Science.gov

Sample records for radio propagation characteristics

  1. Forecasting characteristics of propagation of decameter radio waves using the global ionosphere and plasmasphere model

    NASA Astrophysics Data System (ADS)

    Ponomarchuk, Sergey; Kotovich, Galina; Romanova, Elena; Tashchilin, Anatoliy

    2015-09-01

    We present the results of forecasting maximum usable frequencies (MUF) on middle-latitude paths on the basis of complex algorithm including modules of the ionosphere and plasmasphere global model (IPGM) and the model of radio wave propagation. The computation of propagation characteristics for decameter radio waves is carried out within the framework of normal wave technique. IPGM developed in ISTP SB RAS enables to compute electron concentration profiles and effective frequency of collisions using minimum number of input data and taking into account physical processes in the Earth's upper atmosphere. To estimate the efficiency of using IPGM in long-term forecast of radio wave propagation we computed MUF for radio communication in various heliogeophysical conditions. To obtain precision characteristics of MUF forecast we used experimental data of oblique sounding on Magadan-Irkutsk, Khabarovsk-Irkutsk, Norilsk-Irkutsk paths. The paths are equipped with modern ionosphere diagnostic hardware for oblique sounding by continuous chirp signal. We also compared results of MUF forecast using IPGM with computations carried out according IRI model.

  2. The seasonal variation of the D region as inferred from propagation characteristics of LF radio waves

    NASA Technical Reports Server (NTRS)

    Ishimine, T.; Ishii, T.; Echizenya, Y.

    1985-01-01

    The propagation data of JG2AS 40 kHz (Japanese Standard Frequency), Loran C 100 kHz radio waves, and meteorological data were analyzed to study the association of propagation characteristics of LF radio waves with the atmospheric circulation in the mesosphere. The monthly averaged electric fields were depicted on the complex plane for typical summer and winter months, June and November. The locus traced out by the electric field vector during daytime is nearly circular. This is because during daytime the amplitude of the sky wave remains nearly constant while its phase changes in accord with the height change of the reflection layer, and thus the electric field vector traces out a circular locus with its center at the tip of the supposed ground wave vector. The locus has a loop during the sunrise or sunset period, which seems to arise from interference of two waves reflected by two different layers. In June the amplitude of the sky wave decreases rapidly before the dawn or increases after the dusk. In November such rapid change is not observed. During nighttime, the sky wave phase changes in such a way as to suggest that the reflection height moves upwards with time before midnight or lowers after midnight in November. In June it changes similarly before midnight, but after midnight it varies erratically. These characteristics are closely related to the structure of the D region, which is clearly shown by simulating the loci traced out by electric fields.

  3. Estimation of Electron Density profile Using the Propagation Characteristics of Radio Waves by S-520-29 Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Itaya, K.; Ishisaka, K.; Ashihara, Y.; Abe, T.; Kumamoto, A.; Kurihara, J.

    2015-12-01

    S-520-29 sounding rocket experiment was carried out at Uchinoura Space Center (USC) at 19:10 JST on 17 August, 2014. The purpose of this sounding rocket experiments is observation of sporadic E layer that appears in the lower ionosphere at near 100km. Three methods were used in order to observe the sporadic E layer. The first method is an optical method that observe the light of metal ion emitted by the resonance scattering in sporadic E layer using the imager. The second method is observation of characteristic of radio wave propagation that the LF/MF band radio waves transmitted from the ground. The third method is measuring the electron density in the vicinity of sounding rocket using the fast Langmuir probe and the impedance probe. We analyze the propagation characteristics of radio wave in sporadic E layer appeared from the results of the second method observation. This rocket was equipped with LF/MF band radio receiver for observe the LF/MF band radio waves in rocket flight. Antenna of LF/MF band radio receiver is composed of three axis loop antenna. LF/MF band radio receiver receives three radio waves of 873kHz (JOGB), 666kHz (JOBK), 60kHz (JJY) from the ground. 873kHz and 60kHz radio waves are transmitting from north side, and 666kHz radio waves are transmitting from the east side to the trajectory of the rocket. In the sounding rocket experiment, LF/MF band radio receiver was working properly. We have completed the observation of radio wave intensity. We analyze the observation results using a Doppler shift calculations by frequency analysis. Radio waves received by the sounding rocket include the influences of Doppler shift by polarization and the direction of rocket spin and the magnetic field of the Earth. So received radio waves that are separate into characteristics waves using frequency analysis. Then we calculate the Doppler shift from the separated data. As a result, 873kHz, 666kHz radio waves are reflected by the ionosphere. 60kHz wave was able to

  4. Modeling of long-path propagation characteristics of VLF radio waves as observed from Indian Antarctic station Maitri

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudipta; Palit, Sourav; Chakrabarti, Sandip K.

    2015-10-01

    Propagation of very low frequency (VLF) radio signal through the Earth-ionosphere waveguide depends strongly on the plasma properties of the ionospheric D layer. Solar extreme ultraviolet radiation plays the central role in controlling physical and chemical properties of the lower ionospheric layers and hence determining the propagation characteristics of a VLF signal. The nature of interference among different propagating modes varies widely with the length of the propagation path. For a very long path, exposure of solar radiation and thus the degree of ionization vary by a large amount along the path. This influences the VLF signal profile by modulating the sky wave propagation. To understand the propagation characteristics over such a long path, we need a thorough investigation of the chemical reactions of the lower ionosphere which is lacking in the literature. Study of radio signal characteristics in the Antarctic region during summer period in the Southern Hemisphere gives us a unique opportunity to explore such a possibility. In addition, there is an extra feature in this path—the presence of solar radiation and hence the D region for the whole day during summer in at least some sections of the path. In this paper, we present long-distance propagation characteristics of VLF signals transmitted from VTX (18.2 kHz) and NWC (19.8 kHz) transmitters recorded at the Indian permanent station Maitri (latitude 70°45'S, longitude 114°40'E) in 2007-2008. A very stable diurnal variation of the signal has been obtained with no signature of nighttime fluctuation due the presence of 24 h of sunlight. Using ion production and recombination profiles by solar irradiance and incorporating D region ion chemistry processes, we calculate the electron density profile at different heights. Using this profile in the Long Wavelength Propagation Capability code, we are able to reproduce the amplitude of VLF signal.

  5. Propagation characteristics of the ionospheric transmission window relating to long wave radio location issues

    NASA Astrophysics Data System (ADS)

    Kossey, Paul A.; Lewis, Edward A.

    1992-11-01

    Most applications of long radio waves (ELF/VLF/LF/MF) are ground-based and exploit the fact that such signals can propagate to great distances via reflections from the lower ionosphere. It is known however that, owing to the influence of the earth's magnetic field, long wave signals can penetrate through the ionosphere as well; at times, the waves penetrate with relatively little loss, depending on ionospheric conditions and other propagation factors. This has prompted investigations of the long wave 'ionospheric transmission window' as part of efforts to assess the feasibility of deploying long wave emitters in space for terrestrial applications and/or for exploiting, in space, signals emanating from ground-based long wave transmitters. This paper outlines results of theoretical and experimental investigations of the ionospheric transmission window over the frequency range from about 100 Hz to 500 kHz, with emphasis on directional issues associated with long wave penetration of the ionosphere.

  6. Modeling UHF Radio Propagation in Buildings.

    NASA Astrophysics Data System (ADS)

    Honcharenko, Walter

    The potential implementation of wireless Radio Local Area Networks and Personal Communication Services inside buildings requires a thorough understanding of signal propagation within buildings. This work describes a study leading to a theoretical understanding of wave propagation phenomenon inside buildings. Covered first is propagation in the clear space between the floor and ceiling, which is modeled using Kirchoff -Huygens diffraction theory. This along with ray tracing techniques are used to develop a model to predict signal coverage inside buildings. Simulations were conducted on a hotel building, two office buildings, and a university building to which measurements of CW signals were compared, with good agreement. Propagation to other floors was studied to determine the signal strength as a function of the number of floors separating transmitter and receiver. Diffraction paths and through the floor paths which carry significant power to the receivers were examined. Comparisons were made to measurements in a hotel building and an office building, in which agreements were excellent. As originally developed for Cellular Mobile Radio (CMR) systems, the sector average is obtained from the spatial average of the received signal as the mobile traverses a path of 20 or so wavelengths. This approach has also been applied indoors with the assumption that a unique average could be obtained by moving either end of the radio link. However, unlike in the CMR environment, inside buildings both ends of the radio link are in a rich multipath environment. It is shown both theoretically and experimentally that moving both ends of the link is required to achieve a unique average. Accurate modeling of the short pulse response of a signal within a building will provide insight for determining the hardware necessary for high speed data transmission and recovery, and a model for determining the impulse response is developed in detail. Lastly, the propagation characteristics of

  7. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  8. Probing geomagnetic storm-driven magnetosphere-ionosphere dynamics in D-region via propagation characteristics of very low frequency radio signals

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip K.; Ogunmodimu, Olugbenga

    2016-07-01

    The amplitude and phase of VLF/LF radio signals are sensitive to changes in electrical conductivity of the lower ionosphere which imprints its signature on the Earth-ionosphere waveguide. This characteristic makes it useful in studying sudden ionospheric disturbances, especially those related to prompt X-ray flux output from solar flares and gamma ray bursts (GRBs). However, strong geomagnetic disturbance and storm conditions are known to produce large and global ionospheric disturbances, which can significantly affect VLF radio propagation in the D region of the ionosphere. In this paper, using the data of three propagation paths at mid-latitudes (40-54°), we analyse the trend in variation of aspects of VLF diurnal signal under varying solar and geomagnetic space environmental conditions in order to identify possible geomagnetic footprints on the D region characteristics. We found that the trend of variations generally reflected the prevailing space weather conditions in various time scales. In particular, the 'dipping' of mid-day signal amplitude peak (MDP) occurs after significant geomagnetic perturbed or storm conditions in the time scale of 1-2 days. The mean signal amplitude before sunrise (MBSR) and mean signal amplitude after sunset (MASS) also exhibit storm-induced dipping, but they appear to be influenced by event's exact occurrence time and the highly variable conditions of dusk-to-dawn ionosphere. We also observed few cases of the signals rise (e.g., MDP, MBSR or MASS) following a significant geomagnetic event. This effect may be related to storms associated phenomena or effects arising from sources other than solar origin. The magnitude of induced dipping (or rise) significantly depends on the intensity and duration of event(s), as well as the propagation path of the signal. The post-storm day signal (following a main event, with lesser or significantly reduced geomagnetic activity) exhibited a tendency of recovery to pre-storm day level. In the

  9. Antenna Construction and Propagation of Radio Waves.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  10. Effects of D region ionization on radio wave propagation

    NASA Technical Reports Server (NTRS)

    Larsen, T. R.

    1979-01-01

    The effects of anomalous D region ionization upon radio wave propagation are described for the main types of disturbances: sudden ionospheric disturbances, relativistic electron events, magnetic storms, auroral disturbances, polar cap events, and stratospheric warmings. Examples of radio wave characteristics for such conditions are given for the frequencies between the extremely low (3-3000 Hz) and high (3-30 MHz) frequency domains. Statistics on the disturbance effects and radio wave data are given in order to contribute towards the evaluation of possibilities for predicting the radio effects.

  11. Wave propagation and earth satellite radio emission studies

    NASA Technical Reports Server (NTRS)

    Yeh, K. C.; Liu, C. H.; Flaherty, B. J.

    1974-01-01

    Radio propagation studies of the ionosphere using satellite radio beacons are described. The ionosphere is known as a dispersive, inhomogeneous, irregular and sometimes even nonlinear medium. After traversing through the ionosphere the radio signal bears signatures of these characteristics. A study of these signatures will be helpful in two areas: (1) It will assist in learning the behavior of the medium, in this case the ionosphere. (2) It will provide information of the kind of signal characteristics and statistics to be expected for communication and navigational satellite systems that use the similar geometry.

  12. Radio wave propagation in pulsar magnetospheres

    NASA Astrophysics Data System (ADS)

    Petrova, S. A.; Lyubarskii, Yu. E.

    Pulsar magnetospheres are known to contain an ultrarelativistic highly magnetized plasma which streams along the open magnetic lines. The radio emission observed from pulsars is believed to originate sufficiently deep in the open field line tube, so that the characteristics of outgoing waves can be influenced by propagation in the magnetospheric plasma. Refraction of radio waves in pulsar magnetospheres appears to be efficient. The effect not only influences the observed pulse width and its frequency dependency. It can alter the apparent spatial structure of pulsar emission region which can be derived from the observations of pulsar interstellar scintillations. Transverse ray separation versus pulse longitude calculated allowing for magnetospheric refraction appears to be in qualitative agreement with that observed. In particular, the nonmonotonic character of the curve can be attributed to nonmonotonic distribution of the plasma number density across the open field line tube which makes the rays emitted at different spatial locations deviate in the opposite directions. Proceeding from the frequency dependence of refraction some predictions are made about the frequency evolution of the apparent spatial structure of pulsar emission region. Magnetospheric refraction can also determine the profile shape giving rise to ray grouping into separate components. It will be demonstrated that the salient features of profile morphology can be explained within the frame of a primordial hollow-cone emission model taking into account refraction of rays in pulsar plasma. Then the frequency evolution of profile structure is naturally interpreted as a consequence of frequency dependence of refraction. As the waves propagate in the magnetospheric plasma their polarization also evolves essentially. In the vicinity of the emission region normal waves are linearly polarized and propagate independently, with the polarization plane following the orientation of the local magnetic field. As

  13. D region predictions. [effects on radio propagation

    NASA Technical Reports Server (NTRS)

    Thrane, E. V.; Chakrabarty, D. K.; Deshpande, S. D.; Doherty, R. H.; Gregory, J. B.; Hargreaves, J. K.; Lastovicka, J.; Morris, P.; Piggott, W. R.; Reagan, J. B.

    1979-01-01

    Present knowledge of D region phenomena is briefly reviewed and the status of current methods of predicting their effects on radio propagation considered. The ELF, VLF and LF navigational and timing systems depend on the stability of the lower part of the D layer where these waves are reflected, whereas MF and HF waves are absorbed as they penetrate the region, in most cases mainly in the upper part of the layer. Possible methods of improving predictions, warnings, and real time operations are considered with particular stress on those which can be implemented in the near future.

  14. Subionospheric VLF/LF radio waves propagation characteristics before, during and after the Sofia, Bulgaria Mw=5.6 earthquake occurred on 22 May 2012

    NASA Astrophysics Data System (ADS)

    Moldovan, Iren Adelina; Emilian Toader, Victorin; Nenovski, Petko; Biagi, Pier Francesco; Maggipinto, Tommaso; Septimiu Moldovan, Adrian; Ionescu, Constantin

    2013-04-01

    In 2009, INFREP, a network of VLF (20-60 kHz) and LF (150-300 kHz) radio receivers, was put into operation in Europe having as principal goal, the study of disturbances produced by the earthquakes on the propagation properties of these signals. On May 22nd, 2012 an earthquake with Mw=567 occurred in Bulgaria, near Sofia, inside the "sensitive" area of the INFREP VLF/LF electromagnetic network. The data collected on different frequencies, during April-May 2012 were studied using different methods of analysis: daily correlation methods, spectral approaches and terminator time techniques, in order to find out possible connections between the seismic activity and the subionospheric propagation properties of radio waves. The studies were performed with the help of a specially designed LabVIEW application, which accesses the VLF/LF receiver through internet. This program opens the receiver's web-page and automatically retrieves the list of data files to synchronize the user-side data with the receiver's data. Missing zipped files are also automatically downloaded. The application performs primary, statistical correlation and spectral analysis, appends daily files into monthly and annual files and performs 3D colour-coded maps with graphic representations of VLF and LF signals' intensities versus the minute-of-the-day and the day-of-the-month, facilitating a near real-time observation of VLF and LF electromagnetic waves' propagation. Another feature of the software is the correlation of the daily recorded files for the studied frequencies by overlaying the 24 hours radio activity and taking into account the sunrise and sunset. Data are individually processed (spectral power, correlations, differentiation, filtered using bandpass, lowpass, highpass). JTFA spectrograms (Cone-Shaped Distribution CSD, Gabor, Wavelet, short-time Fourier transform STFT, Wigner-Ville Distribution WVD, Choi-Williams Distribution CWD) are used, too.

  15. Determination of sporadic E radio wave propagation parameters based on vertical and oblique sounding

    NASA Astrophysics Data System (ADS)

    Sherstyukov, O. N.; Akchurin, A. D.; Sherstyukov, R. O.

    2015-09-01

    Sporadic E layer is often determined for HF radio communication. We have to deal with oblique radiowave propagation in the radio practice. The limiting frequencies at oblique propagation depend heavily on the transmitter power and the receiver sensitivity. The reason for this, as in the case of vertical propagation, is the dependence of Es reflection coefficient, ρEs (reflection loss R(dB)), on Es operation frequencies. This paper describes the characteristics of HF Es propagation in relation to foEs obtained from ionospheric vertical observations. It was found that characteristics of Es propagation depend on the type and height of the Es layer. Also the foEs diurnal variation at definite R(dB) was detected. This investigation allows improving the prediction of limiting frequencies for HF radio propagation.

  16. A wideband propagation simulator for high speed mobile radio communications

    NASA Astrophysics Data System (ADS)

    Busson, P.; Lejannic, J. C.; Elzein, G.; Citerne, J.

    1994-07-01

    Multipath, jamming, listening and detection are the main limitations for mobile radio communications. Spread spectrum techniques, especially frequency hopping, can be used to avoid these problems. Therefore, a wideband simulation for multipath mobile channels appeared the most appropriate evaluation technique. It also gives useful indications for system characteristic improvements. This paper presents the design and realization of a new UHF-VHF propagation simulator, which can be considered as an extended version of Bussgang's one. This frequency hopping simulator (up to 100,000 hops per second) is wideband thus capable to deal with spread spectrum signals. As it generates up to 16 paths, it can be used in almost all mobile radio propagation situations. Moreover, it is also able to simulate high mobile relative speeds up to 2000km/h such as air-air communication systems. This simulator can reproduce, in laboratory, 16 rays Rician or Rayleigh fading channels with a maximum time delay of about 15 ms. At the highest frequency of 1200 MHz, Doppler rates up to 2 kHz can be generated corresponding to vehicle speeds up to 2000 km/h. Let note that the Bussgang simulator was defined for narrowband and fixed radio communications. In both equipments, in-phase and quadrature signals are obtained using two numerical transversal filters. Simulation results were derived in various situations especially in terrestrial urban and suburban environments, where they could be compared with measurements. The main advantage of the simulator lies in its capacity to simulate the high speed and wideband mobile radio communication channels.

  17. Radio propagation for space communications systems

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1981-01-01

    This paper presents a review of the most recent information on the effects of the earth's atmosphere on space communications systems. Models and techniques used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission are discussed. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz are reviewed. Particular emphasis is placed on the effects of precipitation on the earth-space path, including rain attenuation, and rain and ice-particle depolarization. Sky noise, antenna gain degradation, scintillations, and bandwidth coherence are also discussed. The impact of the various propagation factors on communications system design criteria is presented. These criteria include link reliability, power margins, noise contributions, modulation and polarization factors, channel crosstalk, error-rate, and bandwidth limitations.

  18. Radio-wave propagation for space communications systems

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1981-01-01

    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  19. Multipath propagation of low-frequency radio waves inferred from high-resolution array analysis

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Smith, Nathan; Mezentsev, Andrew; Watson, Robert; Astin, Ivan; Gaffet, Stéphane; Evans, Adrian; Rycroft, Michael

    2015-11-01

    The low-frequency radio sky shows the locations of electromagnetic radio sources with a characteristic dilution of precision. Here we report a thorough high-resolution analysis of radio waves from low-frequency (˜20-150 kHz) radio communication transmitters which are recorded with a small aperture array of radio receivers during the day. It is found that the observed dilution of precision results from the array geometry of the radio receivers, a birefringent wave propagation, and the correlated multipath propagation of low-frequency radio waves. The influence of the array geometry on the dilution of precision is reduced by taking into account the impulse response of the array. This procedure reveals for the very first time the splitting of one single radio source into two distinct source locations separated by ˜0.2°-1.9° which result from a birefringent wave propagation. The two locations are yet more clearly identified by using the polarity of the modulated wave number vectors of the radio waves. This polarity is also used to quantify the dilution of precision arising from correlated multipath propagation which is discriminated against wave number fluctuations arising from the timing accuracy of the radio receivers. It is found that ˜69% of the wave number variability is of natural origin and ˜31% originates from the timing accuracy of the receivers. The wave number variability from correlated multipath propagation results in a standard deviation ˜2-8% relative to the source location. This compact measurement of correlated multipath propagation is used to characterize the uncertainty of source locations in the radio sky. The identification of correlated multipath propagation strongly suggests the existence of very fast processes acting on time scales <1 ms in the D region ionosphere with physically meaningful effects on low-frequency radio wave propagation. This important result has implications for practical applications in that the observed multipath

  20. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    NASA Astrophysics Data System (ADS)

    Ahmad, Mahmoud Al; Alshareef, H. N.

    2012-02-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates in the line it sets an alternating current in the actuator electrodes. This flowing current drives the piezoelectric cantilever to mechanical movement, especially when the frequency of the RF signal matches the mechanical resonant frequency of the cantilever. Output voltage signals versus frequency for both mechanical vibrational and RF signal excitations have been measured using different loads.

  1. Operational support for a range-dependent radio propagation model

    NASA Astrophysics Data System (ADS)

    Cook, John; Vogel, Gerard; Love, Gary

    1995-02-01

    The emerging new standard in the U.S. Navy for range-dependent radio propagation assessment is the Radio Physical Optics (RPO) model developed at the Naval Command, Control and Ocean Surveillance Center, RDT&E Division (NRaD). RPO allows one to compare the expected radio propagation loss field as a function of height along a desired bearing, provided the atmospheric propagation conditions are specified along the path. This paper describes an architecture being developed to operationally support RPO. In developing this architecture, a number of unique constraints and considerations have been dealt with to provide RPO with cross-sections of atmospheric propagation conditions. First, forecast grids from a mesoscale weather data assimilation/prediction model are accessed to provide the best estimate of the current and future refractive and meteorological conditions over the area of interest. Based on conditions near the surface, high-resolution profiles of refractivity in the evaporation duct are calculated and appended onto the bottom of the model forecast profiles. This completes the specification of refractivity down to the sea surface. These refractivity profiles are then processed by a unique algorithm that matches similar refractivity structures from profile-to-profile and reformats the data to support the indexing scheme required by RPO. After RPO has been run, the propagation loss results can be displayed and thresholded to provide expected coverage against specific targets. An example will be shown where multiple RPO runs are used to suggest positioning of available assets to maximize coverage.

  2. Lightning location with variable radio wave propagation velocity

    NASA Astrophysics Data System (ADS)

    Liu, Zhongjian; Koh, Kuang Liang; Mezentsev, Andrew; Sugier, Jacqueline; Fullekrug, Martin

    2016-04-01

    Lightning discharges can be located by triangulation of their broadband electromagnetic pulses in long-baseline (~500 km) radio receiver networks. Here we apply the time of arrival difference (TOA) method to electric field recordings with a low frequency radio receiver array consisting of four stations in western Europe. The electromagnetic wave propagation velocity at low radio frequencies is an important input parameter for the TOA calculation and it is normally assumed to be equal to the speed of light. However, the radio wave propagation depends for example on the frequency, ground conductivity and the ionospheric height and small variations can cause location differences from hundreds to thousands of meters, as demonstrated in this study. The radio wave propagation from two VLF transmissions at 20.9 kHz and 23.4 kHz are compared. The results show that the apparent phase velocities are 0.6% slower and 0.5% faster than the speed of light respectively. As a result, a variable velocity is implemented in the TOA method using continuously recorded data on the 8th August 2014, when a mesoscale convective system developed over central France. The lightning locations inferred with a variable wave propagation velocity are more clustered than those using a fixed velocity. The distribution of the lightning velocities in a given geographic area fits a normal distribution that is not centred at the speed of light. As a result, representative velocities can be calculated for smaller regions to generate a velocity map over a larger area of enhanced lightning activity. These results suggest a connection with the ground elevation and/or surface conductivity that might have an impact on the observed wave propagation velocities.

  3. Coherence bandwidth loss in transionospheric radio propagation

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Gonzalez, V. H.; Hessing, A. R.

    1980-01-01

    In this report a theoretical model is developed that predicts the single-point, two-frequency coherence function for transionospheric radio waves. The theoretical model is compared to measured complex frequency correlation coefficients using data from the seven equispaced, phase-coherent UHF signals transmitted by the Wideband satellite. The theory and data are in excellent agreement. The theory is critically dependent upon the power-law index, and the frequency coherence data clearly favor the comparatively small spectral indices that have been consistently measured from the wideband satellite phase data. A model for estimating the pulse delay jitter induced by the coherence bandwidth loss is also developed and compared with the actual delay jitter observed on synthesized pulses obtained from the Wideband UFH comb. The results are in good agreement with the theory. The results presented in this report, which are based on an asymptotic theory, are compared with the more commonly used quadratic theory. The model developed and validated in this report can be used to predict the effects of coherence bandwidth loss in disturbed nuclear environments. Simple formulas for the resultant pulse delay jitter are derived that can be used in predictive codes.

  4. An Experiment Study of the Propagation of Radio Waves in a Scaled Model of Long-Wall Coal Mining Tunnels

    SciTech Connect

    Han, G.R.; Zhang, W.M.; Zhang, Y.P.

    2009-07-01

    A long-wall coal mining tunnel is the most important working area in a coal mine. It has long been realized that radio communications can improve both productivity and safety in this dangerous area. Hence, many attempts to use radio communications in such an environment have been made. Unfortunately, no radio system has satisfactorily provided communication services there, which, we believe, is partially due to poor understanding of the propagation characteristics of radio waves in the long-wall mining tunnel. To have deeper physical insight into the propagation problem, a scaled model of the long-wall mining tunnel was built, and the propagation characteristics of UHF radio waves were measured. The experiment and the measured results are presented and discussed.

  5. Plasma and radio waves from Neptune: Source mechanisms and propagation

    NASA Technical Reports Server (NTRS)

    Wong, H. K.

    1994-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.

  6. Electromagnetic wave propagation characteristics in unimolecular reactions

    NASA Astrophysics Data System (ADS)

    Liu, Xingpeng; Huang, Kama

    2016-01-01

    Microwave-assisted chemical reactions have attracted interests because of their benefits for enhancement of reaction rates. However, the problems, such as hot spots and thermal runaway, limit the application of microwaves in the chemical industry. To study the characteristics of electromagnetic wave propagation in a chemical reaction is critical to solve the problems. The research on the characteristics of electromagnetic wave propagation in the unimolecular reaction that is a simple model reaction, can be generalized to the research in a chemical reaction. The approximate expressions of the attenuation and dispersion characteristics of electromagnetic wave propagation in the unimolecular reaction are derived by the nonlinear propagation theory. Specially, when the reaction rate is zero, the derived approximate expressions can be reduced to the formulas in low-loss dispersive media. Moreover, a 1D mold is used to validate the feasibility of the approximate expressions. The influences of the reaction rate and initial reactant concentration on the characteristics are obtained.

  7. Radio Wave Propagation Handbook for Communication on and Around Mars

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser; Kliore, Arvydas

    2002-01-01

    This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.

  8. Studies of the propagation of Low Frequency (LF) radio waves

    NASA Astrophysics Data System (ADS)

    Warrington, E. M.; Jones, T. B.

    1993-05-01

    Low frequency (30-300 kHz) radio waves can propagate to great distances with little attenuation in the cavity formed by the earth and the ionosphere. Because of the relatively high frequency at LF, many active propagation modes can occur between the transmitter and receiver. Changes in the ionospheric conductivity or reflection height can influence the phase and amplitude of these modes and, hence, produce mutual interference. Because of these interference effects, the propagation is less stable than at VLF and the received field strength becomes more difficult to predict. In the present investigation, the WAVEHOP program was employed in conjunction with a range of ionospheric models to estimate the receiver field strength over a number of experimental paths. The predicted values were compared with those measured in an attempt to validate the ionospheric models and the method of calculation.

  9. Radio propagation through solar and other extraterrestrial ionized media

    NASA Technical Reports Server (NTRS)

    Smith, E. K.; Edelson, R. E.

    1980-01-01

    The present S- and X-band communications needs in deep space are addressed to illustrate the aspects which are affected by propagation through extraterrestrial plasmas. The magnitude, critical threshold, and frequency dependence of some eight propagation effects for an S-band propagation path passing within 4 solar radii of the Sun are described. The theory and observation of propagation in extraterrestrial plasmas are discussed and the various plasma states along a near solar propagation path are illustrated. Classical magnetoionic theory (cold anisotropic plasma) is examined for its applicability to the path in question. The characteristics of the plasma states found along the path are summarized and the errors in some of the standard approximations are indicated. Models of extraterrestrial plasmas are included. Modeling the electron density in the solar corona and solar wind, is emphasized but some cursory information on the terrestrial planets plus Jupiters is included.

  10. Prediction system about path loss of radio propagation based on GIS

    NASA Astrophysics Data System (ADS)

    Zhang, Chao-qun; Xiao, Hong-xiang; Zheng, Shu-yu

    2015-12-01

    Prediction of the field strength is important in radio wave propagation in radio and television industry. Affected by the complex terrain on propagation path, the radio wave generate path loss. In order to predict the field strength, we have to analyze the path loss of radio propagation. In this paper, a prediction system about path loss of radio propagation based on GIS is presented. The system embeds GIS technology into ITU-R P.526 model, and establishes relevant development platform. The system's major modules and experiment results are presented.

  11. Fade durations in satellite-path mobile radio propagation

    NASA Technical Reports Server (NTRS)

    Schmier, Robert G.; Bostian, Charles W.

    1986-01-01

    Fades on satellite to land mobile radio links are caused by several factors, the most important of which are multipath propagation and vegetative shadowing. Designers of vehicular satellite communications systems require information about the statistics of fade durations in order to overcome or compensate for the fades. Except for a few limiting cases, only the mean fade duration can be determined analytically, and all other statistics must be obtained experimentally or via simulation. This report describes and presents results from a computer program developed at Virginia Tech to simulate satellite path propagation of a mobile station in a rural area. It generates rapidly-fading and slowly-fading signals by separate processes that yield correct cumulative signal distributions and then combines these to simulate the overall signal. This is then analyzed to yield the statistics of fade duration.

  12. HF radio field strength and total propagation invariants

    NASA Astrophysics Data System (ADS)

    Tsedilina, E. E.

    1994-01-01

    This paper investigates the relationship between measured field strengths, observed over two midlatitude long-distance paths, and total adiabatic invariants calculated for all possible propagation channels, for equinoxes and for low and high solar activity. Communication channel invariants or channel volumes of all types of channels have been calculated for a frequency of 15 MHz using the EMI-81 ionospheric model for both simple channels (F, E, FE) made up of conventional hop trajectories (Fh, Eh) refracted by ionospheric layers, and ricochet, or chordal, trajectories (Fr, Er, FE) which propagate in stratification ducts within the ionospheric layers, or combinations of these channels. It is shown that under night and twilight (day-night) conditions the field strength, in general, is proportional to the total channel volume: E approximately = (I(sub Sigma))(sup n), where n = 0.5 to 2. This indicates the strong influence of multiple scattering by irregularities on the processes of capture, loss, and radio wave propagation in ionospheric waveguide channels. This is in accordance with the results of using ray diffusion theory and adiabatic approximation, where the horizontal character of the waveguide channel varies slowly in relation to the oscillation of the ray within the duct. Greater field strengths observed during sunset, when the terminator was moving along the path, are explained by the influence of the larger wave channel volumes at this time in comparison with other periods.

  13. Propagation characteristics of acoustic waves in snow

    NASA Astrophysics Data System (ADS)

    Capelli, Achille; Kapil, Jagdish Chandra; Reiweger, Ingrid; Schweizer, Jürg; Or, Dani

    2015-04-01

    Acoustic emission analysis is a promising technique for monitoring snow slope stability with potential for application in early warning systems for avalanches. Current research efforts focus on identification and localization of acoustic emission features preceding snow failure and avalanches. However, our knowledge of sound propagation characteristics in snow is still limited. A review of previous studies showed that significant gaps exist and that the results of the various studies are partly contradictory. Furthermore, sound velocity and attenuation have been determined for the frequency range below 10 kHz, while recent snow failure experiments suggest that the peak frequency is in the ultrasound range between 30 kHz to 500 kHz. We therefore studied the propagation of pencil lead fracture (PLF) signals through snow in the ultrasound frequency range. This was achieved by performing laboratory experiments with columns of artificially produced snow of varying density and temperature. The attenuation constant was obtained by varying the size of the columns to eliminate possible influences of the snow-sensor coupling. The attenuation constant was measured for the entire PLF burst signal and for single frequency components. The propagation velocity was calculated from the arrival time of the acoustic signal. We then modelled the sound propagation for our experimental setup using Biot's model for wave propagation in porous media. The Model results were in good agreement with our experimental results. For the studied samples, the acoustic signals propagated as fast and slow longitudinal waves, but the main part of the energy was carried by the slow waves. The Young's modulus of our snow samples was determined from the sound velocity. This is highly relevant, as the elastic properties of snow are not well known.

  14. Annual report 1992/93, FOA 38. Radio systems and wave propagation

    NASA Astrophysics Data System (ADS)

    Mildh, I. M.

    1994-01-01

    The main objective of the division of Radio Systems and Wave Propagation is to carry out research and development in the field of secure and robust radio communications for Sweden's national defense. This is the Annual Report for fiscal year 1992/93 of the Division of Radio Systems and Wave Propagation. The division is responsible for research and development of secure radio communication for information transmission. We are also responsible for wave propagation research within a frequency range from LF to SHF. We carry out applied research in fields like antijamming systems, modulation, error correcting codes, wave propagation and digital signal processing. The wave propagation research is carried out by basic research so the demands from new techniques and new radio systems for accurate propagation models can be achieved.

  15. Lightning-induced effects on VLF/LF radio propagation

    NASA Astrophysics Data System (ADS)

    Inan, U. S.; Rodriguez, J. V.

    1993-05-01

    In recent years, at least two different ways in which energy from lightning discharges couples into the lower ionosphere and the radiation belts have come to the fore. In this paper, we briefly review these recent results especially from the point of view of their effects on VLF/LF radio propagation in the earth-ionosphere wave guide. We separately discuss two different mechanisms of coupling, namely lightning-induced electron precipitation, and lightning-induced heating and ionization of the lower ionosphere. We also discuss a planned active VLF wave-injection experiment designed to investigate ionospheric heating by VLF waves under controlled conditions and to generate ELF waves by modulated VLF heating.

  16. Measurements of transionospheric radio propagation parameters using the FORTE satellite

    SciTech Connect

    Massey, Robert S.; Knox, Stephen O.; Holden, Daniel N.; Rhodes, Charley T. Franz, Robert C.

    1998-11-01

    We report initial measurements of ionospheric propagation parameters, particularly the total electron content (TEC), using the recently launched FORTE satellite. FORTE, which orbits the Earth at an altitude of 800 km and an inclination of 70{degree}, contains a set of wideband radio receivers whose output is digitally recorded. A specialized triggering circuit identifies transient, broadband radio events, which include radiation from lightning, transionospheric pulse pairs, and man-made sources. Event data are transmitted to the ground station for analysis. In this paper we examine signals transmitted from an electromagnetic pulse generator operated at Los Alamos. The transmitter produces nearly impulsive signals in the VHF range. The received signal is dispersed by the ionosphere, and the received signal can be analyzed to deduce the total electron content along the path. By comparing the slant TEC thus measured with results from a ray-tracing code, we can deduce the vertical TEC to 800 km. Data from eight passes are presented. These types of data (in larger quantities) are of interest to operators of radar altimeters, who need data to corroborate their corrections for the ionospheric TEC. The combination of FORTE TEC data to 800 km and TEC measurements to 20,000 km (the Global Positioning System orbital altitude) can provide useful information for assessing the validity of models of plasmaspheric electron density. Initial estimates of the plasmaspheric density, on two daytime passes, are about 6 TECU. The signal received by FORTE, which is linearly polarized at the transmitter, is split into two magnetoionic modes by the ionosphere. The receiving antenna is also linearly polarized and therefore receives both modes. By measuring the beat frequency between the two modes, we can deduce the product of the geomagnetic field and the cosine of the angle between the field and the propagation vector. The possibility of using the measured slant TEC and the beat frequency

  17. Discrete Method of Images for 3D Radio Propagation Modeling

    NASA Astrophysics Data System (ADS)

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  18. Propagation characteristics of magnetostatic waves: A review

    NASA Astrophysics Data System (ADS)

    Parekh, J. P.

    1983-01-01

    This paper reviews the propagation characteristics of guided magnetostatic waves (MSW's) in a YIG film magnetized beyond saturation. There exist three guided magnetostatic wave-types, viz., magnetostatic surface waves (MSSW's) and magnetostatic forward and backward volume waves (MSFVW's and MSBVW's). The orientation of the internal bias field determines the particular wave-type that can be supported by the YIG film. The frequency spectrum of the volume waves coincides with that over which magnetostatic plane waves are of the homogeneous variety. The frequency spectrum of the MSSW's is located immediately above the MSVW spectrum. MSW's are dispersive, with the dispersion properties alterable through modification in boundary conditions. The most explored dispersion control technique employs the placement of a ground plane somewhat above the YIG film surface. This dispersion control technique, which provides one method of realizing nondispersive MSW propagation, raises the upper bound of the MSSW spectrum but does not affect the bounds of the MSVW spectrum. Numerical computations illustrating the dispersion and polarization characteristics of MSW's are presented.

  19. Propagation from ground transmitters to the ePOP/Radio Receiver Instrument

    NASA Astrophysics Data System (ADS)

    James, Gordon

    2016-07-01

    Since its launch in 2013 as part of the Enhanced Polar Outflow Probe (ePOP) payload on the Canadian CASSIOPE small satellite, the Radio Receiver Instrument (RRI) has been successfully commanded to participate in a number of transionospheric collaborative electromagnetic-wave experiments. The RRI is a digital receiver connected to two orthogonal 6-m dipoles and operating in the frequency range from 10 Hz to 18 MHz. The elliptical (325 km - 1500 km) high-inclination (81°) orbit has presented a variety of experimental opportunities in plasma-wave studies. These have involved the reception of EM signals from coordinated ground transmitters in the very-low-frequency to high-frequency range, such as VLF communication transmitters, HF ionospheric heaters, HF over-the-horizon radars, HF coherent-backscatter radars, ionosondes, and amateur radio sources. At the front of this list are powerful sources presenting the RRI with high signal-to-noise transmissions; in these cases, the characteristics of transionospheric propagation observed by the RRI in the ionosphere may be used to test interpretive assumptions about such propagation that hitherto may have been observed only when reflected or scattered back to the ground. In some cases, the RRI measurements are part of studies exploiting simultaneous coordinated measurements by instruments on the ground.

  20. Plasma and radio waves from Neptune: Source mechamisms and propagation

    NASA Technical Reports Server (NTRS)

    Menietti, J. Douglas

    1994-01-01

    The purpose of this project was to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as it flew by Neptune. The study has included data analysis, theoretical and numerical calculations, and ray tracing to determine the possible source mechanisms and locations of the radiation, including the narrowband bursty and smooth components of the Neptune radio emission.

  1. Characteristics of magnetospheric radio noise spectra

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1976-01-01

    Magnetospheric radio noise spectra (30 kHz to 10 MHz) taken by IMP-6 and RAE-2 exhibit time-varying characteristics which are related to spacecraft position and magnetospheric processes. In the mid-frequency range (100-1,000 kHz) intense noise peaks rise by a factor of 100 or more above background; 80% of the peak frequencies are within the band 125 kHz to 600 kHz, and the peak occurs most often (18% of the time) at 280 kHz. This intense mid-frequency noise has been detected at radial distances from 1.3 Re to 60 Re on all sides of the Earth during magnetically quiet as well as disturbed periods. Maximum occurrence of the mid-frequency noise is in the evening to midnight hours where splash-type energetic particle precipitation takes place. ""Magnetospheric lightning'' can be invoked to explain the spectral shape of the observed spectra.

  2. Propagation Characteristics of International Space Station Wireless Local Area Network

    NASA Technical Reports Server (NTRS)

    Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung

    2005-01-01

    This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.

  3. Radio jet propagation and wide-angle tailed radio sources in merging galaxy cluster environments

    NASA Astrophysics Data System (ADS)

    Loken, Chris; Roettiger, Kurt; Burns, Jack O.; Norman, Michael

    1995-05-01

    The intracluster medium (ICM) within merging clusters of galaxies is likely to be in a violent or turbulent dynamical state which may have a significant effect on the evolution of cluster radio sources. We present results from a recent gas + N-body simulation of a cluster merger, suggesting that mergers can result in long-lived, supersonic bulk flows, as well as shocks, within a few hundred kiloparsecs of the core of the dominant cluster. These results have motivated our new two-dimensional and three-dimensional simulations of jet propagation in such environments. The first set of simulations models the ISM/ICM transition as a contact discontinuity with a strong velocity shear. A supersonic (Mj = 6) jet crossing this discontinuity into an ICM with a transverse, supersonic wind bends continuously, becomes 'naked' on the upwind side, and forms a distended cocoon on the downwind side. In the case of a mildly supersonic jet (Mj = 3), however, a shock is driven into the ISM and ISM material is pulled along with the jet into the ICM. Instabilities excited at the ISM/ICM interface result in the jet repeatedly pinching off and reestablishing itself in a series of 'disconnection events.' The second set of simulations deals with a jet encountering a shock in the merging cluster environment. A series of relatively high-resolution two-dimensional calculations is used to confirm earlier analysis predicting that the jet will not disrupt when the jet Mach number is greater than the shock Mach number. A jet which survives the encounter with the shock will decrease in radius and disrupt shortly thereafter as a result of the growth of Kelvin-Helmholtz instabilities. We also find, in disagreement with predictions, that the jet flaring angle decreases with increasing jet density. Finally, a three-dimensional simulation of a jet crossing an oblique shock gives rise to a morphology which resembles a wide-angle tailed radio source with the jet flaring at the shock and disrupting to form

  4. Radio jet propagation and wide-angle tailed radio sources in merging galaxy cluster environments

    NASA Technical Reports Server (NTRS)

    Loken, Chris; Roettiger, Kurt; Burns, Jack O.; Norman, Michael

    1995-01-01

    The intracluster medium (ICM) within merging clusters of galaxies is likely to be in a violent or turbulent dynamical state which may have a significant effect on the evolution of cluster radio sources. We present results from a recent gas + N-body simulation of a cluster merger, suggesting that mergers can result in long-lived, supersonic bulk flows, as well as shocks, within a few hundred kiloparsecs of the core of the dominant cluster. These results have motivated our new two-dimensional and three-dimensional simulations of jet propagation in such environments. The first set of simulations models the ISM/ICM transition as a contact discontinuity with a strong velocity shear. A supersonic (M(sub j) = 6) jet crossing this discontinuity into an ICM with a transverse, supersonic wind bends continuously, becomes 'naked' on the upwind side, and forms a distended cocoon on the downwind side. In the case of a mildly supersonic jet (M(sub j) = 3), however, a shock is driven into the ISM and ISM material is pulled along with the jet into the ICM. Instabilities excited at the ISM/ICM interface result in the jet repeatedly pinching off and reestablishing itself in a series of 'disconnection events.' The second set of simulations deals with a jet encountering a shock in the merging cluster environment. A series of relatively high-resolution two-dimensional calculations is used to confirm earlier analysis predicting that the jet will not disrupt when the jet Mach number is greater than the shock Mach number. A jet which survives the encounter with the shock will decrease in radius and disrupt shortly thereafter as a result of the growth of Kelvin-Helmholtz instabilities. We also find, in disagreement with predictions, that the jet flaring angle decreases with increasing jet density. Finally, a three-dimensional simulation of a jet crossing an oblique shock gives rise to a morphology which resembles a wide-angle tailed radio source with the jet flaring at the shock and

  5. Sixty gigahertz indoor radio wave propagation prediction method based on full scattering model

    NASA Astrophysics Data System (ADS)

    Järveläinen, J.; Haneda, K.

    2014-04-01

    In radio system deployment, the main focus is on assuring sufficient coverage, which can be estimated with path loss models for specific scenarios. When more detailed performance metrics such as peak throughput are studied, the environment has to be modeled accurately in order to estimate multipath behavior. By means of laser scanning we can acquire very accurate data of indoor environments, but the format of the scanning data, a point cloud, cannot be used directly in available deterministic propagation prediction tools. Therefore, we propose to use a single-lobe directive model, which calculates the electromagnetic field scattering from a small surface and is applicable to the point cloud, and describe the overall field as fully diffuse backscattering from the point cloud. The focus of this paper is to validate the point cloud-based full diffuse propagation prediction method at 60 GHz. The performance is evaluated by comparing characteristics of measured and predicted power delay profiles in a small office room and an ultrasonic inspection room in a hospital. Also directional characteristics are investigated. It is shown that by considering single-bounce scattering only, the mean delay can be estimated with an average error of 2.6% and the RMS delay spread with an average error of 8.2%. The errors when calculating the azimuth and elevation spreads are 2.6° and 0.6°, respectively. Furthermore, the results demonstrate the applicability of a single parameter set to characterize the propagation channel in all transmit and receive antenna locations in the tested scenarios.

  6. Radio wave propagation at frequencies exceeding MUF-F2 in the short wave band

    NASA Technical Reports Server (NTRS)

    Ashkaliyev, Y. F.; Bocharov, V. I.

    1972-01-01

    The results of measurements of field strength and signal/noise ratio on experimental ionospheric-scattering short wave radio links are presented. It is shown that the seasonal and diurnal variations of field strength are determined by features of solar and meteoric activity. The role of the sporadic E-layer in propagation of short radio waves at frequencies exceeding MUF-F2 is noted.

  7. The influence of polarization on millimeter wave propagation through rain. [radio signals

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.

    1973-01-01

    The measurement and analysis of the depolarization and attenuation that occur when millimeter wave radio signals propagate through rain are described. Progress was made in three major areas: the processing of recorded 1972 data, acquisition and processing of a large amount of 1973 data, and the development of a new theoretical model to predict rain cross polarization and attenuation. Each of these topics is described in detail along with radio frequency system design for cross polarization measurements.

  8. Preliminary Study on Active Modulation of Polar Mesosphere Summer Echoes with the Radio Propagation in Layered Space Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Zhou, Shengguo; Li, Hailong; Fu, Luyao; Wang, Maoyan

    2016-06-01

    Radar echoes intensity of polar mesosphere summer echoes (PMSE) is greatly affected by the temperature of dusty plasma and the frequency of electromagnetic wave about the radar. In this paper, a new method is developed to explain the active experiment results of PMSE. The theory of wave propagation in a layered media is used to study the propagation characteristics of an electromagnetic wave at different electron temperatures. The simulation results show that the variation tendency of the reflected power fraction almost agrees with the results observed by radar in the European Incoherent Scatter Scientific Association (EISCAT). The radar echoes intensity of PMSE greatly decreases with the increase of the radio frequency and the enhancement of the electron temperature. supported by National Natural Science Foundation of China (Nos. 41104097 and 41304119) and by the National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation (CRIRP)

  9. Analysis of tropospheric propagation characteristics based on regional meteorological data

    NASA Astrophysics Data System (ADS)

    Choi, Junho; Melton, Mara; Donohue, John; Fryland, Albert

    1995-02-01

    Meteorological data has been processed to investigate RF (radio frequency) propagation efforts of the tropospheric region from ground to 28 km in space. A data base has been developed to provide enough information for analyzing many different phenomena of the troposphere in terms of lapse rate, refractivity, range error, angle error, slant range, and interrelationships among these parameters. Based on preliminary analysis, the results are very distinguishable from the values arrived at through the application of conventional data for analysis of RF propagation patterns. This implies that the seasonal average value provides better indications of the current atmospheric variation than the annual global average value which most users have adopted for convenience.

  10. Long-Range Transhorizon Lunar Surface Radio Wave Propagation in the Presence of a Regolith and a Sparse Exospheric Plasma

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2008-01-01

    Long-range, over-the-horizon (transhorizon) radio wave propagation is considered for the case of the Moon. In the event that relay satellites are not available or otherwise unwarranted for use, transhorizon communication provides for a contingency or backup option for non line-of-sight lunar surface exploration scenarios. Two potential low-frequency propagation mechanisms characteristic of the lunar landscape are the lunar regolith and the photoelectron induced plasma exosphere enveloping the Moon. Although it was hoped that the regolith would provide for a spherical waveguide which could support a trapped surface wave phenomena, it is found that, in most cases, the regolith is deleterious to long range radio wave propagation. However, the presence of the plasma of the lunar exosphere supports wave propagation and, in fact, surpasses the attenuation of the regolith. Given the models of the regolith and exosphere adopted here, it is recommended that a frequency of 1 MHz be considered for low rate data transmission along the lunar surface. It is also recommended that further research be done to capture the descriptive physics of the regolith and the exospheric plasma so that a more complete model can be obtained. This comprehensive theoretical study is based entirely on first principles and the mathematical techniques needed are developed as required; it is self-contained and should not require the use of outside resources for its understanding.

  11. Radio wave propagation experiments to probe the ionosphere

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.

    1972-01-01

    Ionospheric bias corrections associated with radio tracking of spacecraft depend on the following measuring techniques for integrated electron content: (1) Faraday rotation measurements from an earth synchronous satellite; (2) ranging measurements at two frequencies; and (3) group and phase velocity measurements obtained from tracking data. The extraction of the integrated electron content directly from tracking data is achieved by comparison of range-rate measurements based on Doppler shift with differentiated range measurements based on tone delay. This method is most desirable because the measured corrections pertain directly to the spacecraft whose orbit is being determined and can be used in near earth as well as deep space tracking data.

  12. The propagation of radio waves: The theory of radio waves of low power in the ionosphere and magnetosphere

    NASA Astrophysics Data System (ADS)

    Budden, K. G.

    The effect of the ionized regions of the earth's atmosphere on radio wave propagation is comprehensively treated. After an introductory consideration of the terrestrial ionosphere and magnetosphere, wave propagation in ion plasmas, and their disturbances, attention is given to basic equations for the consideration of propagation effects, such constitutive relations as the Lorentz polarization term and the Debye length, the roles of polarization and refractive index in magnetoionic theory, rays and group velocity, the Booker quartic in stratified media, and the 'WKB' solutions. Further topics encompass the Airy integral function and the Stokes phenomenon, ray tracing in a loss-free stratified medium, ray theory and full wave solution results for an isotropic ionosphere, and full wave methods for anisotropic stratified media and their applications.

  13. The magnetoionic modes and propagation properties of auroral radio emissions

    NASA Technical Reports Server (NTRS)

    Calvert, Wynne; Hashimoto, Kozo

    1990-01-01

    The nature of the magnetoionic wave modes which accompany the aurora is clarified here by a detailed analysis, using multiple techniques, of DE 1 auroral radio observations. All four of the possible magnetoionic wave modes are found to occur, apparently emitted from two different source regions on the same auroral field line. AKR originates primarily in the X mode near the electron cyclotron frequency, and is frequently also accompanied by a weaker O-mode component from the same location. The next most prominent auroral emission is the W-mode auroral hiss originating from altitudes always well below the DE 1 satellite at frequencies below the local cyclotron frequency. The previously reported Z-mode auroral radiation was also detected, but from sources also below the satellite at the poleward edge of the cavity, and not from the expected AKR source at the cyclotron frequency.

  14. Propagation of radio frequency waves through density filaments

    NASA Astrophysics Data System (ADS)

    Ram, Abhay K.; Hizanidis, Kyriakos

    2015-12-01

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. In this paper we develop an analytical formalism for the scattering of radio frequency waves by filaments which are cylindrical with their major axis aligned along the toroidal magnetic field lines. Since the magnitude of the ratio of the density inside the filaments to the background density is generally of order 1, the geometric optics approximation cannot be used to describe the scattering. A full-wave model is formulated which assumes that the plasma is cold and that the plasma in the cylindrical filament has uniform density. The background plasma, in which the filament is present, is also assumed to be cold and uniform. The theoretical framework applies to the scattering of any plasma wave.

  15. Propagation of radio frequency waves through density filaments

    SciTech Connect

    Ram, Abhay K.; Hizanidis, Kyriakos

    2015-12-10

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. In this paper we develop an analytical formalism for the scattering of radio frequency waves by filaments which are cylindrical with their major axis aligned along the toroidal magnetic field lines. Since the magnitude of the ratio of the density inside the filaments to the background density is generally of order 1, the geometric optics approximation cannot be used to describe the scattering. A full-wave model is formulated which assumes that the plasma is cold and that the plasma in the cylindrical filament has uniform density. The background plasma, in which the filament is present, is also assumed to be cold and uniform. The theoretical framework applies to the scattering of any plasma wave.

  16. Spacecraft VHF Radio Propagation Analysis in Ocean Environments Including Atmospheric Effects

    NASA Technical Reports Server (NTRS)

    Hwu, Shian; Moreno, Gerardo; Desilva, Kanishka; Jih, CIndy

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the National Aeronautics and Space Administration (NASA)/Johnson Space Center (JSC) is tasked to perform spacecraft and ground network communication system simulations. The CSSL has developed simulation tools that model spacecraft communication systems and the space/ground environment in which they operate. This paper is to analyze a spacecraft's very high frequency (VHF) radio signal propagation and the impact to performance when landing in an ocean. Very little research work has been done for VHF radio systems in a maritime environment. Rigorous Radio Frequency (RF) modeling/simulation techniques were employed for various environmental effects. The simulation results illustrate the significance of the environmental effects on the VHF radio system performance.

  17. Image transmission in tactical radio frequency shared network propagation environments

    NASA Astrophysics Data System (ADS)

    White, Kent H.; Wagner, Kerry A.; O'Hanian, Scott

    1997-06-01

    The need to transmit images across tactical radio frequency (rf) links has been identified in army digitization applications. For example, military doctrine requires that tactical functions like identification of battlefield entities as potential targets and battle damage assessment be performed by the soldier. Currently, a key input to these processes is imagery. Therefore, the quality and timeliness of the image directly impact tactical performance. The military is investigating the employment of remote sensors and advanced communications systems to meet this requirement as part of its digitization effort. Army communications systems exist that partially meet this requirement. However, many existing solutions employ these legacy systems in the context of a point-to-point communications architecture. Solutions to the problem of transmitting images across a rf network have not been fully explored. The term network implies that the rf transmission media is common to and shared by multiple subscribers. It is a suite of capabilities that collectively manage media access and information transfer for its subscribers thus providing substantial improvements in effectiveness, efficiency, and robustness. This paper discusses the challenges of transmitting images using one army legacy communications system in a tactical rf network, presents a conceptual framework for attacking the problem, and discusses one solution.

  18. Characteristics of Electromagnetic Pulse Propagation in Metal

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Nath, S.; Fulton, J. P.

    2004-01-01

    It is well known that the solution of the diffusion equation for an electromagnetic field with a time harmonic term, e(sup iwt), is in the form of a traveling wave whose amplitude attenuates over distance into a conducting medium. As the attenuation is an increasing function of frequency, the high frequency components attenuate more rapidly than those of low ones upon entering a well conducting object. At the same time, the phase velocity of an individual component is also an increasing function of frequency causing a broadening of the pulse traveling inside a conductor. In the results of our previous study of numerical simulations, the problem of using a gaussian input pulse was immediately clear. First, having the dominant frequency components distributed around zero, the movement of the peak was not well defined. Second, with the amplitude of fourier components varying slowly over a wide range, the dispersion-induced blurring of the peak position was seen to be severe. For the present study, we have used a gaussian modulated single frequency sinusoidal wave, i. e., the carrier, as an input pulse in an effort to improve the issues related to the unclear movement of peak and dispersion as described above. This was based on the following two anticipated advantages: First, the packet moves in a conductor at the group velocity calculated at the carrier frequency, which means it is well controllable. Second, the amplitude of frequency components other than that of the carrier can be almost negligible, such that the effect of dispersion can be significantly reduced. A series of experiments of transmitting electromagnetic pulses through aluminum plates of various thickness was performed to test the validity of the above points. The results of numerical simulation based on wave propagation are discussed with respect to the experimental results. Finally, a simple simulation was performed based on diffusion of a continuous sine wave input and the results are compared with

  19. Computational strategy for modeling radio wave propagation in lossy circular waveguides

    SciTech Connect

    Moses, Ronald; Cai, D Michael

    2008-01-01

    The propagation of radio waves in lossy waveguides and tunnels has been researched extensively for many years as can be seen in the detailed book by Wait. The mathematics used to model waveguides for communications is essentially the same as that needed to model radio frequency (RF) propagation in simple tunnels. The presence or lack of conductors inside a waveguide or tunnel is a key driver in the nature of the solutions one will find for a particular application, Delogne. When there are conductors passing through a waveguide or tunnel, the simplest modes of propagation are surface-guided waves following the conductor and typically enabling long-range transmission. A tunnel containing a core conductor can act rather like a coaxial cable, propagating waves at a nearly constant speed, regardless of frequency. Conversely, a tunnel or waveguide without internal conductors is subject to very different wave patterns, resulting in a much more complex propagation analysis. Holloway et al. presented an exhaustive study of RF propagation in circular structures embedded in lossy surroundings. The work of Holloway et al. is the basis for this paper, where we discuss application of their computational techniques and present refinements gleaned from our work on similar problems.

  20. Source and Propagation Characteristics of Explosive and Other Seismic Sources

    SciTech Connect

    Ni, X; Chan, W; Wagner, R; Walter, W R; Matzel, E M

    2005-07-14

    Understanding of the source and propagation characteristics of seismic events of different types including earthquakes, explosions and mining-induced events is essential for successful discrimination of nuclear explosions. We are compiling a data set of mining related seismic events in east Eurasia. Natural earthquake data in the same region are also collected for comparison study between mining related events and earthquakes. The ground-truth data set will provide a unique and valuable resource for monitoring research. We will utilize the data set to investigate the source and propagation characteristics of seismic sources of different types including mine blasts, tremors, collapses and earthquakes. We will use various seismological techniques including spectral analysis, and waveform modeling to conduct the investigation. The research will improve our understanding of the S-wave excitation and propagation characteristics of chemical explosions and other source types.

  1. Global ionospheric effects of geomagnetic storm on May 2-3, 2010 and their influence on HF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Kotova, Daria; Klimenko, Maxim; Klimenko, Vladimir; Zakharov, Veniamin

    2013-04-01

    In this work we have investigated the global ionospheric response to geomagnetic storm on May 2-3, 2010 using GSM TIP (Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere) simulation results. In the GSM TIP storm time model runs, several input parameters such as cross-polar cap potential difference and R2 FAC (Region 2 Field-Aligned Currents) varied as a function of the geomagnetic activity AE-index. Current simulation also uses the empirical model of high-energy particle precipitation by Zhang and Paxton. In this model, the energy and energy flux of precipitating electrons depend on a 3 hour Kp-index. We also have included the 30 min time delay of R2 FAC variations with respect to the variations of cross-polar cap potential difference. In addition, we use the ground-based ionosonde data for comparison our model results with observations. We present an analysis of the physical mechanisms responsible for the ionospheric effects of geomagnetic storms. The obtained simulation results are used by us as a medium for HF radio wave propagation at different latitudes in quiet conditions, and during main and recovery phase of a geomagnetic storm. To solve the problem of the radio wave propagation we used Zakharov's (I. Kant BFU) model based on geometric optics. In this model the solution of the eikonal equation for each of the two normal modes is reduced using the method of characteristics to the integration of the six ray equation system for the coordinates and momentum. All model equations of this system are solved in spherical geomagnetic coordinate system by the Runge-Kutta method. This model was tested for a plane wave in a parabolic layer. In this study, the complex refractive indices of the ordinary and extraordinary waves at ionospheric heights was calculated for the first time using the global first-principal model of the thermosphere-ionosphere system that describes the parameters of an inhomogeneous anisotropic medium during a

  2. Remote sensing of the turbulence characteristics of a planetary atmosphere by radio occultation of a space probe.

    NASA Technical Reports Server (NTRS)

    Woo, R.; Ishimaru, A.

    1973-01-01

    The purpose of this paper is to analyze the effects of small-scale turbulence on radio waves propagating through a planetary atmosphere. The analysis provides a technique for inferring the turbulence characteristics of a planetary atmosphere from the radio signals received from a spacecraft as it is occulted by the planet. The planetary turbulence is assumed to be localized and smoothly varying, with the structure constant varying exponentially with altitude. Rytov's method is used to derive the variance of log-amplitude and phase fluctuations of a wave propagating through the atmosphere.

  3. Surface wave propagation characteristics in atmospheric pressure plasma column

    NASA Astrophysics Data System (ADS)

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2007-04-01

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance.

  4. Radio Wave Propagation for Communication on and around Mars. Part 1; Highlights: Propagation Through Mars Environment

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser

    1999-01-01

    We recommend to use the dayside Martian ionosphere as a reflector for global communication, because the dayside ionosphere has stable density peak and usable critic frequency. This is very crucial for the future Mars ground to around communication. The dayside ionosphere has been well modeled as a Chapman layer. We suggest to perform the Martian nightside ionospheric modeling study. Because the nightside ionosphere has very little measurements available, we propose to drop a digital ionosond instrument into the Mars surface for data collection. Even though the Martian tropospheric radio refractivity has small value, it still can cause the ray bending and multipath effects. We recommend to perform an accurate calculation on excess phase and group delays (range and time delays). Other effects, such as range rate errors, appearance angle deviation, defocusing loss on Mars, etc. are also needed to be estimated. Ice depolarization effects due to Martian clouds on radio waves is unknown yet, which is expected to be small, because lower optical depth and thinner layer of cloud: Total Martian atmospheric gaseous attenuation is expected to be less than 1 dB on microwaves band, because the Martian atmosphere has very low concentration in uncondensed H2O and O2. An accurate calculation for zenith opacity requires the information about scale heights of H2O and O2 distribution. An accurate water vapor altitude profile at Mars is not available yet. Under the normal condition, CO2 and N2 gases do not have electric or magnetic dipoles and do not absorb electromagnetic energy from the waves. However, they may generate the dipoles through a collision and interact with waves under a high density condition and absorb electromagnetic waves in the infrared and visible band. Dust storm is most dominant factor to the radio wave attenuation. Large Martian dust storm can cause at least 3 dB or higher loss to Ka band wave. For a normal dust storm, the attenuation is about 1 dB. The

  5. Influence of tropical F region in ionosphere on propagation of short radio waves

    NASA Astrophysics Data System (ADS)

    Kolomiytsev, O. P.; Savchenko, P. P.

    1985-05-01

    Tropical ionospheric waveguides in the presence of stratification of the electron concentration maximum were studied. Under these conditions a specific form of vertical electron concentration profile is formed which to a great extent determines the nature and conditions of propagation of short radio waves in the low latitudes. The phase trajectories were computed for a spherically stratified ionosphere. Three approaches for description of the ionospheric waveguide were used: comparative, temporal, latitudinal. Examples of computations are given which show that in a wide spatial-temporal range in the tropical ionosphere there is an additional ionospheric waveguide in which radio waves can be propagated along ricochetting trajectories. At identical time there can be three types of phases trajectories or three types of adjacent channels, each of which is characterized by a definite working frequency and definite conditions for the propagation of radio waves in it. The computations presented give a qualitative representation of the influence of stratification of the electron concentration on the formation, dynamics and degeneration of the additional ionospheric waveguides in the tropical latitudes.

  6. Reversible Parallel Discrete Event Formulation of a TLM-based Radio Signal Propagation Model

    SciTech Connect

    Seal, Sudip K; Perumalla, Kalyan S

    2011-01-01

    Radio signal strength estimation is essential in many applications, including the design of military radio communications and industrial wireless installations. For scenarios with large or richly- featured geographical volumes, parallel processing is required to meet the memory and computa- tion time demands. Here, we present a scalable and efficient parallel execution of the sequential model for radio signal propagation recently developed by Nutaro et al. Starting with that model, we (a) provide a vector-based reformulation that has significantly lower computational overhead for event handling, (b) develop a parallel decomposition approach that is amenable to reversibility with minimal computational overheads, (c) present a framework for transparently mapping the conservative time-stepped model into an optimistic parallel discrete event execution, (d) present a new reversible method, along with its analysis and implementation, for inverting the vector-based event model to be executed in an optimistic parallel style of execution, and (e) present performance results from implementation on Cray XT platforms. We demonstrate scalability, with the largest runs tested on up to 127,500 cores of a Cray XT5, enabling simulation of larger scenarios and with faster execution than reported before on the radio propagation model. This also represents the first successful demonstration of the ability to efficiently map a conservative time-stepped model to an optimistic discrete-event execution.

  7. Effects of a “day-time” substorm on the ionosphere and radio propagation

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D.; Kalishin, A.; MacDougall, J.

    2009-11-01

    Propagation mechanisms of lateral (non-great-circle) signals on a high-latitude HF radio path during magnetospheric substorms that occurred in the day-time have been considered. The path is equipped with oblique ionospheric sounding (OIS) from Murmansk to St. Petersburg. The OIS method gives the possibility to determine propagation modes, MOF (maximum observed frequency) values, signal delays, etc. Data of the CUTLASS radar, the IMAGE magnetometer system, the Finnish riometer chain, and the Tromso ionosonde were also used for the analysis. The main results are the following: (1) the lateral signal propagation takes place, as a rule, if the path midpoint is located near the irregularity region that moves sharply from high to low latitudes. The lateral signal propagation appearing during day-time is a new effect. (2) Formation of dense field-aligned irregularities during a substorm leads to decreasing F2MOF values on radio paths. These results can be useful for problems of radiolocation, HF communications and navigation.

  8. Probing geomagnetic storm-driven magnetosphere-ionosphere dynamics in D-region ionosphere using VLF signal propagation characteristics

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar; Ogunmodimu, Olugbenga

    2016-07-01

    When propagating in the Earth-ionosphere waveguide, the amplitude and phase of VLF/LF radio signals are sensitive to changes in the electrical conductivity of the lower ionosphere. This characteristic makes it useful in studying sudden ionospheric disturbances, especially those related to prompt X-ray flux output from solar flares and gamma ray bursts (GRBs). However, strong geomagnetic disturbances and/or storm conditions are known to produce large and global ionospheric disturbances, which can significantly affect VLF radio propagation in the D region ionosphere. Diurnal VLF signature may also convey other important information, especially those related to geomagnetic disturbance/storm induced ionospheric changes. In this paper, using the data of three propagation paths (at latitudes 40-54º), we analyze in detail the trend of anomalies of VLF diurnal signal under varying solar and geomagnetic space environmental conditions to identify possible geomagnetic footprints on the D region ionosphere.

  9. Ionospheric disturbances during November 30-December 1, 1988. XI - Abnormal propagations of HF and VHF radio waves

    NASA Astrophysics Data System (ADS)

    Ichinose, Masaru; Kamata, Mitsuhiro

    1992-07-01

    Unusual propagations of HF and VHF radio waves associated with a geomagnetic storm during the period from November 30 to December 1, 1988 are investigated using ionospheric data collected from Japan, China, and Taiwan. The increased field strength of the Japanese frequency standard signals (JJY 2.5 MHz and 5 MHz) which were received at Akita Radio Wave Observatory on the night of November 30 seem to have been caused by increased MUFs and/or scattering due to the disturbed ionosphere. The VHF-TV radio waves propagated from China were received at Kokubunji in Tokyo. One of the most probable mechanisms explaining this unusual propagation of VHF is a one-hop-F2 mode of propagation created by an ionosphere with an anomalously high f0F2. It was found out that these unusual HF and VHF propagations were attributed to unusual ionospheric conditions associated with these geomagnetic disturbances.

  10. FDTD analysis of ELF radio waves propagating in the Earth-ionosphere waveguide

    NASA Astrophysics Data System (ADS)

    Marchenko, Volodymyr; Kulak, Andrzej; Mlynarczyk, Janusz

    2015-04-01

    We developed an FDTD model of electromagnetic wave propagation in the Earth-ionosphere cavity. We present the results of FDTD calculations assuming axisymmetric system with the source located at the north pole and with no dependence on azimuthal coordinate. Therefore we reduced the Maxwell equations to 2D spherical system of Maxwell equations. To model the conductivity profile of the Earth-ionosphere waveguide we used two models, namely one- and two-exponential profiles [Mushtak and Williams, 2002]. The day-night asymmetry was introduced by setting different model parameters for the north and south hemispheres. The ground was modeled as a perfect electric conductor. Also the upper boundary for the model was a perfect conductor but it was placed at a high enough altitude to make sure there is no reflection of the waves from this boundary. We obtained the results for the electric and magnetic field components of the propagating wave in the time and frequency domains and for various locations on Earth along the meridian. In the time domain we analyzed the evolution of the electric and magnetic field components of the radio wave generated by lighting for different probe position, the penetration of the ionosphere by the electromagnetic waves and the reflection of the waves on the terminator. In the frequency domain we analyzed the Schumann resonance spectra in different field components for different location in the computational space, the behavior of the Poynting vector and the wave impedance. We also calculated real and imaginary parts of the characteristic electric and magnetic altitudes for the daytime and nighttime ionosphere. The analysis in the frequency domain was performed up to 1 kHz. We compared the results of numerical calculations with our analytical model and found a reasonably good agreement between them. The results can be used in the analysis of global thunderstorm activity based on measurements of Schumann resonance spectra. Acknowledgements. This

  11. Attenuation characteristics of nonlinear pressure waves propagating in pipes

    NASA Technical Reports Server (NTRS)

    Shih, C. C.

    1974-01-01

    A series of experiments was conducted to investigate temporal and spatial velocity distributions of fluid flow in 3-in. open-end pipes of various lengths up to 210 ft, produced by the propagation of nonlinear pressure waves of various intensities. Velocity profiles across each of five sections along the pipes were measured as a function of time with the use of hot-film and hot-wire anemometers for two pressure waves produced by a piston. Peculiar configurations of the velocity profiles across the pipe section were noted, which are uncommon for steady pipe flow. Theoretical consideration was given to this phenomenon of higher velocity near the pipe wall for qualitative confirmation. Experimentally time-dependent velocity distributions along the pipe axis were compared with one-dimensional theoretical results obtained by the method of characteristics with or without diffusion term for the purpose of determining the attenuation characteristics of the nonlinear wave propagation in the pipes.

  12. A Lightweight Radio Propagation Model for Vehicular Communication in Road Tunnels

    PubMed Central

    Shamim, Azra; Shamshirband, Shahaboddin; Raymond Choo, Kim-Kwang

    2016-01-01

    Radio propagation models (RPMs) are generally employed in Vehicular Ad Hoc Networks (VANETs) to predict path loss in multiple operating environments (e.g. modern road infrastructure such as flyovers, underpasses and road tunnels). For example, different RPMs have been developed to predict propagation behaviour in road tunnels. However, most existing RPMs for road tunnels are computationally complex and are based on field measurements in frequency band not suitable for VANET deployment. Furthermore, in tunnel applications, consequences of moving radio obstacles, such as large buses and delivery trucks, are generally not considered in existing RPMs. This paper proposes a computationally inexpensive RPM with minimal set of parameters to predict path loss in an acceptable range for road tunnels. The proposed RPM utilizes geometric properties of the tunnel, such as height and width along with the distance between sender and receiver, to predict the path loss. The proposed RPM also considers the additional attenuation caused by the moving radio obstacles in road tunnels, while requiring a negligible overhead in terms of computational complexity. To demonstrate the utility of our proposed RPM, we conduct a comparative summary and evaluate its performance. Specifically, an extensive data gathering campaign is carried out in order to evaluate the proposed RPM. The field measurements use the 5 GHz frequency band, which is suitable for vehicular communication. The results demonstrate that a close match exists between the predicted values and measured values of path loss. In particular, an average accuracy of 94% is found with R2 = 0.86. PMID:27031989

  13. A Lightweight Radio Propagation Model for Vehicular Communication in Road Tunnels.

    PubMed

    Qureshi, Muhammad Ahsan; Noor, Rafidah Md; Shamim, Azra; Shamshirband, Shahaboddin; Raymond Choo, Kim-Kwang

    2016-01-01

    Radio propagation models (RPMs) are generally employed in Vehicular Ad Hoc Networks (VANETs) to predict path loss in multiple operating environments (e.g. modern road infrastructure such as flyovers, underpasses and road tunnels). For example, different RPMs have been developed to predict propagation behaviour in road tunnels. However, most existing RPMs for road tunnels are computationally complex and are based on field measurements in frequency band not suitable for VANET deployment. Furthermore, in tunnel applications, consequences of moving radio obstacles, such as large buses and delivery trucks, are generally not considered in existing RPMs. This paper proposes a computationally inexpensive RPM with minimal set of parameters to predict path loss in an acceptable range for road tunnels. The proposed RPM utilizes geometric properties of the tunnel, such as height and width along with the distance between sender and receiver, to predict the path loss. The proposed RPM also considers the additional attenuation caused by the moving radio obstacles in road tunnels, while requiring a negligible overhead in terms of computational complexity. To demonstrate the utility of our proposed RPM, we conduct a comparative summary and evaluate its performance. Specifically, an extensive data gathering campaign is carried out in order to evaluate the proposed RPM. The field measurements use the 5 GHz frequency band, which is suitable for vehicular communication. The results demonstrate that a close match exists between the predicted values and measured values of path loss. In particular, an average accuracy of 94% is found with R2 = 0.86. PMID:27031989

  14. Physical and model interpretation of HF radio propagation on the St. Petersburg-Longyearbyen (Svalbard) path

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D. V.; Andreyev, M. Yu.; Mingalev, V. S.; Mingaleva, G. I.; Kalishin, A. S.

    2009-06-01

    HF radio wave observations have been carried out with an oblique ionospheric sounding (OIS) method on the radio path from St. Petersburg to Longyearbyen (Svalbard), and experimental ionograms were obtained for December 2001. These ionograms have been analysed to investigate the impact of the main ionospheric trough (MIT) and magnetic disturbances on the signals on this path. The observations during weakly disturbed ( Kр = 2) magnetic conditions on 14-15 December 2001 were compared with predictions from ray-tracing through a numerical model of the ionosphere. The ray-tracing computer program synthesizes the OIS ionograms by means of the "shooting method". This method calculates trajectories of HF radio waves for different values of elevation angle and transmission frequency. There was a variety of calculated trajectories, from which we choose those which reach the receiver, and the selected paths provide a synthesis of the oblique ionograms. To simulate HF radio wave propagation, we apply a three-dimensional distribution of the electron density calculated with the mathematical model of the high-latitude ionosphere developed in the Polar Geophysical Institute (PGI). These numerical simulations permit us to interpret specific peculiarities of the OIS data such as abnormal propagation modes, increased delays of signals, enhanced MOF (maximum observed frequency) values etc. New results of the study are summarised as follows. (1) An unusual feature of the propagation along the path is the change of propagation mechanism during substorms on entering a path midpoint (or 1-hop reflection point) to the MIT. (2) Even weak substorms, having the distinguished intensities, lead to the appearance of different types of irregularities observed by the CUTLASS radar and therefore to the different propagation modes and F2MOF values. (3) The PGI model of the ionosphere was first used for ray-tracing at high latitudes. The model results are basically in a good qualitative agreement

  15. Study of the propagation characteristics of Very Low Frequency Signal as observed from Indian Permanent station Maitri and Bharati

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudipta; Chakrabarti, Sandip Kumar; Pal, Sujay; Palit, Sourav; Chakraborty, Suman

    2016-07-01

    Propagation of Very Low Frequency (VLF) radio signal through the Earth-ionosphere waveguide strongly depends on the plasma properties of the ionospheric D layer. Solar extreme ultraviolet radiation plays the central role in controlling physical and chemical properties of the lower ionospheric layers and hence determining the quality and propagation characteristics of a VLF signal. The nature of interference among different propagating modes varies widely with the length of the propagation path. For a very long path, exposure of solar radiation and thus the degree of ionization vary by a large amount along the path. Study of radio signal characteristics in the Antarctic region during summer period in the Southern Hemisphere gives us a unique opportunity to explore such a possibility. In addition, there is an extra feature in this path - the presence of solar radiation and hence the D region for the whole day during summer in at least some sections of the path. We present long-distance propagation characteristics of VLF signals transmitted from VTX (18.2 kHz) and NWC (19.8 kHz) transmitters recorded simultaneously at Indian permanent stations Maitri (latitude 70 ^{o}45 ^{'}S, longitude 11 ^{o}40 ^{'}E) and Bharati (69 ^{o}24 ^{'}S, 76 ^{o}10 ^{'}E). A very stable diurnal variation of the signal (both amplitude and phase) has been obtained with no signature of nighttime fluctuation due the presence of 24 h of sunlight for both the stations. We present the attenuation rate of the dominant waveguide modes corresponding to those propagation conditions where the effects of the Antarctic polar ice on the attenuation of different propagating waveguide modes are visible. VLF signals show the effects of high energetic solar events. Using ion production and recombination profiles by solar irradiance and incorporating D region ion chemistry processes, we calculate the electron density profile at different heights. Using this profile in the Long Wavelength Propagation Capability

  16. A 3-D Propagation Model for Emerging Land Mobile Radio Cellular Environments

    PubMed Central

    Ahmed, Abrar; Nawaz, Syed Junaid; Gulfam, Sardar Muhammad

    2015-01-01

    A tunable stochastic geometry based Three-Dimensional (3-D) scattering model for emerging land mobile radio cellular systems is proposed. Uniformly distributed scattering objects are assumed around the Mobile Station (MS) bounded within an ellipsoidal shaped Scattering Region (SR) hollowed with an elliptically-cylindric scattering free region in immediate vicinity of MS. To ensure the degree of expected accuracy, the proposed model is designed to be tunable (as required) with nine degrees of freedom, unlike its counterparts in the existing literature. The outer and inner boundaries of SR are designed as independently scalable along all the axes and rotatable in horizontal plane around their origin centered at MS. The elevated Base Station (BS) is considered outside the SR at a certain adjustable distance and height w.r.t. position of MS. Closed-form analytical expressions for joint and marginal Probability Density Functions (PDFs) of Angle-of-Arrival (AoA) and Time-of-Arrival (ToA) are derived for both up- and down-links. The obtained analytical results for angular and temporal statistics of the channel are presented along with a thorough analysis. The impact of various physical model parameters on angular and temporal characteristics of the channel is presented, which reveals the comprehensive insight on the proposed results. To evaluate the robustness of the proposed analytical model, a comparison with experimental datasets and simulation results is also presented. The obtained analytical results for PDF of AoA observed at BS are seen to fit a vast range of empirical datasets in the literature taken for various outdoor propagation environments. In order to establish the validity of the obtained analytical results for spatial and temporal characteristics of the channel, a comparison of the proposed analytical results with the simulation results is shown, which illustrates a good fit for 107 scattering points. Moreover, the proposed model is shown to degenerate to

  17. Ionospheric and Geomagnetic Activity Investigated Using Oblique Sounding Comparisons With an HF Radio Propagation Model

    NASA Astrophysics Data System (ADS)

    Neudegg, D.; Layoun, M.; Hutchinson, S.

    2008-12-01

    Oblique HF sounder paths over ~2000km have been operating between New Zealand and Australia for a number of years. The maximum observed frequencies (MOF) are compared with predictions from the climatological HF radio skywave propagation model used by IPS. Variations from predicted median (MUF),lower (OWF) and upper decile frequencies may be interpreted in terms of ionospheric and geomagnetic activity and the effectiveness of parameterisation of ionospheric support for HF by the T-index examined. Closely spaced multiple paths provide opportunities to investigate small scale F2 layer structures.

  18. Propagation effects on radio range and noise in earth-space telecommunications

    NASA Technical Reports Server (NTRS)

    Flock, W. L.; Slobin, S. D.; Smith, E. K.

    1982-01-01

    Attention is given to the propagation effects on radio range and noise in earth-space telecommunications. The use of higher frequencies minimizes ionospheric effects on propagation, but tropospheric effects often increase or dominate. For paths of geostationary satellites, and beyond, the excess range delay caused by the ionosphere and plasmasphere is proportional to the total electron content along the path and inversely proportional to frequency squared. The delay due to dry air is usually of the order of a few meters while the delay due to water vapor (a few tens of centimeters) is responsible for most of the temporal variation in the range delay for clean air. For systems such as that of the Voyager spacecraft, and for attenuation values up to about 10 dB, increased sky noise degrades the received signal-to-noise ratio more than does the reduction in signal level due to attenuation.

  19. Antenna system characteristics and solar radio burst observations

    NASA Astrophysics Data System (ADS)

    Li, Sha; Yan, Yi-Hua; Chen, Zhi-Jun; Wang, Wei; Liu, Dong-Hao

    2015-11-01

    The Chinese Spectral Radio Heliograph (CSRH) is an advanced aperture synthesis solar radio heliograph, independently developed by National Astronomical Observatories, Chinese Academy of Sciences. It consists of 100 reflector antennas, which are grouped into two antenna arrays (CSRH-I and CSRH-II) for low and high frequency bands respectively. The frequency band of CSRH-I is 0.4-2 GHz and that for CSRH-II is 2-15 GHz. In the antenna and feed system, CSRH uses eleven feeds to receive signals coming from the Sun. The radiation pattern has a lower side lobe and the back lobe of the feed is well illuminated. The characteristics of gain G and antenna noise temperature T affect the quality of solar radio imaging. For CSRH, the measured G is larger than 60 dBi and T is less than 120 K. After CSRH-I was established, we successfully captured a solar radio burst between 1.2-1.6 GHz on 2010 November 12 using this instrument and this event was confirmed through observations with the Solar Broadband Radio Spectrometer at 2.84 GHz and the Geostationary Operational Environmental Satellite. In addition, an image obtained from CSRH-I clearly revealed the profile of the solar radio burst. The other observational work involved the imaging the Fengyun-2E geosynchronous satellite which is assumed to be a point source. Results indicate that the data processing method applied in this study for deleting errors in a noisy image could be used for processing images from other sources.

  20. Source characteristics of Jovian narrow-band kilometric radio emissions

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.; Kaiser, M. L.; Desch, M. D.; Manning, R.; Zarka, P.; Pedersen, B.-M.

    1993-07-01

    New observations of Jovian narrow-band kilometric (nKOM) radio emissions were made by the Unified Radio and Plasma Wave (URAP) experiment on the Ulysses spacecraft during the Ulysses-Jupiter encounter in early February 1992. These observations have demonstrated the unique capability of the URAP instrument for determining both the direction and polarization of nKOM radio sources. An important result is the discovery that nKOM radio emission originates from a number of distinct sources located at different Jovian longitudes and at the inner and outermost regions of the Io plasma torus. These sources have been tracked for several Jovian rotations, yielding their corotational lags, their spatial and temporal evolution, and their radiation characteristics at both low latitudes far from Jupiter and at high latitudes near the planet. Both right-hand and left-hand circularly polarized nKOM sources were observed. The polarizations observed for sources in the outermost regions of the torus seem to favor extraordinary mode emission.

  1. Estimation of the propagation characteristics of elastic waves propagating through a partially saturated sand soil

    NASA Astrophysics Data System (ADS)

    Nakayama, M.; Kawakata, H.; Doi, I.; Takahashi, N.

    2015-12-01

    Recently, landslides due to heavy rain and/or earthquakes have been increasing and severe damage occurred in Japan in some cases (e.g., Chigira et al., 2013, Geomorph.). One of the principle factors activating landslides is groundwater. Continuous measurements of moisture in soil and/or pore pressure are performed to investigate the groundwater behavior. However, such measurements give information on only local behavior of the groundwater. To monitor the state of target slope, it is better to measure signals affected by the behavior of groundwater in a widely surrounding region. The elastic waves propagating through the medium under the target slope are one of candidates of such signals. In this study, we measure propagating waves through a sand soil made in laboratory, injecting water into it from the bottom. We investigate the characteristics of the propagating waves. We drop sand particles in a container (750 mm long, 300 mm wide and 400 mm high) freely and made a sand soil. The sand soil consists of two layers. One is made of larger sand particles (0.2-0.4 mm in diameter) and the other is made of smaller sand particles (0.05-0.2 mm in diameter). The dry density of these sand layers is about 1.45 g/cm3. We install a shaker for generating elastic waves, accelerometers and pore pressure gauges in the sand soil. We apply small voltage steps repeatedly, and we continuously measure elastic waves propagating through the sand soil at a sampling rate of 51.2 ksps for a period including the water injection period. We estimate the spatio-temporal variation in the maximum cross-correlation coefficients and the corresponding time lags, using template waveforms recorded in the initial period as references. The coefficient for the waveforms recorded at the accelerometer attached to the tip of the shaker is almost stable in high values with a slight decrease down to 0.94 in the period when the sand particles around the shaker are considered to become wet. On the other hand

  2. The Relation between Type II Radio Bursts and Large-scale Coronal Propagating Fronts

    NASA Astrophysics Data System (ADS)

    Nitta, Nariaki

    2014-06-01

    Both type II radio bursts and chromospheric Moreton-Ramsey waves are believed to signify shock waves that propagate in the solar corona. Large-scale coronal propagating fronts (LCPFs), which are also called EIT waves, EUV waves or coronal bright fronts in the literature, were initially thought to be coronal counterparts of Moreton-Ramsey waves, and thus they were expected to be correlated with type II bursts. At present, the prevailing view seems to be that both type II bursts and LCPFs are more closely linked with CMEs than with flares. Here we revisit the relation between type II bursts and LCPFs, by examining radio dynamic spectra (180-25 MHz) as obtained by USAF/RSTN and analyzing EUV and white-light data from SDO and STEREO. In the sample of about 140 type II bursts and LCPFs between April 2010 and January 2013, we find the correlation of 50-60 %. Type II bursts could be associated with eruptions without significant lateral expansion, and fast LCPFs could show no presence in the metric radio spectral range. Using data from STEREO COR-1 that observed the CME as a limb event, in 42 cases we directly measure the height of the CME at the onset of the type II burst. As expected, the height tends to be lower when the type II burst starts at a higher frequency. It is found that those type II bursts that start at higher altitudes and lower frequencies tend to have weaker EUV fronts. This may indicate multiple ways of how LCPFs and type II bursts are related with CMEs.

  3. Stochastic relation between anomalous propagation in the line-of-sight VHF radio band and occurrences of earthquakes

    NASA Astrophysics Data System (ADS)

    Motojima, K.; Haga, N.

    2013-11-01

    This paper was intended to find out any relation between anomalous line-of-sight propagation on the VHF band and occurrences of earthquakes near the VHF propagation paths. The television and FM radio broadcasting waves on the VHF band were monitored continuously over the long term. For that purpose, a multidirectional VHF band monitoring system was established and utilized. Anomalous line-of-sight propagation on the VHF band was distinguished from the monitored wave by using a statistical analysis. After the stochastic consideration, it was found out that earthquakes associated with anomalous propagation were characterized by magnitude of earthquakes M ≥ 4.5, and distances from epicenters L ≤ 75 km. The anomalous propagation was monitored on the VHF band a few days earlier the associated earthquakes occurred. Moreover, the anomaly appeared on multidirectional propagation paths simultaneously. The anomaly on the line-of-sight propagation indicates possibility of narrow focusing the area of epicenter of earthquake.

  4. Effects of a "day-time" substorm on the ionosphere and radio propagation

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskiy, Donat; MacDougall, John, , Dr; Kalishin, Aleksei

    Experimental studies were carried out using data from the Tromso ionosonde, the CUTLASS radar, the IMAGE system of magnetometers, the Finnish riometer chain, and oblique ionospheric sounding on a Murmansk - St. Petersburg path. An example of a day-time substorm with amplitude of about 200 nT for October 25, 2003 from 13:00 to 18:00 UT is described. During the substorm there was a southward movement of the region of particle precipitation causing a band of the irregularities to move to latitudes 62 - 64o. The velocity of displacement southward is about 15o per hour. Oblique ionograms on the Murmansk - St. Petersburg radio path showed diffuse traces caused by scatter due to the spread F, or by refraction from ionospheric gradients. Based on this, and a number of other substorm studies, the following conclusions are: 1) During an intensive substorm, precipitation regions with ionospheric irregularities are displaced to 62 - 64o maqgnetc latitude. 2) Increased absorption during the substorm most likely does not affect the amplitude of obliquely propagating signals. Blocking the F2-reflections by intense sporadic Es-layers with high conductivity plays rather a more important part. 3) The usual mechanism of radio propagation along the great circle arc is sometimes changed from reflections via the F2- and E-layers simultaneously to only the reflection via Es-layer. 4) Lateral oblique signal propagation is not observed for every substorm. It is possible if the path midpoint is located near the precipitation region where there are irregularities which are quickly displaced, during the substorm, from high latitudes to lower.

  5. A parametric study of the propagation of auroral radio emissions through auroral cavities

    NASA Astrophysics Data System (ADS)

    Gautier, A.; Hess, S.; Cecconi, B.; Zarka, P. M.

    2013-12-01

    Auroral Kilometric Radiation is the radio counterpart of the Earth's auroral radiations, observed in a large domain of wavelength, from Infrared to UV and obviously in visible. It is generated at high latitude (~70°), mostly along the nightside magnetic field lines connecting to the Earth's magnetospheric tail. In-situ observations by numerous spacecraft show that the radio sources are embedded inside depleted cavities. The auroral cavities contain a hot tenuous plasma (ne~1 cm-3, Te~5 keV) in a strong ambient magnetic field (fp/fc < 0.1). The mechanism of emission, the Cyclotron Maser Instability (CMI), predicts an intense X mode emission near gyromagnetic frequency preferentially perpendicular to the local magnetic field. But as the radio waves are generated inside a depleted cavity, they are refracted. The apparent beaming of the source is different from that predicted by the CMI. The characteristics of the apparent beaming of the source outside of the cavity depends on several geometrical and physical parameters of the surrounding medium, as well as the frequency of the radio wave. A ray tracing code (ARTEMIS-P), which computes the trajectories of electromagnetic waves in magnetized plasma, is use to compute the path of radio ray from the source inside the hot tenuous plasma of the cavity to the outside. We model a cylindrical plasma cavity characterized by a few parameters (width, edge and parallel gradients) and we study the effect of the cavity geometry on the beaming of AKR for several frequencies. We draw conclusions about the deterministic nature of the beaming angle of the radio emissions generated in cavities. We then extend our study to emissions from giant planets.

  6. Radio wave propagation in the Martian polar deposits: models and implications for radar sounding.

    NASA Astrophysics Data System (ADS)

    Ilyushin, Ya. A.

    In the present study the propagation of electromagnetic waves in the northern polar ice sheet of Mars is considered Several different scenarios of the structure of the polar deposits and composition of the ice compatible with previously published observational data are proposed Both analytical and numerical simulations of ultra wide band chirp radar pulse propagating through the cap are performed Approximate approach based on the non-coherent theory of the radiative transfer in layered media has been applied to the problem of the propagation of radar pulses in the polar caps Both 1D and 2D and 3D geometry applicable to the orbital and landed radar instruments are studied The side clutter and phase distortions of the signal are also addressed analyzed The possibilities of retrieval of the geological information depending on transparency of the polar cap for radio waves are discussed If the polar cap is relatively transparent the echo from the base of the sheet should be clearly distinctive and interpretable in terms of basal topography of the cap In the case of moderate optical thickness coherent basal echo is corrupted by strong multiple scattering in the layered structure However some conclusions about basal conditions could be made from the signals for example the subglacial lakes may be detected Finally optically thick polar caps prevent any sounding of the base so only the medium itself can be characterized by GPR measurements e g the impurity content in the ice can be found Ilyushin Y A R Seu

  7. Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Kulkarni, Prateek P.; Manimala, James M.

    2016-06-01

    Longitudinal elastic wave propagation characteristics of acoustic metamaterials with various inerter configurations are investigated using their representative one-dimensional discrete element lattice models. Inerters are dynamic mass-amplifying mechanical elements that are activated by a difference in acceleration across them. They have a small device mass but can provide a relatively large dynamic mass presence depending on accelerations in systems that employ them. The effect of introducing inerters both in local attachments and in the lattice was examined vis-à-vis the propagation characteristics of locally resonant acoustic metamaterials. A simple effective model based on mass, stiffness, or their combined equivalent was used to establish dispersion behavior and quantify attenuation within bandgaps. Depending on inerter configurations in local attachments or in the lattice, both up-shift and down-shift in the bandgap frequency range and their extent are shown to be possible while retaining static mass addition to the host structure to a minimum. Further, frequency-dependent negative and even extreme effective-stiffness regimes are encountered. The feasibility of employing tuned combinations of such mass-delimited inertant configurations to engineer acoustic metamaterials that act as high-pass filters without the use of grounded elements or even as complete longitudinal wave inhibitors is shown. Potential device implications and strategies for practical applications are also discussed.

  8. Scalable Parallel Execution of an Event-based Radio Signal Propagation Model for Cluttered 3D Terrains

    SciTech Connect

    Seal, Sudip K; Perumalla, Kalyan S

    2009-01-01

    Radio signal strength estimation is essential in many applications, including the design of military radio communications and industrial wireless installations. While classical approaches such as finite difference methods are well-known, new event-based models of radio signal propagation have been recently shown to deliver such estimates faster (via serial execution) than other methods. For scenarios with large or richly-featured geographical volumes, however, parallel processing is required to meet the memory and computation time demands. Here, we present a scalable and efficient parallel execution of a recently-developed event-based radio signal propagation model. We demonstrate its scalability to thousands of processors, with parallel speedups over 1000x. The speed and scale achieved by our parallel execution enable larger scenarios and faster execution than has ever been reported before.

  9. HF Radio Wave Propagation in the Ionosphere Observed with the ePOP RRI (Radio Receiver Instrument) -- SuperDARN Experiment

    NASA Astrophysics Data System (ADS)

    Hussey, G. C.; Gillies, R. G.; Ridley, C. G.; Yau, A. W.; McWilliams, K. A.; Sofko, G. J.

    2014-12-01

    The Radio Receiver Instrument (RRI) on the enhanced Polar Outflow Probe (ePOP) scientific payload of the recently launched CSA (Canadian Space Agency) CASSIOPE (Cascade Demonstrator Small-Sat and Ionospheric Polar Explorer) satellite mission and the Super Dual Auroral Radar Network (SuperDARN) of HF radars have successfully executed a number of experiments since the launch of ePOP in late September, 2013. This presentation investigates the propagation delays and timing associated with HF radio waves transversing the plasma in the terrestrial ionosphere. Both the relative and absolute timing of the co-ordinated SuperDARN-RRI experiments will be presented. This knowledge is essential for interpreting HF radio wave propagation effects such as range accuracy, mode-splitting and timing, Doppler shift, and delayed 'echo' signatures, for example.

  10. Low-Frequency Type II Radio Detections and Coronagraph Data to Describe and Forecast the Propagation of 71 CMEs/Shocks

    NASA Astrophysics Data System (ADS)

    St Cyr, O. C.; Cremades, H.; Iglesias, F. A.; Xie, H.; Kaiser, M. L.; Gopalswamy, N.

    2015-12-01

    Motivated by improving predictions of arrival times at Earth of shocks driven by coronal mass ejections (CMEs), we have analyzed 71 Earth-directed events in different stages of their propagation. The study is primarily based on approximated locations of interplanetary (IP) shocks derived from Type-II radio emissions detected by the Wind/WAVES experiment during 1997-2007. Distance-time diagrams resulting from the combination of white-light corona, IP Type-II radio, and in situ data lead to the formulation of descriptive profiles of each CME's journey toward Earth. Furthermore, two different methods to track and predict the location of CME-driven IP shocks are presented. The linear method, solely based on Wind/WAVES data, arises after key modifications to a pre-existing technique that linearly projects the drifting low-frequency Type-II emissions to 1 AU. This upgraded method improves forecasts of shock arrival time by almost 50%. The second predictive method is proposed on the basis of information derived from the descriptive profiles, and relies on a single CME height-time point and on low-frequency Type-II radio emissions to obtain an approximate value of the shock arrival time at Earth. In addition, we discuss results on CME-radio emission associations, characteristics of IP propagation, and the relative success of the forecasting methods.

  11. Low-Frequency Type-II Radio Detections and Coronagraph Data Employed to Describe and Forecast the Propagation of 71 CMEs/Shocks

    NASA Astrophysics Data System (ADS)

    Cremades, H.; Iglesias, F. A.; St. Cyr, O. C.; Xie, H.; Kaiser, M. L.; Gopalswamy, N.

    2015-09-01

    Motivated by improving predictions of arrival times at Earth of shocks driven by coronal mass ejections (CMEs), we have analyzed 71 Earth-directed events in different stages of their propagation. The study is primarily based on approximated locations of interplanetary (IP) shocks derived from Type-II radio emissions detected by the Wind/WAVES experiment during 1997 - 2007. Distance-time diagrams resulting from the combination of white-light corona, IP Type-II radio, and in-situ data lead to the formulation of descriptive profiles of each CME's journey toward Earth. Furthermore, two different methods for tracking and predicting the location of CME-driven IP shocks are presented. The linear method, solely based on Wind/WAVES data, arises after key modifications to a pre-existing technique that linearly projects the drifting low-frequency Type-II emissions to 1 AU. This upgraded method improves forecasts of shock-arrival times by almost 50 %. The second predictive method is proposed on the basis of information derived from the descriptive profiles and relies on a single CME height-time point and on low-frequency Type-II radio emissions to obtain an approximate value of the shock arrival time at Earth. In addition, we discuss results on CME-radio emission associations, characteristics of IP propagation, and the relative success of the forecasting methods.

  12. Effect of electron-density gradients on propagation of radio waves in the mid-latitude trough. Master's thesis

    SciTech Connect

    Citrone, P.J.

    1991-01-01

    Partial contents of this thesis include: (1) Radio-wave propagation and the mid-latitude trough; (2) Ionospheric measurements; (3) Modification of time-dependent ionospheric model output with latitudinal electron-density profiles from digisonde trough depictions; (4) Ray-tracing simulations to examine ground range; and (5) Effects of three-dimensional gradients in electron density on radio-wave propagation in the trough region. Data is tabulated for geophysical conditions, solar activity level, geomagnetic activity level, conditions for vertical ray refraction to surface, and ray-tracing fixed-input conditions.

  13. Characteristic Trends of Ultrastable Oscillators for Radio Science Experiments

    NASA Astrophysics Data System (ADS)

    Asmar, S. W.

    1997-01-01

    Telecommunication systems of spacecraft on deep-space missions also function as instruments for radio science experiments. Several missions augmented the radio communication system with an ultrastable oscillator (USO) in order to provide a highly stable reference signal for one-way downlink. Since the first quartz USO was flown on Voyager, the technology has advanced significantly, affording future missions higher sensitivity in reconstructing the temperature-pressure profiles of the atmospheres under study as well as the ability to study other physical phenomena of interest to radio science. The ultrastable class of oscillators has been flown on Voyagers I and II, the Galileo Orbiter, the Galileo Probe, Mars Observer, and Mars Global Surveyor. These have been quartz crystal resonators. The Cassini spacecraft will carry another quartz USO and two rubidium USOs for the Huygens Probe in support of the Doppler Wind Experiment. There are plans to fly USOs on several other future missions. This article surveys the trends in stability and spectral purity performance; design characteristics, including size and mass; and the history of these clocks in space.

  14. Characteristics of diving in radio-marked Xantus's Murrelets

    USGS Publications Warehouse

    Hamilton, C.D.; Golightly, R.T.; Takekawa, J.Y.

    2005-01-01

    We monitored diving activity of radio-marked Xantus's Murrelets Synthliboramphus hypoleucus near Anacapa Island, California, during the breeding season. Thirteen radio-marked murrelets were remotely monitored from Anacapa Island with a handheld antenna and radio receiver for 29 hours in three sample periods in April and May 2003. Mean dive durations in the sample periods were 18 s ?? 2 s, 28 s ?? 2 s, and 24 s ?? 4 s, suggesting that dives were less than 21 m from the surface. Dive duration and subsequent time on the surface differed between the sample periods. Dive duration and subsequent time on the surface were not correlated in observations stratified by individual bird or by sample period. Further, dive duration and subsequent time on the surface were not correlated within foraging bouts. Dive characteristics measured near Anacapa Island suggested that Xantus's Murrelets have the ability to capture prey found at varying depths, but will feed on prey that is most available near the surface of the water.

  15. Propagation Characteristics of CMEs Associated Magnetic Clouds and Ejecta

    NASA Astrophysics Data System (ADS)

    Kim, Roksoon; Gopalswamy, N.; Cho, K.; Moon, Y.; Yashiro, S.

    2012-05-01

    We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counter parts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, speed, and direction parameter, D, that quantifies the propagation direction of a CME. For the 54 CDAW events, we found several properties of the CMEs as follows: (1) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly to the Earth than the EJ-associated CMEs; (2) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; (3) the mean speed of MC-associated CMEs (946 km/s) is faster than that of EJ-associated CMEs (771 km/s). For seven very fast CMEs (> 1500 km/s), all CMEs with large D (> 0.4) are associated with MCs and the CMEs with small D are associated with EJs. On the basis of these results, we suggest that the CME trajectory essentially decides the observed ICME structure.

  16. The local characteristic function of interplanetary particle propagation

    NASA Technical Reports Server (NTRS)

    Green, G.; Schlueter, W.

    1985-01-01

    An easily measurable intensity function which characterizes the interplanetary propagation of charged solar flare particles is presented. This function is nearly time invariant during a solar event despite the large variations of intensity and anisotropy, but varies from event to event. It characterizes the systematic and stochastic forces of the interplanetary magnetic field which focus and scatter the particles in pitch angle. The model of focused transport shows that this function is essentially determined by the local shape and amplitude of the pitch angle diffusion coefficient kappa (mu) and by the local value of the focusing length. The time profile of the solar particle injection is typically of negligible influence. The local characteristic function may be used as a powerful new tool for a systematic analysis of flare particle angular distributions, Examples are given.

  17. Propagation characteristics of neutrons leaking from the accelerator facilities.

    PubMed

    Kitaichi, Masatoshi; Sawamura, Sadashi; Wakisaka, Masashi; Kaneko, Junichi H; Ochiai, Kentaro; Nishitani, Takeo; Sawamura, Teruko

    2004-01-01

    In this study spatial and time distribution of neutrons leaking from Hokkaido University 45 MeV Electron Linac facility have measured and compared with the Monte Carlo simulations. The neutron transport processes inside and outside the facility building has been simulated using MCNP. The neutrons have measured by BF3 counters and 3He counters with polyethylene moderators up to the distance of 330 m from the facility. The spatial distribution of ambient dose equivalent converted from the counts has been compared with the simulation. The distribution estimated from the counts by the BF3 counter has been shown fairly good agreement with the calculation. The spatial distribution of counts obtained at the 45 MeV Electron Linac facility has been compared with that obtained at the Fusion Neutronics Source (FNS) facility of JAERI. The difference between the propagation characteristics of neutrons leaking from those facilities has been discussed. PMID:15353739

  18. Measurements on wave propagation characteristics of spiraling electron beams

    NASA Technical Reports Server (NTRS)

    Singh, A.; Getty, W. D.

    1976-01-01

    Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.

  19. Finite-difference time-domain modelling of through-the-Earth radio signal propagation

    NASA Astrophysics Data System (ADS)

    Ralchenko, M.; Svilans, M.; Samson, C.; Roper, M.

    2015-12-01

    This research seeks to extend the knowledge of how a very low frequency (VLF) through-the-Earth (TTE) radio signal behaves as it propagates underground, by calculating and visualizing the strength of the electric and magnetic fields for an arbitrary geology through numeric modelling. To achieve this objective, a new software tool has been developed using the finite-difference time-domain method. This technique is particularly well suited to visualizing the distribution of electromagnetic fields in an arbitrary geology. The frequency range of TTE radio (400-9000 Hz) and geometrical scales involved (1 m resolution for domains a few hundred metres in size) involves processing a grid composed of millions of cells for thousands of time steps, which is computationally expensive. Graphics processing unit acceleration was used to reduce execution time from days and weeks, to minutes and hours. Results from the new modelling tool were compared to three cases for which an analytic solution is known. Two more case studies were done featuring complex geologic environments relevant to TTE communications that cannot be solved analytically. There was good agreement between numeric and analytic results. Deviations were likely caused by numeric artifacts from the model boundaries; however, in a TTE application in field conditions, the uncertainty in the conductivity of the various geologic formations will greatly outweigh these small numeric errors.

  20. Study of Temperature Wave Propagation in Superfluid Helium Focusing on Radio-Frequency Cavity Cooling

    NASA Astrophysics Data System (ADS)

    Koettig, T.; Peters, B. J.; Avellino, S.; Junginger, T.; Bremer, J.

    2015-12-01

    Oscillating Superleak Transducers (OSTs) can be used to localize quenches of superconducting radio-frequency cavities. Local hot spots at the cavity surface initiate temperature waves in the surrounding superfluid helium that acts as cooling fluid at typical temperatures in the range of 1.6 K to 2 K. The temperature wave is characterised by the properties of superfluid helium such as the second sound velocity. For high heat load densities second sound velocities greater than the standard literature values are observed. This fast propagation has been verified in dedicated small scale experiments. Resistors were used to simulate the quench spots under controlled conditions. The three dimensional propagation of second sound is linked to OST signals. The aim of this study is to improve the understanding of the OST signal especially the incident angle dependency. The characterised OSTs are used as a tool for quench localisation on a real size cavity. Their sensitivity as well as the time resolution was proven to be superior to temperature sensors glued to the surface of the cavity.

  1. Utilizing a TDRS satellite for direct broadcast satellite-radio propagation experiments and demonstrations

    NASA Technical Reports Server (NTRS)

    Hollansworth, James E.

    1993-01-01

    The NASA/VOA Direct Broadcast Satellite-Radio (DBS-R) Program will be using a NASA Tracking Data Relay Satellite (TDRS) satellite at 62 deg. West longitude to conduct live satellite S-band propagation experiments and demonstrations of satellite sound broadcasting over the next two years (1993-1994). The NASA/VOA DBS-R program has applied intensive effort to garner domestic and international support for the DBS-R concept. An S-band DBS-R allocation was achieved for Region 2 at WARC-92 held in Spain. With this allocation, the DBS-R program now needs to conduct S-band propagation experiments and systems demonstrations that will assist in the development of planning approaches for the use of Broadcast Satellite Service (Sound) frequency bands prior to the planning conference called for by WARC-92. These activities will also support receiver concept development applied to qualities ranging from AM to Monophonic FM, Stereophonic FM, Monophonic CD, and Stereophonic CD quality.

  2. Utilizing a TDRS satellite for direct broadcast satellite-radio propagation experiments and demonstrations

    NASA Technical Reports Server (NTRS)

    Hollansworth, James E.

    1993-01-01

    The NASA/VOA Direct Broadcast Satellite - Radio (DBS-R) Program will be using a NASA Tracking Data Relay Satellite (TDRS) satellite at 62 deg West longitude to conduct live satellite S-band propagation experiments and demonstrations of satellite sound broadcasting over the next two years (1993-1994). The NASA/VOA DBS-R program has applied intensive effort to garner domestic and international support for the DBS-R concept. An S-band DBS-R allocation was achieved for Region 2 at WARC-92 held in Spain. With this allocation, the DBS-R program now needs to conduct S-band propagation experiments and systems demonstrations that will assist in the development of planning approaches for the use of Broadcast Satellite Service (Sound) frequency bands prior to the planning conference called for by WARC-92. These activities will also support receiver concept development applied to qualities ranging from AM to Monophonic FM, Stereophonic FM, Monophonic CD, and Stereophonic CD quality.

  3. Utilizing a TDRS satellite for direct broadcast satellite-radio propagation experiments and demonstrations

    NASA Technical Reports Server (NTRS)

    Hollansworth, James E.

    1993-01-01

    The NASA/VOA Direct Broadcast Satellite - Radio (DBS-R) Program will be using a NASA Tracking Data Relay Satellite (TDRS) at 62 deg West longitude to conduct live satellite S-band propagation experiments and demonstrations of satellite sound broadcasting over the next two years (1993-1994). The NASA/VOA DBS-R program has applied intensive effort to garner domestic and international support for the DBS-R concept. An S-band DBS-R allocation was achieved for Region 2 at WARC-92 held in Spain. With this allocation, the DBS-R program now needs to conduct S-band propagation experiments and systems demonstrations that will assist in the development of planning approaches for the use of Broadcast Satellite Service (Sound) frequency bands prior to the planning conference called for by WARC-92. These activities will also support receiver concept development applied to qualities ranging from AM to Monophonic FM, Stereophonic FM, Monophonic CD, and Stereophonic CD quality.

  4. From COST 238 to COST 296: Four European COST Actions on Ionospheric Physics and Radio Propagation

    NASA Astrophysics Data System (ADS)

    Zolesi, Bruno; Cander, Ljiljana R.

    2008-02-01

    COST (Co-operation in the field of Scientific and Technical Research) is an important instrument supporting co-operation among scientists and researchers across Europe now joining 35 member countries. Scientific projects in the COST framework are called COST Actions and have the objectives embodied in their respective Memorandum of Understanding (MoU). The main objectives of the COST Actions within the European ionospheric and radio propagation community have been: to study the influence of upper atmospheric conditions on terrestrial and Earth-space communications, to develop methods and techniques to improve existing and generate new ionospheric and propagation models over Europe for telecommunication and navigation applications and to transfer the results to the appropriate national and international organizations, institutions and industry dealing with the modern communication systems. This paper summarizes in brief the background and historical context of four ionospheric COST Actions and outlines their main objectives and results. In addition, the paper discusses the dissemination of the results and the collaboration among the participating institutions and researchers.

  5. Long-term integrated radiophysical studies of the ionosphere, near space, and the propagation of radio waves from space objects

    NASA Technical Reports Server (NTRS)

    Misyura, V. A.

    1974-01-01

    The radiophysical studies reported consist of direct measurements of certain effects induced in the propagation of radio waves from space objects. From measured effects and from data on the motion and position of space objects, physical parameters of the medium and bodies are determined.

  6. Antenna Construction & Propagation of Radio Waves, 5-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Marine Corps, Washington, DC.

    These military-developed curriculum materials consist of five individualized, self-paced chapters dealing with antenna construction and propagation of radio waves. Covered in the individual lessons are the following topics: basic electricity; antenna transmission-line fundamentals; quarter-wave antennas, half-wave antennas, and associated radio…

  7. Generation and Upper Atmospheric Propagation of Acoustic Gravity Waves according to Numerical Modeling and Radio Tomography

    NASA Astrophysics Data System (ADS)

    Vorontsov, Artem; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Kurbatov, Grigory

    2016-04-01

    The acoustic-gravity waves (AGW) in the upper atmosphere and ionosphere can be generated by a variety of the phenomena in the near-Earth environment and atmosphere as well as by some perturbations of the Earth's ground or ocean surface. For instance, the role of the AGW sources can be played by the earthquakes, explosions, thermal heating, seisches, tsunami waves. We present the examples of AGWs excited by the tsunami waves traveling in the ocean, by seisches, and by ionospheric heating by the high-power radio wave. In the last case, the gravity waves are caused by the pulsed modulation of the heating wave. The AGW propagation in the upper atmosphere induces the variations and irregularities in the electron density distribution of the ionosphere, whose structure can be efficiently reconstructed by the method of the ionospheric radio tomography (RT) based on the data from the global navigational satellite systems (GNSS). The input data for RT diagnostics are composed of the 150/400 MHz radio signals from the low-orbiting (LO) satellites and 1.2-1.5 GHz radio signals from the high-orbiting (HO) satellites with their orbits at ~1000 and ~20000 km above the ground, respectively. These data enable ionospheric imaging on different spatiotemporal scales with different spatiotemporal resolution and coverage, which is suitable, inter alia, for tracking the waves and wave-like features in the ionosphere. In particular, we demonstrate the maps of the ionospheric responses to the tornado at Moore (Oklahoma, USA) of May 20, 2013, which are reconstructed from the HO data. We present the examples of LORT images containing the waves and wavelike disturbances associated with various sources (e.g., auroral precipitation and high-power heating of the ionosphere). We also discuss the results of modeling the AGW generation by the surface and volumetric sources. The millihertz AGW from these sources initiate the ionospheric perturbation with a typical scale of a few hundred km at the

  8. Propagation Characteristics of CMEs Associated with Magnetic Clouds and Ejecta

    NASA Astrophysics Data System (ADS)

    Kim, R.-S.; Gopalswamy, N.; Cho, K.-S.; Moon, Y.-J.; Yashiro, S.

    2013-05-01

    We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counterparts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, and speed as well as the direction parameter, D. The direction parameter quantifies the degree of asymmetry of the CME shape in coronagraph images, and shows how closely the CME propagation is directed to Earth. For the 54 CDAW events, we found the following properties of the CMEs: i) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly toward the Earth than the EJ-associated CMEs; ii) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; iii) the mean speed of MC-associated CMEs (946 km s-1) is faster than that of EJ-associated CMEs (771 km s-1). For seven very fast CMEs (≥ 1500 km s-1), all CMEs with large D (≥ 0.4) are associated with MCs and the CMEs with small D are associated with EJs. From the statistical analysis of CME parameters, we found the superiority of the direction parameter. Based on these results, we suggest that the CME trajectory essentially determines the observed ICME structure.

  9. A Probe of Magnetosphere-Ionosphere Coupling using the Propagation Characteristics of Very Low Frequency Signal

    NASA Astrophysics Data System (ADS)

    Nwankwo, V. U. J.; Chakrabarti, S. K.; Ogunmodimu, O. A.

    2015-12-01

    The amplitude and phase of VLF/LF radio signal are sensitive to changes in the electrical conductivity of the lower ionosphere when propagated in the Earth-ionosphere waveguide. This unique characteristic makes it useful in studying sudden ionospheric disturbances and/or anomaly especially those related to prompt X-ray flux output from solar flares and gamma ray bursts (GRBs). However, strong geomagnetic disturbances and/or storm conditions are known to produce large and global ionospheric disturbances, which can significantly affect VLF radio propagation in the D region ionosphere. Other than X-ray flux enhancement of amplitude and phase, diurnal VLF signature may convey other important information especially those related to geomagnetic disturbance/storm induced ionospheric changes. In this paper, using the data of three propagation paths (at latitudes 40-54), we performed detail analysis of the trend of variations of aspects VLF diurnal signal under varying solar and/or geomagnetic space environmental conditions for identification of possible geomagnetic footprint on the ionosphere. We found that trend of variations significantly reflected the prevailing space weather conditions of various time scales. The `dipping' of the signal diurnal amplitude have shown noteworthy consistency with significantly geomagnetic perturbed and/or storm conditions in the time scale of 1-2 days. We also found that dipping of most MDP signal occurred irrespective of the time (of the day), which an event happened, while those of MBSR, MASS, SRT and SST appear to largely depend on event occurrence time and/or duration. Pre-sunset event had more influence on the SST and MASS (dusk signal), while pre-sunrise event had more influence on the SRT and MBSR (dawn signal), and depending on the duration of the event, impact could be extended to the neighbouring point/component in succession. The induced dipping varied with geomagnetic activity/event intensity and/or duration, as well as the

  10. The High-Latitude Ionosphere and Its Effects on Radio Propagation

    NASA Astrophysics Data System (ADS)

    Moses, Ronald W., Jr.

    2004-05-01

    The ionosphere is indeed the place where Earth and space come together. Correspondingly, the ionosphere is subject to the details and complexities of both Earth and space. If one is to develop a logical understanding of even a limited portion of the ionosphere, that knowledge will be constructed on a foundation of many facts of nature. Awareness of those facts will in turn be supported by a vast historical array of scientific effort to ascertain the fundamentals of Earth and space that combine to form the ionosphere as we know it. Fortunately for us, R. D. Hunsucker and J. K. Hargreaves have written a book that goes from the Earth up and comes from the Sun down to arrive at a remarkably detailed physical description of the ionosphere and its impact on human activities, especially radio-frequency (RF) communications. The High-Latitude Ionosphere and its Effects on Radio Propagation is a bit of a misnomer, because the book covers many more topics than its title suggests. The authors set the stage by developing a detailed picture of the density, temperature, chemical, neutral, and charge states of the atmosphere-ionosphere system. Basic models of the ionization and recombination processes are presented with supporting mathematics and graphical examples. Concepts such as the Chapman production function are introduced and applied, whereby ionizing solar radiation produces electron-ion pairs. One can then grasp how the so-called D, E, and F layers of the ionosphere are related to the ionization of specific molecular species. Along the way, the authors are careful to introduce the extensive nomenclature of ionospheric descriptors. There is a comfortable relationship of prose, mathematics, and graphical material. Reading this book is a pleasure for the scientifically curious mind.

  11. Ionosphere-magnetosphere studies using ground based VLF radio propagation technique: an Indian example

    NASA Astrophysics Data System (ADS)

    Chakravarty, Subhas

    Since IGY period (1957-58), natural and artificially produced Very Low Frequency (VLF) elec-tromagnetic radiations are being recorded at large number of ground stations all over the world and on-board satellites to study various radio wave-thermal/energetic plasma interactive pro-cesses related to earth's ionosphere-plasmasphere-magnetosphere environment. The terrestrial propagation of these VLF radio waves are primarily enabled through the earth ionosphere wave guide (EIWG) mode to long horizontal distances around the globe and ducted along the ge-omagnetic field lines into the conjugate hemisphere through the plasmasphere-magnetosphere regions. The time frequency spectra of the received signals indicate presence of dispersion (wave/group velocities changing with frequency) and various cut-off frequencies based on the width of the EIWG, electron gyro and plasma frequencies etc., providing several types of received signals like whistlers, chorus, tweeks, hiss and hisslers which can be heard on loud-speakers/earphones with distinguishing audio structures. While the VLF technique has been a very effective tool for studying middle and high latitude phenomena, the importance of the similar and anomalous observations over the Indian low latitude stations provide potentially new challenges for their scientific interpretation and modelling. The ducted and non-ducted magnetospheric propagation, pro-longitudinal (PL) mode, low latitude TRIMPI/TLE (Tran-sient Luminous Emissions) or other effects of wave-particle/wave-wave interactions, effects due to ionospheric irregularities and electric fields, full wave solutions to D-region ionisation per-turbations due to solar and stellar energetic X-and γ ray emissions during normal and flaring conditions are a few problems which have been addressed in these low latitude studies over India. Since the conjugate points of Indian stations lie over the Indian oceanic region, the VLF propagation effects would be relatively free from

  12. The Relation Between Large-Scale Coronal Propagating Fronts and Type II Radio Bursts

    NASA Astrophysics Data System (ADS)

    Nitta, Nariaki V.; Liu, Wei; Gopalswamy, Nat; Yashiro, Seiji

    2014-12-01

    Large-scale, wave-like disturbances in extreme-ultraviolet (EUV) and type II radio bursts are often associated with coronal mass ejections (CMEs). Both phenomena may signify shock waves driven by CMEs. Taking EUV full-disk images at an unprecedented cadence, the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory has observed the so-called EIT waves or large-scale coronal propagating fronts (LCPFs) from their early evolution, which coincides with the period when most metric type II bursts occur. This article discusses the relation of LCPFs as captured by AIA with metric type II bursts. We show examples of type II bursts without a clear LCPF and fast LCPFs without a type II burst. Part of the disconnect between the two phenomena may be due to the difficulty in identifying them objectively. Furthermore, it is possible that the individual LCPFs and type II bursts may reflect different physical processes and external factors. In particular, the type II bursts that start at low frequencies and high altitudes tend to accompany an extended arc-shaped feature, which probably represents the 3D structure of the CME and the shock wave around it, and not just its near-surface track, which has usually been identified with EIT waves. This feature expands and propagates toward and beyond the limb. These events may be characterized by stretching of field lines in the radial direction and may be distinct from other LCPFs, which may be explained in terms of sudden lateral expansion of the coronal volume. Neither LCPFs nor type II bursts by themselves serve as necessary conditions for coronal shock waves, but these phenomena may provide useful information on the early evolution of the shock waves in 3D when both are clearly identified in eruptive events.

  13. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Bin; Li, Bo-Wen; Nie, Qiu-Yue; Wang, Xiao-Gang; Kong, Fan-Rong

    2016-05-01

    Propagation characteristics of electromagnetic (EM) waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  14. Tracker: A three-dimensional raytracing program for ionospheric radio propagation

    SciTech Connect

    Argo, P.E.; DeLapp, D.; Sutherland, C.D.; Farrer, R.G.

    1994-12-01

    TRACKER is an extension of a three-dimensional Hamiltonian raytrace code developed some thirty years ago by R. Michael Jones. Subsequent modifications to this code, which is commonly called the {open_quotes}Jones Code,{close_quotes} were documented by Jones and Stephensen (1975). TRACKER incorporates an interactive user`s interface, modern differential equation integrators, graphical outputs, homing algorithms, and the Ionospheric Conductivity and Electron Density (ICED) ionosphere. TRACKER predicts the three-dimensional paths of radio waves through model ionospheres by numerically integrating Hamilton`s equations, which are a differential expression of Fermat`s principle of least time. By using continuous models, the Hamiltonian method avoids false caustics and discontinuous raypath properties often encountered in other raytracing methods. In addition to computing the raypath, TRACKER also calculates the group path (or pulse travel time), the phase path, the geometrical (or {open_quotes}real{close_quotes}) pathlength, and the Doppler shift (if the time variation of the ionosphere is explicitly included). Computational speed can be traded for accuracy by specifying the maximum allowable integration error per step in the integration. Only geometrical optics are included in the main raytrace code; no partial reflections or diffraction effects are taken into account. In addition, TRACKER does not lend itself to statistical descriptions of propagation -- it requires a deterministic model of the ionosphere.

  15. Investigation of Radio Wave Propagation in the Martian Ionosphere Utilizing HF Sounding Techniques

    NASA Astrophysics Data System (ADS)

    Yowell, Robert J.

    1996-06-01

    This thesis presents a preliminary design of an ionospheric sounder to be carried aboard one or more of NASA's Mars Surveyor landers. Past Russian and American probes have indicated the existence of an ionosphere, but none of these missions remotely sensed this atmospheric layer from the surface. The rationale for utilizing a surface-based Martian ionospheric sounder is discussed. Based on NASA's choice of launch vehicle and power source, a low-weight, low-powered Chirp sounder using a horizontally-polarized dipole antenna is recommended for the sounder experiment. The sounder experiment should be conducted for at least one Martian year, in order to investigate significant changes in radio propagation during seasonal transitions. Specific data compression techniques are suggested in order to reduce the quantity of data transferred from each sounder. The Appendix presents an overview of Earth's ionospheric structure and solar cycle effects. Finally, a Matlab software model of a hypothetical ionogram as measured from the Martian surface is presented.

  16. Stochastic relation between anomalous propagation in the line-of-sight VHF radio band and occurrences of earthquakes

    NASA Astrophysics Data System (ADS)

    Motojima, K.; Haga, N.

    2014-08-01

    This paper was intended to find out any relation between anomalous line-of-sight propagation on the very high frequency (VHF) band and occurrences of earthquakes near the VHF propagation paths. The television and FM radio broadcasting waves on the VHF band were monitored continuously over the long term. For that purpose, a multidirectional VHF band monitoring system was established and utilized. Anomalous line-of-sight propagation on the VHF band was distinguished from the monitored wave by using a statistical analysis. After the stochastic consideration, it was found out that earthquakes associated with anomalous propagation were characterized by magnitude of earthquakes M ≥ 4.5, and distances from epicenters L ≤ 75 km. The anomalous propagation was monitored on the VHF band a few days before the associated earthquakes occurred. Moreover, the anomaly appeared on multidirectional propagation paths simultaneously. The anomaly on the line-of-sight propagation indicates the possibility of narrowly focusing the area of the epicenter of earthquake.

  17. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    SciTech Connect

    Seitzman, Jerry; Lieuwen, Timothy

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These results provide

  18. Formulation of Multiple Diffraction by Trees and Buildings for Radio Propagation Predictions for Local Multipoint Distribution Service

    PubMed Central

    Zhang, Wei

    1999-01-01

    This paper presents a closed-form expression for multiple forward diffraction by rows of tree canopies and buildings applicable to the propagation predictions at centimeter and millimeter wavelengths for local multipoint distribution service (LMDS). The expression is derived from the uniform geometrical theory of diffraction and physical optics, as well as from some existing models for vegetation and buildings. When the transmitter antennas are sufficiently high, the attenuation of the buildings varies around the value of free space and the building effect is negligible, because a line-of-sight (LOS) propagation path between transmitter and over building-rooftop receiver antennas exists and plays a major role. The tree canopies which extend above the building rooftop heights block the LOS propagation path and cause additional signal attenuation. An existing study of the LMDS radio channel based on measurements came to the same conclusion. The attenuation effect of the buildings is significant if the transmitter antennas are not high enough.

  19. Guided radio-wave propagation in the equatorial ionosphere according to the topside sounding onboard Interkosmos-19

    NASA Astrophysics Data System (ADS)

    Karpachev, A. T.; Zhbankov, G. A.; Kuleshova, V. P.; Telegin, V. A.

    2014-12-01

    In addition to normal vertical-incident ionogram traces, strongly remote (up to 2000 km) traces of HF-radio-signal reflections observed on topside-sounder ionograms of the Interkosmos-19 satellite obtained in the equatorial ionosphere are presented. Such traces are connected with waveguides (ducts). These waveguides are field-aligned irregularities of the ionospheric plasma with electron density depletions of a few percent and cross-field dimension of a few to several kilometers. Ray tracing confirms this supposition and allows an estimate of typical waveguide parameters: diameter ≤10-15 km and amplitude |ΔN/N|≥10%, where N is the electron density. The waveguide traces usually start at the cutoff frequencies of the main traces. However, sometimes they begin at much lower frequencies which indicates the satellite was transitioning through an equatorial plasma bubble during the recording of the ionogram. The X-mode of ducted echoes is more distinct then the O-mode. Only one ducted trace is usually observed on the Interkosmos-19 ionograms; a second conjugate trace is rarely recorded. The same is true for combination modes which is a combination of an oblique-incidence and guided propagation. Waveguides are observed at all heights of Interkosmos-19 (500-1000 km) inside the equatorial anomaly region (from -40° to +40° Dip). Waveguides are usually associated with other irregularities of various sizes in the equatorial ionosphere, some of which cause additional traces and spread F on the topside-sounding ionograms. Ducted-echo characteristics observed with Interkosmos-19 are different from those observed earlier with the Alouette and ISIS satellites. This difference is discussed. It is shown that the ionospheric plasma irregularities responsible for the waveguides are observed much more often during nighttime than during daytime.

  20. Radio Frequency Characteristics of Printed Meander Inductors and Interdigital Capacitors

    NASA Astrophysics Data System (ADS)

    Myllymaki, Sami; Teirikangas, Merja; Nelo, Mikko; Tulppo, Joel; Sobociński, Maciej; Juuti, Jari; Jantunen, Heli; Sloma, Marcin; Jakubowska, Malgorzata

    2013-05-01

    Radio frequency (RF) characterizations of printed silver ink inductors manufactured at low (150 °C) and high (850 °C) temperatures and interdigital capacitors manufactured at high (850 °C) temperatures were carried out in the 500 MHz to 6 GHz range. The S-parameter responses of the components were measured with a probe station and an Agilent 8510C network analyzer. Electrical parameters such as inductance, capacitance, and a quality factor were estimated from experimental results and numerical calculation. Component parameters are dependent on physical dimensions and material properties. The components were created in a 4 ×4 mm2 area with line widths/gaps of 500/500, 250/250, and 200/200 µm. Windings in the coils varied from 2 to 5 turns and finger counts in the capacitors, from 5 to 11 within the defined area and line widths. As a result, low-T-cured (150 °C) silver ink meander line inductors achieved 8 to 18 nH inductances at 1 and 2 GHz with a quality value of 10-25. High-T-cured (850 °C) silver ink meander line inductors had 6-15 nH inductances and quality values were around 100, indicating a conductivity challenge with low-T-cured inks. Interdigital capacitors with 1 to 4 pF capacitances and sufficient quality values were created. A low-loss BaTiO3 coating was printed over the interdigital capacitors; they exhibited suitable electrical characteristics to allow decreasing the physical size of the component.

  1. Long-term statistics related to evaporation duct propagation of 2 GHz radio waves in the English Channel

    NASA Astrophysics Data System (ADS)

    Gunashekar, S. D.; Warrington, E. M.; Siddle, D. R.

    2010-12-01

    This paper presents long-term statistics additional to those previously published pertaining to evaporation duct propagation of UHF radio waves in the British Channel Islands, with particular focus on a completely over-sea 50 km transhorizon path. The importance of the evaporation duct as an anomalous propagation mechanism in marine and coastal regions is highlighted. In particular, the influence of various atmospheric parameters on the performance of a popular operational evaporation duct model is examined. The strengths and weaknesses of this model are evaluated under specific atmospheric conditions. The relationship between the continually varying evaporation duct height and transmitter-receiver antenna geometries is analyzed, and a range of statistics related to the implications of this relationship on the received signal strength is presented. The various issues under investigation are of direct relevance in the planning of long-range, over-sea radio systems operating in the UHF band, and have implications for the radio regulatory work carried out by organizations such as the International Telecommunication Union.

  2. A propagation method with adaptive mesh grid based on wave characteristics for wave optics simulation

    NASA Astrophysics Data System (ADS)

    Tang, Qiuyan; Wang, Jing; Lv, Pin; Sun, Quan

    2015-10-01

    Propagation simulation method and choosing mesh grid are both very important to get the correct propagation results in wave optics simulation. A new angular spectrum propagation method with alterable mesh grid based on the traditional angular spectrum method and the direct FFT method is introduced. With this method, the sampling space after propagation is not limited to propagation methods no more, but freely alterable. However, choosing mesh grid on target board influences the validity of simulation results directly. So an adaptive mesh choosing method based on wave characteristics is proposed with the introduced propagation method. We can calculate appropriate mesh grids on target board to get satisfying results. And for complex initial wave field or propagation through inhomogeneous media, we can also calculate and set the mesh grid rationally according to above method. Finally, though comparing with theoretical results, it's shown that the simulation result with the proposed method coinciding with theory. And by comparing with the traditional angular spectrum method and the direct FFT method, it's known that the proposed method is able to adapt to a wider range of Fresnel number conditions. That is to say, the method can simulate propagation results efficiently and correctly with propagation distance of almost zero to infinity. So it can provide better support for more wave propagation applications such as atmospheric optics, laser propagation and so on.

  3. Type 2 solar radio events observed in the interplanetary medium. Part 1: General characteristics

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.

    1980-01-01

    Twelve type 2 solar radio events were observed in the 2 MHz to 30 kHz frequency range by the radio astronomy experiment on the ISEE-3 satellite over the period from September 1978 to December 1979. These data provide the most comprehensive sample of type 2 radio bursts observed at kilometer wavelengths. Dynamic spectra of a number of events are presented. Where possible, the 12 events were associated with an initiating flare, ground based radio data, the passage of a shock at the spacecraft, and the sudden commencement of a geomagnetic storm. The general characteristics of kilometric type 2 bursts are discussed.

  4. Non-great-circle propagation modes on the high-latitude HF radio path

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D. V.; Borisova, T. D.; Kalishin, A. S.

    2009-04-01

    We consider characteristics of the non-great-circle signals on the Murmansk—St. Petersburg oblique sounding path with a distance of 1050 km. The path crosses the main ionospheric trough and is highly influenced by the trough’s polar wall and the boundary of diffuse precipitations. Field-aligned ionospheric irregularities and ionization gradients are often observed in this area. The data analysis was performed for quiet, moderately disturbed, and strongly disturbed conditions and for different local times. The main results are as follows. Non-great-circle signals in the form of scattered waves mostly occur in the nighttime hours. The nighttime non-great-circle signals always appear under both quiet and disturbed conditions, while the signals reflected from the ionization gradients appear at any local time during the disturbed periods (storms, substorms). Non-great-circle signals with intense reflections from the ionization gradients are most often observed during a moderate disturbance, especially in the nighttime hours. The ray-tracing model of non-great-circle propagation shows that the calculated oblique sounding ionograms generally coincide with the experimental ones.

  5. Authentication of Radio Frequency Identification Devices Using Electronic Characteristics

    ERIC Educational Resources Information Center

    Chinnappa Gounder Periaswamy, Senthilkumar

    2010-01-01

    Radio frequency identification (RFID) tags are low-cost devices that are used to uniquely identify the objects to which they are attached. Due to the low cost and size that is driving the technology, a tag has limited computational capabilities and resources. This limitation makes the implementation of conventional security protocols to prevent…

  6. Characteristics of lightning leader propagation and ground attachment

    NASA Astrophysics Data System (ADS)

    Jiang, Rubin; Qie, Xiushu; Wang, Zhichao; Zhang, Hongbo; Lu, Gaopeng; Sun, Zhuling; Liu, Mingyuan; Li, Xun

    2015-12-01

    The grounding process and the associated leader behavior were analyzed by using high-speed video record and time-correlated electric field change for 37 natural negative cloud-to-ground flashes. Weak luminous grounded channel was recognized below the downward leader tip in the frame preceding the return stroke, which is inferred as upward connecting leader considering the physical process of lightning attachment, though not directly confirmed by sequential frames. For stepped leader-first return strokes, the upward connecting leaders tend to be induced by those downward leader branches with brighter luminosity and lower channel tip above ground, and they may accomplish the attachment with great possibility. The upward connecting leaders for 2 out of 61 leader-subsequent stroke sequences were captured in the frame prior to the return stroke, exhibiting relatively long channel lengths of 340 m and 105 m, respectively. The inducing downward subsequent leaders were of the chaotic type characterized by irregular electric field pulse train with duration of 0.2-0.3 ms. The transient drop of the high potential difference between stepped leader system and ground when the attachment occurred would macroscopically terminate the propagation of those ungrounded branches while would not effectively prevent the development of the existing space stem systems in the low-conductivity streamer zone apart from the leader tip. When the ungrounded branches are of poor connection with the main stroke channel, their further propagation toward ground would be feasible. These two factors may contribute to the occurrence of multiple grounding within the same leader-return stroke sequence.

  7. End-to-End Network Simulation Using a Site-Specific Radio Wave Propagation Model

    SciTech Connect

    Djouadi, Seddik M; Kuruganti, Phani Teja; Nutaro, James J

    2013-01-01

    The performance of systems that rely on a wireless network depends on the propagation environment in which that network operates. To predict how these systems and their supporting networks will perform, simulations must take into consideration the propagation environment and how this effects the performance of the wireless network. Network simulators typically use empirical models of the propagation environment. However, these models are not intended for, and cannot be used, to predict a wireless system will perform in a specific location, e.g., in the center of a particular city or the interior of a specific manufacturing facility. In this paper, we demonstrate how a site-specific propagation model and the NS3 simulator can be used to predict the end-to-end performance of a wireless network.

  8. Characteristics of Radio-Frequency Circuits Utilizing Ferroelectric Capacitors

    NASA Technical Reports Server (NTRS)

    Eskridge, Michael; Gui, Xiao; MacLeod, Todd; Ho, Fat D.

    2011-01-01

    Ferroelectric capacitors, most commonly used in memory circuits and variable components, were studied in simple analog radio-frequency circuits such as the RLC resonator and Colpitts oscillator. The goal was to characterize the RF circuits in terms of frequency of oscillation, gain, etc, using ferroelectric capacitors. Frequencies of oscillation of both circuits were measured and studied a more accurate resonant frequency can be obtained using the ferroelectric capacitors. Many experiments were conducted and data collected. A model to simulate the experimental results will be developed. Discrepancies in gain and frequency in these RF circuits when conventional capacitors are replaced with ferroelectric ones were studied. These results will enable circuit designers to anticipate the effects of using ferroelectric components in their radio- frequency applications.

  9. [Monitoring of Crack Propagation in Repaired Structures Based on Characteristics of FBG Sensors Reflecting Spectra].

    PubMed

    Yuan, Shen-fang; Jin, Xin; Qiu, Lei; Huang, Hong-mei

    2015-03-01

    In order to improve the security of aircraft repaired structures, a method of crack propagation monitoring in repaired structures is put forward basing on characteristics of Fiber Bragg Grating (FBG) reflecting spectra in this article. With the cyclic loading effecting on repaired structure, cracks propagate, while non-uniform strain field appears nearby the tip of crack which leads to the FBG sensors' reflecting spectra deformations. The crack propagating can be monitored by extracting the characteristics of FBG sensors' reflecting spectral deformations. A finite element model (FEM) of the specimen is established. Meanwhile, the distributions of strains which are under the action of cracks of different angles and lengths are obtained. The characteristics, such as main peak wavelength shift, area of reflecting spectra, second and third peak value and so on, are extracted from the FBGs' reflecting spectral which are calculated by transfer matrix algorithm. An artificial neural network is built to act as the model between the characteristics of the reflecting spectral and the propagation of crack. As a result, the crack propagation of repaired structures is monitored accurately and the error of crack length is less than 0.5 mm, the error of crack angle is less than 5 degree. The accurately monitoring problem of crack propagation of repaired structures is solved by taking use of this method. It has important significance in aircrafts safety improvement and maintenance cost reducing. PMID:26117887

  10. Analysis of radio wave propagation for ISM 2.4 GHz Wireless Sensor Networks in inhomogeneous vegetation environments.

    PubMed

    Azpilicueta, Leire; López-Iturri, Peio; Aguirre, Erik; Mateo, Ignacio; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2014-01-01

    The use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments. PMID:25513820

  11. Analysis of Radio Wave Propagation for ISM 2.4 GHz Wireless Sensor Networks in Inhomogeneous Vegetation Environments

    PubMed Central

    Azpilicueta, Leire; López-Iturri, Peio; Aguirre, Erik; Mateo, Ignacio; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2014-01-01

    The use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments. PMID:25513820

  12. The Coherer: With Simple Demonstrations of the Generation, Propagation and Detection of Radio Waves

    ERIC Educational Resources Information Center

    Mills, Allan

    2010-01-01

    A coherer is a bistable device based on metal filings loosely confined between solid metal electrodes. This granular material normally exhibits a very high electrical resistance (tens of kilohms), but passage of the high-frequency current generated by reception of a radio signal causes it to "cohere" into a comparatively low resistance condition…

  13. Enhanced MUF propagation of HF radio waves in the auroral zone

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Jones, T. B.; Warrington, E. M.

    1997-01-01

    Four high frequency propagation paths were monitored from a transmitter located within the polar cap by four receivers located variously within the polar cap and at sub-auroral latitudes. Of these paths, one was contained entirely within the polar cap at all times, two were trans-auroral at all times, and one varied from trans-auroral during the day to polar cap during the night. Fourteen frequencies within the HF band were transmitted each hour for the duration of two 24 day experimental campaigns during the summer of 1988 and the winter of 1989. From an analysis of the received signals the confidence of signal recognition and signal strength were determined. During geomagnetically undisturbed periods the propagation behaviour resembled that of mid-latitude paths. During geomagnetically disturbed times, however, night-time propagation occurred on frequencies up to and sometimes over 10 MHz above the undisturbed night-time MUF, for periods of 2 to 6 h. These features appeared on the trans-auroral paths only and were attributed to E region (and occasionally F region) enhancement by auroral precipitation. APEs (auroral E propagation events) occurred on over 50% of nights. The occurrence of APEs also coincided with ionospheric storm periods when the HF band available for propagation was otherwise significantly narrowed due to a depletion of the F region electron density.

  14. Sparsity-inspired nonparametric probability characterization for radio propagation in body area networks.

    PubMed

    Yang, Xiaodong; Yang, Shuyuan; Abbasi, Qammer Hussain; Zhang, Zhiya; Ren, Aifeng; Zhao, Wei; Alomainy, Akram

    2015-05-01

    Parametric probability models are common references for channel characterization. However, the limited number of samples and uncertainty of the propagation scenario affect the characterization accuracy of parametric models for body area networks. In this paper, we propose a sparse nonparametric probability model for body area wireless channel characterization. The path loss and root-mean-square delay, which are significant wireless channel parameters, can be learned from this nonparametric model. A comparison with available parametric models shows that the proposed model is very feasible for the body area propagation environment and can be seen as a significant supplement to parametric approaches. PMID:25014979

  15. Diagnostic study of coupled solar wind-magnetosphere-ionosphere dynamics in D-region ionosphere via VLF signal propagation characteristic

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar

    2016-07-01

    Geomagnetic disturbances and storms are known to produce significant global disturbances in the ionosphere, including the middle atmosphere and troposphere. There is little understanding about the mechanism and dynamics that drive these processes in lower ionosphere. The ionosphere is also thought to be sensitive to seismic events, and it is believed that it exhibits precursory characteristics as reported in studies via characteristic anomalies in VLF signal. However, distinguishing or separating seismically induced ionospheric fluctuations from those of other origins (e.g., Solar activity, planetary and tidal waves, stratospheric warming etc.) remain vital to robust conclusion, and challenging too. The unique propagation characteristic of VLF radio signal makes it an ideal tool for the study and diagnosis of variability of D-region ionosphere. In this work, we present the analysis of solar wind-magnetosphere-ionosphere coupling dynamics in D-region ionosphere using VLF signal characteristics, and performed an investigation of previously reported 'ionospheric precursors' to understand the true origins of measured anomalies.

  16. Communication interference/jamming and propagation analysis system and its application to radio location

    NASA Astrophysics Data System (ADS)

    Kuzucu, H.

    1992-11-01

    Modern defense systems depend on comprehensive surveillance capability. The ability to detect and locate the radio signals is a major element of a surveillance system. With the increasing need for more mobile surveillance systems in conjunction with the rapid deployment of forces and the advent of technology allowing more enhanced use of small aperture systems, tactical direction finding (DF) and radiolocation systems will have to be operated in diverse operational conditions. A quick assessment of the error levels expected and the evaluation of the reliability of the fixes on the targeted areas bears crucial importance to the effectiveness of the missions relying on DF data. This paper presents a sophisticated, graphics workstation based computer tool developed for the system level analysis of radio communication systems and describes its use in radiolocation applications for realizing such accurate and realistic assessments with substantial money and time savings.

  17. Galactic synchrotron radiation from radio to microwaves, and its relation to cosmic-ray propagation models: past, present and future

    NASA Astrophysics Data System (ADS)

    Orlando, Elena

    2016-04-01

    Galactic synchrotron radiation observed from radio to microwaves is produced by cosmic-ray (CR) electrons propagating in magnetic fields (B-fields). The low-frequency foreground component separated maps by WMAP and Planck depend on the assumed synchrotron spectrum. The synchrotron spectrum varies for different line of sights as a result of changes on the CR spectrum due to propagation effects and source distributions. Our present knowledge of the CR spectrum at different locations in the Galaxy is not sufficient to distinguish various possibilities in the modeling. As a consequence uncertainties on synchrotron emission models complicate the foreground component separation analysis with Planck and future microwave telescopes. Hence, any advancement in synchrotron modeling is important for separating the different foreground components.The first step towards a more comprehensive understanding of degeneracy and correlation among the synchrotron model parameters is outlined in our Strong et al. 2011 and Orlando et al. 2013 papers. In the latter the conclusion was that CR spectrum, propagation models, B-fields, and foreground component separation analysis need to be studied simultaneously in order to properly obtain and interpret the synchrotron foreground. Indeed for the officially released Planck maps, we use only the best spectral model from our above paper for the component separation analysis.Here we present a collections of our latest results on synchrotron, CRs and B-fields in the context of CR propagation, showing also our recent work on B-fields within the Planck Collaboration. We underline also the importance of using the constraints on CRs that we obtain from gamma ray observations. Methods and perspectives for further studies on the synchrotron foreground will be addressed.

  18. Method of Transverse Displacements Formulation for Calculating the HF Radio Wave Propagation Paths. Statement of the Problem and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Nosikov, I. A.; Bessarab, P. F.; Klimenko, M. V.

    2016-06-01

    Fundamentals of the method of transverse displacements for calculating the HF radio-wave propagation paths are presented. The method is based on the direct variational principle for the optical path functional, but is not reduced to solving the Euler—Lagrange equations. Instead, the initial guess given by an ordered set of points is transformed successively into a ray path, while its endpoints corresponding to the positions of the transmitter and the receiver are kept fixed throughout the entire iteration process. The results of calculation by the method of transverse displacements are compared with known analytical solutions. The importance of using only transverse displacements of the ray path in the optimization procedure is also demonstrated.

  19. Comparison of Analytical Models of Propagation of CMEs and its Validation Using Type II Radio Bursts Observations

    NASA Astrophysics Data System (ADS)

    Perez Alanis, C. A.; Aguilar-Rodriguez, E.; Corona Romero, P.

    2015-12-01

    Coronal Mass Ejections (CMEs) are large-scale eruptive events arising from the solar corona that are expelled into the interplanetary (IP) medium. The CMEs can be associated with interplanetary shocks and this associated with type II radio-burst emissions. Some of the CMEs carry a magnetic configuration that can generate geomagnetic storm, the main interest in space weather. It is therefore important to predict arrival times of CMEs that are potential to generate a geomagnetic storm. We used a number of hydrodynamic (viscous and inertial) drag force models to approximate the trajectory of a CME. We focus on obtaining proportionality constants to achieve good approximations to CME arrivals. We analized a set of fast CMEs by finding the appropiate drag coefficients that simultaneusly approximated: the in-situ arrivals of the events, their associated type II radio-burst and satellite observations of these phenomena. Our results suggest that quadratic and inertial drag are the dynamic agent that prevails for fast CMEs propagation. Our studies may contribute to future 'space weather forescasting' at the Earth.

  20. Propagation characteristics of a Gaussian laser beam in plasma with modulated collision frequency

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Yuan, Chengxun; Zhou, Zhongxiang; Gao, Ruilin; Li, Lei; Du, Yanwei

    2012-08-01

    The propagation characteristics of a Gaussian laser beam in cold plasma with the electron collision frequency modulated by laser intensity are presented. The nonlinear dynamics of the ponderomotive force, which induce nonlinear self-focusing as opposed to spatial diffraction, are considered. The effective dielectric function of the Drude model and complex eikonal function are adopted in deriving coupled differential equations of the varying laser beam parameters. In the framework of ponderomotive nonlinearity, the frequency of electron collision in plasmas, which is proportional to the spatial electron density, is strongly interrelated with the laser beam propagation characteristics. Hence, the propagation properties of the laser beam and the modulated electron collision frequency distribution in plasma were studied and explained in depth. Employing this self-consistent method, the obtained simulation results approach practical conditions, which is of significance to the study of laser-plasma interactions.

  1. Trends in Performance and Characteristics of Ultra-Stable Oscillators for Deep Space Radio Science Experiments

    NASA Technical Reports Server (NTRS)

    Asmar, Sami

    1997-01-01

    Telecommunication systems of spacecraft on deep space missions also function as instruments for Radio Science experiments. Radio scientists utilize the telecommunication links between spacecraft and Earth to examine very small changes in the phase/frequency, amplitude, and/or polarization of radio signals to investigate a host of physical phenomena in the solar system. Several missions augmented the radio communication system with an Ultra-Stable Oscillator (USO) in order to provide a highly stable reference signal for oneway downlink. This configuration is used in order to enable better investigations of the atmospheres of the planets occulting the line-of-sight to the spacecraft; one-way communication was required and the transponders' built-in auxiliary oscillators were neither sufficiently stable nor spectrally pure for the occultation experiments. Since Radio Science instrumentation is distributed between the spacecraft and the ground stations, the Deep Space Network (DSN) is also equipped to function as a world-class instrument for Radio Science research. For a detailed account of Radio Science experiments, methodology, key discoveries, and the DSN's historical contribution to the field, see Asmar and Renzetti (1993). The tools of Radio Science can be and have also been utilized in addressing several mission engineering challenges; e.g., characterization of spacecraft nutation and anomalous motion, antenna calibrations, and communications during surface landing phases. Since the first quartz USO was flown on Voyager, the technology has advanced significantly, affording future missions higher sensitivity in reconstructing the temperature pressure profiles of the atmospheres under study as well as other physical phenomena of interest to Radio Science. This paper surveys the trends in stability and spectral purity performance, design characteristics including size and mass, as well as cost and history of these clocks in space.

  2. Measurements of radio propagation in rock salt for the detection of high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Connolly, Amy; Goodhue, Abigail; Miki, Christian; Nichol, Ryan; Saltzberg, David

    2009-02-01

    We present measurements of the transmission of radio/microwave pulses through salt in the Cote Blanche salt mine operated by the North American Salt Company in St. Mary Parish, Louisiana. These results are from data taken in the southwestern region of the 1500 ft (457 m) deep level of the mine on our third and most recent visit to the mine. We transmitted and received a fast, high-power, broadband pulse from within three vertical boreholes that were drilled to depths of 100 ft (30 m) and 200 ft below the 1500 ft level using three different pairs of dipole antennas whose bandwidths span 125-900 MHz. By measuring the relative strength of the received pulses between boreholes with separations of 50 and 169 m, we deduce the attenuation of the signal attributed to the salt medium. We fit the frequency dependence of the attenuation to a power law and find the best fit field attenuation lengths to be 93±7m at 150 MHz, 63±3m at 300 MHz, and 36±2m at 800 MHz. This is the most precise measurement of radio attenuation in a natural salt formation to date. We assess the implications of this measurement for a future neutrino detector in salt.

  3. Flare-generated Shock Wave Propagation through Solar Coronal Arcade Loops and an Associated Type II Radio Burst

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Innes, D. E.; Cho, Kyung-Suk

    2016-09-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ∼800 km s‑1 and it accelerated to ∼1490 km s‑1 after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (∼340 km s‑1) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.

  4. Flare-generated Shock Wave Propagation through Solar Coronal Arcade Loops and an Associated Type II Radio Burst

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Innes, D. E.; Cho, Kyung-Suk

    2016-09-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ˜800 km s‑1 and it accelerated to ˜1490 km s‑1 after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (˜340 km s‑1) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.

  5. A comparative study of surface plasmon polariton propagation characteristics of various metals

    NASA Astrophysics Data System (ADS)

    Kumar, Monisha; Porsezian, K.

    2016-05-01

    Here we theoretically study the SPP behaviors of Cu, Ag, Au, Al, Ti, Pt, Pd, Rh, Ni, In, Sn, Li, Na, K, Rb, Cs metals, which are known to show plasmonic behavior. We consider vacuum as the dielectric medium. The SPP characteristic length scales such as propagation length, penetration depth, SPP wavelength are theoretically evaluated and compared for different metals.

  6. A new model of amplitude fluctuations for radio propagation in solar corona during superior solar conjunction

    NASA Astrophysics Data System (ADS)

    Xu, Guanjun; Song, Zhaohui

    2016-02-01

    Radio communication links through the solar corona are disturbed by electron density fluctuations caused by coronal turbulence. This has become a problem for deep space exploration when the spacecraft is near superior conjunction with the Sun. With a forecast of the signal fluctuations the link could be adapted to compensate for these impairments in real time. Motivated by this need, we present a theoretical study of the signal fluctuations including an analytical expression for the amplitude fluctuations. The proposed model includes an anisotropic spectrum of density fluctuations, the solar wind "outer scale," and the spectral exponent. The performance of this analytical solution is demonstrated by comparison with published data from spacecraft and with other existing analytical methods.

  7. Radio wave propagation in horizontally inhomogeneous environments by using the parabolic equation method

    NASA Astrophysics Data System (ADS)

    Barrios, A. E.

    1991-05-01

    The validity of a parabolic equation (PE) model for predicting radio field strengths in horizontally inhomogeneous environments was investigated by performing comparisons between the model and experimental data. Excellent agreements were found at VHF and UHF frequencies with good agreement in S- and X-bands. In some cases, the predicted curves for the S-band comparisons under-estimated that of the measured data at large ranges. This may be the result of phenomena such as surface roughness, backscatter, etc., not accounted for in the model. Discrepancies may also result from the presence of evaporation ducts not included in the environmental inputs to the model because of a lack of detailed measurements. This would account for lower predicted signal levels at higher frequencies.

  8. Using IRI and GSM TIP model results as environment for HF radio wave propagation model during the geomagnetic storm occurred on September 26-29, 2011

    NASA Astrophysics Data System (ADS)

    Kotova, D. S.; Klimenko, M. V.; Klimenko, V. V.; Zakharov, V. E.; Ratovsky, K. G.; Nosikov, I. A.; Zhao, B.

    2015-11-01

    This paper analyses the geomagnetic storm on September 26-29, 2011. We compare the calculation results obtained using the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) and IRI-2012 (Bilitza et al., 2014) model with ground-based ionosonde data of stations at different latitudes and longitudes. We examined physical mechanisms responsible for the formation of ionospheric effects during the main phase of geomagnetic storm that occurred at the rising phase of the 24th solar cycle. We used numerical results obtained from IRI-2012 and GSM TIP models as propagation environment for HF signals from an equatorial transmitter during quiet and disturbed conditions. We used the model of HF radio wave propagation developed in I. Kant Baltic Federal University (BFU) that is based on the geometrical optics approximation. We compared the obtained radio paths in quiet conditions and during the main and recovery storm phases and evaluated radio wave attenuation in different media models.

  9. Effect of Seasonal Variation of Anomalous Condition on Radio Propagation in Nigeria

    NASA Astrophysics Data System (ADS)

    Emmanuel, Israel; Adeyemi, Babatunde; Ogolo, Emmanuel; Adediji, Adekunle

    Daily variation of effective earth radius factor and seasonal variation of refractivity gradients from surface to around 1000 m above ground level in the tropospheric layer are presented based on observation from the meteorological data obtain from ECMWF database. Thirty four years (1979 -2014) of data from surface and profile of Era Interim of the temperature and relative humidity are used to determine the surface anomalous propagation over some selected location I Nigeria. Estimation of anomalous propagation are observed for onset and peak of rainy and dry seasons. The occurrence of anomalous strongly depends on the local time and synoptic weather conditions which have an appreciable on the refractivity vertical profile, especially the seasonal north - south movement of inter tropical Convergence Zone (ITCD) which provide wet and dry seasonal variations of anomalous were also determined. Spatial distribution of refractivity gradient for both wet and dry seasons are also obtained. The highest occurrence of duct were noticed in the night and morning (00:00 UTC and 06:00UTC) across the country though it was low in the northern part of the country, while low or no occurrence of duct were observed in the afternoon and evening (12:00 UTC and 18:00 UTC). Also percentage occurrence of duct were also high and low during the wet and dry seasons respectively.

  10. Propagation characteristics of a non-uniformly Hermite-Gaussian correlated beam

    NASA Astrophysics Data System (ADS)

    Song, Zhenzhen; Liu, Zhengjun; Zhou, Keya; Sun, Qiongge; Liu, Shutian

    2016-01-01

    We introduce a new kind of partially coherent beam, non-uniformly Hermite-Gaussian correlated beam, by employing a non-uniformly Hermite function to modulate the spectral degree of coherence. The evolution of such scalar beam on propagation in free space and turbulent atmosphere are investigated. It is demonstrated that the spectral intensity distributions exhibit extraordinary propagation characteristics, such as self-focusing and laterally shifted intensity maxima. The position of the maximum intensity and the intensity profile can be controlled by the order of the Hermite function. The results can be useful in free-space optical communications and beam shaping.

  11. Radio propagation at 900 MHz in urban areas: Models with a fixed frequency and experimental results

    NASA Astrophysics Data System (ADS)

    Olivier, P.; Tiffon, J.

    1984-09-01

    Models which describe multipath propagation are examined in order to design a 900 MHz mobile communication system adapted to urban areas. A justification of the experimental data treatment is derived from this analysis. The measurements were made at a fixed 855 MHz frequency, transmitting from three locations. The fast fluctuations of the received signals are well represented by a Rayleigh process, which means that there are practically no paths of direct transmission. The coherence length is 1 m. The statistical distribution of the average field is Gaussian and the normal deviation decreases with the distance emitter-receiver. The empiric Okumura-Hata prediction model agrees well with the experimental results, giving an average cell field decreasing with distance with a logarithmic law.

  12. Characteristics of multiple filaments generated by femtosecond laser pulses in air: Prefocused versus free propagation

    NASA Astrophysics Data System (ADS)

    Hao, Zuoqiang; Zhang, Jie; Zhang, Zhe; Yuan, Xiaohui; Zheng, Zhiyuan; Lu, Xin; Jin, Zhan; Wang, Zhaohua; Zhong, Jiayong; Liu, Yunquan

    2006-12-01

    The characteristics of the multiple filaments formed by prefocused and freely propagating femtosecond laser pulses are investigated and compared. It is shown in our experiments that the diameter, length, stability, and interaction for the two cases can be quite different. The filaments formed by prefocused beam indicate dynamic spatial evolution with higher laser intensity and electron density. They have a typical diameter of 100μm are of shorter length. In the free propagation case, the filaments exhibit interesting properties such as hundred-meter propagation distance and mm-size diameter. Moreover, only the interaction of the filaments with the energy background affects the evolution of the filaments. Filament-filament interactions such as the filament splitting and merging were not observed in this case.

  13. Characteristics of multiple filaments generated by femtosecond laser pulses in air: Prefocused versus free propagation

    SciTech Connect

    Hao Zuoqiang; Zhang Jie; Zhang Zhe; Zheng Zhiyuan; Lu Xin; Jin Zhan; Wang Zhaohua; Liu Yunquan; Yuan Xiaohui; Zhong Jiayong

    2006-12-15

    The characteristics of the multiple filaments formed by prefocused and freely propagating femtosecond laser pulses are investigated and compared. It is shown in our experiments that the diameter, length, stability, and interaction for the two cases can be quite different. The filaments formed by prefocused beam indicate dynamic spatial evolution with higher laser intensity and electron density. They have a typical diameter of 100 {mu}m are of shorter length. In the free propagation case, the filaments exhibit interesting properties such as hundred-meter propagation distance and mm-size diameter. Moreover, only the interaction of the filaments with the energy background affects the evolution of the filaments. Filament-filament interactions such as the filament splitting and merging were not observed in this case.

  14. Solar longitude dependence of some characteristics of type III radio bursts from metric to hectometric wavelengths

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1974-01-01

    Using the observed data for metric and hectometric type III radio bursts, the dependence of burst characteristics on the solar longitude has been examined over a wide frequency range. It is found that there exists and east-west asymmetry for the extension of metric type III bursts into the hectometric wavelength range. In particular, hectometric bursts are rarely observed for solar flares associated with metric bursts east of 60 E solar longitude. Furthermore, for east longitudes, the low-frequency radio observations show a large dispersion in drift time interval.

  15. Simultaneous observation of VHF radio wave transmission anomaly propagated beyond line of site prior to earthquakes in multiple sites

    NASA Astrophysics Data System (ADS)

    Yamashita, H.; Mogi, T.; Moriya, T.; Takada, M.; Morisada, M.

    2010-12-01

    The VHF radio wave transmission anomalies propagated beyond line of site prior to earthquakes (M>4), (hereafter termed EQ-echo) have been observed more than 20 times from 2004 at the Erimo observatory (ERM) in Hokkaido, Northern Japan. A statistical relationship between magnitude of preceding earthquake and total duration time of the EQ-echo has been proposed (Moriya et al.2009). To confirm a region where the EQ-echo simultaneously observed for each earthquake, we installed another 3 observatory with approximately 5 km spacing in the surroundings of ERM. The EQ-echoes have been observed simultaneously at two observatories prior to four earthquakes since 2008. The initial time and duration of each EQ echo were same time in several cases but different at some minutes each other in other cases. The wave forms of the EQ-echoes were similar in both records. In the Fuyushima observatory (FYS, 10km away from ERM) , three-way antennas were installed at every 120 degree to detect an arrival direction of EQ-echoes. Simultaneous observations of EQ-echoes at ERM and FYS for the preceding EQ (M=4.7) that occurred in the Hidaka mountains revealed that this EQ-echo came from direction of the epicenter based on the FYS observation and this direction was consistent with that of EQ-echo observed simultaneously in ERM. Although some of simultaneous observed EQ-echoes were observed in same time completely at both observatories, but some of them were with time rag of duration of each EQ-echo between multiple observed sites. We discussed what these time rags mean by considering possibilities of moving of scattering objects, generation of a radio duct, and so on, as in response to this fact.

  16. Delay time measurements of the propagation of radio waves in the atmosphere

    NASA Technical Reports Server (NTRS)

    Rohde, F.

    1972-01-01

    The characteristics and operation of the Geodetic Secor System are described. The precision of the ionospheric radiation measurements was determined by a collocation experiment. The EGRS-13 satellite, which was used in the experiment, is discussed. The geodetic network is shown in a diagram form. Conclusions resulting from the experiments are reported.

  17. The effect of plasma density structure on HF radio wave propagation at auroral and polar latitudes measured by e-POP

    NASA Astrophysics Data System (ADS)

    Perry, G. W.; James, H. G.; Gillies, R.; McWilliams, K. A.; St-Maurice, J. P.; Yau, A. W.

    2015-12-01

    One of the scientific objectives of the enhanced Polar Outflow Probe (e-POP) Radio Receiver Instrument (RRI) is to study ionospheric density structure and its impact on High Frequency (HF) radio wave propagation. We present a survey of several ePOP RRI transits through isolated beams of the Super Dual Auroral Radar Network (SuperDARN) Saskatoon and Rankin Inlet radars. It reveals that the spreading of a SuperDARN beam beyond its nominal azimuthal beam width of 3.24° is a common occurrence at auroral and polar latitudes. Furthermore, on multiple occasions, lateral deviations of a beam's power peak by several beam widths was measured, indicating the presence of significant plasma density gradients along the ray path. The e-POP RRI measurements illustrate that our understanding and recognition of plasma density gradients and their influence on HF radio wave propagation is limited. We report on the results of employing HF ray tracing techniques to quantify the impact of ionospheric structuring on HF radio wave propagation, and consider the source of the gradients contributing to the spreading of the SuperDARN beams.

  18. Higher order contribution to the propagation characteristics of low frequency transverse waves in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Misra, A. P.; Chowdhury, A. Roy; Paul, S. N.

    2004-09-01

    Characteristic features of low frequency transverse wave propagating in a magnetised dusty plasma have been analysed considering the effect of dust-charge fluctu- ation. The distinctive behaviours of both the left circularly polarised and right circularly polarised waves have been exhibited through the analysis of linear and non-linear disper- sion relations. The phase velocity, group velocity, and group travel time for the waves have been obtained and their propagation characteristics have been shown graphically with the variations of wave frequency, dust density and amplitude of the wave. The change in non-linear wave number shift and Faraday rotation angle have also been exhibited with respect to the plasma parameters. It is observed that the effects of dust particles are significant only when the higher order contributions are considered. This may be referred to as the `dust regime' in plasma.

  19. PRPSIM: A FORTRAN code to calculate properties of radio wave propagation in a structured ionized medium. Volume 2: Theory and models

    NASA Astrophysics Data System (ADS)

    Dodson, R. E.; Krueger, D. J.; Guigliano, F. W.

    1989-12-01

    This report describes the PRPSIM (Properties of Radio Wave Propagation in a Structured Ionized Medium) code, a FORTRAN computer program for use in evaluating electromagnetic propagation effects resulting from detonation of nuclear weapons on satellite communications and radar systems. The code uses nuclear environment data files created by the SCENARIO high altitude, multiburst nuclear phenomenology code. PRPSIM calculates propagation effects due to enhanced mean ionization levels (e.g., absorption, noise, refraction, phase shift, Doppler and time delay variations, etc.). The code is written in ANSI FORTRAN-77 and has been installed and run on VAX, CDC/CYBER, ELXSI/EMBOS, and CRAY-1 computer systems. Volume 1 of the report is a user's guide which describes code installation, input, output, structure, and application. Volume 2 describes the underlying propagation effects theory and computational models.

  20. Numerical investigation of fast-wave propagation and radio-frequency sheath interaction with a shaped tokamak wall

    SciTech Connect

    Kohno, H.; Myra, J. R.; D'Ippolito, D. A.

    2015-07-15

    Interactions between propagating fast waves and radio-frequency (RF) sheaths in the ion cyclotron range of frequencies are numerically investigated based on a cold fluid plasma model coupled with a sheath boundary condition. In this two-dimensional study, the capability of the finite element code rfSOL, which was developed in previous numerical work, is extended to analyze self-consistent RF sheath-plasma interaction problems in a tokamak with a non-circular cross-section. It is found that a large sheath voltage is generated near the edges of the limiter-shaped deformation as a result of the conversion from fast to slow waves on the sheaths. The sheath voltage associated with this conversion is particularly significant in the localized region where the contact angle between the magnetic field line and the conducting wall varies rapidly along the curved sheath surface, which is consistent with the results in previous one-dimensional theoretical work. The dependences of the RF sheaths on various parameters in plasma such as the toroidal wavenumber, edge plasma density, and the degree of the RF wave absorption in the core region are also examined in detail.

  1. A time-dependent neutron transport method of characteristics formulation with time derivative propagation

    NASA Astrophysics Data System (ADS)

    Hoffman, Adam J.; Lee, John C.

    2016-02-01

    A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.

  2. Energetic Particle Propagation in the Inner Heliosphere as Deduced from Low Frequency (less than 100 kHz) Observations of Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.

    2003-01-01

    Solar energetic particle (SEP) events are well-associated with solar flares. It is observed that the delay between the time of the flare and the first-arriving particles at a spacecraft increases with increasing difference between the flare longitude and the footpoint of the field line on which the spacecraft is located. This difference we call the "connection angle" and can be as large as approximately 120 deg. Recently it has been found that all SEP events are preceded by type III radio bursts. These bursts are plasma emission caused by the propagation of 2-50 keV flare electrons through the solar corona and into the solar wind. The drift of these type III radio bursts to lower and lower frequencies enables the propagation of the flare electrons to be traced from the Sun to about 1 AU. We have made an extensive analysis of the type III bursts associated with greater than 20 MeV proton events and find that, in most cases, the radio emission extends to the local plasma frequency when the energetic particles arrive within a few hours of the flare. We conclude that this emission at the lowest possible frequency is generated close to the spacecraft. We then use the time from when the burst started at the Sun to when it reached the local plasma frequency to infer the time it took the radio producing electrons to travel to the spacecraft. We find that these delay times are organized by the connection angle and correlate with the proton delay times. We also find that the differences between the radio delays at Wind and Ulysses are matched by differences in the relative arrival times of the energetic particles at the two spacecraft. The consistent timing between the relative arrival times of energetic electrons and protons and the start of the lowest frequency radio emissions suggests that the first arriving particles of both species are accelerated as part of the flare process and that they propagate to the spacecraft along trajectories similar to those of the lower

  3. Measured Propagation Characteristics of Finite Ground Coplanar Waveguide on Silicon with a Thick Polyimide Interface Layer

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Papapolymerou, John; Tentzeris, Emmanouil M.; Williams, W. O. (Technical Monitor)

    2002-01-01

    Measured propagation characteristics of Finite Ground Coplanar (FGC) waveguide on silicon substrates with resistivities spanning 3 orders of magnitude (0.1 to 15.5 Ohm cm) and a 20 micron thick polyimide interface layer is presented as a function of the FGC geometry. Results show that there is an optimum FGC geometry for minimum loss, and silicon with a resistivity of 0.1 Ohm cm has greater loss than substrates with higher and lower resistivity. Lastly, substrates with a resistivity of 10 Ohm cm or greater have acceptable loss.

  4. Propagation characteristics of laser-induced stress wave in deep tissue for gene transfer

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Takano, Shinta; Ashida, Hiroshi; Obara, Minoru

    2009-09-01

    Propagation characteristics of laser-induced stress waves (LISWs) in tissue and their correlation with properties of gene transfection were investigated for targeted deep-tissue gene therapy. LISWs were generated by irradiating a laser-absorbing material with 532-nm Q-switched Nd:YAG laser pulses; a transparent plastic sheet was attached on the absorbing material for plasma confinement. Temporal pressure profiles of LISWs that were propagated through different thickness tissues were measured with a needle-type hydrophone and propagation of LISWs in water was visualized by shadowgraph technique. The measurements showed that at a laser fluence of 1.2 J/cm 2 with a laser spot diameter of 3 mm, flat wavefront was maintained for up to 5 mm in depth and peak pressure P decreased with increasing tissue thickness d; P was proportional to d-0.54. Rat dorsal skin was injected with plasmid DNA coding for reporter gene, on which different numbers of excised skin(s) was/were placed, and LISWs were applied from the top of the skins. Efficient gene expression was observed in the skin under the 3 mm thick stacked skins, suggesting that deep-located tissue such as muscle can be transfected by transcutaneous application of LISWs.

  5. The effect of nitrogen on biogas flame propagation characteristic in premix combustion

    NASA Astrophysics Data System (ADS)

    Anggono, Willyanto; Suprianto, Fandi D.; Hartanto, Tan Ivan; Purnomo, Kenny; Wijaya, Tubagus P.

    2016-03-01

    Biogas is one of alternative energy and categorized as renewable energy. The main sources of biogas come from animal waste, garbage, and household waste that are organic waste. Primarily, over 50% of this energy contains methane (CH4). The other substances or inhibitors are nitrogen and carbon dioxide. Previously, carbon dioxide effect on biogas combustion is already experimented. The result shows that carbon dioxide reduces the flame propagation speed of biogas combustion. Then, nitrogen as an inhibitor obviously also brings some effects to the biogas combustion, flame propagation speed, and flame characteristics. Spark ignited cylinder is used for the premixed biogas combustion research. An acrylic glass is used as the material of this transparent cylinder chamber. The cylinder is filled with methane (CH4), oxygen (O2), and nitrogen (N2) with particular percentage. In this experiment, the nitrogen composition are set to 0%, 5%, 10%, 20%, 30%, 40%, and 50%. The result shows that the flame propagation speed is reduced in regard to the increased level of nitrogen. It can also be implied that nitrogen can decrease the biogas combustion rate.

  6. Effects of laser parameters on propagation characteristics of laser-induced stress wave for gene transfer

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Terakawa, Mitsuhiro; Ashida, Hiroshi; Obara, Minoru

    2010-02-01

    Laser-based gene delivery is attractive as a new method for topical gene therapy because of the high spatial controllability of laser energy. Previously, we demonstrated that an exogenous gene can be transferred to cells both in vitro and in vivo by applying nanosecond pulsed laser-induced stress waves (LISWs) or photomechanical waves (PMWs). In this study, we investigated effects of laser parameters on the propagation characteristics of LISWs in soft tissue phantoms and depth-dependent properties of gene transfection. Temporal pressure profiles of LISWs were measured with a hydrophone, showing that with a larger laser spot diameter, LISWs can be propagated more efficiently in phantoms with keeping flat wavefront. Phantoms with various thicknesses were placed on the rat dorsal skin that had been injected with plasmid DNA coding for reporter gene, and LISWs were applied from the top of the phantom. Efficient gene expression was observed in the rat skin that had interacted with LISWs propagating through a 15-mm-thick phantom. These results would be useful to determine appropriate laser parameters for gene delivery to deep-located tissue by transcutaneous application of LISWs.

  7. Self consistent radio-frequency wave propagation and peripheral direct current plasma biasing: Simplified three dimensional non-linear treatment in the 'wide sheath' asymptotic regime

    SciTech Connect

    Colas, L.; Jacquot, J.; Hillairet, J.; Goniche, M.; Heuraux, S.; Faudot, E.; Crombe, K.; Kyrytsya, V.

    2012-09-15

    A minimal two-field fluid approach is followed to describe the radio-frequency (RF) wave propagation in the bounded scrape-off layer plasma of magnetic fusion devices self-consistently with direct current (DC) biasing of this plasma. The RF and DC parts are coupled by non-linear RF and DC sheath boundary conditions at both ends of open magnetic field lines. The physical model is studied within a simplified framework featuring slow wave (SW) only and lateral walls normal to the straight confinement magnetic field. The possibility is however kept to excite the system by any realistic 2D RF field map imposed at the outer boundary of the simulation domain. The self-consistent RF + DC system is solved explicitly in the asymptotic limit when the width of the sheaths gets very large, for several configurations of the RF excitation and of the target plasma. In the case of 3D parallelepipedic geometry, semi-analytical results are proposed in terms of asymptotic waveguide eigenmodes that can easily be implemented numerically. The validity of the asymptotic treatment is discussed and is illustrated by numerical tests against a quantitative criterion expressed from the simulation parameters. Iterative improvement of the solution from the asymptotic result is also outlined. Throughout the resolution, key physical properties of the solution are presented. The radial penetration of the RF sheath voltages along lateral walls at both ends of the open magnetic field lines can be far deeper than the skin depth characteristic of the SW evanescence. This is interpreted in terms of sheath-plasma wave excitation. Therefore, the proper choice of the inner boundary location is discussed as well as the appropriate boundary conditions to apply there. The asymptotic scaling of various quantities with the amplitude of the input RF excitation is established.

  8. Characteristics of annular beams propagating through atmospheric turbulence along a downlink path and an uplink path

    NASA Astrophysics Data System (ADS)

    Ji, Xiaoling; Chen, Hong; Ji, Guangming

    2016-08-01

    Characteristics of annular beams propagating through atmospheric turbulence along a downlink path and an uplink path are studied in detail by using numerical simulation method. It is found that in downlink the influence of atmospheric turbulence on the characteristics is quite different from that in uplink because of the altitude-dependent index structure constant. It is shown that, when the zenith angle θ is not large enough, it is always σ_{{I {{up}}}}2 > σ_{{I {{down}}}}2 on propagation whatever the value of the obscure ratio ɛ is, where σ_{{I {{up}}}}2 and σ_{{I {{down}}}}2 are the on-axis scintillation index in uplink and downlink, respectively. However, when θ is large enough, σ_{{I {{down}}}}2 is close to σ_{{I {{up}}}}2 as the propagation distance z increases, and σ_{{I {{up}}}}2 and σ_{{I {{down}}}}2 overlap each other as ɛ increases. Furthermore, as z increases, σ_{{I {{up}}}}2 approaches an asymptotical value when θ is not large enough, and the saturation phenomenon of σ_{{I {{up}}}}2 appears when θ is large enough. But the asymptotical value and the saturation phenomenon of σ_{{I {{down}}}}2 never appear. On the other hand, the energy focusability in downlink is better than that in uplink, and the difference of energy focusability between a downlink and an uplink increases with increasing θ or decreasing ɛ. In addition, in downlink there may exist sidelobes of intensity distributions when θ is not large enough, but the sidelobes never appear in uplink.

  9. On wave propagation characteristics in fluid saturated porous materials by a nonlocal Biot theory

    NASA Astrophysics Data System (ADS)

    Tong, Lihong; Yu, Yang; Hu, Wentao; Shi, Yufeng; Xu, Changjie

    2016-09-01

    A nonlocal Biot theory is developed by combing Biot theory and nonlocal elasticity theory for fluid saturated porous material. The nonlocal parameter is introduced as an independent variable for describing wave propagation characteristics in poroelastic material. A physical insight on nonlocal term demonstrates that the nonlocal term is a superposition of two effects, one is inertia force effect generated by fluctuation of porosity and the other is pore size effect inherited from nonlocal constitutive relation. Models for situations of excluding fluid nonlocal effect and including fluid nonlocal effect are proposed. Comparison with experiment confirms that model without fluid nonlocal effect is more reasonable for predicting wave characteristics in saturated porous materials. The negative dispersion is observed theoretically which agrees well with the published experimental data. Both wave velocities and quality factors as functions of frequency and nonlocal parameter are examined in practical cases. A few new physical phenomena such as backward propagation and disappearance of slow wave when exceeding critical frequency and disappearing shear wave in high frequency range, which were not predicted by Biot theory, are demonstrated.

  10. Modal propagation and imaging characteristics of a custom designed coherent fiberbundle for endomicroscopy

    NASA Astrophysics Data System (ADS)

    Heyvaert, S.; Ottevaere, H.; Kujawa, I.; Buczynski, R.; Raes, M.; Terryn, H.; Thienpont, H.

    2014-05-01

    In recent years, several groups have investigated the use of Proximal Spatial Light modulation (PSML) as an alternative fiber optic imaging technique. In PSLM, the light exiting the distal end of the fiber optic endoscope can be focused, without any distal micro-optics or micro-mechanics, on any point within the Field Of View (FOV) via spatial modulation of the light before it is coupled in at the endoscope's proximal end. In previous work, we reported on the custom design of a Coherent Fiber Bundle made with soft glasses (as opposed to the commercially available optical fibers used by other groups) to be used with PSLM. In this paper we present the results of the numerical characterization of the Coherent Fiber Bundle fabricated according to our design. We investigate the CFB's modal propagation characteristics as well as its imaging properties (FOV and point spread function). Our numerical characterization also takes into account fabrication induced defects such as variations in core size, core shape (ellipticity) and lattice constant. Realistic values for the defects were obtained via SEM images of the fabricated CFB's cross section. We find that noise on the wave front of the field exiting the distal end of the CFB causes a much larger deterioration of the point spread function than amplitude noise. And while we find that variations in core shape have the largest impact on the CFB's propagation characteristics, our results indicate that this negative impact could be negated if the elliptical cores were aligned along a common axis.

  11. N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, tomorrow

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. D.

    2015-06-01

    This paper describes the basic and applied research rationale for the organization of IZMIRAN and provides insight into the 75 years of the Institute's activities and development. Historically, early magnetic measurements in Russia were developed largely to meet the Navy's navigation needs and were, more generally, stimulated by the Peter the Great decrees and by the foundation of the St. Petersburg Academy of Sciences in 1724. The paper examines the roles of the early Academicians in developing geomagnetism and making magnetic measurements a common practice in Russia. The need for stable radio communications prompted ionospheric and radio wave propagation research. The advent of the space era and the 1957-1958 International Geophysical Year Project greatly impacted the development of IZMIRAN and spurred the creation of a number of geophysical research institutes throughout the country. Currently, the research topics at IZMIRAN range widely from geomagnetism to solar-terrestrial physics to the ionosphere and radio wave propagation, and its primary application areas are the study and forecast of space weather, an increasingly important determining factor in ever-expanding ground- and space-based technologies (space navigation and communications, space activities, etc.).

  12. Influence of an inhomogeneous structure of the high-latitude ionosphere on the long-distance propagation of high-frequency radio waves

    NASA Astrophysics Data System (ADS)

    Uryadov, V. P.; Vertogradov, G. G.; Vertogradova, E. G.

    2012-09-01

    We present the results of experimental studies of the features of long-distance propagation of high-frequency radio waves on the large-extent subauroral Magadan-Rostov-on-Don and midlatitude Khabarovsk-Rostov-on-Don and Irkutsk-Rostov-on-Don paths, which were obtained using the ionosonde-finder with a chirp output signal. Anomalous (lateral) signals with delays of about 1-2 ms with respect to a direct signal, which arrive from the azimuths 10°-20°, are observed on the Magadan-Rostov-on-Don path. The lateral signals were observed in the morning and antemeridian hours in the time interval 08:00-10:40 MSK. In the evening and night hours, the lateral signals were not observed. During magnetic activity, the amplitude of the lateral signals was greater than that observed prior to a magnetic storm by 5-10 dB. Location of the ionospheric-perturbation regions responsible for the appearance of the lateral signals was determined as φgeogr ≈ 69°-71°N (φmagn ≈ 65°-66°N), and λ ≈ 51°-58°E. The mechanisms of the lateral-signal propagation due to lateral refraction of radio waves on patches with enhanced electron number density and due to scattering of radio waves from small-scale irregularities are considered.

  13. Characteristics of radio-frequency atmospheric pressure dielectric-barrier discharge with dielectric electrodes

    SciTech Connect

    Hussain, S. E-mail: shussainuos@yahoo.com; Qazi, H. I. A.; Badar, M. A.

    2014-03-15

    An experimental investigation to characterize the properties and highlight the benefits of atmospheric pressure radio-frequency dielectric-barrier discharge (rf DBD) with dielectric electrodes fabricated by anodizing aluminium substrate is presented. The current-voltage characteristics and millisecond images are used to distinguish the α and γ modes. This atmospheric rf DBD is observed to retain the discharge volume without constriction in γ mode. Optical emission spectroscopy demonstrates that the large discharge current leads to more abundant reactive species in this plasma source.

  14. Characteristics of radio-frequency atmospheric pressure dielectric-barrier discharge with dielectric electrodes

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Qazi, H. I. A.; Badar, M. A.

    2014-03-01

    An experimental investigation to characterize the properties and highlight the benefits of atmospheric pressure radio-frequency dielectric-barrier discharge (rf DBD) with dielectric electrodes fabricated by anodizing aluminium substrate is presented. The current-voltage characteristics and millisecond images are used to distinguish the α and γ modes. This atmospheric rf DBD is observed to retain the discharge volume without constriction in γ mode. Optical emission spectroscopy demonstrates that the large discharge current leads to more abundant reactive species in this plasma source.

  15. Remote sensing and modeling of lightning caused long recovery events within the lower ionosphere using VLF/LF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Schmitter, E. D.

    2014-11-01

    On the 4 November 2012 at 3:04:27 UT a strong lightning in the midst of the North Sea affected the propagation conditions of VLF/LF transmitter radio signals from NRK (Iceland, 37.5 kHz) and GBZ (UK, 19.58 kHz) received at 5246° N 8° E (NW Germany). The amplitude and phase dips show a recovery time of 6-12 min pointing to a LOng Recovery Early VLF (LORE) event. Clear assignment of the causative return stroke in space and time was possible with data from the WWLLN (Worldwide Lightning Location Network). Based on a return stroke current model the electric field is calculated and an excess electron density distribution which decays over time in the lower ionosphere is derived. Ionization, attachment and recombination processes are modeled in detail. Entering the electron density distribution in VLF/LF radio wave propagation calculations using the LWPC (Long Wavelength Propagation Capability) code allows to model the VLF/LF amplitude and phase behavior by adjusting the return stroke current moment. The results endorse and quantify the conception of lower ionosphere EMP heating by strong - but not necessarily extremely strong - return strokes of both polarities.

  16. Radiation characteristics of quasi-periodic radio bursts in the Jovian high-latitude region

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoki; Tsuchiya, Fuminori; Misawa, Hiroaki; Morioka, Akira; Nozawa, Hiromasa

    2008-12-01

    Ulysses had a "distant encounter" with Jupiter in February 2004. The spacecraft passed from north to south, and it observed Jovian radio waves from high to low latitudes (from +80° to +10°) for few months during its encounter. In this study, we present a statistical investigation of the occurrence characteristics of Jovian quasi-periodic bursts, using spectral data from the unified radio and plasma wave experiment (URAP) onboard Ulysses. The latitudinal distribution of quasi-periodic bursts is derived for the first time. The analysis suggested that the bursts can be roughly categorized into two types: one having periods shorter than 30 min and one with periods longer than 30 min, which is consistent with the results of the previous analysis of data from Ulysses' first Jovian flyby [MacDowall, R.J., Kaiser, M.L., Desch, M.D., Farrell, W.M., Hess, R.A., Stone, R.G., 1993. Quasi-periodic Jovian radio bursts: observations from the Ulysses radio and plasma wave. Experiment. Planet. Space Sci. 41, 1059-1072]. It is also suggested that the groups of quasi-periodic bursts showed a dependence on the Jovian longitude of the sub-solar point, which means that these burst groups are triggered during a particular rotational phase of the planet. Maps of the occurrence probability of these quasi-periodic bursts also showed a unique CML/MLAT dependence. We performed a 3D ray tracing analysis of the quasi-periodic burst emission to learn more about the source distribution. The results suggest that the longitudinal distribution of the occurrence probability depends on the rotational phase. The source region of quasi-periodic bursts seems to be located at an altitude between 0.4 and 1.4 Rj above the polar cap region ( L>30).

  17. Morphology and scaling characteristics of propagating drying fronts in porous media delineated by neutron radiography

    NASA Astrophysics Data System (ADS)

    Shokri, N.; Sahimi, M.; Or, D.

    2011-12-01

    Improved understanding of fluid interface displacement in porous media is of considerable interest for various applications ranging from enhanced oil recovery to modeling of soil water flow and infiltration. The formation of fluid interfaces, their roughening and dynamics in porous media are influenced by the properties of the fluids and the transport properties of porous media, among other factors. We analyzed wettability effects on the dynamics and morphology of a primary drying front receding into a porous medium during stage 1 evaporation (i.e., liquid flow from drying front to evaporation plane at the surface). Neutron radiography images obtained at 300 sec intervals and at spatial resolution of 0.1 mm enabled quantifying drying front roughening and fractal and scaling characteristics in Hele-Shaw cells packed with hydrophilic and hydrophobic sand (particle size 0.3-0.9 mm). Results indicate that wettability had a minor impact on the fractal characteristics of a drying front; however the configuration, velocity and pinning-depinning of the receding front were significantly affected by wettability. The roughness exponent of the drying front was estimated by averaging over all neutron radiography images. We observed no difference in roughness exponent values obtained from fronts propagating in hydrophilic and hydrophobic sand, suggesting that wettability is negligible relative to other driving forces. The experimentally-determined roughness exponent was higher than predicted by theory which may indicate that drying front roughening is dominated by quenched disorder (generated by random packing of the sand grains). We have also calculated the height-height front correlation function. These results show fronts propagating in hydrophilic and hydrophobic sands may not be characterized by a single Hurst exponent, thus exhibiting multiaffine properties. These were further investigated by calculating different orders of the correlation function. Our results provide new

  18. Back-Propagation Operation for Analog Neural Network Hardware with Synapse Components Having Hysteresis Characteristics

    PubMed Central

    Ueda, Michihito; Nishitani, Yu; Kaneko, Yukihiro; Omote, Atsushi

    2014-01-01

    To realize an analog artificial neural network hardware, the circuit element for synapse function is important because the number of synapse elements is much larger than that of neuron elements. One of the candidates for this synapse element is a ferroelectric memristor. This device functions as a voltage controllable variable resistor, which can be applied to a synapse weight. However, its conductance shows hysteresis characteristics and dispersion to the input voltage. Therefore, the conductance values vary according to the history of the height and the width of the applied pulse voltage. Due to the difficulty of controlling the accurate conductance, it is not easy to apply the back-propagation learning algorithm to the neural network hardware having memristor synapses. To solve this problem, we proposed and simulated a learning operation procedure as follows. Employing a weight perturbation technique, we derived the error change. When the error reduced, the next pulse voltage was updated according to the back-propagation learning algorithm. If the error increased the amplitude of the next voltage pulse was set in such way as to cause similar memristor conductance but in the opposite voltage scanning direction. By this operation, we could eliminate the hysteresis and confirmed that the simulation of the learning operation converged. We also adopted conductance dispersion numerically in the simulation. We examined the probability that the error decreased to a designated value within a predetermined loop number. The ferroelectric has the characteristics that the magnitude of polarization does not become smaller when voltages having the same polarity are applied. These characteristics greatly improved the probability even if the learning rate was small, if the magnitude of the dispersion is adequate. Because the dispersion of analog circuit elements is inevitable, this learning operation procedure is useful for analog neural network hardware. PMID:25393715

  19. Back-propagation operation for analog neural network hardware with synapse components having hysteresis characteristics.

    PubMed

    Ueda, Michihito; Nishitani, Yu; Kaneko, Yukihiro; Omote, Atsushi

    2014-01-01

    To realize an analog artificial neural network hardware, the circuit element for synapse function is important because the number of synapse elements is much larger than that of neuron elements. One of the candidates for this synapse element is a ferroelectric memristor. This device functions as a voltage controllable variable resistor, which can be applied to a synapse weight. However, its conductance shows hysteresis characteristics and dispersion to the input voltage. Therefore, the conductance values vary according to the history of the height and the width of the applied pulse voltage. Due to the difficulty of controlling the accurate conductance, it is not easy to apply the back-propagation learning algorithm to the neural network hardware having memristor synapses. To solve this problem, we proposed and simulated a learning operation procedure as follows. Employing a weight perturbation technique, we derived the error change. When the error reduced, the next pulse voltage was updated according to the back-propagation learning algorithm. If the error increased the amplitude of the next voltage pulse was set in such way as to cause similar memristor conductance but in the opposite voltage scanning direction. By this operation, we could eliminate the hysteresis and confirmed that the simulation of the learning operation converged. We also adopted conductance dispersion numerically in the simulation. We examined the probability that the error decreased to a designated value within a predetermined loop number. The ferroelectric has the characteristics that the magnitude of polarization does not become smaller when voltages having the same polarity are applied. These characteristics greatly improved the probability even if the learning rate was small, if the magnitude of the dispersion is adequate. Because the dispersion of analog circuit elements is inevitable, this learning operation procedure is useful for analog neural network hardware. PMID:25393715

  20. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  1. Propagation characteristics of waves upstream and downstream of quasi-parallel shocks

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, D.; Omidi, N.

    1993-01-01

    The propagation characteristics of waves upstream and downstream of quasi-parallel shocks are investigated by using 2D hybrid simulations. At low Alfven Mach numbers, M(A) below about 2, the shock is initially associated with upstream phase-standing whistlers. At later times, backstreaming ions excite longer-wavelength whistlers via the right-hand resonant ion/ion instability. These waves propagate along the magnetic field at a group velocity no smaller than the upstream flow speed, so that the waves remain in the upstream region. At higher MA (above about 3), these waves are convected back into the shock, causing its reformation and downstream perturbations. Shock transmitted waves mode-convert into Alfven/ion-cyclotron waves which have a wave vector along the shock normal (pointing upstream) and convect downstream. The 2D simulation results confirm our earlier suggestion that the upstream waves should be field aligned, and that their convection into the downstream is associated with linear mode conversion into the Alfven/ion-cyclotron branch.

  2. Propagation characteristics of atmospheric-pressure He+O2 plasmas inside a simulated endoscope channel

    NASA Astrophysics Data System (ADS)

    Wang, S.; Chen, Z. Y.; Wang, X. H.; Li, D.; Yang, A. J.; Liu, D. X.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2015-11-01

    Cold atmospheric-pressure plasmas have potential to be used for endoscope sterilization. In this study, a long quartz tube was used as the simulated endoscope channel, and an array of electrodes was warped one by one along the tube. Plasmas were generated in the inner channel of the tube, and their propagation characteristics in He+O2 feedstock gases were studied as a function of the oxygen concentration. It is found that each of the plasmas originates at the edge of an instantaneous cathode, and then it propagates bidirectionally. Interestingly, a plasma head with bright spots is formed in the hollow instantaneous cathode and moves towards its center part, and a plasma tail expands through the electrode gap and then forms a swallow tail in the instantaneous anode. The plasmas are in good axisymmetry when [O2] ≤ 0.3%, but not for [O2] ≥ 1%, and even behave in a stochastic manner when [O2] = 3%. The antibacterial agents are charged species and reactive oxygen species, so their wall fluxes represent the "plasma dosage" for the sterilization. Such fluxes mainly act on the inner wall in the hollow electrode rather than that in the electrode gap, and they get to the maximum efficiency when the oxygen concentration is around 0.3%. It is estimated that one can reduce the electrode gap and enlarge the electrode width to achieve more homogenous and efficient antibacterial effect, which have benefits for sterilization applications.

  3. Characteristics of the propagation of radioactive pollutants near a radiation-hazardous object

    SciTech Connect

    Romanov, V.I.

    1995-09-01

    It is well known that the radiation effect of nuclear enterprises on the environment is due mainly to gas-aerosol emissions which emanate from the object in the form of a jet flow. A characteristic feature of the propagation of radioactive impurities near such structures is that they depend on the local thermal and wind conditions at the location of the source of contamination. Transferring directly the results of laboratory investigations of the propagation and diffusion of fluxes to objects in the environment and neglecting the peculiarities of the wind and thermal interference with the underlying surface and other buildings can lead to incorrect conclusions. In this paper, we examine two examples: (1) emissions through the plant stack or other ventilation system openings, and (2) leakage of radioactive pollutants into the reactor building and from there to the atmosphere. A mathematical description on each example is provided, and data on the Archimedes number for a convective jet is given as a function of the deflecting wind velocity.

  4. Study on propagation characteristics of temporal soliton in Scarff II PT-symmetric potential based on intensity moments

    NASA Astrophysics Data System (ADS)

    Deng, Yangbao; Deng, Shuguang; Tan, Chao; Xiong, Cuixiu; Zhang, Guangfu; Tian, Ye

    2016-05-01

    When a temporal soliton propagates in the inhomogeneous nonlinear medium with Scarff II parity-time (PT)-symmetric potential, we investigate the propagation characteristics of a temporal soliton based on intensity moments. Under the condition of Scarff II PT-symmetric potential, the propagation characteristics of a temporal soliton are affected by the dispersion coefficient, nonlinear coefficient and chirp. After a detailed analysis of the intensity evolution and the second-order intensity moment parameter, we find that the intensity and pulse width (PW) of a chirped-free temporal soliton are invariant during nonlinear propagation when the dispersion coefficients are the constant, exponential decreasing function and periodic modulated function, respectively. The intensity and PW of a chirped temporal soliton vary periodically when the dispersion coefficient is a periodic modulated function. So the chirp has no effect on propagation behavior of a temporal soliton. When the dispersion coefficients are the constant or exponential decreasing function, the intensity of a chirped temporal soliton is gradually increased, while the PW of a chirped temporal soliton is gradually decreased. Thus the temporal soliton is compressed and the chirp has a great effect on the propagation behavior of a temporal soliton. The results will be helpful to manipulation of nonlinear propagation of the laser pulses.

  5. Self-configurable radio receiver system and method for use with signals without prior knowledge of signal defining characteristics

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon (Inventor); Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor); Dolinar, Samuel J. (Inventor); Tkacenko, Andre (Inventor)

    2013-01-01

    A method, radio receiver, and system to autonomously receive and decode a plurality of signals having a variety of signal types without a priori knowledge of the defining characteristics of the signals is disclosed. The radio receiver is capable of receiving a signal of an unknown signal type and, by estimating one or more defining characteristics of the signal, determine the type of signal. The estimated defining characteristic(s) is/are utilized to enable the receiver to determine other defining characteristics. This in turn, enables the receiver, through multiple iterations, to make a maximum-likelihood (ML) estimate for each of the defining characteristics. After the type of signal is determined by its defining characteristics, the receiver selects an appropriate decoder from a plurality of decoders to decode the signal.

  6. Propagation characteristics of dust-acoustic waves in presence of a floating cylindrical object in the DC discharge plasma

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2016-08-01

    The experimental observation of the self-excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion-dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.

  7. On the statistical characteristics of radio-loud and radio-quiet halo coronal mass ejections and their associated flares during solar cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Mittal, Nishant; Sharma, Joginder; Verma, Virendar Kumar; Garg, Vijay

    2016-08-01

    We have studied the characteristics of radio-loud (RL) and radio-quiet (RQ) front side halo coronal mass ejections (HCMEs) (angular width 360°) observed between the time period years 1996-2014. RL-HCMEs are associated with type II radio bursts, while RQ-HCMEs are not associated with type II radio bursts. CMEs near the Sun in the interplanetary medium associated with radio bursts also affect the magnetosphere. The type II radio burst data was observed by WIND/WAVES instrument and HCMEs were observed by LASCO/ SOHO instruments. In our study, we have examined the properties of RL-HCMEs and RQ-HCMEs and found that RL-HCMEs follow the solar cycle variation. Our study also shows that the 26% of slow speed HCMEs and 82% of fast speed HCMEs are RL. The average speed of RL-HCMEs and RQ-HCMEs are 1370 km/s and 727 km/s, respectively. Most of the RQ-HCMEs occur around the solar disc center while most of RL-HCMEs are uniformly distributed across the solar disc. The mean value of acceleration of RL-HCMEs is more than twice that of RQ-HCMEs and mean value of deceleration of RL- HCMEs is very small compare to RQ-HCMEs events. It is also found that RQ-HCMEs events are associated with C- and M-class of SXR flares, while RL-HCMEs events are associated with M and X-class of SXR flares, which indicates that the RQ-HCMEs are less energetic than the RL-HCMEs. We have also discussed the various results obtained in present investigation in view of recent scenario of solar physics.

  8. Statistical study of propagation characteristics of Pc1 pearl structures using conjugate ground-satellite observations

    NASA Astrophysics Data System (ADS)

    Jun, C. W.; Shiokawa, K.; Takahashi, K.; Paulson, K. W.; Schofield, I.; Connors, M. G.; Poddelskiy, I.; Shevtsov, B.; Kletzing, C.; Wygant, J. R.

    2015-12-01

    We investigated statistical characteristics of pearl structures (amplitude modulation) of Pc1 pulsations using conjugate observations with the ground induction magnetometers located at Athabasca (ATH, L = 4.3) in Canada and Magadan (MGD, L = 2.7) in Russia and the Van Allen Probes (RBSP-A and B) satellites located in the inner magnetosphere for a 1-year period (August 2012 to August 2013). We consider a ground magnetometer and a satellite to be conjugate when the satellite footprint is located within 1000 km of the ground magnetometer. From a survey of data acquired during the conjunction periods, we found 42 pearl Pc1events. These events were classified into four categories: structured Pc1 waves observed at both locations (9 events), structured Pc1 waves observed only on the ground (22 events) or in space (0 events), and unstructured Pc1 waves at both locations (11 events). We describe the spatial and temporal distributions of Pc1 pearl structures and their dependence on geomagnetic conditions. We also compare the frequency, the power ratio between space and ground, and the polarization among the four categories of events. In addition, we verified the similarity of Pc1 pearl structures between ground and space observations in order to investigate propagation and polarization characteristics of Pc1 pearl structures from the magnetosphere to the ionosphere.

  9. Transmit-reference methods in software defined radio platforms for communication in harsh propagation environments and systems thereof

    DOEpatents

    Dowla, Farid U; Nekoogar, Faranak

    2015-03-03

    A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications according to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.

  10. Giant Radio Sources as a Probe of the Cosmological Evolution of the IGM. II. The Observational Constraint on the Model of Radio-Jets Propagation through the X-ray Halo-IGM Interface

    NASA Astrophysics Data System (ADS)

    Kuligowska, E.; Jamrozy, M.; Koziel-Wierzbowska, D.; Machalski, J.

    2009-12-01

    Three limited samples of high-redshift radio sources of FRII-type are used to constrain the dynamical model for the jets' propagation through the two-media environment: the X-ray emitting halo with the power-law density profile surrounding the parent galaxy and the much hotter intergalactic medium (IGM) of a constant density. The model, originally developed by Gopal-Krishna and Wiita, is modified adopting modern values of its free parameters taken from recent X-ray measurements with the XMM-Newton and Chandra Observatories. We find that (i) giant-sized radio sources (≍1 Mpc) exist at redshifts up to z≍2, (ii) all newly identified the largest radio sources with 1

  11. Preliminary breakdown of intracloud lightning: Initiation altitude, propagation speed, pulse train characteristics, and step length estimation

    NASA Astrophysics Data System (ADS)

    Wu, Ting; Yoshida, Satoru; Akiyama, Yasuhiro; Stock, Michael; Ushio, Tomoo; Kawasaki, Zen

    2015-09-01

    Using a low-frequency lightning location system comprising 11 sites, we located preliminary breakdown (PB) processes in 662 intracloud (IC) lightning flashes during the summer of 2013 in Osaka area of Japan. On the basis of three-dimensional location results, we studied initiation altitude and upward propagation speed of PB processes. PB in most IC flashes has an initiation altitude that ranges from 5 to 10 km with an average of 7.8 km. Vertical speed ranges from 0.5 to 17.8 × 105 m/s with an average of 4.0 × 105 m/s. Vertical speed is closely related with initiation altitude, with IC flashes initiated at higher altitude having lower vertical speed during PB stage. Characteristics of PB pulse trains including pulse rate, pulse amplitude, and pulse width are also analyzed. The relationship between pulse rate and vertical speed has the strongest correlation, suggesting that each PB pulse corresponds to one step of the initial leader during the PB stage. Pulse rate, pulse amplitude, and pulse width all show decreasing trends with increasing initiation altitude and increasing trends with increasing vertical speed. Using a simple model, the step length of the initial leader during the PB stage is estimated. Most of initial leaders have step lengths that range from 40 to 140 m with an average of 113 m. Estimated step length has a strong correlation with initiation altitude, indicating that leaders initiated at higher altitude have longer steps. Based on the results of this study, we speculate that above certain altitude (~12 km), initial leaders in PB stages of IC flashes may only have horizontal propagations. PB processes at very high altitude may also have very weak radiation, so detecting and locating them would be relatively difficult.

  12. Propagation characteristics of auroral kilometric radiation observed by the MEMO experiment on Interball 2

    NASA Astrophysics Data System (ADS)

    Parrot, M.; Lefeuvre, F.; Rauch, J. L.; Santolı̀k, O.; Mogilevski, M. M.

    2001-01-01

    The MEMO experiment is a part of the Interball 2 wave consortium. It is connected to a total of six electric and nine magnetic independent sensors. It provides waveforms associated with the measurement of two to five components in the three frequency bands: ELF (5-1000 Hz), VLF (1-20 kHz), and LF (20-250 kHz). Waveforms of three magnetic components and one electric component recorded during observations of auroral kilometric radiation (AKR) allow a detailed study of the characteristics of these emissions. In particular, the wave normal directions of AKR relative to the Earth's magnetic field are determined using several methods: the classical methods based on the plane wave approximation [Means, 1972] and the wave distribution function method which represents the evaluation of the wave energy density distribution with respect to the angular frequency and the wave normal direction(s). One event is fully analyzed in this paper. It is shown that AKR propagates with a polarization quasi-circular (ellipticity value ~0.9), a right polarization (i.e., R-X mode), and wave normals weakly oblique (~30°).

  13. Statistical Characteristics of MF/HF Auroral Radio Emissions Emanating from the Topside Ionosphere

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Kumamoto, A.; Katoh, Y.; Shinbori, A.

    2014-12-01

    The terrestrial auroral ionosphere is a natural emitter of electromagnetic waves in the MF/HF ranges (up to 6 MHz) as well as well-known intense auroral kilometric radiation (AKR) and auroral hiss in the VLF/LF ranges. We report on the statistical properties of Terrestrial Hectometric Radiation (THR), MF/HF auroral radio emissions emanating from the topside ionosphere, using a long-term data set obtained from the Plasma Waves and Sounder (PWS) experiment mounted on the Akebono satellite during 2 solar cycles. THR typically occurs in either or both of two frequency bands near 1.5-2.0 MHz and 3.0-4.0 MHz, whose polarization features correspond to the L-O and R-X mode. Statistical studies using the Akebono/PWS data reveal clear bimodality in the frequency distribution of THR with two broad peaks near 1.6 MHz and 3.6 MHz and the spatial distribution of occurrence rate of THR-L (lower than 2.5 MHz) and THR-H (higher than 2.5 MHz). In the morning to postnoon sectors (3h-15h MLT), the spatial distribution of both types of THR is confined to magnetic latitudes higher than 70 deg, while during nighttime (15h-3h MLT) it spreads to lower magnetic latitudes (~ 30 deg) at higher altitudes. The explanation of this distribution is that THR is generated in the night-side auroral latitudes near 1000-km altitude and propagation effect makes an emission cone. Occurrence rate of THR-L is higher than that of THR-H. The long-term Akebono/PWS data also show clear solar activity dependence and seasonal variations of THR appearance; THR occurrence rate drops from a few percent during solar maxima to 0.1 percent or less during solar minima and is the highest in summer and the lowest in winter.

  14. A BROKEN SOLAR TYPE II RADIO BURST INDUCED BY A CORONAL SHOCK PROPAGATING ACROSS THE STREAMER BOUNDARY

    SciTech Connect

    Kong, X. L.; Chen, Y.; Li, G.; Feng, S. W.; Song, H. Q.; Jiao, F. R.; Guo, F.

    2012-05-10

    We discuss an intriguing type II radio burst that occurred on 2011 March 27. The dynamic spectrum was featured by a sudden break at about 43 MHz on the well-observed harmonic branch. Before the break, the spectrum drifted gradually with a mean rate of about -0.05 MHz s{sup -1}. Following the break, the spectrum jumped to lower frequencies. The post-break emission lasted for about 3 minutes. It consisted of an overall slow drift which appeared to have a few fast-drift sub-bands. Simultaneous observations from the Solar TErrestrial RElations Observatory and the Solar Dynamics Observatory were also available and are examined for this event. We suggest that the slow-drift period before the break was generated inside a streamer by a coronal eruption driven shock, and the spectral break as well as the relatively wide spectrum after the break is a consequence of the shock crossing the streamer boundary where density drops abruptly. It is suggested that this type of radio bursts can be taken as a unique diagnostic tool for inferring the coronal density structure, as well as the radio-emitting source region.

  15. Static current-voltage characteristics for radio-frequency induction discharge

    SciTech Connect

    Budyansky, A.; Zykov, A.

    1995-12-31

    The aim of this work was to obtain experimentally such characteristic of Radio-Frequency Induction Discharge (RFID) that can play the role of its current-voltage characteristic (CVC) and to explain the nature of current and voltage jumps arising in RF coils at exciting of discharge. Experiments were made in quartz 5.5, 11, 20 cm diam tubes with outer RF coil at pressures 10--100 mTorr, at frequency 13.56 MHz and discharge power to 500 W. In case of outer coil as analogue of discharge voltage it`s convenient to use the value of the RF voltage U{sub R}, induced around outer perimeter of discharge tube. It is evident that current and voltage jumps arising at exciting of discharge are due to low output resistance of standard generators and negative slope of initial part of CVC. Three sets of such dependencies for different pressures were obtained for each diameter of tubes. The influence of different metal electrodes placed into discharge volume on CVC`s shape has been studied also. Experimental results can explain the behavior of HFI discharge as a load of RF generator and give data for calculation of RF circuit.

  16. Plasma discharge characteristics in compact SF6 radio-frequency plasma source for plasma etching application

    NASA Astrophysics Data System (ADS)

    Motomura, Taisei; Takahashi, Kazunori; Kasashima, Yuji; Uesugi, Fumihiko; Ando, Akira

    2015-09-01

    In order to create a compact plasma etching reactor, plasma discharge characteristics in compact SF6 radio-frequency (RF) plasma source which has a chamber diameter of 40 mm have been studied. Convergent magnetic field configuration produced by a solenoid coil and a permanent magnet located behind substrate is employed for efficient plasma transport downstream of plasma source. A discharge characteristics with the changes in relative emission intensity of fluorine atom of FI at 703.7 nm in compact SF6 plasma source are discussed: the dependence of relative emission intensity on the magnetic field strength, the RF input power, and the mass flow rate of the SF6 gas. The relative emission intensity was significantly increased when the RF input power is ~150 W. We present the fundamental etching performance (especially etching rate) of compact plasma source, and then the etching rate of 0.1-1.0 μm/min was obtained under the condition of a RF input power of 50-200 W, a mass flow rate of SF6 of 5.5 sccm and a bias RF power of 20 W. The results of test etching will be shown in presentation.

  17. Effect of the initial pressure on the characteristics of the flame propagation in hydrogen-propane-air mixtures

    NASA Astrophysics Data System (ADS)

    Cheng, Guanbing; Bauer, Pascal; Zitoun, Ratiba

    2014-08-01

    This paper is aimed at an experimental investigation on effects of initial pressure on flame propagation characteristics of binary fuels hydrogen-propane-air mixtures at room temperature. The experiments are performed in a square channel equipped with perforated orifice obstacles. Four initial pressures are examined. Based on pressure transducers along the channel, the flame velocity, maximum pressure of the front peak and characteristic distances are measured. Successive stages are observed as flame propagates: (i) a velocity increase at the beginning, (ii) a velocity equal to the sound speed of combustion products and (iii) a decrease of the velocity. When the initial pressure is more important, the flame velocity and the maximal pressure of the front peak are higher, which yields a shorter characteristic distance of flame propagation. By means of a Schlieren photography technique, the physical mechanisms of flame propagation are identified in its initial stage. The physical mechanisms such as flame surface area increase and combustion product expansion as well as delayed combustion between two adjacent plates are responsible for flame acceleration upon its initial stage. The oscillations of the centerline flame velocity are due to the constrained-expanded structure of flow in reactants ahead of flame when it crosses the plates.

  18. Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation

    NASA Astrophysics Data System (ADS)

    Wei-Long, Wang; Hui-Min, Song; Jun, Li; Min, Jia; Yun, Wu; Di, Jin

    2016-04-01

    Electrical characteristics and optical emission spectrum of the radio frequency (RF) surface dielectric barrier discharge (SDBD) plasma actuation are investigated experimentally in this paper. Influences of operating pressure, duty cycle and load power on the discharge are analyzed. When the operating pressure reaches 30 kPa, the discharge energy calculated from the Charge–Voltage (Q–V) Lissajous figure increases significantly, while the effective capacitance decreases remarkably. As the duty cycle of the applied voltage increases, the voltage–current waveforms, the area of Q–V loop and the capacity show no distinct changes. Below 40 W, effective capacitance increases with the increase of load power, but it almost remains unchanged when load power is between 40 W and 95 W. The relative intensity changes little as the operating pressure varies from 4 kPa to 100 kPa, while it rises evidently with the pressure below 4 kPa, which indicates that the RF discharge mode shifts from filamentary discharge to glow discharge at around 4 kPa. With the increase of load power, the relative intensity rises evidently. Additionally, the relative intensity is insensitive to the pressure, the duty cycle, and the load power. Project supported by the National Natural Science Foundation of China (Grant Nos. 11472306, 51276197, and 51336011).

  19. Comparison of pulse propagation and gain saturation characteristics among different input pulse shapes in semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Barua, Suchi; Das, Narottam; Nordholm, Sven; Razaghi, Mohammad

    2016-01-01

    This paper presents the pulse propagation and gain saturation characteristics for different input optical pulse shapes with different energy levels in semiconductor optical amplifiers (SOAs). A finite-difference beam propagation method (FD-BPM) is used to solve the modified nonlinear Schrödinger equation (MNLSE) for the simulation of nonlinear optical pulse propagation and gain saturation characteristics in the SOAs. In this MNLSE, the gain spectrum dynamics, gain saturation are taken into account those are depend on the carrier depletion, carrier heating, spectral hole-burning, group velocity dispersion, self-phase modulation and two photon absorption. From this simulation, we obtained the output waveforms and spectra for different input pulse shapes considering different input energy levels. It has shown that the output pulse shape has changed due to the variation of input parameters, such as input pulse shape, input pulse width, and input pulse energy levels. It also shown clearly that the peak position of the output waveforms are shifted toward the leading edge which is due to the gain saturation of the SOA. We also compared the gain saturation characteristics in the SOA for different input pulse shapes.

  20. Characteristics of coronal shock waves and solar type 2 radio bursts

    NASA Technical Reports Server (NTRS)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  1. The propagation characteristics of the conical hollow beams in the turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Yuan, Dong; Jin-Qi, He; Shu-Tao, Li; Xi-He, Zhang; Guang-Yong, Jin

    2016-08-01

    In this paper, by using the Collins formula and the Rytov method, the model used to descript the propagation properties of the conical hollow beams(CHBs) in the turbulent atmosphere is firstly constructed and the simulation is made by the numerical method. The results show that the initial transmission angle has important influence on the propagation properties. Beside these, the index structure constant and the order number also can influence the transverse intensity distribution. So according to the model, the intensity distribution of the conical hollow beams in the turbulent atmosphere can be controlled by adjusting these parameters.

  2. Jupiter: As a planet. [its physical characteristics and radio waves emitted from Jupiter

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The planet Jupiter, its planetary mass and atmosphere, radio waves emitted from Jupiter, thermal radiation, internal structure of Jupiter, and the possibility of life on Jupiter are discussed. Educational study projects are included.

  3. Characteristics pertinent to propagation of pulsating pressure in the channels of turbine machines

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Chen, Zuoyi

    2007-01-01

    A new model describing the propagation of the pressure pulsations in the intricately shaped channels of turbine machines is presented. The proposed model was successfully used to analyze two emergency events: a failure of a steam turbine’s cast diaphragm and a failure of a rocket engine’s oxygen pump booster stage.

  4. On some statistical characteristics of radio-rich CMEs in the solar cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Sharma, Joginder; Mittal, Nishant; Narain, Udit

    2015-06-01

    In this paper we have presented the properties of radio-rich coronal mass ejections (CMEs), during the period 1997-2013. The CME event accompanied by the type II radio burst is referred to as radio-loud (RL), while the one lacking a type II burst is termed radio-quiet (RQ). These radio rich CMEs produce type II (1-14 MHz), i.e. decametric-hectometric or DH radio burst. It is found that the average width of all DH CMEs during the study period is 235° and 75% of the DH CMEs are halo CMEs in solar cycle 24. The DH CMEs linear speeds distribution is in the range 112-3387 km/s, with an average speed of 1043 km/s; the acceleration varies between 434 m/s2 and -179 m/s2. About 62% of the DH CMEs are decelerated. A CME associated with a type II burst and originating close to the center of the solar disk typically results in a shock at Earth in 2-3 days and hence can be used to predict shock arrival at Earth.

  5. Simulation of sudden phase anomalies of VLF signals of radio stations on the Novosibirsk - Yakutsk and Krasnodar - Yakutsk propagation paths

    NASA Astrophysics Data System (ADS)

    Korsakov, Alexey; Mullayarov, Viktor; Kozlov, Vladimir; Karimov, Rustam

    Sudden phase anomalies (SPA) of radiosignals VLF (3-30 kHz) dependence from X-ray flux and solar zenith angle is described by the expression: begin{center} begin{equation} phiφ=B•Lg(P)+C•Lg(Cos(X))+A, where φ - a signal phase variation, reduced to a unit length of the path [degree/Mm]; P - a solar radiation (1 - 8 Å) flux [W/m(2) ]; Cos(X) - averaged along the propagation path cosine of the solar zenith angle. Registered in Yakutsk SPA signal of stations Krasnodar and Novosibirsk (14.9 kHz) separately for summer and winter daytime conditions are considered. The threshold sensitivity of the SPA by the flux P is weakly dependent on the season. The SPA value for fixed P and X from summer to winter on the path Novosibirsk-Yakutsk increases, the SPA dependence from Cos(X) more distinct in the summer. On the Krasnodar-Yakutsk SPA clearly depends on Cos(X) in winter, due to the greater interval of the longitude and the path crosses higher latitudes.

  6. Propagation characteristics of Bessel beams generated by continuous, incoherent light sources.

    PubMed

    Altıngöz, Ceren; Yalızay, Berna; Akturk, Selcuk

    2015-08-01

    We investigate the propagation behavior of Bessel beams generated by incoherent, continuous light sources. We perform experiments with narrowband and broadband light emitting diodes, and, for comparison, with a laser diode. We observe that the formation of Bessel beams is affected minimally by temporal coherence, while spatial coherence determines the longitudinal evolution of the beam profile. With spatially incoherent beams, the fringe contrast is comparable to the coherent case at the beginning of the Bessel zone, while it completely fades away by propagation, turning into a cylindrical light pipe. Our results show that beam shaping methods can be extended to cases of limited spatial coherence, paving the way for potential new uses and applications of such sources. PMID:26367302

  7. Propagation characteristics of two-color laser pulses in homogeneous plasma

    SciTech Connect

    Hemlata,; Saroch, Akanksha; Jha, Pallavi

    2015-11-15

    An analytical and numerical study of the evolution of two-color, sinusoidal laser pulses in cold, underdense, and homogeneous plasma has been presented. The wave equations for the radiation fields driven by linear as well as nonlinear contributions due to the two-color laser pulses have been set up. A variational technique is used to obtain the simultaneous equations describing the evolution of the laser spot size, pulse length, and chirp parameter. Numerical methods are used to graphically analyze the simultaneous evolution of these parameters due to the combined effect of the two-color laser pulses. Further, the pulse parameters are compared with those obtained for a single laser pulse. Significant focusing, compression, and enhanced positive chirp is obtained due to the combined effect of simultaneously propagating two-color pulses as compared to a single pulse propagating in plasma.

  8. Propagation characteristics of two-color laser pulses in homogeneous plasma

    NASA Astrophysics Data System (ADS)

    Hemlata, Saroch, Akanksha; Jha, Pallavi

    2015-11-01

    An analytical and numerical study of the evolution of two-color, sinusoidal laser pulses in cold, underdense, and homogeneous plasma has been presented. The wave equations for the radiation fields driven by linear as well as nonlinear contributions due to the two-color laser pulses have been set up. A variational technique is used to obtain the simultaneous equations describing the evolution of the laser spot size, pulse length, and chirp parameter. Numerical methods are used to graphically analyze the simultaneous evolution of these parameters due to the combined effect of the two-color laser pulses. Further, the pulse parameters are compared with those obtained for a single laser pulse. Significant focusing, compression, and enhanced positive chirp is obtained due to the combined effect of simultaneously propagating two-color pulses as compared to a single pulse propagating in plasma.

  9. Light confinement and propagation characteristics in plasmonic gap waveguides on silicon

    NASA Astrophysics Data System (ADS)

    Salas-Montiel, Rafael; Blaize, Sylvain; Bruyant, Aurélien; Apuzzo, Aniello; Lérondel, Gilles; Delacour, Cécile; Grosse, Philippe; Fédéli, Jean-Marc; Tchelnokov, Alexei

    2011-01-01

    Plasmonic waveguiding structures have the ability to confine and propagate light over short distances, typically less than a hundred micrometers. This short propagation length is the price that is paid for confining light to dimensions on the order of a hundred of nanometers. With these scales in mind, several plasmonic devices can be proposed (e.g. wavelength multiplexors) and some of them have been already demonstrated such as Y junctions and directional couplers. Although the dimensions involved in such structures are below the diffraction limit, large-scale optical characterization techniques, such as transmitted power, are still employed. In this contribution, we present a characterization technique for the study of the guided modes in plasmonic gap waveguiding structures that resolves subwavelength-scale features, as it is based on atomic force microscope and on near field scattering optical microscope in guided detection.

  10. Propagation characteristics of young hot flow anomalies near the bow shock: Cluster observations

    NASA Astrophysics Data System (ADS)

    Xiao, T.; Zhang, H.; Shi, Q. Q.; Zong, Q.-G.; Fu, S. Y.; Tian, A. M.; Sun, W. J.; Wang, S.; Parks, G. K.; Yao, S. T.; Rème, H.; Dandouras, I.

    2015-06-01

    Based on Cluster observations, the propagation velocities and normal directions of hot flow anomaly (HFA) boundaries upstream the Earth's bow shock are calculated. Twenty-one young HFAs, which have clear leading and trailing boundaries, were selected, and multispacecraft timing method considering errors was employed for the investigation. According to the difference in the propagation velocity of the leading and trailing edges, we categorized these events into three groups, namely, contracting, expanding, and stable events. The contraction speed is a few tens of kilometers per second for the contracting HFAs, and the expansion speed is tens to more than hundred kilometers per second for expanding events. For the stable events, the leading and trailing edges propagate at almost the same speed within the error range. We have further investigated what causes them to contract, expand, or stay stable by carefully calculating the thermal pressure of the young HFAs which have two distinct ion populations (solar wind beam and reflected flow). It is found that the extreme value of the sum of the magnetic and thermal pressure inside the HFAs compared with that of the nearest point outside of the leading edges is higher for expanding events and lower for contracting events, and there is no significant difference for the stable events, and the total pressure (sum of thermal, magnetic, and dynamic pressure) variation has a significant effect on the evolution for most (70%) of the HFAs, which implies that the pressure plays an important role in the evolution of young HFAs.

  11. Propagation characteristics of 20/30 GHz links with a 40 deg masking angle

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Kantak, Anil V.; Le, Choung

    1994-01-01

    An effective means of reducing Ka-band propagation loss is the use of high elevation angle paths, i.e., a large masking angle, between earth stations and the space platform. Experimental data have shown that the signal loss associated with most atmospheric effects is inversely proportional to sin(theta), where theta denotes the path elevation angle. A large masking angle and a generous link margin are the primary tools used in the Teledesic Corporation network to minimize atmospheric-related signal outages. This report documents the results of a study sponsored by Teledesic Corporation to characterize the effect of radiowave propagation on Teledesic's links. The recent Olympus campaign in Europe and the U.S. has provided new information that is not included. Therefore, CCIR recommendations and NASA Propagation Handbook models constitute the base of this study, and, when applicable, data from other sources have been used to improve the predictions. Furthermore, attention has been given to data from the Olympus campaign. The effects investigated during this study include gas, rain, fog, sand, and cloud attenuation; diversity gain; scintillation; and depolarization.

  12. Field observation of low-to-mid-frequency acoustic propagation characteristics of an estuarine salt wedge.

    PubMed

    Reeder, D Benjamin

    2016-01-01

    The estuarine environment often hosts a salt wedge, the stratification of which is a function of the tide's range and speed of advance, river discharge volumetric flow rate, and river mouth morphology. Competing effects of temperature and salinity on sound speed in this stratified environment control the degree of acoustic refraction occurring along an acoustic path. A field experiment was carried out in the Columbia River Estuary to test the hypothesis: the estuarine salt wedge is acoustically observable in terms of low-to-mid-frequency acoustic propagation. Linear frequency-modulated acoustic signals in the 500-2000 Hz band were transmitted during the advance and retreat of the salt wedge during May 27-29, 2013. Results demonstrate that the salt wedge front is the dominant physical mechanism controlling acoustic propagation in this environment: received signal energy is relatively stable before and after the passage of the salt wedge front when the acoustic path consists of a single medium (either entirely fresh water or entirely salt water), and suffers a 10-15 dB loss and increased variability during salt wedge front passage. Physical parameters and acoustic propagation modeling corroborate and inform the acoustic observations. PMID:26827001

  13. Propagation Characteristics of Finite Ground Coplanar Waveguide on Si Substrates With Porous Si and Polyimide Interface Layers

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Itotia, Isaac K.; Drayton, Rhonda Franklin

    2003-01-01

    Measured and modeled propagation characteristics of Finite Ground Coplanar (FGC) waveguide fabricated on a 15 ohm-cm Si substrate with a 23 micron thick, 68% porous Si layer and a 20 micron thick polyimide interface layer are presented for the first time. Attenuation and effective permittivity as function of the FGC geometry and the bias between the center conductor and the ground planes are presented. It is shown that the porous Si reduces the attenuation by 1 dB/cm compared to FGC lines with only polyimide interface layers, and the polyimide on porous silicon demonstrates negligible bias dependence.

  14. Gravity Waves in ER-2 Observations During CRYSTAL-FACE: Propagation Characteristics and Potential Role in Cirrus Cloud Formation

    NASA Astrophysics Data System (ADS)

    Alexander, M. J.; Sherwood, S.; Mahoney, M. J.; Bui, P.

    2003-12-01

    Gravity waves are known to affect cloud formation via the temperature perturbations they cause, and these effects can be significant in conditions that are otherwise marginal for cloud formation. Cirrus clouds near the tropopause can form in the cold phases of gravity waves. The ER-2 aircraft observations during the CRYSTAL-FACE campaign provide a unique set for gravity wave analysis. For the first time, data from both the Microwave Temperature Profiler (MTP) and Meteorological Measurement System (MMS) were obtained together from the ER-2 platform, with flight paths near convection. Analyses of MTP and MMS data can be combined to provide the full set of gravity wave parameters needed to model their origin, propagation, and eventual fate. This wave analysis requires long, constant-level flight paths. First a wavelet analysis in horizontal wavenumber is performed along the flight path direction for measurements of temperature and horizontal wind. From this, the strongest wave modes are identified, and the vertical wavenumber estimated from the MTP data for these modes. Linear wave theory is then employed to compute the propagation directions and intrinsic frequencies for these strongest wave modes. The results of this analysis thus provide the full three-dimensional propagation characteristics for the dominant gravity wave modes in the data. We subsequently use these results to examine their role in cirrus cloud formation at lower altitudes, and compare the results to in situ measurements made from the WB-57F aircraft platform.

  15. Fields and propagation characteristics in vacuum of an ultrashort tightly focused radially polarized laser pulse

    NASA Astrophysics Data System (ADS)

    Salamin, Yousef I.

    2015-11-01

    Analytic expressions for the electric and magnetic fields of a radially polarized ultrashort and tightly focused laser pulse, propagating in vacuum, are derived from scalar and vector potentials satisfying simple initial conditions. It is shown that for a pulse of axial length comparable to a wavelength, only the zeroth (lowest-order) term in a power-series expansion of the vector potential is needed. A procedure is outlined which may be used to obtain the fields analytically, to any desired order. Most of the needed analytic work is done that would lead to the vector potential from which the fields may be derived and the main expressions are given.

  16. A Study on Propagation Characteristic of One-dimensional Stress Wave in Functionally Graded Armor Composites

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Liu, X.; Cao, D. F.; Mei, H.; Lei, Z. T.; Liu, L. S.

    2013-03-01

    The development of Functionally Graded Materials (FGM) for energy-absorbing applications requires understanding of stress wave propagation in these structures in order to optimize their resistance to failure. One-dimensional stress wave in FGM composites under elastic and plastic wave loading have been investigated. The stress distributions through the thickness and stress status have been analyzed and some comparisons have been done with the materials of sharp interfaces (two-layered material). The results demonstrate that the gradient structure design greatly decreases the severity of the stress concentrations at the interfaces and there are no clear differences in stress distribution in FGM composites under elastic and plastic wave loading.

  17. A RANS simulation toward the effect of turbulence and cavitation on spray propagation and combustion characteristics

    NASA Astrophysics Data System (ADS)

    Taghavifar, Hadi; Khalilarya, Shahram; Jafarmadar, Samad; Taghavifar, Hamid

    2016-08-01

    A multidimensional computational fluid dynamic code was developed and integrated with probability density function combustion model to give the detailed account of multiphase fluid flow. The vapor phase within injector domain is treated with Reynolds-averaged Navier-Stokes technique. A new parameter is proposed which is an index of plane-cut spray propagation and takes into account two parameters of spray penetration length and cone angle at the same time. It was found that spray propagation factor (SPI) tends to increase at lower r/ d ratios, although the spray penetration tends to decrease. The results of SPI obtained by empirical correlation of Hay and Jones were compared with the simulation computation as a function of respective r/ d ratio. Based on the results of this study, the spray distribution on plane area has proportional correlation with heat release amount, NO x emission mass fraction, and soot concentration reduction. Higher cavitation is attributed to the sharp edge of nozzle entrance, yielding better liquid jet disintegration and smaller spray droplet that reduces soot mass fraction of late combustion process. In order to have better insight of cavitation phenomenon, turbulence magnitude in nozzle and combustion chamber was acquired and depicted along with spray velocity.

  18. Compared propagation characteristics of superluminal and slow light in SOA and EDFA based on rectangle signals

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Wang, Zhi; Wu, Chongqing; Sun, Zhenchao; Mao, Yaya; Liu, Lanlan; Li, Qiang

    2015-10-01

    Based on the general mechanism of the coherent population oscillations (CPO) in the Semiconductor optical amplifiers (SOA) and Erbium doped fiber amplifiers (EDFA), the group time delay of rectangle signal propagating in the active media is deduced. Compared with the sinusoidal signal, the time delay difference between the fundamental harmonics (FHFD: fundamental harmonic fractional delay) is first investigated in detail for the rectangle signal which is more popularly used in the digital signal systems. The plenty of simulations based on the propagation equations and some experiments for the sinusoidal and rectangle signals are used to analyze the differences and evaluate the slow and superluminal light effects. Furthermore, the time delay/advance always takes place accompanying with the signal distortion, which is evaluated by the total harmonic distortion (THD). The distortion caused by the SOA is smaller than that by the EDFA. A factor Q which is defined to evaluate the trade-off between the FHFD and the THD, shows that higher input power or higher optical gain is better for optical signal processing and optical telecommunications, and the SOA is more suitable for the higher modulation frequency (>10 GHz).

  19. A RANS simulation toward the effect of turbulence and cavitation on spray propagation and combustion characteristics

    NASA Astrophysics Data System (ADS)

    Taghavifar, Hadi; Khalilarya, Shahram; Jafarmadar, Samad; Taghavifar, Hamid

    2016-03-01

    A multidimensional computational fluid dynamic code was developed and integrated with probability density function combustion model to give the detailed account of multiphase fluid flow. The vapor phase within injector domain is treated with Reynolds-averaged Navier-Stokes technique. A new parameter is proposed which is an index of plane-cut spray propagation and takes into account two parameters of spray penetration length and cone angle at the same time. It was found that spray propagation factor (SPI) tends to increase at lower r/d ratios, although the spray penetration tends to decrease. The results of SPI obtained by empirical correlation of Hay and Jones were compared with the simulation computation as a function of respective r/d ratio. Based on the results of this study, the spray distribution on plane area has proportional correlation with heat release amount, NO x emission mass fraction, and soot concentration reduction. Higher cavitation is attributed to the sharp edge of nozzle entrance, yielding better liquid jet disintegration and smaller spray droplet that reduces soot mass fraction of late combustion process. In order to have better insight of cavitation phenomenon, turbulence magnitude in nozzle and combustion chamber was acquired and depicted along with spray velocity.

  20. Effects of nonlinear sound propagation on the characteristic timbres of brass instruments.

    PubMed

    Myers, Arnold; Pyle, Robert W; Gilbert, Joël; Campbell, D Murray; Chick, John P; Logie, Shona

    2012-01-01

    The capacity of a brass instrument to generate sounds with strong high-frequency components is dependent on the extent to which its bore profile supports nonlinear sound propagation. At high dynamic levels some instruments are readily sounded in a "cuivré" (brassy) manner: this phenomenon is due to the nonlinear propagation of sound in ducts of the proportions typical of labrosones (lip-reed aerophones). The effect is also evident at lower dynamic levels and contributes to the overall tonal character of the various kinds of brass instrument. This paper defines a brassiness potential parameter derived from the bore geometries of brass instruments. The correlation of the brassiness potential parameter with spectral enrichment as measured by the spectral centroid of the radiated sound is examined in playing tests using musicians, experiments using sine-wave excitation of instruments, and simulations using a computational tool. The complementary effects of absolute bore size on spectral enrichment are investigated using sine-wave excitation of cylindrical tubes and of instruments, establishing the existence of a trade-off between bore size and brassiness potential. The utility of the brassiness potential parameter in characterizing labrosones is established, and the graphical presentation of results in a 2D space defined by bore size and brassiness potential demonstrated. PMID:22280689

  1. Simulations and Characteristics of Large Solar Events Propagating Throughout the Heliosphere and Beyond (Invited)

    NASA Astrophysics Data System (ADS)

    Intriligator, D. S.; Sun, W.; Detman, T. R.; Dryer, Ph D., M.; Intriligator, J.; Deehr, C. S.; Webber, W. R.; Gloeckler, G.; Miller, W. D.

    2015-12-01

    Large solar events can have severe adverse global impacts at Earth. These solar events also can propagate throughout the heliopshere and into the interstellar medium. We focus on the July 2012 and Halloween 2003 solar events. We simulate these events starting from the vicinity of the Sun at 2.5 Rs. We compare our three dimensional (3D) time-dependent simulations to available spacecraft (s/c) observations at 1 AU and beyond. Based on the comparisons of the predictions from our simulations with in-situ measurements we find that the effects of these large solar events can be observed in the outer heliosphere, the heliosheath, and even into the interstellar medium. We use two simulation models. The HAFSS (HAF Source Surface) model is a kinematic model. HHMS-PI (Hybrid Heliospheric Modeling System with Pickup protons) is a numerical magnetohydrodynamic solar wind (SW) simulation model. Both HHMS-PI and HAFSS are ideally suited for these analyses since starting at 2.5 Rs from the Sun they model the slowly evolving background SW and the impulsive, time-dependent events associated with solar activity. Our models naturally reproduce dynamic 3D spatially asymmetric effects observed throughout the heliosphere. Pre-existing SW background conditions have a strong influence on the propagation of shock waves from solar events. Time-dependence is a crucial aspect of interpreting s/c data. We show comparisons of our simulation results with STEREO A, ACE, Ulysses, and Voyager s/c observations.

  2. Characteristics of the SAR distributions in a head exposed to electromagnetic fields radiated by a hand-held portable radio

    SciTech Connect

    Watanabe, Soichi; Taki, Masao; Nojima, Toshio; Fujiwara, Osamu

    1996-10-01

    This paper presents characteristics of the specific absorption rate (SAR) distributions calculated by the finite-difference time-domain (FDTD) method using a heterogeneous and realistic head model and a realistic hand-held portable radio model. The difference between the SAR distributions produced by a 1/4-wavelength monopole antenna and those produced by a 1/2-wavelength dipole antenna is investigated. The dependence of the maximum local SAR on the distance d{sub a} between the auricle of the head and the antenna of the radio is evaluated. It is shown that the maximum local SAR decreases as the antenna length extends from 1/4 to 1/2 of the wavelength. The maximum local SAR`s in a head model with auricles are larger than those in one without auricles. The dependence of the SAR on the electrical inhomogeneity of the tissues in the head model is not significant with regard to the surface distribution and the maximum local SAR when the radio is near the head. It is also shown that the maximum local SAR is not strongly dependent on the position of the hand when the hand does not shade the antenna. Furthermore, the SAR`s experimentally measured in a homogeneous head phantom are compared with the calculated SAR`s.

  3. Effect of Radio Frequency Plasma Treatment on Evaporation Behavior and Characteristics of RuCr Alloy Powder.

    PubMed

    Jung, Taek-Kyun; Lim, Sung-Chul; Kwon, Hyouk-Chon; Park, Soo-Keun; Hon, Jong-Whan; Jung, Seung-Boo; Baek, Jong-Jin; Jang, Kyu-Bong

    2015-11-01

    The evaporation behavior and characteristics of jet milled RuCr alloy powders processed by radio-frequency (RF) plasma treatment were evaluated during this study. RF plasma treatment was found to be effective in eliminating internal pores and in manufacturing spherical powder. However, the RF plasma treatment resulted in the evaporation of Cr. The degree of evaporation of Cr was significantly affected by the powder feeding rate. As a result, it was found that controlling the torch power was more effective than controlling the powder feeding rate for obtaining desirable RuCr alloy powders. PMID:26726528

  4. Propagation characteristics of lightning stepped leaders developing in charge regions and descending out of charge regions

    NASA Astrophysics Data System (ADS)

    Yoshida, Satoru; Akita, Manabu; Morimoto, Takeshi; Ushio, Tomoo; Kawasaki, Zen

    2012-03-01

    We conducted lightning observation campaign using VHF broadband digital interferometers (DITFs) in Darwin, Australia. We divided a stepped leader into two parts; the first part is a stepped leader propagating almost horizontally in the charge regions (ICR) of thunderclouds and the last part is a stepped leader descending out of the charge region (OCR). The VHF observation indicates that the channels of the stepped leaders OCR located by the DITFs were clearly broader than the channels of the stepped leaders ICR and dart leaders, indicating that the stepped leaders OCR descended in a heavily branched manner. High speed video camera images of a CG flash support the idea that stepped leaders OCR descend in a heavily branched manner.

  5. Propagation characteristics of Pc 3 compressional waves generated at the dayside magnetopause

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Comfort, R. H.; Musielak, Z. E.; Moore, T. E.; Gallagher, D. L.; Green, J. L.

    1993-01-01

    New, 3D ray tracing of Pc 3 compressional waves from the magnetosheath reveals that the magnetosphere can present a major propagation barrier to the penetration of these waves to the plasmasphere. This barrier is the ion-ion cutoff between the He(+) and O(+) gyroresonances. As a result of the frequency-dependent location of this cutoff, the magnetosphere behaves like a filter for Pc 3 compressional waves, and only low-frequency components of Pc 3 compressional waves can penetrate to inner magnetosphere. Results are in agreement with previous satellite observations. This 'filter action' strongly depends on the relative concentration of He(+) and O(+) and is therefore sensitive to solar and magnetic activity. Ray-tracing results are based on a cold plasma dispersion relation, a semiempirical model of plasma density, and the Mead-Fairfield (1975) magnetic field model.

  6. Propagation characteristics of Pc 3 compressional waves generated at the dayside magnetopause

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Comfort, R. H.; Musielak, Z. E.; Moore, T. E.; Gallagher, D. L.; Green, J. L.

    1993-09-01

    New, 3D ray tracing of Pc 3 compressional waves from the magnetosheath reveals that the magnetosphere can present a major propagation barrier to the penetration of these waves to the plasmasphere. This barrier is the ion-ion cutoff between the He(+) and O(+) gyroresonances. As a result of the frequency-dependent location of this cutoff, the magnetosphere behaves like a filter for Pc 3 compressional waves, and only low-frequency components of Pc 3 compressional waves can penetrate to inner magnetosphere. Results are in agreement with previous satellite observations. This 'filter action' strongly depends on the relative concentration of He(+) and O(+) and is therefore sensitive to solar and magnetic activity. Ray-tracing results are based on a cold plasma dispersion relation, a semiempirical model of plasma density, and the Mead-Fairfield (1975) magnetic field model.

  7. Source and Propagation Characteristics of Kilometric Continuum Observed with Multiple Satellites

    NASA Technical Reports Server (NTRS)

    Hashimoto, K.; Anderson, R. R.; Green, J. L.; Matsumoto, H.

    2004-01-01

    Kilometric continuum radiation was first identified with the GEOTAIL Plasma Wave Instrument (PWI) as the high frequency extension of escaping continuum emissions in the frequency range from 100 kHz to 800 kHz. It consists of from a few to many narrow-band emissions. It was observed mainly near the magnetic equator, and its source was expected to be inside of the plasmapause and the topside equatorial region. Recently, data from the IMAGE Radio Plasma Imager (RPI) and Extreme ultraviolet (EUV) experiments have been used to show that kilometric continuum is generated at the plasmapause, in or near the magnetic equator, within a notch region, and have confirmed the expectation. Data from the CRRES PWI have also identified other sources from the equatorial density irregularities. An example of CRRES observations reveals a possibility that kilometric continuum has been radiated as a wide beam emission. The IMAGE and GEOTAIL simultaneous observations are not like the previous observations since they show it has been observed to have a very broad emission cone. It could also be the highest frequency continuum enhancement so far observed since it is associated with a high energy electron injection event.

  8. Space Telecommunications Radio System STRS Cognitive Radio

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  9. Characteristics in the jet region of helium radio-frequency atmospheric-pressure glow discharge with array generators

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Bin; Nie, Qiu-Yue

    2015-09-01

    The two-dimensional spatially extended atmospheric plasma arrays by many parallel radio-frequency glow discharge plasma jets packed densely, represent a feature option of large-scale low-temperature atmospheric plasma technologies with distinct capability of directed delivery of reactive species and good insusceptibility to sample variations. However, it is still a challenge to form plasma jet with large area of uniform active species on a downstream substrate due to the complex interactions between individual jets. This paper proposes to numerically study the strategy and mechanism of control/modulation for the array discharge to produce two-dimensional plasma uniformity in the downstream working area. In this work, a two dimensional fluid model is employed to investigate the characteristics in the jet region of helium radio-frequency atmospheric-pressure glow discharge (RF APGD) with array generators. The influences of upstream discharge characteristics, gas flow and their cooperative effects on the distribution of species densities, gas temperatures and the uniformity of active species in the material treating area is studied, and the essential strategy for the modulation method is acquired. The results will be significant for deep understanding of coupling behaviors of multiple plasma plumes in the RF APGD array and applications of the technology.

  10. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals.

    PubMed

    Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg

    2015-01-01

    Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters. PMID:26214849

  11. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals

    PubMed Central

    Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg

    2015-01-01

    Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters. PMID:26214849

  12. The Propagation of Radio Waves

    NASA Astrophysics Data System (ADS)

    Budden, K. G.

    1988-08-01

    Preface; 1. The ionosphere and magnetosphere; 2. The basic equations; 3. The constitutive relations; 4. Magnetoionic theory I. Polarisation and refractive index; 5. Magnetoionic theory II. Rays and group velocity; 6. Stratified media. The booker quartic; 7. Slowly varying medium. The W.K.B. solution; 8. The Airy integral function and the Stokes phenomenon; 9. Integration by steepest descents; 10. Ray tracing in a loss-free stratified medium; 11. Reflection and transmission coefficients; 12. Ray theory results for isotropic ionosphere; 13. Ray theory results for anisotropic plasmas; 14. General ray tracing; 15. Full wave solutions for isotropic ionosphere; 16. Coupled wave eqations; 17. Coalescence of couling points; 18. Full wave methods for anisotropic stratified media; 19. Applications of full wave methods; Answers to problems; Bibliography; Index of definitions of the more important symbols; Subject and name index.

  13. Characteristics of rainfall queues for rain attenuation studies over radio links at subtropical and equatorial Africa

    NASA Astrophysics Data System (ADS)

    Alonge, Akintunde A.; Afullo, Thomas J.

    2014-08-01

    Attenuation due to precipitation remains an important design factor in the future deployment of terrestrial and earth-space communication radio links. Largely, there are concerted efforts to understand the dynamics of precipitation in attenuation occurrence at subtropical, tropical, and equatorial region of Africa. In this deliberate approach, rainfall spikes pertaining to rain cells are conceptualized as distinct rain spike traffic over radio links, by applying queueing theory concepts. The queue distributions at Durban (29°52'S, 30°58'E) and Butare (2°36'S, 29°44'E)—respectively, of subtropical and equatorial climates—are investigated from distrometer measurements. The data sets at both sites are observed over four rain regimes: drizzle, widespread, shower, and thunderstorm. The queue parameters of service time and inter-arrival of rain spikes traffic at both regions are found to be Erlang-k distributed (Ek) and exponentially distributed (M), respectively. It is established that the appearance of rain rates over radio links invariably follows a First Come, First Served (FCFS), multi-server (s), infinite queue, and semi-Markovian process, designated as M/Ek/s/∞/FCFS discipline. Modeled queue parameters at both regions are found to vary significantly over different regimes. However, these queue parameters over the entire data set suggest similar queue patterns at both sites. More importantly, power law relationships describing other queue-related parameters are formulated. The paper concludes by demonstrating an application of queueing theory for rainfall synthesis. The proposed technique will provide an alternative method of estimating rain cell sizes and rain attenuation over satellite and terrestrial links.

  14. Physics of radio emission in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Petrova, S. A.

    2016-02-01

    > Propagation of radio emission in a pulsar magnetosphere is reviewed. The effects of polarization transfer, induced scattering and reprocessing to high energies are analysed with a special emphasis on the implications for the gamma-ray pulsars. The possibilities of the pulsar plasma diagnostics based on the observed radio pulse characteristics are also outlined. As an example, the plasma number density profiles obtained from the polarization data for the Vela and the gamma-ray millisecond pulsars J1446-4701, J1939+2134 and J1744-1134 are presented. The number densities derived tend to be the highest/lowest when the radio pulse leads/lags the gamma-ray peak. In the PSR J1939+2134, the plasma density profiles for the main pulse and interpulse appear to fit exactly the same curve, testifying to the origin of both radio components above the same magnetic pole and their propagation through the same plasma flow in opposite directions. The millisecond radio pulse components exhibiting flat position angle curves are suggested to result from the induced scattering of the main pulse by the same particles that generate gamma rays. This is believed to underlie the wide-sense radio/gamma-ray correlation in the millisecond pulsars. The radio quietness of young gamma-ray pulsars is attributed to resonant absorption, whereas the radio loudness to the radio beam escape through the periphery of the open field line tube.

  15. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  16. NASA Propagation Studies Website

    NASA Technical Reports Server (NTRS)

    Angkasa, Krisjani S.

    1996-01-01

    The NASA propagation studies objective is to enable the development of new commercial satellite communication systems and services by providing timely data and models about propagation of satellite radio signals through the intervening environment and to support NASA missions. In partnership with industry and academia, the program leverages unique NASA assets (currently Advanced Communications Technology Satellite) to obtain propagation data. The findings of the study are disseminated through referred journals, NASA reference publications, workshops, electronic media, and direct interface with industry.

  17. Propagation characteristics of a focused laser beam in a strontium barium niobate photorefractive crystal under reverse external electric field.

    PubMed

    Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J

    2014-10-01

    The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field. PMID:25322227

  18. Investigation on broadband propagation characteristic of terahertz electromagnetic wave in anisotropic magnetized plasma in frequency and time domain

    SciTech Connect

    Tian, Yuan; Han, Yiping; Ai, Xia; Liu, Xiuxiang

    2014-12-15

    In this paper, we investigate the propagation of terahertz (THz) electromagnetic wave in an anisotropic magnetized plasma by JE convolution-finite difference time domain method. The anisotropic characteristic of the plasma, which leads to right-hand circularly polarized (RCP) and right-hand circularly polarized (LCP) waves, has been taken into account. The interaction between electromagnetic waves and magnetized plasma is illustrated by reflection and transmission coefficients for both RCP and LCP THz waves. The effects of both the magnetized plasma thickness and the external magnetized field are analyzed and numerical results demonstrate that the two factors could influence the THz wave greatly. It is worthy to note that besides the reflection and transmission coefficients in the frequency domain, the waveform of the electric field in the time domain varying with thicknesses and external magnetic fields for different polarized direction has been studied.

  19. Monte Carlo simulation for temporal characteristics of pulse laser propagation in discrete random medium

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Yuan, Hongwu; Mei, Haiping; Zhang, Qianghua

    2013-08-01

    Study the laser pulses transmission time characteristics in discrete random medium using the Monte Carlo method. Firstly, the medium optical parameters have been given by OPAC software. Then, create a Monte Carlo model and Monte Carlo simulation of photon transport behavior of a large number of tracking, statistics obtain the photon average arrival time and average pulse broadening case, the calculation result with calculation results of two-frequency mutual coherence function are compared, the results are very consistent. Finally, medium impulse response function given by polynomial fitting method can be used to correct discrete random medium inter-symbol interference in optical communications and reduce the rate of system error.

  20. Analytical and experimental procedures for determining propagation characteristics of millimeter-wave gallium arsenide microstrip lines

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    1989-01-01

    In this report, a thorough analytical procedure is developed for evaluating the frequency-dependent loss characteristics and effective permittivity of microstrip lines. The technique is based on the measured reflection coefficient of microstrip resonator pairs. Experimental data, including quality factor Q, effective relative permittivity, and fringing for 50-omega lines on gallium arsenide (GaAs) from 26.5 to 40.0 GHz are presented. The effects of an imperfect open circuit, coupling losses, and loading of the resonant frequency are considered. A cosine-tapered ridge-guide text fixture is described. It was found to be well suited to the device characterization.

  1. New methods for calculating short-wave radio paths

    NASA Astrophysics Data System (ADS)

    Popov, A. V.; Tsedilina, E. E.; Cherkashin, Iu. N.

    Recent research on the calculation of short-wave paths at IZMIRAN (the Soviet Institute for the Study of Terrestrial Magnetism, the Ionosphere, and the Propagation of Radio Waves) is reviewed. Particular attention is given to: (1) the development of approximate analytical methods for ray-tracing calculations and for determining the geometrical-optics characteristics of a radio signal in a horizontally irregular ionosphere; (2) investigations of the long-range and short-wave propagation of decametric waves; and (3) the development of a parabolic-equation method for considering diffraction and scattering in a medium with regular and random irregularities.

  2. Lunar Surface Propagation Modeling and Effects on Communications

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2008-01-01

    This paper analyzes the lunar terrain effects on the signal propagation of the planned NASA lunar wireless communication and sensor systems. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate that the terrain geometry, antenna location, and lunar surface material are important factors determining the propagation characteristics of the lunar wireless communication systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, operating frequency, and surface material. The analysis results from this paper are important for the lunar communication link margin analysis in determining the limits on the reliable communication range and radio frequency coverage performance at planned lunar base worksites. Key Words lunar, multipath, path loss, propagation, wireless.

  3. Atmospheric Propagation

    NASA Technical Reports Server (NTRS)

    Embleton, Tony F. W.; Daigle, Gilles A.

    1991-01-01

    Reviewed here is the current state of knowledge with respect to each basic mechanism of sound propagation in the atmosphere and how each mechanism changes the spectral or temporal characteristics of the sound received at a distance from the source. Some of the basic processes affecting sound wave propagation which are present in any situation are discussed. They are geometrical spreading, molecular absorption, and turbulent scattering. In geometrical spreading, sound levels decrease with increasing distance from the source; there is no frequency dependence. In molecular absorption, sound energy is converted into heat as the sound wave propagates through the air; there is a strong dependence on frequency. In turbulent scattering, local variations in wind velocity and temperature induce fluctuations in phase and amplitude of the sound waves as they propagate through an inhomogeneous medium; there is a moderate dependence on frequency.

  4. Flux pinning characteristics in cylindrical ingot niobium used in superconducting radio frequency cavity fabrication

    SciTech Connect

    Dhavale Ashavai, Pashupati Dhakal, Anatolii A Polyanskii, Gianluigi Ciovati

    2012-04-01

    We present the results of from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low temperature baking as they are typically applied to SRF cavities. The magnetization data were fitted using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FG samples which implies a lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.

  5. Observational Characteristics of Langmuir Turbulence Associated with Solar Type III Radio Bursts

    NASA Astrophysics Data System (ADS)

    Golla, T.; MacDowall, R. J.

    2015-12-01

    Solar flares present the most dramatic energy releases from the Sun. The solar flares accelerate electrons, which form bump-on-tail distributions, and excite electrostatic waves called Langmuir waves, which are subsequently converted into escaping radiation at the fundamental and second harmonic of the electron plasma frequency by some nonlinear processes. These radio emissions are called the type III radio bursts. The sources of these bursts represent natural laboratories of beam-plasma systems. The WAVES experiment on the STEREO spacecraft contains an improved Time Domain Sampler (TDS), improved over that of all similar high time resolution receivers flown in earlier spacecraft. It is primarily intended for the study of Langmuir waves. These in situ high time resolution wave measurements enable us to identify and understand the physical processes associated with beam-plasma systems, as well as for conversion of Langmuir waves into escaping radiation at the fundamental and second harmonic of the electron plasma frequency. The waveforms captured by the TDS usually contain a variety of distortions caused by various nonlinear processes. The normalized peak intensities, wave numbers and spectral widths of these wave packets determine the nonlinear processes, which control the evolution of these wave packets. We have analyzed the in situ high time resolution measurements of Langmuir wave packets and determined their three dimensional relative peak intensities, spectral components and spectral widths. Using the frequency drifts of the type III bursts, we have estimated the velocities of the electron beams which in turn yielded the corresponding wave numbers. We will present the distributions of these important physical quantities and their implications for the theoretical models.

  6. Signatures and Characteristics of Internal Gravity Waves in the Venus' and Mars' Atmospheres as Revealed by the Radio Occultation Temperature Data Analysis

    NASA Astrophysics Data System (ADS)

    Gubenko, Vladimir; Pavelyev, Alexander; Andreev, Vitali; Salimzyanov, Rishat; Pavelyev, Alexey

    2012-07-01

    It is well known that internal gravity waves (IGWs) affect the structure and mean circulation of the Earth' middle and upper atmosphere by transporting energy and horizontal momentum upward from the lower atmosphere. The IGWs modulate the background atmospheric structure, producing a periodic pattern of spatial and temporal variations in the wind velocity, temperature and density. Similar effects are anticipated for the Venus and Mars since IGWs are a characteristic of stably stratified atmosphere. For instance, Yakovlev et al. (1991) and Gubenko et al. (2008a) used the radio occultation (RO) data from Venera 15 and 16 missions to investigate the thermal structure and layering of the Venus' middle atmosphere. They noted that a wavelike periodic structure commonly appears in retrieved vertical profiles at altitudes above 60 km in the atmosphere where the static stability is large. Through comparisons between Magellan RO observations in the Venus' atmosphere, Hinson and Jenkins (1995) have demonstrated that small scale variations in retrieved temperature profiles at altitudes from 60 to 90 km are caused by a spectrum of vertical propagating IGWs. Temperature profiles from the Mars Global Surveyor (MGS) measurements reveal vertical wavelike structures assumed to be atmospheric IGWs in the Mars' lower atmosphere (Creasey et al., 2006). The very large IGW amplitudes inferred from MGS RO data imply a very significant role for IGWs in the atmospheric dynamics of Mars as well. There is one general problem inherent to all measurements of IGWs. Observed wavelike variations may alternatively be caused by the IGWs, turbulence or persistent layers in the atmosphere, and it is necessary to have an IGW identification criterion for the correct interpretation of obtained results. In this context, we have developed an original method for the determination of internal gravity wave parameters from a single vertical temperature profile measurement in a planetary atmosphere (Gubenko et

  7. Characteristics of vibrational wave propagation and attenuation in submarine fluid-filled pipelines

    NASA Astrophysics Data System (ADS)

    Yan, Jin; Zhang, Juan

    2015-04-01

    As an important part of lifeline engineering in the development and utilization of marine resources, the submarine fluid-filled pipeline is a complex coupling system which is subjected to both internal and external flow fields. By utilizing Kennard's shell equations and combining with Helmholtz equations of flow field, the coupling equations of submarine fluid-filled pipeline for n=0 axisymmetrical wave motion are set up. Analytical expressions of wave speed are obtained for both s=1 and s=2 waves, which correspond to a fluid-dominated wave and an axial shell wave, respectively. The numerical results for wave speed and wave attenuation are obtained and discussed subsequently. It shows that the frequency depends on phase velocity, and the attenuation of this mode depends strongly on material parameters of the pipe and the internal and the external fluid fields. The characteristics of PVC pipe are studied for a comparison. The effects of shell thickness/radius ratio and density of the contained fluid on the model are also discussed. The study provides a theoretical basis and helps to accurately predict the situation of submarine pipelines, which also has practical application prospect in the field of pipeline leakage detection.

  8. The dispersion characteristics of the waves propagating in a spinning single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Chan, K. T.; Zhao, Yapu

    2011-10-01

    As the nano-motor becomes a mechanical reality, its prototype can be envisaged as nano-sized rotating machinery at a situation, albeit for different purposes, like that in the first half of the 20th century during which rotor dynamics has contributed to boosting machine power capacity. Accordingly, we take the benefit of hindsight to develop a classical framework of vibration analysis. Essentially, the equations of motion are formulated to cope with both the special carbon-nanotube properties and the first author's previously developed spinning beam formalism, establishing a model satisfactorily verified by some available molecular dynamics (MD) data and classical spinning beam results extracted from the literature. The model is inexpensive based on continuum mechanics as an alternative to the less-flexible MD method for simulating wave motion of the spinning single-walled carbon nanotube, yielding several interesting phenomena, including the fall-off and splitting of the wave characteristic curves and the unexpected gyroscopic phase property. Potential applications are proposed.

  9. Determination of the time delay in the case of two-path propagation on the basis of the attenuation characteristics for two adjacent frequencies

    NASA Technical Reports Server (NTRS)

    Gilroi, H. G.

    1979-01-01

    Pronounced fading occurring in the line of sight radio links at frequencies below 10 GHz can be traced to the effects of multipath propagation. Modulation disturbances depend on travel time differences between the direct wave and the wave which is reflected at atmospheric layers. A method described for the determination of the time delay is based on an indirect approach which utilizes the difference in fading at various frequencies. The method was employed in measurements involving a distance of 181 km. The results obtained in the measurement are discussed.

  10. Asymptotic limits of some models for sound propagation in porous media and the assignment of the pore characteristic lengths.

    PubMed

    Horoshenkov, Kirill V; Groby, Jean-Philippe; Dazel, Olivier

    2016-05-01

    Modeling of sound propagation in porous media requires the knowledge of several intrinsic material parameters, some of which are difficult or impossible to measure directly, particularly in the case of a porous medium which is composed of pores with a wide range of scales and random interconnections. Four particular parameters which are rarely measured non-acoustically, but used extensively in a number of acoustical models, are the viscous and thermal characteristic lengths, thermal permeability, and Pride parameter. The main purpose of this work is to show how these parameters relate to the pore size distribution which is a routine characteristic measured non-acoustically. This is achieved through the analysis of the asymptotic behavior of four analytical models which have been developed previously to predict the dynamic density and/or compressibility of the equivalent fluid in a porous medium. In this work the models proposed by Johnson, Koplik, and Dashn [J. Fluid Mech. 176, 379-402 (1987)], Champoux and Allard [J. Appl. Phys. 70(4), 1975-1979 (1991)], Pride, Morgan, and Gangi [Phys. Rev. B 47, 4964-4978 (1993)], and Horoshenkov, Attenborough, and Chandler-Wilde [J. Acoust. Soc. Am. 104, 1198-1209 (1998)] are compared. The findings are then used to compare the behavior of the complex dynamic density and compressibility of the fluid in a material pore with uniform and variable cross-sections. PMID:27250142

  11. Theoretical investigation of surface acoustic wave propagation characteristics in periodic (AlN/ZnO)N /diamond multilayer structures

    NASA Astrophysics Data System (ADS)

    Qian, Lirong; Li, Cuiping; Li, Mingji; Wang, Fang; Yang, Baohe

    2014-11-01

    Propagation characteristics of surface acoustic wave (SAW) in periodic (AlN/ZnO)N/diamond multilayer structures were theoretically investigated using effective permittivity method. The phase velocity Vp, electromechanical coupling coefficient K2, and temperature coefficient of frequency (TCF) of the Sezawa mode are analyzed for different thicknesses-to-wavelength H/λ, thickness ratios of AlN to ZnO Rh, and periods of alternating ZnO and AlN layers N. Results show that, comparing with AlN/ZnO/diamond multilayer structure, the periodic (AlN/ZnO)N/diamond multilayer structure (N ≥ 2) shows excellent electromechanical coupling and temperature stable characteristics with significantly improved K2 and TCF. The largest coupling coefficient of 3.0% associated with a phase velocity of 5726 m/s and a TCF of -29.2 ppm/°C can be reached for Rh = 0.2 and N = 2. For a low TCF of -24.4 ppm/°C, a large coupling coefficient of 2.0% associated with a phase velocity of 7058 m/s can be obtained for Rh = 1.0 and N = 5. The simulated results can be used to design the low loss and good temperature stability SAW devices of gigahertz-band application.

  12. Evaluation of Wave Propagation Properties during a True-Triaxial Rock Fracture Experiment using Acoustic Emission Frequency Characteristics

    NASA Astrophysics Data System (ADS)

    Goodfellow, S. D.; Ghofrani Tabari, M.; Nasseri, M. B.; Young, R.

    2013-12-01

    A true-triaxial deformation experiment was conducted to study the evolution of wave propagation properties by using frequency characteristics of AE waveforms to diagnose the state of fracturing in a sample of sandstone. Changes in waveform frequency content has been interpreted as either the generation of progressively larger fractures or the relative attenuation of high-frequency wave components as a result of micro-crack formation. A cubic sample of Fontainebleau sandstone was initially loaded to a stress state of σ1 = σ2 = 35 MPa, σ3 = 5 MPa at which point σ1¬ was increased until failure. Acoustic emission (AE) activity was monitored by 18 PZT transducers, three embedded in each platen. The sensor amplitude response spectrum was determined by following an absolute source calibration procedure and showed a relatively constant sensitivity in the frequency range between 20 kHz and 1200 kHz. Amplified waveforms were continuously recorded at a sampling rate of 10 MHz and 12-bit resolution. Continuous acoustic emission waveforms were harvested to extract discrete events. Using a time-varying transverse isotropic velocity model, 48,502 events were locatable inside the sample volume. Prior to peak-stress, AE activity was associated with stable quasi-static growth of fractures coplanar with σ1 and σ2 located near the platen boundaries. In the post peak-stress regime, fracture growth displays unstable ¬dynamic propagation. Analysis of waveform frequency characteristics was limited to the pre peak-stress regime. Analysis of AE frequency characteristics was conducted on all 48,502 located AE events; each event file containing 18 waveforms of varied quality. If the signal to noise ratio was greater than 5, the waveforms power spectrum was estimated and the source-receiver raypath vector was calculated. The power spectrum of each waveform was divided into three frequency bands (Low: 100 - 300 kHz, Medium: 300 - 600 kHz and High: 600 - 1000 kHz) and the power in each

  13. Shallow structure and surface wave propagation characteristics of the Juan de Fuca plate from seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shen, W.; Ritzwoller, M. H.

    2013-12-01

    Ambient noise cross-correlation analysis has been widely used to investigate the continental lithosphere, but the method has been applied much less to study the oceanic lithosphere due to the relative shortage of continuous ocean bottom seismic measurements. The Cascadia Initiative experiment possesses a total of 62 ocean bottom seismometers that spans much of the Juan de Fuca plate and provides data to investigate both the structure and evolution of the oceanic lithosphere near the Juan De Fuca ridge and the characteristics of surface waves and overtones propagating within the oceanic lithosphere. We produce ambient noise cross correlations for the first year of Cascadia OBS data for both the vertical and the horizontal components. The observed empirical Green's functions are first used to test the hypothesis that the near-ridge phase speeds can be described by a simple age-dependent formula, which we invert for an age-dependent shear wave speed model (Figure 1a). A shallow low shear velocity zone with a velocity minimum at about 20km depth is observed in Vsv and the lithosphere thickens with age faster than predicted by a half-space conductive cooling model (Figure 1b). To further understand the oceanic surface waves, we analyze the first higher mode Rayleigh waves that propagate within the Juan De Fuca plate and emerge on the North American continent and investigate the existence of radial anisotropy beneath the ridge by exploring the Rayleigh and Love wave Green's functions. The results of the study are summarized with the age-dependent shear velocity model along with some preliminary observations of both Love wave and higher mode Rayleigh waves.

  14. Propagation characteristics of atmospheric-pressure He+O{sub 2} plasmas inside a simulated endoscope channel

    SciTech Connect

    Wang, S.; Chen, Z. Y.; Wang, X. H. Li, D.; Yang, A. J.; Liu, D. X.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2015-11-28

    Cold atmospheric-pressure plasmas have potential to be used for endoscope sterilization. In this study, a long quartz tube was used as the simulated endoscope channel, and an array of electrodes was warped one by one along the tube. Plasmas were generated in the inner channel of the tube, and their propagation characteristics in He+O{sub 2} feedstock gases were studied as a function of the oxygen concentration. It is found that each of the plasmas originates at the edge of an instantaneous cathode, and then it propagates bidirectionally. Interestingly, a plasma head with bright spots is formed in the hollow instantaneous cathode and moves towards its center part, and a plasma tail expands through the electrode gap and then forms a swallow tail in the instantaneous anode. The plasmas are in good axisymmetry when [O{sub 2}] ≤ 0.3%, but not for [O{sub 2}] ≥ 1%, and even behave in a stochastic manner when [O{sub 2}] = 3%. The antibacterial agents are charged species and reactive oxygen species, so their wall fluxes represent the “plasma dosage” for the sterilization. Such fluxes mainly act on the inner wall in the hollow electrode rather than that in the electrode gap, and they get to the maximum efficiency when the oxygen concentration is around 0.3%. It is estimated that one can reduce the electrode gap and enlarge the electrode width to achieve more homogenous and efficient antibacterial effect, which have benefits for sterilization applications.

  15. Polarization and propagation characteristics of switchable first-order azimuthally asymmetric beam generated in dual-mode fiber.

    PubMed

    Khan, Saba N; Chatterjee, Sudip K; Chaudhuri, Partha Roy

    2015-02-20

    We report here the controlled generation of a linearly polarized first-order azimuthally asymmetric beam (F-AAB) in a dual-mode fiber (DMF) by appropriate superposition of selectively excited zeroth-order vector modes that are doughnut-shaped azimuthally symmetric beams (D-ASBs). We first demonstrate continually switching polarization mode structures having an identical two-lobe intensity profile (i.e., intra-F-AAB conversion). Then, under a distinct launching state, we generate mode structures progressively toggling between the doughnut-shaped profile and two-lobe pattern having dissimilar polarization orientations (i.e., F-AAB to D-ASB conversion). Interestingly, a decentralized elliptical Gaussian beam possessing homogenous spatial polarization is obtained by enhancing the contribution of the fundamental mode (HE11/LP01) in selectively excited F-AAB. A smoothly varying azimuth of the input beam in this situation resulted in redistribution of transverse energy procuring a unique and exciting unconventional two-grain T-polarized beam having mutually orthogonal state of polarization (SOP). All of the above three were achieved under a given set of launching conditions (tilt/offset) of a Gaussian mode (TEM00) devised with changing SOP of the input beam. A strong modulation in the output beam characteristics was also observed with the variation in propagation distance (for a fixed input SOP) owing to the large difference in propagation constants of the participating modes (LP01 and one of the F-AABs). Finally, this particular study led to a design for a low-cost highly sensitive strain measuring device based on tracking the centroid movement of the output intensity pattern. Each of our experimentally observed intensity/polarization distributions is theoretically mapped on a one-to-one basis considering a linear superposition of appropriately excited LP basis modes of the waveguide toward a complete understanding of the

  16. Analysis of propagation characteristics of flexural wave in honeycomb sandwich panel and design of loudspeaker for radiating inclined sound

    NASA Astrophysics Data System (ADS)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2015-07-01

    A loudspeaker for an auditory guiding system is proposed. This loudspeaker utilizes inclined sound transformed from a flexural wave in a honeycomb sandwich panel. We focused on the fact that the inclined sound propagates extensively with uniform level and direction. Furthermore, sound can be generated without group delay dispersion because the phase velocity of the flexural wave in the sandwich panel becomes constant with increasing frequency. These characteristics can be useful for an auditory guiding system in public spaces since voice-guiding navigation indicates the right direction regardless of position on a pathway. To design the proposed loudspeaker, the behavior of the sandwich panel is predicted using a theoretical equation in which the honeycomb core is assumed as an orthotropic continuum. We calculated the phase velocity dispersion of the flexural wave in the sandwich panel and compared the results obtained using the equation with those of a simulation based on the finite element method and an experiment in order to confirm the applicability of the theoretical equation. It was confirmed that the phase velocities obtained using the theoretical equation and by the simulation were in good agreement with that obtained experimentally. The obtained results suggest that the behavior of the sandwich panel can be predicted using the parameters of the panel. In addition, we designed an optimized honeycomb sandwich panel for radiating inclined sound by calculating the phase velocity characteristics of various panels that have different parameters of core height and cell size using the theoretical equation. Sound radiation from the optimized panel was simulated and compared with that of a homogeneous plate. It was clear that the variance of the radiation angle with varying frequency of the optimized panel was smaller than that of the homogeneous plate. This characteristic of sound radiation with a uniform angle is useful for indicating the destination direction. On

  17. Nanosecond Pulsed Discharge in Water without Bubbles: A Fundamental Study of Initiation, Propagation and Plasma Characteristics

    NASA Astrophysics Data System (ADS)

    Seepersad, Yohan

    The state of plasma is widely known as a gas-phase phenomenon, but plasma in liquids have also received significant attention over the last century. Generating plasma in liquids however is theoretically challenging, and this problem is often overcome via liquid-gas phase transition preceding the actual plasma formation. In this sense, plasma forms in gas bubbles in the liquid. Recent work at the Drexel Plasma Institute has shown that nanosecond pulsed electric fields can initiate plasma in liquids without any initial cavitation phase, at voltages below theoretical direct-ionization thresholds. This unique regime is poorly understood and does not fit into any current descriptive mechanisms. As with all new phenomena, a complete fundamental description is paramount to understanding its usefulness to practical applications. The primary goals of this research were to qualitatively and quantitatively understand the phenomenon of nanosecond pulsed discharge in liquids as a means to characterizing properties that may open up niche application possibilities. Analysis of the plasma was based on experimental results from non-invasive, sub-nanosecond time-resolved optical diagnostics, including direct imaging, transmission imaging (Schlieren and shadow), and optical emission spectroscopy. The physical characteristics of the plasma were studied as a function of variations in the electric field amplitude and polarity, liquid permittivity, and pulse duration. It was found that the plasma size and emission intensity was dependent on the permittivity of the liquid, as well as the voltage polarity, and the structure and dynamics were explained by a 'cold-lightning' mechanism. The under-breakdown dynamics at the liquid-electrode interface were investigated by transmission imaging to provide evidence for a novel mechanism for initiation based on the electrostriction. This mechanism was proposed by collaborators on the project and developed alongside the experimental work in this

  18. 75th anniversary of the N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 25 February 2015)

    NASA Astrophysics Data System (ADS)

    2015-06-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) celebrating the 75th anniversary of the N V Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the RAS (IZMIRAN) was held in the IZMIRAN conference hall on 25 February 2015. The agenda of the session announced on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division contained the following reports: (1) Kuznetsov V D (IZMIRAN, Moscow) "N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, and tomorrow"; (2) Gvishiani A D (Geophysical Center, Moscow) "Studies of the terrestrial magnetic field and the network of Russian magnetic laboratories"; (3) Sokoloff D D (Faculty of Physics, Lomonosov Moscow State University, Moscow) "Magnetic dynamo questions"; (4) Petrukovich A A (Space Research Institute, RAS, Moscow) "Some aspects of magnetosphere-ionosphere relations"; (5) Lukin D S (Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region) "Current problems of ionospheric radio wave propagation"; (6) Safargaleev V V (Polar Geophysical Institute, Kola Scientific Center, RAS, Murmansk), Sergienko T I (Swedish Institute of Space Physics (IRF), Sweden), Kozlovskii A E (Sodankyl \\ddot a Geophysical Observatory, Finland), Safargaleev A V (St. Petersburg State University, St. Petersburg), Kotikov A L (St. Petersburg Branch of IZMIRAN, St. Petersburg) "Magnetic and optical measurements and signatures of reconnection in the cusp and vicinity"; (7) Kuznetsov V D (IZMIRAN, Moscow) "Space solar research: achievements and prospects". Papers written on the basis of oral reports 1, 3, 4, 6, and 7 are given below. • N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, tomorrow, V D Kuznetsov Physics-Uspekhi, 2015

  19. Case studies for solving the Saint-Venant equations using the method of characteristics: pipeline hydraulic transients and discharge propagation

    NASA Astrophysics Data System (ADS)

    Barros, R. M.; Tiago Filho, G. L.; dos Santos, I. F. S.; da Silva, F. G. B.

    2014-03-01

    Hydraulic transients occur during a change from one equilibrium state to another, for example, in flows. The pipeline project should provide the head and discharge in any operating states, e.g., sudden valve opening or closure. Among the various numerical approaches for the calculation of pipeline transients, the method of characteristics (MOC) is advantageous This study aims to present a hydraulic transitory study as MOC applications for solving the Saint- Venant equations in two case studies: 1) in a penstock of a small hydropower system as a simple pipeline in the case of valve-closure in the downstream boundary with a reservoir in the upstream boundary; and 2) for discharge propagation into a channel by velocity and depth of the flow channel along space evaluation. The main data for the first case study consisted of a design head that is 182 meters, a turbine discharge of 13.82 m3/s, a diameter of 4 meters and length pipe (penstock) of 2,152.50 meters. Regarding the second case study, the entry hydrogram was given to a rectangular channel with a width of 6.1 meters, length of 3,048 meters, slope of 0.0016 meters, and exhibited uniform flow with nominal depth of 2.44 meters. The characteristic curve of the discharge in the downstream extremity is Q = 158.(y - 3.25)32. The proposed methodology by Chaudry [5] concerning the development of hydrodynamic models was used. The obtained results for first case study showed that the simulated values for valve pressure while varying turning the valve between 4 and 12 seconds results in maximum values of pressures that oscillated between 219.97mca and 212.39 mca (4s) and 196.42mca and 190.86mca (12s). For the second case study, the values of discharge, velocity, and depth for x=0 and elapsed time of 850s were, respectively, 127.70m3/s, 3.87m/s, and 5.36m. For x=0 and an elapsed time of 1,230s, the values were 87.92m3/s, 4.49m/s, and 3.21m. Therefore, the MOC numerical approach has been confirmed to be useful for several

  20. CONFERENCES AND SYMPOSIA: Seventy years of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation (IZMIRAN) (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 25 November 2009)

    NASA Astrophysics Data System (ADS)

    2010-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 70th anniversary of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) (Troitsk, Moscow region) was held in the conference hall of IZMIRAN on 25 November 2009. The following reports were put on the session agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Gurevich A V (Lebedev Physical Institute RAS, Moscow) "The role of cosmic rays and runaway electron breakdown in atmospheric lightning discharges"; (2) Aleksandrov E B (Ioffe Physical Technical Institute, RAS, St. Petersburg) "Advances in quantum magnetometry for geomagnetic research"; (3) Dorman L I (IZMIRAN, Troitsk, Moscow region, CR & SWC, Israel) "Cosmic ray variations and space weather"; (4) Mareev E A (Institute of Applied Physics, RAS, Nizhnii Novgorod) "Global electric circuit research: achievements and prospects"; (5) Tereshchenko E D, Safargaleev V V (Polar Geophysical Institute, Kola Research Center, RAS, Murmansk) "Geophysical research in Spitsbergen Archipelago: status and prospects"; (6) Gulyaev Yu V, Armand N A, Efimov A I, Matyugov S S, Pavelyev A G, Savich N A, Samoznaev L N, Smirnov V V, Yakovlev O I (Kotel'nikov Institute of Radio Engineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow region) "Results of solar wind and planetary ionosphere research using radiophysical methods"; (7) Kunitsyn V E (Lomonosov Moscow State University, Moscow) "Satellite radio probing and the radio tomography of the ionosphere"; (8) Kuznetsov V D (IZMIRAN, Troitsk, Moscow region) "Space Research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences." Papers based on reports 2-8 are published below. The main contents of report 1 are reproduced in A V Gurevich's review, "Nonlinear effects in the ionosphere" [Phys. Usp. 50

  1. A Study of the Short-Term Stability of Energy Characteristics of the Ionospheric Radio Channel

    NASA Astrophysics Data System (ADS)

    Barabashov, B. G.; Ogar, A. S.; Pelevin, O. Yu.; Radio, L. P.

    2015-04-01

    On the basis of the results of long-term measurements on the calibrated mid-latitude highfrequency paths, it is concluded that the processes responsible for the energy characteristics of the high-frequency wave field have inertial properties. Slow (one-hour) absolute variations in the average signal and effective-noise levels in the daytime and the night-time hours do not exceed 2 .0 dB. Similar variations in the average signal levels in the twilight hours after removal of the trend, which is caused by the diurnal variation in the ionospheric characteristics, are also below 2 .0 dB. Analysis of the time behavior of the relative error-appearance frequency during transmission of the binary sequences with the amplitude manipulation indicates that the above frequency varies in the range 20 -75 % for an hour if the reception results are averaged for 20 min.

  2. Characteristics of tropical cyclones and overshooting from GPS radio occultation data

    NASA Astrophysics Data System (ADS)

    Biondi, Riccardo; Rieckh, Therese; Steiner, Andrea; Kirchengast, Gottfried

    2014-05-01

    Tropical cyclones (TCs) are extreme weather events causing every year huge damages and several deaths. In some countries they are the natural catastrophes accounting for the major economic damages. The thermal structure of TCs gives important information on the cloud top height allowing for a better understanding of the troposphere-stratosphere transport, which is still poorly understood. The measurement of atmospheric parameters (such as temperature, pressure and humidity) with high vertical resolution and accuracy in the upper troposphere and lower stratosphere (UTLS) is difficult especially during severe weather events (e.g TCs). Satellite remote sensing has improved the TC forecast and monitoring accuracy. In the last decade the Global Positioning Systems (GPS) Radio Occultation (RO) technique contributed to improve our knowledge especially at high troposphere altitudes and in remote regions of the globe thanks to the high vertical resolution, avoiding temperature smoothing issues (given by microwave and infrared instruments) in the UTLS and improving the poor temporal resolution and global coverage given by lidars and radars. We selected more than twenty-thousand GPS RO profiles co-located with TC best tracks for the period 2001 to 2012 and computed temperature anomaly profiles relative to a RO background climatology in order to detect TC cloud tops. We characterized the thermal structure for different ocean basins and for different TC intensities, distinguishing between tropical and extra-tropical cases. The analysis shows that all investigated storms have a common feature: they warm the troposphere and cool the UTLS near the cloud top. This behavior is amplified in the extra-tropical areas. Results reveal that the storms' cloud tops in the southern hemisphere basins reach higher altitudes and lower temperatures than in the northern hemisphere basins. We furthermore compared the cloud top height of each profile with the mean tropopause altitude (from the RO

  3. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  4. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    SciTech Connect

    Sun Wenting; Li Guo; Li Heping; Bao Chengyu; Wang Huabo; Zeng Shi; Gao Xing; Luo Huiying

    2007-06-15

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure {alpha}-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  5. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  6. e-POP Radio Science Using Amateur Radio Transmissions

    NASA Astrophysics Data System (ADS)

    Frissell, N. A.; Perry, G. W.; Miller, E. S.; Shovkoplyas, A.; Moses, M. L.; James, H. G.; Yau, A. W.

    2015-12-01

    A major component of the enhanced Polar Outflow Probe (e-POP) Radio Receiver Instrument (RRI) mission is to utilize artificially generated radio emissions to study High Frequency (HF) radio wave propagation in the ionosphere. In the North American and European sectors, communications between amateur radio operators are a persistent and abundant source source of HF transmissions. We present the results of HF radio wave propagation experiments using amateur radio transmissions as an HF source for e-POP RRI. We detail how a distributed and autonomously operated amateur radio network can be leveraged to study HF radio wave propagation as well as the structuring and dynamics of the ionosphere over a large geographic region. In one case, the sudden disappearance of nearly two-dozen amateur radio HF sources located in the midwestern United States was used to detect a enhancement in foF2 in that same region. We compare our results to those from other more conventional radio instruments and models of the ionosphere to demonstrate the scientific merit of incorporating amateur radio networks for radio science at HF.

  7. NASA Propagation Studies Website

    NASA Technical Reports Server (NTRS)

    Angkasa, Krisjani S.

    1996-01-01

    This paper describes an Internet website which provides information to enable the development of new commerical satellite systems and services by providing timely data and models about the propagation of satellite radio signals. In partnership with industry and academia, the program leverages NASA assets, currently the Advanced Communications Technology Satellite (ACTS), to obtain propagation data. The findings of the study are disseminated through refereed journals, NASA reference publications, workshops, electronic media, and direct interface with industry.

  8. Particle model analyses of N2O dilution with He on electrical characteristics of radio-frequency discharges

    NASA Astrophysics Data System (ADS)

    Younis, G.; Yousfi, M.; Despax, B.

    2009-05-01

    The electrical characteristics (voltage, electric field, charged particle densities, dissipated power, particle energy, etc.) are analyzed in the case of low pressure (0.5 and 1 Torr) radio-frequency (rf) discharges in nitrous oxide (N2O)/Helium (He) mixtures. An optimized and validated particle model has been used for these analyses in the case of gradual dilutions of N2O with He buffer gas. A specific care is carried on the power density evolution and variation which show a complex behavior as a function of He proportion (up to 85%). These analyses are based on a microscopic approach enabling one to show the contribution of the different inelastic processes mainly between electrons and respectively N2O and He gases. This approach enables also one to show the discharge region (the positive column or the plasma region) where the power is preferentially dissipated. The power density variation is found to be mainly proportional to the electron density variation. The latter is dependent on the different processes occurring between the charged particles [i.e., electrons, negative ions (O- and NO-), and positive ions (N2O+ and He+)] and the neutral gas mixture (N2O and He). Furthermore, the particle model shows the role of the electron-He collisions on the variation in the electron energy and distribution. This allows more particularly explaining the effects of N2O dilution with He on the dissipated power variation in terms of creation and loss of electrons through collision processes.

  9. The ``Beam Power'' of Classical Double Radio Sources

    NASA Astrophysics Data System (ADS)

    Wan, Lin; Daly, Ruth A.

    1995-12-01

    Powerful extended classical double radio sources are thought to be powered by a highly collimated outflow from an active galactic nucleus (AGN). An important parameter is the beam power or rate at which energy leaves the AGN in the form of a highly collimated outflow and is deposited in the vicinity of the radio hot spot and lobe. This drives a strong shock front into the ambient medium. Important parameters, such as the beam power, may be estimated using the radio properties of the lobe and bridge since these are related to the properties of the shock front. However, this requires detailed multifrequency radio observations of the radio lobes and bridge of the source. There are 2 samples in the published literature with enough radio information to be able to estimate the beam power of very powerful classical double sources; these are the samples of Leahy, Muxlow, and Stephens (1989) and Liu, Pooley, and Riley (1992). Using these samples we were able to estimate beam powers of 14 radio lobes from 8 radio loud quasars, and 27 radio lobes from 14 radio galaxies. The beam powers for these sources will be presented, and differences between radio loud quasars and radio galaxies will be discussed. The relation between the beam power and several quantities such as the radio power, the lobe propagation velocity, the source size, and the source redshift will be presented. The beam power is one of the important ingredients of the characteristic source size that allows classical doubles to be used as a cosmological tool (see the paper of Daly and Guerra at this meeting). The application of the beam power for this purpose will also be discussed.

  10. Photocatalytic characteristic and photodegradation kinetics of toluene using N-doped TiO2 modified by radio frequency plasma.

    PubMed

    Shie, Je-Lueng; Lee, Chiu-Hsuan; Chiou, Chyow-San; Chen, Yi-Hung; Chang, Ching-Yuan

    2014-01-01

    This study investigates the feasibility of applications of the plasma surface modification of photocatalysts and the removal of toluene from indoor environments. N-doped TiO2 is prepared by precipitation methods and calcined using a muffle furnace (MF) and modified by radio frequency plasma (RF) at different temperatures with light sources from a visible light lamp (VLL), a white light-emitting diode (WLED) and an ultraviolet light-emitting diode (UVLED). The operation parameters and influential factors are addressed and prepared for characteristic analysis and photo-decomposition examination. Furthermore, related kinetic models are established and used to simulate the experimental data. The characteristic analysis results show that the RF plasma-calcination method enhanced the Brunauer Emmett Teller surface area of the modified photocatalysts effectively. For the elemental analysis, the mass percentages of N for the RF-modified photocatalyst are larger than those of MF by six times. The aerodynamic diameters of the RF-modifiedphotocatalyst are all smaller than those of MF. Photocatalytic decompositions of toluene are elucidated according to the Langmuir-Hinshelwood model. Decomposition efficiencies (eta) of toluene for RF-calcined methods are all higher than those of commercial TiO2 (P25). Reaction kinetics ofphoto-decomposition reactions using RF-calcined methods with WLED are proposed. A comparison of the simulation results with experimental data is also made and indicates good agreement. All the results provide useful information and design specifications. Thus, this study shows the feasibility and potential use of plasma modification via LED in photocatalysis. PMID:24645445

  11. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators

    SciTech Connect

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru

    2013-09-15

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.

  12. Characteristics of anomalous skin effect and evolution of power absorption regions in a cylindrical radio frequency inductively coupled plasma

    SciTech Connect

    Ding, Z. F.; Sun, B.; Huo, W. G.

    2015-06-15

    In a low-pressure radio-frequency (13.56 MHz), inductively coupled argon plasma generated by a normal cylindrical rf coil, electric field, current density, and absorbed power density is calculated from magnetic field measured with a phase-resolved magnetic probe. The anomalous skin effect (ASE) for the cylindrical rf coil is compared to those previously reported for the planar and re-entrant cylindrical rf coils. Physical reasons for our observed characteristics of ASE are presented. With the increasing discharge power, the size and the number of negative and positive power absorption regions evolve into several distinct patterns. For the low discharge power (at 156.9 W), there is one area of positive and one area of negative power absorption in the radial direction. For the medium discharge power (279 W–683.5 W), there are two areas of negative and two areas of positive power absorption. For the even higher discharge power (above 803.5 W), the number of areas is the same as that of the medium discharge power, but the size of the inner positive and negative power absorption areas is approximately doubled and halved, respectively, while the outer positive and negative power absorption areas slightly shrinks. The evolution of positive and negative power absorption regions is explained as a result of electron thermal diffusion and the energy conversion between rf current and electric field. The spatial decays of electric field and current density are also elucidated by linking them with the positive and negative power absorption pattern.

  13. Wave propagation characteristics of helically orthotropic cylindrical shells and resonance emergence in scattered acoustic field. Part 1. Formulations

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid

    2016-05-01

    The method of wave function expansion is adopted to study the three dimensional scattering of a plane progressive harmonic acoustic wave incident upon an arbitrarily thick-walled helically filament-wound composite cylindrical shell submerged in and filled with compressible ideal fluids. An approximate laminate model in the context of the so-called state-space formulation is employed for the construction of T-matrix solution to solve for the unknown modal scattering coefficients. Considering the nonaxisymmetric wave propagation phenomenon in anisotropic cylindrical components and following the resonance scattering theory which determines the resonance and background scattering fields, the stimulated resonance frequencies of the shell are isolated and classified due to their fundamental mode of excitation, overtone and style of propagation along the cylindrical axis (i.e., clockwise or anticlockwise propagation around the shell) and are identified as the helically circumnavigating waves.

  14. The correlation between the characteristics of seismic wave propagation in Western Caucasus and the geological-tectonic features of the region

    NASA Astrophysics Data System (ADS)

    Kharazova, Yu. V.; Pavlenko, O. V.; Dudinskii, K. A.

    2016-05-01

    The relationship between the characteristics of seismic waves in the Western Caucasus and the geological-tectonic structure of the region is studied for identifying the specificity of seismic propagation in the mountainous regions with a complicated geological structure and forecasting the characteristics of the propagation from the geological and tectonic data. The interpretation is presented for the estimates of the Q-factor of the medium ( Q( f) ~ 55 f 0.9 in the region of Sochi and Q( f) ~ 90 f 0.7 in the region of Anapa), seismic wave enhancement in the upper crustal layers ( A( f) ~ 1), and peak ground acceleration residuals, which were previously determined from the records of the local earthquakes and show the distributions of local variations in the parameters of seismic wave radiation and propagation. The obtained characteristics are interpreted in the context of the up-to-date information about the tectonic, geological, and deep structure of the epicentral zones in the Western Caucasus and neighboring territory of the Black Sea. The discrepancies revealed in the low-frequency behavior of the Q-factor in the vicinities of Sochi and Anapa is accounted for by the spatial scale and character of tectonic dislocations of the rocks in these regions. The local variations in the parameters of seismic radiation and propagation are probably related to the geological features of the region such as the fault structures, including the thrusts, shatter zones, oblique seismic boundaries, variations in the thickness and consolidation of the sedimentary cover, as well as the peculiarities in the structure and material composition of the basement.

  15. Managing Data From Signal-Propagation Experiments

    NASA Technical Reports Server (NTRS)

    Kantak, A. V.

    1989-01-01

    Computer programs generate characteristic plots from amplitudes and phases. Software system enables minicomputer to process data on amplitudes and phases of signals received during experiments in ground-mobile/satellite radio propagation. Takes advantage of file-handling capabilities of UNIX operating system and C programming language. Interacts with user, under whose guidance programs in FORTRAN language generate plots of spectra or other curves of types commonly used to characterize signals. FORTRAN programs used to process file-handling outputs into any of several useful forms.

  16. 3D numerical study of the propagation characteristics of a consequence of coronal mass ejections in a structured ambient solar wind

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Feng, X. S.

    2015-12-01

    CMEs have been identified as a prime causal link between solar activity and large, nonrecurrent geomagnetic storm. In order to improve geomagnetic storm predictions, a careful study of CME's propagation characteristics is important. Here, we analyze and quantitatively study the evolution and propagation characteristics of coronal mass ejections (CMEs) launched at several positions into a structured real ambient solar wind by using a three-dimensional (3D) numerical magnetohydrodynamics (MHD) simulation. The ambient solar wind structure during Carrington rotation 2095 is selected, which is an appropriate around activity minimum and declining phase. The CME is initiated by a simple spherical plasmoid model: a spheromak magnetic structure with high speed, high pressure and high plasma density plasmoid. We present a detailed analysis of the plasma, magnetic field, geoeffectiveness, and composition signatures of these CMEs. Results show that the motion and local appearance of a CME in interplanetary space is strongly affected by its interaction with the background solar wind structure, including its velocity, density, and magnetic structures. The simulations show that the initial launched position substantially affects the IP evolution of the CMEs influencing the propagation velocity, the shape, the trajectory and even the geo-effectiveness

  17. ACTS propagation experiment discussion: Ka-band propagation measurements using the ACTS propagation terminal and the CSU-CHILL and Space Communications Technology Center Florida propagation program

    NASA Technical Reports Server (NTRS)

    Bringi, V. N.; Chandrasekar, V.; Mueller, Eugene A.; Turk, Joseph; Beaver, John; Helmken, Henry F.; Henning, Rudy

    1993-01-01

    Papers on Ka-band propagation measurements using the ACTS propagation terminal and the Colorado State University CHILL multiparameter radar and on Space Communications Technology Center Florida Propagation Program are discussed. Topics covered include: microwave radiative transfer and propagation models; NASA propagation terminal status; ACTS channel characteristics; FAU receive only terminal; FAU terminal status; and propagation testbed.

  18. Light propagation characteristics in photonic crystal fibers with α-power profiles of air hole diameter distributions and their application to fiber collimator

    NASA Astrophysics Data System (ADS)

    Yokota, Hirohisa; Higuchi, Keiichi; Imai, Yoh

    2016-08-01

    Light propagation characteristics in photonic crystal fibers (PCFs) with α-power profiles of air hole diameter distributions were theoretically investigated. It was clarified that the intensity peak of the beam propagating in the PCF with Gaussian beam excitation varied periodically with little power attenuation. It was found that the envelope of the periodic intensity variation depended on α. We theoretically demonstrated that the PCF with the α-power profile of the air hole diameter distribution could be applied to a collimator for a conventional PCF with uniform air holes in Gaussian beam excitation to reduce coupling loss, where a PCF of appropriate length with the α-power air hole diameter distribution was spliced to a conventional PCF. It was also found that the coupling efficiency was higher for a larger α.

  19. Characteristics of a compression wave propagating over porous plate wall in a high-speed railway tunnel

    NASA Astrophysics Data System (ADS)

    Aoki, T.; Yamamoto, J.; Nagatani, K.

    2008-09-01

    A pressure wave is generated ahead of a high-speed train, while entering a tunnel. This pressure wave propagates to the tunnel exit and spouts as a micro-pressure wave, which causes an exploding sound. From the fact that the ballast track tunnel has smaller noise than the slab track tunnel, we have suggested a new inner tunnel model to decrease the noise of the micro-pressure wave, using the ballast effect. Experimental and numerical investigations are carried out to clarify the attenuation and distortion of propagating compression wave over porous plate wall in a model tunnel. Data shows that the strength of the compression wave and a maximum pressure gradient of the compression wave was weakened. These data shows the possibility of the present alleviative method using the porous plate wall in a tunnel.

  20. Characteristics of VLF wave propagation in the Earth's magnetosphere in the presence of an artificial density duct

    NASA Astrophysics Data System (ADS)

    Pasmanik, Dmitry; Demekhov, Andrei

    We study the propagation of VLF waves in the Earth's ionosphere and magnetosphere in the presence of large-scale artificial plasma inhomogeneities which can be created by HF heating facilities like HAARP and ``Sura''. A region with enhanced cold plasma density can be formed due to the action of HF heating. This region is extended along geomagnetic field (up to altitudes of several thousand km) and has rather small size across magnetic field (about 1 degree). The geometric-optical approximation is used to study wave propagation. The plasma density and ion composition are calculated with the use of SAMI2 model, which was modified to take the effect of HF heating into account. We calculate ray trajectories of waves with different initial frequency and wave-normal angles and originating at altitudes of about 100 km in the region near the heating area. The source of such waves could be the lightning discharges, modulated HF heating of the ionosphere, or VLF transmitters. Variation of the wave amplitude along the ray trajectories due to refraction is considered and spatial distribution of wave intensity in the magnetosphere is analyzed. We show that the presence of such a density disturbances can lead to significant changes of wave propagation trajectories, in particular, to efficient guiding of VLF waves in this region. This can result in a drastic increase of the VLF-wave intensity in the density duct. The dependence of wave propagation properties on parameters of heating facility operation regime is considered. We study the variation of the spatial distribution of VLF wave intensity related to the slow evolution of the artificial inhomogeneity during the heating.

  1. Effects of H{sub 2} enrichment on the propagation characteristics of CH{sub 4}-air triple flames

    SciTech Connect

    Briones, Alejandro M.; Aggarwal, Suresh K.; Katta, Viswanath R.

    2008-05-15

    The effects of H{sub 2} enrichment on the propagation of laminar CH{sub 4}-air triple flames in axisymmetric coflowing jets are numerically investigated. A comprehensive, time-dependent computational model, which employs a detailed description of chemistry and transport, is used to simulate the transient ignition and flame propagation phenomena. Flames are ignited in a jet-mixing layer far downstream of the burner. Following ignition, a well-defined triple flame is formed that propagates upstream along the stoichiometric mixture fraction line with a nearly constant displacement velocity. As the flame approaches the burner, it transitions to a double flame, and subsequently to a burner-stabilized nonpremixed flame. Predictions are validated using measurements of the displacement flame velocity. As the H{sub 2} concentration in the fuel blend is increased, the displacement flame velocity and local triple flame speed increase progressively due to the enhanced chemical reactivity, diffusivity, and preferential diffusion caused by H{sub 2} addition. In addition, the flammability limits associated with the triple flames are progressively extended with the increase in H{sub 2} concentration. The flame structure and flame dynamics are also markedly modified by H{sub 2} enrichment, which substantially increases the flame curvature and mixture fraction gradient, as well as the hydrodynamic and curvature-induced stretch near the triple point. For all the H{sub 2}-enriched methane-air flames investigated in this study, there is a negative correlation between flame speed and stretch, with the flame speed decreasing almost linearly with stretch, consistent with previous studies. The H{sub 2} addition also modifies the flame sensitivity to stretch, as it decreases the Markstein number (Ma), implying an increased tendency toward diffusive-thermal instability (i.e. Ma {yields} 0). These results are consistent with the previously reported experimental results for outwardly

  2. Impulsiveness and energetics in solar flares with and without type II radio bursts - A comparison of hard X-ray characteristics for over 2500 solar flares

    NASA Technical Reports Server (NTRS)

    Pearson, Douglas H.; Nelson, Robert; Kojoian, Gabriel; Seal, James

    1989-01-01

    The hard X-ray characteristics of more than 2500 solar flares are used to study the relative size, impulsiveness, and energetics of flares with and without type II radio bursts. A quantitative definition of the hard X-ray impulsiveness is introduced, which may be applied to a large number of events unambiguously. It is found that the flares with type II bursts are generally not significantly larger, more impulsive, or more energetic than those without type II bursts. Also, no evidence is found to suggest a simple classification of the flares as either 'impulsive' or 'gradual'. Because type II bursts are present even in small flares with relatively unimpulsive energy releases, it is concluded that changes in the ambient conditions of the solar atmosphere causing an unusually low Alfven speed may be important in the generation of the shock wave that produces type II radio bursts.

  3. Solar Power Satellite (SPS) pilot beam and communication link subsystem investigation study, phase 1. [ionospheric propagation, radio frequency interference, and microwave transmission

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A preliminary engineering model of ionospheric interactions with the pilot beam was established and used to demonstrate that the dual frequency baseline pilot beam system might not be viable in the presence of an unstable transmission path. Alternate approaches to remove this difficulty are described. Although ionospheric fluctuations will not significantly degrade beam pointing or raise the sidelobe levels, they will reduce transmission efficiency by upwards of 25%. Mitigating strategies to substantially reduce this effect are proposed. Based on the Klystron noise spectrum, the pilot beam transmitter power was determined as a function of frequency offset from the power beam carrier frequency. The RFI from the pilot beam, on the ground and at geosynchronous orbit is shown. Noise levels on the earth's surface due to the SPS are presented as a function of frequency and the number of SPS systems. Analysis of the communication subsystem indicates that a standard telemetry line of 1.544 MB/s would satisfy both voice and data link requirements. Additional links would be required for TV and radio transmissions.

  4. Radio Channel Simulator (RCSM)

    Energy Science and Technology Software Center (ESTSC)

    2007-01-31

    This is a simulation package for making site specific predictions of radio signal strength. The software computes received power at discrete grid points as a function of the transmitter location and propagation environment. It is intended for use with wireless network simulation packages and to support wireless network deployments.

  5. Propagation research in Japan

    NASA Technical Reports Server (NTRS)

    Wakana, Hiromitsu

    1991-01-01

    L-band propagation measurements for land-mobile, maritime, and aeronautical satellite communications have been carried out by using the Japanese Engineering Test Satellite-Five (ETS-5) which was launched in Aug. 1987. This paper presents propagation characteristics for each of the mobile satellite communication channels.

  6. Galileo radio science investigations

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Eshleman, V. R.; Hinson, D. P.; Kliore, A. J.; Lindal, G. F.; Woo, R.; Bird, M. K.; Volland, H.; Edenhoffer, P.; Paetzold, M.

    1992-01-01

    Galileo radio-propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements can be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system provides linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. A highly-stable, dual-frequency, spacecraft radio system is developed that is suitable for simultaneous measurements of all the parameters normally attributed to radio waves.

  7. Studies on characteristics of resistive power calculated with discrete Fourier transform in a pulse-modulated radio frequency discharge.

    PubMed

    Huo, W G; Zhang, H; Ding, Z F

    2015-02-01

    In a pulse-modulated (PM) radio-frequency (RF) capacitively coupled plasma, the DFT (Discrete Fourier Transform)-calculated RF power and the corresponding phase shift between voltage and current measured with calibrated voltage and current probes present oscillations in the pulse rising and falling edges. The oscillating phase shift between voltage and current obtained in the falling edge is outside the expected value for a resistive-capacitive RF discharge. Numerical simulation and analytical analysis are made to interpret these abnormal characteristics and seek an approach to obtaining the reliable resistive (active) RF power. The oscillation is proved to be originated from the oscillating non-zero reactive RF power of the capacitor(s) in the load. At the time instant when the reactive RF power within an integer RF period is not zero, the reactive RF power is mistakenly regarded as the active RF power in the DFT analysis, as a result, the corresponding phase is thus incorrect and even outside the expected value for a resistive-capacitive load. The resistive RF power and the phase can be only correctly calculated at the time instant when the reactive RF power is zero. For a series (or parallel) RC (resistor-capacitor) load and a combined RC load with the dominated series (or parallel) RC impedance, the time instant of the zero reactive RF power is calculated with one of the two proposed empirical formulae. In practice, the DFT-calculated resistive RF power is obtained according to the following procedures: (1) applying DFT to the measured RF voltage and current signals to obtain the power and time instants for minimal phase shifts between voltage and current; (2) selecting the empirical formula to calculate time instants of the zero reactive RF power; (3) getting resistive powers at time instants of the zero reactive RF power. In real PM RF capacitively coupled plasmas, the empirical formula for the series RC load is selected to calculate the resistive RF power

  8. Extragalactic Synchrotron Transients in the Era of Wide-field Radio Surveys. I. Detection Rates and Light Curve Characteristics

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Williams, P. K. G.; Berger, Edo

    2015-06-01

    The impending era of wide-field radio surveys has the potential to revolutionize our understanding of astrophysical transients. Here we evaluate the prospects of a wide range of planned and hypothetical radio surveys using the properties and volumetric rates of known and hypothetical classes of extragalactic synchrotron radio transients (e.g., on-axis and off-axis gamma-ray bursts (GRBs), supernovae, tidal disruption events, compact object mergers). Utilizing these sources and physically motivated considerations we assess the allowed phase space of radio luminosity and peak timescale for extragalactic transients. We also include for the first time effects such as redshift evolution of the rates, K-corrections, and non-Euclidean luminosity distance, which affect the detection rates of the most sensitive surveys. The number of detected events is calculated by means of a Monte Carlo method, using the various survey properties (depth, cadence, area) and realistic detection criteria that include a cut on the minimum variability of the transients during the survey and an assessment of host galaxy contamination. We find that near-term GHz frequency surveys (ASKAP/VAST, Very Large Array Sky Survey) will detect few events: ≲ 30-50 on- and off-axis long GRBs (LGRBs) and off-axis tidal disruption events, and ∼ 50-100 neutron star binary mergers if ∼ 0.5% of the mergers result in a stable millisecond magnetar. Low-frequency surveys (e.g., LOFAR) are unlikely to detect any transients, while a hypothetical large-scale mm survey may detect ∼40 on-axis LGRBs. On the other hand, we find that SKA1 surveys at ∼ 0.1-1 GHz have the potential to uncover thousands of transients, mainly on-axis and off-axis LGRBs, on-axis short GRBs, off-axis TDEs, and neutron star binary mergers with magnetar remnants.

  9. Possible Estimation of the Solar Cycle Characteristic Parameters by the 10.7 cm Solar Radio Flux

    NASA Astrophysics Data System (ADS)

    Lampropoulos, George; Mavromichalaki, Helen; Tritakis, Vasilis

    2016-03-01

    Two independent methods for estimating basic parameters of the solar cycle are presented. The first of them, the ascending-descending triangle method, is based on a previous work by Tritakis (Astrophys. Space Sci. 82, 463, 1982), which described how the fundamental parameters of a certain solar cycle could be predicted from the shape of the previous one. The relation between the two cycles before and after a specific 11-year solar cycle is tighter than between the two cycles belonging to the same 22-year solar cycle (even-odd cycle). The second is the MinimaxX method, which uses a significant relation in the international sunspot number between the maximum value of a solar cycle and its value 2.5 or 3 years (depending on the enumeration of the even or odd cycle) before the preceding minimum. The tests applied to Cycles 12 to 24 indicate that both methods can estimate the peak of the 11-year solar radio flux at a high confidence level. The data used in this study are the 10.7 cm solar radio flux since 1947, which have been extrapolated back to 1848 from the strong correlation between the monthly international sunspot numbers and the adjusted values of the 10.7 cm radio flux.

  10. Examining the use of a time-varying loudness algorithm for quantifying characteristics of nonlinearly propagated noise (L).

    PubMed

    Swift, S Hales; Gee, Kent L

    2011-05-01

    A previous letter by Gee et al. [J. Acoust. Soc. Am. 121, EL1-EL7 (2007)] revealed likely shortcomings in using common, stationary (long-term) spectrum-based measures to quantify the perception of nonlinearly propagated noise. Here, the Glasberg and Moore [J. Audio Eng. Soc. 50, 331-342 (2002)] algorithm for time-varying loudness is investigated. Their short-term loudness, when applied to a shock-containing broadband signal and a phase-randomized signal with equivalent long-term spectrum, does not show a significant difference in loudness between the signals. Further analysis and discussion focus on the possible utility of the instantaneous loudness and the need for additional investigation in this area. PMID:21568378

  11. Measured Propagation Characteristics of Coplanar Waveguide on Semi-Insulating 4H-SiC Through 800 K

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Alterovitz, Samuel A.; Downey, Alan N.; Freeman, Jon C.; Schwartz, Zachary D.

    2003-01-01

    Wireless sensors for high temperature industrial applications and jet engines require RF transmission lines and RF integrated circuits (RFICs) on wide bandgap semiconductors such as SiC. In this paper, the complex propagation constant of coplanar waveguide fabricated on semiinsulating 4H-SiC has been measured through 813 K. It is shown that the attenuation increases 3.4 dB/cm at 50 GHz as the SiC temperature is increased from 300 K to 813 K. Above 500 K, the major contribution to loss is the decrease in SiC resistivity. The effective permittivity of the same line increases by approximately 5 percent at microwave frequencies and 20 percent at 1 GHz.

  12. PROPAGATION OF SOLAR ENERGETIC PARTICLES IN THREE-DIMENSIONAL INTERPLANETARY MAGNETIC FIELDS: IN VIEW OF CHARACTERISTICS OF SOURCES

    SciTech Connect

    He, H.-Q.; Qin, G.; Zhang, M. E-mail: gqin@spaceweather.ac.cn

    2011-06-20

    In this paper, a model of solar energetic particle (SEP) propagation in the three-dimensional Parker interplanetary magnetic field is calculated numerically. We study the effects of the different aspects of particle sources on the solar surface, which include the source location, coverage of latitude and longitude, and spatial distribution of source particle intensity, on propagation of SEPs with both parallel and perpendicular diffusion. We compute the particle flux and anisotropy profiles at different observation locations in the heliosphere. From our calculations, we find that the observation location relative to the latitudinal and longitudinal coverage of particle source has the strongest effects on particle flux and anisotropy profiles observed by a spacecraft. When a spacecraft is directly connected to the solar sources by the interplanetary magnetic field lines, the observed particle fluxes are larger than when the spacecraft is not directly connected. This paper focuses on the situations when a spacecraft is not connected to the particle sources on the solar surface. We find that when the magnetic footpoint of the spacecraft is farther away from the source, the observed particle flux is smaller and its onset and maximum intensity occur later. When the particle source covers a larger range of latitude and longitude, the observed particle flux is larger and appears earlier. There is east-west azimuthal asymmetry in SEP profiles even when the source distribution is east-west symmetric. However, the detail of particle spatial distribution inside the source does not affect the profile of the SEP flux very much. When the magnetic footpoint of the spacecraft is significantly far away from the particle source, the anisotropy of particles in the early stage of an SEP event points toward the Sun, which indicates that the first arriving particles come from outside of the observer through perpendicular diffusion at large radial distances.

  13. The propagation and scattering characteristics of a forest as measured by coherent ultra-wideband foliage penetration

    NASA Astrophysics Data System (ADS)

    Gwynne, John Scott

    Coherent polarimetric synthetic aperture radar (SAR) measurements of a central Ohio forest have been collected, and it is the objective of this research to document and analyze the results. The foliage data presented in this dissertation are unique in several aspects. Primarily, the data are Ultra-Wideband (UWB) in that the bandwidth (200-1600MHz) divided by center frequency is at least 25% and are of a wavelength selected to penetrate the forest canopy. Data of this bandwidth or resolution offer the opportunity to see for the first time at these frequencies scattering components such as branches, tree trunks, and ground-tree interaction terms. Secondly, coherent apertures were collected by precisely moving the antennas within a well-known coordinate system leading to absolute phase calibration and to the generation of fully coherent SAR imagery. Much of the past work performed on foliage propagation and scattering does not include phase information which is crucial for predicting the performance of radars of this type. The underlying goals of this research are to identify the fundamental scattering mechanisms associated with the forest backscatter at these frequencies and to assess UWB usage for the concealed target detection and identification problems. To this end, methods are developed to analyze the above measurements and extract modeling parameters such as the propagation loss, phase defect, and backscatter per unit area (sigmasp{o}). The analysis of these data provide the insight needed to statistically model the forest in both forward scatter and backscatter and to determine the ability of these UWB frequencies to penetrate the forest canopy.

  14. Propagation characteristics of Pi 2 pulsations observed at high- and low-latitude MAGDAS/CPMN stations: A statistical study

    NASA Astrophysics Data System (ADS)

    Uozumi, Teiji; Abe, S.; Kitamura, K.; Tokunaga, T.; Yoshikawa, A.; Kawano, H.; Marshall, R.; Morris, R. J.; Shevtsov, B. M.; Solovyev, S. I.; McNamara, D. J.; Liou, K.; Ohtani, S.; Itonaga, M.; Yumoto, K.

    2009-11-01

    The objective of this study is to understand better the propagation of Pi 2 waves in the nighttime region. We examined Pi 2 oscillations that showed high correlation between high- and low-latitude Magnetic Data Acquisition System/Circum Pan-Pacific Magnetometer Network stations (correlation coefficient: ∣γ∣ ≥ 0.75). For each horizontal component (H and D) we examined the magnetic local time (MLT) dependence of the delay time of high-latitude Pi 2 oscillations that corresponds to the highest correlation with the low-latitude Pi 2 oscillation. We found the delay time of the high-latitude H showed remarkable MLT dependence, especially in the premidnight sector: we found that in the premidnight sector the high-latitude H oscillation tends to delay from the low-latitude oscillation (<100 s). On the other hand, the delay time of the high-latitude D oscillation was not significant (˜±10 s) in the entire nighttime sector. We propose a Pi 2 propagation model to explain the observed delay time of high-correlation high-latitude H. The model quantitatively explains the trend of the event distribution. We also examined the spatial distribution of high-correlation Pi 2 events relative to the center of auroral breakups. It was found that the high-correlation Pi 2 events tend to occur away from the center of auroral breakups by more than 1.5 MLT. The present result suggests that the high-correlation H component Pi 2 oscillations at high latitude are a manifestation of forced Alfvén waves excited by fast magnetosonic waves.

  15. Stellar radio emission (Review)

    NASA Astrophysics Data System (ADS)

    Zhelezniakov, V. V.

    The current understanding of the radio-emission characteristics of 'ordinary' main sequence stars as well as giants and supergiants is examined. Particular consideration is given to radio emission from supergiants, Young T Tauri stars, magnetic Ap stars, flare stars of UV Ceti type, Alpha Sco, and RS CVn objects. It is noted that the study of stellar radio emission is in its initial stage. Further progress in this area depends on successes in finding new radio sources, associated, for example, with magnetic stars, and on an intensified investigation of the frequency spectra and polarization of already-discovered radio stars. It is also noted that, although the current knowledge of solar physics can help in understanding stellar radio emission, models and ideas developed for solar conditions should not be mechanically transferred to other stars by a simple change in scale.

  16. Locating Radio Noise from Sprites

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Mezentsev, A.; Watson, R.; Gaffet, S.; Astin, I.; Evans, A.

    2014-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into exponentially growing streamer tips (McHarg et al., 2010). The acceleration of the electrons to a few eV results in the radiation of a small amount of electromagnetic energy. The incoherent superposition of many streamers causes the low frequency radio noise from sprites near ~40 km height (Qin et al., 2012). The presence of this theoretically predicted radiation was recently confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). To locate the radio noise from sprites in the sky, an interferometric network of low frequency radio receivers was developed (Mezentsev and Fullekrug, JGR, 2013). The key parameter for the interferometric signal processing is the frequency dependent wave propagation velocity of the radio waves within the Earth's atmosphere. This wave propagation velocity is determined by the wave number vector which needs to be inferred from the measurements. Here we adapt and subsequently apply array analyses which have been developed for seismic and infrasound arrays to determine the horizontal wave number vectors of ~20-24 kHz radio waves measured with an array of ten radio receivers distributed over an area of ~1 km × 1 km. It is found that the horizontal slowness of ~20-24 kHz radio waves ranges from ~2.7 ns/m to ~4.1 ns/m depending on the arrival azimuth of the radio wave. For comparison, an electromagnetic wave in vacuum has a slowness of ~3.34 ns/m. A larger slowness indicates an apparent velocity which is smaller than the speed of light and a smaller slowness indicates that the radio wave arrives at the array from an elevation angle. The observed variability of the observed slowness almost certainly results from the distance dependent superposition of the transverse electric and magnetic TEn and TMn radio wave propagation modes.

  17. Energetic electrons from solar flares and associated type 3 radio bursts from metric to hectometric wave frequencies

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    Distinct Kev electron events as observed by satellites near the earth are, in general, associated with solar flares which are accompained by the emission of both metric and hectometric type 3 radio bursts. The positions of these flares are mainly on the western hemisphere of the sun. These results show that Kev electrons propagate under the control of the magnetic field in the interplanetary space and that, while propagating through this space, these electrons excite type 3 radio bursts from metric to hectometric wave frequencies. Emission characteristics of hectometric type 3 bursts are briefly considered in relation to the positions of associated flares.

  18. Noise characteristics of CT perfusion imaging: how does noise propagate from source images to final perfusion maps?

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2016-03-01

    Cerebral CT perfusion (CTP) imaging is playing an important role in the diagnosis and treatment of acute ischemic strokes. Meanwhile, the reliability of CTP-based ischemic lesion detection has been challenged due to the noisy appearance and low signal-to-noise ratio of CTP maps. To reduce noise and improve image quality, a rigorous study on the noise transfer properties of CTP systems is highly desirable to provide the needed scientific guidance. This paper concerns how noise in the CTP source images propagates to the final CTP maps. Both theoretical deviations and subsequent validation experiments demonstrated that, the noise level of background frames plays a dominant role in the noise of the cerebral blood volume (CBV) maps. This is in direct contradiction with the general belief that noise of non-background image frames is of greater importance in CTP imaging. The study found that when radiation doses delivered to the background frames and to all non-background frames are equal, lowest noise variance is achieved in the final CBV maps. This novel equality condition provides a practical means to optimize radiation dose delivery in CTP data acquisition: radiation exposures should be modulated between background frames and non-background frames so that the above equality condition is satisïnAed. For several typical CTP acquisition protocols, numerical simulations and in vivo canine experiment demonstrated that noise of CBV can be effectively reduced using the proposed exposure modulation method.

  19. The NASA radiowave propagation program

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz

    1990-01-01

    The objectives of the NASA radiowave Propagation Program are to enable new satellite communication applications and to enhance existing satellite communication networks. These objectives are achieved by supporting radio wave propagation studies and disseminating the study results in a timely fashion. Studies initiated by this program in the 1980s enabled the infant concept of conducting mobile communications via satellite to reach a state of relative maturity in 1990. The program also supported the satellite communications community by publishing and revising two handbooks dealing with radio wave propagation effects for frequencies below and above 10 GHz, respectively. The program has served the international community through its support of the International Telecommunications Union. It supports state of the art work at universities. Currently, the program is focusing on the Advanced Communications Technology Satellite (ACTS) and its propagation needs. An overview of the program's involvement in the ACTS project is given.

  20. The effect of adiabatic focusing upon charged particle propagation in random magnetic fields

    NASA Technical Reports Server (NTRS)

    Earl, J. A.

    1975-01-01

    Charged particles propagating along the diverging lines of force of a spatially inhomogeneous guiding field were considered as they are scattered by random fields. Their longitudinal transport is described in terms of the eigenfunctions of a Sturm-Liouville operator incorporating the effect of adiabatic focussing along with that of scattering. The relaxation times and characteristic velocities are graphed and tabulated. The particle density is evaluated as a function of space and time for two different regimes. In the first regime (relatively weak focussing), a diffusive mode of propagation is dominant but coherent modes are also dominant. In the second regime (strong focussing), diffusion does not occur and the propagation is purely coherent. This supercoherent mode corresponds exactly to the so-called scatter-free propagation of kilovolt solar flare electrons. On a larger scale, focussed transport provides an interpretation of many observed characteristics of extragalactic radio sources.

  1. Characteristics of a rocket-triggered lightning flash with large stroke number and the associated leader propagation

    NASA Astrophysics Data System (ADS)

    Sun, Zhuling; Qie, Xiushu; Jiang, Rubin; Liu, Mingyuan; Wu, Xueke; Wang, Zhichao; Lu, Gaopeng; Zhang, Hongbo

    2014-12-01

    A negative lightning flash with 16 leader-return stroke sequences, triggered in the summer of 2013 using the classical rocket-and-wire triggering technique, was examined with simultaneous two-dimensional (2D) imaging of very high-frequency (VHF) radiation sources, channel-base current measurement, broadband electric field waveforms and high-speed video images. A total of 28.0 C negative charge was transferred to ground during the whole flash, and the charge transferred during the initial stage was 4.9 C, which is the weakest among the triggered lightning flashes at the SHandong Artificially Triggering Lightning Experiment (SHATLE). The peak current of 16 return strokes ranged from 5.8 to 32.5 kA with a geometric mean of 14.1 kA. The progression of upward positive leader and downward negative (dart or dart-stepped) leaders was reproduced visually by using an improved short-baseline VHF lightning location system with continuous data recording capability. The upward positive leader was mapped immediately from the tip of the metal wire during the initial stage, developing at a speed of about 104 m/s without branches. The upward positive leader and all the 14 negative leaders captured by the 2D imaging system propagated along the same channel with few branches inside the cloud, which might be the reason for the relatively small charge transfer. The 2D imaging results also show that dart leaders may transform into dart-stepped leaders after a long time interval between successive strokes.

  2. NASA Lunar Base Wireless System Propagation Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  3. NASA Propagation Program Status and Propagation Needs of Satcom Industry

    NASA Technical Reports Server (NTRS)

    Golshan, Nassar

    1996-01-01

    The program objective is to enable the development of new commercial satellite systems and services and to support NASA's programs by providing timely data and models about propagation of satellite radio signals though the intervening environment. Provisions include new services, higher frequencies, higher data rates, different environments (mobile, indoors, fixed), and different orbits (geostationary, low earth orbit).

  4. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    PubMed Central

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  5. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    PubMed

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  6. Estimation of electron density profile in ionospheric D and lower E region by Rocket observation and Full wave analysis of LF and MF radio waves

    NASA Astrophysics Data System (ADS)

    Ashihara, Y.; Ishisaka, K.; Okada, T.; Miyake, T.; Murayama, Y.; Nagano, I.

    Electrons in ionospheric D region are closely related to neutral dynamic meteorology and chemistry including such as hydrated ion and NOx though the electron density is very small about ten -- several thousand cc Therefore it has the possibility to find a new physical knowledge in mesosphere and lower ionosphere Radio wave propagation characteristics in ionospheric D and lower E region are affected by an electron density profile As a inverse problem the electron density profile can be estimated by radio wave propagation characteristics measured by a sounding rocket S-310-33 sounding rocket was launched at Uchinoura Space Center USC at 0 30 a m LT on January 18 2004 We observed magnetic field intensities of two radio waves transmitted from Kanoya air base 238kHz and NHK Kumamoto 2nd ch 873kHz by using radio wave receivers onboarded the rocket Both of the magnetic field intensities were absorbed suddenly at 89km altitude The propagation characteristics in the ionosphere are calculated by using Full wave method It needs the electron density profile previously to calculate the propagation characteristics by Full wave method The electron density profile is estimated by according the radio wave propagation characteristics calculated by Full wave analysis with the observed one This estimation technique is called radio wave absorption method We found the thin ionospheric layer of about 1km at the altitude of 89km The electron density in this region is 2 6 times10 3 cc The electron density compared with one at 88km it was large number

  7. Radio broadcasting via satellite

    NASA Astrophysics Data System (ADS)

    Helm, Neil R.; Pritchard, Wilbur L.

    1990-10-01

    Market areas offering potential for future narrowband broadcast satellites are examined, including international public diplomacy, government- and advertising-supported, and business-application usages. Technical issues such as frequency allocation, spacecraft types, transmission parameters, and radio receiver characteristics are outlined. Service and system requirements, advertising revenue, and business communications services are among the economic issues discussed. The institutional framework required to provide an operational radio broadcast service is studied, and new initiatives in direct broadcast audio radio systems, encompassing studies, tests, in-orbit demonstrations of, and proposals for national and international commercial broadcast services are considered.

  8. Educational Radio.

    ERIC Educational Resources Information Center

    Arafeh, Sousan

    1999-01-01

    Examines the effectiveness of the radio in education and the crucial role of the radio in distance education in first half of the 20th century; dramatic social changes in the 1960s that led to a review of educational institutions and of educational media; and the radio today as a neglected but inexpensive medium of communication that should be…

  9. Satellite observations of type 3 solar radio bursts at low frequencies

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.

    1973-01-01

    Type III solar radio bursts were observed from 10 MHz to 10 KHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 solar radii to at least 1 AU from the sun. This review summarizes the morphology, characteristics and analysis of individual as well as storms of bursts. Burst rise times are interpreted in terms of exciter length and dispersion while decay times refer to the radiation damping process. The combination of radio observations at the lower frequencies and in-situ measurements on nonrelativistic electrons at 1 AU provide data on the energy range and efficiency of the wave-particle interactions responsible for the radio emission.

  10. Modification of tropospheric propagation conditions

    NASA Astrophysics Data System (ADS)

    Jeske, H.

    1990-10-01

    The propagation mechanisms of ultra-short radio waves and microwaves are governed by the composition of the troposphere and their space-time structure of the refractive index field. Useful effects are obtained by chaff clouds concerning communication channels, masking of targets or meteorological research. A wide field of posiibilities seems to be within the scope of weather modification experiments. But due to the huge variability of cloud and rain parameters only minor propagation changes are to be expected. A successful application of remotely determining atmospheric temperature profiles is the modulation of the atmospheric refractive index field by sound waves and tracking the acoustic wave fronts by a Doppler radar (Radio Acoustic Sounding System). Oil and alga slicks on water surfaces may change the reflection/scattering and emission properties for radar waves. They also suppress evaporation which may influence the development of tropical storms but just so evaporation duct propagation of microwaves.

  11. Quasar feedback and the origin of radio emission in radio-quiet quasars

    NASA Astrophysics Data System (ADS)

    Zakamska, Nadia L.; Greene, Jenny E.

    2014-07-01

    We analyse Sloan Digital Sky Survey spectra of 568 obscured luminous quasars. The [O III] λ5007 Å emission line shows blueshifts and blue excess, indicating that some of the narrow-line gas is undergoing an organized outflow. The velocity width containing 90 per cent of line power ranges from 370 to 4780 km s-1, suggesting outflow velocities up to ˜2000 km s-1, and is strongly correlated with the radio luminosity among the radio-quiet quasars. We propose that radio emission in radio-quiet quasars is due to relativistic particles accelerated in the shocks within the quasar-driven outflows; star formation in quasar hosts is insufficient to explain the observed radio emission. The median radio luminosity of the sample of νLν[1.4 GHz] = 1040 erg s-1 suggests a median kinetic luminosity of the quasar-driven wind of Lwind = 3 × 1044 erg s-1, or about 4 per cent of the estimated median bolometric luminosity Lbol = 8 × 1045 erg s-1. Furthermore, the velocity width of [O III] is positively correlated with mid-infrared luminosity, which suggests that outflows are ultimately driven by the radiative output of the quasar. Emission lines characteristic of shocks in quasi-neutral medium increase with the velocity of the outflow, which we take as evidence of quasar-driven winds propagating into the interstellar medium of the host galaxy. Quasar feedback appears to operate above the threshold luminosity of Lbol ˜ 3 × 1045 erg s-1.

  12. Firefighters' Radios

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Public Technology Inc. asked for NASA assistance to devise the original firefighter's radio. Good short-range radio communications are essential during a fire to coordinate hose lines, rescue victims, and otherwise increase efficiency. Useful firefighting tool is lower cost, more rugged short range two-way radio. Inductorless electronic circuit replaced inductances and coils in radio circuits with combination of transistors and other low-cost components. Substitution promises reduced circuit size and cost. Enhanced electrical performance made radio more durable and improved maintainability by incorporating modular construction.

  13. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Ting; Liang, Tian-Ran; Wang, Hua-Bo; Li, He-Ping; Bao, Cheng-Yu

    2007-05-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work.

  14. Low Pressure Radio-Frequency Oxygen Plasma Induced Oxidation of Titanium – Surface Characteristics and Biological Effects

    PubMed Central

    Tseng, Wan-Yu; Hsu, Sheng-Hao; Huang, Chieh-Hsiun; Tu, Yu-Chieh; Tseng, Shao-Chin; Chen, Hsuen-Li; Chen, Min-Huey; Su, Wei-Fang; Lin, Li-Deh

    2013-01-01

    Objective This research was designed to investigate the effects of low pressure radio-frequency (RF) oxygen plasma treatment (OPT) on the surface of commercially pure titanium (CP-Ti) and Ti6Al4V. Surface topography, elemental composition, water contact angle, cell viability, and cell morphology were surveyed to evaluate the biocompatibility of titanium samples with different lengths of OP treating time. Materials and Methods CP-Ti and Ti6Al4V discs were both classified into 4 groups: untreated, treated with OP generated by using oxygen (99.98%) for 5, 10, and 30 min, respectively. After OPT on CP-Ti and Ti6Al4V samples, scanning probe microscopy, X-ray photoelectron spectrometry (XPS), and contact angle tests were conducted to determine the surface topography, elemental composition and hydrophilicity, respectively. The change of surface morphology was further studied using sputtered titanium on silicon wafers. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and F-actin immunofluorescence stain were performed to investigate the viability and spreading behavior of cultivated MG-63 cells on the samples. Results The surface roughness was most prominent after 5 min OPT in both CP-Ti and Ti6Al4V, and the surface morphology of sputtered Ti sharpened after the 5 min treatment. From the XPS results, the intensity of Ti°, Ti2+, and Ti3+ of the samples’ surface decreased indicating the oxidation of titanium after OPT. The water contact angles of both CP-Ti and Ti6Al4V were increased after 5 min OPT. The results of MTT assay demonstrated MG-63 cells proliferated best on the 5 min OP treated titanium sample. The F-actin immunofluorescence stain revealed the cultivated cell number of 5 min treated CP-Ti/Ti6Al4V was greater than other groups and most of the cultivated cells were spindle-shaped. Conclusions Low pressure RF oxygen plasma modified both the composition and the morphology of titanium samples’ surface. The CP-Ti/Ti6Al4V treated with 5 min

  15. Population and movement characteristics of radio-collared striped skunks in North Dakota during an epizootic of rabies

    USGS Publications Warehouse

    Greenwood, R.J.; Newton, W.E.; Pearson, G.L.; Schamber, G.J.

    1997-01-01

    We observed a total of 102 striped skunks (Mephitis mephitis) from March to July of both 1991 and 1992 in Stutsman County, North Dakota (USA) during an experiment with food supplementation. Twenty-three apparently healthy skunks in 1991 and 56 in 1992 were equipped with radio-collars. In 1991, one of 23 was tested and found to be rabid. In 1992, 50 of 56 were tested; 35 (69%) were rabid. Of skunks with ages estimated, 19 (66%) of 29 were first year animals in 1991 compared with nine (22%) of 41 first year animals in 1992. All 18 females captured in 1991 were pregnant or parous compared with 21 (60%) of 35 in 1992. The estimated survival rate of skunks was 0.85 during April to June 1991, but only 0.17 during April to July 1992. In 1992, the survival rate of first year skunks was 0.08, compared with 0.35 for older animals. Eleven (31%) of 36 skunks found dead of rabies or in late clinical stage were located below ground. We detected no differences in 1992 between healthy and rabid skunks in estimated mean (i?? SE) rate of travel (232 i?? 14 m/hr), distance traveled (2047 i?? 141 m/night), or home range size (1.6 i?? 0.4 km2) during half-month periods from April through June. Among rabid skunks, mean (i?? SE) rate of travel tended to decrease from 298 i?? 48 m/hr during the 14 days preceding the clinical period of rabies (pre-clinical) to 174 i?? 48 m/hr during the clinical period of rabies (14 days immediately before death). Similar decrease occurred in mean (i?? SE) distance traveled in a night (2318 i?? 281 m, pre-clinical; 1497 i?? 281 m, clinical). Mean (i?? SE) home range size of males (2.8 i?? 0.4) was greater than of females (1.2 i?? 0.4) during the pre-clinical period, but during the clinical period home range sizes of males (1.8 i?? 0.4) and females (1.8 i?? 0.4) were similar. Mean (i?? SE) home range size of females did not differ between pre-clinical (1.2 i?? 0.4) and clinical (1.8 i?? 0.4) periods (P = 0.22). Deaths of skunks from rabies in 1992 tended to

  16. Proceedings of the Thirteenth NASA Propagation Experimenters Meeting (NAPEX 13)

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Editor)

    1989-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. The meeting was organized into three technical sessions: the first focused on mobile satellite propagation; the second examined the propagation effects for frequencies above 10 GHz; and the third addressed studies devoted exclusively to the Olympus/Advanced Communications Technology Satellite (ACTS) Program.

  17. Near-Relativistic Solar Electrons and Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    2003-01-01

    Recently it has been found that the inferred injection times of greater than 25 keV electrons are up to 30 minutes later than the start times of the associated type III radio bursts at the Sun. Thus it has been suggested that the electrons that produce type III bursts do not belong to the same population as those observed above 25 keV. This paper examines the characteristics and circumstances of 79 solar electron beam events measured on the ACE spacecraft. Particular attention is paid to the very low frequency emissions of the associated radio bursts and the ambient conditions at the arrival times of the electrons at the spacecraft. It is found that the inferred greater than 25 keV electron injection delays are correlated with the times required for the associated radio bursts to drift to the lowest frequencies. This suggests that the electrons responsible for the radio emission and those observed above 25 keV are part of a single population, and that the electrons both above and below 25 keV are delayed in the interplanetary medium. Further evidence for a single population is the general correspondence between electron and local radio intensities and temporal profiles. It is found that the delays increase with the ambient solar wind density consistent with the propagation times of the electrons being determined by the characteristics of the interplanetary medium. However it is known that particle arrival times at 1 AU are a linear function of inverse particle speed. Conventionally such a relationship is taken to indicate scatter-free propagation when inferred path lengths lie close to 1.2 AU, as they do for the electron events studied here. These conflicting interpretations require further investigation.

  18. Radio wave.

    PubMed

    Elkin, V

    1992-01-01

    In developing countries with high rates of poverty and illiteracy, radio is emerging as an excellent medium for delivering information on health issues, family planning, nutrition, and agricultural development. Since radio does not require wired electricity, it can reach remote rural populations. Surveys have found that between 50-75% of poor rural households in developing countries own radios, and the majority listen to educational radio at least once a week. A program that reaches the urban poor outside of Lima, Peru, has been instrumental in controlling the spread of cholera. A Bolivian station broadcasts 8 hours of literacy, health, agricultural, and cultural programming a day to an audience of more than 2 million Aymara Indians. Small village radio stations with a broadcast range of 15 miles can be established for under US$400 and can generally achieve sustainability through local fundraising events such as raffles. In many cases, listeners have become broadcasters at their local radio stations. PMID:12286181

  19. Radio receivers

    NASA Astrophysics Data System (ADS)

    Bankov, V. N.; Barulin, L. G.; Zhodzishskii, M. I.; Malyshev, I. V.; Petrusinskii, V. V.

    The book is concerned with the design of microelectronic radio receivers and their components based on semiconductor and hybrid integrated circuits. Topics discussed include the hierarchical structure of radio receivers, the synthesis of structural schemes, the design of the principal functional units, and the design of radio receiver systems with digital signal processing. The discussion also covers the integrated circuits of multifunctional amplifiers, analog multipliers, charge-transfer devices, frequency filters, piezoelectronic devices, and microwave amplifiers, filters, and mixers.

  20. Characteristics of high-purity Cu thin films deposited on polyimide by radio-frequency Ar/H{sub 2} atmospheric-pressure plasma jet

    SciTech Connect

    Zhao, P.; Zheng, W.; Meng, Y. D.; Nagatsu, M.

    2013-03-28

    With a view to fabricating future flexible electronic devices, an atmospheric-pressure plasma jet driven by 13.56 MHz radio-frequency power is developed for depositing Cu thin films on polyimide, where a Cu wire inserted inside the quartz tube was used as the evaporation source. A polyimide substrate is placed on a water-cooled copper heat sink to prevent it from being thermally damaged. With the aim of preventing oxidation of the deposited Cu film, we investigated the effect of adding H{sub 2} to Ar plasma on film characteristics. Theoretical fitting of the OH emission line in OES spectrum revealed that adding H{sub 2} gas significantly increased the rotational temperature roughly from 800 to 1500 K. The LMM Auger spectroscopy analysis revealed that higher-purity Cu films were synthesized on polyimide by adding hydrogen gas. A possible explanation for the enhancement in the Cu film deposition rate and improvement of purity of Cu films by H{sub 2} gas addition is that atomic hydrogen produced by the plasma plays important roles in heating the gas to promote the evaporation of Cu atoms from the Cu wire and removing oxygen from copper oxide components via reduction reaction.

  1. Effects of the shielding cylinder and substrate on the characteristics of an argon radio-frequency atmospheric glow discharge plasma jet

    SciTech Connect

    Li Guo; Le Peisi; Li Heping; Bao Chengyu

    2010-05-15

    With unique features of low breakdown voltages, large and uniform discharge areas and high concentrations of chemically reactive species, radio-frequency, atmospheric-pressure glow discharge (rf APGD) plasma sources produced with bare-metallic electrodes have shown promising prospects in the field of materials processing. In this paper, the spatial distributions (i.e., the directly measured integrated axial distribution and the radial distribution by using the inverse Abel transform) of the emission intensities of the Ar I 696.5 nm line are studied for the argon rf APGD plasma jet under different operation conditions, including variations of the rf power input or the argon flow rate, the existence of the solid shielding cylinder or the substrate. The experimental results show that, with other parameters being unchanged, the emission intensities of the Ar I 696.5 nm line increase with increasing the rf power input or the argon flow rate; and the solid shielding cylinder has more significant influences on the characteristics of the plasma impinging jet by reducing the mass flow rate of the ambient air entrained into the plasma jet region than those for the cases without the existence of the substrate at the downstream of the plasma torch nozzle exit.

  2. Effects of the shielding cylinder and substrate on the characteristics of an argon radio-frequency atmospheric glow discharge plasma jet

    NASA Astrophysics Data System (ADS)

    Li, Guo; Le, Pei-Si; Li, He-Ping; Bao, Cheng-Yu

    2010-05-01

    With unique features of low breakdown voltages, large and uniform discharge areas and high concentrations of chemically reactive species, radio-frequency, atmospheric-pressure glow discharge (rf APGD) plasma sources produced with bare-metallic electrodes have shown promising prospects in the field of materials processing. In this paper, the spatial distributions (i.e., the directly measured integrated axial distribution and the radial distribution by using the inverse Abel transform) of the emission intensities of the Ar I 696.5 nm line are studied for the argon rf APGD plasma jet under different operation conditions, including variations of the rf power input or the argon flow rate, the existence of the solid shielding cylinder or the substrate. The experimental results show that, with other parameters being unchanged, the emission intensities of the Ar I 696.5 nm line increase with increasing the rf power input or the argon flow rate; and the solid shielding cylinder has more significant influences on the characteristics of the plasma impinging jet by reducing the mass flow rate of the ambient air entrained into the plasma jet region than those for the cases without the existence of the substrate at the downstream of the plasma torch nozzle exit.

  3. Premixed Turbulent Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.

    1997-01-01

    Papers included address the following topics: (1) Turbulent premixed flame propagation in microgravity; (2) The effect of gravity on turbulent premixed flame propagation - a preliminary cold flow study; and (3) Characteristics of a subgrid model for turbulent premixed combustion.

  4. Nervous propagation along 'central' motor pathways in intact man: characteristics of motor responses to 'bifocal' and 'unifocal' spine and scalp non-invasive stimulation.

    PubMed

    Rossini, P M; Marciani, M G; Caramia, M; Roma, V; Zarola, F

    1985-10-01

    In 23 healthy adult volunteers motor action potentials (MAPs) were elicited in upper and lower limb muscles during stimulation of appropriate sites at spinal and scalp level, through skin electrodes. 'Bifocal' stimulation of scalp and spine motor tracts was performed with 2 plaques (3.5 cm2 each), delivering single pulses of 440-940 mA, less than 50 microseconds in duration, which elicited high voltage (up to 10 mV) MAPs in arm and leg muscles. 'Unifocal' stimulation of scalp was carried out through a cathode consisting in a belt or in a series of rectangular interconnected plaques secured around the head, 1-2 cm rostral to the nasion-inion plane, and in a circular anode placed on the appropriate scalp site. MAPs with similar amplitude-latency characteristics were recorded with both 'bifocal' and 'unifocal' stimulating methods. However, the 'unifocal' stimulation necessitated 5-10 times less current than the 'bifocal' one. The 'unifocal' device using the interconnected plaques (6-12 in number) provided the most tolerable stimuli with the lowest amount of current (60-106 mA, rectangular pulses of 100-150 microseconds). Conduction times and velocities of motor pathways in various 'central' and 'peripheral' districts were calculated. Voluntary contraction of target muscles remarkably enhanced MAP amplitudes during scalp, but not during spine stimulation. A nerve action potential was recorded from ulnar nerve during scalp stimulation. MAPs in hand muscles to scalp stimulation were obliterated by the simultaneous activation of the peripheral fibres innervating the target muscle, because of collision between ortho- and antidromically propagated motor impulses. Anodal stimuli showed liminal values significantly lower than the cathodal ones. Mapping studies have been carried out with 'unifocal' scalp stimulation by using different types of anode and of stimulus parameters. PMID:2411506

  5. Educational Radio.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    This report summarizes information about the history, technology, and operation of educational radio in the U.S. Also presented are the Federal Communications Commission's (FCC) rules and regulations concerning the licensing and channel assignment of educational radio, and its auxiliary special broadcast services. Included are the application…

  6. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Schaffer, R. D.; Gorenstein, M. V.

    1981-01-01

    The activities of the Deep Space Network in support of Radio Astronomy Operations during April and May 1981 are reported. Work in progres in support of an experiment selected for use of the DSN by the Radio Astronomy Experiment Selection Panel, Twin Quasi-Stellar Object VLBI, is reported.

  7. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.; Manchester, R. N.

    1980-01-01

    The activities of the Deep Space Network in support of radio and radar astronomy operations during July and August 1980 are reported. A brief update on the OSS-sponsored planetary radio astronomy experiment is provided. Also included are two updates, one each from Spain and Australia on current host country activities.

  8. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Gulkis, S.

    1981-01-01

    The activities of the Deep Space Network in support of radio astronomy operations during the first quarter of 1981 are reported. Results of the use of a low noise maser are presented, as well as updates in DSN support of experiments sanctioned by the Radio Astronomy Experiment Selection Panel.

  9. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Niell, A. E.

    1981-01-01

    The activities of the DSN in support of Radio and Radar Astronomy Operations during September through December 1980 are described. Emphasis is on a report of an experiment selected for use of the DSN by the radio Astronomy Experiment Selection Panel: that of VLBI observations of the energetic galactic object SS-433.

  10. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  11. Svetloe Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Rahimov, Ismail

    2013-01-01

    This report summarizes information about the Svetloe Radio Astronomical Observatory activities in 2012. Last year, a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to their required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  12. Zelenchukskaya Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Dyakov, Andrei

    2013-01-01

    This report summarizes information about Zelenchukskaya Radio Astronomical Observatory activities in 2012. Last year a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to the required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  13. Radio emissions from RHESSI TGFs

    NASA Astrophysics Data System (ADS)

    Mezentsev, Andrey; Østgaard, Nikolai; Gjesteland, Thomas; Albrechtsen, Kjetil; Cummer, Steven

    2016-04-01

    The discovery of bursts of energetic photons coming out to space from the Earth's atmosphere, referred to as terrsetrial gamma-ray flashes (TGFs), has stimulated research activity investigating different aspects of the TGF generation and accompanying processes. Two models of the TGF production are nowadays competing to explain the observations of the TGFs and related phenomena. One of the models involves the feedback mechanism enhancing the production rate of the runaway electrons in the ambient electric field of a thundercloud. Another model considers runaway electrons accelerated in the strong local electric field in front of the upward propagating negative leader of the +IC. We performed a detailed analysis of RHESSI TGFs detected between August 2004 and September 2015. It was reported that the RHESSI satellite clock has a systematic error of ˜ 1.8 ms, but the exact value remained unknown, also it was unclear if this systematic clock error is changing with time or not. We compared RHESSI TGFs with the world wide lightning location network (WWLLN) database and found the distribution of the time delays between the TGF peak times and associated WWLLN detections. This distribution allowed us to find the value of the RHESSI systematic clock offset with the microsecond accuracy level. Also we found that this offset experienced two changes: in August 2005 and in October 2013, which was confirmed by two independent ways. We found that in case of double TGFs WWLLN detection corresponds to the second TGF of the pair. VLF magnetic field recordings from the Duke University also attribute radio sferics to the second TGF, exhibiting no detectable radio emission during the first TGFs of the TGF pairs. We have proposed a possible scenario that is consistent with the observations. This scenario supports the leader-based model of the TGF generation. Spectral characteristics of 77 sferics recorded by the Duke University VLF sensors and related to the RHEESI TGFs show that maximal

  14. Radio properties of Compact Steep Spectrum and GHz-Peaked Spectrum radio sources

    NASA Astrophysics Data System (ADS)

    Orienti, M.

    2016-02-01

    Compact steep spectrum (CSS) and GHz-peaked spectrum (GPS) radio sources represent a large fraction of the extragalactic objects in flux density-limited samples. They are compact, powerful radio sources whose synchrotron peak frequency ranges between a few hundred MHz to several GHz. CSS and GPS radio sources are currently interpreted as objects in which the radio emission is in an early evolutionary stage. In this contribution I review the radio properties and the physical characteristics of this class of radio sources, and the interplay between their radio emission and the ambient medium of the host galaxy.

  15. Radio spectra of intermediate-luminosity broad-line radio galaxies .

    NASA Astrophysics Data System (ADS)

    Angelakis, E.; Kadler, M.; Lewis, K.; Sambruna, R. M.; Eracleous, M.; Zensus, J. A.

    Within the context of investigating possible differences between the mechanisms at play in Radio Loud AGN and those in Radio Quiet ones, we study the spectral characteristics of a selected sample of Intermediate-Luminosity Broad-Line Radio Galaxies in X-rays, optical, IR and radio. Here, we present the radio spectra acquired with the 100-m radio telescope in Effelsberg between 2.6 and 32 GHz. These measurements reveal a large variety of spectral shapes urging for radio imaging that would disclose the source morphology. Such studies could potentially discriminate between different mechanisms.

  16. Estimate of a D region ionospheric electron density profile from MF radio wave observations by the S-310-37 rocket

    NASA Astrophysics Data System (ADS)

    Ashihara, Y.; Ishisaka, K.; Miyake, T.

    2016-01-01

    The S-310-37 rocket, launched at 11:20 (JST) on 16 January 2007, was equipped with a radio receiver to observe the medium-frequency (MF) radio wave propagation characteristics in the ionosphere. The radio receiver measured the intensity and the waveform of the radio wave at 873 kHz from the NHK Kumamoto broadcasting station. The polarized mode waves' intensity characteristics were obtained by analyzing the observed waveform. In this study, the S-310-37 rocket-observed polarized mode waves' propagation characteristics are analyzed in order to estimate the electron density profile in the ionospheric D region. These observations become better measurement approach because the electron density profile in the ionospheric D region is difficult to be observed by other equipment such as a Langmuir probe. A Langmuir probe can measure in the ionospheric D region; however, the absolute values may be off by the influence of wake effects around the sounding rocket. It is demonstrated that the propagation characteristics of the polarized mode waves can be successfully used to derive the electron density profile in the ionospheric D region.

  17. A virus spreading model for cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Hou, L.; Yeung, K. H.; Wong, K. Y.

    2012-12-01

    Since cognitive radio (CR) networks could solve the spectrum scarcity problem, they have drawn much research in recent years. Artificial intelligence(AI) is introduced into CRs to learn from and adapt to their environment. Nonetheless, AI brings in a new kind of attacks specific to CR networks. The most powerful one is a self-propagating AI virus. And no spreading properties specific to this virus have been reported in the literature. To fill this research gap, we propose a virus spreading model of an AI virus by considering the characteristics of CR networks and the behavior of CR users. Several important observations are made from the simulation results based on the model. Firstly, the time taken to infect the whole network increases exponentially with the network size. Based on this result, CR network designers could calculate the optimal network size to slow down AI virus propagation rate. Secondly, the anti-virus performance of static networks to an AI virus is better than dynamic networks. Thirdly, if the CR devices with the highest degree are initially infected, the AI virus propagation rate will be increased substantially. Finally, it is also found that in the area with abundant spectrum resource, the AI virus propagation speed increases notably but the variability of the spectrum does not affect the propagation speed much.

  18. Propagation characteristics of Po/So in the lithosphere of the Eastern Atlantic ocean revealed from automatic incoherent ocean bottom array processing

    NASA Astrophysics Data System (ADS)

    Dahm, T.; Krueger, F.; Hannemann, K.

    2013-12-01

    Contrary to continental lithosphere, the seismic shear wave anisotropy of the uppermost oceanic mantle is rarely sampled at local scales. Local anisotropy information from ocean bottom stations are often difficult to obtain because of the rare deployments and because of poor signal to noise (SNR) ratio at these stations. In a pilot study in the North Atlantic between Portugal mainland, Madeira and the Azores, we demonstrate that an ocean bottom mid-aperture array at 4-5 km depth allows for automatic retrieval of SHo, SVo and Po velocities from data filtered between 4 and 25 Hz from regional weak earthquakes with Ml < 3 in up to 500 km distance, even if the SNR is poor. We use incoherent array analysis applied to short-term average / long-term average (STA/LTA) characteristic functions. Contrary to conventional methods the array analysis reveals local, absolute velocities beneath the array that are not averages over long travelpaths. Additionally, earthquakes can be located using the backazimuth and So-Po difference times. For instance, we observe seismicity at an aseismic segment of the Gloria transform fault. For our pilot array at 38.4 N 18.38 W we detect and study more than 900 suited earthquakes over a period of 10 months, and retrieve a strong azimuthal anisotropy of SH and SV waves of about 8% with a fast direction striking 90E in accord with the direction of plate motion. Unexpectedly, the azimuthal anisotropy of P waves is small or even absent. We study furthermore the different propagation paths and find strong attenuation of Po and So for paths crossing the Azores hotspot region and attenuation of So only for the region directly west of Portugal. This indicates that Po and So phases are blocked or not generated in the hot upper mantle of active spreading zones The project is funded by the German Research Foundation (Da478/21-1, Kr1935/13-1). DEPAS (AWI, GFZ) and University of Hamburg supported the OBS deployment.

  19. SPEAKING IN LIGHT - Jupiter radio signals as deflections of light-emitting electron beams in a vacuum chamber

    NASA Astrophysics Data System (ADS)

    Petrovic, K.

    2015-10-01

    Light emitting electron beam generated in a vacuum chamber is used as a medium for visualizing Jupiter's electromagnetic radiation. Dual dipole array antenna is receiving HF radio signals that are next amplified to radiate a strong electromagnetic field capable of influencing the propagation of electron beam in plasma. Installation aims to provide a platform for observing the characteristics of light emitting beam in 3D, as opposed to the experiments with cathode ray tubes in 2-dimensional television screens. Gas giant 'speaking' to us by radio waves bends the light in the tube, allowing us to see and hear the messages of Jupiter - God of light and sky.

  20. Shaping propagation invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, Michael; Soskind, Rose; Soskind, Yakov

    2015-11-01

    Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.

  1. Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernov, S. V.; Gwinn, C. R.; Tchekhovskoy, A. A.

    2015-10-01

    Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.

  2. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  3. Planetary radio waves

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1986-01-01

    Three planets, the earth, Jupiter and Saturn are known to emit nonthermal radio waves which require coherent radiation processes. The characteristic features (frequency spectrum, polarization, occurrence probability, radiation pattern) are discussed. Radiation which is externally controlled by the solar wind is distinguished from internally controlled radiation which only originates from Jupiter. The efficiency of the externally controlled radiation is roughly the same at all three planets (5 x 10 to the -6th) suggesting that similar processes are active there. The maser radiation mechanism for the generation of the radio waves and general requirements for the mechanism which couples the power generator to the region where the radio waves are generated are briefly discussed.

  4. Giant radio pulses

    NASA Astrophysics Data System (ADS)

    Kondratiev, Vladislav

    Rotation-powered radio pulsars exhibit a remarkably diverse spectrum of variability with characteristic time scales from days and even years (intermittent pulsars) to minutes-seconds (nulling) and (sub-)microseconds. The latter time scales are associated with the phenomenon of giant pulses (GPs) and micropulses. The story of GPs started in 1968, when Staelin and Reifenstein discovered the Crab pulsar through its spectacularly bright radio pulses. To date, only seven pulsars out of more than 2200 are known to show GP emission, namely the pulsars B0531+21, B1937+21, B0540-69, B1821-24, B1957+20, J0218+4232, and B1820-30A. Giant pulses are characterized by large energies (more than ten times of the energy of the average pulse), short durations, power-law energy distribution, specific rotational phase of occurrence, high degree of polarization, and accompanying high-energy radiation. Large energies of GPs and coincidence of their phase of occurrence with peaks of high-energy profiles hint at the same mechanism of radio GP and high-energy emission. The correlation of Crab pulsar GPs with optical, X-ray and gamma-ray photons was studied for the past 20 years, with only radio/optical link confirmed so far. In my talk I will present the summary of the observational evidence of radio GPs and give an overview of theoretical advances on giant-pulse emission mechanism.

  5. Managing Mobile/Satellite Propagation Data

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1990-01-01

    "Data Management System for Mobile Satellite Propagation" software package collection of FORTRAN programs and UNIX shell scripts designed to handle huge amounts of data resulting from mobile/satellite radio-propagation experiments. Data from experiments converted into standard and more useful forms. Software package contains program to convert binary format of data into standard ASCII format suitable for use with wide variety of computing-machine architectures. Written in either FORTRAN 77 or UNIX shell scripts.

  6. ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS

    SciTech Connect

    Liu, Ying D.; Luhmann, Janet G.; Moestl, Christian; Bale, Stuart D.; Lin, Robert P.; Lugaz, Noe; Davies, Jackie A.

    2013-05-20

    observer; and (3) our approach to comparing wide-angle heliospheric imaging observations with interplanetary radio type II bursts provides a novel tool in investigating CME propagation characteristics. Future CME observations and space weather forecasting are discussed based on these results.

  7. Cosmic ray transport in galaxy clusters: implications for radio halos and gamma-rays.

    NASA Astrophysics Data System (ADS)

    Pfrommer, C.; Enßlin, T. A.; Miniati, F.; Subramanian, K.

    Observations of giant radio halos provide unambiguous evidence for the existence of cosmic ray (CR) electrons and magnetic fields in galaxy clusters. The physical mechanism generating radio halos is still heavily debated. We critically discuss the proposed models for the radio halo emission and highlight the weaknesses underlying each explanation. We present an idea how the interplay of CR propagation and turbulent advection selects a bimodal spatial CR distribution that is characteristic for the dynamical state of a cluster. As a result, strongly turbulent, merging clusters should have a more centrally concentrated CR energy density profile with respect to relaxed ones with very subsonic turbulence. This translates into a bimodality of the expected diffuse radio and gamma ray emission of clusters. Thus, the observed bimodality of cluster radio halos appears to be a natural consequence of the interplay of CR transport processes, independent of the model of radio halo formation, be it hadronic interactions of CR protons or re-acceleration of low-energy CR electrons.

  8. Proceedings of the Seventeenth NASA Propagation Experimenters Meeting (NAPEX 17) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Editor)

    1993-01-01

    The NASA Propagation Experimenters Meeting (NAPEX) is convened annually to discuss studies made on radio wave propagation by investors from domestic and international organizations. NAPEX 17 was held on 15 June 1993. The meeting was organized into two technical sessions. The first session was dedicated to slant path propagation studies and experiments. The second session focused on propagation studies for mobile and personal communications. Preceding NAPEX 17, the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop was held on 14 June 1993 to review ACTS propagation activities with emphasis on ACTS experiments status and data collection, processing, and exchange.

  9. Radio Astronomy Explorer /RAE/. I - Observations of terrestrial radio noise.

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Caruso, J. A.; Stone, R. G.

    1973-01-01

    Radio Astronomy Explorer (RAE) I data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial radio noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 dB and more above cosmic noise background, on frequencies above the F-layer critical frequency.

  10. A time dependent difference theory for sound propagation in ducts with flow. [characteristic of inlet and exhaust ducts of turbofan engines

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1979-01-01

    A time dependent numerical solution of the linearized continuity and momentum equation was developed for sound propagation in a two dimensional straight hard or soft wall duct with a sheared mean flow. The time dependent governing acoustic difference equations and boundary conditions were developed along with a numerical determination of the maximum stable time increments. A harmonic noise source radiating into a quiescent duct was analyzed. This explicit iteration method then calculated stepwise in real time to obtain the transient as well as the steady state solution of the acoustic field. Example calculations were presented for sound propagation in hard and soft wall ducts, with no flow and plug flow. Although the problem with sheared flow was formulated and programmed, sample calculations were not examined. The time dependent finite difference analysis was found to be superior to the steady state finite difference and finite element techniques because of shorter solution times and the elimination of large matrix storage requirements.

  11. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  12. Rift propagation

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.; Schubert, G.

    1989-01-01

    A model for rift propagation which treats the rift as a crack in an elastic plate which is filled from beneath by upwelling viscous asthenosphere as it lengthens and opens. Growth of the crack is driven by either remotely applied forces or the pressure of buoyant asthenosphere in the crack and is resisted by viscous stresses associated with filling the crack. The model predicts a time for a rift to form which depends primarily on the driving stress and asthenosphere viscosity. For a driving stress on the order of 10 MPa, as expected from the topography of rifted swells, the development of rifts over times of a few Myr requires an asthenosphere viscosity of 10 to the 16th Pa s (10 to the 17th poise). This viscosity, which is several orders of magnitude less than values determined by postglacial rebound and at least one order of magnitude less than that inferred for spreading center propagation, may reflect a high temperature or large amount of partial melting in the mantle beneath a rifted swell.

  13. User needs for propagation data

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas M.

    1993-01-01

    New and refined models of radio signal propagation phenomena are needed to support studies of evolving satellite services and systems. Taking an engineering perspective, applications for propagation measurements and models in the context of various types of analyses that are of ongoing interest are reviewed. Problems that were encountered in the signal propagation aspects of these analyses are reviewed, and potential solutions to these problems are discussed. The focus is on propagation measurements and models needed to support design and performance analyses of systems in the Mobile-Satellite Service (MSS) operating in the 1-3 GHz range. These systems may use geostationary or non-geostationary satellites and Frequency Division Multiple Access (FDMA), Time Division Multiple Access Digital (TDMA), or Code Division Multiple Access (CDMA) techniques. Many of the propagation issues raised in relation to MSS are also pertinent to other services such as broadcasting-satellite (sound) at 2310-2360 MHz. In particular, services involving mobile terminals or terminals with low gain antennas are of concern.

  14. Phenomenology of magnetospheric radio emissions

    NASA Technical Reports Server (NTRS)

    Carr, T. D.; Desch, M. D.; Alexander, J. K.

    1983-01-01

    Jupiter has now been observed over 24 octaves of the radio spectrum, from about 0.01 MHz to 300,000 MHz. Its radio emissions fill the entire spectral region where interplanetary electromagnetic propagation is possible at wavelengths longer than infrared. Three distinct types of radiation are responsible for this radio spectrum. Thermal emission from the atmosphere accounts for virtually all the radiation at the high frequency end. Synchrotron emission from the trapped high-energy particle belt deep within the inner magnetosphere is the dominant spectral component from about 4000 to 40 MHz. The third class of radiation consists of several distinct components of sporadic low frequency emission below 40 MHz. The decimeter wavelength emission is considered, taking into account the discovery of synchrotron emission, radiation by high-energy electrons in a magnetic field, and the present status of Jovian synchrotron phenomenology. Attention is also given to the decameter and hectometer wavelength emission, and emissions at kilometric wavelengths.

  15. Characteristic investigation of 2D photonic crystals with full material anisotropy under out-of-plane propagation and liquid-crystal-filled photonic-band-gap-fiber applications using finite element methods.

    PubMed

    Hsu, Sen-ming; Chang, Hung-chun

    2008-12-22

    To effectively investigate the fundamental characteristics of two-dimensional (2D) photonic crystals (PCs) with arbitrary 3D material anisotropy under the out-of-plane wave propagation, we establish a full-vectorial finite element method based eigenvalue algorithm to perform related analysis correctly. The band edge diagrams can be conveniently constructed from the band structures of varied propagation constants obtained from the algorithm, which is helpful for the analysis and design of photonic ban gap (PBG) fibers. Several PCs are analyzed to demonstrate the correctness of this numerical model. Our analysis results for simple PCs are checked with others' ones using different methods, including the transfer matrix method, the finite-difference frequency-domain (FDFD) method, and the plane-wave expansion method. And the validity of those for the most complex PC with arbitrary 3D anisotropy is supported by related liquid-crystal-filled PBG fiber mode analysis, which demonstrates the dependence of transmission properties on the PBGs, employing a full-vectorial finite element beam propagation method (FE-BPM). PMID:19104565

  16. Atmospheric sound propagation

    NASA Technical Reports Server (NTRS)

    Cook, R. K.

    1969-01-01

    The propagation of sound waves at infrasonic frequencies (oscillation periods 1.0 - 1000 seconds) in the atmosphere is being studied by a network of seven stations separated geographically by distances of the order of thousands of kilometers. The stations measure the following characteristics of infrasonic waves: (1) the amplitude and waveform of the incident sound pressure, (2) the direction of propagation of the wave, (3) the horizontal phase velocity, and (4) the distribution of sound wave energy at various frequencies of oscillation. Some infrasonic sources which were identified and studied include the aurora borealis, tornadoes, volcanos, gravity waves on the oceans, earthquakes, and atmospheric instability waves caused by winds at the tropopause. Waves of unknown origin seem to radiate from several geographical locations, including one in the Argentine.

  17. Spacecraft Radio Scintillation and Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1993-01-01

    When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of

  18. Globally propagating waves in the solar corona -an introduction

    NASA Astrophysics Data System (ADS)

    Warmuth, Alexander

    Globally propagating wave-like disturbances have been observed in the solar chromosphere since the 1960s. These "Moreton waves" were interpreted as the ground tracks of dome-shaped waves that expand through the corona and sweep over the chromosphere. However, only the recent decade has seen detailed analysis of these phenomena, prompted by the availability of coronal imaging data from numerous spaced-based instruments, most famously SOHO/EIT. Globally propagating coronal waves have now been observed in a wide range of spectral channels, yielding a wealth of information. Still, no consensus on their physical nature has been reached. While many findings have supported the "classical" interpretation of the disturbances -fast-mode MHD waves which are propagating in the solar corona and which may be shocked -other characteristics have given rise to alternative models which involve magnetic reconfiguration in the framework of a CME eruption. I will review the different observational signatures of coronal waves, as well as associated phenomena such as metric type II radio bursts. Furthermore, I will discuss the different physical interpretations of coronal waves and how they are supported by observations. Finally, I will consider how some of the lingering controversies might be resolved by observations.

  19. UHF Radio Wave Attenuation Factor Database

    NASA Astrophysics Data System (ADS)

    Khomenko, S. I.; Kostina, V. L.; Mytsenko, I. M.; Roenko, A. N.

    2007-07-01

    As is known each sea-going vessel is equipped with navigation, communication and other radio engineering facilities that serve to secure the safety of navigation and are chiefly operated at UHF-wave band. In developing these systems and calculating the energy potential for a necessary coverage range one should be well aware of the radio signal attenuation processes on a propagation path. The key parameter of this path is the (radio) wave attenuation factor V and its distance dependence V(R). A diversity of factors influencing the radio signal attenuation over the oceanic expanses, especially well pronounced and quite stable tropospheric ducts, and the lack of experimental data were the compelling reasons why the researchers of the Institute for Radiophysics and Electronics, NASU, had spent many years on comprehensive radiophysical investigations carried out in different regions of the Atlantic, Indian, Arctic and Pacific Oceans. The experimental data obtained allow creating the database of radio wave attenuation factor V.

  20. Modeling of radio emissions from Neptune

    NASA Astrophysics Data System (ADS)

    Menietti, J. D.; Curran, D. B.

    We have developed a plasma model of the Neptunian magnetosphere that includes a density cavity centered on the L=6 magnetic field line. Assuming the O8 magnetic field model, we have performed ray tracing of smooth radio emission from Neptune, and the results generally support the findings of Ladreiter et al. (1991), but differ in details of the source locations. In addition, we have examined source locations of bursty radio emission that are consistent with propagation at small wave normal angles as hypothesized for the temperature anisotropic beam instability (TABI) (Winglee et al., 1992). The source locations are adjacent (complementary) to the sources of the smooth radio emission. Using previously developed plasma and magnetic field models for Uranus, we have performed a similar study of bursty radio emissions. Again the source locations appear to be adjacent to the source regions of smooth radio emission, consistent with the TABI.

  1. The Radio JOVE Project - Shoestring Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  2. Cutting line determination for plant propagation

    NASA Astrophysics Data System (ADS)

    Lo, Li-Yun; Hsia, Chi-Chun; Sun, Hua-Hong; Chen, Hsiang-Ju; Wu, Xin-Ting; Hu, Min-Chun

    2014-01-01

    Investigating an efficient method for plant propagation can help not only prevent extinction of plants but also facilitate the development of botanical industries. In this paper, we propose to use image processing techniques to determine the cutting-line for the propagation of two kinds of plants, i.e. Melaleuca alternifolia Cheel and Cinnamomum kanehirai Hay, which have quite different characteristics in terms of shape, structure, and propagation way (e.g. propagation by seeding and rooting, respectively). The proposed cutting line determination methods can be further applied to develop an automatic control system to reduce labor cost and increase the effectiveness of plant propagation.

  3. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nassar (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program.

  4. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    NASA Technical Reports Server (NTRS)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  5. EVA Radio DRATS 2011 Report

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Bakula, Casey J.

    2012-01-01

    In the Fall of 2011, National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) participated in the Desert Research and Technology Studies (DRATS) field experiments held near Flagstaff, Arizona. The objective of the DRATS outing is to provide analog mission testing of candidate technologies for space exploration, especially those technologies applicable to human exploration of extra- terrestrial rocky bodies. These activities are performed at locations with similarities to extra-terrestrial conditions. This report describes the Extravehicular Activity (EVA) Dual-Band Radio Communication System which was demonstrated during the 2011 outing. The EVA radio system is designed to transport both voice and telemetry data through a mobile ad hoc wireless network and employs a dual-band radio configuration. Some key characteristics of this system include: 1. Dual-band radio configuration. 2. Intelligent switching between two different capability wireless networks. 3. Self-healing network. 4. Simultaneous data and voice communication.

  6. Near earth propagation: physics revealed

    NASA Astrophysics Data System (ADS)

    Wert, R.; Goroch, A.; Worthington, E.; Wong, V.

    2007-04-01

    Both the military and consumer sectors are pursuing distributed networked systems and sensors. A major stumbling block to deployment of these sensors will be the radio frequency (RF) propagation environment within a few wavelengths of the earth. Increasing transmit power (battery consumption) is not a practical solution to the problem. This paper will discuss some of the physical phenomena related to the near earth propagation (NEP) problem. When radiating near the earth the communications link is subjected to a list of physical impairments. On the list are the expected Fresnel region encroachment and multipath reflections. Additionally, radiation pattern changes and near earth boundary layer perturbations exist. A significant amount of data has been collected on NEP. Disturbances in the NEP atmosphere can have a time varying attenuation related to the time of day and these discoveries will be discussed. Solutions, or workarounds, to the near earth propagation problem hinge on dynamic adaptive RF elements. Adaptive RF elements will allow the distributed sensor to direct energy, beam form, impedance correct, increase communication efficiency, and decrease battery consumption. Small electrically controllable elements are under development to enable antenna impedance matching in a dynamic environment. Additionally, small dynamic beam forming arrays are under development to focus RF energy in the direction of need. With an increased understanding of the near earth propagation problem, distributed autonomous networked sensors can become a reality within a few centimeters of the earth.

  7. RADIO ALTIMETERS

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A radio ranging device is described which utilizes a superregenerative oscillator having alternate sending and receiving phases with an intervening ranging interval between said phases, means for varying said ranging interval, means responsive to an on-range noise reduction condition for stopping said means for varying the ranging interval and indicating means coupled to the ranging interval varying means and calibrated in accordance with one-half the product of the ranging interval times the velocity of light whereby the range is indicated.

  8. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Mahoney, M. J.; Jacobson, A. R.; Knowles, S. H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities.

  9. Indoor radio measurement and planning for UMTS/HSDPA with antennas

    NASA Astrophysics Data System (ADS)

    Eheduru, Marcellinus

    and some important properties of antennas which must be considered when choosing an antenna for indoor radio propagation. The challenges of in-building network coverage and also the objectives of this thesis are also mentioned in this chapter. The evolution and standardization, network architecture, radio features and most importantly, the radio resource management features of UMTS/HSDPA are given in chapter two. In this chapter, the reason why Wideband Code Division Multiple Access (WCDMA) was specified and selected for 3G (UMTS) systems would be seen. The architecture of the radio access network, interfaces with the radio access network between base stations and radio network controllers (RNC), and the interface between the radio access network and the core network are also described in this chapter. The main features of HSDPA are mentioned at the end of the chapter. In chapter three the principles of the WCDMA air interface, including spreading, Rake reception, signal fading, power control and handovers are introduced. The different types and characteristics of the propagation environments and how they influence radio wave propagation are mentioned. UMTS transport, logical and physical channels are also mentioned, highlighting their significance and relationship in and with the network. Radio network planning for UMTS is discussed in chapter four. The outdoor planning process which includes dimensioning, detailed planning, optimization and monitoring is outlined. Indoor radio planning with distributed antenna systems (DAS), which is the idea and motivation behind this thesis work, is also discussed. The various antennas considered and the antenna that was selected for this thesis experiment was discussed in chapter five. The antenna radiation pattern, directivity, gain and input impedance were the properties of the antenna that were taken into consideration. The importance of the choice of the antenna for any particular type of indoor environment is also mentioned

  10. Radio Jove: Jupiter Radio Astronomy for Citizens

    NASA Astrophysics Data System (ADS)

    Higgins, Charles; Thieman, J. R.; Flagg, R.; Reyes, F. J.; Sky, J.; Greenman, W.; Brown, J.; Typinski, D.; Ashcraft, T.; Mount, A.

    2014-01-01

    Radio JOVE is a hands-on educational activity that brings the radio sounds of the Sun, Jupiter, the Milky Way Galaxy, and terrestrial radio noise to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with professional radio observatories in real-time over the Internet. Our website (http://radiojove.gsfc.nasa.gov) includes science information, construction manuals, observing guides, and education resources for teachers and students. Radio Jove is continually expanding its participants with over 1800 kits sold to more than 70 countries worldwide. Recently some of our most dedicated observers have upgraded their Radio Jove antennas to semi-professional observatories. We have spectrographs and wide band antennas, some with 8 MHz bandwidth and some with dual polarization capabilities. In an effort to add to the science literature, these observers are coordinating their efforts to pursue some basic questions about Jupiter’s radio emissions (radio source locations, spectral structure, long term changes, etc.). We can compare signal and ionosphere variations using the many Radio Jove observers at different locations. Observers are also working with members of the Long Wavelength Array Station 1 (LWA1) radio telescope to coordinate observations of Jupiter; Radio Jove is planning to make coordinated observations while the Juno Mission is active beginning in 2015. The Radio Jove program is overviewed, its hardware and software are highlighted, recent sample observations are shown, and we demonstrate that we are capable of real citizen science.

  11. S-Band propagation measurements

    NASA Technical Reports Server (NTRS)

    Briskman, Robert D.

    1994-01-01

    A geosynchronous satellite system capable of providing many channels of digital audio radio service (DARS) to mobile platforms within the contiguous United States using S-band radio frequencies is being implemented. The system is designed uniquely to mitigate both multipath fading and outages from physical blockage in the transmission path by use of satellite spatial diversity in combination with radio frequency and time diversity. The system also employs a satellite orbital geometry wherein all mobile platforms in the contiguous United States have elevation angles greater than 20 deg to both of the diversity satellites. Since implementation of the satellite system will require three years, an emulation has been performed using terrestrial facilities in order to allow evaluation of DARS capabilities in advance of satellite system operations. The major objective of the emulation was to prove the feasibility of broadcasting from satellites 30 channels of CD quality programming using S-band frequencies to an automobile equipped with a small disk antenna and to obtain quantitative performance data on S-band propagation in a satellite spatial diversity system.

  12. Radio tracking system

    NASA Technical Reports Server (NTRS)

    Breidenthal, J. C.; Komarek, T. A.

    1982-01-01

    The principles and techniques of deep space radio tracking are described along with the uses of tracking data in navigation and radio science. Emphasis is placed on the measurement functions of radio tracking.

  13. Electron Exciter Speeds Associated with Interplanetary Type III Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; MacDowall, R. J.

    2015-10-01

    This article provides a comprehensive quantitative investigation of the kinematics of the electron exciters associated with interplanetary type III solar radio bursts. Detailed multispacecraft analyses of the radio and plasma wave data from the widely separated Wind and STEREO spacecraft are provided for five interplanetary type III bursts that illustrate different aspects of the problems involved in establishing the electron exciter speeds. The exciter kinematics are determined from the observed frequency drift and in-situ radiation characteristics for each type III burst. The analysis assumes propagation of the electron exciters along a Parker spiral, with origin at the associated solar active region, and curvature determined by the measured solar wind speed. The analyses take fully into account the appropriate light-propagation-time corrections from the radio source to the observing spacecraft as the exciters propagate along the Parker spiral path. For the five in-situ type III bursts analyzed in detail here, we found that their initial exciter speeds, near the Sun, ranged from 0.2c to 0.38c, where c is the speed of light. This is significantly higher than the exciter speeds derived from other recent analyses. The results presented here further suggest that the type III electron exciters normally decelerate as they propagate through the interplanetary medium. We argue based on the observations by the widely separated spacecraft that the initial part of the type III radiation usually occurs at the fundamental of the plasma frequency. Finally, we compare the results for the exciter speeds to all previous determinations and provide quantitative arguments to explain the differences.

  14. The Influence of Soil Properties and Local Characteristics on the Distribution, Migration and Potential Bioavailability of Radio-Cesium in Bavarian Forest Ecosystems More Than 20 Years After the Chernobyl Accident

    NASA Astrophysics Data System (ADS)

    Winkelbauer, J.; Voelkel, J.; Leopold, M.; Huerkamp, K.; Dehos, R.

    2008-12-01

    Soil properties and local characteristics of landscapes and ecosystems influence the behaviour of Radio- Cesium. Humic horizons are a main factor in understanding the migration and potential bioavailability of radio-nuclides in soils. Until 1962 and in the year 1986, nuclear arms tests in the Pacific and the Chernobyl reactor accident emitted persistent radionuclides in the atmosphere that are stored in several European ecosystems. Short-term high as well as long-term low immissions lead to enrichments and increasing contamination of the environment up to superposition effects in certain ecosystems. South German forest ecosystems like the Bavarian Forest or the Northern pre-Alps are subareas of the cesium fallout affected sites after the Chernobyl accident. Cesium-137 is constantly contained in the vegetation and food chain in spite of decreasing local doses. Investigations have shown that the enrichment of cesium is mainly restricted to the organic top layers of the forest soils. Examples of several Bavarian forest ecosystems are given. Horizontal and vertical forest soil distributions of the cesium contamination and its bioavailability were determined to provide a default-document how to act in case of a repetition of a nuclear accident. Such a guideline has been created by order of the Bavarian State Government and its scope is presented here.

  15. AURORAL RADIO EMISSION FROM STARS: THE CASE OF CU VIRGINIS

    SciTech Connect

    Trigilio, Corrado; Leto, Paolo; Umana, Grazia; Buemi, Carla S.; Leone, Francesco

    2011-09-20

    CU Virginis is a rapidly rotating Magnetic Chemically Peculiar star with at present unique characteristics as a radio emitter. The most intriguing one is the presence of intense, 100% circularly polarized radiation ascribed to a cyclotron maser. Each time the star rotates, this highly beamed emission points two times toward the Earth, like a pulsar. We observed CU Vir in 2010 April with the Expanded Very Large Array in two bands centered at 1450 and 1850 MHz. We covered nearly the whole rotational period, confirming the presence of the two pulses at a flux density up to 20 mJy. Dynamical spectra, obtained with unprecedented spectral and temporal sensitivity, allow us to clearly see the different time delays as a function of frequency. We interpret this behavior as a propagation effect of the radiation inside the stellar magnetosphere. The emerging scenario suggests interesting similarities with the auroral radio emission from planets, in particular with the Auroral Kilometric Radiation from Earth, which originates at few terrestrial radii above the magnetic poles and was only recently discovered to be highly beamed. We conclude that the magnetospheres of CU Vir, Earth, and other planets, maybe also exoplanets, could have similar geometrical and physical characteristics in the regions where the cyclotron maser is generated. In addition, the pulses are perfect 'markers' of the rotation period. This has given us for the first time the possibility to measure with extraordinary accuracy the spin-down of a star on or near the main sequence.

  16. Effect of Low pH and Aluminum Toxicity on the Photosynthetic Characteristics of Different Fast-Growing Eucalyptus Vegetatively Propagated Clones.

    PubMed

    Yang, Mei; Tan, Ling; Xu, Yuanyuan; Zhao, Yihui; Cheng, Fei; Ye, Shaoming; Jiang, Weixin

    2015-01-01

    Knowing how acid soils and aluminum in soils may limit the growth of Eucalyptus trees in plantations is important because these plantations grow in many tropical and subtropical regions. Seedlings of four vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla 'GLGU9'(G9), E. grandis × E. urophylla 'GLGU12' (G12), E. urophylla × E. camaldulensis 'GLUC3' (G3) and E. urophylla 'GLU4'(G4), were subjected to liquid culture with Hoagland nutrient solution for 40 days, then treated with four different treatments of acid and aluminum for 1 day. The four treatments used either pH 3.0 or 4.0 with or without added aluminum (4.4 mM) in all possible combinations; a control used no added aluminum at pH 4.8. Subsequently, the photosynthetic parameters and morphology of leaves from eucalypt seedlings were determined and observed. The results showed that the tested chlorophyll content, net photosynthetic rate, transpiration rate and water use efficiency were apparently inhibited by aluminum. Under uniform Al concentration (4.4 mM), the Al-induced limitation to photosynthetic parameters increased with pH, indicating acid stimulation to Al toxicity. Among all treatments, the most significant reduction was found in the combination of pH 3.0 and 4.4 mM Al. The photosynthetic and transpiration rates showed similar trends with G9 > G12 > G3 > G4, suggesting that G9 and G12 had higher Al-tolerance than other two clones. Microscopic observation revealed changes in leaf morphology when exposed to Al stress; for example, a reduced thickness of leaf epidermis and palisade tissue, the descendant palisade tissue/spongy tissue ratio and leaf tissue looseness. Overall, the acid and aluminum stress exerted negative effects on the photosynthetic activity of eucalypt seedlings, but the differences in tolerance to Al toxicity between the clones were favorable, offering potential to improve Eucalyptus plantation productivity by selecting Al tolerant clones. PMID:26090998

  17. Effect of Low pH and Aluminum Toxicity on the Photosynthetic Characteristics of Different Fast-Growing Eucalyptus Vegetatively Propagated Clones

    PubMed Central

    Yang, Mei; Tan, Ling; Xu, Yuanyuan; Zhao, Yihui; Cheng, Fei; Ye, Shaoming; Jiang, Weixin

    2015-01-01

    Knowing how acid soils and aluminum in soils may limit the growth of Eucalyptus trees in plantations is important because these plantations grow in many tropical and subtropical regions. Seedlings of four vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla ‘GLGU9’(G9), E. grandis × E. urophylla ‘GLGU12’ (G12), E. urophylla × E. camaldulensis ‘GLUC3’ (G3) and E. urophylla ‘GLU4’(G4), were subjected to liquid culture with Hoagland nutrient solution for 40 days, then treated with four different treatments of acid and aluminum for 1 day. The four treatments used either pH 3.0 or 4.0 with or without added aluminum (4.4 mM) in all possible combinations; a control used no added aluminum at pH 4.8. Subsequently, the photosynthetic parameters and morphology of leaves from eucalypt seedlings were determined and observed. The results showed that the tested chlorophyll content, net photosynthetic rate, transpiration rate and water use efficiency were apparently inhibited by aluminum. Under uniform Al concentration (4.4 mM), the Al-induced limitation to photosynthetic parameters increased with pH, indicating acid stimulation to Al toxicity. Among all treatments, the most significant reduction was found in the combination of pH 3.0 and 4.4 mM Al. The photosynthetic and transpiration rates showed similar trends with G9 > G12 > G3 > G4, suggesting that G9 and G12 had higher Al-tolerance than other two clones. Microscopic observation revealed changes in leaf morphology when exposed to Al stress; for example, a reduced thickness of leaf epidermis and palisade tissue, the descendant palisade tissue/spongy tissue ratio and leaf tissue looseness. Overall, the acid and aluminum stress exerted negative effects on the photosynthetic activity of eucalypt seedlings, but the differences in tolerance to Al toxicity between the clones were favorable, offering potential to improve Eucalyptus plantation productivity by selecting Al tolerant clones. PMID

  18. Propagation of a fluidization - combustion wave

    SciTech Connect

    Pron, G.P.; Gusachenko, L.K.; Zarko, V.E.

    1994-05-01

    A fluidization-combustion wave propagating through a fixed and initially cool bed was created by igniting coal at the top surface of the bed. The proposed physical interpretation of the phenomenon is in qualitative agreement with the experimental dependences of the characteristics of the process on determining parameters. A kindling regime with forced wave propagation is suggested.

  19. Radio emission from supernova remnants

    NASA Astrophysics Data System (ADS)

    Dubner, Gloria; Giacani, Elsa

    2015-09-01

    The explosion of a supernova releases almost instantaneously about 10^{51} ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from an SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critically discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analysis of the prospects for future research with the latest-generation radio telescopes.

  20. Uranus as a radio source

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.; Zarka, P.; Lecacheux, A.; Leblanc, Y.; Aubier, M.; Ortega-Molina, A.

    1991-01-01

    The complex nature of the Uranus radio emissions, both magnetospheric and atmospheric, is reviewed, with emphasis on the identification of distinct components and the determination of their source locations. Seven radii components were discovered in addition to the RF signature of lightning in the planet's atmosphere. Six of the seven magnetospheric components are freely propagating emissions; one component, the nonthermal continuum, is trapped in the density cavity between the magnetopause and the dense inner magnetosphere. The radio components are divided into two types according to their emission signature: bursty emission and smooth emission. The inferred source location for the dominant nightside emission is above the nightside magnetic pole, largely overlapping the UV auroral region and the magnetic polar cap. The N-burst component appears to be associated with solar-wind enhancements at Uranus, consistent with the idea that the solar wind was triggering magnetospheric substormlike activity during the encounter.

  1. Soviet radio telescopes and solar radio astronomy

    NASA Astrophysics Data System (ADS)

    Alekseev, V. A.; Gel'Freikh, Georgii B.; Zaitsev, Valerii V.; Iliasov, Iurii P.; Kaidanovskii, N. L.

    Soviet radio telescopes of different type and purpose are described, with particular emphasis on very long baseline interferometry. Soviet radio-astronomy studies of solar radio emission and the interplanetary medium are also discussed, with particular attention given to the investigation of the sun's supercorona and the interplanetary plasma.

  2. Graphene electrostatic microphone and ultrasonic radio.

    PubMed

    Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M F; Zettl, Alex K

    2015-07-21

    We present a graphene-based wideband microphone and a related ultrasonic radio that can be used for wireless communication. It is shown that graphene-based acoustic transmitters and receivers have a wide bandwidth, from the audible region (20∼20 kHz) to the ultrasonic region (20 kHz to at least 0.5 MHz). Using the graphene-based components, we demonstrate efficient high-fidelity information transmission using an ultrasonic band centered at 0.3 MHz. The graphene-based microphone is also shown to be capable of directly receiving ultrasound signals generated by bats in the field, and the ultrasonic radio, coupled to electromagnetic (EM) radio, is shown to function as a high-accuracy rangefinder. The ultrasonic radio could serve as a useful addition to wireless communication technology where the propagation of EM waves is difficult. PMID:26150483

  3. Graphene electrostatic microphone and ultrasonic radio

    PubMed Central

    Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M. F.; Zettl, Alex K.

    2015-01-01

    We present a graphene-based wideband microphone and a related ultrasonic radio that can be used for wireless communication. It is shown that graphene-based acoustic transmitters and receivers have a wide bandwidth, from the audible region (20∼20 kHz) to the ultrasonic region (20 kHz to at least 0.5 MHz). Using the graphene-based components, we demonstrate efficient high-fidelity information transmission using an ultrasonic band centered at 0.3 MHz. The graphene-based microphone is also shown to be capable of directly receiving ultrasound signals generated by bats in the field, and the ultrasonic radio, coupled to electromagnetic (EM) radio, is shown to function as a high-accuracy rangefinder. The ultrasonic radio could serve as a useful addition to wireless communication technology where the propagation of EM waves is difficult. PMID:26150483

  4. Faint solar radio structures from decametric observations

    NASA Astrophysics Data System (ADS)

    Briand, C.; Zaslavsky, A.; Maksimovic, M.; Zarka, P.; Lecacheux, A.; Rucker, H. O.; Konovalenko, A. A.; Abranin, E. P.; Dorovsky, V. V.; Stanislavsky, A. A.; Melnik, V. N.

    2008-10-01

    Aims: Decameter radio observations of the solar corona reveal the presence of numerous faint frequency drifting emissions, similar to “solar S bursts” which are reported in the literature. We present a statistical analysis of the characteristics of these emissions and propose a mechanism to excite the Langmuir waves thought to be at the origin of these emissions. Methods: The observations were performed between 1998 and 2002 with the Digital Spectro Polarimeter (DSP) receivers operated at the UTR-2 and Nançay decameter radio telescopes in the frequency range 15-30 MHz. Our theoretical explanation is based on Vlasov-Ampère simulations. Results: Based on the frequency drift rate, three populations of structures can be identified. The largest population presents an average negative frequency drift of -0.9 MHz s-1 and a lifetime up to 11 s (median value of 2.72 s). A second population shows a very small frequency drift of -0.1 MHz s-1 and a short lifetime of about 1 s. The third population presents an average positive frequency drift of +0.95 MHz s-1 and a lifetime of up to 3 s. Also, the frequency drift as a function of frequency is consistent with the former results, which present results in higher frequency range. No specific relationship was found between the occurrence of these emissions and the solar cycle or presence of flares. Assuming that these emissions are produced by “electron clouds” propagating the solar corona, we deduce electron velocities of about 3-5 times the electron thermal velocity. As previously shown, a localized, time-dependent modulation of the electron distribution function (heating) leads to low velocity electron clouds (consistent with observations), which, in turn, can generate Langmuir waves and electromagnetic signals by nonlinear processes.

  5. The Evolving Radio Jet in BL Lacerta

    NASA Astrophysics Data System (ADS)

    Aller, H. D.; Hughes, P. A.; Aller, M. F.

    1994-05-01

    During the past 15 years, there have been at least ten outbursts at centimeter wavelengths in this extragalactic object. We describe here the flux density and linear polarization variations observed at 4.8, 8.0 and 14.5 GHz with the Michigan 26-meter telescope during the series of outbursts since 1987. The recent bursts are somewhat different from the highly polarized bursts in the early 1980s, which provided a successful quantitative test of a source model based on propagating transverse shocks in a relativistic jet. The most notable change is that the polarization position angle during polarized outbursts has increased by approximately 10 degrees. This is approximately the same shift as found in a comparison of VLBI maps taken during the same time periods by Mutel, Denn and Dryer (1994, NRAO Workshop on Compact Extragalactic Radio Sources, ed. Zensus and Kellermann, p. 191), and supports their conclusion that the orientation of the radio emitting jet in BL Lac has changed over time. Our preliminary analysis further suggests that a simple scaling of the physical parameters which gave quantitatively good fits to both the 1982 and 1983 bursts will not accurately describe the recent, relatively isolated, burst in 1991. We also note that while some bursts (e.g. in 1982, 1983 and 1991) exhibit degrees of linear polarization in excess of ten percent, other bursts (e.g. in 1980 and 1990) exhibit a very low degree of linear polarization. A common characteristic of the low polarization events is that they all exhibit high internal synchrotron self absorption (as indicated by the flux density spectra of the outbursts). This research has been supported in part by NSF grant AST-9120224.

  6. Proceedings of the 16th NASA Propagation Experimenters Meeting (NAPEX 16) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Editor)

    1992-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. NAPEX 16 was held on May 29, 1992 in Houston, Texas. The meeting was organized into two technical sessions. The first session was dedicated to slant path propagation studies and measurements. The second session focused on Olympus propagation measurements and results. Following NAPEX 16, the Advanced Communications Technology Satellite (ACTS) Miniworkshop was held to review ACTS propagation activities with emphasis on ACTS hardware development and experiment planning. Eight technical papers were presented by contributors from government agencies, private industry, and university research establishments.

  7. Over-the-Horizon Anomalous VHF Propagation and Earthquake Precursors

    NASA Astrophysics Data System (ADS)

    Devi, M.; Barbara, A. K.; Ruzhin, Ya. Yu.; Hayakawa, M.

    2012-09-01

    The purpose of this paper is to review current activities for the identification of earthquake (EQ) precursors and their epicentres. Starting with a brief description on the background to approaches using ultra-low (ULF), extremely low (ELF), very low/low (VLF/LF), medium (MF), high (HF), very high frequency (VHF) etc. radio waves for short-term EQ prediction, the paper concentrates on those characteristics of anomalous VHF reception from frequency-modulation (FM) radio transmissions and broadcast television (TV) signals in relation to EQ precursors. The possible ways to identify an impending EQ and its epicentre position as defined and observed by workers from a variety of studies fall within the purview of the paper. In attempts to find pre-EQ energy exchange and coupling processes between the lithosphere and atmosphere, the paper highlights some relevant observations of surface latent heat flux, sonic detection and ranging (SODAR) echograms and LF propagation. Explanations on possible causes leading to such anomalous reception are reviewed with reported results in association with pre-seismic induced modifications to tropospheric and ionospheric parameters.

  8. Jet propagation through energetic materials

    SciTech Connect

    Pincosy, P; Poulsen, P

    2004-01-08

    In applications where jets propagate through energetic materials, they have been observed to become sufficiently perturbed to reduce their ability to effectively penetrate subsequent material. Analytical calculations of the jet Bernoulli flow provides an estimate of the onset and extent of such perturbations. Although two-dimensional calculations show the back-flow interaction pressure pulses, the symmetry dictates that the flow remains axial. In three dimensions the same pressure impulses can be asymmetrical if the jet is asymmetrical. The 3D calculations thus show parts of the jet having a significant component of radial velocity. On the average the downstream effects of this radial flow can be estimated and calculated by a 2D code by applying a symmetrical radial component to the jet at the appropriate position as the jet propagates through the energetic material. We have calculated the 3D propagation of a radio graphed TOW2 jet with measured variations in straightness and diameter. The resultant three-dimensional perturbations on the jet result in radial flow, which eventually tears apart the coherent jet flow. This calculated jet is compared with jet radiographs after passage through the energetic material for various material thickness and plate thicknesses. We noted that confinement due to a bounding metal plate on the energetic material extends the pressure duration and extent of the perturbation.

  9. Proceedings of the Eighteenth NASA Propagation Experimenters Meeting (NAPEX 18) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Editor)

    1994-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. Participants included representatives from Canada, the Netherlands, England, and the United States, including researchers from universities, government agencies, and private industry. The meeting was organized into two technical sessions. The first session was dedicated to slant path propagation studies and experiments. The second session focused on propagation studies for mobile, personal, and sound broadcast systems. In total, 14 technical papers and some informal contributions were presented. Preceding NAPEX_17, the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop was held to review ACTS propagation activities.

  10. Decimetric radio dot emissions

    NASA Astrophysics Data System (ADS)

    Mészárosová, H.; Karlický, M.; Sawant, H. S.; Fernandes, F. C. R.; Cecatto, J. R.; de Andrade, M. C.

    2008-11-01

    Context: We study a rare type of solar radio bursts called decimetric dot emissions. Aims: In the period 1999-2001, 20 events of decimetric dot emissions observed by the Brazilian Solar Spectroscope (BSS) in the frequency range 950-2640 MHz are investigated statistically and compared with radio fine structures of zebras and fibers. Methods: For the study of the spectral characteristics of the dot emissions we use specially developed Interactive Data Language (IDL) software called BSSView and basic statistical methods. Results: We have found that the dm dot emissions, contrary to the fine structures of the type IV bursts (i.e. zebras, fibers, lace bursts, spikes), are not superimposed on any background burst emission. In the radio spectrum, in most cases the dot emissions form chains that appear to be arranged in zebra patterns or fibers. Because some zebras and fibers, especially those observed with high time and high spectral resolutions, also show emission dots (but superimposed on the background burst emission), we compared the spectral parameters of the dot emissions with the dots being the fine structure of zebras and fibers. For both these dots, similar spectral characteristics were found. Some similarities of the dot emissions can be found also with the lace bursts and spikes. For some events the dot emissions show structural evolution from patterns resembling fibers to patterns resembling zebras and vice versa, or they evolve into fully chaotic patterns. Conclusions: For the first time, we present decimetric dot emissions that appear to be arranged in zebra patterns or fibers. We propose that these emissions are generated by the plasma emission mechanism at the locations in the solar atmosphere where the double resonance condition is fulfilled.

  11. The Bruny Island Radio Spectrometer

    NASA Astrophysics Data System (ADS)

    Erickson, W. C.

    1997-11-01

    A radio spectrometer has been built on Bruny Island, south of Hobart, for the study of solar bursts in the rarely observed frequency range from 3 to 20 MHz. This spectrometer is an adaptive device that employs digital techniques to avoid most of the strong terrestrial interference prevalent in this frequency range. The residual interference that cannot be avoided is excised during off-line processing. As a result, successful observations are made down to the minimum frequency that can propagate through the ionosphere to the antenna. This minimum frequency depends upon the zenith distance of the Sun and it is usually between 4 and 8 MHz.

  12. A comparison between the radio and the X-ray spectra of broad-line radio galaxies

    NASA Astrophysics Data System (ADS)

    Angelakis, E.; Kadler, M.; Lewis, K.; Sambruna, R. M.; Eracleous, M.; Zensus, J. A.

    2008-12-01

    We present the spectral characteristics of a sample of Intermediate-Luminosity Broad-Line Radio Galaxies in X-rays, optical and radio. Here, we focus on the radio spectra acquired with the 100 m radio telescope in Effelsberg between 2.6 GHz and 32 GHz. These measurements reveal different spectral shapes urging for radio imaging that would disclose the source morphology. Comparing them with the X-ray spectra acquired with XMM-Newton, we find that sources with steep radio spectrum are heavily obscured whereas flat spectrum ones appear unabsorbed in accordance with unified scheme.

  13. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX 20) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom) industry, academia, and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at these meetings by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satcom industry.

  14. Blazars at Low Radio Frequencies

    NASA Astrophysics Data System (ADS)

    Trüstedt, J.; Kadler, M.; Brüggen, M.; Falcke, H.; Heald, G.; McKean, J.; Mueller, C.; Ros, E.; Schulz, R.; Wilms, J.

    We explore the low radio-frequency properties of the MOJAVE 1 blazar sample using the LOFAR Multi-Frequency Snapshot Sky Survey (MSSS). We find the characteristically flat blazar spectrum to extend down to the LOFAR bands, demonstrating that the emission at these low radio frequencies is still dominated by relativistically beamed emission. As most sources remain unresolved at the MSSS angular resolution, we are reimaging these data using LOFAR baselines beyond the standard MSSS uv-range resulting in an angular resolution of ~24 arcsec. We present first LOFAR images of MOJAVE sources from this project.

  15. The Radio Amateur's Handbook.

    ERIC Educational Resources Information Center

    Blakeslee, Douglas, Ed.

    The objectives of this basic reference work for the radio amateur are to present radio theory and practice in terms of application and to reflect both the fundamentals and the rapidly-advancing technology of radio communications so that the radio amateur will have a guide to what is practical, meaningful, proven, and useful. Twenty-three chapters…

  16. The Frequency Spectrum Radio.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1979-01-01

    This journal issue focuses on the frequency spectrum used in radio communication and on the World Administrative Radio Conference, sponsored by the International Telecommunication Union, held in Geneva, Switzerland, in the fall of 1979. Articles describe the World Administrative Radio Conference as the most important radio communication conference…

  17. Research in LMSS propagation

    NASA Technical Reports Server (NTRS)

    Barts, R. M.; Stutzman, W. L.; Pratt, T.

    1989-01-01

    The Virginia Tech Satellite Communications Group has participated in the Land Mobile Satellite System (LMSS) program through JPL sponsorship since 1985. Involvement has mainly been in modeling and simulation of propagation characteristics and effects. Models developed to predict cummulative fade distributions for fading LMSS signals include LMSSMOD and the Simple Models which approximate LMSSMOD. Models to predict the mean and standard deviation of signal attenuation through roadside vegetation, namely the Average Path Model, were developed. In the area of simulation, efforts have centered around the development of a software simulator that uses data bases derived from experimental data to generate simulated data with arbitrary statistical behavior. This work has progressed to the development of an integrated analysis and simulation package, LIPS. The basic theory and results for the models and simulator have been previously documented in reports and papers. All LMSS activities are summarized and details of this year's efforts are given.

  18. Detection of traveling ionospheric disturbances by medium-frequency Doppler sounding using AM radio transmissions

    NASA Astrophysics Data System (ADS)

    Chilcote, M.; LaBelle, J.; Lind, F. D.; Coster, A. J.; Miller, E. S.; Galkin, I. A.; Weatherwax, A. T.

    2015-03-01

    Nighttime traveling ionosphere disturbances (TIDs) propagating in the lower F region of the ionosphere have been detected by measuring time variations in the Doppler shifts of commercial AM radio broadcast signals. Three receivers, components of the Intercepted Signals for Ionospheric Science (ISIS) Array software radio instrumentation network in the northeastern United States, recorded signals from two radio stations during 11 nights in March-April, 2012. By combining these measurements, TIDs were detected as approximately 40min periodic variations in the frequencies of the received signals resulting from Doppler shifts produced by the ionosphere. The variations had amplitudes of up to a few tenths of a hertz and were correlated across the array. For one study interval, 0000-0400 UT on 13 April 2012, simultaneous GPS total electron content, Digisonde®, and Super Dual-Auroral Radar Network coherent backscatter radar measurements confirmed the detection of TIDs with the same characteristics. Besides TIDs, the receiver network often detected large (nearly 1 Hz) upward (downward) Doppler shifts of the AM broadcast signals at the dawn (dusk) terminator. These results demonstrate that AM radio signals can be used for detection and monitoring of nighttime TIDs and related effects.

  19. Proceedings of the Twenty-First NASA Propagation Experiments Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry. NAPEX XXI took place in El Segundo, California on June 11-12, 1997 and consisted of three sessions. Session 1, entitled "ACTS Propagation Study Results & Outcome " covered the results of 20 station-years of Ka-band radio-wave propagation experiments. Session 11, 'Ka-band Propagation Studies and Models,' provided the latest developments in modeling, and analysis of experimental results about radio wave propagation phenomena for design of Ka-band satellite communications systems. Session 111, 'Propagation Research Topics,' covered a diverse range of propagation topics of interest to the space community, including overviews of handbooks and databases on radio wave propagation. The ACTS Propagation Studies miniworkshop was held on June 13, 1997 and consisted of a technical session in the morning and a plenary session in the afternoon. The morning session covered updates on the status of the ACTS Project & Propagation Program, engineering support for ACTS Propagation Terminals, and the Data Center. The plenary session made specific recommendations for the future direction of the program.

  20. Photoelectric spectrophotometry of radio galaxies

    NASA Technical Reports Server (NTRS)

    Yee, H. K. C.; Oke, J. B.

    1978-01-01

    The absolute energy distributions from 3200 to 10,000 A of 26 3CR radio galaxies are determined on the basis of spectrophotometric observations with the multichannel spectrometer of the Hale 5-m telescope. It is found that there is a continuous range of emission-line characteristics and UV excess in the sample and that a strong correlation exists between the nonthermal component luminosity and hydrogen emission, which favors the hypothesis that direct photoionization by the nuclear radiation is responsible for the emission lines observed. Calculations are performed which show that in almost all cases the power-law component model provides sufficient UV photons to produce the observed H-beta line. Indications are obtained that the optical nuclear component is related to the radio emission in some complex manner and that strong radio galaxies tend to be accompanied by UV excess and emission lines.

  1. Radio frequency plasma power dependence of the moisture permeation barrier characteristics of Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition

    SciTech Connect

    Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 ; Choi, Hagyoung; Lee, Sanghun; Jeon, Heeyoung; Jeon, Hyeongtag; Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791

    2013-11-07

    In the present study, we investigated the gas and moisture permeation barrier properties of Al{sub 2}O{sub 3} films deposited on polyethersulfone films (PES) by capacitively coupled plasma (CCP) type Remote Plasma Atomic Layer Deposition (RPALD) at Radio Frequency (RF) plasma powers ranging from 100 W to 400 W in 100 W increments using Trimethylaluminum [TMA, Al(CH{sub 3}){sub 3}] as the Al source and O{sub 2} plasma as the reactant. To study the gas and moisture permeation barrier properties of 100-nm-thick Al{sub 2}O{sub 3} at various plasma powers, the Water Vapor Transmission Rate (WVTR) was measured using an electrical Ca degradation test. WVTR decreased as plasma power increased with WVTR values for 400 W and 100 W of 2.6 × 10{sup −4} gm{sup −2}day{sup −1} and 1.2 × 10{sup −3} gm{sup −2}day{sup −1}, respectively. The trends for life time, Al-O and O-H bond, density, and stoichiometry were similar to that of WVTR with improvement associated with increasing plasma power. Further, among plasma power ranging from 100 W to 400 W, the highest power of 400 W resulted in the best moisture permeation barrier properties. This result was attributed to differences in volume and amount of ion and radical fluxes, to join the ALD process, generated by O{sub 2} plasma as the plasma power changed during ALD process, which was determined using a plasma diagnosis technique called the Floating Harmonic Method (FHM). Plasma diagnosis by FHM revealed an increase in ion flux with increasing plasma power. With respect to the ALD process, our results indicated that higher plasma power generated increased ion and radical flux compared with lower plasma power. Thus, a higher plasma power provides the best gas and moisture permeation barrier properties.

  2. Propagation of model and forcing uncertainty into hydrological drought characteristics in a multi-model century-long experiment in continental river basins

    NASA Astrophysics Data System (ADS)

    Samaniego, L. E.; Kumar, R.; Schaefer, D.; Huang, S.; Yang, T.; Mishra, V.; Eisner, S.; Vetter, T.; Pechlivanidis, I.; Liersch, S.; Flörke, M.; Krysanova, V.

    2015-12-01

    Droughts are creeping hydro-meteorological events that bring societiesand natural systems to their limits and inducing considerablesocio-economic losses. Currently it is hypothesized that climate changewill exacerbate current trends leading a more severe and extendeddroughts, as well as, larger than normal recovery periods. Currentassessments, however, lack of a consistent framework to deal withcompatible initial conditions for the impact models and a set ofstandardized historical and future forcings. The ISI-MIP project provides an unique opportunity to understand thepropagation of model and forcing uncertainty into century-long timeseries of drought characteristics using an ensemble of model predictionsacross a broad range of climate scenarios and regions. In the presentstudy, we analyze this issue using the hydrologic simulations carriedout with HYPE, mHM, SWIM, VIC, and WaterGAP3 in seven large continentalriver basins: Amazon, Blue Nile, Ganges, Niger, Mississippi, Rhine,Yellow. All models are calibrated against observed streamflow duringthe period 1971-2001 using the same forcings based on the WATCH datasets. These constrained models were then forced with bias correctedoutputs of five CMIP-5 GCMs under four RCP scenarios (i.e. 2.6, 4.5,6.0, and 8.5 W/m2) for the period 1971-2099. A non-parametric kernel density approach is used to estimate thetemporal evolution of a monthly runoff index based on simulatedstreamflow. Hydrologic simulations corresponding to each GCM during thehistoric period of 1981-2010 serve as reference for the estimation ofthe basin specific monthly probability distribution functions. GCMspecific reference pdfs are then used to recast the future hydrologicmodel outputs from different RCP scenarios. Based on these results,drought severity and duration are investigated during periods: 1)2006-2035, 2) 2036-2065 and 3) 2070-2099. Two main hypothesis areinvestigated: 1) model predictive uncertainty of drought indices amongdifferent hydrologic

  3. Radio Quiet Zones (RQZ) - Working with national communication administrations

    NASA Astrophysics Data System (ADS)

    Tzioumis, Anastasios

    Radio Astronomy detects extremely faint radio signals from space, and hence is very susceptible to Radio Frequency Interference (RFI) from other radio communication services. Although radio astronomy has been allocated some radio bands by the International Telecommunications Union (ITU), cosmic radio emissions occur over the whole of the electromagnetic spectrum. Thus, there is a need for radio telescopes to operate over very wide radio bands and avoid RFI. Radio Quiet Zones (RQZ) in various forms have been implemented around many radio astronomy observatories, to minimise the impact of RFI on radio astronomy observations by coordinating with nearby radiocommunication services. The history and characteristics of such RQZ around the world will be reviewed, with emphasis on recent experience. For the next generation radio astronomy telescopes such as the Square Kilometre Array (SKA), it will be of critical importance to minimise RFI over the whole operating frequency range 200 MHz - 25 GHz. Progress towards establishing strict RQZ for the SKA will be reviewed. The main experience and lesson learned is that it is critical to work closely with national communication administrations. Work on RQZ in international bodies and the implications for radio sciences will also be discussed.

  4. Industrial interference and radio astronomy

    NASA Astrophysics Data System (ADS)

    Jessner, A.

    2013-07-01

    The interferer - victim scenario is described for the case of industrial interference affecting radio astronomical observatories. The sensitivity of radio astronomical receivers and their interference limits are outlined. EMC above 30 MHz is a serious problem for Radio Astronomy. Interferer (CISPR) and victim (ITU-R RA 769) standards are not harmonised. The emissions from the interferer and their spectral characteristics are not defined sufficiently well by CISPR standards. The required minimum coupling losses (MCL) between an industrial device and radio astronomical antenna depends on device properties but is shown to exceed 140 dB in most cases. Spatial separation of a few km is insufficient on its own, the terrain must shield > 30-40 dB, additional mitigations such as extra shielding or suppression of high frequency emissions may be necessary. A case by case compatibility analysis and tailored EMC measures are required for individual installations. Aggregation of many weak rfi emitters can become serious problem. If deployment densities are high enough, the emission constraints can even exceed those for a single interferer at a short distance from the radio observatory. Compatibility studies must account not only for the single interferer but also for many widely distributed interference sources.

  5. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  6. Propagation Regime of Iron Dust Flames

    NASA Technical Reports Server (NTRS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew J.

    2012-01-01

    A flame propagating through an iron-dust mixture can propagate in two asymptotic regimes. When the characteristic time of heat transfer between particles is much smaller than the characteristic time of particle combustion, the flame propagates in the continuum regime where the heat released by reacting particles can be modelled as a space-averaged function. In contrast, when the characteristic time of heat transfer is much larger than the particle reaction time, the flame can no longer be treated as a continuum due to dominating effects associated with the discrete nature of the particle reaction. The discrete regime is characterized by weak dependence of the flame speed on the oxygen concentration compared to the continuum regime. The discrete regime is observed in flames propagating through an iron dust cloud within a gas mixture containing xenon, while the continuum regime is obtained when xenon is substituted with helium.

  7. Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission

    SciTech Connect

    Magdalenić, J.; Marqué, C.; Mierla, M.; Zhukov, A. N.; Rodriguez, L.; Krupar, V.; Maksimović, M.; Cecconi, B.

    2014-08-20

    We present a multiwavelength study of the 2012 March 5 solar eruptive event, with an emphasis on the radio triangulation of the associated radio bursts. The main points of the study are reconstruction of the propagation of shock waves driven by coronal mass ejections (CMEs) using radio observations and finding the relative positions of the CME, the CME-driven shock wave, and its radio signatures. For the first time, radio triangulation is applied to different types of radio bursts in the same event and performed in a detailed way using goniopolarimetric observations from STEREO/Waves and WIND/Waves spacecraft. The event on 2012 March 5 was associated with a X1.1 flare from the NOAA AR 1429 situated near the northeast limb, accompanied by a full halo CME and a radio event comprising long-lasting interplanetary type II radio bursts. The results of the three-dimensional reconstruction of the CME (using SOHO/LASCO, STEREO COR, and HI observations), and modeling with the ENLIL cone model suggest that the CME-driven shock wave arrived at 1 AU at about 12:00 UT on March 7 (as observed by SOHO/CELIAS). The results of radio triangulation show that the source of the type II radio burst was situated on the southern flank of the CME. We suggest that the interaction of the shock wave and a nearby coronal streamer resulted in the interplanetary type II radio emission.

  8. Radio frequency detection assembly and method for detecting radio frequencies

    SciTech Connect

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  9. Present-day radio-astronomical systems of aperture synthesis (Review)

    NASA Astrophysics Data System (ADS)

    Tseitlin, N. M.

    The characteristics of a number of synthetic-aperture radio telescopes are presented. Particular consideration is given to cruciform and T-shaped radio telescopes consisting of 'linear' antennas (Mills crosses); multielement radio telescopes with immobile antennas; multielement radio telescopes with immobile and moving elements; and millimeter-wave interferometers.

  10. ATS-6 engineering performance report. Volume 5: Propagation experiments

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (Editor)

    1981-01-01

    Propagation experiments at 1550 MHz to 1650 MHz are reviewed, including the Integrated L-Band Experiments system and results, and the Mobile L-Band Terminals for Satellite Communication system. Experiments at 4 GHz to 6 GHz are reported, including the Radio Frequency Interferometer Measurements system and results, and Earth station antenna evaluations. Experiments above 10 GHz are discussed, including Comsat and ATS-6 millimeter wave propagation/experiments, and communication ATS-6 version at 20 and 30 GHz.

  11. The universal propagator

    NASA Technical Reports Server (NTRS)

    Klauder, John R.

    1993-01-01

    For a general Hamiltonian appropriate to a single canonical degree of freedom, a universal propagator with the property that it correctly evolves the coherent-state Hilbert space representatives for an arbitrary fiducial vector is characterized and defined. The universal propagator is explicitly constructed for the harmonic oscillator, with a result that differs from the conventional propagators for this system.

  12. Proceedings of the Fourteenth NASA Propagation Experimenters Meeting (NAPEX 14) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Editor)

    1990-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. NAPEX XIV was held on May 11, 1990, at the Balcones Research Centers, University of Texas, Austin, Texas. The meeting was organized into two technical sessions: Satellite (ACTS) and the Olympus Spacecraft, while the second focused on the fixed and mobile satellite propagation studies and experiments. Following NAPEX XIV, the ACTS Miniworkshop was held at the Hotel Driskill, Austin, Texas, on May 12, 1990, to review ACTS propagation activities since the First ACTS Propagation Studies Workshop was held in Santa Monica, California, on November 28 and 29, 1989.

  13. Proceedings of the Fifteenth NASA Propagation Experimenters Meeting (NAPEX 15) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Editor)

    1991-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. The meeting was organized into three technical sessions. The first session was dedicated to Olympus and ACTS studies and experiments, the second session was focused on the propagation studies and measurements, and the third session covered computer-based propagation model development. In total, sixteen technical papers and some informal contributions were presented. Following NAPEX 15, the Advanced Communications Technology Satellite (ACTS) miniworkshop was held on 29 Jun. 1991, to review ACTS propagation activities, with emphasis on ACTS hardware development and experiment planning. Five papers were presented.

  14. A review of ionospheric effects on Earth-space propagation

    NASA Technical Reports Server (NTRS)

    Klobuchar, J. A.

    1984-01-01

    A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.

  15. Tgf Pulse and Radio Properties Detected at Close Range

    NASA Astrophysics Data System (ADS)

    Cohen, M.; Gross, N. C.; Zoghzoghy, F. G.; Briggs, M. S.; Stanboro, M.; Fitzpatrick, G.

    2014-12-01

    Terrestrial Gamma-ray Flashes (TGFs) are short (10s to 100s of us) energetic (100s to 10000s of keV) discharges originating from the tops of thunderclouds. TGFs have long been associated with radio pulses detected at VLF receivers, but recent evidence indicates that the radio pulse may be from the TGF itself, rather than from a stroke or pulse that either precedes or follows the TGFs. Unfortunately, subionospheric propagation of VLF/LF smooths the radio pulse and destroys in particular the high frequency content, so that the radio signal looks similar to those from ordinary lightning strokes. Since TGFs have a broad range of durations as detected by satellites, these variations should be apparent in the LF radio pulse from the TGF, which may confirm that the TGF is the dominant source of the associated radio pulse and identify a distinguishing feature of TGF-associated pulses. We report on an effort to detect and characterize the LF radio pulses associated with TGFs at close range (<1000 km) with a high sensitivity LF receiver in the Caribbean. This requires some luck and time since TGFs, at least those detectable by satellites, are not especially common. We directly compare the temporal shape of the TGF source to the radio source, after accounting for dead time and Compton scattering to interpret the satellite TGF data, as well as propagation of the LF pulse along the ground to the receiver.

  16. Propagation characteristics of electromagnetic waves in concrete

    NASA Astrophysics Data System (ADS)

    Halabe, Udaya B.; Maser, Kenneth; Kausel, Eduardo

    1989-03-01

    This research develops models which can predict the velocity and attenuation of electromagnetic waves in concrete as a function of frequency, temperature, moisture content, chloride content and concrete mix constituents. These models were proposed to predict the electromagnetic properties of concrete by aggregating the electromagnetic properties of its constituents. Water and the dissolved salt are the constituents having the most prominent effect on the dielectric behavior of concrete. A comparative study of three existing three-phase mixture models was carried out. Numerical results were generated using the most representative Discrete model. These results have shown that the real part of complex concrete permittivity (and therefore the velocity of electromagnetic waves) is independent of salinity or frequency in the 0.6 to 3.0 GHz frequency range. On the other hand, these results show that the attenuation coefficient and dielectric conductivity vary almost linearly with frequency in this same frequency range. The real part of concrete permittivity and the attenuation coefficient also show a linear dependence with respect to the degree of saturation of water in the concrete mixture. This suggests that future research should focus on approximating the complex models presented in this research by simple equations.

  17. Receiver techniques for microwave digital radio

    NASA Astrophysics Data System (ADS)

    Chamberlain, J. K.; Clayton, F. M.; Sari, H.; Vandamme, P.

    1986-11-01

    Adaptive receiver design features and operating techniques are described which have been devised to offset the deleterious effects of multipath fading in digital radio systems. Frequency-domain and time-domain circuitry are discussed for equalizing channel distortion, and attention is also given to carrier and symbol synchronization subsystems. Height and frequency diversity are summarized for safeguarding signals from destruction by propagation effects and methods for adaptive cancellation of cross-polarized interference are described.

  18. X-ray Dips Followed by Superluminal Ejections as Evidence for An Accretion Disc Feeding the Jet in A Radio Galaxy

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Jorstad, Svetlana G.; Gomez, Jose-Luis; Aller, Margo F.; Terasranta, Harri; Lister, Matthew L.; Stirling, Alastair, M.

    2002-01-01

    Accretion onto black holes is thought to power the relativistic jets and other high-energy phenomena in both active galactic nuclei (AGNs) and the "microquasar" binary systems located in our Galaxy. However, until now there has been insufficient multifrequency monitoring to establish a direct observational link between the black hole and the jet in an AGE. This contrasts with the case of microquasars, in which superluminal features appear and propagate down the radio jet shortly after sudden decreases in the X-ray flux. Such an X-ray dip is most likely caused by the disappearance of a section of the inner accretion disc, part of which falls past the event horizon and the remainder of which is injected into the jet. This infusion of energy generates a disturbance that propagates down the jet, creating the appearance of a superluminal bright spot. Here we report the results of three years of intensive monitoring of the X-ray and radio emission of the Seyfert-like radio galaxy 3C 120. As in the case of microquasars, dips in the X-ray emission are followed by ejections of bright superluminal knots in the radio jet. Comparison of the characteristic length and time scales allows us to infer that the rotational states of the black holes in these two objects are different.

  19. Speckles in interstellar radio-wave scattering

    NASA Technical Reports Server (NTRS)

    Desai, K. M.; Gwinn, C. R.; Reynolds, J.; King, E. A.; Jauncey, D.; Nicholson, G.; Flanagan, C.; Preston, R. A.; Jones, D. L.

    1991-01-01

    Observations of speckles in the scattering disk of the Vela pulsar are presented and speckle techniques for studying and circumventing scattering of radio waves by the turbulent interstellar plasma are discussed. The speckle pattern contains, in a hologrammatic fashion, complete information on the structure of the radio source as well as the distribution of the scattering material. Speckle observations of interstellar scattering of radio waves are difficult because of their characteristically short timescales and narrow bandwidths. Here, first observations are presented, taken at 13 cm wavelength with elements of the SHEVE VLBI network, of speckles in interstellar scattering.

  20. Resonance and Radio

    ERIC Educational Resources Information Center

    Starrett, Malin J.

    2008-01-01

    The science and technology of radio receives little attention in contemporary education. This article discusses ways to explore the basic operating principles of radio. (Contains 4 figures, 3 footnotes, and 2 notes.)

  1. Discovery of Giant Relic Radio Lobes Straddling the Classical Double Radio Galaxy 3C452

    NASA Astrophysics Data System (ADS)

    Sirothia, S. K.; Gopal-Krishna; Wiita, Paul J.

    2013-03-01

    We report the discovery of a pair of megaparsec size radio lobes of extremely steep spectrum straddling the well-known classical double radio source 3C452. The existence of such fossil lobes was unexpected since for the past several decades this powerful radio galaxy has been regarded as a textbook example of an edge-brightened double radio source of Fanaroff-Riley type II (FR II), which we now show to be a bona fide "double-double" radio galaxy (DDRG). Thus, 3C452 presents a uniquely robust example of recurrent nuclear activity in which the restarted jets are expanding non-relativistically within the relic synchrotron plasma from an earlier active phase and hence the inner double fed by them has evolved into a perfectly normal FR II radio source. This situation contrasts markedly with the strikingly narrow inner doubles observed in a few other DDRGs that have been interpreted in terms of compression of the synchrotron plasma of the relic outer lobes at the relativistic bow-shocks driven by the near ballistic propagation of the two inner jets through the relic plasma. A key ramification of this finding is that it cautions against the currently widespread use of FR II classical double radio sources for testing cosmological models and unification schemes for active galactic nuclei.

  2. DISCOVERY OF GIANT RELIC RADIO LOBES STRADDLING THE CLASSICAL DOUBLE RADIO GALAXY 3C452

    SciTech Connect

    Sirothia, S. K.; Gopal-Krishna; Wiita, Paul J. E-mail: krishna@ncra.tifr.res.in

    2013-03-01

    We report the discovery of a pair of megaparsec size radio lobes of extremely steep spectrum straddling the well-known classical double radio source 3C452. The existence of such fossil lobes was unexpected since for the past several decades this powerful radio galaxy has been regarded as a textbook example of an edge-brightened double radio source of Fanaroff-Riley type II (FR II), which we now show to be a bona fide ''double-double'' radio galaxy (DDRG). Thus, 3C452 presents a uniquely robust example of recurrent nuclear activity in which the restarted jets are expanding non-relativistically within the relic synchrotron plasma from an earlier active phase and hence the inner double fed by them has evolved into a perfectly normal FR II radio source. This situation contrasts markedly with the strikingly narrow inner doubles observed in a few other DDRGs that have been interpreted in terms of compression of the synchrotron plasma of the relic outer lobes at the relativistic bow-shocks driven by the near ballistic propagation of the two inner jets through the relic plasma. A key ramification of this finding is that it cautions against the currently widespread use of FR II classical double radio sources for testing cosmological models and unification schemes for active galactic nuclei.

  3. Possible radio emission mechanism for pulsars

    NASA Technical Reports Server (NTRS)

    Kovalev, Y. A.

    1979-01-01

    A mathematical model is presented and discussed as a possible mechanism to describe radio emission from pulsars. The model determines that the magnetic field in the neutron proton electron (npe) layer of a neutron star results from a quasistationary eddy current of superconducting and normal protons relative to normal electrons, which generates radio emission by the Josephson effect. The radiation propagates in the magnetically active medium, from the optically thick npe layer to the magnetosphere through breaks in the crust. As a result, hot radio spots form on the surface of the star, and a radiation pattern forms near the magnetic poles, the cross section of which gives the observed pulse structure. Due to the specific properties of the mechanism, variations of the quasistationary current are converted to amplitude frequency variations of the radiation spectrum. Variations of the fine structure of the spectrum pulse amplitude and spectral index, as well as their correlation are discussed.

  4. Theory of Type 3 and Type 2 Solar Radio Emissions

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, I. H.

    2000-01-01

    The main features of some current theories of type III and type II bursts are outlined. Among the most common solar radio bursts, type III bursts are produced at frequencies of 10 kHz to a few GHz when electron beams are ejected from solar active regions, entering the corona and solar wind at typical speeds of 0.1c. These beams provide energy to generate Langmuir waves via a streaming instability. In the current stochastic-growth theory, Langmuir waves grow in clumps associated with random low-frequency density fluctuations, leading to the observed spiky waves. Nonlinear wave-wave interactions then lead to secondary emission of observable radio waves near the fundamental and harmonic of the plasma frequency. Subsequent scattering processes modify the dynamic radio spectra, while back-reaction of Langmuir waves on the beam causes it to fluctuate about a state of marginal stability. Theories based on these ideas can account for the observed properties of type III bursts, including the in situ waves and the dynamic spectra of the radiation. Type 11 bursts are associated with shock waves propagating through the corona and interplanetary space and radiating from roughly 30 kHz to 1 GHz. Their basic emission mechanisms are believed to be similar to those of type III events and radiation from Earth's foreshock. However, several sub-classes of type II bursts may exist with different source regions and detailed characteristics. Theoretical models for type II bursts are briefly reviewed, focusing on a model with emission from a foreshock region upstream of the shock for which observational evidence has just been reported.

  5. Radio Frequency Characteristics of Multifinger 0.1 μm Metamorphic High-Electron-Mobility Transistors Depending on Number of Gate Fingers and Gate Width

    NASA Astrophysics Data System (ADS)

    Oh, Jung-Hun; Han, Min; Moon, Sung-Woon; Choi, Seok-Gyu; Baek, Yong-Hyun; Rhee, Jin-Koo; Kim, Sam-Dong

    2007-10-01

    We investigate the effects of the number of gate fingers (N) and gate width (W) on the high-frequency characteristics of 0.1 μm depletion-mode metamorphic high-electron-mobility transistors (MHEMTs). The extracted gate-to-source capacitance (Cgs), gate-to-drain capacitance (Cgd), intrinsic transconductance (gm,int), and drain conductance (Gds) are proportional to total gate width (wt), whereas intrinsic resistance (Ri) and source resistance (Rs) are inversely proportional to wt. Gate resistance (Rg) linearly increases at various slopes with non-zero gate resistances at zero gate width depending on N. The cutoff frequency ( fT) and maximum frequency of oscillation ( fmax) are calculated using a small-signal model and curve-fitting equations extracted from each small-signal parameter. fT is almost constant; however, fmax is a strong function of Rg1/2 and is affected by both N and wt. A large wt produces a low fmax; however, at a given wt, increasing the number of gate fingers is more efficient than increasing single gate width for maximizing the fmax.

  6. Triggered Jovian radio emissions

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1985-01-01

    Certain Jovian radio emissions seem to be triggered from outside, by much weaker radio waves from the sun. Recently found in the Voyager observations near Jupiter, such triggering occurs at hectometric wavelengths during the arrival of solar radio bursts, with the triggered emissions lasting sometimes more than an hour as they slowly drifted toward higher frequencies. Like the previous discovery of similar triggered emissions at the earth, this suggests that Jupiter's emissions might also originate from natural radio lasers.

  7. Analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1972-01-01

    The correlation between fatigue crack propagation and stress intensity factor is analyzed. When determining fatigue crack propagation rate, a crack increment, delta a, and its corresponding increment in load cycles, delta N, are measured. Fatigue crack propagation must be caused by a shear and/or a normal separation mode. Both of these two processes are discrete if one looks at the atomic level. If the average deformation and fracture properties over the crack increments, delta a, can be considered as homogeneous, if the characteristic discrete lengths of sigma a, if the plastic zone size is small, and if a plate is thick enough to insure a plane strain case, da/dN is proportional to delta K squared. Any deviation of empirical data from this relation must be caused by the fact that one or more of these conditions are not satisfied. The effects of plate thickness and material inhomogeneity are discussed in detail. A shear separation mode of fatigue crack propagation is described and is used to illustrate the effects of material inhomogeneity.

  8. Refractive effects from VHF to EHF. Part A: Propagation Mechanisms

    NASA Astrophysics Data System (ADS)

    Hitney, Herbert V.

    1994-09-01

    Radio wave propagation in the very high frequency (VHF) to extremely high frequency (EHF) bands at low elevation angles and near the earth's surface is almost always affected by refraction. This lecture details these effects and the various methods used to model them, from simple effective-earth-radius factors for standard refraction to parabolic-equation methods for range-dependent ducting environments. Refraction and Snell's law are discussed and standard and nonstandard propagation mechanisms are defined. To establish the significance of nonstandard propagation effects, some statistics on the occurrence of ducting around the world are presented.

  9. Commercial Radio as Communication.

    ERIC Educational Resources Information Center

    Rothenbuhler, Eric W.

    1996-01-01

    Compares the day-to-day work routines of commercial radio with the principles of a theoretical communication model. Illuminates peculiarities of the conduct of communication by commercial radio. Discusses the application of theoretical models to the evaluation of practicing institutions. Offers assessments of commercial radio deriving from…

  10. Extragalactic Radio Sources

    ERIC Educational Resources Information Center

    Kellerman, Kenneth I.

    1973-01-01

    Discusses new problems arising from the growing observational data through radio telescope arrays, involving the origin of radio sources, apparent superluminal velocities, conversion of radio sources to relativistic particles, and the nature of compact opaque and extended transparent sources. New physics may be needed to answer these cosmological…

  11. Propagation measurements for satellite radio reception inside buildings

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1993-01-01

    Swept CW signals (from 700 to 1800 MHz) were received inside six buildings of brick, corrugated sheet-metal, wood-frame, mobile-home, and reinforced concrete-wall construction. A transmitter antenna was mounted outdoors on top of an 18 m tower to simulate a satellite, and a linearly scanned directional receiver antenna was used to probe the spatial, spectral, and temporal variability of the signal indoors. Levels were found to have much structure in the spatial and frequency domain, but were relatively stable in time. Typically, people moving nearby produced variations of less than 0.5 dB, whereas a person blocking the transmission path produced fades of 6 to 10 dB. Severe losses (17.5 dB) were observed in the concrete-wall building, which also exhibited the longest multipath delays (over 100 ns). Losses inside a mobile home were even larger (over 20 dB) and were independent of antenna orientation. The power-frequency distortion increased with the logarithm of the bandwidth, but could be reduced by moving to a position of higher power. Only the losses showed a clear frequency dependence, but they could be mitigated by moving the antenna.

  12. Scintillation effects on radio wave propagation through solar corona

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Sue, M. K.; Bedrossian, A.; Sniffin, R. W.

    2002-01-01

    When RF waves pass through the solar corona and solar wind regions close to the Sun, strong scintillation effects appear at their amplitude, frequency and phase, especially in the regions very close to the Sun (less than 4 solar radius).

  13. Propagation of radio waves through the lower atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Richter, K. R.

    1972-01-01

    A simplified model of the Venus atmosphere is developed providing the loss factor profile of the atmosphere. With this profile the atmospheric attenuation as it depends upon the incidence angle is calculated for wavelengths between 2 cm and 20 cm. It is shown that the signal-to-noise ratios for a real aperture radar, a synthetic aperture radar, and communication links between a satellite and a landing probe achieve maximum values by the proper choice of the wavelengths. Furthermore, it turns out that the wavelength dependence is less crucial for the synthetic aperture radar compared to the other cases.

  14. Further examples of seasonal variations of ELF radio propagation parameters

    NASA Astrophysics Data System (ADS)

    Bannister, Peter R.

    1999-01-01

    In this paper we use experimentally determined values of effective attenuation rate, excitation factor, and relative phase velocity, along with the theoretical expressions derived by C. and P. Greifinger, to establish the seasonal variation of representative ionospheric conductivity parameters. These parameters include the reflection heights h0 and h1 (or hE), inverse scale height β, and reference height H. The basis for this analysis is provided by the 1990-1992 76-Hz field strength measurements taken at four land-based ELF monitoring sites established by the U.S. Navy. The source for these measurements was the U.S. Navy's dual-antenna transmitting system (WTF/MTF). The main conclusion of this paper is that the summertime and January nighttime attenuation rates are substantially lower than during other times of the year. This nighttime attenuation rate decrease appears to be mainly due to an increase in the inverse scale height β, rather than to an increase in the reflection heights h0 and hE.

  15. Radio propagation experiments in the outer solar system with Voyager

    NASA Technical Reports Server (NTRS)

    Tyler, G. Leonard

    1987-01-01

    The outer solar system's planetary atmospheres, ionospheres, rings, and magnetic fields are under study in light of microwave telecommunications from the two Voyager spacecraft. The use of the hydrogen maser frequency standards on the ground, in conjunction with thermally controlled quartz oscillators aboard the spacecraft, ensures long coherence intervals and allows the application of novel signal processing methods. On this basis, studies of atmospheric structure and scintillation parameters, planetary ring structure, and magnetic control of small ionospheric irregularities have been undertaken; information concerning planetary evolution, composition, and dynamics is thereby obtained.

  16. Demonstration of a viable quantitative theory for interplanetary type II radio bursts

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Cairns, Iver H.

    2016-03-01

    Between 29 November and 1 December 2013 the two widely separated spacecraft STEREO A and B observed a long lasting, intermittent, type II radio burst for the extended frequency range ≈ 4 MHz to 30 kHz, including an intensification when the shock wave of the associated coronal mass ejection (CME) reached STEREO A. We demonstrate for the first time our ability to quantitatively and accurately simulate the fundamental (F) and harmonic (H) emission of type II bursts from the higher corona (near 11 solar radii) to 1 AU. Our modeling requires the combination of data-driven three-dimensional magnetohydrodynamic simulations for the CME and plasma background, carried out with the BATS-R-US code, with an analytic quantitative kinetic model for both F and H radio emission, including the electron reflection at the shock, growth of Langmuir waves and radio waves, and the radiations propagation to an arbitrary observer. The intensities and frequencies of the observed radio emissions vary hugely by factors ≈ 106 and ≈ 103, respectively; the theoretical predictions are impressively accurate, being typically in error by less than a factor of 10 and 20 %, for both STEREO A and B. We also obtain accurate predictions for the timing and characteristics of the shock and local radio onsets at STEREO A, the lack of such onsets at STEREO B, and the z-component of the magnetic field at STEREO A ahead of the shock, and in the sheath. Very strong support is provided by these multiple agreements for the theory, the efficacy of the BATS-R-US code, and the vision of using type IIs and associated data-theory iterations to predict whether a CME will impact Earth's magnetosphere and drive space weather events.

  17. The new class of FR 0 radio galaxies

    NASA Astrophysics Data System (ADS)

    Baldi, R. D.; Capetti, A.; Giovannini, G.

    2016-02-01

    Are the FRI and FRII radio galaxies representative of the radio-loud (RL) AGN population in the local Universe? Recent studies on the local low-luminosity radio sources cast lights on an emerging population of compact radio galaxies which lack extended radio emission. In a pilot JVLA project, we study the high-resolution images of a small but representative sample of this population. The radio maps reveal compact unresolved or slightly resolved radio structures on a scale of 1-3 kpc. We find that these RL AGN live in red massive early-type galaxies, with large black hole masses (≳ 108 M⊙), and spectroscopically classified as Low Excitation Galaxies, all characteristics typical of FRI radio galaxies which they also share the same nuclear luminosity with. However, they are more core dominated (by a factor of ˜ 30) than FRIs and show a clear deficit of extended radio emission. We call these sources ``FR0'' to emphasize their lack of prominent extended radio emission. A posteriori, other compact radio sources found in the literature fulfill the requirements for a FR0 classification. Hence, the emerging FR0 population appears to be the dominant radio class of the local Universe. Considering their properties we speculate on their possible origins and the possible cosmological scenarios they imply.

  18. A theory of solar type 3 radio bursts

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Papadopoulos, K.; Smith, R. A.

    1979-01-01

    Energetic electrons propagating through the interplanetary medium are shown to excite the one dimensional oscillating two stream instability (OTSI). The OTSI is in turn stabilized by anomalous resistivity which completes the transfer of long wavelength Langmuir waves to short wavelengths, out of resonance with the electrons. The theory explains the small energy losses suffered by the electrons in propagating to 1 AU, the predominance of second harmonic radiation, and the observed correlation between radio and electron fluxes.

  19. Studies of Space Weather Using Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Cane, H. V.; Erickson, W. C.

    2005-12-01

    High quality observations of solar radio bursts in the frequency range 14-1 MHz have been possible since late 1994 with the launch of the Wind spacecraft. However the standard solar patrols typically commence observations above 25 MHz leaving a small, but important, gap in the frequency coverage. This gap is filled by the Bruny Island Radio Spectrometer. In this paper we describe the studies that have been made using this extended frequency range. Our main interest has been the role of radio bursts in diagnosing energetic particle acceleration and propagation in the inner heliosphere.

  20. Planetary radio astronomy observations during the Voyager 1 Titan flyby

    NASA Technical Reports Server (NTRS)

    Daigne, G.; Pedersen, B. M.; Kaiser, M. L.; Desch, M. D.

    1982-01-01

    During the Voyager 1 Titan flyby, unusual radio emissions were observed by the planetary radio astronomy experiment in the 20- to 97-kHz frequency range. It is shown that Titan itself is not the source of the observed radio emission. The emission features are attributed to modification of the normal Saturn kilometric radiation by propagation effects in enhanced density structures within the Titan wake. Furthermore, spiky emissions observed in the magnetic wake of Titan are interpreted in terms of local electrostatic instabilities at the electron plasma frequency. From these measurements a range of electron densities in the wake region is derived, and the consistency of the results is discussed.

  1. Effect of a Sausage Oscillation on Radio Zebra-pattern Structures in a Solar Flare

    NASA Astrophysics Data System (ADS)

    Yu, Sijie; Nakariakov, V. M.; Yan, Yihua

    2016-07-01

    Sausage modes that are axisymmetric fast magnetoacoustic oscillations of solar coronal loops are characterized by variation of the plasma density and magnetic field, and hence cause time variations of the electron plasma frequency and cyclotron frequency. The latter parameters determine the condition for the double plasma resonance (DPR), which is responsible for the appearance of zebra-pattern (ZP) structures in time spectra of solar type IV radio bursts. We perform numerical simulations of standing and propagating sausage oscillations in a coronal loop modeled as a straight, field-aligned plasma slab, and determine the time variation of the DPR layer locations. Instant values of the plasma density and magnetic field at the DPR layers allowed us to construct skeletons of the time variation of ZP stripes in radio spectra. In the presence of a sausage oscillation, the ZP structures are shown to have characteristic wiggles with the time period prescribed by the sausage oscillation. Standing and propagating sausage oscillations are found to have different signatures in ZP patterns. We conclude that ZP wiggles can be used for the detection of short-period sausage oscillations and the exploitation of their seismological potential.

  2. Low-Frequency Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.

  3. Ray trace calculation of ionospheric propagation at lower frequencies

    NASA Astrophysics Data System (ADS)

    Reilly, Michael H.

    2006-10-01

    The Raytrace/Ionospheric Conductivity and Electron Density-Bent-Gallagher model has been revised to make it applicable to ionospheric propagation at low radio frequencies (0.5-5.0 MHz), where the ionosphere and magnetic anisotropy drastically alter propagation paths and provide a severe test of propagation model algorithms. The necessary revisions are discussed, and the model is applied to the problem of ionospheric penetration from a source below the ionosphere to a receiver above the ionosphere. It is necessary to include the electron collision frequency in the Appleton-Hartree index of refraction in order to permit ionospheric penetration for radio frequencies below the maximum plasma frequency (e.g., whistler modes). The associated reformulation of the ray trace equations for a complex index of refraction is straightforward. Difficulties with numerical methods are cited for the lowest frequencies, and future improvements are indicated.

  4. Radio Astronomy Explorer (RAE) 1 observations of terrestrial radio noise

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Caruso, J. A.

    1971-01-01

    Radio Astonomy Explorer (RAE) 1 data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 or more db higher than cosmic noise background. Maximum terrestrial noise is observed when RAE is over the dark side of the Earth in the neighborhood of equatorial continental land masses where thunderstorms occur most frequently. The observed noise level is 30-40 db lower with RAE over oceans.

  5. Global Ionosphere Radio Observatory

    NASA Astrophysics Data System (ADS)

    Galkin, I. A.; Reinisch, B. W.; Huang, X. A.

    2014-12-01

    The Global Ionosphere Radio Observatory (GIRO) comprises a network of ground-based high-frequency vertical sounding sensors, ionosondes, with instrument installations in 27 countries and a central Lowell GIRO Data Center (LGDC) for data acquisition and assimilation, including 46 real-time data streams as of August 2014. The LGDC implemented a suite of technologies for post-processing, modeling, analysis, and dissemination of the acquired and derived data products, including: (1) IRI-based Real-time Assimilative Model, "IRTAM", that builds and publishes every 15-minutes an updated "global weather" map of the peak density and height in the ionosphere, as well as a map of deviations from the classic IRI climate; (2) Global Assimilative Model of Bottomside Ionosphere Timelines (GAMBIT) Database and Explorer holding 15 years worth of IRTAM computed maps at 15 minute cadence;. (3) 17+ million ionograms and matching ionogram-derived records of URSI-standard ionospheric characteristics and vertical profiles of electron density; (4) 10+ million records of the Doppler Skymaps showing spatial distributions over the GIRO locations and plasma drifts; (5) Data and software for Traveling Ionospheric Disturbance (TID) diagnostics; and (6) HR2006 ray tracing software mated to the "realistic" IRTAM ionosphere. In cooperation with the URSI Ionosonde Network Advisory Group (INAG), the LGDC promotes cooperative agreements with the ionosonde observatories of the world to accept and process real-time data of HF radio monitoring of the ionosphere, and to promote a variety of investigations that benefit from the global-scale, prompt, detailed, and accurate descriptions of the ionospheric variability.

  6. Voyager planetary radio astronomy studies

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Eikenberry, Stephen S.

    1993-01-01

    Analysis of nonthermal radio emission data obtained by the Planetary Radio Astronomy (PRA) spectrometers on the Voyager 1 and 2 spacecraft was performed. This PRA data provided unique insights into the radio emission characteristics of the outer planets because of PRA's unique spectral response below the terrestrial ionospheric plasma frequency and its unprecedented proximity to the source. Of those results which were documented or published, this final report surveys only the highlights and cites references for more complete discussions. Unpublished results for Uranus, Neptune, and theoretical Ionian current distributions are presented at greater length. The most important conclusion to be drawn from these observations is that banded spectral emission is common to the radio emission below 1-2 MHz observed from all four Jovian planets. In every case multiple spectral features evolve on time scales of seconds to minutes. To the extent these features drift in frequency, they appear never to cross one another. The Neptunian spectral features appear to drift little or not at all, their evolution consisting principally of waxing and waning. Since other evidence strongly suggests that most or all of this radio emission is occurring near the local magnetospheric electron cyclotron frequency, this implies that this emission preferentially occurs at certain continually changing planetary radii. It remains unknown why certain radii might be favored, unless radial electric field components or other means serve to differentiate radially the magnetospheric plasma density, particle energy vectors, or particle coherence. Calculation of the spatial distribution and intensity of the Io-generated magnetospheric currents are also presented; these currents may be limited principally by wave impedance and local field strengths.

  7. THE FUNDAMENTAL PLANE FOR RADIO MAGNETARS

    SciTech Connect

    Rea, Nanda; Torres, Diego F.; Pons, Jose A.; Turolla, Roberto

    2012-03-20

    High magnetic fields are a distinguishing feature of neutron stars and the existence of sources (the soft gamma repeaters, SGRs, and the anomalous X-ray pulsars) hosting an ultramagnetized neutron star (or magnetar) has been recognized in the past few decades. Magnetars are believed to be powered by magnetic energy and not by rotation, as with normal radio pulsars. Until recently, the radio quietness and magnetic fields typically above the quantum critical value (B{sub Q} {approx_equal} 4.4 Multiplication-Sign 10{sup 13} G) were among the characterizing properties of magnetars. The recent discovery of radio-pulsed emission from a few of them, and of a low dipolar magnetic field SGR, weakened further the idea of a clean separation between normal pulsars and magnetars. In this Letter, we show that radio emission from magnetars might be powered by rotational energy, similarly to what occurs in normal radio pulsars. The peculiar characteristics of magnetars radio emission should be traced in the complex magnetic geometry of these sources. Furthermore, we propose that magnetar radio activity or inactivity can be predicted from the knowledge of the star's rotational period, its time derivative, and the quiescent X-ray luminosity.

  8. Limitations in scatter propagation

    NASA Astrophysics Data System (ADS)

    Lampert, E. W.

    1982-04-01

    A short description of the main scatter propagation mechanisms is presented; troposcatter, meteor burst communication and chaff scatter. For these propagation modes, in particular for troposcatter, the important specific limitations discussed are: link budget and resulting hardware consequences, diversity, mobility, information transfer and intermodulation and intersymbol interference, frequency range and future extension in frequency range for troposcatter, and compatibility with other services (EMC).

  9. NASA Propagation Information Center

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.; Flock, Warren L.

    1989-01-01

    The NASA Propagation Information Center became formally operational in July 1988. It is located in the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. The Center is several things: a communications medium for the propagation with the outside world, a mechanism for internal communication within the program, and an aid to management.

  10. NASA propagation information center

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.; Flock, Warren L.

    1990-01-01

    The NASA Propagation Information Center became formally operational in July 1988. It is located in the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. The center is several things: a communications medium for the propagation with the outside world, a mechanism for internal communication within the program, and an aid to management.

  11. Radiowave propagation measurements in Nigeria (preliminary reports)

    NASA Astrophysics Data System (ADS)

    Falodun, S. E.; Okeke, P. N.

    2013-07-01

    International conferences on frequency coordination have, in recent years, required new information on radiowave propagation in tropical regions and, in particular, on propagation in Africa. The International Telecommunications Union (ITU-R) initiated `radio-wave propagation measurement campaign' in some African countries some years back. However, none of the ITU-initiated experiments were mounted in Nigeria, and hence, there is lack of adequate understanding of the propagation mechanisms associated with this region of the tropics. The Centre for Basic Space Science (CBSS) of NASRDA has therefore embarked on propagation data collection from the different climatic zones of Nigeria (namely Coastal, Guinea Savannah, Midland, and Sahelian) with the aim of making propagation data available to the ITU, for design and prediction purposes in order to ensure a qualitative and effective communication system in Nigeria. This paper focuses on the current status of propagation data from Nigeria (collected by CBSS), identifying other parameters that still need to be obtained. The centre has deployed weather stations to different locations in the country for refractivity measurements in clear atmosphere, at the ground surface and at an altitude of 100 m, being the average height of communication mast in Nigeria. Other equipments deployed are Micro Rain Radar and Nigerian Environmental and Climatic Observing Program equipments. Some of the locations of the measurement stations are Nsukka (7.4° E, 6.9° N), Akure (5.12° E, 7.15° N), Minna (6.5° E, 9.6° N), Sokoto (5.25° E, 13.08° N), Jos (8.9° E, 9.86° N), and Lagos (3.35° E, 6.6° N). The results obtained from the data analysis have shown that the refractivity values vary with climatic zones and seasons of the year. Also, the occurrence probability of abnormal propagation events, such as super refraction, sub-refraction, and ducting, depends on the location as well as the local time. We have also attempted to identify

  12. Parallel acceleration of diffuse scattering model for indoor radio prediction by CUDA

    NASA Astrophysics Data System (ADS)

    Meng, Xiao; Guo, Li-xin; Tao, Wei

    2013-10-01

    Radio wave propagation prediction is very important for the design of the mobile communication network. The raytracing algorithm is a commonly used computational method for site-specific prediction of the radio channel characteristics of wireless communication systems. However, it does not consider the diffuse scattering. Therefore, an indoor diffuse scattering model which based on diffuse scattering theory and FDTD is established. The diffuse scattering of indoor walls and ceiling and floor is calculated at a series of discrete time instance in this method. In recent years, the compute unified device architecture (CUDA) of NVIDIA takes advantage of the GPU for parallel computing, and greatly improve the speed of computation. Because there is a large number of data to deal with, in order to reduce the computation time, a GPU-based diffuse scattering model for indoor radio prediction is introduced in this paper, which fully utilizes the parallel processing capabilities of CUDA to further improve the computational efficiency. It can be found that good acceleration effect has been achieved.

  13. Spectral structures and their generation mechanisms for solar radio type-I bursts

    SciTech Connect

    Iwai, K.; Miyoshi, Y.; Masuda, S.; Tsuchiya, F.; Morioka, A.; Misawa, H.

    2014-07-01

    The fine spectral structures of solar radio type-I bursts were observed by the solar radio telescope AMATERAS. The spectral characteristics, such as the peak flux, duration, and bandwidth, of the individual burst elements were satisfactorily detected by the highly resolved spectral data of AMATERAS with the burst detection algorithm that is improved in this study. The peak flux of the type-I bursts followed a power-law distribution with a spectral index of 2.9-3.3, whereas their duration and bandwidth were distributed more exponentially. There were almost no correlations between the peak flux, duration, and bandwidth. That means there was no similarity in the shapes of the burst spectral structures. We defined the growth rate of a burst as the ratio between its peak flux and duration. There was a strong correlation between the growth rate and peak flux. These results suggest that the free energy of type-I bursts that is originally generated by nonthermal electrons is modulated in the subsequent stages of the generation of nonthermal electrons, such as plasma wave generation, radio wave emissions, and propagation. The variation of the timescale of the growth rate is significantly larger than that of the coronal environments. These results can be explained by the situation wherein the source region may have the inhomogeneity of an ambient plasma environment, such as the boundary of open and closed field lines, and the superposition of entire emitted bursts was observed by the spectrometer.

  14. Earth-Space Propagation Data Bases

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.

    1996-01-01

    This paper, designed for the newcomer rather than the expert, will take a rather broad view of what is meant by 'propagation data bases' in that it will take the term to mean both the actual measurements and models of Earth-space paths. The text will largely be drawn from International Radio Consultative Committee (CCIR) reports, now annexed to the Recommendations of the International Telecommunications Union-R Study Group 3, plus some experience with a course taught at the University of Colorado.

  15. The Giant Metrewave Radio Telescope

    NASA Astrophysics Data System (ADS)

    Nityananda, R.

    2003-05-01

    The Giant Metrewave Radio Telescope (GMRT) of the National Centre of Radio Astrophysics (NCRA) of the Tata Institute of Fundamental Research (TIFR) at Khodad, India, has been operational in the band 0.2 to 2 metres for the last two and a half years. The system characteristics and performance and recent results from the group will be presented. Details of use over the last six months by scientists from other observatories under the GMRT Time Allocation Committee (GTAC) and future plans will be also be reviewed in this paper. Areas which have been studied include observations made in the GMRT band of neutral hydrogen, nearby galaxies, supernova remnants, the Galactic Centre, pulsars, the Sun and others.

  16. Wave propagation phenomena

    NASA Astrophysics Data System (ADS)

    Groenenboom, P. H. L.

    The phenomenon of wave propagation is encountered frequently in a variety of engineering disciplines. It has been realized that for a growing number of problems the solution can only be obtained by discretization of the boundary. Advantages of the Boundary Element Method (BEM) over domain-type methods are related to the reduction of the number of space dimensions and of the modelling effort. It is demonstrated how the BEM can be applied to wave propagation phenomena by establishing the fundamental relationships. A numerical solution procedure is also suggested. In connection with a discussion of the retarded potential formulation, it is shown how the wave propagation problem can be cast into a Boundary Integral Formulation (BIF). The wave propagation problem in the BIF can be solved by time-successive evaluation of the boundary integrals. The example of pressure wave propagation following a sodium-water reaction in a Liquid Metal cooled Fast Breeder Reactor steam generator is discussed.

  17. Wave propagation, scattering and emission in complex media

    NASA Astrophysics Data System (ADS)

    Jin, Ya-Qiu

    I. Polarimetric scattering and SAR imagery. EM wave propagation and scattering in polarimetric SAR interferometry / S. R. Cloude. Terrain topographic inversion from single-pass polarimetric SAR image data by using polarimetric stokes parameters and morphological algorithm / Y. Q. Jin, L. Luo. Road detection in forested area using polarimetric SAR / G. W. Dong ... [et al.]. Research on some problems about SAR radiometric resolution / G. Dong ... [et al.]. A fast image matching algorithm for remote sensing applications / Z. Q. Hou ... [et al.]. A new algorithm of noised remote sensing image fusion based on steerable filters / X. Kang ... [et al.]. Adaptive noise reduction of InSAR data based on anisotropic diffusion models and their applications to phase unwrapping / C. Wang, X. Gao, H. Zhang -- II. Scattering from randomly rough surfaces. Modeling tools for backscattering from rough surfaces / A. K. Fung, K. S. Chen. Pseudo-nondiffracting beams from rough surface scattering / E. R. Méndez, T. A. Leskova, A. A. Maradudin. Surface roughness clutter effects in GPR modeling and detection / C. Rappaport. Scattering from rough surfaces with small slopes / M. Saillard, G. Soriano. Polarization and spectral characteristics of radar signals reflected by sea-surface / V. A. Butko, V. A. Khlusov, L. I. Sharygina. Simulation of microwave scattering from wind-driven ocean surfaces / M. Y. Xia ... [et al.]. HF surface wave radar tests at the Eastern China Sea / X. B. Wu ... [et al.] -- III. Electromagnetics of complex materials. Wave propagation in plane-parallel metamaterial and constitutive relations / A. Ishimaru ... [et al.]. Two dimensional periodic approach for the study of left-handed metamaterials / T. M. Grzegorczyk ... [et al.]. Numerical analysis of the effective constitutive parameters of a random medium containing small chiral spheres / Y. Nanbu, T. Matsuoka, M. Tateiba. Wave propagation in inhomogeneous media: from the Helmholtz to the Ginzburg -Landau equation / M

  18. Modeling and Simulation for Realistic Propagation Environments of Communications Signals at SHF Band

    NASA Technical Reports Server (NTRS)

    Ho, Christian

    2005-01-01

    In this article, most of widely accepted radio wave propagation models that have proven to be accurate in practice as well as numerically efficient at SHF band will be reviewed. Weather and terrain data along the signal's paths can be input in order to more accurately simulate the propagation environments under particular weather and terrain conditions. Radio signal degradation and communications impairment severity will be investigated through the realistic radio propagation channel simulator. Three types of simulation approaches in predicting signal's behaviors are classified as: deterministic, stochastic and attenuation map. The performance of the simulation can be evaluated under operating conditions for the test ranges of interest. Demonstration tests of a real-time propagation channel simulator will show the capabilities and limitations of the simulation tool and underlying models.

  19. Modeling the recorded spectrum and reconstructing the transfer function of the wideband ionospheric HF radio channel in the case of chirp sounding

    NASA Astrophysics Data System (ADS)

    Ilyin, N. V.; Davydenko, M. A.; Khakhinov, V. V.

    2007-05-01

    We model theoretically the received spectrum in the case of sounding of the ionospheric HF radio channel by a chirp signal. It is shown that the result of processing of an individual time sample of the received signal is equivalent to the sounding of the radio channel by a complex narrow-band pulsed signal such that the group delays of its propagation modes determine the maxima in the received spectrum. We analyze the quadrature components of realizations of the received signal at the intermediate frequency at the bandpass-filter output in the receiving channel of the chirp ionosonde. The results of our analysis show the possibility of reconstructing the transfer function of a HF radio channel in the sounding-frequency band for the delay range determined by the characteristics of the intermediate-frequency bandpass filter. We propose a method for reconstructing the transfer function of the ionospheric radio channel, which involves supplementing the circuit of primary processing of the signal by a corrective digital filter with specified amplitude-frequency and phase-frequency characteristics. The proposed method can be used for all operating regimes of the chirp ionosonde in the case of digital recording and processing of signals.

  20. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  1. The ghost propagator in Coulomb gauge

    SciTech Connect

    Watson, P.; Reinhardt, H.

    2011-05-23

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  2. STEM on the radio

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-10-01

    Looking for an Internet radio station focusing on programing about science, technology, engineering, and math (STEM)? The U.S. National Science Foundation (NSF) announced on 26 September the launch of Science360 Radio, which it says is the first Internet radio stream dedicated to STEM programing. Science360 includes more than 100 radio shows and podcasts that are available on the Web as well as on iPhone and Android devices. The shows originate from a variety of sources, including NSF, other U.S. government agencies, science organizations, universities, and media outlets. For more information, see http://science360.gov/files/.

  3. Proceedings of the Twenty-First NASA Propagation Experimenters Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry.

  4. Classification of neocortical interneurons using affinity propagation

    PubMed Central

    Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  5. Classification of neocortical interneurons using affinity propagation.

    PubMed

    Santana, Roberto; McGarry, Laura M; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  6. Radio data transmission for SCADA

    SciTech Connect

    Frasier, W.E. )

    1989-09-01

    Enron has used such wireless systems as meteor burst radio, 952 MHz multiple address radio, VSAT and L-band satellite, cellular radio and ACSB radio. The company's experience with meteor burst radio communications is discussed in this paper. It indicates good system reliability and consequently all back-up telephone lines have been removed from sites using this system.

  7. Gear Crack Propagation Investigation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios

  8. Experimental radio frequency link for Ka-band communications applications

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene; Conray, Martin J.; Saunders, Alan L.; Pope, Dale E.

    1988-01-01

    An experimental radio frequency link has been demonstrated to provide two-way communication between a remote user ground terminal and a ground-based Ka-band transponder. Bit-error-rate performance and radio frequency characteristics of the communication link were investigated.

  9. The hydrodynamics of dead radio galaxies

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher S.; Heinz, Sebastian; Begelman, Mitchell C.

    2002-05-01

    We present a numerical investigation of dead, or relic, radio galaxies and the environmental impact that radio galaxy activity has on the host galaxy or galaxy cluster. We perform axisymmetric hydrodynamical calculations of light, supersonic, back-to-back jets propagating in a β -model galaxy/cluster atmosphere. We then shut down the jet activity and let the resulting structure evolve passively. The dead source undergoes an initial phase of pressure driven expansion until it achieves pressure equilibrium with its surroundings. Thereafter, buoyancy forces drive the evolution and lead to the formation of two oppositely directed plumes that float high into the galaxy/cluster atmosphere. These plumes entrain a significant amount of low entropy material from the galaxy/cluster core and lift it high into the atmosphere. An important result is that a large fraction (at least half) of the energy injected by the jet activity is thermalized in the interstellar medium (ISM)/intracluster medium (ICM) core. The whole ISM/ICM atmosphere inflates in order to regain hydrostatic equilibrium. This inflation is mediated by an approximately spherical disturbance which propagates into the atmosphere at the sound speed. The fact that such a large fraction of the injected energy is thermalized suggests that radio galaxies may have an important role in the overall energy budget of rich ISM/ICM atmospheres. In particular, they may act as a strong and highly time-dependent source of negative feedback for galaxy/cluster cooling flows.

  10. Tracking by Identification Using Computer Vision and Radio

    PubMed Central

    Mandeljc, Rok; Kovačič, Stanislav; Kristan, Matej; Perš, Janez

    2013-01-01

    We present a novel system for detection, localization and tracking of multiple people, which fuses a multi-view computer vision approach with a radio-based localization system. The proposed fusion combines the best of both worlds, excellent computer-vision-based localization, and strong identity information provided by the radio system, and is therefore able to perform tracking by identification, which makes it impervious to propagated identity switches. We present comprehensive methodology for evaluation of systems that perform person localization in world coordinate system and use it to evaluate the proposed system as well as its components. Experimental results on a challenging indoor dataset, which involves multiple people walking around a realistically cluttered room, confirm that proposed fusion of both systems significantly outperforms its individual components. Compared to the radio-based system, it achieves better localization results, while at the same time it successfully prevents propagation of identity switches that occur in pure computer-vision-based tracking. PMID:23262485

  11. Interstellar Turbulence: What Radio Astronomers Can Tell Plasma Theorists

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.

    1999-12-01

    A discussion is given of the results of radio wave propagation observations within the context of the multiphase structure of the interstellar medium. The observed phenomenon discussed is Interstellar Scintillations, or ISS. Results from similar radio studies of the solar wind help us interpret the data from the interstellar medium. Radio propagation observations can measure both the spectral form and the intensity of turbulence in the interstellar medium on spatial scales from tens of kilometers to 100 astronomical units. A number of major observational results from ISS are listed. Perhaps the primary is the evidence for a roughly power law spectrum of irregularities which extends over many decades of spatial scale. Outstanding goals for the future, as well as present paradoxes and inconsistencies are enumerated and discussed. The primary goal for work in the near term will be to improve on the presently inchoate understanding of the processes which generate the interstellar turbulence.

  12. Impact of the magnetic superstorm on March 17-19, 2015 on subpolar HF radio paths: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D. V.; Maltseva, O. A.; Anishin, M. M.; Sergeeva, M. A.; Rogov, D. D.

    2016-09-01

    The ionospheric phenomena which significantly influenced radio propagation during March 17-19, 2015 are considered in the study. The data of oblique ionospheric sounding (OIS) were analyzed at six radio paths. These paths are located in the zone of North Siberia in Russia and have different lengths: from 1000 to 5000 km. The results are the following. The magnetic storm drastically changed the character of radio propagation at all the considered paths: in most cases the reflections from the ionospheric F2-layer were changed by the reflections only from the sporadic Es-layer. The parameters of movement of the disturbance front were estimated on the basis of OIS data of the paths. The average velocity of the front movements from east to west was about V = 440 m/s. Even the moderate growth of riometer absorption within the region of radio paths' locations, resulted in loss of multihop modes in the signal reflections from sporadic layers. It also resulted in a sharp decrease of signal strength at the paths. Real distance-frequency characteristics (DFC) of the paths were compared to DFC calculated on the basis of International Reference Ionosphere (IRI) model. It was revealed that on a quiet day of March, 15th, the real and the calculated DFC are similar or coincide in the majority of cases. During the disturbed days of March, 17-19, most commonly observed are the significant differences between the calculated and the experimental data. The most pronounced difference is revealed while estimating the character of OIS signals' reflections from Es-layers.

  13. Solar radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Dulk, George A.

    1990-01-01

    The characteristics of solar radio emissions at decametric to kilometric wavelengths are reviewed. Special attention is given to the radiation of the quiet sun at several metric and decametric wavelengths and to nonthermal radiation from the active sun, including radio bursts of type III (electron beams), type-III bursts from behind the sun, storms of type III bursts, the flare-associated radio bursts, type II bursts (shock waves), and shock-associated bursts. It is pointed out that almost no observations have been made so far of solar radiation between about 20 MHz and about 2 MHz. Below about 2 MHz, dynamic spectra of flux densities of solar burst have been recorded in space and observations were made of the directions of centroids and characteristic sizes of the emitting sources.

  14. Radio Frequency Interference and the National Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Smith, Sierra

    2014-01-01

    Radio frequency interference (RFI) and radio astronomy have been closely linked since the emergence of radio astronomy as a scientific discipline in the 1930s. Even before the official establishment of the National Radio Astronomy Observatory, protection against contemporary and future radio noise levels was seen as crucial to ensure success of any new observatory. My talk will examine the various local, regional, national, and international efforts enacted to protect NRAO and other American radio astronomy sites from RFI.

  15. Propagation of Environmental Noise

    ERIC Educational Resources Information Center

    Lyon, R. H.

    1973-01-01

    Solutions for environmental noise pollution lie in systematic study of many basic processes such as reflection, scattering, and spreading. Noise propagation processes should be identified in different situations and assessed for their relative importance. (PS)

  16. Database for propagation models

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1991-01-01

    A propagation researcher or a systems engineer who intends to use the results of a propagation experiment is generally faced with various database tasks such as the selection of the computer software, the hardware, and the writing of the programs to pass the data through the models of interest. This task is repeated every time a new experiment is conducted or the same experiment is carried out at a different location generating different data. Thus the users of this data have to spend a considerable portion of their time learning how to implement the computer hardware and the software towards the desired end. This situation may be facilitated considerably if an easily accessible propagation database is created that has all the accepted (standardized) propagation phenomena models approved by the propagation research community. Also, the handling of data will become easier for the user. Such a database construction can only stimulate the growth of the propagation research it if is available to all the researchers, so that the results of the experiment conducted by one researcher can be examined independently by another, without different hardware and software being used. The database may be made flexible so that the researchers need not be confined only to the contents of the database. Another way in which the database may help the researchers is by the fact that they will not have to document the software and hardware tools used in their research since the propagation research community will know the database already. The following sections show a possible database construction, as well as properties of the database for the propagation research.

  17. Wave Propagation Program

    Energy Science and Technology Software Center (ESTSC)

    2007-01-08

    WPP is a massively parallel, 3D, C++, finite-difference elastodynamic wave propagation code. Typical applications for wave propagation with WPP include: evaluation of seismic event scenarios and damage from earthquakes, non-destructive evaluation of materials, underground facility detection, oil and gas exploration, predicting the electro-magnetic fields in accelerators, and acoustic noise generation. For more information, see User’s Manual [1].

  18. The earth as a radio source. [noting auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1975-01-01

    The primary characteristics of radio emission from the earth's magnetosphere are summarized, the origins of these missions are considered and similarities to other astronomical radio sources discussed. The auroral kilometric radiation has features very similar to Io-related decametric radiation from Jupiter and from Saturn. The radiation at fp and 2 fp upstream of the bow shock appears to be generated by the same mechanism as type III solar radio bursts. The beaming of the auroral kilometric radiation into a cone shaped region over the polar cap has some similarity to the angular distribution of radiation from Io and to the beaming of radio emission from pulsars.

  19. Broadcast Management: Radio; Television.

    ERIC Educational Resources Information Center

    Quaal, Ward L.; Martin, Leo A.

    After outlining the qualities necessary in a good radio or television manager, the book describes his duties which fall in three major areas: programming, engineering, and sales. It discusses the relationship between the station and its audience in detail. Sections on radio and television programming describe the way most stations operate and…

  20. Film, Radio, and Television.

    ERIC Educational Resources Information Center

    Hardesty, Carolyn, Ed.

    1990-01-01

    This journal issue covers the history of film, radio, and television in Iowa. The first article, "When Pictures and Sound Came to Iowa," summarizes the origin of movies and radio and their early beginnings in Iowa. Using old photographs and measurement charts, the viewing, reading, and listening habits of young people in 1950 and 1958 are…

  1. Amateur Radio Satellite Communications.

    ERIC Educational Resources Information Center

    Koch, David P.

    The Amateur Radio Satellite Communications project had, as its goal, the assembly of an amateur radio satellite station in a high school physics classroom. Specific objectives were to provide: (1) a special source of interest as a motivator for attracting students and building public relations; (2) a center of interest as a motivator for the study…

  2. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  3. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1984-12-25

    Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.

  4. The Radio Jove Project

    NASA Technical Reports Server (NTRS)

    Thieman, J. R.

    2010-01-01

    The Radio love Project is a hands-on education and outreach project in which students, or any other interested individuals or groups build a radio telescope from a kit, operate the radio telescope, transmit the resulting signals through the internet if desired, analyze the results, and share the results with others through archives or general discussions among the observers. Radio love is intended to provide an introduction to radio astronomy for the observer. The equipment allows the user to observe radio signals from Jupiter, the Sun, the galaxy, and Earth-based radiation both natural and man-made. The project was started through a NASA Director's Discretionary Fund grant more than ten years ago. it has continued to be carried out through the dedicated efforts of a group of mainly volunteers. Dearly 1500 kits have been distributed throughout the world. Participation can also be done without building a kit. Pre-built kits are available. Users can also monitor remote radio telescopes through the internet using free downloadable software available through the radiosky.com website. There have been many stories of prize-winning projects, inspirational results, collaborative efforts, etc. We continue to build the community of observers and are always open to new thoughts about how to inspire the observers to still greater involvement in the science and technology associated with Radio Jove.

  5. Optical and radio rangefinders

    NASA Astrophysics Data System (ADS)

    Kostetskaia, Iaromira Mikhailovna

    This handbook expounds the theory of optical and radio rangefinders and radiogeodesic systems. Particular attention is given to instrument design, investigations using geodesic phase rangefinders, ranging errors, and the effect of meteorological factors in the atmospheric surface layer. Applications of optical and radio rangefinders are considered, including the establishment of geodetic networks and the assessment of the accuracy of triangulation networks.

  6. Vertical laser beam propagation through the troposphere

    NASA Technical Reports Server (NTRS)

    Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.

    1974-01-01

    The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.

  7. Planetary radio lasing

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1988-01-01

    Both the Earth's auroral kilometric radiation (AKR) and Jupiter's decametric radio S-bursts are attributed to natural radio lasing. Presumably consisting of self-excited, closed-loop wave feedback oscillations between local irregularities of the source plasma density, this radio lasing is comparable to that which occurs in man-made optical lasers, although at radio, rather than optical wavelengths. As a result, it should produce a multiple discrete emission spectrum and intense, coherent beams. Recent observations of the AKR's discreteness and coherence have clearly ruled out the previous open-loop amplifier model for such emissions, and recent observations of the Jovian S-bursts have shown the expected, regularly-spaced, longitudinal laser modes. These new observations thus confirm the proposed planetary cyclotron radio lasing at both planets.

  8. Radio continuum properties of luminous infrared galaxies. Identifying the presence of an AGN in the radio

    NASA Astrophysics Data System (ADS)

    Vardoulaki, E.; Charmandaris, V.; Murphy, E. J.; Diaz-Santos, T.; Armus, L.; Evans, A. S.; Mazzarella, J. M.; Privon, G. C.; Stierwalt, S.; Barcos-Muñoz, L.

    2015-02-01

    Context. Luminous infrared galaxies (LIRGs) are systems enshrouded in dust, which absorbs most of their optical/UV emission and radiates it again in the mid- and far-infrared. Radio observations are largely unaffected by dust obscuration, enabling us to study the central regions of LIRGs in an unbiased manner. Aims: The main goal of this project is to examine how the radio properties of local LIRGs relate to their infrared spectral characteristics. Here we present an analysis of the radio continuum properties of a subset of the Great Observatories All-sky LIRG Survey (GOALS), which consists of 202 nearby systems (z< 0.088). Our radio sample consists of 35 systems, containing 46 individual galaxies, that were observed at both 1.49 and 8.44 GHz with the VLA with a resolution of about 1 arcsec (FWHM). The aim of the project is to use the radio imagery to probe the central kpc of these LIRGs in search of active galactic nuclei (AGN). Methods: We used the archival data at 1.49 and 8.44 GHz to create radio-spectral-index maps using the standard relation between flux density Sν and frequency ν, Sν ~ ν- α, where α is the radio spectral index. By studying the spatial variations in α, we classified the objects as radio-AGN, radio-SB, and AGN/SB (a mixture). We identified the presence of an active nucleus using the radio morphology, deviations from the radio/infrared correlation, and spatially resolved spectral index maps, and then correlated this to the usual mid-infrared ([NeV]/[NeII] and [OIV]/[NeII] line ratios and equivalent width of the 6.2 μm PAH feature) and optical (BPT diagram) AGN diagnostics. Results: We find that 21 out of the 46 objects in our sample (~45%) are radio-AGN, 9 out of the 46 (~20%) are classified as starbursts (SB) based on the radio analysis, and 16 (~35%) are AGN/SB. After comparing to other AGN diagnostics we find 3 objects out of the 46 (~7%) that are identified as AGN based on the radio analysis, but are not classified as such based on

  9. Radio efficiency of pulsars

    SciTech Connect

    Szary, Andrzej; Melikidze, George I.; Gil, Janusz; Zhang, Bing; Xu, Ren-Xin E-mail: zhang@physics.unlv.edu

    2014-03-20

    We investigate radio emission efficiency, ξ, of pulsars and report a near-linear inverse correlation between ξ and the spin-down power, E-dot , as well as a near-linear correlation between ξ and pulsar age, τ. This is a consequence of very weak, if any, dependences of radio luminosity, L, on pulsar period, P, and the period derivative, P-dot , in contrast to X-ray or γ-ray emission luminosities. The analysis of radio fluxes suggests that these correlations are not due to a selection effect, but are intrinsic to the pulsar radio emission physics. We have found that, although with a large variance, the radio luminosity of pulsars is ≈10{sup 29} erg s{sup –1}, regardless of the position in the P-- P-dot diagram. Within such a picture, a model-independent statement can be made that the death line of radio pulsars corresponds to an upper limit in the efficiency of radio emission. If we introduce the maximum value for radio efficiency into the Monte Carlo-based population syntheses we can reproduce the observed sample using the random luminosity model. Using the Kolmogorov-Smirnov test on a synthetic flux distribution reveals a high probability of reproducing the observed distribution. Our results suggest that the plasma responsible for generating radio emission is produced under similar conditions regardless of pulsar age, dipolar magnetic field strength, and spin-down rate. The magnetic fields near the pulsar surface are likely dominated by crust-anchored, magnetic anomalies, which do not significantly differ among pulsars, leading to similar conditions for generating electron-positron pairs necessary to power radio emission.

  10. Correlation of radio and gamma emissions in lightning initiation.

    PubMed

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Thu, W M; Vildanova, L I; Zybin, K P

    2013-10-18

    The results of simultaneous radio and gamma emission measurements during thunderstorms are presented. A gamma detector situated at the height 3840 m and two radio detectors of Tien-Shan Mountain Scientific Station (altitude 3340 m) registered intensive gamma flashes and radio pulses during the time of lightning initiation. The radio-gamma correlation grows abruptly at the initial moment (a few hundred microseconds), and the correlation coefficient reaches 0.9-0.95. The gamma-energy spectrum measured during lightning initiation is close to the characteristic spectrum of runaway breakdown. Radio pulses observed at the same time have highest amplitudes. Combined observation of gamma and radio emissions confirm the conception of lightning initiation due to multiple simultaneous electric discharges at hydrometeors stimulated and synchronized by low-energy electrons generated in the runaway breakdown process. PMID:24182272

  11. HF Radio Wave Production of Artificial Ionospheres

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert

    In 1993 it was predicted that artificial ionospheres would be produced by high power HF radio waves, once HF transmitters approached a GWatt ERP. When that threshold was very recently achieved, such production was indeed detected and published at two high latitude high power HF facilities. Here we review: the first-principles logic behind that prediction, which aspects of such production are critically dependent on magnetic latitude, and which aspects of such production depend only on physical parameters independent of latitude. These distinctions follow directly from decomposition of the problem of ionization production into its components of: radio-wave propagation, wave-particle interactions, electron transport, and quantitative elastic/inelastic cross-sections. We outline this analysis to show that, within the context of early observations, the production of ionization is inevitable, and only a question of competing instability thresholds, and scale of ionization production. This illustrates complimentary aeronomy and plasma physics to advance understanding of both.

  12. Ionosphere-reflected propagation

    NASA Technical Reports Server (NTRS)

    Reddy, B. M.

    1979-01-01

    The predictability of those ionospheric parameters relevant to ionosphere-reflected communications is considered along with their optimum utilization. Several excellent original articles and review papers which have been published from time to time dealing with the long term and short term forecasting of ionospheric parameters, radio systems, and modelling needs for ionospheric communications, are covered.

  13. Giant radio galaxies via inverse Compton weakened jets

    NASA Astrophysics Data System (ADS)

    Wiita, Paul J.; Rosen, Alexander; Gopal-Krishna; Saripalli, L.

    Both analytical and numerical models for the propagation of relativistic jets through a hot interstellar medium (ISM) and into an even hotter intergalactic medium (IGM) have been considered. The models by Gopal-Krishna and Wiita (1987), and Wiita and Gopal-Krishna (1987, 1988) were extended to allow for intrinsically extremely powerful jets, which may start off advancing relativistically through the interstellar medium. Eventually the energy density in the lobes becomes comparable to that of the microwave background, and inverse Compton losses of the synchrotron emitting electrons against the background photons become important. It is argued that only powerful radio engines are responsible for giant radio galaxies (GRGs, those whose linear size exceeds 1.5 Mpc), most of the observed peculiarities of the GRGs, such as their rarity, moderate radio flux and relatively strong radio cores can be explained.

  14. VLF Radio Observations and Modeling of the Ionospheric Effects of SGR 1550-5418

    NASA Astrophysics Data System (ADS)

    Carlson, B. E.; Lehtinen, N. G.; Cohen, M.; Fishman, G. J.; Kouveliotou, C.; van der Horst, A.; Chaplan, V.; Inan, U. S.

    2010-12-01

    Cosmic gamma-ray bursts ionize the upper atmosphere, affecting sub-ionospheric propagation of very-low-frequency (VLF) radio waves. Perturbations of VLF radio signals can therefore be used to study gamma-ray burst effects on the ionosphere. We present observations of VLF radio signal perturbations coincident with bursts observed by the Fermi satellite to be produced by soft gamma-ray repeater (SGR) 1550-5418 on January 22, 2009. Massive VLF signal amplitude perturbations as large as 15 dB are seen coincident with the gamma-ray events. Models of gamma-ray ionization and chemical recovery of the upper atmosphere are then used to drive simulations of VLF radio propagation. Simulation results are compared to the observed radio data and to Fermi gamma-ray observations and are used to constrain the properties of the ionosphere and the gamma-ray events.

  15. The Deep Space Network as an instrument for radio science research

    NASA Technical Reports Server (NTRS)

    Asmar, S. W.; Renzetti, N. A.

    1993-01-01

    Radio science experiments use radio links between spacecraft and sensor instrumentation that is implemented in the Deep Space Network. The deep space communication complexes along with the telecommunications subsystem on board the spacecraft constitute the major elements of the radio science instrumentation. Investigators examine small changes in the phase and/or amplitude of the radio signal propagating from a spacecraft to study the atmospheric and ionospheric structure of planets and satellites, planetary gravitational fields, shapes, masses, planetary rings, ephemerides of planets, solar corona, magnetic fields, cometary comae, and such aspects of the theory of general relativity as gravitational waves and gravitational redshift.

  16. Elevated Temperature Crack Propagation

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1994-01-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  17. Crack propagation in graphene

    NASA Astrophysics Data System (ADS)

    Budarapu, P. R.; Javvaji, B.; Sutrakar, V. K.; Roy Mahapatra, D.; Zi, G.; Rabczuk, T.

    2015-08-01

    The crack initiation and growth mechanisms in an 2D graphene lattice structure are studied based on molecular dynamics simulations. Crack growth in an initial edge crack model in the arm-chair and the zig-zag lattice configurations of graphene are considered. Influence of the time steps on the post yielding behaviour of graphene is studied. Based on the results, a time step of 0.1 fs is recommended for consistent and accurate simulation of crack propagation. Effect of temperature on the crack propagation in graphene is also studied, considering adiabatic and isothermal conditions. Total energy and stress fields are analyzed. A systematic study of the bond stretching and bond reorientation phenomena is performed, which shows that the crack propagates after significant bond elongation and rotation in graphene. Variation of the crack speed with the change in crack length is estimated.

  18. Proceedings of the 19th NASA Propagation Experimenters Meeting (NAPEX 19) and the 7th Advanced Communications Technology Satellite (ACTS) Propagation Studies Workshop (APSW 7)

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Editor)

    1995-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. NAPEX 19 was held on 14 Jun. 1995, in Fort Collins, Colorado. Participants included representatives from Canada, Japan, and the United States, including researchers from universities, government agencies, and private industry. The meeting focused on mobile personal satellite systems and the use of 20/30-GHz band for fixed and mobile satellite applications. In total, 18 technical papers were presented. Following NAPEX 19, the Advanced Communications Technology Satellite (ACTS) Propagation Studies Workshop 7 (APSW 7) was held on 15-16 Jun. 1995, to review ACTS propagation activities with emphasis on the experimenters' status reports and dissemination of propagation data to industry.

  19. Worldwide monitoring of VLF-LF propagation and atmospheric noise

    NASA Astrophysics Data System (ADS)

    Tomko, A. A.; Hepner, T.

    2001-03-01

    A joint effort is underway between The Johns Hopkins University Applied Physics Laboratory and the Space and Naval Warfare (SPAWAR) Systems Center, San Diego, to deploy monitoring equipment capable of characterizing worldwide VLF-LF radio wave propagation and atmospheric noise levels. The monitoring equipment consists of a PC-based spectrum analyzer and orthogonal ferrite core magnetic loop antennas. The analyzer performs continuous measurements of the radio spectrum from 12 to 62 kHz and records time histories of VLF-LF signals (equivalent vertical electric field strength), noise amplitude probability distribution, noise impulsiveness, and average noise field strength. Data are downloaded via the Internet to a central database server. The Internet connection also provides for system reconfiguration and clock synchronization. Data collected by the monitoring network will be used to improve communication coverage forecasts and to analyze transient and long-term propagation effects. This paper provides an overview of the monitoring network and samples of data collected by it.

  20. Mean Element Propagations Using Numerical Averaging

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.

    2009-01-01

    The long-term evolution characteristics (and stability) of an orbit are best characterized using a mean element propagation of the perturbed two body variational equations of motion. The averaging process eliminates short period terms leaving only secular and long period effects. In this study, a non-traditional approach is taken that averages the variational equations using adaptive numerical techniques and then numerically integrating the resulting EOMs. Doing this avoids the Fourier series expansions and truncations required by the traditional analytic methods. The resultant numerical techniques can be easily adapted to propagations at most solar system bodies.