of electromagnetic fields used in combination with localized SAR assessments. For adult exposure, the results indicated that even shorter compliance distances were obtained by using assessments based on localized and whole-body SAR. Numerical simulations, using base station products employing MIMO transmission schemes, were performed as well and were in agreement with reference measurements. The applicability of various field combination methods for correlated exposure was investigated, and best estimate methods were proposed. Our results showed that field combining methods generally considered as conservative could be used to efficiently assess compliance boundary dimensions of single- and dual-polarized multicolumn base station antennas with only minor increases in compliance distances. PMID:24523232

  11. Low-Frequency Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.

  12. 47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Marketing of radio frequency devices prior to... FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.803 Marketing of radio frequency devices prior to equipment authorization. (a) Except...

  13. 47 CFR 2.805 - Operation of radio frequency devices prior to equipment authorization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation of radio frequency devices prior to... FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.805 Operation of radio frequency devices prior to equipment authorization. (a) General rule....

  14. 47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Marketing of radio frequency devices prior to... FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.803 Marketing of radio frequency devices prior to equipment authorization. (a) Except...

  15. 47 CFR 2.805 - Operation of radio frequency products prior to equipment authorization.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation of radio frequency products prior to... FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.805 Operation of radio frequency products prior to equipment authorization. (a) General...

  16. 47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Marketing of radio frequency devices prior to... FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.803 Marketing of radio frequency devices prior to equipment authorization. (a) Except...

  17. 47 CFR 2.803 - Marketing of radio frequency products prior to equipment authorization.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Marketing of radio frequency products prior to... FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.803 Marketing of radio frequency products prior to equipment authorization. (a) Marketing,...

  18. Magnetoreception in birds: the effect of radio-frequency fields.

    PubMed

    Wiltschko, Roswitha; Thalau, Peter; Gehring, Dennis; Nießner, Christine; Ritz, Thorsten; Wiltschko, Wolfgang

    2015-02-01

    The avian magnetic compass, probably based on radical pair processes, works only in a narrow functional window around the local field strength, with cryptochrome 1a as most likely receptor molecule. Radio-frequency fields in the MHz range have been shown to disrupt the birds' orientation, yet the nature of this interference is still unclear. In an immuno-histological study, we tested whether the radio-frequency fields interfere with the photoreduction of cryptochrome, but this does not seem to be the case. In behavioural studies, birds were not able to adjust to radio-frequency fields like they are able to adjust to static fields outside the normal functional range: neither a 2-h pre-exposure in a 7.0 MHz field, 480 nT, nor a 7-h pre-exposure in a 1.315 MHz field, 15 nT, allowed the birds to regain their orientation ability. This inability to adjust to radio-frequency fields suggests that these fields interfere directly with the primary processes of magnetoreception and therefore disable the avian compass as long as they are present. They do not have lasting adverse after-effects, however, as birds immediately after exposure to a radio-frequency field were able to orient in the local geomagnetic field. PMID:25540238

  19. Magnetoreception in birds: the effect of radio-frequency fields

    PubMed Central

    Wiltschko, Roswitha; Thalau, Peter; Gehring, Dennis; Nießner, Christine; Ritz, Thorsten; Wiltschko, Wolfgang

    2015-01-01

    The avian magnetic compass, probably based on radical pair processes, works only in a narrow functional window around the local field strength, with cryptochrome 1a as most likely receptor molecule. Radio-frequency fields in the MHz range have been shown to disrupt the birds' orientation, yet the nature of this interference is still unclear. In an immuno-histological study, we tested whether the radio-frequency fields interfere with the photoreduction of cryptochrome, but this does not seem to be the case. In behavioural studies, birds were not able to adjust to radio-frequency fields like they are able to adjust to static fields outside the normal functional range: neither a 2-h pre-exposure in a 7.0 MHz field, 480 nT, nor a 7-h pre-exposure in a 1.315 MHz field, 15 nT, allowed the birds to regain their orientation ability. This inability to adjust to radio-frequency fields suggests that these fields interfere directly with the primary processes of magnetoreception and therefore disable the avian compass as long as they are present. They do not have lasting adverse after-effects, however, as birds immediately after exposure to a radio-frequency field were able to orient in the local geomagnetic field. PMID:25540238

  20. Radio frequency sheaths in an oblique magnetic field

    DOE PAGESBeta

    Myra, James R.; D'Ippolito, Daniel A.

    2015-06-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describe the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle, θ assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numericallymore » to obtain the rectified (dc) voltage, the rf voltage across the sheath and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.« less

  1. Radio frequency sheaths in an oblique magnetic field

    SciTech Connect

    Myra, James R.; D'Ippolito, Daniel A.

    2015-06-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describe the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle, θ assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numerically to obtain the rectified (dc) voltage, the rf voltage across the sheath and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.

  2. Radio frequency sheaths in an oblique magnetic field

    SciTech Connect

    Myra, J. R.; D'Ippolito, D. A.

    2015-06-15

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describes the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle θ, assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numerically to obtain the rectified (dc) voltage, the rf voltage across the sheath, and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general, the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.

  3. Radio frequency sheaths in an oblique magnetic field

    NASA Astrophysics Data System (ADS)

    Myra, J. R.; D'Ippolito, D. A.

    2015-06-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describes the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle θ, assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numerically to obtain the rectified (dc) voltage, the rf voltage across the sheath, and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general, the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.

  4. From Radio to X-rays--Some 'Real' Electrical Applications.

    ERIC Educational Resources Information Center

    Freeman, J. C.

    1986-01-01

    Describes practical applications related to X-rays, ultra-violet radiation, light radiation, short-wave infra-red radiation, medium-wave infra-red radiation, long-wave infra-red radiation, microwave radiation, and radio frequency radiation. Suggests that these applications be used during instruction on electricity. (JN)

  5. Do car-mounted mobile measurements used for radio-frequency spectrum regulation have an application for exposure assessments in epidemiological studies?

    PubMed

    Bolte, John F B; Maslanyj, Myron; Addison, Darren; Mee, Terry; Kamer, Jos; Colussi, Loek

    2016-01-01

    Knowing the spatial and temporal trends in environmental exposure to radiofrequency electromagnetic fields is important in studies investigating whether there are associated health effects on humans and ecological effects on plants and animals. The main objective of this study is to assess whether the RFeye car-mounted mobile measurement system used for radio frequency spectrum monitoring in The Netherlands and the United Kingdom could be of value in assessing exposure over large areas as an alternative to measuring exposure with personal exposure meters or using complex modelling techniques. We evaluated the responses of various body-worn personal exposure meters in comparison with the mobile measurement system for spectrum monitoring. The comparison was restricted to downlink mobile communication in the GSM900 and GSM1800 frequency bands. Repeated measurements were performed in three areas in Cambridge, United Kingdom and in three areas in Amersfoort, The Netherlands. We found that exposure assessments through the car-mounted measurements are at least of similar quality to exposure modelling and better than the body worn exposimeter data due to the absence of the shielding effect. The main conclusion is that the mobile measurements provide an efficient and low cost alternative particularly in mapping large areas. PMID:26540087

  6. Radio frequency interference measurements in Indonesia. A survey to establish a radio astronomy observatory

    NASA Astrophysics Data System (ADS)

    Hidayat, Taufiq; Munir, Achmad; Dermawan, Budi; Jaelani, Anton Timur; Léon, Stéphane; Nugroho, Dading Hadi; Suksmono, Andriyan Bayu; Mahasena, Putra; Premadi, Premana Wardayanti; Herdiwijaya, Dhani; Kunjaya, Chatief; Dupe, Zadrach Ledoufij; Brahmantyo, Budi; Mandey, Denny; Yusuf, Muhammad; Tri Wulandari, Hesti Retno; Arief, Falahuddin; Irfan, Muhammad; Puri Jatmiko, Agus Triono; Akbar, Evan Irawan; Sianturi, Hery Leo; Tanesib, Jehunias Leonidas; Warsito, Ali; Utama, Judhistira Aria

    2014-02-01

    We report the first measurements of radio frequency spectrum occupancy performed at sites aimed to host the future radio astronomy observatory in Indonesia. The survey is intended to obtain the radio frequency interference (RFI) environment in a spectral range from low frequency 10 MHz up to 8 GHz. The measurements permit the identification of the spectral occupancy over those selected sites in reference to the allocated radio spectrum in Indonesia. The sites are in close proximity to Australia, the future host of Square Kilometre Array (SKA) at low frequency. Therefore, the survey was deliberately made to approximately adhere the SKA protocol for RFI measurements, but with lower sensitivity. The RFI environment at Bosscha Observatory in Lembang was also measured for comparison. Within the sensitivity limit of the measurement equipment, it is found that a location called Fatumonas in the surrounding of Mount Timau in West Timor has very low level of RFI, with a total spectrum occupancy in this measured frequency range being about 1 %, mostly found at low frequency below 20 MHz. More detailed measurements as well as a strategy for a radio quiet zone must be implemented in the near future.

  7. Wireless Chalcogenide Nanoionic-Based Radio-Frequency Switch

    NASA Technical Reports Server (NTRS)

    Nessel, James; Miranda, Felix

    2013-01-01

    suitable for applications such as integration into garments, RFID (radio-frequency identification) tags, and conformal structures (e.g., aircraft wings, sounding rockets contours, etc). In the case of RFID tags the innovation will provide countermeasures to attempts for identity theft and other uninvited attempts for retrieval of information. It could also be applicable to the automotive industry as well as the aerospace industry for collision avoidance and phased array radar systems, respectively

  8. Dual radio frequency plasma source: Understanding via electrical asymmetry effect

    SciTech Connect

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Wong, C. S.

    2013-04-21

    On the basis of the global model, the influences of driving voltage and frequency on electron heating in geometrically symmetrical dual capacitively coupled radio frequency plasma have been investigated. Consistent with the experimental and simulation results, non-monotonic behavior of dc self bias and plasma heating with increasing high frequency is observed. In addition to the local maxima of plasma parameters for the integer values of the ratio between the frequencies ({xi}), ourstudies also predict local maxima for odd integer values of 2{xi} as a consequence of the electrical asymmetry effect produced by dual frequency voltage sources.

  9. Low-frequency radio navigation system

    NASA Technical Reports Server (NTRS)

    Wallis, D. E. (Inventor)

    1983-01-01

    A method of continuous wave navigation using four transmitters operating at sufficiently low frequencies to assure essentially pure groundwave operation is described. The transmitters are keyed to transmit constant bursts (1/4 sec) in a time-multiplexed pattern with phase modulation of at least one transmitter for identification of the transmitters and with the ability to identify the absolute phase of the modulated transmitter and the ability to modulate low rate data for transmission. The transmitters are optimally positioned to provide groundwave coverage over a service region of about 50 by 50 km for the frequencies selected in the range of 200 to 500 kHz, but their locations are not critical because of the beneficial effect of overdetermination of position of a receiver made possible by the fourth transmitter. Four frequencies are used, at least two of which are selected to provide optimal resolution. All transmitters are synchronized to an average phase as received by a monitor receiver.

  10. Methods, Systems and Apparatuses for Radio Frequency Identification

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Ngo, Phong H. (Inventor); Brown, Dewey T. (Inventor); Byerly, Diane (Inventor); Boose, Haley C. (Inventor)

    2015-01-01

    A system for radio frequency identification (RFID) includes an enclosure defining an interior region interior to the enclosure, and a feed for generating an electromagnetic field in the interior region in response to a signal received from an RFID reader via a radio frequency (RF) transmission line and, in response to the electromagnetic field, receiving a signal from an RFID sensor attached to an item in the interior region. The structure of the enclosure may be conductive and may include a metamaterial portion, an electromagnetically absorbing portion, or a wall extending in the interior region. Related apparatuses and methods for performing RFID are provided.

  11. SYNCHROTRON RADIO FREQUENCY PHASE CONTROL SYSTEM

    DOEpatents

    Plotkin, M.; Raka, E.C.; Snyder, H.S.

    1963-05-01

    A system for canceling varying phase changes introduced by connecting cables and control equipment in an alternating gradient synchrotron is presented. In a specific synchrotron embodiment twelve spaced accelerating stations for the proton bunches are utilized. In order to ensure that the protons receive their boost or kick at the exact instant necessary it is necessary to compensate for phase changes occurring in the r-f circuitry over the wide range of frequencies dictated by the accelerated velocities of the proton bunches. A constant beat frequency is utilized to transfer the r-f control signals through the cables and control equipment to render the phase shift constant and readily compensable. (AEC)

  12. Site selection for a radio astronomy observatory in Turkey: atmospherical, meteorological, and radio frequency analyses

    NASA Astrophysics Data System (ADS)

    Küçük, Ibrahim; Üler, Ipek; Öz, Şükriye; Onay, Sedat; Özdemir, Ali Rıza; Gülşen, Mehmet; Sarıkaya, Mikail; Dag˜Tekin, Nazlı Derya; Özeren, Ferhat Fikri

    2012-03-01

    Selecting the future site for a large Turkish radio telescope is a key issue. The National Radio Astronomy Observatory is now in the stage of construction at a site near Karaman City, in Turkey. A single-dish parabolic radio antenna of 30-40 m will be installed near a building that will contain offices, laboratories, and living accommodations. After a systematic survey of atmospheric, meteorological, and radio frequency interference (RFI) analyses, site selection studies were performed in a predetermined location in Turkey during 2007 and 2008. In this paper, we described the experimental procedure and the RFI measurements on our potential candidate's sites in Turkey, covering the frequency band from 1 to 40 GHz.

  13. Radio frequency noise from clinical linear accelerators.

    PubMed

    Burke, B; Lamey, M; Rathee, S; Murray, B; Fallone, B G

    2009-04-21

    There is a great deal of interest in image-guided radiotherapy (IGRT), and to advance the state of IGRT, an integrated linear accelerator-magnetic resonance (linac-MR) system has been proposed. Knowledge of the radiofrequency (RF) emissions near a linac is important for the design of appropriate RF shielding to facilitate the successful integration of these two devices. The frequency spectra of both electric and magnetic fields of RF emission are measured using commercially available measurement probes near the treatment couch in three clinical linac vaults with distinct physical layouts. The magnitude spectrum of the RF power emitted from these three linacs is then estimated. The electric field spectrum was also measured at several distances from the linac modulator in order to assess the effects of variations in spatial location in the treatment vault. A large fraction of RF power is emitted at frequencies below 5 MHz. However, the measured RF power at the Larmor frequency (8.5 MHz) of the proposed 0.2 T MR in the linac-MR (0.4-14.6 microW m(-2)) is still large enough to cause artifacts in MR images. Magnetron-based linacs generally emit much larger RF power than klystron-based linacs. In the frequency range of 1-50 MHz, only slight variation in the measured electric field is observed as a function of measurement position. This study suggests that the RF emissions are strong enough to cause image artifacts in MRI systems. PMID:19336849

  14. Mapping the Orion Molecular Cloud Complex in Radio Frequencies

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Lemly, C.

    2013-01-01

    The purpose of this research project was to create a large-scale intensity map of the Orion Molecular Cloud Complex at a radio frequency of 1420 MHz. A mapping frequency of 1420 MHz was chosen because neutral hydrogen, which is the primary component of the Orion Molecular Complex, naturally emits radio waves at this frequency. The radio spectral data for this project were gathered using a 4.6-m radio telescope whose spectrometer was tuned to 1420 MHz and whose beam width was 2.7 degrees. The map created for this project consisted of an eight-by-eight grid centered on M42 spanning 21.6 degrees per side. The grid consisted of 64 individual squares spanning 2.7 degrees per side (corresponding to the beam width of the telescope). Radio spectra were recorded for each of these individual squares at an IF gain of 18. Each spectrum consisted of intensity on an arbitrary scale from 0 to 10 plotted as a function frequencies ranging from -400 kHz to +100 kHz around the origin of 1420 MHz. The data from all 64 radio spectra were imported into Wolfram Alpha, which was used to fit Gaussian functions to the data. The peak intensity and the frequency at which this peak intensity occurs could then be extracted from the Gaussian functions. Other helpful quantities that could be calculated from the Gaussian functions include flux (integral of Gaussian function over frequency range), average value of intensity (flux integral divided by frequency range), and half maximum of intensity. Because all of the radio spectra were redshifted, the velocities of the hydrogen gas clouds of the Orion Molecular Cloud Complex could be calculated using the Doppler equation. The data extracted from the Gaussian functions were then imported into Mathcad to create 2D grayscale maps with right ascension (RA) on the x-axis, declination on the y-axis, and intensity (or flux, etc.) represented on a scale from black to white (with white representing the highest intensities). These 2D maps were then imported

  15. Low frequency radio synthesis imaging of the galactic center region

    NASA Astrophysics Data System (ADS)

    Nord, Michael Evans

    2005-11-01

    The Very Large Array radio interferometer has been equipped with new receivers to allow observations at 330 and 74 MHz, frequencies much lower than were previously possible with this instrument. Though the VLA dishes are not optimal for working at these frequencies, the system is successful and regular observations are now taken at these frequencies. However, new data analysis techniques are required to work at these frequencies. The technique of self- calibration, used to remove small atmospheric effects at higher frequencies, has been adapted to compensate for ionospheric turbulence in much the same way that adaptive optics is used in the optical regime. Faceted imaging techniques are required to compensate for the noncoplanar image distortion that affects the system due to the wide fields of view at these frequencies (~2.3° at 330 MHz and ~11° at 74 MHz). Furthermore, radio frequency interference is a much larger problem at these frequencies than in higher frequencies and novel approaches to its mitigation are required. These new techniques and new system are allowing for imaging of the radio sky at sensitivities and resolutions orders of magnitude higher than were possible with the low frequency systems of decades past. In this work I discuss the advancements in low frequency data techniques required to make high resolution, high sensitivity, large field of view measurements with the new Very Large Array low frequency system and then detail the results of turning this new system and techniques on the center of our Milky Way Galaxy. At 330 MHz I image the Galactic center region with roughly 10 inches resolution and 1.6 mJy beam -1 sensitivity. New Galactic center nonthermal filaments, new pulsar candidates, and the lowest frequency detection to date of the radio source associated with our Galaxy's central massive black hole result. At 74 MHz I image a region of the sky roughly 40° x 6° with, ~10 feet resolution. I use the high opacity of H II regions at 74

  16. Analysis of Jovian low frequency radio emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1985-01-01

    The density of ions in the Io plasma torus and the scattering of these ions by low frequency electromagnetic emissions detected by Voyager 1 were studied. The ion density profile was investigated using whistler dispersion measurements provided by the Voyager plasma instrument. The scale height and absolute density of H+ ions in the vicinity of the plasma torus were determined by combining the measured plasma densities with the whistler dispersion measurements. A theoretical analysis of the modes of propagation of low frequency electromagnetic emissions in the torus was undertaken. Polarization reversal effects and rough estimates of the ion diffusion coefficient were utilized. Numerical evaluation of the ion diffusion coefficients in the torus were made using the observed Voyager 1 wave intensities. Results show that the observed wave intensities produce significant ion diffusion effects in the ion torus.

  17. Preparation and characterization of ferrite with Co substituted NiCuZn sheets application for 13.56 MHz radio frequency identification communication

    NASA Astrophysics Data System (ADS)

    Yan, Shuoqing; Liu, Weihu; Chen, Zhongyan; Nie, Yan; Wang, Xian; Feng, Zekun

    2014-05-01

    The electromagnetic (EM) shielding sheets could be an effective solution to increase the detection distance of the RFID (Radio Frequency Identification) tags attached on metal. The eddy current induced on the metal surface can be reduced when a ferrite sheet sandwiched between RFID tag and metal. The magnetic spectra of Ni0.36Cu0.19Zn0.45Fe1.92O3.88 ferrite added with BiBSi-glass and CoO were investigated. It shows that the real part of permeability could reach above 150 while the imaginary part maintains below 2 at 13.56 MHz with 0.2 wt. % CoO and 0.4 wt. % BiBSi-glass doping content. The ferrites could be fabricated as EM shielding sheets by laminate process. The experimental results show that the doped ferrites could be a good candidate for EM shielding sheet. The final sheet size could be as large as 135 mm × 135 mm while the thickness is 0.1 mm and the density is above 5.0 g/cm3. By inserting the EM shielding sheet between the RFID antenna and metal surface, the improved communication performances are characterized and corresponding explanation is given.

  18. Epitaxial growth of β-FeSi2 thin films on Si(111) substrates by radio frequency magnetron sputtering and their application to near-infrared photodetection

    NASA Astrophysics Data System (ADS)

    Promros, Nathaporn; Baba, Ryuji; Takahara, Motoki; Mostafa, Tarek M.; Sittimart, Phongsaphak; Shaban, Mahmoud; Yoshitake, Tsuyoshi

    2016-06-01

    β-FeSi2 thin films were epitaxially grown on p-type Si(111) substrates at a substrate temperature of 560 °C and Ar pressure of 2.66 × 10‑1 Pa by radio-frequency magnetron sputtering (RFMS) using a sintered FeSi2 target, without postannealing. The resultant n-type β-FeSi2/p-type Si heterojunctions were evaluated as near-infrared photodiodes. Three epitaxial variants of β-FeSi2 were confirmed by X-ray diffraction analysis. The heterojunctions exhibited typical rectifying action at room temperature. At 300 K, the heterojunctions showed a substantial leakage current and minimal response for irradiation of near-infrared light. At 50 K, the leakage current was markedly reduced and the ratio of the photocurrent to dark current was considerably enhanced. The detectivity at 50 K was estimated to be 3.0 × 1011 cm Hz1/2/W at a zero bias voltage. Their photodetection was inferior to those of similar heterojunctions prepared using facing-target direct-current sputtering (FTDCS) in our previous study. This inferiority is likely because β-FeSi2 films prepared using RFMS are located in plasma and are damaged by it.

  19. Systems and methods for determining radio frequency interference

    NASA Technical Reports Server (NTRS)

    Johannsen, K. G.; Sabaroff, S.; Henry, V. F. (Inventor)

    1978-01-01

    The presence, frequency and amplitude of radio frequency interference superimposed on communication links originating from a terrestrial region and including a relay in a geostationary spacecraft are determined by pointing a narrow beam antenna on the satellite at the terrestrial region. The level of noise radiated from the region to the antenna is measured at a terrestrial station that is usually remote from the region. Calibrating radio signals having a plurality of predetermined EIRP's (Effective Isotropic Radiated Power) and frequencies in the spectrum are transmitted from the region through the spacecraft narrow beam antenna back to the station. At the station, the levels of the received calibrating signals are separately measured for each of the frequency bands and EIRP's.

  20. Eddy current imaging with an atomic radio-frequency magnetometer

    NASA Astrophysics Data System (ADS)

    Wickenbrock, Arne; Leefer, Nathan; Blanchard, John W.; Budker, Dmitry

    2016-05-01

    We use a radio-frequency 85Rb alkali-vapor cell magnetometer based on a paraffin-coated cell with long spin-coherence time and a small, low-inductance driving coil to create highly resolved conductivity maps of different objects. We resolve sub-mm features in conductive objects, we characterize the frequency response of our technique, and by operating at frequencies up to 250 kHz we are able to discriminate between differently conductive materials based on the induced response. The method is suited to cover a wide range of driving frequencies and can potentially be used for detecting non-metallic objects with low DC conductivity.

  1. Simulation study on radio frequency safety of electric explosive device

    NASA Astrophysics Data System (ADS)

    Yang, Peijie; Tan, Zhiliang; Liu, Chaoyang; Du, Zhide

    2013-03-01

    Radio frequency (RF) is a great danger to the electric explosive device (EED) of typical ordnance. This paper introduced the RF firing mechanism of the EED and the measuring method of its RF impedance. Through the professional antenna simulation software CST, a dipole antenna model of the EED was set up, the gain coefficient of the antenna model was obtained, and the RF power penetrating into the EED was calculated. The multi-frequency analysis of the emulation indicates that in the certain frequency range of 0.5-2 GHz, the gain coefficient of the antenna model increases as the frequency does.

  2. Multipath propagation of low-frequency radio waves inferred from high-resolution array analysis

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Smith, Nathan; Mezentsev, Andrew; Watson, Robert; Astin, Ivan; Gaffet, Stéphane; Evans, Adrian; Rycroft, Michael

    2015-11-01

    The low-frequency radio sky shows the locations of electromagnetic radio sources with a characteristic dilution of precision. Here we report a thorough high-resolution analysis of radio waves from low-frequency (˜20-150 kHz) radio communication transmitters which are recorded with a small aperture array of radio receivers during the day. It is found that the observed dilution of precision results from the array geometry of the radio receivers, a birefringent wave propagation, and the correlated multipath propagation of low-frequency radio waves. The influence of the array geometry on the dilution of precision is reduced by taking into account the impulse response of the array. This procedure reveals for the very first time the splitting of one single radio source into two distinct source locations separated by ˜0.2°-1.9° which result from a birefringent wave propagation. The two locations are yet more clearly identified by using the polarity of the modulated wave number vectors of the radio waves. This polarity is also used to quantify the dilution of precision arising from correlated multipath propagation which is discriminated against wave number fluctuations arising from the timing accuracy of the radio receivers. It is found that ˜69% of the wave number variability is of natural origin and ˜31% originates from the timing accuracy of the receivers. The wave number variability from correlated multipath propagation results in a standard deviation ˜2-8% relative to the source location. This compact measurement of correlated multipath propagation is used to characterize the uncertainty of source locations in the radio sky. The identification of correlated multipath propagation strongly suggests the existence of very fast processes acting on time scales <1 ms in the D region ionosphere with physically meaningful effects on low-frequency radio wave propagation. This important result has implications for practical applications in that the observed multipath

  3. Radio-frequency single-electron refrigerator.

    PubMed

    Pekola, Jukka P; Giazotto, Francesco; Saira, Olli-Pentti

    2007-01-19

    We propose a cyclic refrigeration principle based on mesoscopic electron transport. Synchronous sequential tunneling of electrons in a Coulomb-blockaded device, a normal metal-superconductor single-electron box, results in a cooling power of approximately k(B)T x f at temperature T over a wide range of cycle frequencies f. Electrostatic work, done by the gate voltage source, removes heat from the Coulomb island with an efficiency of approximately k(B)T/Delta, where Delta is the superconducting gap parameter. The performance is not affected significantly by nonidealities, for instance by offset charges. We propose ways of characterizing the system and of its practical implementation. PMID:17358719

  4. Computer simulations of ions in radio-frequency traps

    NASA Technical Reports Server (NTRS)

    Williams, A.; Prestage, J. D.; Maleki, L.; Djomehri, J.; Harabetian, E.

    1990-01-01

    The motion of ions in a trapped-ion frequency standard affects the stability of the standard. In order to study the motion and structures of large ion clouds in a radio-frequency (RF) trap, a computer simulation of the system that incorporates the effect of thermal excitation of the ions was developed. Results are presented from the simulation for cloud sizes up to 512 ions, emphasizing cloud structures in the low-temperature regime.

  5. Four-Sector Cylindrical Radio-Frequency Ion Trap

    NASA Technical Reports Server (NTRS)

    Melbourne, Ruthann K.; Prestage, John D.; Maleki, Lutfollah

    1992-01-01

    Proposed linear radio-frequency ion trap consists of closed metal cylinder partitioned into four equal cylindrical-sector electrodes and two circular end electrodes. Features include relatively large ion-storage capacity and shielding against external fields. Used in frequency-standard laboratories to confine 199Hg+ ions electrodynamically in isolation from external environment. Similar to device described in "Linear Ion Trap for Atomic Clock" (NPO-17758).

  6. Effect of Radio Frequency Waves on Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Sen, S.

    2015-11-01

    The effect of Radio Frequency waves on low frequency plasma instabilities and turbulence is studied. It is shown that the ponderomotive force can stabilize or destabilize instabilities depending on the power deposition profile and no RF induced flow generation hypothesis is required. Its possible consequence on space and fusion plasma will be discussed. Collaborations with George Vahala from William & Mary, Julio Martinell from UNAM and Atsushi Fukuyama from Kyoto University are acknowledged.

  7. Determining radio frequency heating uniformity in mixed beans for disinfestations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our laboratory collaborates with USDA-ARS in Parlier, CA in developing thermal treatments based on radio frequency (RF) energy for insect control in legumes to meet postharvest phytosanitary regulations for international market. Our current study focuses on lentils and chickpeas that are two importa...

  8. Radio frequency and infrared drying of sized textile warp yarns

    SciTech Connect

    Ruddick, H.G. )

    1990-11-01

    Drying sized textile warp yarns without contacting the warp is easily accomplished by either radio frequency or infrared techniques. Although the process is more expensive than conventional drying, the substantial savings accrued during subsequent weaving and finishing of the cloth can help keep the US textile industry competitive and support electrical load. 5 refs., 8 figs., 14 tabs.

  9. Development of radio frequency treatments for dried pulses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical fumigants are typically used to disinfest dried pulses of insect pests before shipment to importing countries, but the industry is exploring non-chemical alternatives. One possible alternative is the use of radio frequency (RF) energy to rapidly heat product to insecticidal levels. The cowp...

  10. Radio frequency electric fields as a nonthermal process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An overview is presented of the current state of art in microbial inactivation in food products by radio frequency electric fields (RFEF) processing. Critical process parameters determining inactivation are discussed. Some issues are offered that need further investigation in order to commercialize ...