Science.gov

Sample records for radio propagation characteristics

  1. Plasma plume propagation characteristics of pulsed radio frequency plasma jet

    SciTech Connect

    Liu, J. H.; Liu, X. Y.; Hu, K.; Liu, D. W.; Lu, X. P.; Iza, F.; Kong, M. G.

    2011-04-11

    A 4 cm long helium cold atmospheric pressure plasma jet with pulsed radio frequency (rf) excitation was obtained by a copper electrode inside a quartz tube. The plasma bullet propagation characteristics common to the microseconds direct current pulse and kilohertz plasma jet is not observed in this case. The space-, time-, and wavelength-resolved optical emission profiles suggest the pulsed rf plasma channel out of the tube was strengthened by ions and metastables with longer life time than the rf period, and the plasma propagation was actually an illumination of the plasma channel caused by energetic electrons accelerated along the channel.

  2. The seasonal variation of the D region as inferred from propagation characteristics of LF radio waves

    NASA Technical Reports Server (NTRS)

    Ishimine, T.; Ishii, T.; Echizenya, Y.

    1985-01-01

    The propagation data of JG2AS 40 kHz (Japanese Standard Frequency), Loran C 100 kHz radio waves, and meteorological data were analyzed to study the association of propagation characteristics of LF radio waves with the atmospheric circulation in the mesosphere. The monthly averaged electric fields were depicted on the complex plane for typical summer and winter months, June and November. The locus traced out by the electric field vector during daytime is nearly circular. This is because during daytime the amplitude of the sky wave remains nearly constant while its phase changes in accord with the height change of the reflection layer, and thus the electric field vector traces out a circular locus with its center at the tip of the supposed ground wave vector. The locus has a loop during the sunrise or sunset period, which seems to arise from interference of two waves reflected by two different layers. In June the amplitude of the sky wave decreases rapidly before the dawn or increases after the dusk. In November such rapid change is not observed. During nighttime, the sky wave phase changes in such a way as to suggest that the reflection height moves upwards with time before midnight or lowers after midnight in November. In June it changes similarly before midnight, but after midnight it varies erratically. These characteristics are closely related to the structure of the D region, which is clearly shown by simulating the loci traced out by electric fields.

  3. Radio Wave Propagation in Metal Train Compartments MSc thesis in Embedded Systems

    E-print Network

    Langendoen, Koen

    #12;#12;Radio Wave Propagation in Metal Train Compartments MSc thesis in Embedded Systems Faculty Yaowen Khee January 12, 2009 #12;#12;Author Yaowen Khee yb.khee@gmail.com Title Radio Wave Propagation of multiple nodes, each with the ability to communicate using radio waves. The characteristics of the radio

  4. Effects of D region ionization on radio wave propagation

    NASA Technical Reports Server (NTRS)

    Larsen, T. R.

    1979-01-01

    The effects of anomalous D region ionization upon radio wave propagation are described for the main types of disturbances: sudden ionospheric disturbances, relativistic electron events, magnetic storms, auroral disturbances, polar cap events, and stratospheric warmings. Examples of radio wave characteristics for such conditions are given for the frequencies between the extremely low (3-3000 Hz) and high (3-30 MHz) frequency domains. Statistics on the disturbance effects and radio wave data are given in order to contribute towards the evaluation of possibilities for predicting the radio effects.

  5. Antenna Construction and Propagation of Radio Waves.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  6. Wave propagation and earth satellite radio emission studies

    NASA Technical Reports Server (NTRS)

    Yeh, K. C.; Liu, C. H.; Flaherty, B. J.

    1974-01-01

    Radio propagation studies of the ionosphere using satellite radio beacons are described. The ionosphere is known as a dispersive, inhomogeneous, irregular and sometimes even nonlinear medium. After traversing through the ionosphere the radio signal bears signatures of these characteristics. A study of these signatures will be helpful in two areas: (1) It will assist in learning the behavior of the medium, in this case the ionosphere. (2) It will provide information of the kind of signal characteristics and statistics to be expected for communication and navigational satellite systems that use the similar geometry.

  7. Antipodal propagation of decameter radio waves

    NASA Astrophysics Data System (ADS)

    Bryantsev, V. F.

    2013-02-01

    We consider specific features of the antipodal propagation of decameter radio waves based on long-range radio-path measurement data. The measurements were carried out at frequencies of 10 and 15 MHz onboard a research vessel when it crossed the antipodal region of the RID universal-time station located near the city of Irkutsk. Reduced multipath-effect band, increased level of received signals in the antipodal region, and details of diurnal variations of the signal amplitude are discussed.

  8. Radio Wave Propagation in Potato Fields John Thelen

    E-print Network

    Langendoen, Koen

    Radio Wave Propagation in Potato Fields John Thelen Wageningen University Email: John has an important effect on the propagation of radio waves. The influence of the growth stage from 23 m to 10 m. Another important result is that radio waves propagate better in conditions

  9. Subionospheric VLF/LF radio waves propagation characteristics before, during and after the Sofia, Bulgaria Mw=5.6 earthquake occurred on 22 May 2012

    NASA Astrophysics Data System (ADS)

    Moldovan, Iren Adelina; Emilian Toader, Victorin; Nenovski, Petko; Biagi, Pier Francesco; Maggipinto, Tommaso; Septimiu Moldovan, Adrian; Ionescu, Constantin

    2013-04-01

    In 2009, INFREP, a network of VLF (20-60 kHz) and LF (150-300 kHz) radio receivers, was put into operation in Europe having as principal goal, the study of disturbances produced by the earthquakes on the propagation properties of these signals. On May 22nd, 2012 an earthquake with Mw=567 occurred in Bulgaria, near Sofia, inside the "sensitive" area of the INFREP VLF/LF electromagnetic network. The data collected on different frequencies, during April-May 2012 were studied using different methods of analysis: daily correlation methods, spectral approaches and terminator time techniques, in order to find out possible connections between the seismic activity and the subionospheric propagation properties of radio waves. The studies were performed with the help of a specially designed LabVIEW application, which accesses the VLF/LF receiver through internet. This program opens the receiver's web-page and automatically retrieves the list of data files to synchronize the user-side data with the receiver's data. Missing zipped files are also automatically downloaded. The application performs primary, statistical correlation and spectral analysis, appends daily files into monthly and annual files and performs 3D colour-coded maps with graphic representations of VLF and LF signals' intensities versus the minute-of-the-day and the day-of-the-month, facilitating a near real-time observation of VLF and LF electromagnetic waves' propagation. Another feature of the software is the correlation of the daily recorded files for the studied frequencies by overlaying the 24 hours radio activity and taking into account the sunrise and sunset. Data are individually processed (spectral power, correlations, differentiation, filtered using bandpass, lowpass, highpass). JTFA spectrograms (Cone-Shaped Distribution CSD, Gabor, Wavelet, short-time Fourier transform STFT, Wigner-Ville Distribution WVD, Choi-Williams Distribution CWD) are used, too.

  10. D region predictions. [effects on radio propagation

    NASA Technical Reports Server (NTRS)

    Thrane, E. V.; Chakrabarty, D. K.; Deshpande, S. D.; Doherty, R. H.; Gregory, J. B.; Hargreaves, J. K.; Lastovicka, J.; Morris, P.; Piggott, W. R.; Reagan, J. B.

    1979-01-01

    Present knowledge of D region phenomena is briefly reviewed and the status of current methods of predicting their effects on radio propagation considered. The ELF, VLF and LF navigational and timing systems depend on the stability of the lower part of the D layer where these waves are reflected, whereas MF and HF waves are absorbed as they penetrate the region, in most cases mainly in the upper part of the layer. Possible methods of improving predictions, warnings, and real time operations are considered with particular stress on those which can be implemented in the near future.

  11. Determination of sporadic E radio wave propagation parameters based on vertical and oblique sounding

    NASA Astrophysics Data System (ADS)

    Sherstyukov, O. N.; Akchurin, A. D.; Sherstyukov, R. O.

    2015-09-01

    Sporadic E layer is often determined for HF radio communication. We have to deal with oblique radiowave propagation in the radio practice. The limiting frequencies at oblique propagation depend heavily on the transmitter power and the receiver sensitivity. The reason for this, as in the case of vertical propagation, is the dependence of Es reflection coefficient, ?Es (reflection loss R(dB)), on Es operation frequencies. This paper describes the characteristics of HF Es propagation in relation to foEs obtained from ionospheric vertical observations. It was found that characteristics of Es propagation depend on the type and height of the Es layer. Also the foEs diurnal variation at definite R(dB) was detected. This investigation allows improving the prediction of limiting frequencies for HF radio propagation.

  12. Radio-wave propagation for space communications systems

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1981-01-01

    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  13. Antarctic surface roughness effects on radio pulse propagation

    NASA Astrophysics Data System (ADS)

    Dookayka, Kamlesh

    2009-05-01

    Rough surface features on the Antarctic continent that are commensurate with radio wavelengths can affect transmission of such waves. This is especially more pronounced for incidence near the critical angle. We simulate such behavior for radio pulses propagating through Antarctic ice and analyze time-domain effects due to various surface roughness. These have ramifications for detectability by the ANITA neutrino experiment which detects radio Cerenkov emission from within the Antarctic ice sheet.

  14. An Experiment Study of the Propagation of Radio Waves in a Scaled Model of Long-Wall Coal Mining Tunnels

    SciTech Connect

    Han, G.R.; Zhang, W.M.; Zhang, Y.P.

    2009-07-01

    A long-wall coal mining tunnel is the most important working area in a coal mine. It has long been realized that radio communications can improve both productivity and safety in this dangerous area. Hence, many attempts to use radio communications in such an environment have been made. Unfortunately, no radio system has satisfactorily provided communication services there, which, we believe, is partially due to poor understanding of the propagation characteristics of radio waves in the long-wall mining tunnel. To have deeper physical insight into the propagation problem, a scaled model of the long-wall mining tunnel was built, and the propagation characteristics of UHF radio waves were measured. The experiment and the measured results are presented and discussed.

  15. Radio Propagation-Aware Distance Estimation Based on Neighborhood Comparison

    E-print Network

    Fekete, Sándor P.

    Radio Propagation-Aware Distance Estimation Based on Neighborhood Comparison Carsten Buschmann1 propose a new scheme for distance estimation based on the comparison of neighborhood lists. It is inspired communication properties like RSSI. Additionally the approach benefits from message exchange by other protocols

  16. Propagation characteristics of acoustic waves in snow

    NASA Astrophysics Data System (ADS)

    Capelli, Achille; Kapil, Jagdish Chandra; Reiweger, Ingrid; Schweizer, Jürg; Or, Dani

    2015-04-01

    Acoustic emission analysis is a promising technique for monitoring snow slope stability with potential for application in early warning systems for avalanches. Current research efforts focus on identification and localization of acoustic emission features preceding snow failure and avalanches. However, our knowledge of sound propagation characteristics in snow is still limited. A review of previous studies showed that significant gaps exist and that the results of the various studies are partly contradictory. Furthermore, sound velocity and attenuation have been determined for the frequency range below 10 kHz, while recent snow failure experiments suggest that the peak frequency is in the ultrasound range between 30 kHz to 500 kHz. We therefore studied the propagation of pencil lead fracture (PLF) signals through snow in the ultrasound frequency range. This was achieved by performing laboratory experiments with columns of artificially produced snow of varying density and temperature. The attenuation constant was obtained by varying the size of the columns to eliminate possible influences of the snow-sensor coupling. The attenuation constant was measured for the entire PLF burst signal and for single frequency components. The propagation velocity was calculated from the arrival time of the acoustic signal. We then modelled the sound propagation for our experimental setup using Biot's model for wave propagation in porous media. The Model results were in good agreement with our experimental results. For the studied samples, the acoustic signals propagated as fast and slow longitudinal waves, but the main part of the energy was carried by the slow waves. The Young's modulus of our snow samples was determined from the sound velocity. This is highly relevant, as the elastic properties of snow are not well known.

  17. Plasma and radio waves from Neptune: Source mechanisms and propagation

    NASA Technical Reports Server (NTRS)

    Wong, H. K.

    1994-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.

  18. Coherence bandwidth loss in transionospheric radio propagation

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Gonzalez, V. H.; Hessing, A. R.

    1980-01-01

    In this report a theoretical model is developed that predicts the single-point, two-frequency coherence function for transionospheric radio waves. The theoretical model is compared to measured complex frequency correlation coefficients using data from the seven equispaced, phase-coherent UHF signals transmitted by the Wideband satellite. The theory and data are in excellent agreement. The theory is critically dependent upon the power-law index, and the frequency coherence data clearly favor the comparatively small spectral indices that have been consistently measured from the wideband satellite phase data. A model for estimating the pulse delay jitter induced by the coherence bandwidth loss is also developed and compared with the actual delay jitter observed on synthesized pulses obtained from the Wideband UFH comb. The results are in good agreement with the theory. The results presented in this report, which are based on an asymptotic theory, are compared with the more commonly used quadratic theory. The model developed and validated in this report can be used to predict the effects of coherence bandwidth loss in disturbed nuclear environments. Simple formulas for the resultant pulse delay jitter are derived that can be used in predictive codes.

  19. Radio Wave Propagation Handbook for Communication on and Around Mars

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser; Kliore, Arvydas

    2002-01-01

    This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.

  20. Radio propagation through solar and other extraterrestrial ionized media

    NASA Technical Reports Server (NTRS)

    Smith, E. K.; Edelson, R. E.

    1980-01-01

    The present S- and X-band communications needs in deep space are addressed to illustrate the aspects which are affected by propagation through extraterrestrial plasmas. The magnitude, critical threshold, and frequency dependence of some eight propagation effects for an S-band propagation path passing within 4 solar radii of the Sun are described. The theory and observation of propagation in extraterrestrial plasmas are discussed and the various plasma states along a near solar propagation path are illustrated. Classical magnetoionic theory (cold anisotropic plasma) is examined for its applicability to the path in question. The characteristics of the plasma states found along the path are summarized and the errors in some of the standard approximations are indicated. Models of extraterrestrial plasmas are included. Modeling the electron density in the solar corona and solar wind, is emphasized but some cursory information on the terrestrial planets plus Jupiters is included.

  1. Fade durations in satellite-path mobile radio propagation

    NASA Technical Reports Server (NTRS)

    Schmier, Robert G.; Bostian, Charles W.

    1986-01-01

    Fades on satellite to land mobile radio links are caused by several factors, the most important of which are multipath propagation and vegetative shadowing. Designers of vehicular satellite communications systems require information about the statistics of fade durations in order to overcome or compensate for the fades. Except for a few limiting cases, only the mean fade duration can be determined analytically, and all other statistics must be obtained experimentally or via simulation. This report describes and presents results from a computer program developed at Virginia Tech to simulate satellite path propagation of a mobile station in a rural area. It generates rapidly-fading and slowly-fading signals by separate processes that yield correct cumulative signal distributions and then combines these to simulate the overall signal. This is then analyzed to yield the statistics of fade duration.

  2. Characteristics of a partially coherent Gaussian Schell-model beam propagating in slanted atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Li, Ya-Qing; Wu, Zhen-Sen

    2012-05-01

    On the basis of the extended Huygens—Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication Sector, the characteristics of the partially coherent Gaussian Schell-model (GSM) beams propagating in slanted atmospheric turbulence are studied. Using the cross- spectral density function (CSDF), we derive the expressions for the effective beam radius, the spreading angle, and the average intensity. The variance of the angle-of-arrival fluctuation and the wander effect of the GSM beam in the turbulence are calculated numerically. The influences of the coherence degree, the propagation distance, the propagation height, and the waist radius on the propagation characteristics of the partially coherent beams are discussed and compared with those of the fully coherent Gaussian beams.

  3. Propagation Characteristics of International Space Station Wireless Local Area Network

    NASA Technical Reports Server (NTRS)

    Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung

    2005-01-01

    This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.

  4. Radio wave propagation in the presence of a Mark D. Casciato, Shadi Oveisgharan, and Kamal Sarabandi

    E-print Network

    Sarabandi, Kamal

    Radio wave propagation in the presence of a coastline Mark D. Casciato, Shadi Oveisgharan June 2003; published 7 October 2003. [1] In this paper the effect of a coastline on radio wave transition on the radio wave are discussed. For the case of both source and observation near the surface

  5. The Signal Propagation Effects on IEEE 802.15.4 Radio Link in Fire Environment

    E-print Network

    Halgamuge, Malka N.

    , radio waves curve slightly toward the earth surface due tThe Signal Propagation Effects on IEEE 802.15.4 Radio Link in Fire Environment Chinthaka M, pfarrell}@unimelb.edu.au Abstract--Radio communication systems play a major role in supporting wildfire

  6. Wave propagation simulation of radio occultations based on ECMWF refractivity profiles

    NASA Astrophysics Data System (ADS)

    Benzon, Hans-Henrik; Høeg, Per

    2015-08-01

    This paper describes a complete radio occultation simulation environment, including realistic refractivity profiles, wave propagation modeling, instrument modeling, and bending angle retrieval. The wave propagator is used to simulate radio occultation measurements. The radio waves are propagated through a refractivity field which has been calculated with the use of numerical weather prediction models. The numerical weather prediction model used in this paper is a model from the European Centre for Medium-Range Weather Forecasts (ECMWF). The wave propagator has been used to simulate a number of radio occultations. The output from the wave propagator simulator is used as input to a Full Spectrum Inversion retrieval module which calculates geophysical parameters. These parameters can be compared to the ECMWF atmospheric profiles. The comparison can be used to reveal system errors and get a better understanding of the physics. The wave propagation simulations will in this paper also be compared to real measurements. These radio occultations have been exposed to the same atmospheric conditions as the radio occultations simulated by the wave propagator. This comparison reveals that precise radio occultations can be simulated when the simulations are based on wave propagation and refractivity field inputs from a numerical weather prediction model.

  7. Event-based Transmission Line Matrix Method for Simulating Site-Specific Multipath Propagation Characteristics

    SciTech Connect

    Kuruganti, Phani Teja; Nutaro, James J; Djouadi, Seddik M

    2012-01-01

    Accurate radio channel modeling is essential for deploying advanced wireless sensors in harsh industrial and urban environments. Site-specific propagation modeling tools are required to understand the channel parameters with in these environments. Multipath delay spread determines the frequency-selective fading characteristics of the channel. This paper describes a novel computationally inexpensive technique to determine multipath delay spread. Event-based transmission line matrix-based method is used to simulate the channel.

  8. Bulk propagation characteristics of discrete random media

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.; Seliga, T. A.; Varadan, V. K.; Varadan, V. V.

    The propagation of electromagnetic waves in an infinite medium composed of a random distribution of identical, finite scatterers is studied. The T-matrix of a single isolated scatterer, obtained by using the null field equation, is used to make the equations for the field incident on a particular scatterer and the field scattered by it, self consistent. The method proposed is well suited for computations at wavelengths comparable to obstacle size and for non-spherical obstacles. The attenuation associated with the coherent field as predicted by the computations is compared with the only two sets of experimental results that can be found in the literature. Agreements and discrepancies are examined and the range of validity of the assumed quasi-crystalline approximation (QCA) is discussed. Further improvements using the coherent potential approximation (CPA) and the 'self consistent approximation' (SCA) as well as improved models of the pair correlation function are suggested.

  9. The Walnut Street Model of Ionospheric HF Radio Propagation Eric E. Johnson

    E-print Network

    Johnson, Eric E.

    1 The Walnut Street Model of Ionospheric HF Radio Propagation Eric E. Johnson New Mexico State University May 1997 Abstract This paper describes the Walnut Street model of ionospheric propagation of HF on Walnut Street in Boulder, Colorado to agree on a reasonable approach to simulating the HF channel over

  10. Plasma and radio waves from Neptune: Source mechamisms and propagation

    NASA Technical Reports Server (NTRS)

    Menietti, J. Douglas

    1994-01-01

    The purpose of this project was to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as it flew by Neptune. The study has included data analysis, theoretical and numerical calculations, and ray tracing to determine the possible source mechanisms and locations of the radiation, including the narrowband bursty and smooth components of the Neptune radio emission.

  11. Characteristics of Electromagnetic Pulse Propagation in Metal

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Nath, S.; Fulton, J. P.

    2004-01-01

    It is well known that the solution of the diffusion equation for an electromagnetic field with a time harmonic term, e(sup iwt), is in the form of a traveling wave whose amplitude attenuates over distance into a conducting medium. As the attenuation is an increasing function of frequency, the high frequency components attenuate more rapidly than those of low ones upon entering a well conducting object. At the same time, the phase velocity of an individual component is also an increasing function of frequency causing a broadening of the pulse traveling inside a conductor. In the results of our previous study of numerical simulations, the problem of using a gaussian input pulse was immediately clear. First, having the dominant frequency components distributed around zero, the movement of the peak was not well defined. Second, with the amplitude of fourier components varying slowly over a wide range, the dispersion-induced blurring of the peak position was seen to be severe. For the present study, we have used a gaussian modulated single frequency sinusoidal wave, i. e., the carrier, as an input pulse in an effort to improve the issues related to the unclear movement of peak and dispersion as described above. This was based on the following two anticipated advantages: First, the packet moves in a conductor at the group velocity calculated at the carrier frequency, which means it is well controllable. Second, the amplitude of frequency components other than that of the carrier can be almost negligible, such that the effect of dispersion can be significantly reduced. A series of experiments of transmitting electromagnetic pulses through aluminum plates of various thickness was performed to test the validity of the above points. The results of numerical simulation based on wave propagation are discussed with respect to the experimental results. Finally, a simple simulation was performed based on diffusion of a continuous sine wave input and the results are compared with those of a single frequency sinusoidal wave observed over time at difference locations inside a conductor.

  12. Source characteristics of Jovian hectometric radio emissions

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.

    1993-01-01

    Direct confirmation that low-frequency Jovian hectometric (HOM) radio emissions centered near 0 deg central meridian longitude consist of distinct, oppositely polarized northern and southern beams has been achieved using data from the Unified Radio and Plasma Wave (URAP) experiment on the Ulysses spacecraft during the Ulysses-Jupiter encounter in early February 1992. Distinct northern and southern beams were observed in the frequency range from approximately 300 kHz to 1 MHz for at least eight Jovian rotations during the Ulysses inbound pass at distances from 100 to 40 R(sub j). The radiation from the two magnetic hemispheres was measured from different Jovigraphic longitudes and magnetic (or centrifugal) latitudes. Observed temporal variations in the radio intensities, with time scales on the order of 30 min, may result either from longitudinal variations of the HOM sources or from longitudinal density variations in the Io plasma torus. Using the URAP direction-finding capabilities and assuming a tilted dipole planetary magnetic field model, the three-dimensional HOM source locations, the L shell through these source locations, and the beam opening angles were independently deduced. The HOM sources were found to originate at approximately 3 R(sub j) and on low L shells (L approximately 4 to 6), with beam opening angles ranging from 10 to 50 deg.

  13. Propagation of energetic electrons from the corona into interplanetary space and type III radio emission

    E-print Network

    Breitling, F; Vocks, C

    2015-01-01

    During solar flares a large amount of electrons with energies greater than 20 keV is generated with a production rate of typically $10^{36}$ s$^{-1}$. A part of them is able to propagate along open magnetic field lines through the corona into interplanetary space. During their travel they emit radio radiation which is observed as type III radio bursts in the frequency range from 100 MHz down to 10 kHz by the WAVES radio spectrometer aboard the spacecraft WIND, for instance. From the drift rates of these bursts in dynamic radio spectra the radial propagation velocity $V_r$ of the type III burst exciting electrons is derived by employing a newly developed density model of the heliosphere. Calculations show that the radio radiation is emitted by electrons with different $V_r$ and therefore by different electrons of the initially produced electron distribution.

  14. Study of long path VLF signal propagation characteristics as observed from Indian Antarctic station, Maitri

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudipta; Chakrabarti, Sandip Kumar; Pal, Sujay

    To examine quality and propagation characteristics of radio waves in a very long propagation path, Indian Centre for Space Physics participated in the 27th Indian scientific expedition to Antarctica during 2007-2008. One Stanford University made AWESOME (Atmospheric Weather Educational System for Observation and Modeling of Effects) Very Low Frequency (VLF) receiving system was installed at the Indian Antarctic station Maitri and about five weeks of data was recorded successfully from the Indian transmitter VTX and several other transmitting stations worldwide. Signal quality of VTX was found to be very good and signal amplitude was highly stable. The signal showed evidences of round the clock solar radiation in Antarctic region during local summer. We compute elevation angle of the Sun theoretically during this period. We compute the spatial distribution of the signal by using the LWPC model during the all-day and all-night propagation conditions. We compute the attenuation coefficient of the different propagation modes and observe that different modes are dominating in different propagation conditions. We also observe effects of the Antarctic polar ice in the propagation modes.

  15. Study of long path VLF signal propagation characteristics as observed from Indian Antarctic station, Maitri

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudipta; Pal, Sujay; Chakrabarti, Sandip K.

    2014-10-01

    To examine the quality and propagation characteristics of the Very Low Frequency (VLF) radio waves in a very long propagation path, Indian Centre for Space Physics, Kolkata, participated in the 27th Indian scientific expedition to Antarctica during 2007-2008. One Stanford University made AWESOME VLF receiving system was installed at the Indian Antarctic station Maitri and about five weeks of data were recorded successfully from the Indian transmitter VTX and several other transmitting stations worldwide. The quality of the signal from the VTX transmitter was found to be very good, consistent and highly stable in day and night. The signal shows the evidences of the presence of the 24 h solar radiation in the Antarctic region during local summer. Here we report the both narrow band and broadband VLF observations from this site. The diurnal variations of VTX signal (18.2 kHz) are presented systematically for Antarctica path and also compared the same with the variations for a short propagation path (VTX-Kolkata). We compute the spatial distribution of the VTX signal along the VTX-Antarctica path using the most well-known LWPC model for an all-day and all-night propagation conditions. The calculated signal amplitudes corresponding to those conditions relatively corroborate the observations. We also present the attenuation rate of the dominant waveguide modes corresponding to those propagation conditions where the effects of the Antarctic polar ice on the attenuation of different propagating waveguide modes are visible.

  16. Remote sensing of the turbulence characteristics of a planetary atmosphere by radio occultation of a space probe.

    NASA Technical Reports Server (NTRS)

    Woo, R.; Ishimaru, A.

    1973-01-01

    The purpose of this paper is to analyze the effects of small-scale turbulence on radio waves propagating through a planetary atmosphere. The analysis provides a technique for inferring the turbulence characteristics of a planetary atmosphere from the radio signals received from a spacecraft as it is occulted by the planet. The planetary turbulence is assumed to be localized and smoothly varying, with the structure constant varying exponentially with altitude. Rytov's method is used to derive the variance of log-amplitude and phase fluctuations of a wave propagating through the atmosphere.

  17. Propagation characteristics of plasma sheet oscillations during a small storm

    NASA Astrophysics Data System (ADS)

    Gabrielse, C.; Angelopoulos, V.; Runov, A.; Kepko, L.; Glassmeier, K. H.; Auster, H. U.; McFadden, J.; Carlson, C. W.; Larson, D.

    2008-06-01

    On 24 March 2007, the THEMIS spacecraft were in a string-of-pearls configuration through the dusk plasma sheet at the recovery phase of a small storm. Large undulations of the plasma sheet were observed that brought the five probes from one lobe to another. Each neutral sheet crossing was accompanied by bursty bulk flows and Pi2 oscillations. In this paper we focus on the low frequency (~10 min) large scale plasma sheet undulations and determine their propagation characteristics, origin, and properties in the presence of storm-time substorms. As the first case of ``flapping waves'' observed and analyzed during storm-time, it is interesting to find their characteristics coincide with those described by previous quiet-time observations. These characteristics include flankward propagation of the undulations with velocities generally between ~40-130 km/s.

  18. Radio jet propagation and wide-angle tailed radio sources in merging galaxy cluster environments

    NASA Technical Reports Server (NTRS)

    Loken, Chris; Roettiger, Kurt; Burns, Jack O.; Norman, Michael

    1995-01-01

    The intracluster medium (ICM) within merging clusters of galaxies is likely to be in a violent or turbulent dynamical state which may have a significant effect on the evolution of cluster radio sources. We present results from a recent gas + N-body simulation of a cluster merger, suggesting that mergers can result in long-lived, supersonic bulk flows, as well as shocks, within a few hundred kiloparsecs of the core of the dominant cluster. These results have motivated our new two-dimensional and three-dimensional simulations of jet propagation in such environments. The first set of simulations models the ISM/ICM transition as a contact discontinuity with a strong velocity shear. A supersonic (M(sub j) = 6) jet crossing this discontinuity into an ICM with a transverse, supersonic wind bends continuously, becomes 'naked' on the upwind side, and forms a distended cocoon on the downwind side. In the case of a mildly supersonic jet (M(sub j) = 3), however, a shock is driven into the ISM and ISM material is pulled along with the jet into the ICM. Instabilities excited at the ISM/ICM interface result in the jet repeatedly pinching off and reestablishing itself in a series of 'disconnection events.' The second set of simulations deals with a jet encountering a shock in the merging cluster environment. A series of relatively high-resolution two-dimensional calculations is used to confirm earlier analysis predicting that the jet will not disrupt when the jet Mach number is greater than the shock Mach number. A jet which survives the encounter with the shock will decrease in radius and disrupt shortly thereafter as a result of the growth of Kelvin-Helmholtz instabilities. We also find, in disagreement with predictions, that the jet flaring angle decreases with increasing jet density. Finally, a three-dimensional simulation of a jet crossing an oblique shock gives rise to a morphology which resembles a wide-angle tailed radio source with the jet flaring at the shock and disrupting to form a long, turbulent tail which is dragged downstream by the preshock wind.

  19. Long-Range Transhorizon Lunar Surface Radio Wave Propagation in the Presence of a Regolith and a Sparse Exospheric Plasma

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2008-01-01

    Long-range, over-the-horizon (transhorizon) radio wave propagation is considered for the case of the Moon. In the event that relay satellites are not available or otherwise unwarranted for use, transhorizon communication provides for a contingency or backup option for non line-of-sight lunar surface exploration scenarios. Two potential low-frequency propagation mechanisms characteristic of the lunar landscape are the lunar regolith and the photoelectron induced plasma exosphere enveloping the Moon. Although it was hoped that the regolith would provide for a spherical waveguide which could support a trapped surface wave phenomena, it is found that, in most cases, the regolith is deleterious to long range radio wave propagation. However, the presence of the plasma of the lunar exosphere supports wave propagation and, in fact, surpasses the attenuation of the regolith. Given the models of the regolith and exosphere adopted here, it is recommended that a frequency of 1 MHz be considered for low rate data transmission along the lunar surface. It is also recommended that further research be done to capture the descriptive physics of the regolith and the exospheric plasma so that a more complete model can be obtained. This comprehensive theoretical study is based entirely on first principles and the mathematical techniques needed are developed as required; it is self-contained and should not require the use of outside resources for its understanding.

  20. The influence of polarization on millimeter wave propagation through rain. [radio signals

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.

    1973-01-01

    The measurement and analysis of the depolarization and attenuation that occur when millimeter wave radio signals propagate through rain are described. Progress was made in three major areas: the processing of recorded 1972 data, acquisition and processing of a large amount of 1973 data, and the development of a new theoretical model to predict rain cross polarization and attenuation. Each of these topics is described in detail along with radio frequency system design for cross polarization measurements.

  1. Radio wave propagation at frequencies exceeding MUF-F2 in the short wave band

    NASA Technical Reports Server (NTRS)

    Ashkaliyev, Y. F.; Bocharov, V. I.

    1972-01-01

    The results of measurements of field strength and signal/noise ratio on experimental ionospheric-scattering short wave radio links are presented. It is shown that the seasonal and diurnal variations of field strength are determined by features of solar and meteoric activity. The role of the sporadic E-layer in propagation of short radio waves at frequencies exceeding MUF-F2 is noted.

  2. Predictions and observations of HF radio propagation in the northerly ionosphere: The effect of the solar flares and a weak CME in early January 2014.

    NASA Astrophysics Data System (ADS)

    Hallam, Jonathan; Stocker, Alan J.; Warrington, Mike; Siddle, Dave; Zaalov, Nikolay; Honary, Farideh; Rogers, Neil; Boteler, David; Danskin, Donald

    2014-05-01

    We have previously reported on a significant new multi-national project to provide improved predictions and forecasts of HF radio propagation for commercial aircraft operating on trans-polar routes. In these regions, there are limited or no VHF air-traffic control facilities and geostationary satellites are below the horizon. Therefore HF radio remains important in maintaining communications with the aircraft at all times. Space weather disturbances can have a range of effects on the ionosphere and hence HF radio propagation - particularly in the polar cap. While severe space weather effects can lead to a total loss of communications (i.e. radio blackout), less intense events can still cause significant disruption. In this paper we will present the effect of a series of M and X class solar flares and a relatively weak CME on HF radio performance from 6 to 13 January 2014. This is an interesting interval from the point of view of HF radio propagation because while the solar effects on the ionosphere are significant, except for an interval of approximately 12 hours duration, they are not so intense as to produce a complete radio blackout on all paths. Observations of the signal-to-noise ratio, direction of arrival, and time of flight of HF radio signals on six paths (one entirely within the polar cap, three trans-auroral, and two sub-auroral) will be presented together with riometer measurements of the ionospheric absorption. Global maps of D-region absorption (D-region absorption prediction, DRAP) inferred from satellite measurements of the solar wind parameters will be compared with the HF and riometer observations. In addition, a ray-tracing model using a realistic background ionosphere and including localised features found in the ionospheric polar cap (e.g. polar patches and arcs) will be used to model the expected and observed HF radio propagation characteristics.

  3. EFFECTS OF RADIO WAVE PROPAGATION IN URBANIZED AREAS ON UAV-GCS COMMAND AND CONTROL

    E-print Network

    Jenn, David C.

    EFFECTS OF RADIO WAVE PROPAGATION IN URBANIZED AREAS ON UAV-GCS COMMAND AND CONTROL Lock Wai Lek In an urban environment, the linkage between UAVs and ground control stations are subjected to multipath multipath can result in a nearly complete loss of command signals, which can limit the UAV's operational

  4. Radio wave propagation experiments to probe the ionosphere

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.

    1972-01-01

    Ionospheric bias corrections associated with radio tracking of spacecraft depend on the following measuring techniques for integrated electron content: (1) Faraday rotation measurements from an earth synchronous satellite; (2) ranging measurements at two frequencies; and (3) group and phase velocity measurements obtained from tracking data. The extraction of the integrated electron content directly from tracking data is achieved by comparison of range-rate measurements based on Doppler shift with differentiated range measurements based on tone delay. This method is most desirable because the measured corrections pertain directly to the spacecraft whose orbit is being determined and can be used in near earth as well as deep space tracking data.

  5. Higher order ionospheric propagation effects on GPS radio occultation signals

    NASA Astrophysics Data System (ADS)

    Hoque, M. Mainul; Jakowski, N.

    2010-07-01

    With the increasing number of remote sensing satellites using the GPS radio occultation technique for atmospheric sounding, the estimation of higher order ionospheric effects and their mitigation have become relevant and important. Due to long ionospheric limb paths, GPS signals are strongly affected by ionospheric refraction during radio occultation. Standard dual-frequency GPS measurements may be used to estimate the first order term of the refractive index. However, non-linear terms such as the second and third order ionospheric terms and ray path bending effects are not considered in occultation measurements so far. Analysing selected CHAMP-GPS occultation events different higher order ionospheric terms are estimated and their effects on dual-frequency range estimation and total electron content (TEC) estimation are discussed. We have found that the separation between the GPS L1 and L2 ray paths exceeds the kilometer level during occultation for a vertical TEC level of more than 160 TEC units. Corresponding errors in the GPS dual-frequency range estimation and TEC estimation are found to exceed the meter and 10 TEC units level, respectively.

  6. Antenna system characteristic and solar radio burst observation

    E-print Network

    Li, Sha; Chen, Zhijun; Wang, Wei; Liu, Donghao

    2015-01-01

    Chinese Spectral Radio Heliograph (CSRH) is an advanced aperture synthesis solar radio heliograph, developed by National Astronomical Observatories, Chinese Academy of Sciences independently. It consists of 100 reflector antennas, which are grouped into two antenna arrays (CSRH-I and CSRH-II) for low and high frequency bands respectively. The frequency band of CSRH-I is 0.4-2GHz and for CSRH-II, the frequency band is 2-15GHz. In the antenna and feed system, CSRH uses an Eleven feed to receive signals coming from the Sun, the radiation pattern with lower side lobe and back lobe of the feed is well radiated. The characteristics of gain G and antenna noise temperature T effect the quality of solar radio imaging. For CSRH, measured G is larger than 60 dBi and $ T $ is less than 120K, after CSRH-I was established, we have successfully captured a solar radio burst between 1.2-1.6GHz on November 12, 2010 through this instrument and this event was confirmed through the observation of Solar Broadband Radio Spectromete...

  7. Spacecraft VHF Radio Propagation Analysis in Ocean Environments Including Atmospheric Effects

    NASA Technical Reports Server (NTRS)

    Hwu, Shian; Moreno, Gerardo; Desilva, Kanishka; Jih, CIndy

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the National Aeronautics and Space Administration (NASA)/Johnson Space Center (JSC) is tasked to perform spacecraft and ground network communication system simulations. The CSSL has developed simulation tools that model spacecraft communication systems and the space/ground environment in which they operate. This paper is to analyze a spacecraft's very high frequency (VHF) radio signal propagation and the impact to performance when landing in an ocean. Very little research work has been done for VHF radio systems in a maritime environment. Rigorous Radio Frequency (RF) modeling/simulation techniques were employed for various environmental effects. The simulation results illustrate the significance of the environmental effects on the VHF radio system performance.

  8. Computational strategy for modeling radio wave propagation in lossy circular waveguides

    SciTech Connect

    Moses, Ronald; Cai, D Michael

    2008-01-01

    The propagation of radio waves in lossy waveguides and tunnels has been researched extensively for many years as can be seen in the detailed book by Wait. The mathematics used to model waveguides for communications is essentially the same as that needed to model radio frequency (RF) propagation in simple tunnels. The presence or lack of conductors inside a waveguide or tunnel is a key driver in the nature of the solutions one will find for a particular application, Delogne. When there are conductors passing through a waveguide or tunnel, the simplest modes of propagation are surface-guided waves following the conductor and typically enabling long-range transmission. A tunnel containing a core conductor can act rather like a coaxial cable, propagating waves at a nearly constant speed, regardless of frequency. Conversely, a tunnel or waveguide without internal conductors is subject to very different wave patterns, resulting in a much more complex propagation analysis. Holloway et al. presented an exhaustive study of RF propagation in circular structures embedded in lossy surroundings. The work of Holloway et al. is the basis for this paper, where we discuss application of their computational techniques and present refinements gleaned from our work on similar problems.

  9. Global ionospheric effects of geomagnetic storm on May 2-3, 2010 and their influence on HF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Kotova, Daria; Klimenko, Maxim; Klimenko, Vladimir; Zakharov, Veniamin

    2013-04-01

    In this work we have investigated the global ionospheric response to geomagnetic storm on May 2-3, 2010 using GSM TIP (Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere) simulation results. In the GSM TIP storm time model runs, several input parameters such as cross-polar cap potential difference and R2 FAC (Region 2 Field-Aligned Currents) varied as a function of the geomagnetic activity AE-index. Current simulation also uses the empirical model of high-energy particle precipitation by Zhang and Paxton. In this model, the energy and energy flux of precipitating electrons depend on a 3 hour Kp-index. We also have included the 30 min time delay of R2 FAC variations with respect to the variations of cross-polar cap potential difference. In addition, we use the ground-based ionosonde data for comparison our model results with observations. We present an analysis of the physical mechanisms responsible for the ionospheric effects of geomagnetic storms. The obtained simulation results are used by us as a medium for HF radio wave propagation at different latitudes in quiet conditions, and during main and recovery phase of a geomagnetic storm. To solve the problem of the radio wave propagation we used Zakharov's (I. Kant BFU) model based on geometric optics. In this model the solution of the eikonal equation for each of the two normal modes is reduced using the method of characteristics to the integration of the six ray equation system for the coordinates and momentum. All model equations of this system are solved in spherical geomagnetic coordinate system by the Runge-Kutta method. This model was tested for a plane wave in a parabolic layer. In this study, the complex refractive indices of the ordinary and extraordinary waves at ionospheric heights was calculated for the first time using the global first-principal model of the thermosphere-ionosphere system that describes the parameters of an inhomogeneous anisotropic medium during a geomagnetic storm. A comparison of the ordinary and extraordinary modes of HF radio ray paths in quiet and disturbed conditions has been done. We considered in more detail the features of the radio ray paths in the presence of F3 layer in the equatorial ionosphere, the main ionospheric trough and tongue of ionization at high latitudes. It is shown that the results obtained with use of radio propagation and GSM TIP models adequately describe HF radio ray paths in the Earth's ionosphere and can be used in applications. These investigations were carried out at financial support of Russian Foundation for Basic Research (RFBR) - Grant # 12-05-31217 and RAS Program 22.

  10. Antenna system characteristics and solar radio burst observations

    NASA Astrophysics Data System (ADS)

    Li, Sha; Yan, Yi-Hua; Chen, Zhi-Jun; Wang, Wei; Liu, Dong-Hao

    2015-11-01

    The Chinese Spectral Radio Heliograph (CSRH) is an advanced aperture synthesis solar radio heliograph, independently developed by National Astronomical Observatories, Chinese Academy of Sciences. It consists of 100 reflector antennas, which are grouped into two antenna arrays (CSRH-I and CSRH-II) for low and high frequency bands respectively. The frequency band of CSRH-I is 0.4–2 GHz and that for CSRH-II is 2–15 GHz. In the antenna and feed system, CSRH uses eleven feeds to receive signals coming from the Sun. The radiation pattern has a lower side lobe and the back lobe of the feed is well illuminated. The characteristics of gain G and antenna noise temperature T affect the quality of solar radio imaging. For CSRH, the measured G is larger than 60 dBi and T is less than 120 K. After CSRH-I was established, we successfully captured a solar radio burst between 1.2–1.6 GHz on 2010 November 12 using this instrument and this event was confirmed through observations with the Solar Broadband Radio Spectrometer at 2.84 GHz and the Geostationary Operational Environmental Satellite. In addition, an image obtained from CSRH-I clearly revealed the profile of the solar radio burst. The other observational work involved the imaging the Fengyun-2E geosynchronous satellite which is assumed to be a point source. Results indicate that the data processing method applied in this study for deleting errors in a noisy image could be used for processing images from other sources.

  11. Numerical modelling of VLF radio wave propagation through earth-ionosphere waveguide and its application to sudden ionospheric disturbances

    E-print Network

    Pal, Sujay

    2015-01-01

    In this thesis, we theoretically predict the normal characteristics of Very Low Frequency (3~30 kHz) radio wave propagation through Earth-ionosphere waveguide corresponding to normal behavior of the D-region ionosphere. We took the VLF narrow band data from the receivers of Indian Centre for Space Physics (ICSP) to validate our models. Detection of sudden ionospheric disturbances (SIDs) are common to all the measurements. We apply our theoretical models to infer the D-region characteristics and to reproduce the observed VLF signal behavior corresponding to such SIDs. We develop a code based on ray theory to simulate the diurnal behavior of VLF signals over short propagation paths (2000~3000 km). The diurnal variation from this code are comparable to the variation obtained from a more general Long Wave Propagation Capability (LWPC) code which is based on mode theory approach. We simulate the observational results obtained during the Total Solar Eclipse of July 22, 2009 in India. We also report and simulate a h...

  12. Radio Characteristics of Cool Stars and the HRD Manuel Gudel and Marc Audard

    E-print Network

    Audard, Marc

    Radio Characteristics of Cool Stars and the HRD Manuel G¨udel and Marc Audard Paul Scherrer properties of non­flaring radio emis­ sion of a large sample of active stars and binaries. Various radio Hertz­ sprung­Russell Diagrams are presented. 1. Introduction Radio emission is routinely observed from

  13. Experimental Probes of Radio Wave Propagation near Dielectric Boundaries and Implications for Neutrino Detection

    E-print Network

    Alvarez, R; Hanson, J C; Johannesen, A M; Macy, J; Prohira, S; Stockham, J; Stockham, M; Zheng, Al; Zheng, Am

    2015-01-01

    Experimental efforts to measure neutrinos by radio-frequency (RF) signals resulting from neutrino interactions in-ice have intensified over the last decade. Recent calculations indicate that one may dramatically improve the sensitivity of ultra-high energy ("UHE"; >EeV) neutrino experiments via detection of radio waves trapped along the air-ice surface. Detectors designed to observe the "Askaryan effect" currently search for RF electromagnetic pulses propagating through bulk ice, and could therefore gain sensitivity if signals are confined to the ice-air boundary. To test the feasibilty of this scenario, measurements of the complex radio-frequency properties of several air-dielectric interfaces were performed for a variety of materials. Two-dimensional surfaces of granulated fused silica (sand), both in the lab as well as occurring naturally, water doped with varying concentrations of salt, natural rock salt formations, granulated salt and ice itself were studied, both in North America and also Antarctica. In...

  14. Reversible Parallel Discrete Event Formulation of a TLM-based Radio Signal Propagation Model

    SciTech Connect

    Seal, Sudip K; Perumalla, Kalyan S

    2011-01-01

    Radio signal strength estimation is essential in many applications, including the design of military radio communications and industrial wireless installations. For scenarios with large or richly- featured geographical volumes, parallel processing is required to meet the memory and computa- tion time demands. Here, we present a scalable and efficient parallel execution of the sequential model for radio signal propagation recently developed by Nutaro et al. Starting with that model, we (a) provide a vector-based reformulation that has significantly lower computational overhead for event handling, (b) develop a parallel decomposition approach that is amenable to reversibility with minimal computational overheads, (c) present a framework for transparently mapping the conservative time-stepped model into an optimistic parallel discrete event execution, (d) present a new reversible method, along with its analysis and implementation, for inverting the vector-based event model to be executed in an optimistic parallel style of execution, and (e) present performance results from implementation on Cray XT platforms. We demonstrate scalability, with the largest runs tested on up to 127,500 cores of a Cray XT5, enabling simulation of larger scenarios and with faster execution than reported before on the radio propagation model. This also represents the first successful demonstration of the ability to efficiently map a conservative time-stepped model to an optimistic discrete-event execution.

  15. Radio Wave Propagation for Communication on and around Mars. Part 1; Highlights: Propagation Through Mars Environment

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser

    1999-01-01

    We recommend to use the dayside Martian ionosphere as a reflector for global communication, because the dayside ionosphere has stable density peak and usable critic frequency. This is very crucial for the future Mars ground to around communication. The dayside ionosphere has been well modeled as a Chapman layer. We suggest to perform the Martian nightside ionospheric modeling study. Because the nightside ionosphere has very little measurements available, we propose to drop a digital ionosond instrument into the Mars surface for data collection. Even though the Martian tropospheric radio refractivity has small value, it still can cause the ray bending and multipath effects. We recommend to perform an accurate calculation on excess phase and group delays (range and time delays). Other effects, such as range rate errors, appearance angle deviation, defocusing loss on Mars, etc. are also needed to be estimated. Ice depolarization effects due to Martian clouds on radio waves is unknown yet, which is expected to be small, because lower optical depth and thinner layer of cloud: Total Martian atmospheric gaseous attenuation is expected to be less than 1 dB on microwaves band, because the Martian atmosphere has very low concentration in uncondensed H2O and O2. An accurate calculation for zenith opacity requires the information about scale heights of H2O and O2 distribution. An accurate water vapor altitude profile at Mars is not available yet. Under the normal condition, CO2 and N2 gases do not have electric or magnetic dipoles and do not absorb electromagnetic energy from the waves. However, they may generate the dipoles through a collision and interact with waves under a high density condition and absorb electromagnetic waves in the infrared and visible band. Dust storm is most dominant factor to the radio wave attenuation. Large Martian dust storm can cause at least 3 dB or higher loss to Ka band wave. For a normal dust storm, the attenuation is about 1 dB. The attenuation much depends on dust mass loading, dust size distribution, etc. Most large dust storm occur in the southern hemisphere during later spring and early summer when the southern hemisphere become suddenly hot.

  16. Characteristics of diving in radio-marked Xantus's Murrelets

    USGS Publications Warehouse

    Hamilton, C.D.; Golightly, R.T.; Takekawa, J.Y.

    2005-01-01

    We monitored diving activity of radio-marked Xantus's Murrelets Synthliboramphus hypoleucus near Anacapa Island, California, during the breeding season. Thirteen radio-marked murrelets were remotely monitored from Anacapa Island with a handheld antenna and radio receiver for 29 hours in three sample periods in April and May 2003. Mean dive durations in the sample periods were 18 s ?? 2 s, 28 s ?? 2 s, and 24 s ?? 4 s, suggesting that dives were less than 21 m from the surface. Dive duration and subsequent time on the surface differed between the sample periods. Dive duration and subsequent time on the surface were not correlated in observations stratified by individual bird or by sample period. Further, dive duration and subsequent time on the surface were not correlated within foraging bouts. Dive characteristics measured near Anacapa Island suggested that Xantus's Murrelets have the ability to capture prey found at varying depths, but will feed on prey that is most available near the surface of the water.

  17. The effect of radio frequency plasma processing reactor circuitry on plasma characteristics

    E-print Network

    Kushner, Mark

    The effect of radio frequency plasma processing reactor circuitry on plasma characteristics Shahid Raufa) and Mark J. Kushnerb) Department of Electrical and Computer Engineering, University of Illinois strongly influence the performance of radio frequency rf plasma processing reactors. Seemingly minor

  18. Ionospheric disturbances during November 30-December 1, 1988. XI - Abnormal propagations of HF and VHF radio waves

    NASA Astrophysics Data System (ADS)

    Ichinose, Masaru; Kamata, Mitsuhiro

    1992-07-01

    Unusual propagations of HF and VHF radio waves associated with a geomagnetic storm during the period from November 30 to December 1, 1988 are investigated using ionospheric data collected from Japan, China, and Taiwan. The increased field strength of the Japanese frequency standard signals (JJY 2.5 MHz and 5 MHz) which were received at Akita Radio Wave Observatory on the night of November 30 seem to have been caused by increased MUFs and/or scattering due to the disturbed ionosphere. The VHF-TV radio waves propagated from China were received at Kokubunji in Tokyo. One of the most probable mechanisms explaining this unusual propagation of VHF is a one-hop-F2 mode of propagation created by an ionosphere with an anomalously high f0F2. It was found out that these unusual HF and VHF propagations were attributed to unusual ionospheric conditions associated with these geomagnetic disturbances.

  19. FDTD analysis of ELF radio waves propagating in the Earth-ionosphere waveguide

    NASA Astrophysics Data System (ADS)

    Marchenko, Volodymyr; Kulak, Andrzej; Mlynarczyk, Janusz

    2015-04-01

    We developed an FDTD model of electromagnetic wave propagation in the Earth-ionosphere cavity. We present the results of FDTD calculations assuming axisymmetric system with the source located at the north pole and with no dependence on azimuthal coordinate. Therefore we reduced the Maxwell equations to 2D spherical system of Maxwell equations. To model the conductivity profile of the Earth-ionosphere waveguide we used two models, namely one- and two-exponential profiles [Mushtak and Williams, 2002]. The day-night asymmetry was introduced by setting different model parameters for the north and south hemispheres. The ground was modeled as a perfect electric conductor. Also the upper boundary for the model was a perfect conductor but it was placed at a high enough altitude to make sure there is no reflection of the waves from this boundary. We obtained the results for the electric and magnetic field components of the propagating wave in the time and frequency domains and for various locations on Earth along the meridian. In the time domain we analyzed the evolution of the electric and magnetic field components of the radio wave generated by lighting for different probe position, the penetration of the ionosphere by the electromagnetic waves and the reflection of the waves on the terminator. In the frequency domain we analyzed the Schumann resonance spectra in different field components for different location in the computational space, the behavior of the Poynting vector and the wave impedance. We also calculated real and imaginary parts of the characteristic electric and magnetic altitudes for the daytime and nighttime ionosphere. The analysis in the frequency domain was performed up to 1 kHz. We compared the results of numerical calculations with our analytical model and found a reasonably good agreement between them. The results can be used in the analysis of global thunderstorm activity based on measurements of Schumann resonance spectra. Acknowledgements. This work has been supported by the National Science Centre grant 2012/04/M/ST10/00565. The numerical computations were done using the PL-Grid infrastructure.

  20. Antenna Construction & Propagation of Radio Waves, 5-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Marine Corps, Washington, DC.

    These military-developed curriculum materials consist of five individualized, self-paced chapters dealing with antenna construction and propagation of radio waves. Covered in the individual lessons are the following topics: basic electricity; antenna transmission-line fundamentals; quarter-wave antennas, half-wave antennas, and associated radio

  1. SUBMITTED TO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. c 2012 IEEE. 1 The LWA1 Radio Telescope

    E-print Network

    Ellingson, Steven W.

    SUBMITTED TO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. c 2012 IEEE. 1 The LWA1 Radio Telescope, F.K. Schinzel and K.W. Weiler Abstract-- LWA1 is a new radio telescope operating in the frequency range 10­88 MHz, located in central New Mexico. The telescope consists of 258 pairs of dipole

  2. A 3-D Propagation Model for Emerging Land Mobile Radio Cellular Environments

    PubMed Central

    Ahmed, Abrar; Nawaz, Syed Junaid; Gulfam, Sardar Muhammad

    2015-01-01

    A tunable stochastic geometry based Three-Dimensional (3-D) scattering model for emerging land mobile radio cellular systems is proposed. Uniformly distributed scattering objects are assumed around the Mobile Station (MS) bounded within an ellipsoidal shaped Scattering Region (SR) hollowed with an elliptically-cylindric scattering free region in immediate vicinity of MS. To ensure the degree of expected accuracy, the proposed model is designed to be tunable (as required) with nine degrees of freedom, unlike its counterparts in the existing literature. The outer and inner boundaries of SR are designed as independently scalable along all the axes and rotatable in horizontal plane around their origin centered at MS. The elevated Base Station (BS) is considered outside the SR at a certain adjustable distance and height w.r.t. position of MS. Closed-form analytical expressions for joint and marginal Probability Density Functions (PDFs) of Angle-of-Arrival (AoA) and Time-of-Arrival (ToA) are derived for both up- and down-links. The obtained analytical results for angular and temporal statistics of the channel are presented along with a thorough analysis. The impact of various physical model parameters on angular and temporal characteristics of the channel is presented, which reveals the comprehensive insight on the proposed results. To evaluate the robustness of the proposed analytical model, a comparison with experimental datasets and simulation results is also presented. The obtained analytical results for PDF of AoA observed at BS are seen to fit a vast range of empirical datasets in the literature taken for various outdoor propagation environments. In order to establish the validity of the obtained analytical results for spatial and temporal characteristics of the channel, a comparison of the proposed analytical results with the simulation results is shown, which illustrates a good fit for 107 scattering points. Moreover, the proposed model is shown to degenerate to various notable geometric models in the literature by an appropriate choice of a few parameters. PMID:26305328

  3. Effects in the ionosphere and HF radio-wave propagation during an intense substorm

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D. V.; Borisova, T. D.; Rogov, D. D.

    2010-08-01

    We present the results of combined radiophysical studies during the period of an intense magnetospheric substorm which occurred from 00:00 to 02:00 UT in April 12, 1999. Measurements of the ionospheric parameters by a chain of European ionosondes for this period were compared with the variations in ionospheric parameters averaged over more than 70 substorms. The latter variations were obtained by data from the ionosondes of Europe, Central Siberia, and North America in 1993-1999. Data from the CUTLASS radar as well as the DMSP and POES satellites were used for the analysis of the April 11-12 substorm. Numerical calculations of HF radio-wave propagation on the St. Petersburg—Longyearbyen (Svalbard) high-latitude path were carried out by the ray tracing technique. Two simultaneous effects have been revealed in the ionosphere. One occurs immediately during the substorm and another is associated with the end of the magnetic storm in April 10, 1999. According to the CUTLASS radar data, the number of backscattering irregularities in the ionospheric F layer notably decreased during the substorm expansion phase. Satellite data showed an increase in the “soft” (hundreds of eV) particle precipitation before and after the substorm. Numerical calculations of HF radio-wave propagation on the St. Petersburg—Longyearbyen path have demonstrated an essential change of propagation mechanisms during the substorm and a tangible change in the wave arrival angles before and after the substorm.

  4. Tropopause Characteristics Obtained From Champ Radio Occultation Soundings

    NASA Astrophysics Data System (ADS)

    Marquardt, C.; Schöllhammer, K.; Wickert, J.; Schmidt, T.; Beyerle, G.; Galas, R.; König, R.; Köhler, W.; Reigber, Ch.

    The German satellite CHAMP (Challenging mini-satellite Payload), launched in mid- 2000, exploits radio signals from the GPS (Global Positioning System) satellite con- stellation for the remote sensing of upper tropospheric and stratospheric temperatures. Due to the limb sounding geometry of the measurements, CHAMP's radio occultation measurements provide a high vertical vertical resolution in the tropopause region. The accuracy of the temperature soundings is also highest in the vicinity of the tropopause. Since the first measurements taken in early 2001, CHAMP has collected more than 40000 vertical profiles of the temperature distribution around the tropopause, and sev- eral multi-week periods of continuous measurements are available during all seasons. We intercompare tropopause temperatures, heights, pressures, and water vapor sat- uration mixing ratios obtained from CHAMP soundings with data from the global network of radiosonde data as well as with tropopause characteristics obtained from NCEP reanalysis. Special emphasis is put on the rich longitudinal structure of the tropical tropopause that is seen in the CHAMP data.

  5. Type III radio bursts in the interplanetary medium - The role of propagation

    NASA Technical Reports Server (NTRS)

    Steinberg, J. L.; Hoang, S.; Lecacheux, A.; Aubier, M. G.; Dulk, G. A.

    1984-01-01

    Interplanetary type III radio burst observations are analyzed in order to ascertain the role played by propagation effects between the true source and the observer. Large source altitudes are noted, together with an increasing angular size of sources with increasing angular distance from the sun's center. These and other observations furnish strong evidence for the theory that propagation effects, group delays, ducting and/or scattering significantly affect the observed heights, sizes, and brightness temperatures of interplanetary type III bursts. This would be true irrespective of whether the bursts are due to plasma radiation at the fundamental or at the harmonic, and the effects would extend to the arrival times of the radiation to a greater or lesser extent, depending on the path from the source to the observer.

  6. Ionospheric disturbances during November 30 to December 1, 1988. XIII - Unusual propagations of HF and VHF radio waves

    NASA Astrophysics Data System (ADS)

    Ichinose, Masaru; Kamata, Mitsuhiro

    1990-02-01

    Unusual ionospheric propagations of HF and VHF radio waves associated with a geomagnetic storm during November 30 to December 1, 1988 are investigated using ionospheric data from Japan, China, and Taiwan. The increased field strength of the Japanese frequency standard signals (2.5 MHz and 5 MHz) on the night of November 30 seems to be caused by an increased MUF and/or a scattering by the disturbed ionosphere. VHF-TV radio waves propagated from China were received at Kokubunji in Tokyo. One of the most probable mechanisms explaining this unusual VHF propagation is a one-hop-F2 propagation mode which is supported by an ionosphere having anomalously high foF2. These unusual HF and VHF propagations are attributed to an unusual ionospheric condition associated with the geomagnetic disturbances.

  7. Medium frequency propagation characteristics of different transmission lines in an underground coal mine

    PubMed Central

    Li, Jingcheng; Waynert, Joseph A.; Whisner, Bruce G.

    2015-01-01

    A medium frequency (MF) communication system operating in an underground coal mine couples its signals to a long conductor, which acts as an MF transmission line (TL) in a tunnel to permit communications among transceivers along the line. The TL is generally the longest signal path for the system, and its propagation characteristics will have a major impact on the performance of the MF communication system. In this study, the propagation characteristics of three types of MF TLs in two layouts—on the roof and on the floor of a coal mine tunnel—were obtained in an effort to understand the propagation characteristics of different TLs in different locations. The study confirmed a low MF signal loss on all of these TLs. The study also found that the TLs in different layouts had substantially different propagation characteristics. The propagation characteristics of these different TLs in different layouts are presented in the paper. PMID:26203349

  8. Low-Frequency Type-II Radio Detections and Coronagraph Data Employed to Describe and Forecast the Propagation of 71 CMEs/Shocks

    NASA Astrophysics Data System (ADS)

    Cremades, H.; Iglesias, F. A.; St. Cyr, O. C.; Xie, H.; Kaiser, M. L.; Gopalswamy, N.

    2015-09-01

    Motivated by improving predictions of arrival times at Earth of shocks driven by coronal mass ejections (CMEs), we have analyzed 71 Earth-directed events in different stages of their propagation. The study is primarily based on approximated locations of interplanetary (IP) shocks derived from Type-II radio emissions detected by the Wind/WAVES experiment during 1997 - 2007. Distance-time diagrams resulting from the combination of white-light corona, IP Type-II radio, and in-situ data lead to the formulation of descriptive profiles of each CME's journey toward Earth. Furthermore, two different methods for tracking and predicting the location of CME-driven IP shocks are presented. The linear method, solely based on Wind/WAVES data, arises after key modifications to a pre-existing technique that linearly projects the drifting low-frequency Type-II emissions to 1 AU. This upgraded method improves forecasts of shock-arrival times by almost 50 %. The second predictive method is proposed on the basis of information derived from the descriptive profiles and relies on a single CME height-time point and on low-frequency Type-II radio emissions to obtain an approximate value of the shock arrival time at Earth. In addition, we discuss results on CME-radio emission associations, characteristics of IP propagation, and the relative success of the forecasting methods.

  9. The Relation between Type II Radio Bursts and Large-scale Coronal Propagating Fronts

    NASA Astrophysics Data System (ADS)

    Nitta, Nariaki

    2014-06-01

    Both type II radio bursts and chromospheric Moreton-Ramsey waves are believed to signify shock waves that propagate in the solar corona. Large-scale coronal propagating fronts (LCPFs), which are also called EIT waves, EUV waves or coronal bright fronts in the literature, were initially thought to be coronal counterparts of Moreton-Ramsey waves, and thus they were expected to be correlated with type II bursts. At present, the prevailing view seems to be that both type II bursts and LCPFs are more closely linked with CMEs than with flares. Here we revisit the relation between type II bursts and LCPFs, by examining radio dynamic spectra (180-25 MHz) as obtained by USAF/RSTN and analyzing EUV and white-light data from SDO and STEREO. In the sample of about 140 type II bursts and LCPFs between April 2010 and January 2013, we find the correlation of 50-60 %. Type II bursts could be associated with eruptions without significant lateral expansion, and fast LCPFs could show no presence in the metric radio spectral range. Using data from STEREO COR-1 that observed the CME as a limb event, in 42 cases we directly measure the height of the CME at the onset of the type II burst. As expected, the height tends to be lower when the type II burst starts at a higher frequency. It is found that those type II bursts that start at higher altitudes and lower frequencies tend to have weaker EUV fronts. This may indicate multiple ways of how LCPFs and type II bursts are related with CMEs.

  10. A parametric study of the propagation of auroral radio emissions through auroral cavities

    NASA Astrophysics Data System (ADS)

    Gautier, A.; Hess, S.; Cecconi, B.; Zarka, P. M.

    2013-12-01

    Auroral Kilometric Radiation is the radio counterpart of the Earth's auroral radiations, observed in a large domain of wavelength, from Infrared to UV and obviously in visible. It is generated at high latitude (~70°), mostly along the nightside magnetic field lines connecting to the Earth's magnetospheric tail. In-situ observations by numerous spacecraft show that the radio sources are embedded inside depleted cavities. The auroral cavities contain a hot tenuous plasma (ne~1 cm-3, Te~5 keV) in a strong ambient magnetic field (fp/fc < 0.1). The mechanism of emission, the Cyclotron Maser Instability (CMI), predicts an intense X mode emission near gyromagnetic frequency preferentially perpendicular to the local magnetic field. But as the radio waves are generated inside a depleted cavity, they are refracted. The apparent beaming of the source is different from that predicted by the CMI. The characteristics of the apparent beaming of the source outside of the cavity depends on several geometrical and physical parameters of the surrounding medium, as well as the frequency of the radio wave. A ray tracing code (ARTEMIS-P), which computes the trajectories of electromagnetic waves in magnetized plasma, is use to compute the path of radio ray from the source inside the hot tenuous plasma of the cavity to the outside. We model a cylindrical plasma cavity characterized by a few parameters (width, edge and parallel gradients) and we study the effect of the cavity geometry on the beaming of AKR for several frequencies. We draw conclusions about the deterministic nature of the beaming angle of the radio emissions generated in cavities. We then extend our study to emissions from giant planets.

  11. Scalable Parallel Execution of an Event-based Radio Signal Propagation Model for Cluttered 3D Terrains

    SciTech Connect

    Seal, Sudip K; Perumalla, Kalyan S

    2009-01-01

    Radio signal strength estimation is essential in many applications, including the design of military radio communications and industrial wireless installations. While classical approaches such as finite difference methods are well-known, new event-based models of radio signal propagation have been recently shown to deliver such estimates faster (via serial execution) than other methods. For scenarios with large or richly-featured geographical volumes, however, parallel processing is required to meet the memory and computation time demands. Here, we present a scalable and efficient parallel execution of a recently-developed event-based radio signal propagation model. We demonstrate its scalability to thousands of processors, with parallel speedups over 1000x. The speed and scale achieved by our parallel execution enable larger scenarios and faster execution than has ever been reported before.

  12. Radio-wave propagation in the non-Gaussian interstellar medium

    E-print Network

    Stanislav Boldyrev; Carl R. Gwinn

    2005-08-02

    Radio waves propagating from distant pulsars in the interstellar medium (ISM), are refracted by electron density inhomogeneities, so that the intensity of observed pulses fluctuates with time. The theory relating the observed pulse time-shapes to the electron-density correlation function has developed for 30 years, however, two puzzles have remained. First, observational scaling of pulse broadening with the pulsar distance is anomalously strong; it is consistent with the standard model only when non-uniform statistics of electron fluctuations along the line of sight are assumed. Second, the observed pulse shapes are consistent with the standard model only when the scattering material is concentrated in a narrow slab between the pulsar and the Earth. We propose that both paradoxes are resolved at once if one assumes stationary and uniform, but non-Gaussian statistics of the electron-density distribution. Such statistics must be of Levy type, and the propagating ray should exhibit a Levy flight. We propose that a natural realization of such statistics may be provided by the interstellar medium with random electron-density discontinuities. We develop a theory of wave propagation in such a non-Gaussian random medium, and demonstrate its good agreement with observations. The qualitative introduction of the approach and the resolution of the anomalous-scaling paradox was presented earlier in [PRL 91, 131101 (2003); ApJ 584, 791 (2003)].

  13. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    SciTech Connect

    Seitzman, Jerry; Lieuwen, Timothy

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These results provide evidence that the leading points model can provide useful predictions of turbulent flame speed over a wide range of operating conditions and flow geometries.

  14. Effect of electron-density gradients on propagation of radio waves in the mid-latitude trough. Master's thesis

    SciTech Connect

    Citrone, P.J.

    1991-01-01

    Partial contents of this thesis include: (1) Radio-wave propagation and the mid-latitude trough; (2) Ionospheric measurements; (3) Modification of time-dependent ionospheric model output with latitudinal electron-density profiles from digisonde trough depictions; (4) Ray-tracing simulations to examine ground range; and (5) Effects of three-dimensional gradients in electron density on radio-wave propagation in the trough region. Data is tabulated for geophysical conditions, solar activity level, geomagnetic activity level, conditions for vertical ray refraction to surface, and ray-tracing fixed-input conditions.

  15. Investigation on Wave Propagation Characteristics in Plates and Pipes for Identification of Structural Defect Locations 

    E-print Network

    Han, Je Heon

    2013-07-31

    For successful identification of structural defects in plates and pipes, it is essential to understand structural wave propagation characteristics such as dispersion relations. Analytical approaches to identify the dispersion relations...

  16. Finite-difference time-domain modelling of through-the-Earth radio signal propagation

    NASA Astrophysics Data System (ADS)

    Ralchenko, M.; Svilans, M.; Samson, C.; Roper, M.

    2015-12-01

    This research seeks to extend the knowledge of how a very low frequency (VLF) through-the-Earth (TTE) radio signal behaves as it propagates underground, by calculating and visualizing the strength of the electric and magnetic fields for an arbitrary geology through numeric modelling. To achieve this objective, a new software tool has been developed using the finite-difference time-domain method. This technique is particularly well suited to visualizing the distribution of electromagnetic fields in an arbitrary geology. The frequency range of TTE radio (400-9000 Hz) and geometrical scales involved (1 m resolution for domains a few hundred metres in size) involves processing a grid composed of millions of cells for thousands of time steps, which is computationally expensive. Graphics processing unit acceleration was used to reduce execution time from days and weeks, to minutes and hours. Results from the new modelling tool were compared to three cases for which an analytic solution is known. Two more case studies were done featuring complex geologic environments relevant to TTE communications that cannot be solved analytically. There was good agreement between numeric and analytic results. Deviations were likely caused by numeric artifacts from the model boundaries; however, in a TTE application in field conditions, the uncertainty in the conductivity of the various geologic formations will greatly outweigh these small numeric errors.

  17. Long-term integrated radiophysical studies of the ionosphere, near space, and the propagation of radio waves from space objects

    NASA Technical Reports Server (NTRS)

    Misyura, V. A.

    1974-01-01

    The radiophysical studies reported consist of direct measurements of certain effects induced in the propagation of radio waves from space objects. From measured effects and from data on the motion and position of space objects, physical parameters of the medium and bodies are determined.

  18. A propagation method with adaptive mesh grid based on wave characteristics for wave optics simulation

    NASA Astrophysics Data System (ADS)

    Tang, Qiuyan; Wang, Jing; Lv, Pin; Sun, Quan

    2015-10-01

    Propagation simulation method and choosing mesh grid are both very important to get the correct propagation results in wave optics simulation. A new angular spectrum propagation method with alterable mesh grid based on the traditional angular spectrum method and the direct FFT method is introduced. With this method, the sampling space after propagation is not limited to propagation methods no more, but freely alterable. However, choosing mesh grid on target board influences the validity of simulation results directly. So an adaptive mesh choosing method based on wave characteristics is proposed with the introduced propagation method. We can calculate appropriate mesh grids on target board to get satisfying results. And for complex initial wave field or propagation through inhomogeneous media, we can also calculate and set the mesh grid rationally according to above method. Finally, though comparing with theoretical results, it's shown that the simulation result with the proposed method coinciding with theory. And by comparing with the traditional angular spectrum method and the direct FFT method, it's known that the proposed method is able to adapt to a wider range of Fresnel number conditions. That is to say, the method can simulate propagation results efficiently and correctly with propagation distance of almost zero to infinity. So it can provide better support for more wave propagation applications such as atmospheric optics, laser propagation and so on.

  19. Dynamic characteristic of intense short microwave propagation in an atmosphere

    SciTech Connect

    Yee, J.H.; Alvarez, R.A.; Mayhall, D.J.; Madsen, N.K.; Cabayan, H.S.

    1983-07-01

    The dynamic behavior of an intense microwave pulse which propagates through the atmosphere will be presented. Our theoretical results are obtained by solving Maxwell's equations, together with the electron fluid equations. Our calculations show that although large portions of the initial energy are absorbed by the electrons that are created through the avalanche process, a significant amount of energy is still able to reach the earth's surface. The amount of energy that reaches the earth's surface as a function of initial energy and wave shape after having propagated through 100 km in the atmosphere are investigated. Results for the air breakdown threshold intensity as a function of the pressure for different pulse widths and different frequencies will also be presented. In addition, we will present a comparison between the theoretical and the experimental results for the pulse shape of a short microwave pulse after it has traveled through a rectangular wave guide which contains a section of air. 23 references, 9 figures.

  20. The High-Latitude Ionosphere and Its Effects on Radio Propagation

    NASA Astrophysics Data System (ADS)

    Moses, Ronald W., Jr.

    2004-05-01

    The ionosphere is indeed the place where Earth and space come together. Correspondingly, the ionosphere is subject to the details and complexities of both Earth and space. If one is to develop a logical understanding of even a limited portion of the ionosphere, that knowledge will be constructed on a foundation of many facts of nature. Awareness of those facts will in turn be supported by a vast historical array of scientific effort to ascertain the fundamentals of Earth and space that combine to form the ionosphere as we know it. Fortunately for us, R. D. Hunsucker and J. K. Hargreaves have written a book that goes from the Earth up and comes from the Sun down to arrive at a remarkably detailed physical description of the ionosphere and its impact on human activities, especially radio-frequency (RF) communications. The High-Latitude Ionosphere and its Effects on Radio Propagation is a bit of a misnomer, because the book covers many more topics than its title suggests. The authors set the stage by developing a detailed picture of the density, temperature, chemical, neutral, and charge states of the atmosphere-ionosphere system. Basic models of the ionization and recombination processes are presented with supporting mathematics and graphical examples. Concepts such as the Chapman production function are introduced and applied, whereby ionizing solar radiation produces electron-ion pairs. One can then grasp how the so-called D, E, and F layers of the ionosphere are related to the ionization of specific molecular species. Along the way, the authors are careful to introduce the extensive nomenclature of ionospheric descriptors. There is a comfortable relationship of prose, mathematics, and graphical material. Reading this book is a pleasure for the scientifically curious mind.

  1. [Monitoring of Crack Propagation in Repaired Structures Based on Characteristics of FBG Sensors Reflecting Spectra].

    PubMed

    Yuan, Shen-fang; Jin, Xin; Qiu, Lei; Huang, Hong-mei

    2015-03-01

    In order to improve the security of aircraft repaired structures, a method of crack propagation monitoring in repaired structures is put forward basing on characteristics of Fiber Bragg Grating (FBG) reflecting spectra in this article. With the cyclic loading effecting on repaired structure, cracks propagate, while non-uniform strain field appears nearby the tip of crack which leads to the FBG sensors' reflecting spectra deformations. The crack propagating can be monitored by extracting the characteristics of FBG sensors' reflecting spectral deformations. A finite element model (FEM) of the specimen is established. Meanwhile, the distributions of strains which are under the action of cracks of different angles and lengths are obtained. The characteristics, such as main peak wavelength shift, area of reflecting spectra, second and third peak value and so on, are extracted from the FBGs' reflecting spectral which are calculated by transfer matrix algorithm. An artificial neural network is built to act as the model between the characteristics of the reflecting spectral and the propagation of crack. As a result, the crack propagation of repaired structures is monitored accurately and the error of crack length is less than 0.5 mm, the error of crack angle is less than 5 degree. The accurately monitoring problem of crack propagation of repaired structures is solved by taking use of this method. It has important significance in aircrafts safety improvement and maintenance cost reducing. PMID:26117887

  2. Ionosphere-magnetosphere studies using ground based VLF radio propagation technique: an Indian example

    NASA Astrophysics Data System (ADS)

    Chakravarty, Subhas

    Since IGY period (1957-58), natural and artificially produced Very Low Frequency (VLF) elec-tromagnetic radiations are being recorded at large number of ground stations all over the world and on-board satellites to study various radio wave-thermal/energetic plasma interactive pro-cesses related to earth's ionosphere-plasmasphere-magnetosphere environment. The terrestrial propagation of these VLF radio waves are primarily enabled through the earth ionosphere wave guide (EIWG) mode to long horizontal distances around the globe and ducted along the ge-omagnetic field lines into the conjugate hemisphere through the plasmasphere-magnetosphere regions. The time frequency spectra of the received signals indicate presence of dispersion (wave/group velocities changing with frequency) and various cut-off frequencies based on the width of the EIWG, electron gyro and plasma frequencies etc., providing several types of received signals like whistlers, chorus, tweeks, hiss and hisslers which can be heard on loud-speakers/earphones with distinguishing audio structures. While the VLF technique has been a very effective tool for studying middle and high latitude phenomena, the importance of the similar and anomalous observations over the Indian low latitude stations provide potentially new challenges for their scientific interpretation and modelling. The ducted and non-ducted magnetospheric propagation, pro-longitudinal (PL) mode, low latitude TRIMPI/TLE (Tran-sient Luminous Emissions) or other effects of wave-particle/wave-wave interactions, effects due to ionospheric irregularities and electric fields, full wave solutions to D-region ionisation per-turbations due to solar and stellar energetic X-and ? ray emissions during normal and flaring conditions are a few problems which have been addressed in these low latitude studies over India. Since the conjugate points of Indian stations lie over the Indian oceanic region, the VLF propagation effects would be relatively free from sferics at least in some seasons providing a noise free environment for observing rare and new phenomena requiring better SNR to detect such changes, The VLF signals from the active seismic zones or other electro-geological sources would require high sensitivities of the system and suitable network of transmitting and receiv-ing stations designed for targeted data and applications. Some new results over Indian and other regions show evidences of earthquake related seismo-geological VLF emissions with the potential of being used as a prognostic tool, change in ozone and ion production in the night time middle atmosphere due to transit of stellar x-ray/? ray sources. Results obtained on whistlers and related studies from a number of Indian stations covering geomagnetic latitude range between 13-24 N will be mentioned and reviewed in the background of theoretical understanding of the lightning return stroke signal elements, VLF propagation through cold plasma, ionospheric wave guide mode, electron precipitation due to cyclotron resonance and production of atomic oxygen O (3 P) and ionisation in the mesosphere due to solar/stellar UV/X/?rays. Use of future VLF techniques in terms of improving ground based observations, critical analysis of available satellite data in the context and real time moni-toring/modelling of earth's geosphere and space weather conditions will be considered for a possible programme of a developing country.

  3. The Relation Between Large-Scale Coronal Propagating Fronts and Type 2 Radio Bursts

    NASA Technical Reports Server (NTRS)

    Nitta, Nariaki V.; Liu, Wei; Gopalswamy, Nat; Yashiro, Seiji

    2014-01-01

    Large-scale, wave-like disturbances in extreme-ultraviolet (EUV) and type II radio bursts are often associated with coronal mass ejections (CMEs). Both phenomena may signify shock waves driven by CMEs. Taking EUV full-disk images at an unprecedented cadence, the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory has observed the so-called EIT waves or large-scale coronal propagating fronts (LCPFs) from their early evolution, which coincides with the period when most metric type II bursts occur. This article discusses the relation of LCPFs as captured by AIA with metric type II bursts. We show examples of type II bursts without a clear LCPF and fast LCPFs without a type II burst. Part of the disconnect between the two phenomena may be due to the difficulty in identifying them objectively. Furthermore, it is possible that the individual LCPFs and type II bursts may reflect different physical processes and external factors. In particular, the type II bursts that start at low frequencies and high altitudes tend to accompany an extended arc-shaped feature, which probably represents the 3D structure of the CME and the shock wave around it, and not just its near-surface track, which has usually been identified with EIT waves. This feature expands and propagates toward and beyond the limb. These events may be characterized by stretching of field lines in the radial direction and may be distinct from other LCPFs, which may be explained in terms of sudden lateral expansion of the coronal volume. Neither LCPFs nor type II bursts by themselves serve as necessary conditions for coronal shock waves, but these phenomena may provide useful information on the early evolution of the shock waves in 3D when both are clearly identified in eruptive events.

  4. Authentication of Radio Frequency Identification Devices Using Electronic Characteristics

    ERIC Educational Resources Information Center

    Chinnappa Gounder Periaswamy, Senthilkumar

    2010-01-01

    Radio frequency identification (RFID) tags are low-cost devices that are used to uniquely identify the objects to which they are attached. Due to the low cost and size that is driving the technology, a tag has limited computational capabilities and resources. This limitation makes the implementation of conventional security protocols to prevent…

  5. Tracker: A three-dimensional raytracing program for ionospheric radio propagation

    SciTech Connect

    Argo, P.E.; DeLapp, D.; Sutherland, C.D.; Farrer, R.G.

    1994-12-01

    TRACKER is an extension of a three-dimensional Hamiltonian raytrace code developed some thirty years ago by R. Michael Jones. Subsequent modifications to this code, which is commonly called the {open_quotes}Jones Code,{close_quotes} were documented by Jones and Stephensen (1975). TRACKER incorporates an interactive user`s interface, modern differential equation integrators, graphical outputs, homing algorithms, and the Ionospheric Conductivity and Electron Density (ICED) ionosphere. TRACKER predicts the three-dimensional paths of radio waves through model ionospheres by numerically integrating Hamilton`s equations, which are a differential expression of Fermat`s principle of least time. By using continuous models, the Hamiltonian method avoids false caustics and discontinuous raypath properties often encountered in other raytracing methods. In addition to computing the raypath, TRACKER also calculates the group path (or pulse travel time), the phase path, the geometrical (or {open_quotes}real{close_quotes}) pathlength, and the Doppler shift (if the time variation of the ionosphere is explicitly included). Computational speed can be traded for accuracy by specifying the maximum allowable integration error per step in the integration. Only geometrical optics are included in the main raytrace code; no partial reflections or diffraction effects are taken into account. In addition, TRACKER does not lend itself to statistical descriptions of propagation -- it requires a deterministic model of the ionosphere.

  6. Radio-wave propagation through a medium containing electron-density fluctuations described by an anisotropic Goldreich-Sridhar spectrum

    E-print Network

    B. D. G. Chandran; D. C. Backer

    2002-02-13

    We study the propagation of radio waves through a medium possessing density fluctuations that are elongated along the ambient magnetic field and described by an anisotropic Goldreich-Sridhar power spectrum. We derive general formulas for the wave phase structure function, visibility, angular broadening, diffraction-pattern length scales, and scintillation time scale for arbitrary distributions of turbulence along the line of sight, and specialize these formulas to idealized cases.

  7. Characteristics of Radio-Frequency Circuits Utilizing Ferroelectric Capacitors

    NASA Technical Reports Server (NTRS)

    Eskridge, Michael; Gui, Xiao; MacLeod, Todd; Ho, Fat D.

    2011-01-01

    Ferroelectric capacitors, most commonly used in memory circuits and variable components, were studied in simple analog radio-frequency circuits such as the RLC resonator and Colpitts oscillator. The goal was to characterize the RF circuits in terms of frequency of oscillation, gain, etc, using ferroelectric capacitors. Frequencies of oscillation of both circuits were measured and studied a more accurate resonant frequency can be obtained using the ferroelectric capacitors. Many experiments were conducted and data collected. A model to simulate the experimental results will be developed. Discrepancies in gain and frequency in these RF circuits when conventional capacitors are replaced with ferroelectric ones were studied. These results will enable circuit designers to anticipate the effects of using ferroelectric components in their radio- frequency applications.

  8. A novel idea of purposefully affecting radio wave propagation by coherent acoustic source-induced atmospheric refractivity fluctuation

    NASA Astrophysics Data System (ADS)

    Gong, Shuhong; Yan, Daopu; Wang, Xuan

    2015-10-01

    The mechanism generating the array-distributed atmospheric refractivity fluctuation by a coherent acoustic source is analyzed. The theoretical model is established, which is used to quantifiably analyze the array structure of the artificial dielectric irregularities. It is qualitatively validated that the array-distributed artificial dielectric irregularities really exist and that the array structure of the artificial dielectric irregularities and the scattering effect of the artificial dielectric irregularities on a radio wave can be controlled by adjusting and selecting the optimized parameters of the transmitted acoustic wave and the adopted acoustic antenna array. It can be concluded that the array-distributed artificial dielectric irregularities can be used to purposefully affect radio wave propagation. After radio acoustic sounding system, the idea of this paper is a novel development in the field of the tropospheric atmospheric refractivity artificial abnormality technique and its applications.

  9. Shock formation characteristics in the low corona from type II radio bursts

    NASA Astrophysics Data System (ADS)

    Kouloumvakos, A.; Preka-Papadema, P.; Vourlidas, A.; Moussas, X.; Hillaris, A.; Tsitsipis, P.; Kontogeorgos, A.

    2013-09-01

    In this analysis we have identified the formation of coronal shock waves from 2007 to 2011, using as proxies the type II radio bursts from radio spectrograph ARTEMIS-IV and RSTN. For the 42 events we have identified, we combined data from STEREO, SOHO/LASCO ??? SDO with the characteristics of the composite radio spectra to investigate the properties of the type II formation with the associated flares and CMEs. From the timings between the flare, the CME onset, the HXR peak and the type II start, we grouped the type IIs into separate categories. We found that in most of the cases the type II radio burst starts at the flare maximum phase and particularly in 60% of the cases at the HXR maximum. All the characteristics of the type IIs obtained from their spectrum (duration, df, df/dt). We compared the computed velocities of the type IIs, using deferent density models, with the observed speeds of the CMEs from STEREO and SOHO/LASCO. Finally, from the composite radio spectra we associated the type II with the occurrence of other transient radio emissions such as, radio bursts type III or IV.

  10. Guided radio-wave propagation in the equatorial ionosphere according to the topside sounding onboard Interkosmos-19

    NASA Astrophysics Data System (ADS)

    Karpachev, A. T.; Zhbankov, G. A.; Kuleshova, V. P.; Telegin, V. A.

    2014-12-01

    In addition to normal vertical-incident ionogram traces, strongly remote (up to 2000 km) traces of HF-radio-signal reflections observed on topside-sounder ionograms of the Interkosmos-19 satellite obtained in the equatorial ionosphere are presented. Such traces are connected with waveguides (ducts). These waveguides are field-aligned irregularities of the ionospheric plasma with electron density depletions of a few percent and cross-field dimension of a few to several kilometers. Ray tracing confirms this supposition and allows an estimate of typical waveguide parameters: diameter ?10-15 km and amplitude |?N/N|?10%, where N is the electron density. The waveguide traces usually start at the cutoff frequencies of the main traces. However, sometimes they begin at much lower frequencies which indicates the satellite was transitioning through an equatorial plasma bubble during the recording of the ionogram. The X-mode of ducted echoes is more distinct then the O-mode. Only one ducted trace is usually observed on the Interkosmos-19 ionograms; a second conjugate trace is rarely recorded. The same is true for combination modes which is a combination of an oblique-incidence and guided propagation. Waveguides are observed at all heights of Interkosmos-19 (500-1000 km) inside the equatorial anomaly region (from -40° to +40° Dip). Waveguides are usually associated with other irregularities of various sizes in the equatorial ionosphere, some of which cause additional traces and spread F on the topside-sounding ionograms. Ducted-echo characteristics observed with Interkosmos-19 are different from those observed earlier with the Alouette and ISIS satellites. This difference is discussed. It is shown that the ionospheric plasma irregularities responsible for the waveguides are observed much more often during nighttime than during daytime.

  11. UWB Characteristics of RF Propagation for Body Mounted and Implanted Sensors Submitted to the Faculty

    E-print Network

    Pahlavan, Kaveh

    greatly from the addition of location information. The capsule transmits an RF signal from inside1 UWB Characteristics of RF Propagation for Body Mounted and Implanted Sensors by Jin Chen A Thesis or are placed inside the human body, transmitting signals to a terminal situated in a doctor's office, in order

  12. Trends in Performance and Characteristics of Ultra-Stable Oscillators for Deep Space Radio Science Experiments

    NASA Technical Reports Server (NTRS)

    Asmar, Sami

    1997-01-01

    Telecommunication systems of spacecraft on deep space missions also function as instruments for Radio Science experiments. Radio scientists utilize the telecommunication links between spacecraft and Earth to examine very small changes in the phase/frequency, amplitude, and/or polarization of radio signals to investigate a host of physical phenomena in the solar system. Several missions augmented the radio communication system with an Ultra-Stable Oscillator (USO) in order to provide a highly stable reference signal for oneway downlink. This configuration is used in order to enable better investigations of the atmospheres of the planets occulting the line-of-sight to the spacecraft; one-way communication was required and the transponders' built-in auxiliary oscillators were neither sufficiently stable nor spectrally pure for the occultation experiments. Since Radio Science instrumentation is distributed between the spacecraft and the ground stations, the Deep Space Network (DSN) is also equipped to function as a world-class instrument for Radio Science research. For a detailed account of Radio Science experiments, methodology, key discoveries, and the DSN's historical contribution to the field, see Asmar and Renzetti (1993). The tools of Radio Science can be and have also been utilized in addressing several mission engineering challenges; e.g., characterization of spacecraft nutation and anomalous motion, antenna calibrations, and communications during surface landing phases. Since the first quartz USO was flown on Voyager, the technology has advanced significantly, affording future missions higher sensitivity in reconstructing the temperature pressure profiles of the atmospheres under study as well as other physical phenomena of interest to Radio Science. This paper surveys the trends in stability and spectral purity performance, design characteristics including size and mass, as well as cost and history of these clocks in space.

  13. Enhancement of electromagnetic propagation through complex media for Radio Frequency Identification

    E-print Network

    Marti, Uttara P

    2005-01-01

    In this thesis, I present and examine the fundamental limitations involved in Radio Frequency Identification (RFID) as well as provide a means to improve reader-tag communication in ultra high frequency RFID systems. The ...

  14. End-to-End Network Simulation Using a Site-Specific Radio Wave Propagation Model

    SciTech Connect

    Djouadi, Seddik M; Kuruganti, Phani Teja; Nutaro, James J

    2013-01-01

    The performance of systems that rely on a wireless network depends on the propagation environment in which that network operates. To predict how these systems and their supporting networks will perform, simulations must take into consideration the propagation environment and how this effects the performance of the wireless network. Network simulators typically use empirical models of the propagation environment. However, these models are not intended for, and cannot be used, to predict a wireless system will perform in a specific location, e.g., in the center of a particular city or the interior of a specific manufacturing facility. In this paper, we demonstrate how a site-specific propagation model and the NS3 simulator can be used to predict the end-to-end performance of a wireless network.

  15. Analysis of Radio Wave Propagation for ISM 2.4 GHz Wireless Sensor Networks in Inhomogeneous Vegetation Environments

    PubMed Central

    Azpilicueta, Leire; López-Iturri, Peio; Aguirre, Erik; Mateo, Ignacio; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2014-01-01

    The use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments. PMID:25513820

  16. Analysis of radio wave propagation for ISM 2.4 GHz Wireless Sensor Networks in inhomogeneous vegetation environments.

    PubMed

    Azpilicueta, Leire; López-Iturri, Peio; Aguirre, Erik; Mateo, Ignacio; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2014-01-01

    The use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments. PMID:25513820

  17. Technologies for DWDM Millimetre-Wave Fibre-Radio Networks

    E-print Network

    Bakaul, Masuduzzaman

    Technologies for DWDM Millimetre- Wave Fibre-Radio Networks Masuduzzaman Bakaul BSc. Eng. (EE. The millimetre-wave (mm-wave) fibre-radio system with its inherent advantages of large bandwidth characteristics services and applications. At mm-wave frequencies, propagation effects through the air limit the radio cell

  18. Propagation Characteristics of Rectangular Waveguides at Terahertz Frequencies with Finite-Difference Frequency-Domain Method

    NASA Astrophysics Data System (ADS)

    Huang, Binke; Zhao, Chongfeng

    2014-01-01

    The 2-D finite-difference frequency-domain method (FDFD) combined with the surface impedance boundary condition (SIBC) was employed to analyze the propagation characteristics of hollow rectangular waveguides at Terahertz (THz) frequencies. The electromagnetic field components, in the interior of the waveguide, were discretized using central finite-difference schemes. Considering the hollow rectangular waveguide surrounded by a medium of finite conductivity, the electric and magnetic tangential field components on the metal surface were related by the SIBC. The surface impedance was calculated by the Drude dispersion model at THz frequencies, which was used to characterize the conductivity of the metal. By solving the Eigen equations, the propagation constants, including the attenuation constant and the phase constant, were obtained for a given frequency. The proposed method shows good applicability for full-wave analysis of THz waveguides with complex boundaries.

  19. Enhanced MUF propagation of HF radio waves in the auroral zone

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Jones, T. B.; Warrington, E. M.

    1997-01-01

    Four high frequency propagation paths were monitored from a transmitter located within the polar cap by four receivers located variously within the polar cap and at sub-auroral latitudes. Of these paths, one was contained entirely within the polar cap at all times, two were trans-auroral at all times, and one varied from trans-auroral during the day to polar cap during the night. Fourteen frequencies within the HF band were transmitted each hour for the duration of two 24 day experimental campaigns during the summer of 1988 and the winter of 1989. From an analysis of the received signals the confidence of signal recognition and signal strength were determined. During geomagnetically undisturbed periods the propagation behaviour resembled that of mid-latitude paths. During geomagnetically disturbed times, however, night-time propagation occurred on frequencies up to and sometimes over 10 MHz above the undisturbed night-time MUF, for periods of 2 to 6 h. These features appeared on the trans-auroral paths only and were attributed to E region (and occasionally F region) enhancement by auroral precipitation. APEs (auroral E propagation events) occurred on over 50% of nights. The occurrence of APEs also coincided with ionospheric storm periods when the HF band available for propagation was otherwise significantly narrowed due to a depletion of the F region electron density.

  20. The Coherer: With Simple Demonstrations of the Generation, Propagation and Detection of Radio Waves

    ERIC Educational Resources Information Center

    Mills, Allan

    2010-01-01

    A coherer is a bistable device based on metal filings loosely confined between solid metal electrodes. This granular material normally exhibits a very high electrical resistance (tens of kilohms), but passage of the high-frequency current generated by reception of a radio signal causes it to "cohere" into a comparatively low resistance condition…

  1. Characteristics of radio-frequency atmospheric pressure dielectric-barrier discharge with dielectric electrodes

    SciTech Connect

    Hussain, S. E-mail: shussainuos@yahoo.com; Qazi, H. I. A.; Badar, M. A.

    2014-03-15

    An experimental investigation to characterize the properties and highlight the benefits of atmospheric pressure radio-frequency dielectric-barrier discharge (rf DBD) with dielectric electrodes fabricated by anodizing aluminium substrate is presented. The current-voltage characteristics and millisecond images are used to distinguish the ? and ? modes. This atmospheric rf DBD is observed to retain the discharge volume without constriction in ? mode. Optical emission spectroscopy demonstrates that the large discharge current leads to more abundant reactive species in this plasma source.

  2. Characteristics of radio-frequency atmospheric pressure dielectric-barrier discharge with dielectric electrodes

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Qazi, H. I. A.; Badar, M. A.

    2014-03-01

    An experimental investigation to characterize the properties and highlight the benefits of atmospheric pressure radio-frequency dielectric-barrier discharge (rf DBD) with dielectric electrodes fabricated by anodizing aluminium substrate is presented. The current-voltage characteristics and millisecond images are used to distinguish the ? and ? modes. This atmospheric rf DBD is observed to retain the discharge volume without constriction in ? mode. Optical emission spectroscopy demonstrates that the large discharge current leads to more abundant reactive species in this plasma source.

  3. Sparsity-inspired nonparametric probability characterization for radio propagation in body area networks.

    PubMed

    Yang, Xiaodong; Yang, Shuyuan; Abbasi, Qammer Hussain; Zhang, Zhiya; Ren, Aifeng; Zhao, Wei; Alomainy, Akram

    2015-05-01

    Parametric probability models are common references for channel characterization. However, the limited number of samples and uncertainty of the propagation scenario affect the characterization accuracy of parametric models for body area networks. In this paper, we propose a sparse nonparametric probability model for body area wireless channel characterization. The path loss and root-mean-square delay, which are significant wireless channel parameters, can be learned from this nonparametric model. A comparison with available parametric models shows that the proposed model is very feasible for the body area propagation environment and can be seen as a significant supplement to parametric approaches. PMID:25014979

  4. Measured Propagation Characteristics of Finite Ground Coplanar Waveguide on Silicon with a Thick Polyimide Interface Layer

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Papapolymerou, John; Tentzeris, Emmanouil M.; Williams, W. O. (Technical Monitor)

    2002-01-01

    Measured propagation characteristics of Finite Ground Coplanar (FGC) waveguide on silicon substrates with resistivities spanning 3 orders of magnitude (0.1 to 15.5 Ohm cm) and a 20 micron thick polyimide interface layer is presented as a function of the FGC geometry. Results show that there is an optimum FGC geometry for minimum loss, and silicon with a resistivity of 0.1 Ohm cm has greater loss than substrates with higher and lower resistivity. Lastly, substrates with a resistivity of 10 Ohm cm or greater have acceptable loss.

  5. Effects of sandstorms and explosion-generated atmospheric dust on radio propagation

    NASA Astrophysics Data System (ADS)

    Rafuse, R. P.

    1981-11-01

    Suspended particulate matter in the atmosphere, generated by natural phenomena such as dust and sandstorms or by man-made near-surface explosions, has been suspected as a cause of microwave and millimeter-wave communications systems outages. An analysis carried out on the radio-frequency and optical effects of such dust clouds and the results, coupled with available information on particle-size distributions and suspended mass, indicates that the radio-frequency effects should be essentially negligible. However, observed changes in the atmospheric pressure, temperature, and humidity which accompany dust storms (and explosions) can account for all of the observed effects on microwave links. With the exception of water entrained in large explosions, most such effects are, however, virtually frequency-independent; therefore, dust storm activity and clouds raised by detonations should not be considered a threat peculiar to EHF SATCOM or other millimeter-wave based communications systems.

  6. Rotary propagation characteristics of light in multimode-single mode-multimode fiber structures using ray tracing method

    NASA Astrophysics Data System (ADS)

    Gao, Hong-yun; Wu, Zi-wei; Xu, Zhe-xiong-yan; Li, Min

    2015-07-01

    The mode theory is the main way to study the propagation characteristics of light in fiber so far, but it is not suitable for analysis of light in duct. By using ray-tracing method, the rotary propagation characteristics of light in multimode-single mode-multimode (MSM) fiber structures are analyzed in this paper. Firstly, the light ray in fiber can propagate around an inscribed circle, and the central axis of this fiber is the propagation axis. Secondly, the radius of the inscribed circle is decided by both incident angle and incident position, and its variation is between 0 and R M, where R M is the radius of the multimode fiber. Lastly, the bigger the ratio of core and cladding diameter is, the higher the propagation efficiency is.

  7. The High Latitude Ionosphere and its Effects on Radio Propagation, R. D. Hunsucker and J. K. Hargreaves, Cambridge University Press, xix + 617pp, 2003

    E-print Network

    The High Latitude Ionosphere and its Effects on Radio Propagation, R. D. Hunsucker and J. K emphasis on the high latitude ionosphere, the book contains much more. Indeed, it is a veritable compendium of ionosphere lore, data, and experimental and theoretical developments over the decades. Studies of the Earth

  8. Cascaded neural networks for sequenced propagation estimation, multiuser detection, and adaptive radio resource control of third-generation wireless networks for multimedia services

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1999-03-01

    A hybrid neural network approach is presented to estimate radio propagation characteristics and multiuser interference and to evaluate their combined impact on throughput, latency and information loss in third-generation (3G) wireless networks. The latter three performance parameters influence the quality of service (QoS) for multimedia services under consideration for 3G networks. These networks, based on a hierarchical architecture of overlaying macrocells on top of micro- and picocells, are planned to operate in mobile urban and indoor environments with service demands emanating from circuit-switched, packet-switched and satellite-based traffic sources. Candidate radio interfaces for these networks employ a form of wideband CDMA in 5-MHz and wider-bandwidth channels, with possible asynchronous operation of the mobile subscribers. The proposed neural network (NN) architecture allocates network resources to optimize QoS metrics. Parameters of the radio propagation channel are estimated, followed by control of an adaptive antenna array at the base station to minimize interference, and then joint multiuser detection is performed at the base station receiver. These adaptive processing stages are implemented as a sequence of NN techniques that provide their estimates as inputs to a final- stage Kohonen self-organizing feature map (SOFM). The SOFM optimizes the allocation of available network resources to satisfy QoS requirements for variable-rate voice, data and video services. As the first stage of the sequence, a modified feed-forward multilayer perceptron NN is trained on the pilot signals of the mobile subscribers to estimate the parameters of shadowing, multipath fading and delays on the uplinks. A recurrent NN (RNN) forms the second stage to control base stations' adaptive antenna arrays to minimize intra-cell interference. The third stage is based on a Hopfield NN (HNN), modified to detect multiple users on the uplink radio channels to mitigate multiaccess interference, control carrier-sense multiple-access (CSMA) protocols, and refine call handoff procedures. In the final stage, the Kohonen SOFM, operating in a hybrid continuous and discrete space, adaptively allocates the resources of antenna-based cell sectorization, activity monitoring, variable-rate coding, power control, handoff and caller admission to meet user demands for various multimedia services at minimum QoS levels. The performance of the NN cascade is evaluated through simulation of a candidate 3G wireless network using W-CDMA parameters in a small-cell environment. The simulated network consists of a representative number of cells. Mobile users with typical movement patterns are assumed. QoS requirements for different classes of multimedia services are considered. The proposed method is shown to provide relatively low probability of new call blocking and handoff dropping, while maintaining efficient use of the network's radio resources.

  9. Using IRI and GSM TIP model results as environment for HF radio wave propagation model during the geomagnetic storm occurred on September 26-29, 2011

    NASA Astrophysics Data System (ADS)

    Kotova, D. S.; Klimenko, M. V.; Klimenko, V. V.; Zakharov, V. E.; Ratovsky, K. G.; Nosikov, I. A.; Zhao, B.

    2015-11-01

    This paper analyses the geomagnetic storm on September 26-29, 2011. We compare the calculation results obtained using the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) and IRI-2012 (Bilitza et al., 2014) model with ground-based ionosonde data of stations at different latitudes and longitudes. We examined physical mechanisms responsible for the formation of ionospheric effects during the main phase of geomagnetic storm that occurred at the rising phase of the 24th solar cycle. We used numerical results obtained from IRI-2012 and GSM TIP models as propagation environment for HF signals from an equatorial transmitter during quiet and disturbed conditions. We used the model of HF radio wave propagation developed in I. Kant Baltic Federal University (BFU) that is based on the geometrical optics approximation. We compared the obtained radio paths in quiet conditions and during the main and recovery storm phases and evaluated radio wave attenuation in different media models.

  10. Measurements of radio propagation in rock salt for the detection of high-energy neutrinos

    E-print Network

    Amy Connolly; Abigail Goodhue; Christian Miki; Ryan Nichol; David Saltzberg

    2008-06-12

    We present measurements of the transmission of radio/microwave pulses through salt in the Cote Blanche salt mine operated by the North American Salt Company in St. Mary Parish, Louisiana. These results are from data taken in the southwestern region of the 1500 ft. (457 m) deep level of the mine on our third and most recent visit to the mine. We transmitted and received a fast, high-power, broadband pulse from within three vertical boreholes that were drilled to depths of 100 ft. (30 m) and 200 ft. below the 1500 ft. level using three different pairs of dipole antennas whose bandwidths span 125 to 900 MHz. By measuring the relative strength of the received pulses between boreholes with separations of 50 m and 169 m, we deduce the attenuation of the signal attributed to the salt medium. We fit the frequency dependence of the attenuation to a power law and find the best fit field attenuation lengths to be 93 \\pm 7 m at 150 MHz, 63 \\pm 3 m at 300 MHz, and 36 \\pm 2 m at 800 MHz. This is the most precise measurement of radio attenuation in a natural salt formation to date. We assess the implications of this measurement for a future neutrino detector in salt.

  11. Modelling the transfer function in medium bandwidth radio channels during multipath propagation

    NASA Astrophysics Data System (ADS)

    Sylvain, M.; Lavergnat, J.

    1985-12-01

    The computation of the effects of a multipath propagation channel on a line-of-sight link requires a statistical model of the channel transfer function. The various steps in the construction and validation of such a model are discussed, and several proposed models are compared from the point of view of their applications. The selection of data for the model is examined, and the results of modelling are considered in terms of a Rummler model, a complex polynomial expansion, and a normalized two-ray model. The use of the complete two-ray model is addressed. Results from the PACEM I experiment are used by way of illustration.

  12. Propagation characteristics of atmospheric-pressure He+O2 plasmas inside a simulated endoscope channel

    NASA Astrophysics Data System (ADS)

    Wang, S.; Chen, Z. Y.; Wang, X. H.; Li, D.; Yang, A. J.; Liu, D. X.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2015-11-01

    Cold atmospheric-pressure plasmas have potential to be used for endoscope sterilization. In this study, a long quartz tube was used as the simulated endoscope channel, and an array of electrodes was warped one by one along the tube. Plasmas were generated in the inner channel of the tube, and their propagation characteristics in He+O2 feedstock gases were studied as a function of the oxygen concentration. It is found that each of the plasmas originates at the edge of an instantaneous cathode, and then it propagates bidirectionally. Interestingly, a plasma head with bright spots is formed in the hollow instantaneous cathode and moves towards its center part, and a plasma tail expands through the electrode gap and then forms a swallow tail in the instantaneous anode. The plasmas are in good axisymmetry when [O2] ? 0.3%, but not for [O2] ? 1%, and even behave in a stochastic manner when [O2] = 3%. The antibacterial agents are charged species and reactive oxygen species, so their wall fluxes represent the "plasma dosage" for the sterilization. Such fluxes mainly act on the inner wall in the hollow electrode rather than that in the electrode gap, and they get to the maximum efficiency when the oxygen concentration is around 0.3%. It is estimated that one can reduce the electrode gap and enlarge the electrode width to achieve more homogenous and efficient antibacterial effect, which have benefits for sterilization applications.

  13. Characteristics of the propagation of radioactive pollutants near a radiation-hazardous object

    SciTech Connect

    Romanov, V.I.

    1995-09-01

    It is well known that the radiation effect of nuclear enterprises on the environment is due mainly to gas-aerosol emissions which emanate from the object in the form of a jet flow. A characteristic feature of the propagation of radioactive impurities near such structures is that they depend on the local thermal and wind conditions at the location of the source of contamination. Transferring directly the results of laboratory investigations of the propagation and diffusion of fluxes to objects in the environment and neglecting the peculiarities of the wind and thermal interference with the underlying surface and other buildings can lead to incorrect conclusions. In this paper, we examine two examples: (1) emissions through the plant stack or other ventilation system openings, and (2) leakage of radioactive pollutants into the reactor building and from there to the atmosphere. A mathematical description on each example is provided, and data on the Archimedes number for a convective jet is given as a function of the deflecting wind velocity.

  14. Radiation characteristics of quasi-periodic radio bursts in the Jovian high-latitude region

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoki; Tsuchiya, Fuminori; Misawa, Hiroaki; Morioka, Akira; Nozawa, Hiromasa

    2008-12-01

    Ulysses had a "distant encounter" with Jupiter in February 2004. The spacecraft passed from north to south, and it observed Jovian radio waves from high to low latitudes (from +80° to +10°) for few months during its encounter. In this study, we present a statistical investigation of the occurrence characteristics of Jovian quasi-periodic bursts, using spectral data from the unified radio and plasma wave experiment (URAP) onboard Ulysses. The latitudinal distribution of quasi-periodic bursts is derived for the first time. The analysis suggested that the bursts can be roughly categorized into two types: one having periods shorter than 30 min and one with periods longer than 30 min, which is consistent with the results of the previous analysis of data from Ulysses' first Jovian flyby [MacDowall, R.J., Kaiser, M.L., Desch, M.D., Farrell, W.M., Hess, R.A., Stone, R.G., 1993. Quasi-periodic Jovian radio bursts: observations from the Ulysses radio and plasma wave. Experiment. Planet. Space Sci. 41, 1059-1072]. It is also suggested that the groups of quasi-periodic bursts showed a dependence on the Jovian longitude of the sub-solar point, which means that these burst groups are triggered during a particular rotational phase of the planet. Maps of the occurrence probability of these quasi-periodic bursts also showed a unique CML/MLAT dependence. We performed a 3D ray tracing analysis of the quasi-periodic burst emission to learn more about the source distribution. The results suggest that the longitudinal distribution of the occurrence probability depends on the rotational phase. The source region of quasi-periodic bursts seems to be located at an altitude between 0.4 and 1.4 Rj above the polar cap region ( L>30).

  15. Self-configurable radio receiver system and method for use with signals without prior knowledge of signal defining characteristics

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon (Inventor); Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor); Dolinar, Samuel J. (Inventor); Tkacenko, Andre (Inventor)

    2013-01-01

    A method, radio receiver, and system to autonomously receive and decode a plurality of signals having a variety of signal types without a priori knowledge of the defining characteristics of the signals is disclosed. The radio receiver is capable of receiving a signal of an unknown signal type and, by estimating one or more defining characteristics of the signal, determine the type of signal. The estimated defining characteristic(s) is/are utilized to enable the receiver to determine other defining characteristics. This in turn, enables the receiver, through multiple iterations, to make a maximum-likelihood (ML) estimate for each of the defining characteristics. After the type of signal is determined by its defining characteristics, the receiver selects an appropriate decoder from a plurality of decoders to decode the signal.

  16. Delay time measurements of the propagation of radio waves in the atmosphere

    NASA Technical Reports Server (NTRS)

    Rohde, F.

    1972-01-01

    The characteristics and operation of the Geodetic Secor System are described. The precision of the ionospheric radiation measurements was determined by a collocation experiment. The EGRS-13 satellite, which was used in the experiment, is discussed. The geodetic network is shown in a diagram form. Conclusions resulting from the experiments are reported.

  17. Measurements of radio propagation in rock salt for the detection of high-energy neutrinos

    E-print Network

    Connolly, Amy; Miki, Christian; Nichol, Ryan; Saltzberg, David

    2008-01-01

    We present measurements of the transmission of radio/microwave pulses through salt in the Cote Blanche salt mine operated by the North American Salt Company in St. Mary Parish, Louisiana. These results are from data taken in the southwestern region of the 1500 ft. (457 m) deep level of the mine on our third and most recent visit to the mine. We transmitted and received a fast, high-power, broadband pulse from within three vertical boreholes that were drilled to depths of 100 ft. (30 m) and 200 ft. below the 1500 ft. level using three different pairs of dipole antennas whose bandwidths span 125 to 900 MHz. By measuring the relative strength of the received pulses between boreholes with separations of 50 m and 169 m, we deduce the attenuation of the signal attributed to the salt medium. We fit the frequency dependence of the attenuation to a power law and find the best fit field attenuation lengths to be 93 \\pm 7 m at 150 MHz, 63 \\pm 3 m at 300 MHz, and 36 \\pm 2 m at 800 MHz. This is the most precise measuremen...

  18. PRPSIM: A FORTRAN code to calculate properties of radio wave propagation in a structured ionized medium. Volume 2: Theory and models

    NASA Astrophysics Data System (ADS)

    Dodson, R. E.; Krueger, D. J.; Guigliano, F. W.

    1989-12-01

    This report describes the PRPSIM (Properties of Radio Wave Propagation in a Structured Ionized Medium) code, a FORTRAN computer program for use in evaluating electromagnetic propagation effects resulting from detonation of nuclear weapons on satellite communications and radar systems. The code uses nuclear environment data files created by the SCENARIO high altitude, multiburst nuclear phenomenology code. PRPSIM calculates propagation effects due to enhanced mean ionization levels (e.g., absorption, noise, refraction, phase shift, Doppler and time delay variations, etc.). The code is written in ANSI FORTRAN-77 and has been installed and run on VAX, CDC/CYBER, ELXSI/EMBOS, and CRAY-1 computer systems. Volume 1 of the report is a user's guide which describes code installation, input, output, structure, and application. Volume 2 describes the underlying propagation effects theory and computational models.

  19. Numerical investigation of fast-wave propagation and radio-frequency sheath interaction with a shaped tokamak wall

    NASA Astrophysics Data System (ADS)

    Kohno, H.; Myra, J. R.; D'Ippolito, D. A.

    2015-07-01

    Interactions between propagating fast waves and radio-frequency (RF) sheaths in the ion cyclotron range of frequencies are numerically investigated based on a cold fluid plasma model coupled with a sheath boundary condition. In this two-dimensional study, the capability of the finite element code rfSOL, which was developed in previous numerical work, is extended to analyze self-consistent RF sheath-plasma interaction problems in a tokamak with a non-circular cross-section. It is found that a large sheath voltage is generated near the edges of the limiter-shaped deformation as a result of the conversion from fast to slow waves on the sheaths. The sheath voltage associated with this conversion is particularly significant in the localized region where the contact angle between the magnetic field line and the conducting wall varies rapidly along the curved sheath surface, which is consistent with the results in previous one-dimensional theoretical work. The dependences of the RF sheaths on various parameters in plasma such as the toroidal wavenumber, edge plasma density, and the degree of the RF wave absorption in the core region are also examined in detail.

  20. Uncertainty propagation through wave optics retrieval of bending angles from GPS radio occultation: Theory and simulation results

    NASA Astrophysics Data System (ADS)

    Gorbunov, Michael E.; Kirchengast, Gottfried

    2015-10-01

    The wave optical technique for bending angle retrieval in processing radio occultation observations is nowadays widely used by different data processing and assimilation groups and centers. This technique uses Fourier Integral Operators that map the observed records of the amplitude and phase into the impact parameter representation, which allows for the retrieval of bending angle as a function of impact parameter. We investigate the propagation of uncertainty in the observed amplitude and excess phase to the retrieved bending angle. We construct a simple linear approximation, where the excess phase uncertainty is mapped into the bending angle uncertainty. This results in a simple analytical expression for the final uncertainty. To verify our approximation, we perform numerical Monte Carlo simulations for three example occultation events (tropical, middle, and polar latitude profiles from an atmospheric analysis). We demonstrate that our approximation basically gives good results in all cases over the entire troposphere. Exception is the narrow area near the top of the sharp boundary layer, especially in tropics, where, due to nonlinear effects, a significant systematic error arises accompanied by increased uncertainty.

  1. Preliminary breakdown of intracloud lightning: Initiation altitude, propagation speed, pulse train characteristics, and step length estimation

    NASA Astrophysics Data System (ADS)

    Wu, Ting; Yoshida, Satoru; Akiyama, Yasuhiro; Stock, Michael; Ushio, Tomoo; Kawasaki, Zen

    2015-09-01

    Using a low-frequency lightning location system comprising 11 sites, we located preliminary breakdown (PB) processes in 662 intracloud (IC) lightning flashes during the summer of 2013 in Osaka area of Japan. On the basis of three-dimensional location results, we studied initiation altitude and upward propagation speed of PB processes. PB in most IC flashes has an initiation altitude that ranges from 5 to 10 km with an average of 7.8 km. Vertical speed ranges from 0.5 to 17.8 × 105 m/s with an average of 4.0 × 105 m/s. Vertical speed is closely related with initiation altitude, with IC flashes initiated at higher altitude having lower vertical speed during PB stage. Characteristics of PB pulse trains including pulse rate, pulse amplitude, and pulse width are also analyzed. The relationship between pulse rate and vertical speed has the strongest correlation, suggesting that each PB pulse corresponds to one step of the initial leader during the PB stage. Pulse rate, pulse amplitude, and pulse width all show decreasing trends with increasing initiation altitude and increasing trends with increasing vertical speed. Using a simple model, the step length of the initial leader during the PB stage is estimated. Most of initial leaders have step lengths that range from 40 to 140 m with an average of 113 m. Estimated step length has a strong correlation with initiation altitude, indicating that leaders initiated at higher altitude have longer steps. Based on the results of this study, we speculate that above certain altitude (~12 km), initial leaders in PB stages of IC flashes may only have horizontal propagations. PB processes at very high altitude may also have very weak radiation, so detecting and locating them would be relatively difficult.

  2. Propagation characteristics of SH wave in an mm2 piezoelectric layer on an elastic substrate

    NASA Astrophysics Data System (ADS)

    Kong, Yanping; Liu, Jinxi; Nie, Guoquan

    2015-09-01

    We investigate the propagation characteristics of shear horizontal (SH) waves in a structure consisting of an elastic substrate and an mm2 piezoelectric layer with different cut orientations. The dispersion equations are derived for electrically open and shorted conditions on the free surface of the piezoelectric layer. The phase velocity and electromechanical coupling coefficient are calculated for a layered structure with a KNbO3 layer perfectly bonded to a diamond substrate. The dispersion curves for the electrically shorted boundary condition indicate that for a given cut orientation, the phase velocity of the first mode approaches the B-G wave velocity of the KNbO3 layer, while the phase velocities of the higher modes tend towards the limit velocity of the KNbO3 layer. For the electrically open boundary condition, the asymptotic phase velocities of all modes are the limit velocity of the KNbO3 layer. In addition, it is found that the electromechanical coupling coefficient strongly depends on the cut orientation of the KNbO3 crystal. The obtained results are useful in device applications.

  3. Energetic Particle Propagation in the Inner Heliosphere as Deduced from Low Frequency (less than 100 kHz) Observations of Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.

    2003-01-01

    Solar energetic particle (SEP) events are well-associated with solar flares. It is observed that the delay between the time of the flare and the first-arriving particles at a spacecraft increases with increasing difference between the flare longitude and the footpoint of the field line on which the spacecraft is located. This difference we call the "connection angle" and can be as large as approximately 120 deg. Recently it has been found that all SEP events are preceded by type III radio bursts. These bursts are plasma emission caused by the propagation of 2-50 keV flare electrons through the solar corona and into the solar wind. The drift of these type III radio bursts to lower and lower frequencies enables the propagation of the flare electrons to be traced from the Sun to about 1 AU. We have made an extensive analysis of the type III bursts associated with greater than 20 MeV proton events and find that, in most cases, the radio emission extends to the local plasma frequency when the energetic particles arrive within a few hours of the flare. We conclude that this emission at the lowest possible frequency is generated close to the spacecraft. We then use the time from when the burst started at the Sun to when it reached the local plasma frequency to infer the time it took the radio producing electrons to travel to the spacecraft. We find that these delay times are organized by the connection angle and correlate with the proton delay times. We also find that the differences between the radio delays at Wind and Ulysses are matched by differences in the relative arrival times of the energetic particles at the two spacecraft. The consistent timing between the relative arrival times of energetic electrons and protons and the start of the lowest frequency radio emissions suggests that the first arriving particles of both species are accelerated as part of the flare process and that they propagate to the spacecraft along trajectories similar to those of the lower energy flare electrons. To be detected by observers at locations distant from the nominal field lines originating in the flaring regions the particles must undergo lateral transport. The continuity of the radio bursts suggests that the cross-field transport may occur in the interplanetary medium.

  4. Static current-voltage characteristics for radio-frequency induction discharge

    SciTech Connect

    Budyansky, A.; Zykov, A.

    1995-12-31

    The aim of this work was to obtain experimentally such characteristic of Radio-Frequency Induction Discharge (RFID) that can play the role of its current-voltage characteristic (CVC) and to explain the nature of current and voltage jumps arising in RF coils at exciting of discharge. Experiments were made in quartz 5.5, 11, 20 cm diam tubes with outer RF coil at pressures 10--100 mTorr, at frequency 13.56 MHz and discharge power to 500 W. In case of outer coil as analogue of discharge voltage it`s convenient to use the value of the RF voltage U{sub R}, induced around outer perimeter of discharge tube. It is evident that current and voltage jumps arising at exciting of discharge are due to low output resistance of standard generators and negative slope of initial part of CVC. Three sets of such dependencies for different pressures were obtained for each diameter of tubes. The influence of different metal electrodes placed into discharge volume on CVC`s shape has been studied also. Experimental results can explain the behavior of HFI discharge as a load of RF generator and give data for calculation of RF circuit.

  5. Influence of an inhomogeneous structure of the high-latitude ionosphere on the long-distance propagation of high-frequency radio waves

    NASA Astrophysics Data System (ADS)

    Uryadov, V. P.; Vertogradov, G. G.; Vertogradova, E. G.

    2012-09-01

    We present the results of experimental studies of the features of long-distance propagation of high-frequency radio waves on the large-extent subauroral Magadan-Rostov-on-Don and midlatitude Khabarovsk-Rostov-on-Don and Irkutsk-Rostov-on-Don paths, which were obtained using the ionosonde-finder with a chirp output signal. Anomalous (lateral) signals with delays of about 1-2 ms with respect to a direct signal, which arrive from the azimuths 10°-20°, are observed on the Magadan-Rostov-on-Don path. The lateral signals were observed in the morning and antemeridian hours in the time interval 08:00-10:40 MSK. In the evening and night hours, the lateral signals were not observed. During magnetic activity, the amplitude of the lateral signals was greater than that observed prior to a magnetic storm by 5-10 dB. Location of the ionospheric-perturbation regions responsible for the appearance of the lateral signals was determined as ?geogr ? 69°-71°N (?magn ? 65°-66°N), and ? ? 51°-58°E. The mechanisms of the lateral-signal propagation due to lateral refraction of radio waves on patches with enhanced electron number density and due to scattering of radio waves from small-scale irregularities are considered.

  6. N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, tomorrow

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. D.

    2015-06-01

    This paper describes the basic and applied research rationale for the organization of IZMIRAN and provides insight into the 75 years of the Institute's activities and development. Historically, early magnetic measurements in Russia were developed largely to meet the Navy's navigation needs and were, more generally, stimulated by the Peter the Great decrees and by the foundation of the St. Petersburg Academy of Sciences in 1724. The paper examines the roles of the early Academicians in developing geomagnetism and making magnetic measurements a common practice in Russia. The need for stable radio communications prompted ionospheric and radio wave propagation research. The advent of the space era and the 1957-1958 International Geophysical Year Project greatly impacted the development of IZMIRAN and spurred the creation of a number of geophysical research institutes throughout the country. Currently, the research topics at IZMIRAN range widely from geomagnetism to solar-terrestrial physics to the ionosphere and radio wave propagation, and its primary application areas are the study and forecast of space weather, an increasingly important determining factor in ever-expanding ground- and space-based technologies (space navigation and communications, space activities, etc.).

  7. Remote sensing and modeling of lightning caused long recovery events within the lower ionosphere using VLF/LF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Schmitter, E. D.

    2014-11-01

    On the 4 November 2012 at 3:04:27 UT a strong lightning in the midst of the North Sea affected the propagation conditions of VLF/LF transmitter radio signals from NRK (Iceland, 37.5 kHz) and GBZ (UK, 19.58 kHz) received at 5246° N 8° E (NW Germany). The amplitude and phase dips show a recovery time of 6-12 min pointing to a LOng Recovery Early VLF (LORE) event. Clear assignment of the causative return stroke in space and time was possible with data from the WWLLN (Worldwide Lightning Location Network). Based on a return stroke current model the electric field is calculated and an excess electron density distribution which decays over time in the lower ionosphere is derived. Ionization, attachment and recombination processes are modeled in detail. Entering the electron density distribution in VLF/LF radio wave propagation calculations using the LWPC (Long Wavelength Propagation Capability) code allows to model the VLF/LF amplitude and phase behavior by adjusting the return stroke current moment. The results endorse and quantify the conception of lower ionosphere EMP heating by strong - but not necessarily extremely strong - return strokes of both polarities.

  8. Experimental demonstration of propagation characteristics of mid-infrared photonic crystal waveguides in silicon-on-sapphire.

    PubMed

    Zou, Yi; Chakravarty, Swapnajit; Wray, Parker; Chen, Ray T

    2015-03-01

    We provide the first experimental demonstration of optical transmission characteristics of a W1 photonic crystal waveguide in silicon on sapphire at mid infrared wavelength of 3.43 ?m. Devices are studied as a function of lattice constant to tune the photonic stop band across the single wavelength of the source laser. The shift in the transmission profile as a function of temperature and refractive index is experimentally demonstrated and compared with simulations. In addition to zero transmission in the stop gap, propagation losses less than 20 dB/cm are observed for group indices greater than 20 below the light line while more than 300 dB/cm propagation losses are observed above the light line, characteristic of the waveguiding behavior of photonic crystal line defect modes. PMID:25836916

  9. Comparison of pulse propagation and gain saturation characteristics among different input pulse shapes in semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Barua, Suchi; Das, Narottam; Nordholm, Sven; Razaghi, Mohammad

    2016-01-01

    This paper presents the pulse propagation and gain saturation characteristics for different input optical pulse shapes with different energy levels in semiconductor optical amplifiers (SOAs). A finite-difference beam propagation method (FD-BPM) is used to solve the modified nonlinear Schrödinger equation (MNLSE) for the simulation of nonlinear optical pulse propagation and gain saturation characteristics in the SOAs. In this MNLSE, the gain spectrum dynamics, gain saturation are taken into account those are depend on the carrier depletion, carrier heating, spectral hole-burning, group velocity dispersion, self-phase modulation and two photon absorption. From this simulation, we obtained the output waveforms and spectra for different input pulse shapes considering different input energy levels. It has shown that the output pulse shape has changed due to the variation of input parameters, such as input pulse shape, input pulse width, and input pulse energy levels. It also shown clearly that the peak position of the output waveforms are shifted toward the leading edge which is due to the gain saturation of the SOA. We also compared the gain saturation characteristics in the SOA for different input pulse shapes.

  10. Propagation Characteristics of Laser-Generated Rayleigh Waves in Coating-Substrate Structures with Anisotropic and Viscoelastic Properties

    NASA Astrophysics Data System (ADS)

    Sun, Hong-xiang; Zhang, Shu-yi; Xia, Jian-ping

    2015-06-01

    The propagation characteristics of laser-generated Rayleigh waves in coating-substrate structures with anisotropic and viscoelastic properties have been investigated quantitatively. Based on the plane strain theory, finite element models for simulating laser-generated Rayleigh waves in coating-substrate structures are established, in which the carbon fiber-reinforced epoxy matrix composite and aluminum are used as the coating and/or the substrate alternately. The numerical results exhibit that the characteristics of the laser-generated Rayleigh waves, including attenuation, velocity, and dispersion, are mainly and closely related to the anisotropic and viscoelastic properties of the composite in the coating-substrate structures.

  11. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  12. Propagation characteristics of nighttime mesospheric waves observed with an all-sky camera at Tromsoe, Norway in 2009-2010

    NASA Astrophysics Data System (ADS)

    Oyama, Shin-Ichiro; Shiokawa, Kazuo; Nozawa, Satonori; Otsuka, Yuichi; Tsutsumi, Masaki; Suzuki, Shin; Hall, Chris; Meek, Chris; Manson, Alan

    An important aspect of the wind dynamics in the mesosphere is to know characteristics of the atmospheric gravity waves, such as propagation direction, zonal and meridional wavenumbers, horizontal wavelength, apparent phase speed, and intensity perturbation amplitude, because it is widely known that the atmospheric gravity waves transport energy and momentum from the lower atmosphere to the mesosphere and the lower thermosphere. Statistical analysis of the OH airglow images measured with all-sky cameras (ASC) at low and middle latitudes suggest seasonal, latitudinal dependencies of the wave characteristics. In particular, the wave prop-agation direction shows clear seasonal variations dependent on latitudes and may also be on longitudes. For example, northward or northeastward propagations are predominant in sum-mer at Rikubetsu (43.5° N, 143.8° E) and Shigaraki (34.9° N, 136.1° E), Japan; but westward and southwestward propagation are predominant in winter at Rikubetsu and Shigaraki, respectively. Another statistical result at equatorial region suggests that eastward and westward directions are predominant in winter and summer, respectively, at Kototabang (0.2° S, 100.3° E), although the propagation direction can be found in all directions. These seasonal, geographical depen-dencies of the wave propagation direction are controlled by wind filtering, ducting processes, and relevant location of the wave sources in the lower atmosphere. A new all-sky camera (cam-era 12 of the Optical Mesosphere Thermosphere Imagers (OMTIs)) was installed at Tromsø EISCAT radar site in Norway (69.6° N, 19.2° E; EISCAT radar: European Incoherent Scatter radar) in January 2009. The camera has a filter turret to programmatically select one of the six optical filters (557.7 nm, 630.0 nm, OH band (720-910 nm), 589.3 nm, 572.5 nm, and 732.0 nm) for one exposure interval. This study focuses on data taken with the OH-band filter to study the mesospheric gravity waves. Wave characteristics of the mesospheric gravity wave at high latitudes still remain as fundamental questions because they have not yet been investigated significantly compared with the middle and low latitudes. The wave characteristics from this study should be compared with the results at middle and low latitudes. Comparison study is also done with the meteor radar and the MF radar at the same site in order to know the background wind dynamics in the mesosphere.

  13. Three-dimensional propagation characteristics of the leaders in the attachment process of a downward negative lightning flash

    NASA Astrophysics Data System (ADS)

    Lu, Weitao; Gao, Yan; Chen, Luwen; Qi, Qi; Ma, Ying; Zhang, Yang; Chen, Shaodong; Yan, Xu; Chen, Chang; Zhang, Yijun

    2015-12-01

    A downward negative lightning flash that contained three return strokes and terminated on a 440-m-high building in Guangzhou in 2012 was analyzed. The three-dimensional (3-D) channels of the return stroke and an unconnected upward leader (UUL) were reconstructed using the dual-station optical observation data. The 3-D propagation characteristics of the downward leader, the upward connecting leader (UCL), and the UUL during the attachment process prior to the first return stroke were obtained. For the 3-D propagation speed, both the UCL and the UUL exhibit an increasing trend after their inception, whereas the downward leader shows no clear trend, except for the final 200 ?s preceding the first return stroke onset. The speed of the UCL can reach five times that of the downward leader. The two-dimensional propagation characteristics of these leaders during the attachment process were also analyzed using single-station high-speed video recordings and compared with the 3-D results.

  14. Characteristics pertinent to propagation of pulsating pressure in the channels of turbine machines

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Chen, Zuoyi

    2007-01-01

    A new model describing the propagation of the pressure pulsations in the intricately shaped channels of turbine machines is presented. The proposed model was successfully used to analyze two emergency events: a failure of a steam turbine’s cast diaphragm and a failure of a rocket engine’s oxygen pump booster stage.

  15. Characteristics of coronal shock waves and solar type 2 radio bursts

    NASA Technical Reports Server (NTRS)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  16. ESTABLISHMENT OF BESNOITIA DARLINGI FROM OPOSSUMS (DIDELPHIS VIRGINIANA) IN EXPERIMENTAL INTERMEDIATE AND DEFINITIVE HOSTS, PROPAGATION IN CELL CULTURE, AND DESCRIPTION OF ULTRASTRUCTURAL AND GENETIC CHARACTERISTICS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Besnoitia darlingi from naturally infected opossums (Didelphis virginiana) from Mississippi, USA, was propagated experimentally in mice, cats, and cell culture and was characterised according to ultrastructural, genetic, and life-history characteristics. Cats fed tissue cysts from opossums ...

  17. Jupiter: As a planet. [its physical characteristics and radio waves emitted from Jupiter

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The planet Jupiter, its planetary mass and atmosphere, radio waves emitted from Jupiter, thermal radiation, internal structure of Jupiter, and the possibility of life on Jupiter are discussed. Educational study projects are included.

  18. Transmit-reference methods in software defined radio platforms for communication in harsh propagation environments and systems thereof

    DOEpatents

    Dowla, Farid U; Nekoogar, Faranak

    2015-03-03

    A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications according to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.

  19. Propagation characteristics of two-color laser pulses in homogeneous plasma

    NASA Astrophysics Data System (ADS)

    Hemlata, Saroch, Akanksha; Jha, Pallavi

    2015-11-01

    An analytical and numerical study of the evolution of two-color, sinusoidal laser pulses in cold, underdense, and homogeneous plasma has been presented. The wave equations for the radiation fields driven by linear as well as nonlinear contributions due to the two-color laser pulses have been set up. A variational technique is used to obtain the simultaneous equations describing the evolution of the laser spot size, pulse length, and chirp parameter. Numerical methods are used to graphically analyze the simultaneous evolution of these parameters due to the combined effect of the two-color laser pulses. Further, the pulse parameters are compared with those obtained for a single laser pulse. Significant focusing, compression, and enhanced positive chirp is obtained due to the combined effect of simultaneously propagating two-color pulses as compared to a single pulse propagating in plasma.

  20. Propagation characteristics of Bessel beams generated by continuous, incoherent light sources.

    PubMed

    Alt?ngöz, Ceren; Yal?zay, Berna; Akturk, Selcuk

    2015-08-01

    We investigate the propagation behavior of Bessel beams generated by incoherent, continuous light sources. We perform experiments with narrowband and broadband light emitting diodes, and, for comparison, with a laser diode. We observe that the formation of Bessel beams is affected minimally by temporal coherence, while spatial coherence determines the longitudinal evolution of the beam profile. With spatially incoherent beams, the fringe contrast is comparable to the coherent case at the beginning of the Bessel zone, while it completely fades away by propagation, turning into a cylindrical light pipe. Our results show that beam shaping methods can be extended to cases of limited spatial coherence, paving the way for potential new uses and applications of such sources. PMID:26367302

  1. New image measurements of the gravity wave propagation characteristics from a low latitude Indian station

    NASA Astrophysics Data System (ADS)

    Sivakandan, M.; Taori, A.; Niranjan, K.

    2015-08-01

    The image observations of mesospheric O(1S) 558 nm have been performed from a low latitude Indian station, Gadanki (13.5° N; 79.2° E) using a CCD based all sky camera system. Based on three years (from year 2012 to the year 2014) of image data during March-April, we characterize the small scale gravity wave properties. We noted 50 strong gravity wave event and 19 ripple events to occur. The horizontal wavelengths of the gravity waves are found to vary from 12 to 42 km with the phase velocity ranging from 20 to 90 km. In most cases, these waves were propagating towards north with only a few occasions of southward propagation. The outgoing longwave radiation data suggest that lower atmospheric convection was most possible reason for the generation of the waves observed in the airglow data.

  2. On some statistical characteristics of radio-rich CMEs in the solar cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Sharma, Joginder; Mittal, Nishant; Narain, Udit

    2015-06-01

    In this paper we have presented the properties of radio-rich coronal mass ejections (CMEs), during the period 1997-2013. The CME event accompanied by the type II radio burst is referred to as radio-loud (RL), while the one lacking a type II burst is termed radio-quiet (RQ). These radio rich CMEs produce type II (1-14 MHz), i.e. decametric-hectometric or DH radio burst. It is found that the average width of all DH CMEs during the study period is 235° and 75% of the DH CMEs are halo CMEs in solar cycle 24. The DH CMEs linear speeds distribution is in the range 112-3387 km/s, with an average speed of 1043 km/s; the acceleration varies between 434 m/s2 and -179 m/s2. About 62% of the DH CMEs are decelerated. A CME associated with a type II burst and originating close to the center of the solar disk typically results in a shock at Earth in 2-3 days and hence can be used to predict shock arrival at Earth.

  3. Fields and propagation characteristics in vacuum of an ultrashort tightly focused radially polarized laser pulse

    NASA Astrophysics Data System (ADS)

    Salamin, Yousef I.

    2015-11-01

    Analytic expressions for the electric and magnetic fields of a radially polarized ultrashort and tightly focused laser pulse, propagating in vacuum, are derived from scalar and vector potentials satisfying simple initial conditions. It is shown that for a pulse of axial length comparable to a wavelength, only the zeroth (lowest-order) term in a power-series expansion of the vector potential is needed. A procedure is outlined which may be used to obtain the fields analytically, to any desired order. Most of the needed analytic work is done that would lead to the vector potential from which the fields may be derived and the main expressions are given.

  4. Deep radio occultations and 'evolute flashes' - Their characteristics and utility for planetary studies

    NASA Technical Reports Server (NTRS)

    Eshleman, V. R.; Tyler, G. L.; Freeman, W. T.

    1979-01-01

    Deep radio occultation signals from spacecraft passing behind planets may provide data on atmospheric absorption, turbulence, and structure, as well as information on the effects of planetary gravitational moments, rotation and zonal winds on the atmospheric shape. The strength of radio signals from a spacecraft passing behind a planet will at first decrease because of defocusing in the atmosphere, but then increase as the evolute of the planetary limb is neared, due to focusing caused by limb curvature within the evolute. Within the evolute, the availability of four simultaneous signal paths over four limb positions may render focused signals instantaneously great. The passage of Voyager 1 behind Jupiter and Voyager 2 behind Saturn will provide a test of deep radio occultation studies.

  5. Compared propagation characteristics of superluminal and slow light in SOA and EDFA based on rectangle signals

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Wang, Zhi; Wu, Chongqing; Sun, Zhenchao; Mao, Yaya; Liu, Lanlan; Li, Qiang

    2015-10-01

    Based on the general mechanism of the coherent population oscillations (CPO) in the Semiconductor optical amplifiers (SOA) and Erbium doped fiber amplifiers (EDFA), the group time delay of rectangle signal propagating in the active media is deduced. Compared with the sinusoidal signal, the time delay difference between the fundamental harmonics (FHFD: fundamental harmonic fractional delay) is first investigated in detail for the rectangle signal which is more popularly used in the digital signal systems. The plenty of simulations based on the propagation equations and some experiments for the sinusoidal and rectangle signals are used to analyze the differences and evaluate the slow and superluminal light effects. Furthermore, the time delay/advance always takes place accompanying with the signal distortion, which is evaluated by the total harmonic distortion (THD). The distortion caused by the SOA is smaller than that by the EDFA. A factor Q which is defined to evaluate the trade-off between the FHFD and the THD, shows that higher input power or higher optical gain is better for optical signal processing and optical telecommunications, and the SOA is more suitable for the higher modulation frequency (>10 GHz).

  6. Experimental study of the propagation conditions of ultrashort radio waves through the sporadic E layer on the Dushanbe-Ashkhabad path

    NASA Astrophysics Data System (ADS)

    Krotov, Iu. P.; Shirmamedov, M.; Babaev, A.; Alimov, O.

    The conditions of radio-wave propagation at an operating frequency of 40.024 MHz on the Dushanbe-Ashkhabad path are investigated. An increase in the threshold value from 10 to 600 s results in a decrease in the sporadic E layer of less than 15 percent. The threshold value for the frequency of 40.024 MHz on the Dushanbe-Ashkhabad path lies within 150 and 220 s. The threshold value of the reflection level from the sporadic-E-signal-intensity layer at a frequency of 40.024 MHz on the Dushanbe-Ashkhabad path lies within 10-20 micro-V. All reflections having a level lower than the signal intensity apply to meteor reflections, and reflections with a level higher than the signal intensity to reflections from the sporadic E layer.

  7. A BROKEN SOLAR TYPE II RADIO BURST INDUCED BY A CORONAL SHOCK PROPAGATING ACROSS THE STREAMER BOUNDARY

    SciTech Connect

    Kong, X. L.; Chen, Y.; Li, G.; Feng, S. W.; Song, H. Q.; Jiao, F. R.; Guo, F.

    2012-05-10

    We discuss an intriguing type II radio burst that occurred on 2011 March 27. The dynamic spectrum was featured by a sudden break at about 43 MHz on the well-observed harmonic branch. Before the break, the spectrum drifted gradually with a mean rate of about -0.05 MHz s{sup -1}. Following the break, the spectrum jumped to lower frequencies. The post-break emission lasted for about 3 minutes. It consisted of an overall slow drift which appeared to have a few fast-drift sub-bands. Simultaneous observations from the Solar TErrestrial RElations Observatory and the Solar Dynamics Observatory were also available and are examined for this event. We suggest that the slow-drift period before the break was generated inside a streamer by a coronal eruption driven shock, and the spectral break as well as the relatively wide spectrum after the break is a consequence of the shock crossing the streamer boundary where density drops abruptly. It is suggested that this type of radio bursts can be taken as a unique diagnostic tool for inferring the coronal density structure, as well as the radio-emitting source region.

  8. [Spring propagation and size dynamics characteristics of two kinds of bee populations in Anhui Province].

    PubMed

    Yu, Linsheng; Meng, Xiangjin

    2002-09-01

    Systematical observations and researches were conducted on the population size dynamics of Apis mellifera Ligustica Spi. and Apis cerana cerana Feb. in Wanzhong, Wanxi and Wannan mountainous area in Anhui Province in 1997-1999. The results showed that the bee population size was influenced by climate and flower fertility, which was higher in Spring and Autumn, and lower in Summer and Winter. The propagation and renewal of A. mellifera in Autumn were quicker than those of A. cerana cerana, while the effect of overcoming Summer was inferior to that of Apis cerana cerana. The sex ratio of A. mellifera was (314.4 +/- 289.9):1-(329.4 +/- 305.8):1, and that of A. cerana cerana was (334.2 +/- 235.5):1-(413.1 +/- 377.2):1. The birth of drones was seasonal, and the age structure of each bee population was variable. PMID:12561176

  9. ON OPTIMAL OPERATING CHARACTERISTICS OF SENSING AND TRAINING FOR COGNITIVE RADIOS

    E-print Network

    Lee, Yong Hoon

    to optimal sensing strategy and the resulting max-min optimal solution is given by an equalizer rule for any communication [1]. In the cognitive radio, the spectrum utilization is improved by allowing secondary users by the IT R&D program of MIC/IITA [2007-S001-01, Development of Indoor WiBro System for Home and Enterprise

  10. Low-frequency type II radio detections and coronagraph data to describe and forecast the propagation of 71 CMEs/shocks

    E-print Network

    Cremades, H; Cyr, O C St; Xie, H; Kaiser, M L; Gopalswamy, N

    2015-01-01

    The vulnerability of technology on which present society relies demands that a solar event, its time of arrival at Earth, and its degree of geoeffectiveness be promptly forecasted. Motivated by improving predictions of arrival times at Earth of shocks driven by coronal mass ejections (CMEs), we have analyzed 71 Earth-directed events in different stages of their propagation. The study is primarily based on approximated locations of interplanetary (IP) shocks derived from type II radio emissions detected by the Wind/WAVES experiment during 1997-2007. Distance-time diagrams resulting from the combination of white-light corona, IP type II radio, and in situ data lead to the formulation of descriptive profiles of each CME's journey toward Earth. Furthermore, two different methods to track and predict the location of CME-driven IP shocks are presented. The linear method, solely based on Wind/WAVES data, arises after key modifications to a pre-existing technique that linearly projects the drifting low-frequency type...

  11. Experimental investigation of ULF/VLF radio wave generation and propagation in the upper atmosphere and ionosphere during EISCAT heating experiment in 2012

    NASA Astrophysics Data System (ADS)

    Ryakhovskiy, Iliya; Gavrilov, Boris; Zetzer, Julius; Rietveld, Michael; Poklad, Yuriy; Blagoveshchenskaya, Nataly

    Powerful high frequency radio waves transmitted from high-power HF heating facilities modify the ionospheric plasma. The X-mode HF pump wave generates strong small-scale artificial field aligned irregularities in the F region of the ionosphere when the heater frequency is near or above the critical frequency of F2 layer [Blagoveshchenskaya et al]. One of the tasks of the Russian EISCAT heating campaign in February 2012 was an investigation of the generation and propagation of ULF/VLF signals generated as the result of HF radiation modulation. Despite the numerous attempts of long-range detection of such signals, there are a few successful results. The most reliable and important results were obtained by [Barr et al.] more than 20 years ago. They measured the VLF radio waves in Lindau, Germany at the distance of about 2000 km from EISCAT Heater. We present the results of the ULF/VLF registrations at the same distance during heating campaign of February 2012. The measurements were conducted at Mikhnevo Geohysical Observatory located in 80 km to the south of Moscow and at the distance of about 1900 km from Tromsø. For measurements were used a sensitive receivers with crossed air-coil loop antennas in the frequency range from 800 Hz to 30 kHz in the femtotesla amplitude range. We recorded the radial and azimuthal magnetic component of the signals and from their ratio obtained the mode polarization. The radiated heater frequency was modulated by 517, 1017, 2017, 3017, 4017 and 6017 Hz. It was shown the signals with frequency less than 2 kHz propagate in the QTEM mode, and signals at the frequency from 2 to 4 kHz are in the QTE mode. Observed magnetic field strengths and waveguide polarizations are found to be in line with the predictions of simple waveguide models. Qualitative coincidence of the signals polarization character and its dependence on the frequency specifies adequacy of numerical models and reliability of the data received in campaign 2012. Blagoveshchenskaya N. F., M. T. Rietveld et al. Artificial field-aligned irregularities in the high-latitude F region of the ionosphere induced by an X-mode HF heater wave. // Geophys. Res. Lett. - 2011. V. 38, doi: 10.1029/2011GL046724. Barr, R., P. Stubbe, and H. Kopka, 1991, Long-range detection of VLF radiation produced by heating the auroral electrojet. Radio Science, Volume 26, Number 4, Pages 871-879, July-August 1991

  12. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals

    PubMed Central

    Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg

    2015-01-01

    Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters. PMID:26214849

  13. Radio-Frequency, Atmospheric-Pressure Glow Discharges: Producing Methods, Characteristics and Applications in Bio-Medical Fields

    NASA Astrophysics Data System (ADS)

    Li, He-Ping; Li, Guo; Sun, Wen-Ting; Wang, Sen; Bao, Cheng-Yu; Wang, Liyan; Huang, Ziliang; Ding, Nan; Zhao, Hongxin; Xing, Xin-Hui

    2008-02-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas with bare metallic electrodes have shown their promising prospects in different fields. In this paper, based on the induced gas discharge approach, the discharge characteristics of RF, APGD plasmas using helium/oxygen mixture as the plasma working-gas are presented. The bio-medical effects of the helium RF APGD plasma jet acting on the gfp DNA and E. coli are also reported. Studies concerning the lethal and sub-lethal effects of the RF APGDs on the molecular and cell levels, which are related with the characteristics of the plasmas and their operation conditions are necessary in the future work based on a closer cooperation between the researchers in the field of the plasma science & technology and of the bio-medical science.

  14. Investigation on broadband propagation characteristic of terahertz electromagnetic wave in anisotropic magnetized plasma in frequency and time domain

    SciTech Connect

    Tian, Yuan; Han, Yiping; Ai, Xia; Liu, Xiuxiang

    2014-12-15

    In this paper, we investigate the propagation of terahertz (THz) electromagnetic wave in an anisotropic magnetized plasma by JE convolution-finite difference time domain method. The anisotropic characteristic of the plasma, which leads to right-hand circularly polarized (RCP) and right-hand circularly polarized (LCP) waves, has been taken into account. The interaction between electromagnetic waves and magnetized plasma is illustrated by reflection and transmission coefficients for both RCP and LCP THz waves. The effects of both the magnetized plasma thickness and the external magnetized field are analyzed and numerical results demonstrate that the two factors could influence the THz wave greatly. It is worthy to note that besides the reflection and transmission coefficients in the frequency domain, the waveform of the electric field in the time domain varying with thicknesses and external magnetic fields for different polarized direction has been studied.

  15. Propagation characteristics of a focused laser beam in a strontium barium niobate photorefractive crystal under reverse external electric field.

    PubMed

    Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J

    2014-10-01

    The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field. PMID:25322227

  16. Characteristics in the jet region of helium radio-frequency atmospheric-pressure glow discharge with array generators

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Bin; Nie, Qiu-Yue

    2015-09-01

    The two-dimensional spatially extended atmospheric plasma arrays by many parallel radio-frequency glow discharge plasma jets packed densely, represent a feature option of large-scale low-temperature atmospheric plasma technologies with distinct capability of directed delivery of reactive species and good insusceptibility to sample variations. However, it is still a challenge to form plasma jet with large area of uniform active species on a downstream substrate due to the complex interactions between individual jets. This paper proposes to numerically study the strategy and mechanism of control/modulation for the array discharge to produce two-dimensional plasma uniformity in the downstream working area. In this work, a two dimensional fluid model is employed to investigate the characteristics in the jet region of helium radio-frequency atmospheric-pressure glow discharge (RF APGD) with array generators. The influences of upstream discharge characteristics, gas flow and their cooperative effects on the distribution of species densities, gas temperatures and the uniformity of active species in the material treating area is studied, and the essential strategy for the modulation method is acquired. The results will be significant for deep understanding of coupling behaviors of multiple plasma plumes in the RF APGD array and applications of the technology.

  17. Analytical and experimental procedures for determining propagation characteristics of millimeter-wave gallium arsenide microstrip lines

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    1989-01-01

    In this report, a thorough analytical procedure is developed for evaluating the frequency-dependent loss characteristics and effective permittivity of microstrip lines. The technique is based on the measured reflection coefficient of microstrip resonator pairs. Experimental data, including quality factor Q, effective relative permittivity, and fringing for 50-omega lines on gallium arsenide (GaAs) from 26.5 to 40.0 GHz are presented. The effects of an imperfect open circuit, coupling losses, and loading of the resonant frequency are considered. A cosine-tapered ridge-guide text fixture is described. It was found to be well suited to the device characterization.

  18. Radio Ghosts

    E-print Network

    Torsten A. Ensslin

    1999-06-11

    We investigate the possibility that patches of old radio plasma (`radio ghosts') of former radio galaxies form a second distinct phase of the inter-galactic medium (IGM), not mixed with the thermal gas. The separation of this phase from the ambient gas and its resistance against eroding turbulent forces is given by magnetic fields, which are expected to be roughly in pressure equilibrium with the surrounding medium. Since patches of this plasma are largely invisible in the radio we use the term `radio ghost' to characterize their nature. Possibilities and difficulties of different detection strategies of ghosts are discussed. These involve radio emission, cosmic microwave background (CMB) and starlight Comptonization, and Faraday rotation. Re-activation of the electron population in shock waves of cosmological structure formation, which seems to lead to the cluster radio relic phenomena. We discuss the role radio ghosts can have: They are able to store relativistic particles for cosmological times, but are also able to release them under the influence of very strong turbulence. This might happen during a major merger event of clusters of galaxies. The released relativistic proton population could produce the observed radio halos of some cluster of galaxies via hadronic reactions with the background gas leading to the production of secondary electrons and positrons. Destroyed ghosts, mixed with the IGM can help to magnetize it. Finally, the strong field strength within ghosts should have a significant impact on the propagation of extragalactic high energy cosmic rays.

  19. Characteristics of rainfall queues for rain attenuation studies over radio links at subtropical and equatorial Africa

    NASA Astrophysics Data System (ADS)

    Alonge, Akintunde A.; Afullo, Thomas J.

    2014-08-01

    Attenuation due to precipitation remains an important design factor in the future deployment of terrestrial and earth-space communication radio links. Largely, there are concerted efforts to understand the dynamics of precipitation in attenuation occurrence at subtropical, tropical, and equatorial region of Africa. In this deliberate approach, rainfall spikes pertaining to rain cells are conceptualized as distinct rain spike traffic over radio links, by applying queueing theory concepts. The queue distributions at Durban (29°52'S, 30°58'E) and Butare (2°36'S, 29°44'E)—respectively, of subtropical and equatorial climates—are investigated from distrometer measurements. The data sets at both sites are observed over four rain regimes: drizzle, widespread, shower, and thunderstorm. The queue parameters of service time and inter-arrival of rain spikes traffic at both regions are found to be Erlang-k distributed (Ek) and exponentially distributed (M), respectively. It is established that the appearance of rain rates over radio links invariably follows a First Come, First Served (FCFS), multi-server (s), infinite queue, and semi-Markovian process, designated as M/Ek/s/?/FCFS discipline. Modeled queue parameters at both regions are found to vary significantly over different regimes. However, these queue parameters over the entire data set suggest similar queue patterns at both sites. More importantly, power law relationships describing other queue-related parameters are formulated. The paper concludes by demonstrating an application of queueing theory for rainfall synthesis. The proposed technique will provide an alternative method of estimating rain cell sizes and rain attenuation over satellite and terrestrial links.

  20. Theoretical investigation of surface acoustic wave propagation characteristics in periodic (AlN/ZnO)N /diamond multilayer structures

    NASA Astrophysics Data System (ADS)

    Qian, Lirong; Li, Cuiping; Li, Mingji; Wang, Fang; Yang, Baohe

    2014-11-01

    Propagation characteristics of surface acoustic wave (SAW) in periodic (AlN/ZnO)N/diamond multilayer structures were theoretically investigated using effective permittivity method. The phase velocity Vp, electromechanical coupling coefficient K2, and temperature coefficient of frequency (TCF) of the Sezawa mode are analyzed for different thicknesses-to-wavelength H/?, thickness ratios of AlN to ZnO Rh, and periods of alternating ZnO and AlN layers N. Results show that, comparing with AlN/ZnO/diamond multilayer structure, the periodic (AlN/ZnO)N/diamond multilayer structure (N ? 2) shows excellent electromechanical coupling and temperature stable characteristics with significantly improved K2 and TCF. The largest coupling coefficient of 3.0% associated with a phase velocity of 5726 m/s and a TCF of -29.2 ppm/°C can be reached for Rh = 0.2 and N = 2. For a low TCF of -24.4 ppm/°C, a large coupling coefficient of 2.0% associated with a phase velocity of 7058 m/s can be obtained for Rh = 1.0 and N = 5. The simulated results can be used to design the low loss and good temperature stability SAW devices of gigahertz-band application.

  1. Signatures and Characteristics of Internal Gravity Waves in the Venus' and Mars' Atmospheres as Revealed by the Radio Occultation Temperature Data Analysis

    NASA Astrophysics Data System (ADS)

    Gubenko, Vladimir; Pavelyev, Alexander; Andreev, Vitali; Salimzyanov, Rishat; Pavelyev, Alexey

    2012-07-01

    It is well known that internal gravity waves (IGWs) affect the structure and mean circulation of the Earth' middle and upper atmosphere by transporting energy and horizontal momentum upward from the lower atmosphere. The IGWs modulate the background atmospheric structure, producing a periodic pattern of spatial and temporal variations in the wind velocity, temperature and density. Similar effects are anticipated for the Venus and Mars since IGWs are a characteristic of stably stratified atmosphere. For instance, Yakovlev et al. (1991) and Gubenko et al. (2008a) used the radio occultation (RO) data from Venera 15 and 16 missions to investigate the thermal structure and layering of the Venus' middle atmosphere. They noted that a wavelike periodic structure commonly appears in retrieved vertical profiles at altitudes above 60 km in the atmosphere where the static stability is large. Through comparisons between Magellan RO observations in the Venus' atmosphere, Hinson and Jenkins (1995) have demonstrated that small scale variations in retrieved temperature profiles at altitudes from 60 to 90 km are caused by a spectrum of vertical propagating IGWs. Temperature profiles from the Mars Global Surveyor (MGS) measurements reveal vertical wavelike structures assumed to be atmospheric IGWs in the Mars' lower atmosphere (Creasey et al., 2006). The very large IGW amplitudes inferred from MGS RO data imply a very significant role for IGWs in the atmospheric dynamics of Mars as well. There is one general problem inherent to all measurements of IGWs. Observed wavelike variations may alternatively be caused by the IGWs, turbulence or persistent layers in the atmosphere, and it is necessary to have an IGW identification criterion for the correct interpretation of obtained results. In this context, we have developed an original method for the determination of internal gravity wave parameters from a single vertical temperature profile measurement in a planetary atmosphere (Gubenko et al., 2008b, 2011). This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, the analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitude thresholds of the wave temperature field and on the linear IGW saturation theory in which amplitude thresholds are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal wave reaches the shear instability limit, energy is assumed to be dissipated in such a way that the amplitude is maintained at the instability limit as the wave propagates upwards. An application of the developed method to the RO temperature data has given the possibility to identify the IGWs in the Venus' and Mars' atmospheres and to determine the magnitudes of key wave parameters such as the intrinsic frequency, amplitudes of vertical and horizontal perturbations of the wind velocity, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase (and group) speeds, kinetic and potential energy, vertical fluxes of the wave energy and horizontal momentum. The obtained results of internal wave studies in the Venus' and Mars' atmospheres deduced from the Magellan and MGS RO temperature profiles are presented and discussed. This work was partially supported by the RFBR Grant (No. 10-02-01015-a) and program OFN-15 of the Russian Academy of Sciences. References Creasey, J. E., Forbes, J. M., and Hinson, D. P.: Global and seasonal distribution of gravity wave activity in Mars' lower atmosphere derived from MGS radio occultation data, Geophys. Res. Lett., 33, L01803, doi: 10.1029/2005GL024037, 2006. Gubenko, V.N., Andreev, V.E., and Pavelyev, A.G.: Detection of layering in the upper cloud layer of Venus northern polar atmosphere observed from radio occultation data, J. Geophys. Res., 113, E03001, doi:10.1029/2007

  2. Characteristics of vibrational wave propagation and attenuation in submarine fluid-filled pipelines

    NASA Astrophysics Data System (ADS)

    Yan, Jin; Zhang, Juan

    2015-04-01

    As an important part of lifeline engineering in the development and utilization of marine resources, the submarine fluid-filled pipeline is a complex coupling system which is subjected to both internal and external flow fields. By utilizing Kennard's shell equations and combining with Helmholtz equations of flow field, the coupling equations of submarine fluid-filled pipeline for n=0 axisymmetrical wave motion are set up. Analytical expressions of wave speed are obtained for both s=1 and s=2 waves, which correspond to a fluid-dominated wave and an axial shell wave, respectively. The numerical results for wave speed and wave attenuation are obtained and discussed subsequently. It shows that the frequency depends on phase velocity, and the attenuation of this mode depends strongly on material parameters of the pipe and the internal and the external fluid fields. The characteristics of PVC pipe are studied for a comparison. The effects of shell thickness/radius ratio and density of the contained fluid on the model are also discussed. The study provides a theoretical basis and helps to accurately predict the situation of submarine pipelines, which also has practical application prospect in the field of pipeline leakage detection.

  3. Analysis of propagation characteristics of flexural wave in honeycomb sandwich panel and design of loudspeaker for radiating inclined sound

    NASA Astrophysics Data System (ADS)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2015-07-01

    A loudspeaker for an auditory guiding system is proposed. This loudspeaker utilizes inclined sound transformed from a flexural wave in a honeycomb sandwich panel. We focused on the fact that the inclined sound propagates extensively with uniform level and direction. Furthermore, sound can be generated without group delay dispersion because the phase velocity of the flexural wave in the sandwich panel becomes constant with increasing frequency. These characteristics can be useful for an auditory guiding system in public spaces since voice-guiding navigation indicates the right direction regardless of position on a pathway. To design the proposed loudspeaker, the behavior of the sandwich panel is predicted using a theoretical equation in which the honeycomb core is assumed as an orthotropic continuum. We calculated the phase velocity dispersion of the flexural wave in the sandwich panel and compared the results obtained using the equation with those of a simulation based on the finite element method and an experiment in order to confirm the applicability of the theoretical equation. It was confirmed that the phase velocities obtained using the theoretical equation and by the simulation were in good agreement with that obtained experimentally. The obtained results suggest that the behavior of the sandwich panel can be predicted using the parameters of the panel. In addition, we designed an optimized honeycomb sandwich panel for radiating inclined sound by calculating the phase velocity characteristics of various panels that have different parameters of core height and cell size using the theoretical equation. Sound radiation from the optimized panel was simulated and compared with that of a homogeneous plate. It was clear that the variance of the radiation angle with varying frequency of the optimized panel was smaller than that of the homogeneous plate. This characteristic of sound radiation with a uniform angle is useful for indicating the destination direction. On the basis of this fact, we established a design method of the flat-panel loudspeaker for generating inclined sound using a honeycomb sandwich panel.

  4. Flux pinning characteristics in cylindrical ingot niobium used in superconducting radio frequency cavity fabrication

    SciTech Connect

    Dhavale Ashavai, Pashupati Dhakal, Anatolii A Polyanskii, Gianluigi Ciovati

    2012-04-01

    We present the results of from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low temperature baking as they are typically applied to SRF cavities. The magnetization data were fitted using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FG samples which implies a lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.

  5. Characteristics of radio medical advice to fishing vessels in Scottish coastal waters.

    PubMed

    Mitchelson, Mark A; Ferguson, James; Armes, Roland; Page, J Graham

    2008-01-01

    We examined the emergencies arising on fishing vessels in Scottish Coastal Waters which required ship-to-shore radio medical advice. All calls to the service were identified for the 12-month period from August 2005. A total of 186 calls were received; 38% of calls were from fishing vessels. During the study period 53% of the calls were trauma-related, while 47% were medical emergencies. Our data suggest that there are many fishermen working offshore with chronic medical conditions. Overall, 85% of calls from fishing vessels resulted in evacuation as the outcome. Improved occupational health screening, compliance with health and safety legislation, and an evidence-based approach to remote medical care may improve seafarer self-care and reduce emergency evacuations. PMID:18430284

  6. Case studies for solving the Saint-Venant equations using the method of characteristics: pipeline hydraulic transients and discharge propagation

    NASA Astrophysics Data System (ADS)

    Barros, R. M.; Tiago Filho, G. L.; dos Santos, I. F. S.; da Silva, F. G. B.

    2014-03-01

    Hydraulic transients occur during a change from one equilibrium state to another, for example, in flows. The pipeline project should provide the head and discharge in any operating states, e.g., sudden valve opening or closure. Among the various numerical approaches for the calculation of pipeline transients, the method of characteristics (MOC) is advantageous This study aims to present a hydraulic transitory study as MOC applications for solving the Saint- Venant equations in two case studies: 1) in a penstock of a small hydropower system as a simple pipeline in the case of valve-closure in the downstream boundary with a reservoir in the upstream boundary; and 2) for discharge propagation into a channel by velocity and depth of the flow channel along space evaluation. The main data for the first case study consisted of a design head that is 182 meters, a turbine discharge of 13.82 m3/s, a diameter of 4 meters and length pipe (penstock) of 2,152.50 meters. Regarding the second case study, the entry hydrogram was given to a rectangular channel with a width of 6.1 meters, length of 3,048 meters, slope of 0.0016 meters, and exhibited uniform flow with nominal depth of 2.44 meters. The characteristic curve of the discharge in the downstream extremity is Q = 158.(y - 3.25)32. The proposed methodology by Chaudry [5] concerning the development of hydrodynamic models was used. The obtained results for first case study showed that the simulated values for valve pressure while varying turning the valve between 4 and 12 seconds results in maximum values of pressures that oscillated between 219.97mca and 212.39 mca (4s) and 196.42mca and 190.86mca (12s). For the second case study, the values of discharge, velocity, and depth for x=0 and elapsed time of 850s were, respectively, 127.70m3/s, 3.87m/s, and 5.36m. For x=0 and an elapsed time of 1,230s, the values were 87.92m3/s, 4.49m/s, and 3.21m. Therefore, the MOC numerical approach has been confirmed to be useful for several engineering purposes, including cases of hydraulic transients and discharge propagation in hydraulic systems

  7. Determination of the time delay in the case of two-path propagation on the basis of the attenuation characteristics for two adjacent frequencies

    NASA Technical Reports Server (NTRS)

    Gilroi, H. G.

    1979-01-01

    Pronounced fading occurring in the line of sight radio links at frequencies below 10 GHz can be traced to the effects of multipath propagation. Modulation disturbances depend on travel time differences between the direct wave and the wave which is reflected at atmospheric layers. A method described for the determination of the time delay is based on an indirect approach which utilizes the difference in fading at various frequencies. The method was employed in measurements involving a distance of 181 km. The results obtained in the measurement are discussed.

  8. Lunar Surface Propagation Modeling and Effects on Communications

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2008-01-01

    This paper analyzes the lunar terrain effects on the signal propagation of the planned NASA lunar wireless communication and sensor systems. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate that the terrain geometry, antenna location, and lunar surface material are important factors determining the propagation characteristics of the lunar wireless communication systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, operating frequency, and surface material. The analysis results from this paper are important for the lunar communication link margin analysis in determining the limits on the reliable communication range and radio frequency coverage performance at planned lunar base worksites. Key Words lunar, multipath, path loss, propagation, wireless.

  9. Space Telecommunications Radio System STRS Cognitive Radio

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  10. Low Pressure Radio-Frequency Oxygen Plasma Induced Oxidation of Titanium – Surface Characteristics and Biological Effects

    PubMed Central

    Tseng, Wan-Yu; Hsu, Sheng-Hao; Huang, Chieh-Hsiun; Tu, Yu-Chieh; Tseng, Shao-Chin; Chen, Hsuen-Li; Chen, Min-Huey; Su, Wei-Fang; Lin, Li-Deh

    2013-01-01

    Objective This research was designed to investigate the effects of low pressure radio-frequency (RF) oxygen plasma treatment (OPT) on the surface of commercially pure titanium (CP-Ti) and Ti6Al4V. Surface topography, elemental composition, water contact angle, cell viability, and cell morphology were surveyed to evaluate the biocompatibility of titanium samples with different lengths of OP treating time. Materials and Methods CP-Ti and Ti6Al4V discs were both classified into 4 groups: untreated, treated with OP generated by using oxygen (99.98%) for 5, 10, and 30 min, respectively. After OPT on CP-Ti and Ti6Al4V samples, scanning probe microscopy, X-ray photoelectron spectrometry (XPS), and contact angle tests were conducted to determine the surface topography, elemental composition and hydrophilicity, respectively. The change of surface morphology was further studied using sputtered titanium on silicon wafers. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and F-actin immunofluorescence stain were performed to investigate the viability and spreading behavior of cultivated MG-63 cells on the samples. Results The surface roughness was most prominent after 5 min OPT in both CP-Ti and Ti6Al4V, and the surface morphology of sputtered Ti sharpened after the 5 min treatment. From the XPS results, the intensity of Ti°, Ti2+, and Ti3+ of the samples’ surface decreased indicating the oxidation of titanium after OPT. The water contact angles of both CP-Ti and Ti6Al4V were increased after 5 min OPT. The results of MTT assay demonstrated MG-63 cells proliferated best on the 5 min OP treated titanium sample. The F-actin immunofluorescence stain revealed the cultivated cell number of 5 min treated CP-Ti/Ti6Al4V was greater than other groups and most of the cultivated cells were spindle-shaped. Conclusions Low pressure RF oxygen plasma modified both the composition and the morphology of titanium samples’ surface. The CP-Ti/Ti6Al4V treated with 5 min OPT displayed the roughest surface, sharpest surface profile and best biocompatibility. PMID:24386433

  11. NASA Propagation Studies Website

    NASA Technical Reports Server (NTRS)

    Angkasa, Krisjani S.

    1996-01-01

    The NASA propagation studies objective is to enable the development of new commercial satellite communication systems and services by providing timely data and models about propagation of satellite radio signals through the intervening environment and to support NASA missions. In partnership with industry and academia, the program leverages unique NASA assets (currently Advanced Communications Technology Satellite) to obtain propagation data. The findings of the study are disseminated through referred journals, NASA reference publications, workshops, electronic media, and direct interface with industry.

  12. Spatial anisotropy, rigidity spectrum, and propagation characteristics of the relativistic solar particles during the event of May 7, 1978

    SciTech Connect

    Debrunner, H.; Lockwood, J.A.

    1980-12-01

    The data from the worldwide network of neutron monitors have been used to deduce the spatial distribution, rigidity spectrum, and propatation characteristics of the GLE on May 7, 1978. The large magnitude of the GLE and hard rigidity spectrum enabled an analysis to be made utilizing both high-latitude and mid-latitude stations. A straightforward method of analysis could not be used to determine the source function, probably owing to the influence of external magnetospheric currents upon the asymptotic directions of high-latitude neutron monitors and on the asymptotic directions of all stations at rigidities near cutoff. Consequently, we used measurements from the mid-latitude neutron monitors sensitive to high rigidity particles from the solar flare. The apparent source of the solar particle flux near earth was located in a region around 20 /sup 0/N, 87.5 /sup 0/E, which is approximately 40 /sup 0/ west of the sun. The functional form of the pitch angle distribution was given by exp (-delta/sup 2//2theta/sup 2/), thetaapprox. =25 /sup 0/ during the first 30 minutes and then became flatter. The observed anisotropy was approx.1 until 0410 UT, then decreased to <0.7 at 0430 UT when the enhancement of the counting rate was < or approx. =10% of the maximum increase at neutron monitors that were ideally situated to observe the GLE. The rigidity spectrum for P>3 GV was an exponential exp (-P/P/sub 0/) with P/sub 0/=1.45 near the onset, changing to P/sub 0/=0.7 GV later. An analysis using the telegraph equation (Fisk and Axford, 1969) yields a scattering mean free path lambda11> or approx. =3 AU. The analysis indicates that the propagation was scatter-free for about one hour and that the intensity-time profile of the solar injection was observed for particles with P>1 GV.

  13. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    SciTech Connect

    Sun Wenting; Li Guo; Li Heping; Bao Chengyu; Wang Huabo; Zeng Shi; Gao Xing; Luo Huiying

    2007-06-15

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure {alpha}-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  14. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure ?-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  15. Effect of Anisotropic Characteristics of Composite Skins on the Electromagnetic Wave Propagation in the Foam Core Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Chun, Heoung Jae; Shin, Hyun Su

    The propagation of electromagnetic waves in the foam core sandwich structures is highly affected by anisotropic permittivity and loss tangent of composite skins. Even though many investigations were focused on the propagation of electromagnetic waves in the composite materials in last several decades, little investigations were carried out to understand adequately the propagation of the electromagnetic waves in the foam core sandwich structures. In this study, the transmittance of the arbitrary linearly polarized incident TEM waves through the solid composite laminate with various stacking sequences and foam core sandwich structures with composite skins was calculated as functions of fiber orientation of composites and incident angle of the wave by the analytical model.

  16. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators

    SciTech Connect

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru

    2013-09-15

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 ?m level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 ?rad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.

  17. Temperature Effects on the Propagation Characteristics of Love Waves along Multi-Guide Layers of Sio2/Su-8 on St-90°X Quartz

    PubMed Central

    Xu, Fangqian; Wang, Wen; Hou, Jiaoli; Liu, Minghua

    2012-01-01

    Theoretical calculations have been performed on the temperature effects on the propagation characteristics of Love waves in layered structures by solving the coupled electromechanical field equations, and the optimal design parameters were extracted for temperature stability improvement. Based on the theoretical analysis, excellent temperature coefficient of frequency (Tcf) of the fabricated Love wave devices with guide layers of SU-8/SiO2 on ST-90°X quartz substrate is evaluated experimentally as only 2.16 ppm. PMID:22969349

  18. Temperature effects on the propagation characteristics of Love waves along multi-guide layers of Sio2/Su-8 on St-90°X quartz.

    PubMed

    Xu, Fangqian; Wang, Wen; Hou, Jiaoli; Liu, Minghua

    2012-01-01

    Theoretical calculations have been performed on the temperature effects on the propagation characteristics of Love waves in layered structures by solving the coupled electromechanical field equations, and the optimal design parameters were extracted for temperature stability improvement. Based on the theoretical analysis, excellent temperature coefficient of frequency (Tcf) of the fabricated Love wave devices with guide layers of SU-8/SiO(2) on ST-90°X quartz substrate is evaluated experimentally as only 2.16 ppm. PMID:22969349

  19. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  20. Photocatalytic characteristic and photodegradation kinetics of toluene using N-doped TiO2 modified by radio frequency plasma.

    PubMed

    Shie, Je-Lueng; Lee, Chiu-Hsuan; Chiou, Chyow-San; Chen, Yi-Hung; Chang, Ching-Yuan

    2014-01-01

    This study investigates the feasibility of applications of the plasma surface modification of photocatalysts and the removal of toluene from indoor environments. N-doped TiO2 is prepared by precipitation methods and calcined using a muffle furnace (MF) and modified by radio frequency plasma (RF) at different temperatures with light sources from a visible light lamp (VLL), a white light-emitting diode (WLED) and an ultraviolet light-emitting diode (UVLED). The operation parameters and influential factors are addressed and prepared for characteristic analysis and photo-decomposition examination. Furthermore, related kinetic models are established and used to simulate the experimental data. The characteristic analysis results show that the RF plasma-calcination method enhanced the Brunauer Emmett Teller surface area of the modified photocatalysts effectively. For the elemental analysis, the mass percentages of N for the RF-modified photocatalyst are larger than those of MF by six times. The aerodynamic diameters of the RF-modifiedphotocatalyst are all smaller than those of MF. Photocatalytic decompositions of toluene are elucidated according to the Langmuir-Hinshelwood model. Decomposition efficiencies (eta) of toluene for RF-calcined methods are all higher than those of commercial TiO2 (P25). Reaction kinetics ofphoto-decomposition reactions using RF-calcined methods with WLED are proposed. A comparison of the simulation results with experimental data is also made and indicates good agreement. All the results provide useful information and design specifications. Thus, this study shows the feasibility and potential use of plasma modification via LED in photocatalysis. PMID:24645445

  1. Propagation Characteristics of Higher-order Mode Electromagnetic Signals in Coaxial GIS Model with Various Conditions of Arch-shaped UHF Sensor

    NASA Astrophysics Data System (ADS)

    Kaneko, Shuhei; Okabe, Shigemitsu

    Partial discharge detection using a UHF band signal is a well known advanced insulation diagnosis method in gas insulated switchgear (GIS), and has been well studied. In contrast to conventional diagnosis with lower frequencies in the kHz range, UHF band signal above the cutoff frequency has been detected with higher-order modes that only appear in electromagnetic signal propagating inside the GIS tank. This is because the wavelength of UHF band signals is comparable to the GIS tank size. The authors had observed the characteristics of such higher-order electromagnetic waves with a focus on the resonance characteristics of the TE11 mode, using a disk-shaped UHF sensor with the sensor extending into the inside of the tank. The purpose of this paper is to investigate the propagation characteristics of higher-order mode waves in a coaxial GIS model. Considering application to actual equipment, it was investigated that the output of a sensor with an arch-shape not extending into the inside of the tank, which has less influence on the propagation mode of the inner electromagnetic wave. In the frequency domain below the cutoff frequency of the TE11 mode, the output characteristics were almost independent of the installation position of the UHF sensor, but in the higher frequency domain the output power displayed discontinuous increases at some frequencies. It was also studied that the circumferential dependence of sensor output. For higher-order modes resonant characteristics appeared that depended on the tank length, and it was recognized that the electric field distribution inside the tank influenced the output of the UHF sensor at resonant frequencies. Further, it was found that installing a spacer inside the tank shifted resonant frequencies and the influence of the spacer consistent with the relationship between the spacer position and the electric field distribution inside the tank.

  2. Radio Astronomy Radio astronomy

    E-print Network

    Metchev, Stanimir

    Radio Astronomy Jin Koda #12;Radio astronomy #12;Atmospheric Window #12;Centimeter radio astronomy Effelsberg 100m telescope (Germany) Green Bank 100m telescope (National Radio Astronomy Observatory;WestVirginia) #12;Centimeter radio astronomy HI 21cm line emission traces the distribution of atomic hydrogen. Dust

  3. Characteristics of anomalous skin effect and evolution of power absorption regions in a cylindrical radio frequency inductively coupled plasma

    SciTech Connect

    Ding, Z. F.; Sun, B.; Huo, W. G.

    2015-06-15

    In a low-pressure radio-frequency (13.56 MHz), inductively coupled argon plasma generated by a normal cylindrical rf coil, electric field, current density, and absorbed power density is calculated from magnetic field measured with a phase-resolved magnetic probe. The anomalous skin effect (ASE) for the cylindrical rf coil is compared to those previously reported for the planar and re-entrant cylindrical rf coils. Physical reasons for our observed characteristics of ASE are presented. With the increasing discharge power, the size and the number of negative and positive power absorption regions evolve into several distinct patterns. For the low discharge power (at 156.9?W), there is one area of positive and one area of negative power absorption in the radial direction. For the medium discharge power (279?W–683.5?W), there are two areas of negative and two areas of positive power absorption. For the even higher discharge power (above 803.5?W), the number of areas is the same as that of the medium discharge power, but the size of the inner positive and negative power absorption areas is approximately doubled and halved, respectively, while the outer positive and negative power absorption areas slightly shrinks. The evolution of positive and negative power absorption regions is explained as a result of electron thermal diffusion and the energy conversion between rf current and electric field. The spatial decays of electric field and current density are also elucidated by linking them with the positive and negative power absorption pattern.

  4. Characteristics of anomalous skin effect and evolution of power absorption regions in a cylindrical radio frequency inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Ding, Z. F.; Sun, B.; Huo, W. G.

    2015-06-01

    In a low-pressure radio-frequency (13.56 MHz), inductively coupled argon plasma generated by a normal cylindrical rf coil, electric field, current density, and absorbed power density is calculated from magnetic field measured with a phase-resolved magnetic probe. The anomalous skin effect (ASE) for the cylindrical rf coil is compared to those previously reported for the planar and re-entrant cylindrical rf coils. Physical reasons for our observed characteristics of ASE are presented. With the increasing discharge power, the size and the number of negative and positive power absorption regions evolve into several distinct patterns. For the low discharge power (at 156.9 W), there is one area of positive and one area of negative power absorption in the radial direction. For the medium discharge power (279 W-683.5 W), there are two areas of negative and two areas of positive power absorption. For the even higher discharge power (above 803.5 W), the number of areas is the same as that of the medium discharge power, but the size of the inner positive and negative power absorption areas is approximately doubled and halved, respectively, while the outer positive and negative power absorption areas slightly shrinks. The evolution of positive and negative power absorption regions is explained as a result of electron thermal diffusion and the energy conversion between rf current and electric field. The spatial decays of electric field and current density are also elucidated by linking them with the positive and negative power absorption pattern.

  5. Observational characteristics of the tropopause inversion layer derived from CHAMP/GRACE radio occultations and MOZAIC aircraft data

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Cammas, J.-P.; Smit, H. G. J.; Heise, S.; Wickert, J.; Haser, A.

    2010-12-01

    In this study we discuss characteristics of the Northern Hemisphere (NH) midlatitude (40°N-60°N) tropopause inversion layer (TIL) based on two data sets. First, temperature measurements from GPS radio occultation data (CHAMP and GRACE) for the time interval 2001-2009 are used to exhibit seasonal properties of the TIL bottom height defined here as the height of the squared buoyancy frequency minimum N2 below the thermal tropopause, the TIL maximum height as the height of the N2 maximum above the tropopause, and the TIL top height as the height of the temperature maximum above the tropopause. Mean values of the TIL bottom, TIL maximum, and TIL top heights relative to the thermal tropopause for the NH midlatitudes are (-2.08 ± 0.35) km, (0.52 ± 0.10) km and (2.10 ± 0.23) km, respectively. A seasonal cycle of the TIL bottom and TIL top height is observed with values closer to the thermal tropopause during summer. Secondly, high-resolution temperature and trace gas profile measurements on board commercial aircrafts (Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program) from 2001-2008 for the NH midlatitude (40°N-60°N) region are used to characterize the TIL as a mixing layer around the tropopause. Mean TIL bottom, TIL maximum, and TIL top heights based on the MOZAIC temperature (N2) measurements confirm the results from the GPS data, even though most of the MOZAIC profiles used here are available under cyclonic situations. Further, we demonstrate that the mixing ratio gradients of ozone (O3) and carbon monoxide (CO) are suitable parameters for characterizing the TIL structure.

  6. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 4, 2005 31 Comparison Between Two Different Antennas for

    E-print Network

    Hao, Yang

    the propagation channel characteristics, radio system compat- ibility, and the effect of the human body. On-body BODY-CENTRIC wireless networks are aiming to provide communication systems with constant availability. more realistic representation of the human body behavior such as different body positions and movements

  7. Worm Propagation Worm Propagation

    E-print Network

    Klappenecker, Andreas

    Worm Propagation #12;Worm Propagation · Worms propagate too fast to be controlled effectively worms · Code Red ­probed internet hosts for known MS Web server vulnerability · Infected machines 2001 #12;Some Worms · Slammer worm ­attacked known vulnerability in MS SQL server ­ Buffer overflow

  8. 75th anniversary of the N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 25 February 2015)

    NASA Astrophysics Data System (ADS)

    2015-06-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) celebrating the 75th anniversary of the N V Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the RAS (IZMIRAN) was held in the IZMIRAN conference hall on 25 February 2015. The agenda of the session announced on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division contained the following reports: (1) Kuznetsov V D (IZMIRAN, Moscow) "N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, and tomorrow"; (2) Gvishiani A D (Geophysical Center, Moscow) "Studies of the terrestrial magnetic field and the network of Russian magnetic laboratories"; (3) Sokoloff D D (Faculty of Physics, Lomonosov Moscow State University, Moscow) "Magnetic dynamo questions"; (4) Petrukovich A A (Space Research Institute, RAS, Moscow) "Some aspects of magnetosphere-ionosphere relations"; (5) Lukin D S (Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region) "Current problems of ionospheric radio wave propagation"; (6) Safargaleev V V (Polar Geophysical Institute, Kola Scientific Center, RAS, Murmansk), Sergienko T I (Swedish Institute of Space Physics (IRF), Sweden), Kozlovskii A E (Sodankyl \\ddot a Geophysical Observatory, Finland), Safargaleev A V (St. Petersburg State University, St. Petersburg), Kotikov A L (St. Petersburg Branch of IZMIRAN, St. Petersburg) "Magnetic and optical measurements and signatures of reconnection in the cusp and vicinity"; (7) Kuznetsov V D (IZMIRAN, Moscow) "Space solar research: achievements and prospects". Papers written on the basis of oral reports 1, 3, 4, 6, and 7 are given below. • N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, tomorrow, V D Kuznetsov Physics-Uspekhi, 2015, Volume 58, Number 6, Pages 590-600 • Problems of magnetic dynamo, D D Sokoloff Physics-Uspekhi, 2015, Volume 58, Number 6, Pages 601-605 • Some aspects of magnetosphere-ionosphere relations, A A Petrukovich, M M Mogilevsky, A A Chernyshov, D R Shklyar Physics-Uspekhi, 2015, Volume 58, Number 6, Pages 606-611 • Magnetic and optical measurements and signatures of reconnection in the cusp and vicinity, V V Safargaleev, T I Sergienko, A V Safargaleev, A L Kotikov Physics-Uspekhi, 2015, Volume 58, Number 6, Pages 612-620 • Space solar research: achievements and prospects, V D Kuznetsov Physics-Uspekhi, 2015, Volume 58, Number 6, Pages 621-629

  9. Extragalactic Transients in the Era of Wide-Field Radio Surveys. I. Detection Rates and Light Curve Characteristics

    E-print Network

    Metzger, Brian D; Berger, Edo

    2015-01-01

    The impending era of wide-field radio surveys has the potential to revolutionize our understanding of astrophysical transients. Here we evaluate the prospects of a wide range of planned and hypothetical radio surveys using the properties and volumetric rates of known and hypothetical classes of extragalactic synchrotron radio transients (e.g., on- and off-axis gamma-ray bursts [GRB], supernovae, tidal disruption events [TDE], compact object mergers). Utilizing these sources and physically motivated considerations we assess the allowed phase-space of radio luminosity and peak timescale for extragalactic transients. We also include for the first time effects such as redshift evolution of the rates, K-corrections, and non-Euclidean luminosity distance, which affect the detection rates of the most sensitive surveys. The number of detected events is calculated by means of a Monte Carlo method, using the various survey properties (depth, cadence, area) and realistic detection criteria that include a cut on the mini...

  10. CONFERENCES AND SYMPOSIA: Seventy years of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation (IZMIRAN) (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 25 November 2009)

    NASA Astrophysics Data System (ADS)

    2010-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 70th anniversary of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) (Troitsk, Moscow region) was held in the conference hall of IZMIRAN on 25 November 2009. The following reports were put on the session agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Gurevich A V (Lebedev Physical Institute RAS, Moscow) "The role of cosmic rays and runaway electron breakdown in atmospheric lightning discharges"; (2) Aleksandrov E B (Ioffe Physical Technical Institute, RAS, St. Petersburg) "Advances in quantum magnetometry for geomagnetic research"; (3) Dorman L I (IZMIRAN, Troitsk, Moscow region, CR & SWC, Israel) "Cosmic ray variations and space weather"; (4) Mareev E A (Institute of Applied Physics, RAS, Nizhnii Novgorod) "Global electric circuit research: achievements and prospects"; (5) Tereshchenko E D, Safargaleev V V (Polar Geophysical Institute, Kola Research Center, RAS, Murmansk) "Geophysical research in Spitsbergen Archipelago: status and prospects"; (6) Gulyaev Yu V, Armand N A, Efimov A I, Matyugov S S, Pavelyev A G, Savich N A, Samoznaev L N, Smirnov V V, Yakovlev O I (Kotel'nikov Institute of Radio Engineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow region) "Results of solar wind and planetary ionosphere research using radiophysical methods"; (7) Kunitsyn V E (Lomonosov Moscow State University, Moscow) "Satellite radio probing and the radio tomography of the ionosphere"; (8) Kuznetsov V D (IZMIRAN, Troitsk, Moscow region) "Space Research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences." Papers based on reports 2-8 are published below. The main contents of report 1 are reproduced in A V Gurevich's review, "Nonlinear effects in the ionosphere" [Phys. Usp. 50 1091 (2007)] and in the paper by A V Gurevich et al., "Nonlinear phenomena in the ionospheric plasma. Effects of cosmic rays and runaway breakdown on thunderstorm discharges" [Phys. Usp. 52 735 (2009)]. • Advances in quantum magnetometry for geomagnetic research , E B Aleksandrov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 487-496 • Cosmic ray variations and space weather, L I Dorman Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 496-503 • Global electric circuit research: achievements and prospects, E A Mareev Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 504-511 • Geophysical research in Spitsbergen Archipelago: status and prospects, V V Safargaleev, E D Tereshchenko Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 511-517 • Results of solar wind and planetary ionosphere research using radiophysical methods, N A Armand, Yu V Gulyaev, A L Gavrik, A I Efimov, S S Matyugov, A G Pavelyev, N A Savich, L N Samoznaev, V M Smirnov, O I Yakovlev Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 517-523 • Satellite radio probing and radio tomography of the ionosphere, V E Kunitsyn, E D Tereshchenko, E S Andreeva, I A Nesterov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 523-528 • Space research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences , V D Kuznetsov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 528-534

  11. Effects of H{sub 2} enrichment on the propagation characteristics of CH{sub 4}-air triple flames

    SciTech Connect

    Briones, Alejandro M.; Aggarwal, Suresh K.; Katta, Viswanath R.

    2008-05-15

    The effects of H{sub 2} enrichment on the propagation of laminar CH{sub 4}-air triple flames in axisymmetric coflowing jets are numerically investigated. A comprehensive, time-dependent computational model, which employs a detailed description of chemistry and transport, is used to simulate the transient ignition and flame propagation phenomena. Flames are ignited in a jet-mixing layer far downstream of the burner. Following ignition, a well-defined triple flame is formed that propagates upstream along the stoichiometric mixture fraction line with a nearly constant displacement velocity. As the flame approaches the burner, it transitions to a double flame, and subsequently to a burner-stabilized nonpremixed flame. Predictions are validated using measurements of the displacement flame velocity. As the H{sub 2} concentration in the fuel blend is increased, the displacement flame velocity and local triple flame speed increase progressively due to the enhanced chemical reactivity, diffusivity, and preferential diffusion caused by H{sub 2} addition. In addition, the flammability limits associated with the triple flames are progressively extended with the increase in H{sub 2} concentration. The flame structure and flame dynamics are also markedly modified by H{sub 2} enrichment, which substantially increases the flame curvature and mixture fraction gradient, as well as the hydrodynamic and curvature-induced stretch near the triple point. For all the H{sub 2}-enriched methane-air flames investigated in this study, there is a negative correlation between flame speed and stretch, with the flame speed decreasing almost linearly with stretch, consistent with previous studies. The H{sub 2} addition also modifies the flame sensitivity to stretch, as it decreases the Markstein number (Ma), implying an increased tendency toward diffusive-thermal instability (i.e. Ma {yields} 0). These results are consistent with the previously reported experimental results for outwardly propagating spherical flames burning a mixture of natural gas and hydrogen. (author)

  12. Characteristics of VLF wave propagation in the Earth's magnetosphere in the presence of an artificial density duct

    NASA Astrophysics Data System (ADS)

    Pasmanik, Dmitry; Demekhov, Andrei

    We study the propagation of VLF waves in the Earth's ionosphere and magnetosphere in the presence of large-scale artificial plasma inhomogeneities which can be created by HF heating facilities like HAARP and ``Sura''. A region with enhanced cold plasma density can be formed due to the action of HF heating. This region is extended along geomagnetic field (up to altitudes of several thousand km) and has rather small size across magnetic field (about 1 degree). The geometric-optical approximation is used to study wave propagation. The plasma density and ion composition are calculated with the use of SAMI2 model, which was modified to take the effect of HF heating into account. We calculate ray trajectories of waves with different initial frequency and wave-normal angles and originating at altitudes of about 100 km in the region near the heating area. The source of such waves could be the lightning discharges, modulated HF heating of the ionosphere, or VLF transmitters. Variation of the wave amplitude along the ray trajectories due to refraction is considered and spatial distribution of wave intensity in the magnetosphere is analyzed. We show that the presence of such a density disturbances can lead to significant changes of wave propagation trajectories, in particular, to efficient guiding of VLF waves in this region. This can result in a drastic increase of the VLF-wave intensity in the density duct. The dependence of wave propagation properties on parameters of heating facility operation regime is considered. We study the variation of the spatial distribution of VLF wave intensity related to the slow evolution of the artificial inhomogeneity during the heating.

  13. One-to-one relationship between low latitude whistlers and conjugate source lightning discharges and their propagation characteristics

    NASA Astrophysics Data System (ADS)

    Srivastava, Prateek R.; Gokani, Sneha A.; Maurya, Ajeet K.; Singh, Rajesh; Kumar, Sushil; Veenadhari, B.; Selvakumaran, R.; Singh, Abhay K.; Siingh, Devendraa; Lichtenberger, Janos

    2013-12-01

    One-to-one relation with its causative lightning discharges and propagation features of night-time whistlers recorded at low-latitude station, Allahabad (geomag. lat. 16.05°N, L = 1.08), India, from continuous observations made during 1-7 April, 2011 have been studied. The whistler observations were made using the Automatic Whistler Detector (AWD) system and AWESOME VLF receiver. The causative lightning strikes of whistlers were checked in data provided by World-Wide Lightning Location Network (WWLLN). A total of 32 whistlers were observed out of which 23 were correlated with their causative lightnings in and around the conjugate location (geom. lat. 9.87°S) of Allahabad. A multi-flash whistler is also observed on 1 April with dispersions 15.3, 17.5 and 13.6 s1/2. About 70% (23 out of 32) whistlers were correlated with the WWLLN detected causative lightnings in the conjugate region which supports the ducted mode of propagation at low latitude. The multi-flash and short whistlers also propagated most likely in the ducted mode to this station.

  14. NASA Propagation Studies Website

    NASA Technical Reports Server (NTRS)

    Angkasa, Krisjani S.

    1996-01-01

    This paper describes an Internet website which provides information to enable the development of new commerical satellite systems and services by providing timely data and models about the propagation of satellite radio signals. In partnership with industry and academia, the program leverages NASA assets, currently the Advanced Communications Technology Satellite (ACTS), to obtain propagation data. The findings of the study are disseminated through refereed journals, NASA reference publications, workshops, electronic media, and direct interface with industry.

  15. Impulsiveness and energetics in solar flares with and without type II radio bursts - A comparison of hard X-ray characteristics for over 2500 solar flares

    NASA Technical Reports Server (NTRS)

    Pearson, Douglas H.; Nelson, Robert; Kojoian, Gabriel; Seal, James

    1989-01-01

    The hard X-ray characteristics of more than 2500 solar flares are used to study the relative size, impulsiveness, and energetics of flares with and without type II radio bursts. A quantitative definition of the hard X-ray impulsiveness is introduced, which may be applied to a large number of events unambiguously. It is found that the flares with type II bursts are generally not significantly larger, more impulsive, or more energetic than those without type II bursts. Also, no evidence is found to suggest a simple classification of the flares as either 'impulsive' or 'gradual'. Because type II bursts are present even in small flares with relatively unimpulsive energy releases, it is concluded that changes in the ambient conditions of the solar atmosphere causing an unusually low Alfven speed may be important in the generation of the shock wave that produces type II radio bursts.

  16. JOURNAL OF GEOPHYSICALRESEARCH,VOL. 104,NO. E6, PAGES14,149-14,157,JUNE 25,1999 Radio atmospheric propagation on Mars and potential

    E-print Network

    Cummer, Steven A.

    propagation on Mars and potential remote sensing applications Steven A. Cummer and William M. Farrell(ELF) electromagneticenergyin the spherical waveguideformed by the groundand ionosphereof Mars to investigatethe possibility The existenceof electricaldischargesgeneratedby dust stormson Mars is an intriguingpossibilityfrom both

  17. ACTS propagation experiment discussion: Ka-band propagation measurements using the ACTS propagation terminal and the CSU-CHILL and Space Communications Technology Center Florida propagation program

    NASA Technical Reports Server (NTRS)

    Bringi, V. N.; Chandrasekar, V.; Mueller, Eugene A.; Turk, Joseph; Beaver, John; Helmken, Henry F.; Henning, Rudy

    1993-01-01

    Papers on Ka-band propagation measurements using the ACTS propagation terminal and the Colorado State University CHILL multiparameter radar and on Space Communications Technology Center Florida Propagation Program are discussed. Topics covered include: microwave radiative transfer and propagation models; NASA propagation terminal status; ACTS channel characteristics; FAU receive only terminal; FAU terminal status; and propagation testbed.

  18. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  19. Studies on characteristics of resistive power calculated with discrete Fourier transform in a pulse-modulated radio frequency discharge.

    PubMed

    Huo, W G; Zhang, H; Ding, Z F

    2015-02-01

    In a pulse-modulated (PM) radio-frequency (RF) capacitively coupled plasma, the DFT (Discrete Fourier Transform)-calculated RF power and the corresponding phase shift between voltage and current measured with calibrated voltage and current probes present oscillations in the pulse rising and falling edges. The oscillating phase shift between voltage and current obtained in the falling edge is outside the expected value for a resistive-capacitive RF discharge. Numerical simulation and analytical analysis are made to interpret these abnormal characteristics and seek an approach to obtaining the reliable resistive (active) RF power. The oscillation is proved to be originated from the oscillating non-zero reactive RF power of the capacitor(s) in the load. At the time instant when the reactive RF power within an integer RF period is not zero, the reactive RF power is mistakenly regarded as the active RF power in the DFT analysis, as a result, the corresponding phase is thus incorrect and even outside the expected value for a resistive-capacitive load. The resistive RF power and the phase can be only correctly calculated at the time instant when the reactive RF power is zero. For a series (or parallel) RC (resistor-capacitor) load and a combined RC load with the dominated series (or parallel) RC impedance, the time instant of the zero reactive RF power is calculated with one of the two proposed empirical formulae. In practice, the DFT-calculated resistive RF power is obtained according to the following procedures: (1) applying DFT to the measured RF voltage and current signals to obtain the power and time instants for minimal phase shifts between voltage and current; (2) selecting the empirical formula to calculate time instants of the zero reactive RF power; (3) getting resistive powers at time instants of the zero reactive RF power. In real PM RF capacitively coupled plasmas, the empirical formula for the series RC load is selected to calculate the resistive RF power. The accuracy of DFT-calculated resistive RF power is proved to be related to two kinds of errors. The first is the error of the time instant of the zero reactive RF power calculated using the empirical formula. This error is relatively lower when the requirement that the dominated parallel or series RC impedance is met and is almost independent of the impedance phase angle of a combined RC load. The second is the error of the DFT-calculated resistive RF power compared with the corresponding time integral RF power at the real zero reactive RF power. This error is independent of the load type or the load impedance but varies with the slope of PM RF voltage amplitude vs. time. The two kinds of errors both increase in the pulse rising and falling edges. PMID:25725843

  20. Studies on characteristics of resistive power calculated with discrete Fourier transform in a pulse-modulated radio frequency discharge

    NASA Astrophysics Data System (ADS)

    Huo, W. G.; Zhang, H.; Ding, Z. F.

    2015-02-01

    In a pulse-modulated (PM) radio-frequency (RF) capacitively coupled plasma, the DFT (Discrete Fourier Transform)-calculated RF power and the corresponding phase shift between voltage and current measured with calibrated voltage and current probes present oscillations in the pulse rising and falling edges. The oscillating phase shift between voltage and current obtained in the falling edge is outside the expected value for a resistive-capacitive RF discharge. Numerical simulation and analytical analysis are made to interpret these abnormal characteristics and seek an approach to obtaining the reliable resistive (active) RF power. The oscillation is proved to be originated from the oscillating non-zero reactive RF power of the capacitor(s) in the load. At the time instant when the reactive RF power within an integer RF period is not zero, the reactive RF power is mistakenly regarded as the active RF power in the DFT analysis, as a result, the corresponding phase is thus incorrect and even outside the expected value for a resistive-capacitive load. The resistive RF power and the phase can be only correctly calculated at the time instant when the reactive RF power is zero. For a series (or parallel) RC (resistor-capacitor) load and a combined RC load with the dominated series (or parallel) RC impedance, the time instant of the zero reactive RF power is calculated with one of the two proposed empirical formulae. In practice, the DFT-calculated resistive RF power is obtained according to the following procedures: (1) applying DFT to the measured RF voltage and current signals to obtain the power and time instants for minimal phase shifts between voltage and current; (2) selecting the empirical formula to calculate time instants of the zero reactive RF power; (3) getting resistive powers at time instants of the zero reactive RF power. In real PM RF capacitively coupled plasmas, the empirical formula for the series RC load is selected to calculate the resistive RF power. The accuracy of DFT-calculated resistive RF power is proved to be related to two kinds of errors. The first is the error of the time instant of the zero reactive RF power calculated using the empirical formula. This error is relatively lower when the requirement that the dominated parallel or series RC impedance is met and is almost independent of the impedance phase angle of a combined RC load. The second is the error of the DFT-calculated resistive RF power compared with the corresponding time integral RF power at the real zero reactive RF power. This error is independent of the load type or the load impedance but varies with the slope of PM RF voltage amplitude vs. time. The two kinds of errors both increase in the pulse rising and falling edges.

  1. Extragalactic Synchrotron Transients in the Era of Wide-field Radio Surveys. I. Detection Rates and Light Curve Characteristics

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Williams, P. K. G.; Berger, Edo

    2015-06-01

    The impending era of wide-field radio surveys has the potential to revolutionize our understanding of astrophysical transients. Here we evaluate the prospects of a wide range of planned and hypothetical radio surveys using the properties and volumetric rates of known and hypothetical classes of extragalactic synchrotron radio transients (e.g., on-axis and off-axis gamma-ray bursts (GRBs), supernovae, tidal disruption events, compact object mergers). Utilizing these sources and physically motivated considerations we assess the allowed phase space of radio luminosity and peak timescale for extragalactic transients. We also include for the first time effects such as redshift evolution of the rates, K-corrections, and non-Euclidean luminosity distance, which affect the detection rates of the most sensitive surveys. The number of detected events is calculated by means of a Monte Carlo method, using the various survey properties (depth, cadence, area) and realistic detection criteria that include a cut on the minimum variability of the transients during the survey and an assessment of host galaxy contamination. We find that near-term GHz frequency surveys (ASKAP/VAST, Very Large Array Sky Survey) will detect few events: ? 30-50 on- and off-axis long GRBs (LGRBs) and off-axis tidal disruption events, and ? 50-100 neutron star binary mergers if ? 0.5% of the mergers result in a stable millisecond magnetar. Low-frequency surveys (e.g., LOFAR) are unlikely to detect any transients, while a hypothetical large-scale mm survey may detect ?40 on-axis LGRBs. On the other hand, we find that SKA1 surveys at ? 0.1-1 GHz have the potential to uncover thousands of transients, mainly on-axis and off-axis LGRBs, on-axis short GRBs, off-axis TDEs, and neutron star binary mergers with magnetar remnants.

  2. Quasar feedback and the origin of radio emission in radio-quiet quasars

    NASA Astrophysics Data System (ADS)

    Zakamska, Nadia L.; Greene, Jenny E.

    2014-07-01

    We analyse Sloan Digital Sky Survey spectra of 568 obscured luminous quasars. The [O III] ?5007 Å emission line shows blueshifts and blue excess, indicating that some of the narrow-line gas is undergoing an organized outflow. The velocity width containing 90 per cent of line power ranges from 370 to 4780 km s-1, suggesting outflow velocities up to ˜2000 km s-1, and is strongly correlated with the radio luminosity among the radio-quiet quasars. We propose that radio emission in radio-quiet quasars is due to relativistic particles accelerated in the shocks within the quasar-driven outflows; star formation in quasar hosts is insufficient to explain the observed radio emission. The median radio luminosity of the sample of ?L?[1.4 GHz] = 1040 erg s-1 suggests a median kinetic luminosity of the quasar-driven wind of Lwind = 3 × 1044 erg s-1, or about 4 per cent of the estimated median bolometric luminosity Lbol = 8 × 1045 erg s-1. Furthermore, the velocity width of [O III] is positively correlated with mid-infrared luminosity, which suggests that outflows are ultimately driven by the radiative output of the quasar. Emission lines characteristic of shocks in quasi-neutral medium increase with the velocity of the outflow, which we take as evidence of quasar-driven winds propagating into the interstellar medium of the host galaxy. Quasar feedback appears to operate above the threshold luminosity of Lbol ˜ 3 × 1045 erg s-1.

  3. Propagation research in Japan

    NASA Technical Reports Server (NTRS)

    Wakana, Hiromitsu

    1991-01-01

    L-band propagation measurements for land-mobile, maritime, and aeronautical satellite communications have been carried out by using the Japanese Engineering Test Satellite-Five (ETS-5) which was launched in Aug. 1987. This paper presents propagation characteristics for each of the mobile satellite communication channels.

  4. 47 CFR 80.767 - Propagation curve.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Propagation curve. 80.767 Section 80.767 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.767 Propagation curve. The propagation graph, § 80.767...

  5. A crack initiation and propagation simulation and the fatigue characteristics of solder joints considering the material property changes

    NASA Astrophysics Data System (ADS)

    Matsushima, M.; Shishihara, Y.; Matsunami, H.; Fukumoto, S.; Fujimoto, K.

    2012-08-01

    The re-working of the manufacturing process from the reliability evaluation after the production process is a significant cost and loss of energy. In-vehicle electronic devices are exposed to multiple environmental loads such as thermal and vibrational loads. The effects of the material property changes in the thermal cycle load on the fatigue life of solder joints were estimated with our fatigue simulation for the purpose of constructing a design method considering the fatigue characteristic changes in the thermal cycle. The fatigue lives were estimated with and without considering the creep property changes measured by indentation tests. The fatigue ductility index and the coefficients increased toward the reported values by considering the creep property changes.

  6. Energetic electrons from solar flares and associated type 3 radio bursts from metric to hectometric wave frequencies

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    Distinct Kev electron events as observed by satellites near the earth are, in general, associated with solar flares which are accompained by the emission of both metric and hectometric type 3 radio bursts. The positions of these flares are mainly on the western hemisphere of the sun. These results show that Kev electrons propagate under the control of the magnetic field in the interplanetary space and that, while propagating through this space, these electrons excite type 3 radio bursts from metric to hectometric wave frequencies. Emission characteristics of hectometric type 3 bursts are briefly considered in relation to the positions of associated flares.

  7. Radio Science in Africa

    NASA Astrophysics Data System (ADS)

    Lefeuvre, Francois; Mc Kinnel, Lee-Anne; Chukwuma, Victor; Amory-Mazaudier, Christine

    2010-05-01

    Radio science activities covered by URSI (International Radio Science Union) are briefly reviewed. They encompass the knowledge and study of all aspects of electromagnetic fields and waves in a wide frequency range running from micro pulsation frequencies (i.e. from ~1 mHz) to Terahertz. The topics include: electromagnetic measurements and standards, electromagnetic theory and applications, radio-communication systems and signal processing, electronics and Photonics, electromagnetic environment and interference, wave propagation and remote sensing, ionospheric radio and propagation, waves in plasmas, radio astronomy, and electromagnetics in biology and medicine. The main radio science activities conducted by the URSI national Committees of South Africa, Egypt and Nigeria, and by African radio scientists groups gathered in GIRGEA (Groupe International de Recherche en Géophysique Europe Afrique) are reviewed. The emphasis is put on the activities developed in the context of the IHY programme and of the SCINDA network for forecasting ionospheric irregularities that adversely impact communication and navigation systems in the low latitude regions.

  8. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    PubMed

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  9. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    PubMed Central

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  10. 47 CFR 32.2231 - Radio systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., amplification, propagation, reception, modulation, and demodulation of radio waves in free space over which... 47 Telecommunication 2 2014-10-01 2014-10-01 false Radio systems. 32.2231 Section 32.2231... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2231 Radio systems....

  11. Secure Location Verification Using Radio Broadcast

    E-print Network

    Nesterenko, Mikhail

    , exploits the difference between propagation speeds of radio and sound waves to estimate the position1 Secure Location Verification Using Radio Broadcast Adnan Vora and Mikhail Nesterenko Abstract of the prover. In this paper, we propose a solution that leverages the broadcast nature of the radio signal

  12. 47 CFR 32.2231 - Radio systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., amplification, propagation, reception, modulation, and demodulation of radio waves in free space over which... 47 Telecommunication 2 2011-10-01 2011-10-01 false Radio systems. 32.2231 Section 32.2231... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2231 Radio systems....

  13. 47 CFR 32.2231 - Radio systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., amplification, propagation, reception, modulation, and demodulation of radio waves in free space over which... 47 Telecommunication 2 2013-10-01 2013-10-01 false Radio systems. 32.2231 Section 32.2231... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2231 Radio systems....

  14. Secure Location Verification Using Radio Broadcast

    E-print Network

    Nesterenko, Mikhail

    the difference between propagation speeds of radio and sound waves to estimate the position of the proverSecure Location Verification Using Radio Broadcast Adnan Vora and Mikhail Nesterenko Computer. In this paper, we propose a solution that leverages the broadcast nature of the radio signal emitted

  15. 47 CFR 32.2231 - Radio systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., amplification, propagation, reception, modulation, and demodulation of radio waves in free space over which... 47 Telecommunication 2 2012-10-01 2012-10-01 false Radio systems. 32.2231 Section 32.2231... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2231 Radio systems....

  16. 47 CFR 32.2231 - Radio systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., amplification, propagation, reception, modulation, and demodulation of radio waves in free space over which... 47 Telecommunication 2 2010-10-01 2010-10-01 false Radio systems. 32.2231 Section 32.2231... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2231 Radio systems....

  17. NASA Lunar Base Wireless System Propagation Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The results from this paper are important for the lunar wireless system link margin analysis in order to determine the limits on the reliable communication range, achievable data rate and RF coverage performance at planned lunar base work sites.

  18. Review of radio science 1984-1986

    NASA Astrophysics Data System (ADS)

    Hyde, G.

    Theoretical, experimental, and applications aspects of radio science are examined in a collection of subject-area reviews. Topics addressed include EM metrology, fields and waves, signals and systems, electronic and optical devices and their applications, and EM noise and interference. Consideration is given to wave propagation and remote sensing, ionospheric radio and wave propagation in plasmas, radio astronomy, and the biological effects of EM waves. An extensive glossary of acronyms is provided.

  19. Radio Channel Simulator (RCSM)

    Energy Science and Technology Software Center (ESTSC)

    2007-01-31

    This is a simulation package for making site specific predictions of radio signal strength. The software computes received power at discrete grid points as a function of the transmitter location and propagation environment. It is intended for use with wireless network simulation packages and to support wireless network deployments.

  20. Solar Power Satellite (SPS) pilot beam and communication link subsystem investigation study, phase 1. [ionospheric propagation, radio frequency interference, and microwave transmission

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A preliminary engineering model of ionospheric interactions with the pilot beam was established and used to demonstrate that the dual frequency baseline pilot beam system might not be viable in the presence of an unstable transmission path. Alternate approaches to remove this difficulty are described. Although ionospheric fluctuations will not significantly degrade beam pointing or raise the sidelobe levels, they will reduce transmission efficiency by upwards of 25%. Mitigating strategies to substantially reduce this effect are proposed. Based on the Klystron noise spectrum, the pilot beam transmitter power was determined as a function of frequency offset from the power beam carrier frequency. The RFI from the pilot beam, on the ground and at geosynchronous orbit is shown. Noise levels on the earth's surface due to the SPS are presented as a function of frequency and the number of SPS systems. Analysis of the communication subsystem indicates that a standard telemetry line of 1.544 MB/s would satisfy both voice and data link requirements. Additional links would be required for TV and radio transmissions.

  1. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Ting; Liang, Tian-Ran; Wang, Hua-Bo; Li, He-Ping; Bao, Cheng-Yu

    2007-05-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform ? mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work.

  2. Locating Radio Noise from Sprites

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Mezentsev, A.; Watson, R.; Gaffet, S.; Astin, I.; Evans, A.

    2014-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into exponentially growing streamer tips (McHarg et al., 2010). The acceleration of the electrons to a few eV results in the radiation of a small amount of electromagnetic energy. The incoherent superposition of many streamers causes the low frequency radio noise from sprites near ~40 km height (Qin et al., 2012). The presence of this theoretically predicted radiation was recently confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). To locate the radio noise from sprites in the sky, an interferometric network of low frequency radio receivers was developed (Mezentsev and Fullekrug, JGR, 2013). The key parameter for the interferometric signal processing is the frequency dependent wave propagation velocity of the radio waves within the Earth's atmosphere. This wave propagation velocity is determined by the wave number vector which needs to be inferred from the measurements. Here we adapt and subsequently apply array analyses which have been developed for seismic and infrasound arrays to determine the horizontal wave number vectors of ~20-24 kHz radio waves measured with an array of ten radio receivers distributed over an area of ~1 km × 1 km. It is found that the horizontal slowness of ~20-24 kHz radio waves ranges from ~2.7 ns/m to ~4.1 ns/m depending on the arrival azimuth of the radio wave. For comparison, an electromagnetic wave in vacuum has a slowness of ~3.34 ns/m. A larger slowness indicates an apparent velocity which is smaller than the speed of light and a smaller slowness indicates that the radio wave arrives at the array from an elevation angle. The observed variability of the observed slowness almost certainly results from the distance dependent superposition of the transverse electric and magnetic TEn and TMn radio wave propagation modes.

  3. Population and movement characteristics of radio-collared striped skunks in North Dakota during an epizootic of rabies

    USGS Publications Warehouse

    Greenwood, R.J.; Newton, W.E.; Pearson, G.L.; Schamber, G.J.

    1997-01-01

    We observed a total of 102 striped skunks (Mephitis mephitis) from March to July of both 1991 and 1992 in Stutsman County, North Dakota (USA) during an experiment with food supplementation. Twenty-three apparently healthy skunks in 1991 and 56 in 1992 were equipped with radio-collars. In 1991, one of 23 was tested and found to be rabid. In 1992, 50 of 56 were tested; 35 (69%) were rabid. Of skunks with ages estimated, 19 (66%) of 29 were first year animals in 1991 compared with nine (22%) of 41 first year animals in 1992. All 18 females captured in 1991 were pregnant or parous compared with 21 (60%) of 35 in 1992. The estimated survival rate of skunks was 0.85 during April to June 1991, but only 0.17 during April to July 1992. In 1992, the survival rate of first year skunks was 0.08, compared with 0.35 for older animals. Eleven (31%) of 36 skunks found dead of rabies or in late clinical stage were located below ground. We detected no differences in 1992 between healthy and rabid skunks in estimated mean (i?? SE) rate of travel (232 i?? 14 m/hr), distance traveled (2047 i?? 141 m/night), or home range size (1.6 i?? 0.4 km2) during half-month periods from April through June. Among rabid skunks, mean (i?? SE) rate of travel tended to decrease from 298 i?? 48 m/hr during the 14 days preceding the clinical period of rabies (pre-clinical) to 174 i?? 48 m/hr during the clinical period of rabies (14 days immediately before death). Similar decrease occurred in mean (i?? SE) distance traveled in a night (2318 i?? 281 m, pre-clinical; 1497 i?? 281 m, clinical). Mean (i?? SE) home range size of males (2.8 i?? 0.4) was greater than of females (1.2 i?? 0.4) during the pre-clinical period, but during the clinical period home range sizes of males (1.8 i?? 0.4) and females (1.8 i?? 0.4) were similar. Mean (i?? SE) home range size of females did not differ between pre-clinical (1.2 i?? 0.4) and clinical (1.8 i?? 0.4) periods (P = 0.22). Deaths of skunks from rabies in 1992 tended to be more spatially clumped than expected had they been random, mostly due to deaths detected before 8 May. We detected no correlation between locations of animals found dead of rabies and dates of death.

  4. Radio links in space information transmission systems

    NASA Astrophysics Data System (ADS)

    Tepliakov, I. M.; Kalashnikov, I. D.; Roshchin, B. V.

    Textbook on the fundamentals and practical aspects of space radio data transmission systems and radio links. Major topics treated include: basic types of radio links and their characteristics; handling capacity, modulation, and coding in ideal communication channels; eliminating spurious responses in the absence of a signal in digital radio links; synchronization in digital radio links; modulation techniques in digital data transfer; coding and message codes; random-parameter radio links; lumped noise and digital radio links; scrambling, countermeasures, and hidden radio links; sampling and restoration of analog messages; noise immunity in PCM analog data transmission; multiplexing; comparison of analog data transmission techniques; radiotelephone communication links; and adaptive telemetry.

  5. Characteristics of high-purity Cu thin films deposited on polyimide by radio-frequency Ar/H{sub 2} atmospheric-pressure plasma jet

    SciTech Connect

    Zhao, P.; Zheng, W.; Meng, Y. D.; Nagatsu, M.

    2013-03-28

    With a view to fabricating future flexible electronic devices, an atmospheric-pressure plasma jet driven by 13.56 MHz radio-frequency power is developed for depositing Cu thin films on polyimide, where a Cu wire inserted inside the quartz tube was used as the evaporation source. A polyimide substrate is placed on a water-cooled copper heat sink to prevent it from being thermally damaged. With the aim of preventing oxidation of the deposited Cu film, we investigated the effect of adding H{sub 2} to Ar plasma on film characteristics. Theoretical fitting of the OH emission line in OES spectrum revealed that adding H{sub 2} gas significantly increased the rotational temperature roughly from 800 to 1500 K. The LMM Auger spectroscopy analysis revealed that higher-purity Cu films were synthesized on polyimide by adding hydrogen gas. A possible explanation for the enhancement in the Cu film deposition rate and improvement of purity of Cu films by H{sub 2} gas addition is that atomic hydrogen produced by the plasma plays important roles in heating the gas to promote the evaporation of Cu atoms from the Cu wire and removing oxygen from copper oxide components via reduction reaction.

  6. Characteristics of high-purity Cu thin films deposited on polyimide by radio-frequency Ar/H2 atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Zheng, W.; Meng, Y. D.; Nagatsu, M.

    2013-03-01

    With a view to fabricating future flexible electronic devices, an atmospheric-pressure plasma jet driven by 13.56 MHz radio-frequency power is developed for depositing Cu thin films on polyimide, where a Cu wire inserted inside the quartz tube was used as the evaporation source. A polyimide substrate is placed on a water-cooled copper heat sink to prevent it from being thermally damaged. With the aim of preventing oxidation of the deposited Cu film, we investigated the effect of adding H2 to Ar plasma on film characteristics. Theoretical fitting of the OH emission line in OES spectrum revealed that adding H2 gas significantly increased the rotational temperature roughly from 800 to 1500 K. The LMM Auger spectroscopy analysis revealed that higher-purity Cu films were synthesized on polyimide by adding hydrogen gas. A possible explanation for the enhancement in the Cu film deposition rate and improvement of purity of Cu films by H2 gas addition is that atomic hydrogen produced by the plasma plays important roles in heating the gas to promote the evaporation of Cu atoms from the Cu wire and removing oxygen from copper oxide components via reduction reaction.

  7. Radio Journalism.

    ERIC Educational Resources Information Center

    Bittner, John R.; Bittner, Denise A.

    This book, a how-to-do-it guide for the novice and the professional alike, deals with several aspects of radio journalism: producing documentaries, preparing and announcing radio news, ethics and responsibility, regulation of radio journalism, and careers. It traces the history and growth of radio news, shows its impact on the public, and…

  8. Indoor radio measurement and planning for UMTS/HSDPA with antennas

    NASA Astrophysics Data System (ADS)

    Eheduru, Marcellinus

    Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, approximately 70-80% of the HSDPA traffic is estimated to originate from inside buildings. Thus for network operators, indoor coverage has become a necessity for technical and business reasons. Macro-cellular (outdoor) to indoor coverage is a natural inexpensive way of providing network coverage inside the buildings. However, it does not guarantee sufficient link quality required for optimal HSDPA operation. On the contrary, deploying a dedicated indoor system may be far too expensive from an operator's point of view. In this thesis, the concept is laid for the understanding of indoor radio wave propagation in a campus building environment which could be used to plan and improve outdoor-to-indoor UMTS/HSDPA radio propagation performance. It will be shown that indoor range performance depends not only on the transmit power of an indoor antenna, but also on the product's response to multipath and obstructions in the environment along the radio propagation path. An extensive measurement campaign will be executed in different indoor environments analogous to easy, medium and hard radio conditions. The effects of walls, ceilings, doors and other obstacles on measurement results would be observed. Chapter one gives a brief introduction to the evolution of UMTS and HSDPA. It goes on to talk about radio wave propagation and some important properties of antennas which must be considered when choosing an antenna for indoor radio propagation. The challenges of in-building network coverage and also the objectives of this thesis are also mentioned in this chapter. The evolution and standardization, network architecture, radio features and most importantly, the radio resource management features of UMTS/HSDPA are given in chapter two. In this chapter, the reason why Wideband Code Division Multiple Access (WCDMA) was specified and selected for 3G (UMTS) systems would be seen. The architecture of the radio access network, interfaces with the radio access network between base stations and radio network controllers (RNC), and the interface between the radio access network and the core network are also described in this chapter. The main features of HSDPA are mentioned at the end of the chapter. In chapter three the principles of the WCDMA air interface, including spreading, Rake reception, signal fading, power control and handovers are introduced. The different types and characteristics of the propagation environments and how they influence radio wave propagation are mentioned. UMTS transport, logical and physical channels are also mentioned, highlighting their significance and relationship in and with the network. Radio network planning for UMTS is discussed in chapter four. The outdoor planning process which includes dimensioning, detailed planning, optimization and monitoring is outlined. Indoor radio planning with distributed antenna systems (DAS), which is the idea and motivation behind this thesis work, is also discussed. The various antennas considered and the antenna that was selected for this thesis experiment was discussed in chapter five. The antenna radiation pattern, directivity, gain and input impedance were the properties of the antenna that were taken into consideration. The importance of the choice of the antenna for any particular type of indoor environment is also mentioned. In chapter six, the design and fabrication of the monopole antennas used for the experimental m

  9. Near-Relativistic Solar Electrons and Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    2003-01-01

    Recently it has been found that the inferred injection times of greater than 25 keV electrons are up to 30 minutes later than the start times of the associated type III radio bursts at the Sun. Thus it has been suggested that the electrons that produce type III bursts do not belong to the same population as those observed above 25 keV. This paper examines the characteristics and circumstances of 79 solar electron beam events measured on the ACE spacecraft. Particular attention is paid to the very low frequency emissions of the associated radio bursts and the ambient conditions at the arrival times of the electrons at the spacecraft. It is found that the inferred greater than 25 keV electron injection delays are correlated with the times required for the associated radio bursts to drift to the lowest frequencies. This suggests that the electrons responsible for the radio emission and those observed above 25 keV are part of a single population, and that the electrons both above and below 25 keV are delayed in the interplanetary medium. Further evidence for a single population is the general correspondence between electron and local radio intensities and temporal profiles. It is found that the delays increase with the ambient solar wind density consistent with the propagation times of the electrons being determined by the characteristics of the interplanetary medium. However it is known that particle arrival times at 1 AU are a linear function of inverse particle speed. Conventionally such a relationship is taken to indicate scatter-free propagation when inferred path lengths lie close to 1.2 AU, as they do for the electron events studied here. These conflicting interpretations require further investigation.

  10. Proceedings of the Thirteenth NASA Propagation Experimenters Meeting (NAPEX 13)

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (editor)

    1989-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. The meeting was organized into three technical sessions: the first focused on mobile satellite propagation; the second examined the propagation effects for frequencies above 10 GHz; and the third addressed studies devoted exclusively to the Olympus/Advanced Communications Technology Satellite (ACTS) Program.

  11. Influence of the axicon characteristics and beam propagation parameter M{sup 2} on the formation of Bessel beams from semiconductor lasers

    SciTech Connect

    Sokolovskii, G S; Dyudelev, V V; Losev, S N; Butkus, M; Soboleva, K K; Sobolev, A I; Deryagin, A G; Kuchinskii, V I; Sibbet, V; Rafailov, E U

    2013-05-31

    We study the peculiarities of the formation of Bessel beams in semiconductor lasers with a high propagation parameter M{sup 2}. It is shown that the propagation distance of the Bessel beam is determined by the divergence of the quasi-Gaussian beam with high M{sup 2} rather than the geometric parameters of the optical scheme. It is demonstrated that technologically inevitable rounding of the axicon tip leads to a significant increase in the transverse dimension of the central part of the Bessel beam near the axicon. (semiconductor lasers. physics and technology)

  12. Radio Days.

    ERIC Educational Resources Information Center

    Sanderson, Neil

    1998-01-01

    Thousands of today's high school students run FM radio stations at school, carrying on a tradition that began 50 years ago. Radio helps students learn to work with others and develop a strong sense of responsibility. A sidebar gives advice on starting a high school radio station. (MLF)

  13. Firefighters' Radios

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Public Technology Inc. asked for NASA assistance to devise the original firefighter's radio. Good short-range radio communications are essential during a fire to coordinate hose lines, rescue victims, and otherwise increase efficiency. Useful firefighting tool is lower cost, more rugged short range two-way radio. Inductorless electronic circuit replaced inductances and coils in radio circuits with combination of transistors and other low-cost components. Substitution promises reduced circuit size and cost. Enhanced electrical performance made radio more durable and improved maintainability by incorporating modular construction.

  14. Application of the Monte Carlo technique to study scattering of solar radio emission on coronal turbulence

    NASA Astrophysics Data System (ADS)

    Afanasiev, Alexandr

    It has been shown in many studies that some properties of solar radio bursts (e.g. their widespread visibility) at metric and longer wavelengths can be naturally explained in terms of radio waves scattering on electron density fluctuations in the corona and interplanetary space. To calculate the observed characteristics of the bursts, the Monte Carlo technique is often applied. This numerical approach gives one an opportunity to take into account the scattering more fully in comparison with the analytical methods, which are restricted by the small-angle scattering condition. The Monte Carlo technique deals with tracing radio rays step-by-step and applies the small-angle scattering condition just for each single step. This procedure allows one to correctly calculate the scattering in the plasma regions quite far above the critical level (i.e. a level where the radio wave frequency equals the plasma frequency). However, in order to compute, using the Monte Carlo technique, the scattering in the neighbourhood of the critical level (for the rays reflected from the underlying plasma) previous authors introduced in their treatment some significant simplifications. I will present a method that allows the Monte Carlo technique to be correctly applied nearby the critical level. Another advantage of this method is that it allows the calculations for the power-law inhomogeneity spectrum with a local flattening. This type of the inhomogeneity spectra is probably characteristic for the solar corona at small heliocentric distances. I will present results of my calculations of some radio burst characteristics and characteristics of the quite-Sun radio emission. I will compare the results with those obtained by previous authors. It should be stressed that the applicability range of the presented method is not restricted by the undisturbed conditions in the corona. It can be used in the situations where the radio emission propagates through a highly inhomogeneous corona having significant local gradients of the electron density, e.g. coronal mass ejections.

  15. SPEAKING IN LIGHT - Jupiter radio signals as deflections of light-emitting electron beams in a vacuum chamber

    NASA Astrophysics Data System (ADS)

    Petrovic, K.

    2015-10-01

    Light emitting electron beam generated in a vacuum chamber is used as a medium for visualizing Jupiter's electromagnetic radiation. Dual dipole array antenna is receiving HF radio signals that are next amplified to radiate a strong electromagnetic field capable of influencing the propagation of electron beam in plasma. Installation aims to provide a platform for observing the characteristics of light emitting beam in 3D, as opposed to the experiments with cathode ray tubes in 2-dimensional television screens. Gas giant 'speaking' to us by radio waves bends the light in the tube, allowing us to see and hear the messages of Jupiter - God of light and sky.

  16. Zelenchukskaya Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Dyakov, Andrei

    2013-01-01

    This report summarizes information about Zelenchukskaya Radio Astronomical Observatory activities in 2012. Last year a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to the required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  17. Svetloe Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Rahimov, Ismail

    2013-01-01

    This report summarizes information about the Svetloe Radio Astronomical Observatory activities in 2012. Last year, a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to their required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  18. A Descriptive-Predictive Model of CME Propagation based on Multi-Instrument Data

    NASA Astrophysics Data System (ADS)

    Cremades, H.; Iglesias, F. A.; St Cyr, O. C.; Kaiser, M. L.; Xie, H.; Quirk, C. A.

    2011-12-01

    The space weather field has thriven in the past decades, mainly given the proliferation of space missions devoted to study the Sun and its relations to Earth. In addition, the high dependence on technology developed by society demands that a solar event, its time of arrival at Earth, and its degree of geoeffectiveness can be promptly forecasted. The accurate prediction of a CME-driven shock arrival time at Earth is therefore challenging and crucial, so as to take emergency measures when required. In this direction, we have studied 90 Earth-directed events in different stages of their propagation from Sun to Earth. A descriptive model was derived from CME height-time information from SOHO/LASCO coronagraph data, interplanetary shock approximate locations derived from Type II radio emissions detected by Wind/WAVES, and shock time of arrival at L1 as seen in-situ by the ACE and/or Wind spacecraft. The descriptive model provided a general overview of CME-driven shocks kinematics, allowing the determination of typical propagation profiles and constrains on the main parameters. On the basis of these, a predictive model was formulated, which relies on CME and low-frequency type II radio emissions. We discuss results on CME-radio emission associations, characteristics of the propagation in the interplanetary medium, and the success of the predictive model to forecast the arrival times of shocks at Earth.

  19. ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS

    SciTech Connect

    Liu, Ying D.; Luhmann, Janet G.; Moestl, Christian; Bale, Stuart D.; Lin, Robert P.; Lugaz, Noe; Davies, Jackie A.

    2013-05-20

    We investigate how coronal mass ejections (CMEs) propagate through, and interact with, the inner heliosphere between the Sun and Earth, a key question in CME research and space weather forecasting. CME Sun-to-Earth kinematics are constrained by combining wide-angle heliospheric imaging observations, interplanetary radio type II bursts, and in situ measurements from multiple vantage points. We select three events for this study, the 2012 January 19, 23, and March 7 CMEs. Different from previous event studies, this work attempts to create a general picture for CME Sun-to-Earth propagation and compare different techniques for determining CME interplanetary kinematics. Key results are obtained concerning CME Sun-to-Earth propagation: (1) the Sun-to-Earth propagation of fast CMEs can be approximately formulated into three phases: an impulsive acceleration, then a rapid deceleration, and finally a nearly constant speed propagation (or gradual deceleration); (2) the CMEs studied here are still accelerating even after the flare maximum, so energy must be continuously fed into the CME even after the time of the maximum heating and radiation has elapsed in the corona; (3) the rapid deceleration, presumably due to interactions with the ambient medium, mainly occurs over a relatively short timescale following the acceleration phase; and (4) CME-CME interactions seem a common phenomenon close to solar maximum. Our comparison between different techniques (and data sets) has important implications for CME observations and their interpretations: (1) for the current cases, triangulation assuming a compact CME geometry is more reliable than triangulation assuming a spherical front attached to the Sun for distances below 50-70 solar radii from the Sun, but beyond about 100 solar radii we would trust the latter more; (2) a proper treatment of CME geometry must be performed in determining CME Sun-to-Earth kinematics, especially when the CME propagation direction is far away from the observer; and (3) our approach to comparing wide-angle heliospheric imaging observations with interplanetary radio type II bursts provides a novel tool in investigating CME propagation characteristics. Future CME observations and space weather forecasting are discussed based on these results.

  20. Features of Superlong-Distance and Round-the-World Propagation of HF Waves

    NASA Astrophysics Data System (ADS)

    Ponyatov, A. A.; Vertogradov, G. G.; Uryadov, V. P.; Vertogradova, E. G.; Shumaev, V. V.; Chernov, A. G.; Chaika, E. G.

    2014-11-01

    We present the results of the experimental studies of the features of superlong-distance and round-the-world propagation of the HF waves in the radio lines with different orientation and length, which were obtained in 2012-2014 using a new method of oblique ionospheric sounding. The frequency-time travel intervals of the direct round-the-world signals, their amplitude-frequency and angular-frequency characteristics are determined. The mechanism of propagation and transformation of the round-the-world signals due to the radio-wave refraction by the transverse electron-density gradients in the region of approach of two optimal paths passing via the transmitter and receiver so that each path forms the smallest angle with the terminator. It is shown that the proposed mechanism is in good agreement with the experimentally observed variation of the azimuth of the direct round-the-world signal on the Cyprus-Rostov-on-Don path and on the Alice Springs (Australia)-Rostov-on-Don path in the absence of variation of the direct round-the-world signal azimuth. For the superlong-distance propagation of the HF waves on the Virginia (USA)-Yoshkar-Ola and Puerto Rico-Yoshkar-Ola (the distances about 8000-10000 km) paths, the best propagation conditions are observed when the entire path is in the illuminated ionosphere near the terminator boundary making a small angle of 10°-25° with the terminator.

  1. Antenna and rectifier designs for miniaturized radio frequency energy scavenging systems 

    E-print Network

    Ding, Yi

    2015-11-26

    With ample radio transmitters scattered throughout urban landscape, RF energy scavenging emerges as a promising approach to extract energy from propagating radio waves in the ambient environment to continuously charge ...

  2. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  3. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Schaffer, R. D.; Gorenstein, M. V.

    1981-01-01

    The activities of the Deep Space Network in support of Radio Astronomy Operations during April and May 1981 are reported. Work in progres in support of an experiment selected for use of the DSN by the Radio Astronomy Experiment Selection Panel, Twin Quasi-Stellar Object VLBI, is reported.

  4. Proceedings of the Seventeenth NASA Propagation Experimenters Meeting (NAPEX 17) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (editor)

    1993-01-01

    The NASA Propagation Experimenters Meeting (NAPEX) is convened annually to discuss studies made on radio wave propagation by investors from domestic and international organizations. NAPEX 17 was held on 15 June 1993. The meeting was organized into two technical sessions. The first session was dedicated to slant path propagation studies and experiments. The second session focused on propagation studies for mobile and personal communications. Preceding NAPEX 17, the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop was held on 14 June 1993 to review ACTS propagation activities with emphasis on ACTS experiments status and data collection, processing, and exchange.

  5. Managing Mobile/Satellite Propagation Data

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1990-01-01

    "Data Management System for Mobile Satellite Propagation" software package collection of FORTRAN programs and UNIX shell scripts designed to handle huge amounts of data resulting from mobile/satellite radio-propagation experiments. Data from experiments converted into standard and more useful forms. Software package contains program to convert binary format of data into standard ASCII format suitable for use with wide variety of computing-machine architectures. Written in either FORTRAN 77 or UNIX shell scripts.

  6. Elements of Radio Waves

    E-print Network

    Frank G. Borg; Ismo Hakala; Jukka Määttälä

    2007-12-24

    We present a summary of the basic properties of the radio wave generation, propagation and reception, with a special attention to the gigahertz bandwidth region which is of interest for wireless sensor networks. We also present some measurement results which use the so-called RSSI indicator in order to track how the field strength varies with position and distance of the transceivers. We hope the paper may be useful to anyone who looks for a quick review of the fundamentals of electromagnetic theory with application to antennas.

  7. Planetary radio waves

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1986-01-01

    Three planets, the earth, Jupiter and Saturn are known to emit nonthermal radio waves which require coherent radiation processes. The characteristic features (frequency spectrum, polarization, occurrence probability, radiation pattern) are discussed. Radiation which is externally controlled by the solar wind is distinguished from internally controlled radiation which only originates from Jupiter. The efficiency of the externally controlled radiation is roughly the same at all three planets (5 x 10 to the -6th) suggesting that similar processes are active there. The maser radiation mechanism for the generation of the radio waves and general requirements for the mechanism which couples the power generator to the region where the radio waves are generated are briefly discussed.

  8. Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernov, S. V.; Gwinn, C. R.; Tchekhovskoy, A. A.

    2015-10-01

    Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.

  9. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  10. 47 CFR 80.767 - Propagation curve.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Propagation curve. 80.767 Section 80.767 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the direction of each...

  11. 47 CFR 80.767 - Propagation curve.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Propagation curve. 80.767 Section 80.767 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the direction of each...

  12. 47 CFR 80.767 - Propagation curve.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Propagation curve. 80.767 Section 80.767 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the direction of each...

  13. 47 CFR 80.767 - Propagation curve.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Propagation curve. 80.767 Section 80.767 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the direction of each...

  14. User needs for propagation data

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas M.

    1993-01-01

    New and refined models of radio signal propagation phenomena are needed to support studies of evolving satellite services and systems. Taking an engineering perspective, applications for propagation measurements and models in the context of various types of analyses that are of ongoing interest are reviewed. Problems that were encountered in the signal propagation aspects of these analyses are reviewed, and potential solutions to these problems are discussed. The focus is on propagation measurements and models needed to support design and performance analyses of systems in the Mobile-Satellite Service (MSS) operating in the 1-3 GHz range. These systems may use geostationary or non-geostationary satellites and Frequency Division Multiple Access (FDMA), Time Division Multiple Access Digital (TDMA), or Code Division Multiple Access (CDMA) techniques. Many of the propagation issues raised in relation to MSS are also pertinent to other services such as broadcasting-satellite (sound) at 2310-2360 MHz. In particular, services involving mobile terminals or terminals with low gain antennas are of concern.

  15. Effect of Low pH and Aluminum Toxicity on the Photosynthetic Characteristics of Different Fast-Growing Eucalyptus Vegetatively Propagated Clones

    PubMed Central

    Yang, Mei; Tan, Ling; Xu, Yuanyuan; Zhao, Yihui; Cheng, Fei; Ye, Shaoming; Jiang, Weixin

    2015-01-01

    Knowing how acid soils and aluminum in soils may limit the growth of Eucalyptus trees in plantations is important because these plantations grow in many tropical and subtropical regions. Seedlings of four vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla ‘GLGU9’(G9), E. grandis × E. urophylla ‘GLGU12’ (G12), E. urophylla × E. camaldulensis ‘GLUC3’ (G3) and E. urophylla ‘GLU4’(G4), were subjected to liquid culture with Hoagland nutrient solution for 40 days, then treated with four different treatments of acid and aluminum for 1 day. The four treatments used either pH 3.0 or 4.0 with or without added aluminum (4.4 mM) in all possible combinations; a control used no added aluminum at pH 4.8. Subsequently, the photosynthetic parameters and morphology of leaves from eucalypt seedlings were determined and observed. The results showed that the tested chlorophyll content, net photosynthetic rate, transpiration rate and water use efficiency were apparently inhibited by aluminum. Under uniform Al concentration (4.4 mM), the Al-induced limitation to photosynthetic parameters increased with pH, indicating acid stimulation to Al toxicity. Among all treatments, the most significant reduction was found in the combination of pH 3.0 and 4.4 mM Al. The photosynthetic and transpiration rates showed similar trends with G9 > G12 > G3 > G4, suggesting that G9 and G12 had higher Al-tolerance than other two clones. Microscopic observation revealed changes in leaf morphology when exposed to Al stress; for example, a reduced thickness of leaf epidermis and palisade tissue, the descendant palisade tissue/spongy tissue ratio and leaf tissue looseness. Overall, the acid and aluminum stress exerted negative effects on the photosynthetic activity of eucalypt seedlings, but the differences in tolerance to Al toxicity between the clones were favorable, offering potential to improve Eucalyptus plantation productivity by selecting Al tolerant clones. PMID:26090998

  16. ON THE PROPAGATION PROPERTIES OF SURFACE V. JAK SI '

    E-print Network

    of the radio waves around the earth surface. These are the electromagnetic waves that propagate alongON THE PROPAGATION PROPERTIES OF SURFACE WAVES V. JAK Ÿ SI ' C \\Lambda , S. MOLCHANOV y AND L. PASTUR z 1. Introduction. Surface waves were discovered by Rayleigh at the end of the last century [1

  17. Rift propagation

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.; Schubert, G.

    1989-01-01

    A model for rift propagation which treats the rift as a crack in an elastic plate which is filled from beneath by upwelling viscous asthenosphere as it lengthens and opens. Growth of the crack is driven by either remotely applied forces or the pressure of buoyant asthenosphere in the crack and is resisted by viscous stresses associated with filling the crack. The model predicts a time for a rift to form which depends primarily on the driving stress and asthenosphere viscosity. For a driving stress on the order of 10 MPa, as expected from the topography of rifted swells, the development of rifts over times of a few Myr requires an asthenosphere viscosity of 10 to the 16th Pa s (10 to the 17th poise). This viscosity, which is several orders of magnitude less than values determined by postglacial rebound and at least one order of magnitude less than that inferred for spreading center propagation, may reflect a high temperature or large amount of partial melting in the mantle beneath a rifted swell.

  18. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nassar (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program.

  19. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  20. Propagation of a fluidization - combustion wave

    SciTech Connect

    Pron, G.P.; Gusachenko, L.K.; Zarko, V.E.

    1994-05-01

    A fluidization-combustion wave propagating through a fixed and initially cool bed was created by igniting coal at the top surface of the bed. The proposed physical interpretation of the phenomenon is in qualitative agreement with the experimental dependences of the characteristics of the process on determining parameters. A kindling regime with forced wave propagation is suggested.

  1. Astrometry and geodesy with radio interferometry: experiments, models, results

    E-print Network

    Ojars J. Sovers; John L. Fanselow; Christopher S. Jacobs

    1997-12-17

    Summarizes current status of radio interferometry at radio frequencies between Earth-based receivers, for astrometric and geodetic applications. Emphasizes theoretical models of VLBI observables that are required to extract results at the present accuracy levels of 1 cm and 1 nanoradian. Highlights the achievements of VLBI during the past two decades in reference frames, Earth orientation, atmospheric effects on microwave propagation, and relativity.

  2. EVA Radio DRATS 2011 Report

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Bakula, Casey J.

    2012-01-01

    In the Fall of 2011, National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) participated in the Desert Research and Technology Studies (DRATS) field experiments held near Flagstaff, Arizona. The objective of the DRATS outing is to provide analog mission testing of candidate technologies for space exploration, especially those technologies applicable to human exploration of extra- terrestrial rocky bodies. These activities are performed at locations with similarities to extra-terrestrial conditions. This report describes the Extravehicular Activity (EVA) Dual-Band Radio Communication System which was demonstrated during the 2011 outing. The EVA radio system is designed to transport both voice and telemetry data through a mobile ad hoc wireless network and employs a dual-band radio configuration. Some key characteristics of this system include: 1. Dual-band radio configuration. 2. Intelligent switching between two different capability wireless networks. 3. Self-healing network. 4. Simultaneous data and voice communication.

  3. A Study of Type II Radio Bursts to Map the Alfvén Speed profile in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Martinez Oliveros, J.; Bain, H. M.; Sundkvist, D. J.; Bale, S. D.; Krucker, S.

    2013-12-01

    It is well accepted that interplanetary Type II radio bursts are the manifestations of electron acceleration in shocks driven by propagating of coronal mass ejections (CMEs) traveling faster than the characteristic local plasma speed. The slow solar wind (in the equatorial plane) becomes super-Alfvénic at the so-called 'Alfvén point', which is thought to occur at a distance of around 10 Rsun. However, observationally this has not been confirmed and furthermore, it is likely that the Alfvén point will vary considerably due to the changing conditions of the ambient medium, over the solar cycle. We present results from an investigation of coronal and interplanetary type II radio bursts to probe the changing plasma parameters in the ambient medium. A prominent feature of type II radio bursts, is the intermittency of the observed emission across the metric, decametric and kilometric frequency ranges, as the shock propagates to greater distances. This can be attributed to changes in both the shock driver and to the conditions in the ambient medium. Using radio observations from e.g. STEREO/WAVES and WIND/WAVES we will determine the distance of the observed type II emission and the speed of the associated shock. By establishing regions of the corona and interplanetary medium that are predisposed to shock formation, we map out the profile of the local Alfvén speed.

  4. RESOLVE: Bayesian algorithm for aperture synthesis imaging in radio astronomy

    NASA Astrophysics Data System (ADS)

    Junklewitz, H.; Bell, M. A.; Ensslin, T.

    2015-05-01

    RESOLVE is a Bayesian inference algorithm for image reconstruction in radio interferometry. It is optimized for extended and diffuse sources. Features include parameter-free Bayesian reconstruction of radio continuum data with a focus on extended and weak diffuse sources, reconstruction with uncertainty propagation dependent on measurement noise, and estimation of the spatial correlation structure of the radio astronomical source. RESOLVE provides full support for measurement sets and includes a simulation tool (if uv-coverage is provided).

  5. Electron Exciter Speeds Associated with Interplanetary Type III Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; MacDowall, R. J.

    2015-10-01

    This article provides a comprehensive quantitative investigation of the kinematics of the electron exciters associated with interplanetary type III solar radio bursts. Detailed multispacecraft analyses of the radio and plasma wave data from the widely separated Wind and STEREO spacecraft are provided for five interplanetary type III bursts that illustrate different aspects of the problems involved in establishing the electron exciter speeds. The exciter kinematics are determined from the observed frequency drift and in-situ radiation characteristics for each type III burst. The analysis assumes propagation of the electron exciters along a Parker spiral, with origin at the associated solar active region, and curvature determined by the measured solar wind speed. The analyses take fully into account the appropriate light-propagation-time corrections from the radio source to the observing spacecraft as the exciters propagate along the Parker spiral path. For the five in-situ type III bursts analyzed in detail here, we found that their initial exciter speeds, near the Sun, ranged from 0.2c to 0.38c, where c is the speed of light. This is significantly higher than the exciter speeds derived from other recent analyses. The results presented here further suggest that the type III electron exciters normally decelerate as they propagate through the interplanetary medium. We argue based on the observations by the widely separated spacecraft that the initial part of the type III radiation usually occurs at the fundamental of the plasma frequency. Finally, we compare the results for the exciter speeds to all previous determinations and provide quantitative arguments to explain the differences.

  6. Radio frequency plasma power dependence of the moisture permeation barrier characteristics of Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition

    SciTech Connect

    Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 ; Choi, Hagyoung; Lee, Sanghun; Jeon, Heeyoung; Jeon, Hyeongtag; Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791

    2013-11-07

    In the present study, we investigated the gas and moisture permeation barrier properties of Al{sub 2}O{sub 3} films deposited on polyethersulfone films (PES) by capacitively coupled plasma (CCP) type Remote Plasma Atomic Layer Deposition (RPALD) at Radio Frequency (RF) plasma powers ranging from 100 W to 400 W in 100 W increments using Trimethylaluminum [TMA, Al(CH{sub 3}){sub 3}] as the Al source and O{sub 2} plasma as the reactant. To study the gas and moisture permeation barrier properties of 100-nm-thick Al{sub 2}O{sub 3} at various plasma powers, the Water Vapor Transmission Rate (WVTR) was measured using an electrical Ca degradation test. WVTR decreased as plasma power increased with WVTR values for 400 W and 100 W of 2.6 × 10{sup ?4} gm{sup ?2}day{sup ?1} and 1.2 × 10{sup ?3} gm{sup ?2}day{sup ?1}, respectively. The trends for life time, Al-O and O-H bond, density, and stoichiometry were similar to that of WVTR with improvement associated with increasing plasma power. Further, among plasma power ranging from 100 W to 400 W, the highest power of 400 W resulted in the best moisture permeation barrier properties. This result was attributed to differences in volume and amount of ion and radical fluxes, to join the ALD process, generated by O{sub 2} plasma as the plasma power changed during ALD process, which was determined using a plasma diagnosis technique called the Floating Harmonic Method (FHM). Plasma diagnosis by FHM revealed an increase in ion flux with increasing plasma power. With respect to the ALD process, our results indicated that higher plasma power generated increased ion and radical flux compared with lower plasma power. Thus, a higher plasma power provides the best gas and moisture permeation barrier properties.

  7. Characteristics of second-order residual ionospheric error in GNSS radio occultation and its impact on inversion of neutral atmospheric parameters

    NASA Astrophysics Data System (ADS)

    Qu, Xiaochuan; Li, Zhenghang; An, Jiachun; Ding, Wenwu

    2015-08-01

    In Global Navigation Satellite Systems (GNSS) radio occultation (RO), one of the most significant error sources is the ionospheric error, which is largely eliminated by dual-frequency linear combination. However, second-order residual ionospheric error (RIE) in excess phase still remains and affects the retrievals of neutral atmospheric parameters in RO. Second-order RIE varies with RO azimuth in a sinusoidal pattern for a set of simulated RO events occurring in the same location at different azimuths. The amplitude of the sinusoidal curve below 60 km is at the order of sub-centimeter under moderate solar activity level. The retrieval biases of the neutral atmospheric parameters induced by second-order RIE also have sinusoidal features with RO azimuth, but have opposite variation trends to that of the second-order RIE. The RO azimuths of the maximum positive and negative retrieval biases correspond approximately to the azimuths of maximum negative and positive second-order RIEs, respectively. The order of the maximum bending angle bias induced by the second-order RIE is about 10-8 rad under moderate solar activity level. However, the retrieval errors at low latitude are larger than those at high and middle latitudes, and the maximum temperature bias at low latitude could be 0.35 K at 40 km. Based on the sinusoidal variation of second-order RIE, it is shown that even at the same RO point and under the same solar activity level, the second-order RIEs at different RO azimuths still have different effects on the retrieval precision of atmospheric parameters. This should be considered carefully when many RO profiles are averaged for climate trend detection, especially at low latitude.

  8. Part 6. Propagation Propagation and Planting of

    E-print Network

    Part 6. Propagation Propagation and Planting of Containerized Eucalyptus Seedlings in Hawaii1 Gerald A. Walters2 Eucalyptus seedlings are propagated and planted in Hawaii through a container refores containerized eucalyptus seedlings. 1 Presented at the Workshop on Eucalyptus in California, June 14-16, 1983

  9. Propagation considerations in satellite communication systems

    NASA Astrophysics Data System (ADS)

    Brussaard, Gert; Rogers, David V.

    1990-07-01

    Radio wave propagation phenomena that affect the performance of satellite communication systems are concisely discussed to introduce some topics in propagation research related to satellite systems design and to illustrate related problems and uncertainties. The focus is on troposphere effects. A summary of relevant propagation impairments is supplied, and general classes of impairments, the physical cause of each, and the major importance of each for sattelite systems are given Some impairments in the table are critically important of each for certain systems applications. For example, attenuation due to rainfall can be substantial for significant percentages of the time on 30/20-GHz propagation paths and will be the dominant path impairment for most Ka-band systems. Appropriate literature sources are referenced for the additional details that will be required for many applications.

  10. Cyclotron absorption of radio emission within pulsar magnetospheres Qinghuan LuoP

    E-print Network

    Melrose, Don

    as B/1/R3 . Thus, radio waves with frequency v must propagate through a transition region from Ve @ v radio emission, as cyclotron resonance causes preferential absorption of waves with a particular typeCyclotron absorption of radio emission within pulsar magnetospheres Qinghuan LuoP and D. B. Melrose

  11. A Hidden Environment Model for Constructing Indoor Radio Maps Hangjin Zhang

    E-print Network

    Almeroth, Kevin C.

    , indoor wireless positioning systems rely heavily on the ac- curacy of indoor radio propagation maps [1 of pervasive wireless communica- tion systems, the analysis and construction of indoor radio models has becomeA Hidden Environment Model for Constructing Indoor Radio Maps Zhe Xiang Hangjin Zhang ¡ Jian

  12. Over-the-Horizon Anomalous VHF Propagation and Earthquake Precursors

    NASA Astrophysics Data System (ADS)

    Devi, M.; Barbara, A. K.; Ruzhin, Ya. Yu.; Hayakawa, M.

    2012-09-01

    The purpose of this paper is to review current activities for the identification of earthquake (EQ) precursors and their epicentres. Starting with a brief description on the background to approaches using ultra-low (ULF), extremely low (ELF), very low/low (VLF/LF), medium (MF), high (HF), very high frequency (VHF) etc. radio waves for short-term EQ prediction, the paper concentrates on those characteristics of anomalous VHF reception from frequency-modulation (FM) radio transmissions and broadcast television (TV) signals in relation to EQ precursors. The possible ways to identify an impending EQ and its epicentre position as defined and observed by workers from a variety of studies fall within the purview of the paper. In attempts to find pre-EQ energy exchange and coupling processes between the lithosphere and atmosphere, the paper highlights some relevant observations of surface latent heat flux, sonic detection and ranging (SODAR) echograms and LF propagation. Explanations on possible causes leading to such anomalous reception are reviewed with reported results in association with pre-seismic induced modifications to tropospheric and ionospheric parameters.

  13. The Radio JOVE Project - Shoestring Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  14. INVITED PAPER, IEEE PIMRC'97 HELSINKI, FINLAND. 0 Impulse Radio

    E-print Network

    Southern California, University of

    INVITED PAPER, IEEE PIMRC'97 ­ HELSINKI, FINLAND. 0 Impulse Radio Robert A. Scholtz and Moe Z. Win, Los Angeles, CA 90089-2565 USA Abstract Impulse radio, a form of ultra-wide band signaling, has. This paper describes the characteristics of impulse radio, gives analytical estimates of its multiple access

  15. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Mahoney, M. J.; Jacobson, A. R.; Knowles, S. H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities.

  16. Proceedings of the 16th NASA Propagation Experimenters Meeting (NAPEX 16) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (editor)

    1992-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. NAPEX 16 was held on May 29, 1992 in Houston, Texas. The meeting was organized into two technical sessions. The first session was dedicated to slant path propagation studies and measurements. The second session focused on Olympus propagation measurements and results. Following NAPEX 16, the Advanced Communications Technology Satellite (ACTS) Miniworkshop was held to review ACTS propagation activities with emphasis on ACTS hardware development and experiment planning. Eight technical papers were presented by contributors from government agencies, private industry, and university research establishments.

  17. Nonlinear Characteristics of Wave Propagation over Vegetation 

    E-print Network

    Venkattaramanan, Aravinda

    2014-04-28

    protection involves construction of hard structures such as groins and breakwaters. These methods are effective as they hinder and reduce the wave orbital velocities (Price et al. 1968), but they also alter fluctuations of temperature, salinity, water...

  18. S-Band propagation measurements

    NASA Technical Reports Server (NTRS)

    Briskman, Robert D.

    1994-01-01

    A geosynchronous satellite system capable of providing many channels of digital audio radio service (DARS) to mobile platforms within the contiguous United States using S-band radio frequencies is being implemented. The system is designed uniquely to mitigate both multipath fading and outages from physical blockage in the transmission path by use of satellite spatial diversity in combination with radio frequency and time diversity. The system also employs a satellite orbital geometry wherein all mobile platforms in the contiguous United States have elevation angles greater than 20 deg to both of the diversity satellites. Since implementation of the satellite system will require three years, an emulation has been performed using terrestrial facilities in order to allow evaluation of DARS capabilities in advance of satellite system operations. The major objective of the emulation was to prove the feasibility of broadcasting from satellites 30 channels of CD quality programming using S-band frequencies to an automobile equipped with a small disk antenna and to obtain quantitative performance data on S-band propagation in a satellite spatial diversity system.

  19. Proceedings of the Eighteenth NASA Propagation Experimenters Meeting (NAPEX 18) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (editor)

    1994-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. Participants included representatives from Canada, the Netherlands, England, and the United States, including researchers from universities, government agencies, and private industry. The meeting was organized into two technical sessions. The first session was dedicated to slant path propagation studies and experiments. The second session focused on propagation studies for mobile, personal, and sound broadcast systems. In total, 14 technical papers and some informal contributions were presented. Preceding NAPEX_17, the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop was held to review ACTS propagation activities.

  20. MIMO channel estimation method using ray-tracing propagation model

    E-print Network

    Myung, Noh-Hoon

    MIMO channel estimation method using ray-tracing propagation model S.-H. Oh and N.-H. Myung An analytical method, which estimates MIMO channel characteristics using a 3D ray-tracing propagation model by using the ray-tracing propagation model. Using Jensen's inequality and concavity of `log det', an upper

  1. Radio Polarization of BL Lacertae objects

    E-print Network

    Fan, J H; Yuan, Y H; Wang, Y X; Liu, Y; Su, J B; Zhang, Y W; Yang, J H; Huang, Y; Fan, Jun-Hui; Hua, Tong-Xu; Yuan, Yu-Hai; Wang, Yong-Xiang; Liu, Yi; Su, Jiang-Bo; Zhang, Yong-Wei; Yang, Jiang-He; Huang, Yong

    2006-01-01

    In this paper, using the database of the university of Michigan Radio Astronomy Observatory (UMRAO) at three (4.8 GHz, 8 GHZ, and 14.5 GHz) radio frequencies, we studied the polarization properties for 47 BL Lacertae objects(38 radio selected BL Lacertae objects, 7 X-ray selected BL Lacertae, and two inter-middle objects (Mkn 421 and Mkn 501), and found that (1) The polarizations at higher radio frequency is higher than those at lower frequency, (2) The variability of polarization at higher radio frequency is higher than those at lower frequency, (3) The polarization is correlated with the radio spectral index, and (4) The polarization is correlated with core-dominance parameter for those objects with known core-dominance parameters suggesting that the relativistic beaming could explain the polarization characteristic of BL Lacs.

  2. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX 20) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom) industry, academia, and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at these meetings by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satcom industry.

  3. Detection of traveling ionospheric disturbances by medium-frequency Doppler sounding using AM radio transmissions

    NASA Astrophysics Data System (ADS)

    Chilcote, M.; LaBelle, J.; Lind, F. D.; Coster, A. J.; Miller, E. S.; Galkin, I. A.; Weatherwax, A. T.

    2015-03-01

    Nighttime traveling ionosphere disturbances (TIDs) propagating in the lower F region of the ionosphere have been detected by measuring time variations in the Doppler shifts of commercial AM radio broadcast signals. Three receivers, components of the Intercepted Signals for Ionospheric Science (ISIS) Array software radio instrumentation network in the northeastern United States, recorded signals from two radio stations during 11 nights in March-April, 2012. By combining these measurements, TIDs were detected as approximately 40min periodic variations in the frequencies of the received signals resulting from Doppler shifts produced by the ionosphere. The variations had amplitudes of up to a few tenths of a hertz and were correlated across the array. For one study interval, 0000-0400 UT on 13 April 2012, simultaneous GPS total electron content, Digisonde®, and Super Dual-Auroral Radar Network coherent backscatter radar measurements confirmed the detection of TIDs with the same characteristics. Besides TIDs, the receiver network often detected large (nearly 1 Hz) upward (downward) Doppler shifts of the AM broadcast signals at the dawn (dusk) terminator. These results demonstrate that AM radio signals can be used for detection and monitoring of nighttime TIDs and related effects.

  4. Radio emission from supernova remnants

    NASA Astrophysics Data System (ADS)

    Dubner, Gloria; Giacani, Elsa

    2015-09-01

    The explosion of a supernova releases almost instantaneously about 10^{51} ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from an SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critically discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analysis of the prospects for future research with the latest-generation radio telescopes.

  5. Proceedings of the Twenty-First NASA Propagation Experiments Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry. NAPEX XXI took place in El Segundo, California on June 11-12, 1997 and consisted of three sessions. Session 1, entitled "ACTS Propagation Study Results & Outcome " covered the results of 20 station-years of Ka-band radio-wave propagation experiments. Session 11, 'Ka-band Propagation Studies and Models,' provided the latest developments in modeling, and analysis of experimental results about radio wave propagation phenomena for design of Ka-band satellite communications systems. Session 111, 'Propagation Research Topics,' covered a diverse range of propagation topics of interest to the space community, including overviews of handbooks and databases on radio wave propagation. The ACTS Propagation Studies miniworkshop was held on June 13, 1997 and consisted of a technical session in the morning and a plenary session in the afternoon. The morning session covered updates on the status of the ACTS Project & Propagation Program, engineering support for ACTS Propagation Terminals, and the Data Center. The plenary session made specific recommendations for the future direction of the program.

  6. Graphene electrostatic microphone and ultrasonic radio.

    PubMed

    Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M F; Zettl, Alex K

    2015-07-21

    We present a graphene-based wideband microphone and a related ultrasonic radio that can be used for wireless communication. It is shown that graphene-based acoustic transmitters and receivers have a wide bandwidth, from the audible region (20?20 kHz) to the ultrasonic region (20 kHz to at least 0.5 MHz). Using the graphene-based components, we demonstrate efficient high-fidelity information transmission using an ultrasonic band centered at 0.3 MHz. The graphene-based microphone is also shown to be capable of directly receiving ultrasound signals generated by bats in the field, and the ultrasonic radio, coupled to electromagnetic (EM) radio, is shown to function as a high-accuracy rangefinder. The ultrasonic radio could serve as a useful addition to wireless communication technology where the propagation of EM waves is difficult. PMID:26150483

  7. Uranus as a radio source

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.; Zarka, P.; Lecacheux, A.; Leblanc, Y.; Aubier, M.; Ortega-Molina, A.

    1991-01-01

    The complex nature of the Uranus radio emissions, both magnetospheric and atmospheric, is reviewed, with emphasis on the identification of distinct components and the determination of their source locations. Seven radii components were discovered in addition to the RF signature of lightning in the planet's atmosphere. Six of the seven magnetospheric components are freely propagating emissions; one component, the nonthermal continuum, is trapped in the density cavity between the magnetopause and the dense inner magnetosphere. The radio components are divided into two types according to their emission signature: bursty emission and smooth emission. The inferred source location for the dominant nightside emission is above the nightside magnetic pole, largely overlapping the UV auroral region and the magnetic polar cap. The N-burst component appears to be associated with solar-wind enhancements at Uranus, consistent with the idea that the solar wind was triggering magnetospheric substormlike activity during the encounter.

  8. Radio Jove: Jupiter Radio Astronomy for Citizens

    NASA Astrophysics Data System (ADS)

    Higgins, Charles; Thieman, J. R.; Flagg, R.; Reyes, F. J.; Sky, J.; Greenman, W.; Brown, J.; Typinski, D.; Ashcraft, T.; Mount, A.

    2014-01-01

    Radio JOVE is a hands-on educational activity that brings the radio sounds of the Sun, Jupiter, the Milky Way Galaxy, and terrestrial radio noise to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with professional radio observatories in real-time over the Internet. Our website (http://radiojove.gsfc.nasa.gov) includes science information, construction manuals, observing guides, and education resources for teachers and students. Radio Jove is continually expanding its participants with over 1800 kits sold to more than 70 countries worldwide. Recently some of our most dedicated observers have upgraded their Radio Jove antennas to semi-professional observatories. We have spectrographs and wide band antennas, some with 8 MHz bandwidth and some with dual polarization capabilities. In an effort to add to the science literature, these observers are coordinating their efforts to pursue some basic questions about Jupiter’s radio emissions (radio source locations, spectral structure, long term changes, etc.). We can compare signal and ionosphere variations using the many Radio Jove observers at different locations. Observers are also working with members of the Long Wavelength Array Station 1 (LWA1) radio telescope to coordinate observations of Jupiter; Radio Jove is planning to make coordinated observations while the Juno Mission is active beginning in 2015. The Radio Jove program is overviewed, its hardware and software are highlighted, recent sample observations are shown, and we demonstrate that we are capable of real citizen science.

  9. Rosetta Radio Science Investigations (RSI)

    NASA Astrophysics Data System (ADS)

    Paetzold, M.

    The Rosetta Radio Science Investigations (RSI) experiment addresses fundamental aspects of cometary physics such as the mass and bulk density of the nucleus, its gravity field, nucleus size and shape, internal structure, composition and roughness of the nucleus surface, the abundance of large dust grains, the plasma content in the coma and the combined dust and gas mass flux. RSI does not have a dedicated instrument on the Rosetta spacecraft but makes use of the onboard radio subsystem which is responsible for communication between the spacecraft and the ground stations on Earth. The Rosetta radio subsystem is specially equipped with an Ultra-Stable Oscillator (USO) which significantly improves the sensitivity and accuracy of the measurements. The spacecraft is capable of receiving two uplink signals non-simultaneously at either X-band (7100 MHz) or S-band via the High Gain Antenna (HGA). The downlink transmission via the HGA can occur simultaneously at S-band and X-band. RSI is interested in the nondispersive frequency shifts (classical Doppler) and dispersive frequency shifts (due to the ionized propagation medium), the signal power and the polarization of the radio carrier waves. Variations in these parameters will yield information on the motion of the spacecraft, the perturbing forces acting on the spacecraft and the propagation medium. The RSI science objectives are divided into the primary science objectives (a) cometary gravity field investigations, (b) comet nucleus investigations, (c) cometary coma investigations, (d) asteroid mass and bulk density and the secondary science objectives (e) solar corona sounding, (f) a search for gravitational waves at the comet, the asteroids flybys and during cruise.

  10. Rosetta Radio Science Investigations (RSI)

    NASA Astrophysics Data System (ADS)

    Pätzold, M.; Hagermann, A.; Rsi Team

    2003-04-01

    The Rosetta spacecraft, to be launched sometime in the near future, will be equipped with the Rosetta Radio Science Investigations (RSI) experiment. This experiment addresses fundamental aspects of cometary physics such as the mass and bulk density of the nucleus, its gravity field as well as nongravitational forces, nucleus size and shape, internal structure, composition and roughness of the nucleus surface, the abundance of large dust grains, the plasma content in the coma and the combined dust and gas mass flux. RSI does not have a dedicated instrument on the Rosetta spacecraft. Instead, it uses the onboard radio subsystem responsible for communication between the spacecraftand the ground stations on Earth. The Rosetta radio subsystem is specially equipped with an Ultra-Stable Oscillator (USO) which significantly improves the sensitivity and accuracy of the measurements. The spacecraft is capable of receiving two uplink signals at S-band via the Low Gain Antennas (LGAs), or non-simultaneously receiving at either X-band (7100 MHz) or S-band via the HGA. The downlink transmission via the High Gain Antenna (HGA) can occur simultaneously at S-band and X-band or at S-band only via the LGAs. RSI is interested in the nondispersive frequency shifts (classical Doppler) anddispersive frequency shifts (due to the ionized propagation medium), the signal power and the polarization of the radio carrier waves.Variations in these parameters will yield information on the motion of the spacecraft, theperturbing forces acting on the spacecraft and the propagation medium. The primary and secondary science objectives of RSI at the comet, the asteroid flybys (planned in the original mission scenario) and during cruise are divided into categories begin{itemize} cometary gravity field investigations, comet nucleus investigations, cometary coma investigations asteroid mass and bulk density as the prime science objectives, and begin{itemize} solar corona sounding as secondary science objective

  11. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  12. ATS-6 engineering performance report. Volume 5: Propagation experiments

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (editor)

    1981-01-01

    Propagation experiments at 1550 MHz to 1650 MHz are reviewed, including the Integrated L-Band Experiments system and results, and the Mobile L-Band Terminals for Satellite Communication system. Experiments at 4 GHz to 6 GHz are reported, including the Radio Frequency Interferometer Measurements system and results, and Earth station antenna evaluations. Experiments above 10 GHz are discussed, including Comsat and ATS-6 millimeter wave propagation/experiments, and communication ATS-6 version at 20 and 30 GHz.

  13. X-ray Dips Followed by Superluminal Ejections as Evidence for An Accretion Disc Feeding the Jet in A Radio Galaxy

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Jorstad, Svetlana G.; Gomez, Jose-Luis; Aller, Margo F.; Terasranta, Harri; Lister, Matthew L.; Stirling, Alastair, M.

    2002-01-01

    Accretion onto black holes is thought to power the relativistic jets and other high-energy phenomena in both active galactic nuclei (AGNs) and the "microquasar" binary systems located in our Galaxy. However, until now there has been insufficient multifrequency monitoring to establish a direct observational link between the black hole and the jet in an AGE. This contrasts with the case of microquasars, in which superluminal features appear and propagate down the radio jet shortly after sudden decreases in the X-ray flux. Such an X-ray dip is most likely caused by the disappearance of a section of the inner accretion disc, part of which falls past the event horizon and the remainder of which is injected into the jet. This infusion of energy generates a disturbance that propagates down the jet, creating the appearance of a superluminal bright spot. Here we report the results of three years of intensive monitoring of the X-ray and radio emission of the Seyfert-like radio galaxy 3C 120. As in the case of microquasars, dips in the X-ray emission are followed by ejections of bright superluminal knots in the radio jet. Comparison of the characteristic length and time scales allows us to infer that the rotational states of the black holes in these two objects are different.

  14. Proceedings of the Fifteenth NASA Propagation Experimenters Meeting (NAPEX 15) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (editor)

    1991-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. The meeting was organized into three technical sessions. The first session was dedicated to Olympus and ACTS studies and experiments, the second session was focused on the propagation studies and measurements, and the third session covered computer-based propagation model development. In total, sixteen technical papers and some informal contributions were presented. Following NAPEX 15, the Advanced Communications Technology Satellite (ACTS) miniworkshop was held on 29 Jun. 1991, to review ACTS propagation activities, with emphasis on ACTS hardware development and experiment planning. Five papers were presented.

  15. Proceedings of the Fourteenth NASA Propagation Experimenters Meeting (NAPEX 14) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (editor)

    1990-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. NAPEX XIV was held on May 11, 1990, at the Balcones Research Centers, University of Texas, Austin, Texas. The meeting was organized into two technical sessions: Satellite (ACTS) and the Olympus Spacecraft, while the second focused on the fixed and mobile satellite propagation studies and experiments. Following NAPEX XIV, the ACTS Miniworkshop was held at the Hotel Driskill, Austin, Texas, on May 12, 1990, to review ACTS propagation activities since the First ACTS Propagation Studies Workshop was held in Santa Monica, California, on November 28 and 29, 1989.

  16. A review of ionospheric effects on Earth-space propagation

    NASA Technical Reports Server (NTRS)

    Klobuchar, J. A.

    1984-01-01

    A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.

  17. Wave equations for pulse propagation

    SciTech Connect

    Shore, B.W.

    1987-06-24

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation.

  18. The Radio Amateur's Handbook.

    ERIC Educational Resources Information Center

    Blakeslee, Douglas, Ed.

    The objectives of this basic reference work for the radio amateur are to present radio theory and practice in terms of application and to reflect both the fundamentals and the rapidly-advancing technology of radio communications so that the radio amateur will have a guide to what is practical, meaningful, proven, and useful. Twenty-three chapters…

  19. Cognitive Radio Chapter 12

    E-print Network

    Kranakis, Evangelos

    Part II Cognitive Radio 169 D raft #12;D raft #12;Chapter 12 The Cognitive Radio Approach This chapter introduces and explores the notion of Cognitive Radio (CR). CR can be defined as the combination layer. The hardware layer consists of a minimum number of radio frequency elements, such as an antenna

  20. Geometric Sound Propagation

    E-print Network

    Lin, Ming C.

    paths Delay of sound Uses distance of path Attenuation from distance Inverse distance d c c: speedGeometric Sound Propagation Micah Taylor #12;Sound propagation Given a sound source in a scene arrive at the listener #12;Sound propagation Sound travels slow 344 m/s Specular reflections Perfect

  1. The universal propagator

    NASA Technical Reports Server (NTRS)

    Klauder, John R.

    1993-01-01

    For a general Hamiltonian appropriate to a single canonical degree of freedom, a universal propagator with the property that it correctly evolves the coherent-state Hilbert space representatives for an arbitrary fiducial vector is characterized and defined. The universal propagator is explicitly constructed for the harmonic oscillator, with a result that differs from the conventional propagators for this system.

  2. Tracking the CME-driven Shock Wave on 2012 March 5 and Radio Triangulation of Associated Radio Emission

    NASA Astrophysics Data System (ADS)

    Magdaleni?, J.; Marqué, C.; Krupar, V.; Mierla, M.; Zhukov, A. N.; Rodriguez, L.; Maksimovi?, M.; Cecconi, B.

    2014-08-01

    We present a multiwavelength study of the 2012 March 5 solar eruptive event, with an emphasis on the radio triangulation of the associated radio bursts. The main points of the study are reconstruction of the propagation of shock waves driven by coronal mass ejections (CMEs) using radio observations and finding the relative positions of the CME, the CME-driven shock wave, and its radio signatures. For the first time, radio triangulation is applied to different types of radio bursts in the same event and performed in a detailed way using goniopolarimetric observations from STEREO/Waves and WIND/Waves spacecraft. The event on 2012 March 5 was associated with a X1.1 flare from the NOAA AR 1429 situated near the northeast limb, accompanied by a full halo CME and a radio event comprising long-lasting interplanetary type II radio bursts. The results of the three-dimensional reconstruction of the CME (using SOHO/LASCO, STEREO COR, and HI observations), and modeling with the ENLIL cone model suggest that the CME-driven shock wave arrived at 1 AU at about 12:00 UT on March 7 (as observed by SOHO/CELIAS). The results of radio triangulation show that the source of the type II radio burst was situated on the southern flank of the CME. We suggest that the interaction of the shock wave and a nearby coronal streamer resulted in the interplanetary type II radio emission.

  3. Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission

    SciTech Connect

    Magdaleni?, J.; Marqué, C.; Mierla, M.; Zhukov, A. N.; Rodriguez, L.; Krupar, V.; Maksimovi?, M.; Cecconi, B.

    2014-08-20

    We present a multiwavelength study of the 2012 March 5 solar eruptive event, with an emphasis on the radio triangulation of the associated radio bursts. The main points of the study are reconstruction of the propagation of shock waves driven by coronal mass ejections (CMEs) using radio observations and finding the relative positions of the CME, the CME-driven shock wave, and its radio signatures. For the first time, radio triangulation is applied to different types of radio bursts in the same event and performed in a detailed way using goniopolarimetric observations from STEREO/Waves and WIND/Waves spacecraft. The event on 2012 March 5 was associated with a X1.1 flare from the NOAA AR 1429 situated near the northeast limb, accompanied by a full halo CME and a radio event comprising long-lasting interplanetary type II radio bursts. The results of the three-dimensional reconstruction of the CME (using SOHO/LASCO, STEREO COR, and HI observations), and modeling with the ENLIL cone model suggest that the CME-driven shock wave arrived at 1 AU at about 12:00 UT on March 7 (as observed by SOHO/CELIAS). The results of radio triangulation show that the source of the type II radio burst was situated on the southern flank of the CME. We suggest that the interaction of the shock wave and a nearby coronal streamer resulted in the interplanetary type II radio emission.

  4. Modulate Internet Radio Into FM Using GNU Radio

    E-print Network

    Yu, Chansu

    1 Modulate Internet Radio Into FM Using GNU Radio By: Elie Salameh Outline. · Fm in gnu radio · Audio Streams in Internet Radio · Gnu & Audio Files · Sox command · Playlist ".pls" · Recording internet radio #12;2 Project description · Using gnu radio to modulate internet radio into fm. · Using usrp

  5. Theory of Type 3 and Type 2 Solar Radio Emissions

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, I. H.

    2000-01-01

    The main features of some current theories of type III and type II bursts are outlined. Among the most common solar radio bursts, type III bursts are produced at frequencies of 10 kHz to a few GHz when electron beams are ejected from solar active regions, entering the corona and solar wind at typical speeds of 0.1c. These beams provide energy to generate Langmuir waves via a streaming instability. In the current stochastic-growth theory, Langmuir waves grow in clumps associated with random low-frequency density fluctuations, leading to the observed spiky waves. Nonlinear wave-wave interactions then lead to secondary emission of observable radio waves near the fundamental and harmonic of the plasma frequency. Subsequent scattering processes modify the dynamic radio spectra, while back-reaction of Langmuir waves on the beam causes it to fluctuate about a state of marginal stability. Theories based on these ideas can account for the observed properties of type III bursts, including the in situ waves and the dynamic spectra of the radiation. Type 11 bursts are associated with shock waves propagating through the corona and interplanetary space and radiating from roughly 30 kHz to 1 GHz. Their basic emission mechanisms are believed to be similar to those of type III events and radiation from Earth's foreshock. However, several sub-classes of type II bursts may exist with different source regions and detailed characteristics. Theoretical models for type II bursts are briefly reviewed, focusing on a model with emission from a foreshock region upstream of the shock for which observational evidence has just been reported.

  6. Experimental Comparison of Bluetooth and WiFi Signal Propagation for Indoor Localisation

    E-print Network

    Braun, Torsten

    ,alyafawi,braun}@iam.unibe.ch Abstract. Systems for indoor positioning using radio technologies are largely studied due radio-based indoor positioning, only few actually investigate the various factors that impactExperimental Comparison of Bluetooth and WiFi Signal Propagation for Indoor Localisation Desislava

  7. Speckles in interstellar radio-wave scattering

    NASA Technical Reports Server (NTRS)

    Desai, K. M.; Gwinn, C. R.; Reynolds, J.; King, E. A.; Jauncey, D.; Nicholson, G.; Flanagan, C.; Preston, R. A.; Jones, D. L.

    1991-01-01

    Observations of speckles in the scattering disk of the Vela pulsar are presented and speckle techniques for studying and circumventing scattering of radio waves by the turbulent interstellar plasma are discussed. The speckle pattern contains, in a hologrammatic fashion, complete information on the structure of the radio source as well as the distribution of the scattering material. Speckle observations of interstellar scattering of radio waves are difficult because of their characteristically short timescales and narrow bandwidths. Here, first observations are presented, taken at 13 cm wavelength with elements of the SHEVE VLBI network, of speckles in interstellar scattering.

  8. Radio frequency detection assembly and method for detecting radio frequencies

    SciTech Connect

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  9. On the Propagation Properties of Surface V. Jaksi c1, S. Molchanov2, L. Pastur3

    E-print Network

    Temperature Physics Academy of Sciences of Ukraine Kharkov, Ukraine 1 Introduction Surface waves were in the study of the propagation properties of the radio waves around the earth surface. These are the elecOn the Propagation Properties of Surface Waves V. Jaksi c1, S. Molchanov2, L. Pastur3 1 Institute

  10. The nature of extragalactic radio-jets from high-resolution radio-interferometric observations

    NASA Astrophysics Data System (ADS)

    Perucho-Pla, M.

    2015-05-01

    Extragalactic jets are a common feature of radio-loud active galaxies. The nature of the observed jets in relation to the bulk flow is still unclear. In particular it is not clear whether the observations of parsec-scale jets using the very long baseline interferometric technique (VLBI) reveal wave-like structures that develop and propagate along the jet, or trace the jet flow itself. In this contribution I review the evidence collected during the last years showing that the ridge-lines of helical radio-jets do not correspond to observational artifacts. This conclusion was reached by studying a number of VLBI observations of the radio jet in the quasar S5 0836+710 at different frequencies and epochs. The ridge-line of the emission in the jet coincides at all frequencies within the errors. Moreover, small differences between the ridge-lines as observed at different epochs reveal wave-like motion transversal to the jet propagation axis. I also discuss similar results, albeit with different interpretations, obtained by other authors. The current challenge is to measure the propagation velocities of these waves and to try to characterise them in terms of simple perturbations or Kelvin-Helmholtz instability, which would help understanding the physical conditions of the flow where the waves develop. This problem can only be tackled by high-resolution observations such as those that can be achieved by the space radio-antenna Radioastron.

  11. DISCOVERY OF GIANT RELIC RADIO LOBES STRADDLING THE CLASSICAL DOUBLE RADIO GALAXY 3C452

    SciTech Connect

    Sirothia, S. K.; Gopal-Krishna; Wiita, Paul J. E-mail: krishna@ncra.tifr.res.in

    2013-03-01

    We report the discovery of a pair of megaparsec size radio lobes of extremely steep spectrum straddling the well-known classical double radio source 3C452. The existence of such fossil lobes was unexpected since for the past several decades this powerful radio galaxy has been regarded as a textbook example of an edge-brightened double radio source of Fanaroff-Riley type II (FR II), which we now show to be a bona fide ''double-double'' radio galaxy (DDRG). Thus, 3C452 presents a uniquely robust example of recurrent nuclear activity in which the restarted jets are expanding non-relativistically within the relic synchrotron plasma from an earlier active phase and hence the inner double fed by them has evolved into a perfectly normal FR II radio source. This situation contrasts markedly with the strikingly narrow inner doubles observed in a few other DDRGs that have been interpreted in terms of compression of the synchrotron plasma of the relic outer lobes at the relativistic bow-shocks driven by the near ballistic propagation of the two inner jets through the relic plasma. A key ramification of this finding is that it cautions against the currently widespread use of FR II classical double radio sources for testing cosmological models and unification schemes for active galactic nuclei.

  12. Spectral structures and their generation mechanisms for solar radio type-I bursts

    SciTech Connect

    Iwai, K.; Miyoshi, Y.; Masuda, S.; Tsuchiya, F.; Morioka, A.; Misawa, H.

    2014-07-01

    The fine spectral structures of solar radio type-I bursts were observed by the solar radio telescope AMATERAS. The spectral characteristics, such as the peak flux, duration, and bandwidth, of the individual burst elements were satisfactorily detected by the highly resolved spectral data of AMATERAS with the burst detection algorithm that is improved in this study. The peak flux of the type-I bursts followed a power-law distribution with a spectral index of 2.9-3.3, whereas their duration and bandwidth were distributed more exponentially. There were almost no correlations between the peak flux, duration, and bandwidth. That means there was no similarity in the shapes of the burst spectral structures. We defined the growth rate of a burst as the ratio between its peak flux and duration. There was a strong correlation between the growth rate and peak flux. These results suggest that the free energy of type-I bursts that is originally generated by nonthermal electrons is modulated in the subsequent stages of the generation of nonthermal electrons, such as plasma wave generation, radio wave emissions, and propagation. The variation of the timescale of the growth rate is significantly larger than that of the coronal environments. These results can be explained by the situation wherein the source region may have the inhomogeneity of an ambient plasma environment, such as the boundary of open and closed field lines, and the superposition of entire emitted bursts was observed by the spectrometer.

  13. Subionospheric VLF Propagation Modelling During a solar flares

    NASA Astrophysics Data System (ADS)

    Akel, A. F.

    2013-05-01

    This work aims to present a preliminary study of the behavior of the lower ionosphere under transient regimes of ionization through the technique of wave propagation of VLF (Very Low Frequency). For this, we characterized the lower ionosphere by two traditional (wait) parameters H' and ? which are found by VLF radio modelling using the computational code of subionospheric radio propagation LWPC(Long Wave Propagation Capability). The main effects and behaviors investigated in this study was due to a solar flare 2M class near solar minimum at 03/25/2008. We changed Solar zenith angle dependence of the ionospheric parameters H' and ? for diurnal time by a polynomial equation. For this study we used the available data the South America VLF Network (SAVNET) and show the results between modeling and data

  14. Classification of neocortical interneurons using affinity propagation

    PubMed Central

    Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  15. Classification of neocortical interneurons using affinity propagation.

    PubMed

    Santana, Roberto; McGarry, Laura M; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  16. A theory of solar type 3 radio bursts

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Papadopoulos, K.; Smith, R. A.

    1979-01-01

    Energetic electrons propagating through the interplanetary medium are shown to excite the one dimensional oscillating two stream instability (OTSI). The OTSI is in turn stabilized by anomalous resistivity which completes the transfer of long wavelength Langmuir waves to short wavelengths, out of resonance with the electrons. The theory explains the small energy losses suffered by the electrons in propagating to 1 AU, the predominance of second harmonic radiation, and the observed correlation between radio and electron fluxes.

  17. Intelligent systems control and multipath protection for next generation digital radios

    NASA Astrophysics Data System (ADS)

    Wallace, R. L.; Huang, J. C. Y.

    1984-01-01

    It is pointed out that technology has advanced to the stage where both the 16 QAM (quadrature amplitude modulation) and 64 QAM high-level modulation techniques are used in digital microwave radios. This new generation of digital radios attains spectral efficiency that is comparable to or better than conventional FM/FDM. Attention is given here to the intelligent system monitor built into a new family of 16-QAM digital radios and to the various propagation protection schemes available for use against multipath fading. Together they make digital radios easy to operate and maintain while providing for the transmission objectives of a digital microwave radio system.

  18. The ghost propagator in Coulomb gauge

    NASA Astrophysics Data System (ADS)

    Watson, P.; Reinhardt, H.

    2011-05-01

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until `forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  19. The ghost propagator in Coulomb gauge

    SciTech Connect

    Watson, P.; Reinhardt, H.

    2011-05-23

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  20. Planetary radio astronomy observations during the Voyager 1 Titan flyby

    NASA Technical Reports Server (NTRS)

    Daigne, G.; Pedersen, B. M.; Kaiser, M. L.; Desch, M. D.

    1982-01-01

    During the Voyager 1 Titan flyby, unusual radio emissions were observed by the planetary radio astronomy experiment in the 20- to 97-kHz frequency range. It is shown that Titan itself is not the source of the observed radio emission. The emission features are attributed to modification of the normal Saturn kilometric radiation by propagation effects in enhanced density structures within the Titan wake. Furthermore, spiky emissions observed in the magnetic wake of Titan are interpreted in terms of local electrostatic instabilities at the electron plasma frequency. From these measurements a range of electron densities in the wake region is derived, and the consistency of the results is discussed.

  1. Energy Efficient Radio Resource

    E-print Network

    Yanikomeroglu, Halim

    Energy Efficient Radio Resource Management in a Coordinated Multi-Cell Distributed Antenna System Omer HALILOGLU Introduction System Model Performance Evaluation Conclusion References Energy Efficient Hacettepe University 5 September 2014 Omer HALILOGLU (Hacettepe University) Energy Efficient Radio Resource

  2. Resonance and Radio

    ERIC Educational Resources Information Center

    Starrett, Malin J.

    2008-01-01

    The science and technology of radio receives little attention in contemporary education. This article discusses ways to explore the basic operating principles of radio. (Contains 4 figures, 3 footnotes, and 2 notes.)

  3. Radiowave propagation measurements in Nigeria (preliminary reports)

    NASA Astrophysics Data System (ADS)

    Falodun, S. E.; Okeke, P. N.

    2013-07-01

    International conferences on frequency coordination have, in recent years, required new information on radiowave propagation in tropical regions and, in particular, on propagation in Africa. The International Telecommunications Union (ITU-R) initiated `radio-wave propagation measurement campaign' in some African countries some years back. However, none of the ITU-initiated experiments were mounted in Nigeria, and hence, there is lack of adequate understanding of the propagation mechanisms associated with this region of the tropics. The Centre for Basic Space Science (CBSS) of NASRDA has therefore embarked on propagation data collection from the different climatic zones of Nigeria (namely Coastal, Guinea Savannah, Midland, and Sahelian) with the aim of making propagation data available to the ITU, for design and prediction purposes in order to ensure a qualitative and effective communication system in Nigeria. This paper focuses on the current status of propagation data from Nigeria (collected by CBSS), identifying other parameters that still need to be obtained. The centre has deployed weather stations to different locations in the country for refractivity measurements in clear atmosphere, at the ground surface and at an altitude of 100 m, being the average height of communication mast in Nigeria. Other equipments deployed are Micro Rain Radar and Nigerian Environmental and Climatic Observing Program equipments. Some of the locations of the measurement stations are Nsukka (7.4° E, 6.9° N), Akure (5.12° E, 7.15° N), Minna (6.5° E, 9.6° N), Sokoto (5.25° E, 13.08° N), Jos (8.9° E, 9.86° N), and Lagos (3.35° E, 6.6° N). The results obtained from the data analysis have shown that the refractivity values vary with climatic zones and seasons of the year. Also, the occurrence probability of abnormal propagation events, such as super refraction, sub-refraction, and ducting, depends on the location as well as the local time. We have also attempted to identify and calculate the most important propagation factors and associated data, such as k factor, that are relevant in considerations of propagation in tropical regions like Nigeria.

  4. Extragalactic Radio Sources

    ERIC Educational Resources Information Center

    Kellerman, Kenneth I.

    1973-01-01

    Discusses new problems arising from the growing observational data through radio telescope arrays, involving the origin of radio sources, apparent superluminal velocities, conversion of radio sources to relativistic particles, and the nature of compact opaque and extended transparent sources. New physics may be needed to answer these cosmological…

  5. Commercial Radio as Communication.

    ERIC Educational Resources Information Center

    Rothenbuhler, Eric W.

    1996-01-01

    Compares the day-to-day work routines of commercial radio with the principles of a theoretical communication model. Illuminates peculiarities of the conduct of communication by commercial radio. Discusses the application of theoretical models to the evaluation of practicing institutions. Offers assessments of commercial radio deriving from…

  6. Software Defined Radio Architecture

    E-print Network

    Kranakis, Evangelos

    ) [14]. The USRP2 bridges the analog world of electromagnetic radio waves and digital world of computersChapter 2 Software Defined Radio Architecture A SDR is a real-time system. The inputs to the system are actions performed by the radio operator and data produced by active elements present in the SDR

  7. Introduction Big Radio Data

    E-print Network

    Prodiæ, Aleksandar

    Introduction VLBI Pulsars Summary Big Radio Data Ue-Li Pen CITA, UofT, CIFAR July 3, 2014U. Pen Big Radio Data #12;Introduction VLBI Pulsars Summary Overview History VLBI Processing Future U. Pen Big signal processing U. Pen Big Radio Data #12;Introduction VLBI Pulsars Summary VLBI Current experiments

  8. Vertical laser beam propagation through the troposphere

    NASA Technical Reports Server (NTRS)

    Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.

    1974-01-01

    The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.

  9. Propagation measurements for satellite radio reception inside buildings

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1993-01-01

    Swept CW signals (from 700 to 1800 MHz) were received inside six buildings of brick, corrugated sheet-metal, wood-frame, mobile-home, and reinforced concrete-wall construction. A transmitter antenna was mounted outdoors on top of an 18 m tower to simulate a satellite, and a linearly scanned directional receiver antenna was used to probe the spatial, spectral, and temporal variability of the signal indoors. Levels were found to have much structure in the spatial and frequency domain, but were relatively stable in time. Typically, people moving nearby produced variations of less than 0.5 dB, whereas a person blocking the transmission path produced fades of 6 to 10 dB. Severe losses (17.5 dB) were observed in the concrete-wall building, which also exhibited the longest multipath delays (over 100 ns). Losses inside a mobile home were even larger (over 20 dB) and were independent of antenna orientation. The power-frequency distortion increased with the logarithm of the bandwidth, but could be reduced by moving to a position of higher power. Only the losses showed a clear frequency dependence, but they could be mitigated by moving the antenna.

  10. Scintillation effects on radio wave propagation through solar corona

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Sue, M. K.; Bedrossian, A.; Sniffin, R. W.

    2002-01-01

    When RF waves pass through the solar corona and solar wind regions close to the Sun, strong scintillation effects appear at their amplitude, frequency and phase, especially in the regions very close to the Sun (less than 4 solar radius).

  11. Propagation of radio waves through the lower atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Richter, K. R.

    1972-01-01

    A simplified model of the Venus atmosphere is developed providing the loss factor profile of the atmosphere. With this profile the atmospheric attenuation as it depends upon the incidence angle is calculated for wavelengths between 2 cm and 20 cm. It is shown that the signal-to-noise ratios for a real aperture radar, a synthetic aperture radar, and communication links between a satellite and a landing probe achieve maximum values by the proper choice of the wavelengths. Furthermore, it turns out that the wavelength dependence is less crucial for the synthetic aperture radar compared to the other cases.

  12. Earth-Space Propagation Data Bases

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.

    1996-01-01

    This paper, designed for the newcomer rather than the expert, will take a rather broad view of what is meant by 'propagation data bases' in that it will take the term to mean both the actual measurements and models of Earth-space paths. The text will largely be drawn from International Radio Consultative Committee (CCIR) reports, now annexed to the Recommendations of the International Telecommunications Union-R Study Group 3, plus some experience with a course taught at the University of Colorado.

  13. MIDLAND RADIO CORPORATION SECURITY POLICY

    E-print Network

    MIDLAND RADIO CORPORATION SECURITY POLICY Syn-Tech III P25 Portable Radio (VHF and UHF) Syn-Tech III P25 Dash Mount Mobile Radio (VHF and UHF) Syn-Tech III P25 Trunk Mount Mobile Radio (VHF and UHF) Syn-Tech III Desk Top Radio (VHF and UHF) Revised: August 5, 2009 MIDLAND RADIO CORPORATION 5900

  14. Hf propagation through actively modified ionospheres

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.; Wolcott, J.H.; Simons, D.J. ); Warshaw, S.; Carlson, R. )

    1990-01-01

    We have developed a computer modeling capability to predict the effect of localized electron density perturbations created by chemical releases or high-power radio frequency heating upon oblique, one-hop hf propagation paths. We have included 3-d deterministic descriptions of the depleted or enhanced ionization, including formation, evolution, and drift. We have developed a homing ray trace code to calculate the path of energy propagation through the modified ionosphere in order to predict multipath effects. We also consider the effect of random index of refraction variations using a formalism to calculate the mutual coherence functions for spatial and frequency separations based upon a path integral solution of the parabolic wave equation for a single refracted path through an ionosphere which contains random electron density fluctuations. 5 refs., 8 figs.

  15. Theory of flame propagation

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y B

    1951-01-01

    The mechanism of flame propagation has been qualitatively formulated. In accordance with this formulation, the chemical reaction initiated in some layer brings about an increase in the temperature; because of the heat conduction, the temperature is raised in the neighboring layer where in turn the chemical reaction is initiated. In this manner the flame is propagated.

  16. Global Ionosphere Radio Observatory

    NASA Astrophysics Data System (ADS)

    Galkin, I. A.; Reinisch, B. W.; Huang, X. A.

    2014-12-01

    The Global Ionosphere Radio Observatory (GIRO) comprises a network of ground-based high-frequency vertical sounding sensors, ionosondes, with instrument installations in 27 countries and a central Lowell GIRO Data Center (LGDC) for data acquisition and assimilation, including 46 real-time data streams as of August 2014. The LGDC implemented a suite of technologies for post-processing, modeling, analysis, and dissemination of the acquired and derived data products, including: (1) IRI-based Real-time Assimilative Model, "IRTAM", that builds and publishes every 15-minutes an updated "global weather" map of the peak density and height in the ionosphere, as well as a map of deviations from the classic IRI climate; (2) Global Assimilative Model of Bottomside Ionosphere Timelines (GAMBIT) Database and Explorer holding 15 years worth of IRTAM computed maps at 15 minute cadence;. (3) 17+ million ionograms and matching ionogram-derived records of URSI-standard ionospheric characteristics and vertical profiles of electron density; (4) 10+ million records of the Doppler Skymaps showing spatial distributions over the GIRO locations and plasma drifts; (5) Data and software for Traveling Ionospheric Disturbance (TID) diagnostics; and (6) HR2006 ray tracing software mated to the "realistic" IRTAM ionosphere. In cooperation with the URSI Ionosonde Network Advisory Group (INAG), the LGDC promotes cooperative agreements with the ionosonde observatories of the world to accept and process real-time data of HF radio monitoring of the ionosphere, and to promote a variety of investigations that benefit from the global-scale, prompt, detailed, and accurate descriptions of the ionospheric variability.

  17. Simulation of ultrasonic pulse propagation through the abdominal wall

    E-print Network

    Mast, T. Douglas

    Simulation of ultrasonic pulse propagation through the abdominal wall T. Douglas Mast,a) Laura M 1997 Ultrasonic pulse propagation through the human abdominal wall has been simulated using a model characteristics of ultrasonic wavefront distortion in vivo. However, quantitative agreement was limited by the two

  18. Voyager planetary radio astronomy studies

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Eikenberry, Stephen S.

    1993-01-01

    Analysis of nonthermal radio emission data obtained by the Planetary Radio Astronomy (PRA) spectrometers on the Voyager 1 and 2 spacecraft was performed. This PRA data provided unique insights into the radio emission characteristics of the outer planets because of PRA's unique spectral response below the terrestrial ionospheric plasma frequency and its unprecedented proximity to the source. Of those results which were documented or published, this final report surveys only the highlights and cites references for more complete discussions. Unpublished results for Uranus, Neptune, and theoretical Ionian current distributions are presented at greater length. The most important conclusion to be drawn from these observations is that banded spectral emission is common to the radio emission below 1-2 MHz observed from all four Jovian planets. In every case multiple spectral features evolve on time scales of seconds to minutes. To the extent these features drift in frequency, they appear never to cross one another. The Neptunian spectral features appear to drift little or not at all, their evolution consisting principally of waxing and waning. Since other evidence strongly suggests that most or all of this radio emission is occurring near the local magnetospheric electron cyclotron frequency, this implies that this emission preferentially occurs at certain continually changing planetary radii. It remains unknown why certain radii might be favored, unless radial electric field components or other means serve to differentiate radially the magnetospheric plasma density, particle energy vectors, or particle coherence. Calculation of the spatial distribution and intensity of the Io-generated magnetospheric currents are also presented; these currents may be limited principally by wave impedance and local field strengths.

  19. Solar radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Dulk, George A.

    1990-01-01

    The characteristics of solar radio emissions at decametric to kilometric wavelengths are reviewed. Special attention is given to the radiation of the quiet sun at several metric and decametric wavelengths and to nonthermal radiation from the active sun, including radio bursts of type III (electron beams), type-III bursts from behind the sun, storms of type III bursts, the flare-associated radio bursts, type II bursts (shock waves), and shock-associated bursts. It is pointed out that almost no observations have been made so far of solar radiation between about 20 MHz and about 2 MHz. Below about 2 MHz, dynamic spectra of flux densities of solar burst have been recorded in space and observations were made of the directions of centroids and characteristic sizes of the emitting sources.

  20. Ray-tracing Calculation of VHF Radio Waves Scattered by Field-aligned Irregularities Associated with Equatorial Plasma Bubbles

    NASA Astrophysics Data System (ADS)

    Nakata, Hiroyuki; Akaike, Yoshiaki; Otsuka, Yuichi; Takano, Toshiaki; Ujigawa, Satoshi; Nagashima, Ikuo

    In order to explain the propagation of VHF radio waves for TV broadcasting transmitted from Southeast Asia associated with equatorial plasma bubbles, we have examined ray paths of the radio waves scattered by field-aligned irregularities in equatorial plasma bubbles. In determining the ray paths of the radio waves, a ray tracing calculation combined with a model of the scattering by field-aligned irregularities is used. It is found that VHF radio waves transmitted from Philippines can propagate to Japan due to scattering by field-aligned irregularities located above the East China Sea.

  1. Features of radio-detected Extensive Air Shower with CODALEMA

    E-print Network

    D. Ardouin; A. Belletoile; D. Charrier; R. Dallier; L. Denis; P. Eschstruth; T. Gousset; F. Haddad; P. Lautridou; A. Lecacheux; D. Monnier-Ragaigne; O. Ravel

    2005-10-06

    Some performances of the present CODALEMA experiment, set up to analyse radio-detected Extensive Air Shower (EAS) events, are presented. Characteristics of the EAS electric field distribution sampled on a 600~m long axis are discussed.

  2. PROPAGATING WAVES ALONG SPICULES

    SciTech Connect

    Okamoto, Takenori J.; De Pontieu, Bart

    2011-08-01

    Alfvenic waves are thought to play an important role in coronal heating and acceleration of solar wind. Here we investigate the statistical properties of Alfvenic waves along spicules (jets that protrude into the corona) in a polar coronal hole using high-cadence observations of the Solar Optical Telescope on board Hinode. We developed a technique for the automated detection of spicules and high-frequency waves. We detected 89 spicules and found (1) a mix of upward propagating, downward propagating, as well as standing waves (occurrence rates of 59%, 21%, and 20%, respectively); (2) the phase speed gradually increases with height; (3) upward waves dominant at lower altitudes, standing waves at higher altitudes; (4) standing waves dominant in the early and late phases of each spicule, while upward waves were dominant in the middle phase; (5) in some spicules, we find waves propagating upward (from the bottom) and downward (from the top) to form a standing wave in the middle of the spicule; and (6) the medians of the amplitude, period, and velocity amplitude were 55 km, 45 s, and 7.4 km s{sup -1}, respectively. We speculate that upward propagating waves are produced near the solar surface (below the spicule) and downward propagating waves are caused by reflection of (initially) upward propagating waves off the transition region at the spicule top. The mix of upward and downward propagating waves implies that exploiting these waves to perform seismology of the spicular environment requires careful analysis and may be problematic.

  3. Characteristics of pressure waves

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Air blast characteristics generated by most types of explosions are discussed. Data cover both negative and positive blast load phases and net transverse pressure as a function of time. The effects of partial or total confinement, atmospheric propagation, absorption of energy by ground shock or cratering, and transmission over irregular terrain on blast wave properties were also considered.

  4. 36 IEEE COMMUNICATIONS LETTERS, VOL. 2, NO. 2, FEBRUARY 1998 Impulse Radio: How It Works

    E-print Network

    Ha, Dong S.

    36 IEEE COMMUNICATIONS LETTERS, VOL. 2, NO. 2, FEBRUARY 1998 Impulse Radio: How It Works Moe Z. Win, Member, IEEE, and Robert A. Scholtz, Fellow, IEEE Abstract-- Impulse radio, a form of ultra-range communications in dense multipath environments. This letter describes the characteristics of impulse radio using

  5. Radio Network Clustering from Scratch Fabian Kuhn, Thomas Moscibroda, Roger Wattenhofer

    E-print Network

    Radio Network Clustering from Scratch Fabian Kuhn, Thomas Moscibroda, Roger Wattenhofer {kuhn. The algorithm works under a model which captures the characteristics of the set-up phase of such multi-hop radio, the nodes initially form an unstructured radio network, which means that no reliable and efficient com

  6. Ionospheric Sounding Using Real-Time Amateur Radio Reporting Networks

    NASA Astrophysics Data System (ADS)

    Frissell, N. A.; Miller, E. S.; Kaeppler, S. R.; Ceglia, F.; Pascoe, D.; Sinanis, N.; Smith, P.; Williams, R.; Shovkoplyas, A.

    2014-12-01

    Amateur radio reporting networks, such as the Reverse Beacon Network (RBN), PSKReporter, and the Weak Signal Propagation Network, are powerful tools for remote sensing the ionosphere. These voluntarily constructed and operated networks provide real-time and archival data that could be used for space weather operations, forecasting, and research. The potential exists for the study of both global and localized effects. The capability of one such network to detect space weather disturbances is demonstrated by examining the impacts on RBN-observed HF propagation paths of an X2.9 class solar flare detected by the GOES 15 satellite. Prior to the solar flare, the RBN observed strong HF propagation conditions between multiple continents, primarily Europe, North America, and South America. Immediately following the GOES 15 detection of the solar flare, the number of reported global RBN propagation paths dropped to less than 35% that of prior observations. After the flare, the RBN showed the gradual recovery of HF propagation conditions.

  7. Tracking by Identification Using Computer Vision and Radio

    PubMed Central

    Mandeljc, Rok; Kova?i?, Stanislav; Kristan, Matej; Perš, Janez

    2013-01-01

    We present a novel system for detection, localization and tracking of multiple people, which fuses a multi-view computer vision approach with a radio-based localization system. The proposed fusion combines the best of both worlds, excellent computer-vision-based localization, and strong identity information provided by the radio system, and is therefore able to perform tracking by identification, which makes it impervious to propagated identity switches. We present comprehensive methodology for evaluation of systems that perform person localization in world coordinate system and use it to evaluate the proposed system as well as its components. Experimental results on a challenging indoor dataset, which involves multiple people walking around a realistically cluttered room, confirm that proposed fusion of both systems significantly outperforms its individual components. Compared to the radio-based system, it achieves better localization results, while at the same time it successfully prevents propagation of identity switches that occur in pure computer-vision-based tracking. PMID:23262485

  8. Database for propagation models

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1991-01-01

    A propagation researcher or a systems engineer who intends to use the results of a propagation experiment is generally faced with various database tasks such as the selection of the computer software, the hardware, and the writing of the programs to pass the data through the models of interest. This task is repeated every time a new experiment is conducted or the same experiment is carried out at a different location generating different data. Thus the users of this data have to spend a considerable portion of their time learning how to implement the computer hardware and the software towards the desired end. This situation may be facilitated considerably if an easily accessible propagation database is created that has all the accepted (standardized) propagation phenomena models approved by the propagation research community. Also, the handling of data will become easier for the user. Such a database construction can only stimulate the growth of the propagation research it if is available to all the researchers, so that the results of the experiment conducted by one researcher can be examined independently by another, without different hardware and software being used. The database may be made flexible so that the researchers need not be confined only to the contents of the database. Another way in which the database may help the researchers is by the fact that they will not have to document the software and hardware tools used in their research since the propagation research community will know the database already. The following sections show a possible database construction, as well as properties of the database for the propagation research.

  9. Wave Propagation Program

    Energy Science and Technology Software Center (ESTSC)

    2007-01-08

    WPP is a massively parallel, 3D, C++, finite-difference elastodynamic wave propagation code. Typical applications for wave propagation with WPP include: evaluation of seismic event scenarios and damage from earthquakes, non-destructive evaluation of materials, underground facility detection, oil and gas exploration, predicting the electro-magnetic fields in accelerators, and acoustic noise generation. For more information, see User?s Manual [1].

  10. Tracking of Interplanetary CME/Shocks Using Type II Radio Observations

    NASA Astrophysics Data System (ADS)

    Aguilar-Rodriguez, E.; Ontiveros-Hernandez, V.; Manuel-Hernandez, T.; Corona-Romero, P.; Gonzalez-Esparza, A.

    2012-12-01

    Interplanetary Type II radio burst radiation results from the excitation of plasma waves in the ambient medium by shock waves driven by coronal mass ejections (CMEs). These radio emissions provide a means of remotely tracking CME/shocks. The aim of this work is to combine, by using WIND/WAVES and STEREO/SWAVES radio data, different techniques to estimate the speed evolution of CME/shocks associated with Type II radio bursts. Moreover, in order to illuminate the CME/shock propagation, it is included an analysis of coronographic and heliospheric images, in situ data, and an analytical model of CME/shock propagation, which provide complementary information on CME/shocks propagating through the entire Sun-Earth connected space.

  11. Correlation of radio and gamma emissions in lightning initiation.

    PubMed

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Thu, W M; Vildanova, L I; Zybin, K P

    2013-10-18

    The results of simultaneous radio and gamma emission measurements during thunderstorms are presented. A gamma detector situated at the height 3840 m and two radio detectors of Tien-Shan Mountain Scientific Station (altitude 3340 m) registered intensive gamma flashes and radio pulses during the time of lightning initiation. The radio-gamma correlation grows abruptly at the initial moment (a few hundred microseconds), and the correlation coefficient reaches 0.9-0.95. The gamma-energy spectrum measured during lightning initiation is close to the characteristic spectrum of runaway breakdown. Radio pulses observed at the same time have highest amplitudes. Combined observation of gamma and radio emissions confirm the conception of lightning initiation due to multiple simultaneous electric discharges at hydrometeors stimulated and synchronized by low-energy electrons generated in the runaway breakdown process. PMID:24182272

  12. Correlation of Radio and Gamma Emissions in Lightning Initiation

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Antonova, V. P.; Chubenko, A. P.; Karashtin, A. N.; Mitko, G. G.; Ptitsyn, M. O.; Ryabov, V. A.; Shepetov, A. L.; Shlyugaev, Yu. V.; Thu, W. M.; Vildanova, L. I.; Zybin, K. P.

    2013-10-01

    The results of simultaneous radio and gamma emission measurements during thunderstorms are presented. A gamma detector situated at the height 3840 m and two radio detectors of Tien-Shan Mountain Scientific Station (altitude 3340 m) registered intensive gamma flashes and radio pulses during the time of lightning initiation. The radio-gamma correlation grows abruptly at the initial moment (a few hundred microseconds), and the correlation coefficient reaches 0.9-0.95. The gamma-energy spectrum measured during lightning initiation is close to the characteristic spectrum of runaway breakdown. Radio pulses observed at the same time have highest amplitudes. Combined observation of gamma and radio emissions confirm the conception of lightning initiation due to multiple simultaneous electric discharges at hydrometeors stimulated and synchronized by low-energy electrons generated in the runaway breakdown process.

  13. Characterizing the Kinematics of Interactions between Radio Galaxies and their Environments

    NASA Astrophysics Data System (ADS)

    Koekemoer, A. M.

    1999-12-01

    I discuss results from detailed hydrodynamic modelling of radio galaxy propagation and interaction with the ambient medium, with specific emphasis on the evolution of the kinematic structure in the expanding radio cocoon. The gas dynamics provide a useful diagnostic of the properties of the ambient medium, allowing the models to be compared directly with observations of line-emitting gas associated with the lobes of radio sources. Specifically, combining observed excitation diagnostics with high-dispersion kinematic data allows investigation of the amount of kinetic energy that is transferred from the radio plasma to the surrounding gas, thereby yielding constraints on the properties of the jets and the overall evolution of the radio source. The implications are discussed in the context of the effects of the environment on the general evolution of radio galaxies, together with the reciprocal impact of radio sources upon their environments.

  14. Dominion Radio Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Dominion Radio Astrophysical Observatory began operating in 1959, and joined the NATIONAL RESEARCH COUNCIL in 1970. It became part of the Herzberg Institute of Astrophysics in 1975. The site near Penticton, BC has a 26 m radio telescope, a seven-antenna synthesis telescope on a 600 m baseline and two telescopes dedicated to monitoring the solar radio flux at 10.7 cm. This part of the Institu...

  15. Proceedings of the 19th NASA Propagation Experimenters Meeting (NAPEX 19) and the 7th Advanced Communications Technology Satellite (ACTS) Propagation Studies Workshop (APSW 7)

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (editor)

    1995-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. NAPEX 19 was held on 14 Jun. 1995, in Fort Collins, Colorado. Participants included representatives from Canada, Japan, and the United States, including researchers from universities, government agencies, and private industry. The meeting focused on mobile personal satellite systems and the use of 20/30-GHz band for fixed and mobile satellite applications. In total, 18 technical papers were presented. Following NAPEX 19, the Advanced Communications Technology Satellite (ACTS) Propagation Studies Workshop 7 (APSW 7) was held on 15-16 Jun. 1995, to review ACTS propagation activities with emphasis on the experimenters' status reports and dissemination of propagation data to industry.

  16. OPENENDED CONFIGURATIONS OF RADIO TELESCOPES

    E-print Network

    Kreinovich, Vladik

    telescopes, devices that use the second observability window of radio waves. Why configurations of radioOPEN­ENDED CONFIGURATIONS OF RADIO TELESCOPES: A GEOMETRICAL ANALYSIS Vladik Kreinovich, Scott A. The quality of radio astronomical images drastically depends on where we place the radio telescopes. During

  17. OPENENDED CONFIGURATIONS OF RADIO TELESCOPES

    E-print Network

    Kreinovich, Vladik

    telescopes, devices that use the second observability window of radio waves. #12; Why configurations of radioOPEN­ENDED CONFIGURATIONS OF RADIO TELESCOPES: TOWARDS OPTIMAL DESIGN VLADIK KREINOVICH, SCOTT A, Russia ABSTRACT The quality of radio astronomical images drastically depends on where we place the radio

  18. Continuum Radio Emission and Diagnostics

    E-print Network

    White, Stephen

    Continuum Radio Emission and Diagnostics The Sun is a strong radio source (one of the first objects detected by radio telescopes) and radio observations can provide information on structures throughout the solar atmosphere. Radio techniques allow high--quality im­ ages with arcsecond resolution to be achieved

  19. Radio data transmission for SCADA

    SciTech Connect

    Frasier, W.E. )

    1989-09-01

    Enron has used such wireless systems as meteor burst radio, 952 MHz multiple address radio, VSAT and L-band satellite, cellular radio and ACSB radio. The company's experience with meteor burst radio communications is discussed in this paper. It indicates good system reliability and consequently all back-up telephone lines have been removed from sites using this system.

  20. Radio emission of RRAT pulsars at 111 MHz

    NASA Astrophysics Data System (ADS)

    Losovsky, B. Ya.; Dumsky, D. V.

    2014-08-01

    Observations of the RRAT pulsars J0627+16, J0628+09, J1819-1458, J1826-1419, J1839-01, J1840-1419, J1846-0257, J1848-12, J1850+15, J1854+0306, J1919+06, J1913+1330, J1919+17, J1946+24, and J2033+00 observed earlier on the 64-m Parkes telescope (Australia) and the 300-m Arecibo radio telescope (Puerto Rico) at 1400 MHz were conducted at 111 MHz on the LSA radio telescope of the Pushchino Radio Astronomy observatory in 2010-2012. A characteristic feature of these pulsars is their sporadic radio emission during rare active epochs and the absence of radio emission during long time intervals. No appreciable flare activity of these pulsars was detected in the Pushchino observations. However, processing the observations using the Fast Folding Algorithm taking into account known information about the pulsar dispersion measures and periods shows that, even during quiescent intervals, the majority of the studied pulsars generate weak radio pulses with a period corresponding to that of the radio emission of the sporadic pulses observed at active epochs. The flux of this radio emission does not exceed 100 mJy at the pulse peak, even at the low frequency of 111 MHz. This considerably hinders detection of the radio emission of RRAT pulsars at high frequencies, since the radio fluxes of RRAT pulsars decreases with increasing frequency.

  1. The new class of FR0 radio galaxies

    E-print Network

    Baldi, Ranieri D; Giovannini, Gabriele

    2015-01-01

    Are the FRI and FRII radio galaxies representative of the radio-loud (RL) AGN population in the local Universe? Recent studies on the local low-luminosity radio sources cast lights on an emerging population of compact radio galaxies which lack extended radio emission. In a pilot JVLA project, we study the high-resolution images of a small but representative sample of this population. The radio maps reveal compact unresolved or slightly resolved radio structures on a scale of 1-3 kpc. We find that these RL AGN live in red massive early-type galaxies, with large black hole masses ($\\gtrsim$10$^{8}$ M$_{\\odot}$), and spectroscopically classified as Low Excitation Galaxies, all characteristics typical of FRI radio galaxies which they also share the same nuclear luminosity with. However, they are more core dominated (by a factor of $\\sim$30) than FRIs and show a clear deficit of extended radio emission. We call these sources 'FR0' to emphasize their lack of prominent extended radio emission. A posteriori, other co...

  2. 75 FR 10439 - Cognitive Radio Technologies and Software Defined Radios

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ...10-12] Cognitive Radio Technologies and Software Defined Radios AGENCY: Federal Communications...proceeding concerning the use of open source software to implement security features in software defined radios (SDRs). While, the...

  3. Propagation Effects of Wind and Temperature on Acoustic Ground Contour Levels

    NASA Technical Reports Server (NTRS)

    Heath, Stephanie L.; McAninch, Gerry L.

    2006-01-01

    Propagation characteristics for varying wind and temperature atmospheric conditions are identified using physically-limiting propagation angles to define shadow boundary regions. These angles are graphically illustrated for various wind and temperature cases using a newly developed ray-tracing propagation code.

  4. Radio Frequency Interference and the National Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Smith, Sierra

    2014-01-01

    Radio frequency interference (RFI) and radio astronomy have been closely linked since the emergence of radio astronomy as a scientific discipline in the 1930s. Even before the official establishment of the National Radio Astronomy Observatory, protection against contemporary and future radio noise levels was seen as crucial to ensure success of any new observatory. My talk will examine the various local, regional, national, and international efforts enacted to protect NRAO and other American radio astronomy sites from RFI.

  5. Solar Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk,

    2012-01-01

    Radio bursts from the Sun are produced by electron accelerated to relativistic energies by physical processes on the Sun such as solar flares and coronal mass ejections (CMEs). The radio bursts are thus good indicators of solar eruptions. Three types of nonthermal radio bursts are generally associated with CMEs. Type III bursts due to accelerated electrons propagating along open magnetic field lines. The electrons are thought to be accelerated at the reconnection region beneath the erupting CME, although there is another view that the electrons may be accelerated at the CME-driven shock. Type II bursts are due to electrons accelerated at the shock front. Type II bursts are also excellent indicators of solar energetic particle (SEP) events because the same shock is supposed accelerate electrons and ions. There is a hierarchical relationship between the wavelength range of type /I bursts and the CME kinetic energy. Finally, Type IV bursts are due to electrons trapped in moving or stationary structures. The low frequency stationary type IV bursts are observed occasionally in association with very fast CMEs. These bursts originate from flare loops behind the erupting CME and hence indicate tall loops. This paper presents a summary of radio bursts and their relation to CMEs and how they can be useful for space weather predictions.

  6. The Deep Space Network as an instrument for radio science research

    NASA Technical Reports Server (NTRS)

    Asmar, S. W.; Renzetti, N. A.

    1993-01-01

    Radio science experiments use radio links between spacecraft and sensor instrumentation that is implemented in the Deep Space Network. The deep space communication complexes along with the telecommunications subsystem on board the spacecraft constitute the major elements of the radio science instrumentation. Investigators examine small changes in the phase and/or amplitude of the radio signal propagating from a spacecraft to study the atmospheric and ionospheric structure of planets and satellites, planetary gravitational fields, shapes, masses, planetary rings, ephemerides of planets, solar corona, magnetic fields, cometary comae, and such aspects of the theory of general relativity as gravitational waves and gravitational redshift.

  7. HF Radio Wave Production of Artificial Ionospheres

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert

    In 1993 it was predicted that artificial ionospheres would be produced by high power HF radio waves, once HF transmitters approached a GWatt ERP. When that threshold was very recently achieved, such production was indeed detected and published at two high latitude high power HF facilities. Here we review: the first-principles logic behind that prediction, which aspects of such production are critically dependent on magnetic latitude, and which aspects of such production depend only on physical parameters independent of latitude. These distinctions follow directly from decomposition of the problem of ionization production into its components of: radio-wave propagation, wave-particle interactions, electron transport, and quantitative elastic/inelastic cross-sections. We outline this analysis to show that, within the context of early observations, the production of ionization is inevitable, and only a question of competing instability thresholds, and scale of ionization production. This illustrates complimentary aeronomy and plasma physics to advance understanding of both.

  8. Radio Emission from Exoplanets

    E-print Network

    Samuel J. George; Ian R. Stevens

    2008-04-24

    We present results from new low frequency observations of two extrasolar planetary systems (Epsilon Eridani and HD128311) taken at 150 MHz with the Giant Metrewave Radio Telescope (GMRT). We do not detect either system, but are able to place tight upper limits on their low frequency radio emission.

  9. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1984-12-25

    Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.

  10. The Radio Jove Project

    NASA Technical Reports Server (NTRS)

    Thieman, J. R.

    2010-01-01

    The Radio love Project is a hands-on education and outreach project in which students, or any other interested individuals or groups build a radio telescope from a kit, operate the radio telescope, transmit the resulting signals through the internet if desired, analyze the results, and share the results with others through archives or general discussions among the observers. Radio love is intended to provide an introduction to radio astronomy for the observer. The equipment allows the user to observe radio signals from Jupiter, the Sun, the galaxy, and Earth-based radiation both natural and man-made. The project was started through a NASA Director's Discretionary Fund grant more than ten years ago. it has continued to be carried out through the dedicated efforts of a group of mainly volunteers. Dearly 1500 kits have been distributed throughout the world. Participation can also be done without building a kit. Pre-built kits are available. Users can also monitor remote radio telescopes through the internet using free downloadable software available through the radiosky.com website. There have been many stories of prize-winning projects, inspirational results, collaborative efforts, etc. We continue to build the community of observers and are always open to new thoughts about how to inspire the observers to still greater involvement in the science and technology associated with Radio Jove.

  11. Writing for Radio.

    ERIC Educational Resources Information Center

    Tupper, Marianna S.

    1995-01-01

    Describes a 24-hour commercial radio station simulation class project for eighth-grade language arts. Students wrote their own scripts, chose music and were disc jockeys on their own music and talk shows, and prepared news and traffic reports. Guest speakers from actual commercial radio came in to discuss issues such as advertising, censorship,…

  12. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, Henry D. (Orinda, CA); Fugitt, Jock A. (Berkeley, CA); Howard, Donald R. (Danville, CA)

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  13. Imaging the Radio Universe

    E-print Network

    Hibbard, John

    -rays, and microwaves, etc). · Sound waves are pressure waves. Require a medium (air, water, etc.) to travel through. · Sound is created by a pressure wave moving a membrane in your ear. Your brain turns the vibration of this membrane into "sound". MediumEar Sound Radio Waves are not Sound Waves #12;You do not listen to radio waves

  14. Elevated Temperature Crack Propagation

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1994-01-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  15. Excitations Propagating Along Surfaces

    E-print Network

    A. V. Stoyanovsky

    2006-05-22

    A number of equations is deduced which describe propagation of excitations along $n$-dimensional surfaces in $R^N$. Usual excitations in wave theory propagate along 1-dimensional trajectories. The role of the medium of propagation of excitations considered in this paper is played by the infinite dimensional space of $(n-1)$-dimensional surfaces in $R^N$. The role of rays is played by $n$-dimensional solution surfaces of the variational problem. Such a generalization of wave theory can be useful in quantum field theory. Among these equations are the generalized Hamilton--Jacobi equation (known in particular cases in the literature), generalized canonical Hamilton equations, and generalized Schrodinger equation. Besides that, a theory of integration of the generalized Hamilton--Jacobi equation is developed.

  16. Radio efficiency of pulsars

    SciTech Connect

    Szary, Andrzej; Melikidze, George I.; Gil, Janusz; Zhang, Bing; Xu, Ren-Xin E-mail: zhang@physics.unlv.edu

    2014-03-20

    We investigate radio emission efficiency, ?, of pulsars and report a near-linear inverse correlation between ? and the spin-down power, E-dot , as well as a near-linear correlation between ? and pulsar age, ?. This is a consequence of very weak, if any, dependences of radio luminosity, L, on pulsar period, P, and the period derivative, P-dot , in contrast to X-ray or ?-ray emission luminosities. The analysis of radio fluxes suggests that these correlations are not due to a selection effect, but are intrinsic to the pulsar radio emission physics. We have found that, although with a large variance, the radio luminosity of pulsars is ?10{sup 29} erg s{sup –1}, regardless of the position in the P-- P-dot diagram. Within such a picture, a model-independent statement can be made that the death line of radio pulsars corresponds to an upper limit in the efficiency of radio emission. If we introduce the maximum value for radio efficiency into the Monte Carlo-based population syntheses we can reproduce the observed sample using the random luminosity model. Using the Kolmogorov-Smirnov test on a synthetic flux distribution reveals a high probability of reproducing the observed distribution. Our results suggest that the plasma responsible for generating radio emission is produced under similar conditions regardless of pulsar age, dipolar magnetic field strength, and spin-down rate. The magnetic fields near the pulsar surface are likely dominated by crust-anchored, magnetic anomalies, which do not significantly differ among pulsars, leading to similar conditions for generating electron-positron pairs necessary to power radio emission.

  17. Field propagation in de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Molina, C.; Giugno, D.; Abdalla, E.; Saa, A.

    2004-05-01

    We present an exhaustive analysis of scalar, electromagnetic, and gravitational perturbations in the background of Schwarzchild de Sitter and Reissner Nordström de Sitter spacetimes. The field propagation is considered by means of a semianalytical (WKB) approach and two numerical schemes: the characteristic and general initial value integrations. The results are compared near the extreme cosmological constant regime, where analytical results are presented. A unifying picture is established for the dynamics of different spin fields.

  18. Voice communications over packet radio networks

    NASA Astrophysics Data System (ADS)

    Seah, M. M.

    1985-03-01

    The use of packet virtual circuit technique for voice communications in military radio networks was investigated. The work was concerned with various aspects of networking which include network modeling, communications techniques, traffic analysis and network control. An attempt has been made to develop a simple yet efficient time slot assignment algorithm . This was analyzed under a variety of slot depths and networks topologies using computer simulation. The Erlang' B results were used to provide more insight into the channel characteristics of the packet radio networks. The capabilities of implementing TDMA/CDMA hybrid schemes in the system were scrutinized. A method to estimate the transmission capacity of the inter-node links was found. We demonstrate its effectiveness in controlling local congestion by computer simulation. Graphical results were presented to highlight the behavior of the proposed packet radio networks. We concluded that an appropriate link weight function would provide efficient and reliable network services.

  19. 47 CFR 73.160 - Vertical plane radiation characteristics, f(?).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Vertical plane radiation characteristics, f(θ). 73.160 Section 73.160 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.160 Vertical plane radiation characteristics, f(?). (a) The vertical plane...

  20. On the speed and acceleration of electron beams triggering interplanetary type III radio bursts

    E-print Network

    Krupar, Vratislav; Soucek, Jan; Santolik, Ondrej; Maksimovic, Milan; Kruparova, Oksana

    2015-01-01

    Type III radio bursts are intense radio emissions triggered by beams of energetic electrons often associated with solar flares. These exciter beams propagate outwards from the Sun along an open magnetic field line in the corona and in the interplanetary (IP) medium. We performed a statistical survey of 29 simple and isolated IP type III bursts observed by STEREO/Waves instruments between January 2013 and September 2014. We investigated their time-frequency profiles in order to derive the speed and acceleration of exciter electron beams. We show these beams noticeably decelerate in the IP medium. Obtained speeds range from $\\sim$ 0.02c up to $\\sim$ 0.35c depending on initial assumptions. It corresponds to electron energies between tens of eV and hundreds of keV, and in order to explain the characteristic energies or speeds of type III electrons ($\\sim 0.1$c) observed simultaneously with Langmuir waves at 1 au, the emission of type III bursts near the peak should be predominately at double plasma frequency. Der...

  1. HOST GALAXIES OF X-SHAPED RADIO SOURCES

    SciTech Connect

    Springmann, A.; Cheung, C.

    2007-01-01

    Most radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, active galaxies that emit much of their radiation at radio wavelengths. Within each radio galaxy, an AGN powers a pair of collimated jets of relativistic particles, forming a pair of giant lobes at the end of the jets and thus giving a characteristic double-lobed appearance. A particular class of radio galaxies has an “X”-or winged-shaped morphology: in these, two pairs of lobes appear to originate from the galactic center, producing a distinctive X-shape. Two main mechanisms have been proposed to explain the X-shape morphology: one being a realignment of the black hole within the AGN and the second positing that the radio jets are expanding into an asymmetric medium, causing backflow and producing secondary wings. By analyzing radio host galaxy shapes, the distribution of the stellar mass is compared to the differing model expectations regarding the distribution of the surrounding gas and stellar material about the AGN. Results show elliptical host galaxies with an orthogonal offset between the semi-major axis of the host galaxy and the secondary radio wings, which lends support to the hydrodynamical model. However, results also show circular host galaxies with radio wings, making the realignment scenario a more likely model to describe the formation of these X-shaped radio sources.

  2. GRC RF Propagation Studies

    NASA Technical Reports Server (NTRS)

    Nessel, James

    2013-01-01

    NASA Glenn Research Center has been involved in the characterization of atmospheric effects on space communications links operating at Ka-band and above for the past 20 years. This presentation reports out on the most recent activities of propagation characterization that NASA is currently involved in.

  3. THREE DIMENSIONAL FLAME PROPAGATION

    E-print Network

    Heydari, Payam

    & Velocity Vectors ­ Slow Flame Phase 1g, t=2.0s, z=0. Recirculation zone forms allowing fuel vapor accumulation. #12;Temperature Contours & Velocity Vectors ­ Fast Flame Phase 1g, t=1.8s, z=0. LessTHREE DIMENSIONAL FLAME PROPAGATION ABOVE LIQUID FUEL POOLS By Jinsheng Cai, Feng Liu, and William

  4. Orogenic propagating precipitation systems

    NASA Astrophysics Data System (ADS)

    Moncrieff, Mitchell; Pritchard, Mike

    2010-05-01

    Organized propagating systems in the lee of mountains make an important contribution to convective precipitation in midlatitudes (e.g., US during the warm season) and in the tropics throughout the year. These systems display a high degree of variability in regard to the thermodynamic state (i.e., temperature and moisture distribution) and kinetic state (i.e., vertical shear) of the atmosphere. However, propagating precipitation systems are absent from climate models and are inadequately represented in global numerical weather prediction (NWP) models, if they are present at all. The reason is simple. Firstly, traditional cumulus parameterizations do not represent interactions between latent heating, rain evaporation and wind-shear which are fundamental to the mesoscale convective dynamics. Secondly, the spatial resolution of climate models is too coarse to permit explicit mesoscale convective organization. This has practical implications for quantitative precipitation prediction and fundamental implications for the Earth's water cycle and its variability. This talk will describe issues regarding the parameterization of organized convection for climate models, its explicit representation by cloud-system resolving models (CRMs, and hybrid representation for high-resolution NWP models. Also described will be new methodologies for representing propagating precipitation systems in climate models: i)superparameterization whereby traditional convective parameterization is replaced by CRMs; ii) hybrid parametric representation of stratiform heating, mesoscale downdrafts, and organized momentum transport associated with propagating systems.

  5. DROMO propagator revisited

    NASA Astrophysics Data System (ADS)

    Urrutxua, Hodei; Sanjurjo-Rivo, Manuel; Peláez, Jesús

    2015-09-01

    In the year 2000 an in-house orbital propagator called DROMO (Peláez et al. in Celest Mech Dyn Astron 97:131-150, 2007. doi: 10.1007/s10569-006-9056-3) was developed by the Space Dynamics Group of the Technical University of Madrid, based in a set of redundant variables including Euler-Rodrigues parameters. An original deduction of the DROMO propagator is carried out, underlining its close relation with the ideal frame concept introduced by Hansen (Abh der Math-Phys Cl der Kon Sachs Ges der Wissensch 5:41-218, 1857). Based on the very same concept, Deprit (J Res Natl Bur Stand Sect B Math Sci 79B(1-2):1-15, 1975) proposed a formulation for orbit propagation. In this paper, similarities and differences with the theory carried out by Deprit are analyzed. Simultaneously, some improvements are introduced in the formulation, that lead to a more synthetic and better performing propagator. Also, the long-term effect of the oblateness of the primary is studied in terms of DROMO variables, and new numerical results are presented to evaluate the performance of the method.

  6. CHARACTERIZING COSMIC-RAY PROPAGATION IN MASSIVE STAR-FORMING REGIONS: THE CASE OF 30 DORADUS AND THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Murphy, E. J.; Porter, T. A.; Moskalenko, I. V.; Helou, G.; Strong, A. W. E-mail: tporter@stanford.edu E-mail: gxh@ipac.caltech.edu

    2012-05-10

    Using infrared, radio, and {gamma}-ray data, we investigate the propagation characteristics of cosmic-ray (CR) electrons and nuclei in the 30 Doradus (30 Dor) star-forming region in the Large Magellanic Cloud (LMC) using a phenomenological model based on the radio-far-infrared correlation within galaxies. Employing a correlation analysis, we derive an average propagation length of {approx}100-140 pc for {approx}3 GeV CR electrons resident in 30 Dor from consideration of the radio and infrared data. Assuming that the observed {gamma}-ray emission toward 30 Dor is associated with the star-forming region, and applying the same methodology to the infrared and {gamma}-ray data, we estimate a {approx}20 GeV propagation length of 200-320 pc for the CR nuclei. This is approximately twice as large as for {approx}3 GeV CR electrons, corresponding to a spatial diffusion coefficient that is {approx}4 times higher, scaling as (R/GV){sup {delta}} with {delta} Almost-Equal-To 0.7-0.8 depending on the smearing kernel used in the correlation analysis. This value is in agreement with the results found by extending the correlation analysis to include {approx}70 GeV CR nuclei traced by the 3-10 GeV {gamma}-ray data ({delta} Almost-Equal-To 0.66 {+-} 0.23). Using the mean age of the stellar populations in 30 Dor and the results from our correlation analysis, we estimate a diffusion coefficient D{sub R} Almost-Equal-To (0.9-1.0) Multiplication-Sign 10{sup 27}(R/GV){sup 0.7} cm{sup 2} s{sup -1}. We compare the values of the CR electron propagation length and surface brightness for 30 Dor and the LMC as a whole with those of entire disk galaxies. We find that the trend of decreasing average CR propagation distance with increasing disk-averaged star formation activity holds for the LMC, and extends down to single star-forming regions, at least for the case of 30 Dor.

  7. Imaging interplanetary CMEs at radio frequency from solar polar orbit

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Liu, Hao; Yan, Jingye; Wang, Chi; Wang, Chuanbing; Wang, Shui

    2011-09-01

    Coronal mass ejections (CMEs) represent a great concentration of mass and energy input into the lower corona. They have come to be recognized as the major driver of physical conditions change in the Sun-Earth system. Consequently, observations of CMEs are important for understanding and ultimately predicting space weather conditions. This paper discusses a proposed mission, the Solar Polar Orbit Radio Telescope (SPORT) mission, which will observe the propagation of interplanetary CMEs to distances of near 0.35 AU from the Sun. The orbit of SPORT is an elliptical solar polar orbit. The inclination angle between the orbit and ecliptic plane should be about 90°. The main payload on board SPORT will be an imaging radiometer working at the meter wavelength band (radio telescope), which can follow the propagation of interplanetary CMEs. The images that are obtained by the radio telescope embody the brightness temperature of the objectives. Due to the very large size required for the antenna aperture of the radio telescope, we adopt interferometric imaging technology to reduce it. Interferometric imaging technology is based on indirect spatial frequency domain measurements plus Fourier transformation. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind ion instrument, an energetic particle detector, a magnetometer, a wave detector and a solar radio burst spectrometer.

  8. RADIO SIGNATURES OF CORONAL-MASS-EJECTION-STREAMER INTERACTION AND SOURCE DIAGNOSTICS OF TYPE II RADIO BURST

    SciTech Connect

    Feng, S. W.; Chen, Y.; Kong, X. L.; Li, G.; Song, H. Q.; Feng, X. S.; Liu Ying

    2012-07-01

    It has been suggested that type II radio bursts are due to energetic electrons accelerated at coronal shocks. Radio observations, however, have poor or no spatial resolutions to pinpoint the exact acceleration locations of these electrons. In this paper, we discuss a promising approach to infer the electron acceleration location by combining radio and white light observations. The key assumption is to relate specific morphological features (e.g., spectral bumps) of the dynamic spectra of type II radio bursts to imaging features (e.g., coronal mass ejection (CME) going into a streamer) along the CME (and its driven shock) propagation. In this study, we examine the CME-streamer interaction for the solar eruption dated on 2003 November 1. The presence of spectral bump in the relevant type II radio burst is identified, which is interpreted as a natural result of the shock-radio-emitting region entering the dense streamer structure. The study is useful for further determinations of the location of type II radio burst and the associated electron acceleration by CME-driven shock.

  9. Multiple Radios for Fast Rendezvous in Cognitive Radio Networks

    E-print Network

    Chu, Xiaowen

    . The existing work on rendezvous implicitly assumes that each cognitive user is equipped with one radio (i1 Multiple Radios for Fast Rendezvous in Cognitive Radio Networks Lu Yu, Hai Liu, Yiu-Wing Leung, Xiaowen Chu, and Zhiyong Lin Abstract--Rendezvous is a fundamental operation in cognitive radio networks

  10. Techniques and Technology Article Optimizing Radio Retention and Minimizing Radio

    E-print Network

    Sandercock, Brett K.

    Techniques and Technology Article Optimizing Radio Retention and Minimizing Radio Impacts the duration of transmitter attachment and minimizing the impacts of radios on the behavior and demography of the study animal. We tested 4 methods of radio attachment for a breeding population of upland sandpipers

  11. Multiple Radios for Effective Rendezvous in Cognitive Radio Networks

    E-print Network

    Chu, Xiaowen

    Multiple Radios for Effective Rendezvous in Cognitive Radio Networks Lu Yu1 , Hai Liu1 , Yiu in cognitive radio networks (CRNs) for establishing a communication link on a commonly-available channel is equipped with one radio (i.e., one wireless transceiver). As the cost of wireless transceivers is dropping

  12. A Database for Propagation Models and Conversion to C++ Programming Language

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.; Angkasa, Krisjani; Rucker, James

    1996-01-01

    In the past few years, a computer program was produced to contain propagation models and the necessary prediction methods of most propagation phenomena. The propagation model database described here creates a user friendly environment that makes using the database easy for experienced users and novices alike. The database is designed to pass data through the desired models easily and generate relevant results quickly. The database already contains many of the propagation phenomena models accepted by the propagation community and every year new models are added. The major sources of models included are the NASA Propagation Effects Handbook or the International Radio Consultive Committee (CCIR) or publications such as the Institute for Electrical and Electronic Engineers (IEEE).

  13. Constraints on cosmic ray propagation in the galaxy

    NASA Technical Reports Server (NTRS)

    Cordes, James M.

    1992-01-01

    The goal was to derive a more detailed picture of magnetohydrodynamic turbulence in the interstellar medium and its effects on cosmic ray propagation. To do so, radio astronomical observations (scattering and Faraday rotation) were combined with knowledge of solar system spacecraft observations of MHD turbulence, simulations of wave propagation, and modeling of the galactic distribution to improve the knowledge. A more sophisticated model was developed for the galactic distribution of electron density turbulence. Faraday rotation measure data was analyzed to constrain magnetic field fluctuations in the ISM. VLBI observations were acquired of compact sources behind the supernova remnant CTA1. Simple calculations were made about the energies of the turbulence assuming a direct link between electron density and magnetic field variations. A simulation is outlined of cosmic ray propagation through the galaxy using the above results.

  14. Multiple-site investigation of the properties of an HF radio channel and the ionosphere using Digital Radio Mondiale broadcasting

    NASA Astrophysics Data System (ADS)

    Mlynarczyk, Janusz; Koperski, Piotr; Kulak, Andrzej

    2012-01-01

    The Digital Radio Mondiale (DRM), one of the new digital radio broadcasting standards, has been designed to overcome typical short wave radio channel difficulties, such as the multipath propagation and fast temporal changes of the received signal level, both related to the properties of the ionosphere along the path of propagation. In particular, some of the RF carriers used in the applied COFDM transmission technique serve to estimate the current state of the radio channel to enable the proper demodulation of the received signal.We have been detecting such RF carriers on select frequency channels (standard DRM broadcast) using a network of recording stations located in different parts of Poland in order to collect data on the HF radio channel. We have been also evaluating the usefulness of this procedure in providing information on the current state of the ionosphere in the refraction region between the transmitter and receivers. When the DRM system becomes more widespread, this method can supplement data that comes from the ionosondes, since it does not require much financial resources and the receivers can be easily scattered over a large area. This paper presents a set of experimental data and its analysis.

  15. Short-lived Radio Bursts from the Crab Pulsar

    NASA Astrophysics Data System (ADS)

    Crossley, J. H.; Eilek, J. A.; Hankins, T. H.; Kern, J. S.

    2010-10-01

    Our high-time-resolution observations reveal that individual main pulses from the Crab pulsar contain one or more short-lived microbursts. Both the energy and duration of bursts measured above 1 GHz can vary dramatically in less than a millisecond. These fluctuations are too rapid to be caused by propagation through turbulence in the Crab Nebula or in the interstellar medium; they must be intrinsic to the radio emission process in the pulsar. The mean duration of a burst varies with frequency as ?-2, significantly different from the broadening caused by interstellar scattering. We compare the properties of the bursts to some simple models of microstructure in the radio emission region.

  16. Radio continuum properties of luminous infrared galaxies. Identifying the presence of an AGN in the radio

    E-print Network

    Vardoulaki, E; Murphy, E J; Diaz-Santos, T; Armus, L; Evans, A; Mazzarella, J M; Privon, G C; Stierwalt, S; Barcos-Munoz, L

    2014-01-01

    Luminous infrared galaxies are systems enshrouded in dust, which absorbs most of their optical/UV emission and re-radiates it in the mid- and far-infrared. Radio observations are largely unaffected by dust obscuration, enabling us to study the central regions of LIRGs in an unbiased manner. The main goal of this project is to examine how the radio properties of local LIRGs relate to their infrared spectral characteristics. Here we present an analysis of the radio continuum properties of a subset of the Great Observatories All-sky LIRG Survey (GOALS), which consists of 202 nearby systems (z<0.088). Our radio sample consists of 35 systems, or 46 individual galaxies, that were observed at both 1.49 and 8.44 GHz with the VLA with a resolution of about 1 arcsec (FWHM). The aim of the project is to use the radio imagery to probe the central kpc of these LIRGs in search of active galactic nuclei. We used the archival data at 1.49 and 8.44 GHz to create radio-spectral-index maps using the standard relation between...

  17. Eratosthenes via Ham Radio

    ERIC Educational Resources Information Center

    Koser, John F.

    1975-01-01

    A secondary geology class used Eratosthenes' method for measuring the circumference of the earth by comparing their measurements of the shadow of a vertical rod to the measurements made by another person contacted by ham radio. (MLH)

  18. Radio Sources and Scintillation

    NASA Astrophysics Data System (ADS)

    Rickett, Barney

    2001-10-01

    A review is given of the interplay between studies of compact radio sources and the scattering and scintillations that occur as the signals travel through the irregular refractive index of the interstellar and interplanetary plasmas.

  19. Digital signal processing for ionospheric propagation diagnostics

    NASA Astrophysics Data System (ADS)

    Rino, Charles L.; Groves, Keith M.; Carrano, Charles S.; Gunter, Jacob H.; Parris, Richard T.

    2015-08-01

    For decades, analog beacon satellite receivers have generated multifrequency narrowband complex data streams that could be processed directly to extract total electron content (TEC) and scintillation diagnostics. With the advent of software-defined radio, modern digital receivers generate baseband complex data streams that require intermediate processing to extract the narrowband modulation imparted to the signal by ionospheric structure. This paper develops and demonstrates a processing algorithm for digital beacon satellite data that will extract TEC and scintillation components. For algorithm evaluation, a simulator was developed to generate noise-limited multifrequency complex digital signal realizations with representative orbital dynamics and propagation disturbances. A frequency-tracking procedure is used to capture the slowly changing frequency component. Dynamic demodulation against the low-frequency estimate captures the scintillation. The low-frequency reference can be used directly for dual-frequency TEC estimation.

  20. Theories of radio emissions and plasma waves. [in Jupiter magnetosphere

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Goertz, C. K.

    1983-01-01

    The complex region of Jupiter's radio emissions at decameter wavelengths, the so-called DAM, is considered, taking into account the basic theoretical ideas which underly both the older and newer theories and models. Linear theories are examined, giving attention to direct emission mechanisms, parallel propagation, perpendicular propagation, and indirect emission mechanisms. An investigation of nonlinear theories is also conducted. Three-wave interactions are discussed along with decay instabilities, and three-wave up-conversio. Aspects of the Io and plasma torus interaction are studied, and a mechanism by which Io can accelerate electrons is reviewed.

  1. Astrometry of southern radio sources

    NASA Technical Reports Server (NTRS)

    White, Graeme L.; Jauncey, David L.; Harvey, Bruce R.; Savage, Ann; Gulkis, Samuel; Preston, Robert A.

    1991-01-01

    An overview is presented of a number of astrometry and astrophysics programs based on radio sources from the Parkes 2.7 GHz catalogs. The programs cover the optical identification and spectroscopy of flat-spectrum Parkes sources and the determination of their milliarcsecond radio structures and positions. Work is also in progress to tie together the radio and Hipparcos positional reference frames. A parallel program of radio and optical astrometry of southern radio stars is also under way.

  2. Transionospheric Propagation Code (TIPC)

    SciTech Connect

    Roussel-Dupre, R.; Kelley, T.A.

    1990-10-01

    The Transionospheric Propagation Code is a computer program developed at Los Alamos National Lab to perform certain tasks related to the detection of vhf signals following propagation through the ionosphere. The code is written in Fortran 77, runs interactively and was designed to be as machine independent as possible. A menu format in which the user is prompted to supply appropriate parameters for a given task has been adopted for the input while the output is primarily in the form of graphics. The user has the option of selecting from five basic tasks, namely transionospheric propagation, signal filtering, signal processing, DTOA study, and DTOA uncertainty study. For the first task a specified signal is convolved against the impulse response function of the ionosphere to obtain the transionospheric signal. The user is given a choice of four analytic forms for the input pulse or of supplying a tabular form. The option of adding Gaussian-distributed white noise of spectral noise to the input signal is also provided. The deterministic ionosphere is characterized to first order in terms of a total electron content (TEC) along the propagation path. In addition, a scattering model parameterized in terms of a frequency coherence bandwidth is also available. In the second task, detection is simulated by convolving a given filter response against the transionospheric signal. The user is given a choice of a wideband filter or a narrowband Gaussian filter. It is also possible to input a filter response. The third task provides for quadrature detection, envelope detection, and three different techniques for time-tagging the arrival of the transionospheric signal at specified receivers. The latter algorithms can be used to determine a TEC and thus take out the effects of the ionosphere to first order. Task four allows the user to construct a table of delta-times-of-arrival (DTOAs) vs TECs for a specified pair of receivers.

  3. Longitudinal nonlinear wave propagation through soft tissue.

    PubMed

    Valdez, M; Balachandran, B

    2013-04-01

    In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated strain-rates introduced at the end of the structure where the load is applied. In addition, it is shown that when steep wave fronts are generated in the nonlinear viscoelastic material, energy dissipation is focused in those wave fronts implying deposition of energy in a highly localized region of the material. Novel mechanisms for brain tissue damage are proposed based on the results obtained. The first mechanism is related to the dissipation of energy at steep wave fronts, while the second one is related to the interaction of steep wave fronts with axons encountered on its way through the structure. PMID:23510921

  4. Propagators and topology

    NASA Astrophysics Data System (ADS)

    Maas, Axel

    2015-03-01

    Two popular perspectives on the non-perturbative domain of Yang-Mills theories are either in terms of the gluons themselves or in terms of collective gluonic excitations, i.e. topological excitations. If both views are correct, then they are only two different representations of the same underlying physics. One possibility to investigate this connection is by the determination of gluon correlation functions in topological background fields, as created by the smearing of lattice configurations. This is performed here for the minimal Landau gauge gluon propagator, ghost propagator, and running coupling, both in momentum and position space for SU(2) Yang-Mills theory. The results show that the salient low-momentum features of the propagators are qualitatively retained under smearing at sufficiently small momenta, in agreement with an equivalence of both perspectives. However, the mid-momentum behavior is significantly affected. These results are also relevant for the construction of truncations in functional methods, as they provide hints on necessary properties to be retained in truncations.

  5. Analysis of the Temporal Structural Function of Tropospheric Delay of Radio Waves Using Radio Measurements of the Signals from Global Navigation Satellite Systems

    NASA Astrophysics Data System (ADS)

    Khutorov, V. E.; Teptin, G. M.

    2014-11-01

    We present the results of a three-year experimental study of propagation of decimeter radio waves in the troposphere. The time analysis of the structural function of tropospheric delay of the decimeter radio waves for the three-year measurements of the GLONASS and GPS signals in a city of Kazan is given. The tropospheric contribution to the variance of the decimeter radio-wave delay is for the first time observed to significantly differ for the variations with time scales 1 to 24 h.

  6. Propagation peculiarities of mean field massive gravity

    NASA Astrophysics Data System (ADS)

    Deser, S.; Waldron, A.; Zahariade, G.

    2015-10-01

    Massive gravity (mGR) describes a dynamical "metric" on a fiducial, background one. We investigate fluctuations of the dynamics about mGR solutions, that is about its "mean field theory". Analyzing mean field massive gravity (m?GR) propagation characteristics is not only equivalent to studying those of the full non-linear theory, but also in direct correspondence with earlier analyses of charged higher spin systems, the oldest example being the charged, massive spin 3/2 Rarita-Schwinger (RS) theory. The fiducial and mGR mean field background metrics in the m?GR model correspond to the RS Minkowski metric and external EM field. The common implications in both systems are that hyperbolicity holds only in a weak background-mean-field limit, immediately ruling both theories out as fundamental theories; a situation in stark contrast with general relativity (GR) which is at least a consistent classical theory. Moreover, even though both m?GR and RS theories can still in principle be considered as predictive effective models in the weak regime, their lower helicities then exhibit superluminal behavior: lower helicity gravitons are superluminal as compared to photons propagating on either the fiducial or background metric. Thus our approach has uncovered a novel, dispersive, "crystal-like" phenomenon of differing helicities having differing propagation speeds. This applies both to m?GR and mGR, and is a peculiar feature that is also problematic for consistent coupling to matter. Correct degree of freedom (DoF) counts. Non-ghost kinetic terms. Predictability. (Sub)luminal propagation. Requirements (i) and (ii) are closely related (as are (iii) and (iv)). Models whose constraints do not single out the correct propagating DoF suffer from relatively ghost kinetic terms: the relevant example here is the sixth ghost excitation that plagues generic massive gravity (mGR) theories [1]. The discovery that a class of mGR models satisfied requirements (i) and (ii) generated a revival of interest in massive spin 2 theories [2-7] even though failure of the propagation requirements (iii) and (iv) were long known to bedevil higher spin theories [8,9].The predictability requirement is that initial data can be propagated to the future of spacetime hypersurfaces. In PDE terms, this means that the underlying equations must be hyperbolic [10]. The final requirement, that signals cannot propagate faster than light, can be imposed once the hyperbolicity requirement is satisfied. The classic example of a model that obeys requirements (i) and (ii) as well as (iii) but only in a weak field region, is the charged, massive, s = 3 / 2 RS theory. Curiously enough, the propagation problems of this model were first discovered in a quantum setting by Johnson and Sudarshan [11] who studied the model's canonical field commutators (this is easy to understand in retrospect, because field commutators and propagators are directly related [12]). The first detailed analysis of the model's propagation characteristics was carried out by Velo and Zwanziger; our aim is to reproduce their RS results in m?GR, so we quote their 1971 abstract verbatim [8]:

  7. Interplanetary scintillation observations with the Cocoa Cross radio telescope

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Erskine, F. T.; Huneke, A. H.; Mitchell, D. G.

    1976-01-01

    Physical and electrical parameters for the 34.3-MHz Cocoa Cross radio telescope are given. The telescope is dedicated to the determination of solar-wind characteristics in and out of the ecliptic plane through measurement of electron-density irregularity structure as determined from IPS (interplanetary scintillation) of natural radio sources. The collecting area (72,000 sq m), angular resolution (0.4 deg EW by 0.6 deg NS), and spatial extent (1.3 km EW by 0.8 km NS) make the telescope well suited for measurements of IPS index and frequency scale for hundreds of weak radio sources without serious confusion effects.

  8. Opportunistic scheduling using cognitive radio

    NASA Astrophysics Data System (ADS)

    Dohler, Mischa; Ghorashi, Seyed A.; Ghozzi, Mohamed; Arndt, Marylin; Said, Fatin; Aghvami, A. Hamid

    2006-09-01

    Traditional cognitive approaches based on interference scanning discard a certain communication band once interference is detected, irrespective of the temporal characteristics of the interference. The aim of this article is to alert the community that interference exhibits temporal fluctuations, which can be exploited by a cognitive radio in an opportunistic manner. To this end, we present some mathematical approaches that describe the temporal behaviour of interference signals obeying a lognormal shadowing distribution. We derive some key quantities, such as throughput, for an example hierarchical cell structure configuration of a microcell hotspot being operated within a macrocell using the same frequency band. To cite this article: M. Dohler et al., C. R. Physique 7 (2006).

  9. Premixed Turbulent Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1999-01-01

    A combined numerical-experimental study has been carried out to investigate the structure and propagation characteristics of turbulent premixed flames with and without the influence of buoyancy. Experimentally, the premixed flame characteristics are studied in the wrinkled regime using a Couette flow facility and an isotropic flow facility in order to resolve the scale of flame wrinkling. Both facilities were chosen for their ability to achieve sustained turbulence at low Reynolds number. This implies that conventional diagnostics can be employed to resolve the smallest scales of wrinkling. The Couette facility was also built keeping in mind the constraints imposed by the drop tower requirements. Results showed that the flow in this Couette flow facility achieves full-developed turbulence at low Re and all turbulence statistics are in good agreement with past measurements on large-scale facilities. Premixed flame propagation studies were then carried out both using the isotropic box and the Couette facility. Flame imaging showed that fine scales of wrinkling occurs during flame propagation. Both cases in Ig showed significant buoyancy effect. To demonstrate that micro-g can remove this buoyancy effect, a small drop tower was built and drop experiments were conducted using the isotropic box. Results using the Couette facility confirmed the ability to carry out these unique reacting flow experiments at least in 1g. Drop experiments at NASA GRC were planned but were not completed due to termination of this project.

  10. Use of radio equipment for Space Shuttle navigation

    NASA Technical Reports Server (NTRS)

    Schiesser, E. R.

    1978-01-01

    Space Shuttle navigation is defined, in a narrow sense, as the task of maintaining adequate knowledge of vehicle position and velocity. The state of the Orbiter in terms of this goal is described by a vector of at least six elements, three for position and three for velocity, at a given time. These are referred to as the 'state vector' or simply as the state. Shuttle navigation will relay on a blend of ground-based and onboard systems. The onboard systems will be capable of state propagation at all times and will perform state determination during the latter part of the entry from orbit. The ground-based system will be capable of accurate state propagation for free-flight phases. Radio communication will be necessary in order for the ground and onboard capabilities to work as a coordinated system. The use of radio equipment for state determination is discussed for the ascent, orbit, rendezvous, descent, and abort phases of Shuttle missions.

  11. PHYSICAL CONSTRAINTS ON FAST RADIO BURSTS

    SciTech Connect

    Luan, Jing; Goldreich, Peter

    2014-04-20

    Fast radio bursts (FRBs) are isolated, ms radio pulses with dispersion measure (DM) of order 10{sup 3} pc cm{sup –3}. Galactic candidates for the DM of high latitude bursts detected at GHz frequencies are easily dismissed. DM from bursts emitted in stellar coronas are limited by free-free absorption and those from H II regions are bounded by the nondetection of associated free-free emission at radio wavelengths. Thus, if astronomical, FRBs are probably extragalactic. FRB 110220 has a scattering tail of ?5.6 ± 0.1 ms. If the electron density fluctuations arise from a turbulent cascade, the scattering is unlikely to be due to propagation through the diffuse intergalactic plasma. A more plausible explanation is that this burst sits in the central region of its host galaxy. Pulse durations of order ms constrain the sizes of FRB sources implying high brightness temperatures that indicates coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period.

  12. Pilot study of the radio-emitting AGN population: the emerging new class of FR 0 radio-galaxies

    NASA Astrophysics Data System (ADS)

    Baldi, Ranieri D.; Capetti, Alessandro; Giovannini, Gabriele

    2015-04-01

    We present the results of a pilot JVLA project aimed at studying the bulk of the radio-emitting AGN population, that was unveiled by the NVSS/FIRST and SDSS surveys. The key questions are related to the origin of their radio-emission and to its connection with the properties of their hosts. We obtained A-array observations at the JVLA at 1.4, 4.5, and 7.5 GHz for 12 sources, a small but representative subsample. The radio maps reveal compact unresolved or only slightly resolved radio structures on a scale of 1-3 kpc, with the one exception of a hybrid FR I/FR II source extended over ~40 kpc. Thanks to either the new high-resolution maps or to the radio spectra, we isolated the radio core component in most of them. We split the sample into two groups. Four sources have low black hole (BH) masses (mostly ~107 M?) and are hosted by blue galaxies, often showing evidence of a contamination from star formation to their radio emission, and are associated with radio-quiet (RQ) AGN. The second group consists in seven radio-loud (RL) AGN, which are located in red massive (~1011 M?) early-type galaxies, have high BH masses (?108 M?), and are spectroscopically classified as low excitation galaxies (LEG). These are all characteristics typical of FR I radio galaxies. They also lie on the correlation between radio core power and [O III] line luminosity defined by FR Is. However, they are more core-dominated (by a factor of ~30) than FR Is and show a deficit of extended radio emission. We dub these sources "FR 0" to emphasize their lack of prominent extended radio emission, which is their single distinguishing feature with respect to FR Is. The differences in radio properties between FR 0s and FR Is might be ascribed to an evolutionary effect, with the FR 0 sources undergoing rapid intermittency that prevents the growth of large-scale structures. However, this contrasts with the scenario in which low-luminosity radio-galaxies are fed by continuous accretion of gas from their hot coronae. In our preferred scenario the lack of extended radio emission in FR 0s is due to their lower jet Lorentz ? factor with respect to FR Is. The slower jets in FR 0s are more subject to instabilities and entrainment, which causes their premature disruption.

  13. A new approach to analyse radio-occultation data

    NASA Astrophysics Data System (ADS)

    Grandin, Maxime; Blelly, Pierre-Louis; Witasse, Olivier; Marchaudon, Aurelie

    2015-04-01

    Highly-valuable information on the planetary environments can be obtained using the radio-occultation technique. Since 2004, the Mars Express Radio-Science (MaRS) experiment has enabled to perform several hundreds of soundings of the Martian ionosphere and neutral atmosphere. To analyse such measurements, the classical method is based on an inversion which requires strong assumptions on the planetary environment and which provides partial information on the retrieved atmospheric and ionospheric profiles. In this work, we developed a novel method for radio-occultation data analysis based on a direct approach. It consists in simulating a given radio-occultation experiment performed by Mars Express using a numerical model of the Martian envelope and computing the propagation of the radio waves between the spacecraft and the ground station on Earth. Not only does this approach remove some of the limiting assumptions necessary to apply the classical inversion method, but it also couples the neutral and the ionised regions of the Martian environment, thus giving physical constrains on the retrieved profiles. We present our analysis obtained with this new method for different occultation configurations, and we discuss the interests and the remaining limitations of such a method compared to the standard analysis. Reference: Grandin, M., P.-L. Blelly, O. Witasse, and A. Marchaudon, (2014), Mars Express radio-occultation data: A novel analysis approach, J. Geophys. Res. Space Physics,119, doi:10.1002/2014JA020698.

  14. Searching for radio relics and halos. Their role in the formation and acceleration of extragalactic cosmic rays

    E-print Network

    Nectaria A. B. Gizani

    2011-08-08

    We search for extended regions of radio emission not associated with Active Galactic Nuclei, known as 'relics', 'halos' and 'mini halo's, in a sample of 70 Abell clusters for which we have radio, optical and X-ray data. AGN can produce particle bubbles of non-thermal emission, which can restrict cosmic rays. Hence radio relics and (mini) halos could be forming as a result of the confinement of cosmic rays by these bubbles. We are probing the role that intracluster mag- netic fields (using Faraday rotation measure and inverse compton arguments), mergers (through radio/X-ray interactions), cooling flows (X-ray data), radio jets/shocks as well as radio (mini) halos/relics play in the formation, acceleration and propagation of cosmic rays. For the current study we have selected two powerful nearby radio galaxies from our sample: Hercules A and 3C 388. We report on the work in progress and future plans.

  15. LARGE-SCALE CORONAL PROPAGATING FRONTS IN SOLAR ERUPTIONS AS OBSERVED BY THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORY—AN ENSEMBLE STUDY

    SciTech Connect

    Nitta, Nariaki V.; Schrijver, Carolus J.; Title, Alan M.; Liu, Wei

    2013-10-10

    This paper presents a study of a large sample of global disturbances in the solar corona with characteristic propagating fronts as intensity enhancement, similar to the phenomena that have often been referred to as Extreme Ultraviolet Imaging Telescope (EIT) waves or extreme-ultraviolet (EUV) waves. Now EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory provide a significantly improved view of these large-scale coronal propagating fronts (LCPFs). Between 2010 April and 2013 January, a total of 171 LCPFs have been identified through visual inspection of AIA images in the 193 Å channel. Here we focus on the 138 LCPFs that are seen to propagate across the solar disk, first studying how they are associated with flares, coronal mass ejections (CMEs), and type II radio bursts. We measure the speed of the LCPF in various directions until it is clearly altered by active regions or coronal holes. The highest speed is extracted for each LCPF. It is often considerably higher than EIT waves. We do not find a pattern where faster LCPFs decelerate and slow LCPFs accelerate. Furthermore, the speeds are not strongly correlated with the flare intensity or CME magnitude, nor do they show an association with type II bursts. We do not find a good correlation either between the speeds of LCPFs and CMEs in a subset of 86 LCPFs observed by one or both of the Solar and Terrestrial Relations Observatory spacecraft as limb events.

  16. Changes in subcellular morphologies, defense enzyme and genetic characteristics in earth-grown tomato seedlings propagated from six year Mir-flown seeds and 27 day recovery satellite-flown seeds

    NASA Astrophysics Data System (ADS)

    Lu, Jinying; Liu, Min; Xue, Huai; Pan, Yi; Han, Xinyun; Kan, Sheng; Nechitailo, Galina S.

    Subcellular, changes of enzymes activities and genetic characteristics were compared between Earth-grown plants from the original tomato seeds, 6-year long-term flown in the Mir and 27- day short-term flown in the satellite. In some Mir-flown plants, the lamellae's structure of some chloroplasts became curved and loose, and some mitochondrial outer membranes were broken. In some satellite-flown plants, the number of mitochondria increased, the lamellae's structure of some chloroplasts became curved and loose, and some mitochondrial cristae disappeared. The number of starch grains per chloroplast in Mir-flown plants and satellite-flown plants increased significantly compared with the ground control. The number of chloroplasts per leaf cell in Mir-flown plants and satellite-flown plants decreased significantly compared with the ground control. The activities of three defense enzymes SOD, POD and CAT in the satellite -flown plants increased significantly as compared with those of the ground controls and the Mir-flown plants, but the content of MDA decreased significantly. Coefficients of variation of the activities of SOD, POD, CAT and the content of MDA in the satellite -flown plants were lest, and those in the Mir-flown plants were maximum. Among the 90 pair of SSR primers used for the genome DNA PCR analyses, the total number of SSR bands in the Mir-flown plants was the same 90 bands as in the control. Different DNA band types were generated from 7 pairs of SSR primers with a 7.78% polymorphism between the control and the 15 Mir-flown plants. Of 8 polymorphic bands, the SSR fragment size in 4 bands was larger and 4 smaller in the Mir-flown plants than that in the control. Different DNA band types were generated from 5 pairs of SSR primers with a 5.56% polymorphism between the control and one satellite-flown plant. The total number of SSR bands in one satellite-flown plant was 95 bands, of which 90 bands were the same with the ground control and 5 bands were polymorphic bands.

  17. Temporal scaling in information propagation.

    PubMed

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-01-01

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers. PMID:24939414

  18. Temporal scaling in information propagation

    NASA Astrophysics Data System (ADS)

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-06-01

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

  19. Development of a curved ray tracing method for modeling of phase paths from GPS radio occultation: A two-dimensional study

    NASA Astrophysics Data System (ADS)

    Wee, Tae-Kwon; Kuo, Ying-Hwa; Lee, Dong-Kyou

    2010-12-01

    A two-dimensional curved ray tracer (CRT) is developed to study the propagation path of radio signals across a heterogeneous planetary atmosphere. The method, designed to achieve improvements in both computational efficiency and accuracy over conventional straight-line methods, takes rays' first-order bending into account to better describe curved raypaths in the stratified atmosphere. CRT is then used to simulate the phase path from GPS radio occultation (RO). The merit of the ray tracing approach in GPS RO is explicit consideration of horizontal variation in the atmosphere, which may lead to a sizable error but is disregarded in traditional retrieval schemes. In addition, direct modeling of the phase path takes advantage of simple error characteristics in the measurement. With provision of ionospheric and neutral atmospheric refractive indices, in this effort, rays are traced along the full range of GPS-low Earth orbiting (LEO) radio links just as the measurements are made in real life. Here, ray shooting is employed to realize the observed radio links with controlled accuracy. CRT largely reproduces the very measured characteristics of GPS signals. When compared, the measured and simulated phases show remarkable agreement. The cross validation between CRT and GPS RO has confirmed not only the strength of CRT but also the high accuracy of GPS RO measurements. The primary motivation for this study is enabling effective quality control for GPS RO data, overcoming a complicated error structure in the high-level data. CRT has also shown a great deal of potential for improved utilization of GPS RO data for geophysical research.

  20. CURVATURE-DRIFT INSTABILITY FAILS TO GENERATE PULSAR RADIO EMISSION

    SciTech Connect

    Kaganovich, Alexander; Lyubarsky, Yuri

    2010-10-01

    The curvature-drift instability has long been considered as a viable mechanism for pulsar radio emission. We reconsidered this mechanism by finding an explicit solution describing the propagation of short electromagnetic waves in a plasma flow along curved magnetic field lines. We show that even though the waves could be amplified, the amplification factor remains very close to unity; therefore, this mechanism is unable to generate high brightness temperature emission from initial weak fluctuations.

  1. Land mobile satellite propagation measurements in Japan using ETS-V satellite

    NASA Technical Reports Server (NTRS)

    Obara, Noriaki; Tanaka, Kenji; Yamamoto, Shin-Ichi; Wakana, Hiromitsu

    1993-01-01

    Propagation characteristics of land mobile satellite communications channels have been investigated actively in recent years. Information of propagation characteristics associated with multipath fading and shadowing is required to design commercial land mobile satellite communications systems, including protocol and error correction method. CRL (Communications Research Laboratory) has carried out propagation measurements using the Engineering Test Satellite-V (ETS-V) at L band (1.5 GHz) through main roads in Japan by a medium gain antenna with an autotracking capability. This paper presents the propagation statistics obtained in this campaign.

  2. Experiments on the Propagation of Plasma Filaments

    SciTech Connect

    Katz, Noam; Egedal, Jan; Fox, Will; Le, Ari; Porkolab, Miklos

    2008-07-04

    We investigate experimentally the motion and structure of isolated plasma filaments propagating through neutral gas. Plasma filaments, or 'blobs,' arise from turbulent fluctuations in a range of plasmas. Our experimental geometry is toroidally symmetric, and the blobs expand to a larger major radius under the influence of a vertical electric field. The electric field, which is caused by {nabla}B and curvature drifts in a 1/R magnetic field, is limited by collisional damping on the neutral gas. The blob's electrostatic potential structure and the resulting ExB flow field give rise to a vortex pair and a mushroom shape, which are consistent with nonlinear plasma simulations. We observe experimentally this characteristic mushroom shape for the first time. We also find that the blob propagation velocity is inversely proportional to the neutral density and decreases with time as the blob cools.

  3. Ionic Wave Propagation along Actin Filaments

    PubMed Central

    Tuszy?ski, J. A.; Portet, S.; Dixon, J. M.; Luxford, C.; Cantiello, H. F.

    2004-01-01

    We investigate the conditions enabling actin filaments to act as electrical transmission lines for ion flows along their lengths. We propose a model in which each actin monomer is an electric element with a capacitive, inductive, and resistive property due to the molecular structure of the actin filament and viscosity of the solution. Based on Kirchhoff's laws taken in the continuum limit, a nonlinear partial differential equation is derived for the propagation of ionic waves. We solve this equation in two different regimes. In the first, the maximum propagation velocity wave is found in terms of Jacobi elliptic functions. In the general case, we analyze the equation in terms of Fisher-Kolmogoroff modes with both localized and extended wave characteristics. We propose a new signaling mechanism in the cell, especially in neurons. PMID:15041636

  4. Propagation of Ornamental Plants. 

    E-print Network

    DeWerth, A. F.

    1955-01-01

    stream_source_info Bull0816.pdf.txt stream_content_type text/plain stream_size 13405 Content-Encoding ISO-8859-1 stream_name Bull0816.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Propagation of Ornamental Plants... I A. I?. DEWERTH, Head Department of Floriculture and Landscape Architecture Texas A. & M. College System THE MULTIPLICATION of ornamental plants is After sterilizing, firm the soil to within 1; receiving more and more attention from home inch...

  5. DRAFT : IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 1 Deterministic Approach for Fast Simulations of

    E-print Network

    Jaffrès-Runser, Katia

    project of INRIA Rh^one-Alpes France (e-mail: jean- marie.gorce@insa-lyon.fr). approaches, many works have Council. The authors are with the National Institute of Applied Sciences, Lyon, France, and the ARES of Indoor Radio Wave Propagation Jean-Marie Gorce, Member, IEEE, Katia Runser, Member, IEEE, and Guillaume

  6. Radio fiber bursts and fast magnetoacoustic wave trains

    NASA Astrophysics Data System (ADS)

    Karlický, M.; Mészárosová, H.; Jelínek, P.

    2013-02-01

    Aims: We present a model for dm-fiber bursts that is based on assuming fast sausage magnetoacoustic wave trains that propagate along a dense vertical filament or current sheet. Methods: Eight groups of dm-fiber bursts that were observed during solar flares were selected and analyzed by the wavelet analysis method. To model these fiber bursts we built a semi-empirical model. We also did magnetohydrodynamic simulations of a propagation of the magnetoacoustic wave train in a vertical and gravitationally stratified current sheet. Results: In the wavelet spectra of the fiber bursts computed at different radio frequencies we found the wavelet tadpoles, whose head maxima have the same frequency drift as the drift of fiber bursts. It indicates that the drift of these fiber bursts can be explained by the propagating fast sausage magnetoacoustic wave train. Using new semi-empirical and magnetohydrodynamic models with a simple radio emission model we generated the artificial radio spectra of the fiber bursts, which are similar to the observed ones.

  7. How Soft Gamma Repeaters May Make Fast Radio Bursts

    E-print Network

    Katz, J I

    2015-01-01

    The high brightness of Fast Radio Bursts requires coherent emission by particles "bunched" by plasma instability at powers far in excess of those of pulsar spindown. Dissipation of magnetic energy in a neutron star magnetosphere, as in popular models of Soft Gamma Repeaters, can meet the energy requirement and produces an electron-positron pair plasma. Annihilation gamma rays are scattered by cooler plasma, producing a broad beam of electrons. The resulting electron distribution function is unstable to the "bump-on-tail" plasma instability. Electron plasma waves grow exponentially, scattering on density gradients to produce propagating electromagnetic waves, in analogy to Solar Type III Radio Bursts. Galactic SGR may make Galactic FRB, many orders of magnitude brighter than FRB at "cosmological" distances, that could be observed by radio telescopes out of beam or by modest arrays of dipole antennas.

  8. eRadio : empowerment through community Web radio

    E-print Network

    Gomez-Monroy, Carla, 1977-

    2004-01-01

    The eRadio project proposes to be an effective aid to increase interaction and reduce alienation among the members of dispersed communities by using a holistic approach to participatory and interactive web radio-production, ...

  9. Imaging Interplanetary CMEs at Radio Frequency From Solar Polar Orbit

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Wang, Chi; Wang, C. B.; Wang, S.

    Coronal mass ejections (CMEs) are violent discharges of plasma and magnetic fields from the Sun's corona. They have come to be recognized as the major driver of physical conditions in the Sun-Earth system. Consequently, the detection of CMEs is important for un-derstanding and ultimately predicting space weather conditions. The Solar Polar Orbit Radio Telescope (SPORT) is a proposed mission to observe the propagation of interplanetary CMEs from solar polar orbit. The main payload (radio telescope) on board SPORT will be an in-terferometric imaging radiometer working at the meter wavelength band, which will follow the propagation of interplanetary CMEs from a distance of a few solar radii to near 1 AU from solar polar orbit. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind plasma experiment, a solar wind ion composition instrument, an energetic particle detector, a wave detector, a mag-netometer and an interplanetary radio burst tracker. In this paper, we first describe the current shortage of interplanetary CME observations. Next, the scientific motivation and objectives of SPORT are introduced. We discuss the basic specifications of the main radio telescope of SPORT with reference to the radio emission mechanisms and the radio frequency band to be observed. Finally, we discuss the key technologies of the SPORT mission, including the con-ceptual design of the main telescope, the image retrieval algorithm and the solar polar orbit injection. Other payloads and their respective observation objectives are also briefly discussed. Key words: Interplanetary CMEs; Interferometric imaging; Solar polar orbit; Radiometer.

  10. The radio structure of radio-quiet quasars

    E-print Network

    Christian Leipski; Heino Falcke; Nicola Bennert; Susanne Huettemeister; ;

    2006-06-21

    We investigate the radio emitting structures of radio-quiet active galactic nuclei with an emphasis on radio-quiet quasars to study their connection to Seyfert galaxies. We present and analyse high-sensitivity VLA radio continuum images of 14 radio-quiet quasars and six Seyfert galaxies. Many of the low redshift radio-quiet quasars show radio structures that can be interpreted as jet-like outflows. However, the detection rate of extended radio structures on arcsecond scales among our sample decreases with increasing redshift and luminosity, most likely due to a lack of resolution. The morphologies of the detected radio emission indicate strong interactions of the jets with the surrounding medium. We also compare the radio data of seven quasars with corresponding HST images of the [OIII] emitting narrow-line region (NLR). We find that the scenario of interaction between the radio jet and the NLR gas is confirmed in two sources by structures in the NLR gas distribution as previously known for Seyfert galaxies. The extended radio structures of radio-quiet quasars at sub-arcsecond resolution are by no means different from that of Seyferts. Among the luminosities studied here, the morphological features found are similar in both types of objects while the overall size of the radio structures increases with luminosity. This supports the picture where radio-quiet quasars are the scaled-up versions of Seyfert galaxies. In addition to known luminosity relations we find a correlation of the NLR size and the radio size shared by quasars and Seyferts.

  11. INTERPLANETARY SHOCKS LACKING TYPE II RADIO BURSTS

    SciTech Connect

    Gopalswamy, N.; Kaiser, M. L.; Xie, H.; Maekelae, P.; Akiyama, S.; Yashiro, S.; Howard, R. A.; Bougeret, J.-L.

    2010-02-20

    We report on the radio-emission characteristics of 222 interplanetary (IP) shocks detected by spacecraft at Sun-Earth L1 during solar cycle 23 (1996 to 2006, inclusive). A surprisingly large fraction of the IP shocks ({approx}34%) was radio quiet (RQ; i.e., the shocks lacked type II radio bursts). We examined the properties of coronal mass ejections (CMEs) and soft X-ray flares associated with such RQ shocks and compared them with those of the radio-loud (RL) shocks. The CMEs associated with the RQ shocks were generally slow (average speed {approx}535 km s{sup -1}) and only {approx}40% of the CMEs were halos. The corresponding numbers for CMEs associated with RL shocks were 1237 km s{sup -1} and 72%, respectively. Thus, the CME kinetic energy seems to be the deciding factor in the radio-emission properties of shocks. The lower kinetic energy of CMEs associated with RQ shocks is also suggested by the lower peak soft X-ray flux of the associated flares (C3.4 versus M4.7 for RL shocks). CMEs associated with RQ CMEs were generally accelerating within the coronagraph field of view (average acceleration {approx}+6.8 m s{sup -2}), while those associated with RL shocks were decelerating (average acceleration {approx}-3.5 m s{sup -2}). This suggests that many of the RQ shocks formed at large distances from the Sun, typically beyond 10 Rs, consistent with the absence of metric and decameter-hectometric (DH) type II radio bursts. A small fraction of RL shocks had type II radio emission solely in the kilometric (km) wavelength domain. Interestingly, the kinematics of the CMEs associated with the km type II bursts is similar to those of RQ shocks, except that the former are slightly more energetic. Comparison of the shock Mach numbers at 1 AU shows that the RQ shocks are mostly subcritical, suggesting that they were not efficient in accelerating electrons. The Mach number values also indicate that most of these are quasi-perpendicular shocks. The radio-quietness is predominant in the rise phase and decreases through the maximum and declining phases of solar cycle 23. About 18% of the IP shocks do not have discernible ejecta behind them. These shocks are due to CMEs moving at large angles from the Sun-Earth line and hence are not blast waves. The solar sources of the shock-driving CMEs follow the sunspot butterfly diagram, consistent with the higher-energy requirement for driving shocks.

  12. Interplanetary Shocks Lacking Type 2 Radio Bursts

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Xie, H.; Maekela, P.; Akiyama, S.; Yashiro, S.; Kaiser, M. L.; Howard, R. A.; Bougeret, J.-L.

    2010-01-01

    We report on the radio-emission characteristics of 222 interplanetary (IP) shocks detected by spacecraft at Sun-Earth L1 during solar cycle 23 (1996 to 2006, inclusive). A surprisingly large fraction of the IP shocks (approximately 34%) was radio quiet (RQ; i.e., the shocks lacked type II radio bursts). We examined the properties of coronal mass ejections (CMEs) and soft X-ray flares associated with such RQ shocks and compared them with those of the radio-loud (RL) shocks. The CMEs associated with the RQ shocks were generally slow (average speed approximately 535 km/s) and only approximately 40% of the CMEs were halos. The corresponding numbers for CMEs associated with RL shocks were 1237 km/s and 72%, respectively. Thus, the CME kinetic energy seems to be the deciding factor in the radio-emission properties of shocks. The lower kinetic energy of CMEs associated with RQ shocks is also suggested by the lower peak soft X-ray flux of the associated flares (C3.4 versus M4.7 for RL shocks). CMEs associated with RQ CMEs were generally accelerating within the coronagraph field of view (average acceleration approximately +6.8 m/s (exp 2)), while those associated with RL shocks were decelerating (average acceleration approximately 3.5 m/s (exp 2)). This suggests that many of the RQ shocks formed at large distances from the Sun, typically beyond 10 Rs, consistent with the absence of metric and decameter-hectometric (DH) type II radio bursts. A small fraction of RL shocks had type II radio emission solely in the kilometric (km) wavelength domain. Interestingly, the kinematics of the CMEs associated with the km type II bursts is similar to those of RQ shocks, except that the former are slightly more energetic. Comparison of the shock Mach numbers at 1 AU shows that the RQ shocks are mostly subcritical, suggesting that they were not efficient in accelerating electrons. The Mach number values also indicate that most of these are quasi-perpendicular shocks. The radio-quietness is predominant in the rise phase and decreases through the maximum and declining phases of solar cycle 23. About 18% of the IP shocks do not have discernible ejecta behind them. These shocks are due to CMEs moving at large angles from the Sun-Earth line and hence are not blast waves. The solar sources of the shock-driving CMEs follow the sunspot butterfly diagram, consistent with the higher-energy requirement for driving shocks.

  13. Radio astronomy with microspacecraft

    NASA Technical Reports Server (NTRS)

    Collins, D.

    2001-01-01

    A dynamic constellation of microspacecraft in lunar orbit can carry out valuable radio astronomy investigations in the frequency range of 30kHz--30MHz, a range that is difficult to explore from Earth. In contrast to the radio astronomy ivestigations that have flown on individual spacecraft, the four microspacecraft together with a carrier spacecraft, which transported them to lunar orbit, form an interferometer with far superior angular resolution. Use of microspacecraft allows the entire constellation to be launched with a Taurus-class vehicle. Also distinguishing this approach is that the Moon is used as needed to shield the constellation from RF interference from the Earth and Sun.

  14. Sensors Locate Radio Interference

    NASA Technical Reports Server (NTRS)

    2009-01-01

    After receiving a NASA Small Business Innovation Research (SBIR) contract from Kennedy Space Center, Soneticom Inc., based in West Melbourne, Florida, created algorithms for time difference of arrival and radio interferometry, which it used in its Lynx Location System (LLS) to locate electromagnetic interference that can disrupt radio communications. Soneticom is collaborating with the Federal Aviation Administration (FAA) to install and test the LLS at its field test center in New Jersey in preparation for deploying the LLS at commercial airports. The software collects data from each sensor in order to compute the location of the interfering emitter.

  15. Radio Emission from Supernovae

    SciTech Connect

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; Van Dyk, Schuyler D.; Stockdale, Christopher J.; Kelley, Matthew T.

    2009-05-03

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect dumpiness of the circumstellar material.

  16. Cell-free propagation of prion strains.

    PubMed

    Castilla, Joaquín; Morales, Rodrigo; Saá, Paula; Barria, Marcelo; Gambetti, Pierluigi; Soto, Claudio

    2008-10-01

    Prions are the infectious agents responsible for prion diseases, which appear to be composed exclusively by the misfolded prion protein (PrP(Sc)). Disease is transmitted by the autocatalytic propagation of PrP(Sc) misfolding at the expense of the normal prion protein. The biggest challenge of the prion hypothesis has been to explain the molecular mechanism by which prions can exist as different strains, producing diseases with distinguishable characteristics. Here, we show that PrP(Sc) generated in vitro by protein misfolding cyclic amplification from five different mouse prion strains maintains the strain-specific properties. Inoculation of wild-type mice with in vitro-generated PrP(Sc) caused a disease with indistinguishable incubation times as well as neuropathological and biochemical characteristics as the parental strains. Biochemical features were also maintained upon replication of four human prion strains. These results provide additional support for the prion hypothesis and indicate that strain characteristics can be faithfully propagated in the absence of living cells, suggesting that strain variation is dependent on PrP(Sc) properties. PMID:18800058

  17. Cell-free propagation of prion strains

    PubMed Central

    Castilla, Joaquín; Morales, Rodrigo; Saá, Paula; Barria, Marcelo; Gambetti, Pierluigi; Soto, Claudio

    2008-01-01

    Prions are the infectious agents responsible for prion diseases, which appear to be composed exclusively by the misfolded prion protein (PrPSc). Disease is transmitted by the autocatalytic propagation of PrPSc misfolding at the expense of the normal prion protein. The biggest challenge of the prion hypothesis has been to explain the molecular mechanism by which prions can exist as different strains, producing diseases with distinguishable characteristics. Here, we show that PrPSc generated in vitro by protein misfolding cyclic amplification from five different mouse prion strains maintains the strain-specific properties. Inoculation of wild-type mice with in vitro-generated PrPSc caused a disease with indistinguishable incubation times as well as neuropathological and biochemical characteristics as the parental strains. Biochemical features were also maintained upon replication of four human prion strains. These results provide additional support for the prion hypothesis and indicate that strain characteristics can be faithfully propagated in the absence of living cells, suggesting that strain variation is dependent on PrPSc properties. PMID:18800058

  18. Radio Frequency Identification iny integrated circuits equipped with radio an-

    E-print Network

    Han, Richard Y.

    -called Radio Frequency Identification tags--better known as RFID--could help stamp out drug counterfeitingRadio Frequency Identification T iny integrated circuits equipped with radio an- tennas are fast,mostpopularpresscover- age of RFID tags has centered on the technology's po- tential for tracking consumers without

  19. Network-Based Analysis of Software Change Propagation

    PubMed Central

    Wang, Rongcun; Qu, Binbin

    2014-01-01

    The object-oriented software systems frequently evolve to meet new change requirements. Understanding the characteristics of changes aids testers and system designers to improve the quality of softwares. Identifying important modules becomes a key issue in the process of evolution. In this context, a novel network-based approach is proposed to comprehensively investigate change distributions and the correlation between centrality measures and the scope of change propagation. First, software dependency networks are constructed at class level. And then, the number of times of cochanges among classes is minded from software repositories. According to the dependency relationships and the number of times of cochanges among classes, the scope of change propagation is calculated. Using Spearman rank correlation analyzes the correlation between centrality measures and the scope of change propagation. Three case studies on java open source software projects Findbugs, Hibernate, and Spring are conducted to research the characteristics of change propagation. Experimental results show that (i) change distribution is very uneven; (ii) PageRank, Degree, and CIRank are significantly correlated to the scope of change propagation. Particularly, CIRank shows higher correlation coefficient, which suggests it can be a more useful indicator for measuring the scope of change propagation of classes in object-oriented software system. PMID:24790557

  20. Dry and wet arc track propagation resistance testing

    NASA Technical Reports Server (NTRS)

    Beach, Rex

    1995-01-01

    The wet arc-propagation resistance test for wire insulation provides an assessment of the ability of an insulation to prevent damage in an electrical environment. Results of an arc-propagation test may vary slightly due to the method of arc initiation; therefore a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc by dripping salt water over pre-damaged wires which creates a conductive path between the wires. The power supply, test current, circuit resistances, and other variables are optimized for testing 20 guage wires. The use of other wire sizes may require modifications to the test variables. The dry arc-propagation resistance test for wire insulation also provides an assessment of the ability of an insulation to prevent damage in an electrical arc environment. In service, electrical arcs may originate form a variety of factors including insulation deterioration, faulty installation, and chafing. Here too, a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc with a vibrating blade. The test also evaluates the ability of the insulation to prevent further arc-propagation when the electrical arc is re-energized.

  1. Some Fundamental Limitations for Cognitive Radio

    E-print Network

    California at Berkeley, University of

    ' & $ % Some Fundamental Limitations for Cognitive Radio Anant Sahai Wireless Foundations, UCB EECS program November 1 at BWRC Cognitive Radio Workshop #12;' & $ % Outline 1. Why cognitive radios? 2 November 1 at BWRC Cognitive Radio Workshop #12;' & $ % Apparent spectrum allocations · Traditional

  2. Radio-frequency radiation energy transfer in an ionospheric layer with random small-scale inhomogeneities

    SciTech Connect

    Zabotin, N.A.

    1994-06-01

    The equation of radiation energy balance in a randomly inhomogeneous plane-stratified plasma layer was derived based on the phenomenological approach. The use of the small-angle scattering approximation in the invariate ray coordinates allows it to be transformed into a drift-type equation. The latter describes the deformation of the spatial distribution of the radio-frequency radiation energy due to multiple scattering by anisotropic inhomogeneities. Two effects are investigated numerically: shift of the radio wave arrival angles under a slightly oblique propagation, and variation of the intensity of the radio-frequency radiation reflected from a plasma layer.

  3. Prism beamswitch for radio telescopes.

    PubMed

    Payne, J M; Ulich, B L

    1978-12-01

    A dielectric prism and switching mechanism have been constructed for beamswitching a Cassegrain radio telescope. Spatially extended radio sources may be mapped without significant confusion utilizing the sensitivity and stability inherent in the conventional Dicke radiometer. PMID:18699031

  4. SECURING RADIO FREQUENCY IDENTIFICATION (RFID)

    E-print Network

    May 2007 SECURING RADIO FREQUENCY IDENTIFICATION (RFID) SYSTEMS SECURING RADIO FREQUENCY IDENTIFICATION (RFID) SYSTEMS Karen Scarfone, EditorKaren Scarfone, Editor Computer Security Division of Standards and Technology National Institute of Standards and Technology RFID is a form of automatic

  5. Physics 343 Observational Radio Astronomy

    E-print Network

    Baker, Andrew J.

    is fair game. Previous years: "Current and Future Radio Astronomy Projects" "The Search telescopes, interferometry + science: stars, planets, interstellar medium, active galactic nuclei, cosmic, or a final project with the SRT studying "radio frequency interference" #12; Visit to Green Bank

  6. Physics 343 Observational Radio Astronomy

    E-print Network

    Baker, Andrew J.

    , interferometry + science: stars, planets, interstellar medium, active galactic nuclei, cosmic microwave that you choose shortly after spring break. Any topic related to radio astronomy is fair game. Previous years: "Current and Future Radio Astronomy Projects" "The Search for Extratrrestrial Intelligence

  7. Ionospheric disturbances produced by chemical releases and the resultant effects on short-wave ionospheric propagation

    NASA Astrophysics Data System (ADS)

    Hu, Yaogai; Zhao, Zhengyu; Zhang, Yuannong

    2011-07-01

    As an effective means to actively modify the ionosphere, chemical releases can produce artificial ionospheric holes as a consequence of ionization reduction, which can have a great impact on radio wave propagation. To investigate the morphology control of ionospheric holes by various chemical releases and the resultant effects on radio wave propagation, a quantitative numerical model is developed on the basis of the approximate solutions of the diffusion equation of single-point release in uniform atmosphere. While single-point release produces ellipsoidal ionospheric holes, multipoint release can produce other types of ionospheric holes (such as parabola-like tubular ones), which is strongly dependent on changes in the release species, release altitude, and mass of released neutral gas. Releases of both H2O and SF6 can produce ionospheric holes with a similar spatial extent, but the latter tends to result in clearer boundaries and more pronounced electron density reductions. In addition, either an increase in released amount or releases at higher altitudes can lead to a broader hole. To evaluate the effects of an ionospheric hole on radio wave propagation, three-dimensional ray tracing simulations are performed. The ellipsoidal ionospheric holes can act as a lens focusing and bending radio waves, leading to multiple wave reflections inside the holes. In contrast, in the paraboloid tubular ionospheric holes, the rays can penetrate the disturbed region or reflect back, showing a strong dependence on radio frequency. It is well demonstrated that chemical releases can efficiently give rise to artificial ionospheric disturbances and thus modify ionospheric propagation of radio waves.

  8. Propagation of cosmic rays in the galaxy

    NASA Technical Reports Server (NTRS)

    Daniel, R. R.; Stephens, S. A.

    1974-01-01

    The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.

  9. Target & Propagation Models for the FINDER Radar

    NASA Technical Reports Server (NTRS)

    Cable, Vaughn; Lux, James; Haque, Salmon

    2013-01-01

    Finding persons still alive in piles of rubble following an earthquake, a severe storm, or other disaster is a difficult problem. JPL is currently developing a victim detection radar called FINDER (Finding Individuals in Emergency and Response). The subject of this paper is directed toward development of propagation & target models needed for simulation & testing of such a system. These models are both physical (real rubble piles) and numerical. Early results from the numerical modeling phase show spatial and temporal spreading characteristics when signals are passed through a randomly mixed rubble pile.

  10. Sporadic E Morphology from GPS-CHAMP Radio Occultation

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Ao, Chi O.; Hajj, George A.; de la Torre Juarez, Manuel; Mannucci, Anthony J.

    2005-01-01

    The scintillations of phase and amplitude in terms of signal-to-noise ratio (SNR) of the GPS radio occultation signal are caused by thin ionization layers. These thin irregular electron density layers in the E region ionosphere are often called sporadic E (Es). For a monthly retrieval of Es morphology we use the variances of the phase and SNR fluctuations of worldwide 6000 GPS/CHAMP occultations in the E region. The Es climatology is studied globally with the SNR and phase variances in terms of monthly zonal means, seasonal maps, and diurnal and long-term variations. The zonal mean variances reveal strong, extended Es activities at summertime midlatitudes but weak, confined activities in wintertime high latitudes, peaking at 105 km. Global maps at 105-km altitude show clear dependence of Es activities on the geomagnetic dip angle, where the summertime midlatitude Es occurs mostly at dip angles of 30 deg. - 60 deg. and the wintertime high-latitude enhancement occurs mostly at dip angles greater than 80 deg. The midlatitude Es variances exhibit a strong semidiurnal variation with peak hours near 0800 1000 and 2000 local solar time, respectively. The peak hours are delayed slightly with decreasing height, suggesting influences from the semidiurnal tide. To provide more insights on the observed SNR and phase variances, we model radio wave propagation for the CHAMP observing geometry under several perturbed cases in the E region ionosphere. The model simulations indicate that the SNR variance has the maximum response to Es perturbations at vertical wavelengths of 1.2 km, whereas the phase response maximizes at 2 km (for the 1-s variance analysis). The characteristic scale depends little on the truncation time used in the SNR variance analysis, but it increases with the truncation time for the phase variances. Initial studies show that reasonable global Es morphology can be produced on a monthly and seasonal basis with the CHAMP one-antenna occultations. Better results from other existing and upcoming GPS occultation missions are anticipated in future studies, and they will significantly improve our understanding of this important phenomenon.

  11. The association of solar millisecond radio spikes with hard X-ray emission

    NASA Technical Reports Server (NTRS)

    Guedel, M.; Benz, A. O.; Aschwanden, M. J.

    1991-01-01

    Conventional observational data regarding solar millisecond spikes are compared with data gathered simultaneously in the hard X-ray band by means of a statistical analysis. The analysis considers the association rate, correlation degree, and relative time delays between hard X-ray emissions (in the 25-438 keV range) and radio-spike events. About 95 percent of the radio-spike bursts occur during impulsive hard X-ray bursts, and approximately 43 percent of the compared events are characterized by hard X-ray time profiles that mimic the concentration of simultaneous radio spikes. The delay of the radio emission with respect to the hard X-ray bursts puts some constraints on the acceleration and propagation of particles. The time delays and the quantization into discrete radio events are theorized to be caused by the operation of the accelerator.

  12. On the uncertainty of radio occultation inversions in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Sokolovskiy, S.; Rocken, C.; Schreiner, W.; Hunt, D.

    2010-11-01

    Development of radio-holographic inversion methods that solve for multipath propagation of radio occultation signals in the moist lower troposphere resulted in significant reduction of inversion errors of the bending angle and refractivity. Still, inversion errors depend on the length of recorded radio occultation signals, additive noise, and some tunable inversion parameters. These errors have components with nonzero mean (biases) and thus must be understood and quantified for weather and climate applications. In this study a physical explanation of the above mentioned inversion biases is given and their magnitude is evaluated (about 1% in the tropical lower troposphere). Assuming data with 50 Hz sampling rate and a noise level that is typical for the COSMIC GPS radio occultation observations, this magnitude can be considered as the measure of uncertainty of radio holographic inversions below ˜5 km in the moist tropical troposphere.

  13. Writing the Instructional Radio Script.

    ERIC Educational Resources Information Center

    de Fossard, Esta

    This guide was developed for script writers on the Radio Language Arts Project, which was designed to develop, implement, and test the effectiveness of an instructional radio system to teach English as a second language at the primary school level in Kenya. The project was planned to produce a radio-based, English language program with…

  14. Physics 343 Observational Radio Astronomy

    E-print Network

    Gustafsson, Torgny

    Physics 343 Observational Radio Astronomy course number = 01:750:343 web page = http Textbook: none. Three useful books will be placed on reserve, and an online "Essential Radio Astronomy; Lectures We'll talk about material relevant to the labs, but also about radio astronomy in general

  15. CRAF Handbook for Radio Astronomy

    E-print Network

    Rodriguez, Luis F.

    CRAF Handbook for Radio Astronomy EUROPEAN SCIENCE FOUNDATION Committee on Radio Astronomy forum for science. The ESF Expert Committee on Radio Astronomy Frequencies, CRAF, was established Astronomy Service and other passive applications. Cover: The 76-m diameter Lovell Telescope at Jodrell Bank

  16. The Nicaragua Radio Mathematics Project.

    ERIC Educational Resources Information Center

    Searle, Barbara

    The Radio Mathematics Project was funded by the Agency for International Development to design, implement, and evaluate, in conjunction with personnel of a developing country, a system for teaching primary-grade mathematics by radio. In July 1974, a project in Nicaragua began with a series of radio presentations, each followed by 20 minutes of…

  17. Ham Radio is Mir Magic.

    ERIC Educational Resources Information Center

    Evans, Gary

    1997-01-01

    Presents a classroom activity in which students communicated with U.S. and Russian astronauts via ham radio while they were in orbit on the space station Mir. Gives suggestions for other ham radio classroom activities as well as names of organizations, publications, and grant programs that teachers can access to help in bring ham radio into their…

  18. Radio: Your Publics Are Listening!

    ERIC Educational Resources Information Center

    Marx, Gary

    The purpose of this booklet is to provide school board members, administrators, teachers, and others interested in education with an understanding of radio, how it works, and how school systems can take advantage of the communications possibilities offered by radio. After providing background information on radio as a mass communications medium…

  19. Radio Interferometric Geolocation Miklos Maroti

    E-print Network

    Maróti, Miklós

    Radio Interferometric Geolocation Mikl´os Mar´oti P´eter V¨olgyesi Sebesty´en D´ora Branislav.kusy, akos.ledeczi}@vanderbilt.edu ABSTRACT We present a novel radio interference based sensor local- ization method for wireless sensor networks. The technique relies on a pair of nodes emitting radio waves

  20. Language Issues for Cognitive Radio

    E-print Network

    Kokar, Mieczyslaw M.

    INVITED P A P E R Language Issues for Cognitive Radio Computer languages that may be useful for expressing cognitive radio concepts are identified and evaluated in this tutorial paper. By Mieczyslaw M aspects of formal languages in the context of cognitive radio. A bottom up approach is taken in which

  1. Physics 343 Observational Radio Astronomy

    E-print Network

    Baker, Andrew J.

    choice May 5th = last day of class: I will lecture on 1­2 topics that you choose shortly after spring, but also about radio astronomy in general: + techniques: singledish telescopes, interferometry + science break. Any topic related to radio astronomy is fair game. Previous years: "Current and Future Radio

  2. Experimental study on flames propagating through zirconium particle clouds.

    PubMed

    Yin, Yi; Sun, Jinhua; Ding, Yibin; Guo, Song; He, Xuechao

    2009-10-15

    To reveal the mechanisms of flame propagation through the hardly volatile metal dust clouds clearly, the flame propagating through zirconium particle clouds has been examined experimentally. A high-speed video camera was used to record the propagation process of the flame. Combustion zone temperature was detected by a fine thermocouple. Based on the experimental results, structure of flame and combustion courses of zirconium particles were analyzed, the combustion propagation in zirconium dust was investigated, and the velocity and temperature characteristics of the combustion zone were also elucidated. The combustion zone propagating through zirconium particle clouds consists of luminous particles. Particle concentration plays an important role in the combustion zone propagation process. With the increase of zirconium particle concentration, the maximum temperature of the combustion zone increases at the lower concentration, takes a maximum value, and then decreases at the higher concentration. It is also found that the propagation velocity of the combustion zone has a linear relationship with its maximum temperature. PMID:19477589

  3. Width of Radio-Loud and Radio-Quiet CMEs

    E-print Network

    G. Michalek; N. Gopalswamy; H. Xie

    2007-10-24

    In the present paper we report on the difference in angular sizes between radio-loud and radio-quiet CMEs. For this purpose we compiled these two samples of events using Wind/WAVES and SOHO/LASCO observations obtained during 1996-2005. It is shown that the radio-loud CMEs are almost two times wider than the radio-quiet CMEs (considering expanding parts of CMEs). Furthermore we show that the radio-quiet CMEs have a narrow expanding bright part with a large extended diffusive structure. These results were obtained by measuring the CME widths in three different ways.

  4. ACTS mobile propagation campaign

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1994-01-01

    Preliminary results are presented for three propagation measurement campaigns involving a mobile receiving laboratory and 20 GHz transmissions from the Advanced Communications Technology Satellite (ACTS). Four 1994 campaigns were executed during weekly periods in and around Austin, Texas in February and May, in Central Maryland during March, and in Fairbanks, Alaska and environs in June. Measurements tested the following effects at 20 GHz: (1) attenuation due to roadside trees with and without foliage, (2) multipath effects for scenarios in which line-of-sight paths were unshadowed, (3) fades due to terrain and roadside obstacles, (4) fades due to structures in urban environs, (5) single tree attenuation, and (6) effects of fading at low elevation angles (8 deg in Fairbanks, Alaska) and high elevation angles (55 deg in Austin, Texas). Results presented here cover sampled measurements in Austin, Texas for foliage and non-foliage cases and in Central Maryland for non-foliage runs.

  5. Role of Beam Geometry in Population Statistics and Pulse Profiles of Radio and Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Gonthier, Peter L.; Van Guilder, Robert; Harding, Alice K.

    2004-04-01

    We present results of a pulsar population synthesis study that incorporates a number of recent developments and some significant improvements over our previous study. We have included the results of the Parkes multibeam pulsar survey in our select group of nine radio surveys, doubling our sample of radio pulsars. More realistic geometries for the radio and ?-ray beams are included in our Monte Carlo computer code, which simulates the characteristics of the Galactic population of radio and ?-ray pulsars. We adopted with some modifications the radio-beam geometry of Arzoumanian, Chernoff, and Cordes. For the ?-ray beam, we have assumed the slot gap geometry described in the work of Muslimov and Harding. To account for the shape of the distribution of radio pulsars in the P-P diagram, we continue to find that decay of the magnetic field on a timescale of 2.8 Myr is needed. With all nine surveys, our model predicts that EGRET should have seen seven radio-quiet (below the sensitivity of these radio surveys) and 19 radio-loud ?-ray pulsars. AGILE (nominal sensitivity map) is expected to detect 13 radio-quiet and 37 radio-loud ?-ray pulsars, while GLAST, with greater sensitivity, is expected to detect 276 radio-quiet and 344 radio-loud ?-ray pulsars. When the Parkes multibeam pulsar survey is excluded, the ratio of radio-loud to radio-quiet ?-ray pulsars decreases, especially for GLAST. The decrease for EGRET is 45%, implying that some fraction of EGRET unidentified sources are radio-loud ?-ray pulsars. In the radio geometry adopted, short-period pulsars are core dominated. Unlike the EGRET ?-ray pulsars, our model predicts that when two ?-ray peaks appear in the pulse profile, a dominant radio core peak appears in between the ?-ray peaks. Our findings suggest that further improvements are required in describing both the radio and ?-ray geometries.

  6. Torun Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Torun Center for Astronomy is located at Piwnice, 15 km north of Torun, Poland. A part of the Faculty of Physics and Astronomy of the Nicolaus Copernicus University, it was created by the union of Torun Radio Astronomy Observatory (TRAO) and the Institute of Astronomy on 1 January 1997....

  7. Nobeyama Radio Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Nobeyama Radio Observatory has telescopes at millimeter and submillimeter wavelengths. It was established in 1982 as an observatory of Tokyo Astronomical Observatory (NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN since 1987), and operates the 45 m telescope, Nobeyama Millimeter Array, and Radioheliograph. High-resolution images of star forming regions and molecular clouds have revealed many aspects of...

  8. Japanese Radio Exercises. Revised.

    ERIC Educational Resources Information Center

    Young, Jocelyn

    This unit focuses on Japanese radio exercises which became popular in Japan just after World War II and are still used among students and workers in companies to help raise morale and form group unity. The exercises reflect the general role of exercise in Japanese culture--to serve as a symbol of unity and cooperation among the Japanese, as well…

  9. NationalRadio Observatory

    E-print Network

    Groppi, Christopher

    CENTER SpacePlaceSpacePlace Get close to some of the world's biggest telescopes and enjoy fun, hands (NRAO) site. Your personal guide will introduce you to the fascinating world of radio astronomy featuring science demonstrations and a short film about the world-class Robert C. Byrd Green Bank Telescope

  10. NationalRadio Observatory

    E-print Network

    Groppi, Christopher

    fully-steerable telescope, the GBT. Your visit doesn't end with the tour. Plan to enjoy interactive exhibits and displays in our exhibit hall where you will discover what radio astronomers are learning about the universe.Admission to our exhibit hall is free and kid-friendly. Browse the Galaxy Gift Shop which features

  11. Working for Cairo Radio.

    ERIC Educational Resources Information Center

    Drake, Harold L.

    This paper reports the personal experiences of a Fulbright scholar working in the Egyptian government's Cairo broadcast facility, offering an inside understanding of some of the broadcasting procedures used by Egyptian mass media. Besides descriptions of the broadcasting procedures at Cairo Radio, the paper contains notes on announcers' training…

  12. Localization inside the human body using radio frequency (RF) transmission is gaining importance in a number of applications such as Capsule Endoscopy. The accuracy of RF

    E-print Network

    Pahlavan, Kaveh

    1 #12;2 Abstract Localization inside the human body using radio frequency (RF) transmission inside the human body is extremely challenging and computationally intensive. We designed a basic, MATLAB coded, finite difference time-domain (FDTD) for the radio propagation in and around the human body

  13. On Microwave Radio Scintillation Effects and Space Weather Impacts on Electric Power Supply Systems in Middle Latitudes

    NASA Astrophysics Data System (ADS)

    Babayev, E. S.; Hashimov, A. M.; Asgarov, A. B.; Yusifbeyli, N. A.; Shustarev, P. N.

    2006-12-01

    In this paper results of morphological studies and investigations on revealing of main characteristics of ionospheric scintillation effects experienced for microwave radio signals for the Space-Earth path, its impacts on navigation and communication systems, dependence on the solar and geomagnetic activity, geophysical and other processes/factors are briefly provided to help system designers who are involved in the activities related to the development and functioning of systems, particularly, for consumers in middle geographical latitudes. Ionospheric propagation model computer code was applied for studying of scintillation effects on microwave radio signals used in the area of Azerbaijan for worst case scenario of main space weather and ionosphere parameters. Part of main results of the complex investigations on possible impact of geomagnetic disturbances of various strengths on electric power supply systems in middle latitudes is described. Daily data on power failures and breakdowns that occurred in Baku capital city (Azerbaijan) and surrounded big urban area in years of descending phase of solar 11-year activity cycle was investigated and analyzed.

  14. A powerful bursting radio source towards the Galactic Centre.

    PubMed

    Hyman, Scott D; Lazio, T Joseph W; Kassim, Namir E; Ray, Paul S; Markwardt, Craig B; Yusef-Zadeh, Farhad

    2005-03-01

    Transient astronomical sources are typically powered by compact objects and usually signify highly explosive or dynamic events. Although high-time-resolution observations are often possible in radio astronomy, they are usually limited to quite narrow fields of view. The dynamic radio sky is therefore poorly sampled, in contrast to the situation in the X-ray and gamma-ray bands in which wide-field instruments routinely detect transient sources. Here we report a transient radio source, GCRT J1745-3009, which was detected during a moderately wide-field monitoring programme of the Galactic Centre region at 0.33 GHz. The characteristics of its bursts are unlike those known for any other class of radio transient. If located in or near the Galactic Centre, its brightness temperature (approximately 10(16) K) and the implied energy density within GCRT J1745-3009 vastly exceed those observed in most other classes of radio astronomical sources, and are consistent with coherent emission processes that are rarely observed. We conclude that it represents a hitherto unknown class of transient radio sources, the first of possibly many new classes that may be discovered by emerging wide-field radio telescopes. PMID:15744294

  15. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  16. The LOFAR radio environment

    NASA Astrophysics Data System (ADS)

    Offringa, A. R.; de Bruyn, A. G.; Zaroubi, S.; van Diepen, G.; Martinez-Ruby, O.; Labropoulos, P.; Brentjens, M. A.; Ciardi, B.; Daiboo, S.; Harker, G.; Jeli?, V.; Kazemi, S.; Koopmans, L. V. E.; Mellema, G.; Pandey, V. N.; Pizzo, R. F.; Schaye, J.; Vedantham, H.; Veligatla, V.; Wijnholds, S. J.; Yatawatta, S.; Zarka, P.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, M.; Beck, R.; Bell, M.; Bell, M. R.; Bentum, M.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Butcher, H.; Conway, J.; de Vos, M.; Dettmar, R. J.; Eisloeffel, J.; Falcke, H.; Fender, R.; Frieswijk, W.; Gerbers, M.; Griessmeier, J. M.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hessels, J.; Hoeft, M.; Horneffer, A.; Karastergiou, A.; Kondratiev, V.; Koopman, Y.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Mann, G.; McKean, J.; Meulman, H.; Mevius, M.; Mol, J. D.; Nijboer, R.; Noordam, J.; Norden, M.; Paas, H.; Pandey, M.; Pizzo, R.; Polatidis, A.; Rafferty, D.; Rawlings, S.; Reich, W.; Röttgering, H. J. A.; Schoenmakers, A. P.; Sluman, J.; Smirnov, O.; Sobey, C.; Stappers, B.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; van Ardenne, A.; van Cappellen, W.; van Duin, A. P.; van Haarlem, M.; van Leeuwen, J.; van Weeren, R. J.; Vermeulen, R.; Vocks, C.; Wijers, R. A. M. J.; Wise, M.; Wucknitz, O.

    2013-01-01

    Aims: This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods: We have analysed the radio-frequency interference (RFI) situation in two 24-h surveys with Dutch LOFAR stations, covering 30-78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz/1 s resolution. Results: We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFAR's nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linearly when decreasing the data frequency resolution. Conclusions: Currently, by using an automated RFI detection strategy, the LOFAR radio environment poses no perceivable problems for sensitive observing. It remains to be seen if this is still true for very deep observations that integrate over tens of nights, but the situation looks promising. Reasons for the low impact of RFI are the high spectral and time resolution of LOFAR; accurate detection methods; strong filters and high receiver linearity; and the proximity of the antennas to the ground. We discuss some strategies that can be used once low-level RFI starts to become apparent. It is important that the frequency range of LOFAR remains free of broadband interference, such as DAB stations and windmills.

  17. Collaborative Beamfocusing Radio (COBRA)

    NASA Astrophysics Data System (ADS)

    Rode, Jeremy P.; Hsu, Mark J.; Smith, David; Husain, Anis

    2013-05-01

    A Ziva team has recently demonstrated a novel technique called Collaborative Beamfocusing Radios (COBRA) which enables an ad-hoc collection of distributed commercial off-the-shelf software defined radios to coherently align and beamform to a remote radio. COBRA promises to operate even in high multipath and non-line-of-sight environments as well as mobile applications without resorting to computationally expensive closed loop techniques that are currently unable to operate with significant movement. COBRA exploits two key technologies to achieve coherent beamforming. The first is Time Reversal (TR) which compensates for multipath and automatically discovers the optimal spatio-temporal matched filter to enable peak signal gains (up to 20 dB) and diffraction-limited focusing at the intended receiver in NLOS and severe multipath environments. The second is time-aligned buffering which enables TR to synchronize distributed transmitters into a collaborative array. This time alignment algorithm avoids causality violations through the use of reciprocal buffering. Preserving spatio-temporal reciprocity through the TR capture and retransmission process achieves coherent alignment across multiple radios at ~GHz carriers using only standard quartz-oscillators. COBRA has been demonstrated in the lab, aligning two off-the-shelf software defined radios over-the-air to an accuracy of better than 2 degrees of carrier alignment at 450 MHz. The COBRA algorithms are lightweight, with computation in 5 ms on a smartphone class microprocessor. COBRA also has low start-up latency, achieving high accuracy from a cold-start in 30 ms. The COBRA technique opens up a large number of new capabilities in communications, and electronic warfare including selective spatial jamming, geolocation and anti-geolocation.

  18. Radio occultation based on BeiDou satellite navigation

    NASA Astrophysics Data System (ADS)

    Jiang, Hu; Hu, Haiying; Shen, Xue-min; Gong, Wenbin; Zhang, Yonghe

    2014-11-01

    With the development of GNSS systems, it has become a tendency that radio occultation is used to sense the Earth's atmosphere. By this means, the moisture, temperature, pressure, and total electron content can be derived. Based on the sensing results, more complicated models for atmosphere might come into being. Meteorology well benefits from this technology. As scheduled, the BD satellite navigation system will have a worldwide coverage by the end of 2020. Radio occultation studies in China have been highlighted in the recent decade. More and more feasibilities reports have been published in either domestic or international journals. Herein, some scenarios are proposed to assess the coverage of radio occultation based on two different phases of BD satellite navigation system. Phase one for BD is composed of GEO,IGSO and several MEO satellites. Phase two for BD consists mostly of 24 MEO satellites, some GEO and IGSO satellites. The characteristics of radio occultation based on these two phases are presented respectively.

  19. Probes of Lorentz violation in neutrino propagation

    SciTech Connect

    Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Sakharov, Alexander S.

    2008-08-01

    It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1{+-}(E/M{sub {nu}}{sub QG1})] or [1{+-}(E/M{sub {nu}}{sub QG2}){sup 2}], using data from supernova explosions and the OPERA long-baseline neutrino experiment. Using the SN1987a neutrino data from the Kamioka II, IMB, and Baksan experiments, we set the limits M{sub {nu}}{sub QG1}>2.7(2.5)x10{sup 10} GeV for subluminal (superluminal) propagation and M{sub {nu}}{sub QG2}>4.6(4.1)x10{sup 4} GeV at the 95% confidence level. A future galactic supernova at a distance of 10 kpc would have sensitivity to M{sub {nu}}{sub QG1}>2(4)x10{sup 11} GeV for subluminal (superluminal) propagation and M{sub {nu}}{sub QG2}>2(4)x10{sup 5} GeV. With the current CERN neutrinos to Gran Sasso extraction spill length of 10.5 {mu}s and with standard clock synchronization techniques, the sensitivity of the OPERA experiment would reach M{sub {nu}}{sub QG1}{approx}7x10{sup 5} GeV (M{sub {nu}}{sub QG2}{approx}8x10{sup 3} GeV) after 5 years of nominal running. If the time structure of the super proton synchrotron radio frequency bunches within the extracted CERN neutrinos to Gran Sasso spills could be exploited, these figures would be significantly improved to M{sub {nu}}{sub QG1}{approx}5x10{sup 7} GeV (M{sub {nu}}{sub QG2}{approx}4x10{sup 4} GeV). These results can be improved further if a similar time resolution can be achieved with neutrino events occurring in the rock upstream of the OPERA detector: we find potential sensitivities to M{sub {nu}}{sub QG1}{approx}4x10{sup 8} GeV and M{sub {nu}}{sub QG2}{approx}7x10{sup 5} GeV.

  20. Propagation of continuum damage in a viscoelastic ice bar

    SciTech Connect

    Shin, J.G. . Dept. of Naval Architecture and Ocean Engineering); Karr, D.G. . Dept. of Naval Architecture and Marine Engineering)

    1994-05-01

    An initial value problem of a semi-infinite nonlinear viscoelastic bar is solved with continuum damage evolution. The evolution law of the continuum damage for a viscoelastic material is used in order to explore the propagation of two crushing mechanisms: grain boundary cracking and transgranular cracking. Using the method of characteristics, the speed of propagation is found to be dependent on the continuum damage. On the wave front, the delayed elastic strain is zero, and only the continuum damage due to the transgranular cracking evolves. A finite difference method is developed to solve the governing equations on the obtained characteristic lines, and gives a stable solution for the propagation of the stress, strain, and damage. Numerical results are obtained and discussed using the material properties of polycrystalline ice.

  1. Theoretical and experimental studies of space-related plasma wave propagation and resonance phenomena

    NASA Technical Reports Server (NTRS)

    Crawford, F. W.

    1975-01-01

    A ten year summary was given of university research on the nature and characteristics of space related plasma resonance phenomena, whistler propagation in laboratory plasmas, and theoretical and experimental studies of plasma wave propagation. Data are also given on long delayed echoes, low frequency instabilities, ionospheric heating, and backscatter, and pulse propagation. A list is included of all conference papers, publications, and reports resulting from the study.

  2. Dimensional analysis of acoustically propagated signals

    NASA Technical Reports Server (NTRS)

    Hansen, Scott D.; Thomson, Dennis W.

    1993-01-01

    Traditionally, long term measurements of atmospherically propagated sound signals have consisted of time series of multiminute averages. Only recently have continuous measurements with temporal resolution corresponding to turbulent time scales been available. With modern digital data acquisition systems we now have the capability to simultaneously record both acoustical and meteorological parameters with sufficient temporal resolution to allow us to examine in detail relationships between fluctuating sound and the meteorological variables, particularly wind and temperature, which locally determine the acoustic refractive index. The atmospheric acoustic propagation medium can be treated as a nonlinear dynamical system, a kind of signal processor whose innards depend on thermodynamic and turbulent processes in the atmosphere. The atmosphere is an inherently nonlinear dynamical system. In fact one simple model of atmospheric convection, the Lorenz system, may well be the most widely studied of all dynamical systems. In this paper we report some results of our having applied methods used to characterize nonlinear dynamical systems to study the characteristics of acoustical signals propagated through the atmosphere. For example, we investigate whether or not it is possible to parameterize signal fluctuations in terms of fractal dimensions. For time series one such parameter is the limit capacity dimension. Nicolis and Nicolis were among the first to use the kind of methods we have to study the properties of low dimension global attractors.

  3. Ultrasonic wave propagation in multilayered piezoelectric substrates

    SciTech Connect

    Chien, H.T.; Sheen, S.H.; Raptis, A.C.

    1994-04-11

    Due to the increasing demand for higher operating frequency, lower attenuation, and stronger piezoelectricity, use of the layered structure has become necessary. Theoretical studies are carried out for ultrasonic waves propagating in the multilayered piezoelectric substrates. Each layer processes up to as low as monoclinic symmetry with various thickness and orientation. A plane acoustic wave is assumed to be incident, at varied frequency and incidence angle, from a fluid upon a multilayered substrate. Simple analytical expressions for the reflection and transmission coefficients are derived from which all propagation characteristics are identified. Such expressions contain, as a by-product, the secular equation for the propagation of free harmonic waves on the multilayered piezoelectric substrates. Solutions are obtained for the individual layers which relate the field variables at the upper layer surfaces. The response of the total system proceeds by satisfying appropriate interfacial conditions across the layers. Based on the boundary conditions, two cases, {open_quotes}shorted{close_quotes} and {open_quotes}free{close_quotes}, are derived from which a so-called piezoelectric coupling factor is calculated to show the piezoelectric efficiency. Our results are rather general and show that the phase velocity is a function of frequency, layer thickness, and orientation.

  4. Dowsing can be interfered with by radio frequency radiation.

    PubMed

    Huttunen, Paavo; Niinimaa, Ahti; Myllylä, Risto

    2012-04-01

    The soil radiation, watercourses and ores have been located for centuries by sensitive persons, dowsers. An ideomotoric explanation of the dowsing reaction, with no physical interaction, has been accepted. Our present re-analyses of some such results have shown, that there could be a physical phenomenon connecting the human reactions in field experiments, where the test subjects walked or were sitting in a slow-moving car, with the windows covered, and a dowsing rod in their hands was recorded. The correlations between the reaction points by test subjects in the moving car and the points by walking along the same path were highly significant. The correlation was not seen in all test locations. The distance between the test location and the radio tower, and the incidence angle of the transmitted radio wave, possibly had an effect on results. We hypothesize that the experiments carried out in the 20th century were interfered with by man-made radio frequency radiation, mainly FM radio and TV broadcasting, as test subjects' bodies absorbed the radio waves and unconscious hand movement reactions took place following the standing waves or intensity variations due to multipath propagation. PMID:22365422

  5. The 40 and 50 GHz propagation experiments at the Rutherford Appleton Laboratory, UK, using the ITALSAT beacons

    NASA Technical Reports Server (NTRS)

    Woodroffe, J. M.; Davies, P. G.; Ladd, D. N.; Norbury, John R.

    1994-01-01

    This paper describes the current experimental program and future plans for the reception of transmissions from the 18.7, 39.6, and 49.5 GHz beacons from the ITALSAT satellite by the Radio Communications Research Unit at Rutherford Appleton Laboratory, UK. The Radio Communications Research Unit, which has had considerable experience in developing experimental millimetric equipment for propagation studies, has initiated the development of a single-channel receiver and a triple-channel receiver to measure propagation effects at 49.5 GHz and 39.6 GHz respectively. The initial location of the receivers will be at Chilbolton, Hampshire, UK.

  6. PROPAGATION AND EVOLUTION OF ICMES IN THE SOLAR WIND

    E-print Network

    California at Berkeley, University of

    evolve in the solar wind. For the shorter-term, 30-60 minute forecasting based on L1 observa- tionsPROPAGATION AND EVOLUTION OF ICMES IN THE SOLAR WIND John D. Richardson, Ying Liu, and John W. Two characteristics present in some ICMEs but generally not present in the ambient solar wind, high

  7. Gravity waves excited by jets: Propagation versus generation R. Plougonven

    E-print Network

    Plougonven, Riwal

    Gravity waves excited by jets: Propagation versus generation R. Plougonven School of Mathematics September 2005. [1] Atmospheric jets are known to be an important source of inertia-gravity waves, yet mechanisms for the gravity waves, with the underlying assumption that the characteristics of the waves were

  8. The acceleration and propagation of solar flare energetic particles

    NASA Technical Reports Server (NTRS)

    Forman, M. A.; Ramaty, R.; Zweibel, E. G.; Holzer, T. E. (editor); Mihalas, D. (editor); Sturrock, P. A. (editor); Ulrich, R. K. (editor)

    1982-01-01

    Observations and theories of particle acceleration in solar flares are reviewed. The most direct signatures of particle acceleration in flares are gamma rays, X-rays and radio emissions produced by the energetic particles in the solar atmosphere and energetic particles detected in interplanetary space and in the Earth's atmosphere. The implication of these observations are discussed. Stochastic and shock acceleration as well as acceleration in direct electric fields are considered. Interplanetary particle propagation is discussed and an overview of the highlights of both current and promising future research is presented.

  9. Introduction to special section on Mitigation of Radio Frequency Interference in Radio Astronomy

    E-print Network

    Ellingson, Steven W.

    Introduction to special section on Mitigation of Radio Frequency Interference in Radio Astronomy presented at the Workshop on the Mitigation of Radio Frequency Interference in Radio Astronomy (RFI2004), Introduction to special section on Mitigation of Radio Frequency Interference in Radio Astronomy, Radio Sci

  10. Radio Imaging of a Type IVM Radio Burst on the 14th of August 2010

    NASA Astrophysics Data System (ADS)

    Bain, H. M.; Krucker, S.; Saint-Hilaire, P.; Raftery, C. L.

    2014-02-01

    Propagating coronal mass ejections (CMEs) are often accompanied by burst signatures in radio spectrogram data. We present Nançay Radioheliograph observations of a moving source of broadband radio emission, commonly referred to as a type IV radio burst (type IVM), which occurred in association with a CME on the 14th of August 2010. The event was well observed at extreme ultraviolet (EUV) wavelengths by SDO/AIA and PROBA2/SWAP, and by the STEREO SECCHI and SOHO LASCO white light (WL) coronagraphs. The EUV and WL observations show the type IVM source to be cospatial with the CME core. The observed spectra is well fitted by a power law with a negative slope, which is consistent with optically thin gyrosynchrotron emission. The spectrum shows no turn over at the lowest Nançay frequencies. By comparing simulated gyrosynchrotron spectra with Nançay Radioheliograph observations, and performing a rigorous parameter search we are able to constrain several key parameters of the underlying plasma. Simulated spectra found to fit the data suggest a nonthermal electron distribution with a low energy cutoff of several tens to 100 keV, with a nonthermal electron density in the range 100-102 cm-3, in a magnetic field of a few Gauss. The nonthermal energy content of the source is found to contain 0.001%-0.1% of the sources thermal energy content. Furthermore, the energy loss timescale for this distribution equates to several hours, suggesting that the electrons could be accelerated during the CME initiation or early propagation phase and become trapped in the magnetic structure of the CME core without the need to be replenished.

  11. Scintillation noise in widefield radio interferometry

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.

    2015-10-01

    In this paper, we consider random phase fluctuations imposed during wave propagation through a turbulent plasma (e.g. ionosphere) as a source of additional noise in interferometric visibilities. We derive expressions for visibility variance for the wide field of view case (FOV ˜10°) by computing the statistics of Fresnel diffraction from a stochastic plasma, and provide an intuitive understanding. For typical ionospheric conditions (diffractive scale ˜5-20 km at 150 MHz), we show that the resulting ionospheric `scintillation noise' can be a dominant source of uncertainty at low frequencies (? ? 200 MHz). Consequently, low-frequency widefield radio interferometers must take this source of uncertainty into account in their sensitivity analysis. We also discuss the spatial, temporal, and spectral coherence properties of scintillation noise that determine its magnitude in deep integrations, and influence prospects for its mitigation via calibration or filtering.

  12. Drift Wave Model of Rotating Radio Transients

    E-print Network

    D. Lomiashvili; G. Machabeli; I. Malov

    2007-09-13

    During the last few years there were discovered and deeply examined several transient neutron stars (Rotating Radio Transients). It is already well accepted that these objects are rotating neutron stars. But their extraordinary features (burst-like behavior) made necessary revision of well accepted models of pulsar interior structure. Nowadays most popular model for RRATs is precessing pulsar model, which is the subject of big discussion. We assume that these objects are pulsars with specific spin parameters. An important feature of our model, naturally explaining most of the properties of these neutron stars, is presence of very low frequency, nearly transverse drift waves propagating across the magnetic field and encircling the open field lines region of the pulsar magnetosphere.

  13. A Probe of magnetosphere-ionosphere coupling using Very Low Frequency (VLF) Radio Signal from North-West Cape (Australia) to Kolkata (India)

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar

    Very low frequency (VLF) radio waves has been employed for the detection and study of various terrestrial and extra-terrestrial high energy phenomena such as solar flares, solar eclipse, gamma ray burst, lightning induced electron precipitation etc., and the subsequent variations in the lower ionosphere driven by these events. In this study, we exploit the propagation characteristics of VLF signal through the Earth-ionosphere waveguide, to probe changes in ionospheric signatures, induced by solar driven variations in magnetospheric conditions. Our study is based on the VLF signal (amplitude and phase) received at the Ionospheric and Earthquake Research Centre (IERC), Sitapur, under Indian Centre for Space Physics (ICSP), which is transmitted by the Australian NWC station at about 19.8kHz.

  14. Excitation of a magnetospheric maser through modification of the Earth's ionosphere by high-power HF radio emission from a ground-based transmitter

    SciTech Connect

    Markov, G. A. Belov, A. S.; Frolov, V. L.; Rapoport, V. O.; Parrot, M.

    2010-01-15

    A method for controlled excitation of a magnetospheric maser through the production of artificial density ducts by high-power HF radio emission from the Earth's surface has been proposed and implemented in an in-situ experiment. Artificial density ducts allow one to affect the maser resonator system and the excitation and propagation of low-frequency electromagnetic waves in a disturbed magnetic flux tube. The experimental data presented here were obtained at the mid-latitude Sura heating facility. The characteristics of electromagnetic and plasma disturbances at outer-ionosphere altitudes were measured using the onboard equipment of the DEMETER satellite as it passed through the magnetic flux tube rested on the region of intense generation of artificial ionospheric turbulence.

  15. Light propagation in chiral media

    E-print Network

    R. Fleischhaker; J. Evers

    2009-06-29

    Light propagation in chiral media is discussed. We derive the wave equations for a probe pulse propagating through a chiral medium, and solve them analytically in Fourier space using the slowly varying envelope approximation. Our analysis reveals the influence of the different medium response coefficients on the propagation dynamics. Applying these results to a specific example system, we show that chiral interactions already become important at experimentally accessible parameter ranges in dilute vapors. The chirality renders the propagation dynamics sensitive to the phase of the applied fields, and we show that this phase-dependence enables one to control the pulse evolution during its propagation through the medium. Our results demonstrate that the magnetic field component of a probe beam can crucially influence the system dynamics even if it couples to the medium only weakly.

  16. Propagation and performance measurements over a digital troposcatter communications link

    NASA Astrophysics Data System (ADS)

    Lemmon, John J.

    1988-03-01

    Propagation and performance measurements that were obtained over a digital troposcatter communications link between Bockberg, West Germany, and West Berlin are discussed. The measurements were unusual in that three general types of data were collected simultaneously over the link: propagation data, digital performance data, and meteorological data. The propagation data include received signal level (RSL) and multipath measurements made with a channel probe, the performance data consist of bit-error data obtained from a 1.544 Mbps T1 bank, and the meteorological data (in the form of radiosonde messages) were used to generate profiles of the radio refractive index over the link. The basic principles and instrumentation of the channel probe and the test configurations used to obtain these data are discussed. Then the results of analyses of these data are presented and discussed. These results include the measured impulse response of the channel, delay spread, RSL, bit-error ratios, and refractive index profiles. Potential relationships among these results are investigated in order to assess the impact of various troposcatter channel conditions on digital radio performance. In particular, both the definition and methods of utilizing the all important parameter of delay spread. These considerations range from the simple parameter of 2 sigma values to a more complete evaluation of the dynamic properties of delay-spread derived from the channel probe data. Previous studies have addressed many facets of troposcatter propagation. An attempt was made to bring all of these facets together, to present a more complete description of the troposcatter channel, and to enhance future digital upgrades of existing troposcatter links.

  17. Radio signatures of lightning discharges in exoplanets and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Hodosán, Gabriella; Helling, Christiane; Vorgul, Irena

    2014-05-01

    Lightning related signatures can be found in the whole spectral range from radio to gamma-rays. While for example UV, visible or IR molecular emission (as the lightning discharge causes changes in the local chemistry) depends on the composition of the atmosphere of the extrasolar body, radio signatures do not have this limitation, which means they may give us a universal tool for lightning observations outside the Solar System, both on exoplanets and brown dwarfs. Lightning induced radio signatures have three main types. Sferics emit in the low-frequency (LF) range with a power density peak at 10 kHz on Earth. (Aplin, K. L., 'Electrifying atmospheres', Springer 2013) Whistlers are electromagnetic waves propagating along magnetic field lines and emitting in the very low-frequency (VLF) range. (Desch, S. J. et al. 2002, Rep. Prog. Phys. 65, 955) While Schumann-resonances are VLF lightning discharge-induced electromagnetic oscillations of the earth-ionosphere cavity. (Simões, F. et al. 2012, LPICo 1683, 1052) There are certain factors that limit the observability of radio signatures. Every object with an ionosphere has a low cutoff frequency. This means radio waves with frequencies below this peak-frequency cannot propagate through the atmosphere. For Earth this value is about 5-10 MHz. However, the values for extrasolar atmospheres remain to be determined. Besides that, natural background noises like the galactic radio background or photo-electron noises give a limitation. (Zarka et al. 2012, PSS 74, 156) Putting all together, radio signatures with frequency below 10 MHz might only be observable from space. Waves below 30 kHz would not be able to reach the inner Solar System. (Zarka et al. 2012, PSS 74, 156) We show a general summary of radio signatures and their properties. A table of other lightning discharge signatures that have been observed either on Earth or other Solar System planets is also included. This table, also contains a list of different instruments (spectrographs and telescopes) that would be able to detect lightning signatures coming from distant objects based on their operating wavelength range. (R. L. Bailey, Ch. Helling, G. Hodosán, C. Bilger, C. R. Stark 2013, ApJ, accepted)

  18. Rayleigh wave propagation in nematic elastomers.

    PubMed

    Yang, Shuai; Liu, Ying; Gu, Yu; Yang, Qingshan

    2014-06-21

    In this paper, Rayleigh wave propagation in nematic elastomers (NEs) is investigated. Characteristic equations for Rayleigh waves in the NEs are derived based on the viscoelastic theory of nematic elastomers in the low-frequency (hydrodynamic) limit. The dispersion and attenuation properties of the Rayleigh waves in the NEs are analyzed numerically. By considering the effects of the director, the rubber relaxation time and the dynamic soft elasticity of the NEs on the propagation characteristics of the Rayleigh waves are investigated. Results show that unlike Rayleigh waves in pure viscous materials, the Rayleigh wave displays obvious frequency dependence due to the dynamic soft elasticity of the NEs. There exists a critical transition frequency above which the Rayleigh wave velocity is gradually increased to a stable value, and at this frequency the Rayleigh wave velocity is temperature independent. The transition critical frequency where liquid behavior changes to rubber performance is director rotation time dependent, whilst the rubber relaxation time has less of an effect on its value. Although the particle trace is still elliptically polarized, the direction of the major axis is frequency and depth dependent. Clarification of these particular properties of Rayleigh waves is helpful for the further acoustic application of Rayleigh waves in NEs. PMID:24740423

  19. Directed HK propagator

    NASA Astrophysics Data System (ADS)

    Kocia, Lucas; Heller, Eric J.

    2015-09-01

    We offer a more formal justification for the successes of our recently communicated "directed Heller-Herman-Kluk-Kay" (DHK) time propagator by examining its performance in one-dimensional bound systems which exhibit at least quasi-periodic motion. DHK is distinguished by its single one-dimensional integral—a vast simplification over the usual 2N-dimensional integral in full Heller-Herman-Kluk-Kay (for an N-dimensional system). We find that DHK accurately captures particular coherent state autocorrelations when its single integral is chosen to lie along these states' fastest growing manifold, as long as it is not perpendicular to their action gradient. Moreover, the larger the action gradient, the better DHK will perform. We numerically examine DHK's accuracy in a one-dimensional quartic oscillator and illustrate that these conditions are frequently satisfied such that the method performs well. This lends some explanation for why DHK frequently seems to work so well and suggests that it may be applicable to systems exhibiting quite strong anharmonicity.

  20. Seismic wave propagation modeling

    SciTech Connect

    Jones, E.M.; Olsen, K.B.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A hybrid, finite-difference technique was developed for modeling nonlinear soil amplification from three-dimensional, finite-fault radiation patters for earthquakes in arbitrary earth models. The method was applied to the 17 January 1994 Northridge earthquake. Particle velocities were computed on a plane at 5-km depth, immediately above the causative fault. Time-series of the strike-perpendicular, lateral velocities then were propagated vertically in a soil column typical of the San Fernando Valley. Suitable material models were adapted from a suite used to model ground motions at the US Nevada Test Site. The effects of nonlinearity reduced relative spectral amplitudes by about 40% at frequencies above 1.5 Hz but only by 10% at lower frequencies. Runs made with source-depth amplitudes increased by a factor of two showed relative amplitudes above 1.5 Hz reduced by a total of 70% above 1.5 Hz and 20% at lower frequencies. Runs made with elastic-plastic material models showed similar behavior to runs made with Masing-Rule models.