Science.gov

Sample records for radio satellite corporation

  1. Radio broadcasting via satellite

    NASA Astrophysics Data System (ADS)

    Helm, Neil R.; Pritchard, Wilbur L.

    1990-10-01

    Market areas offering potential for future narrowband broadcast satellites are examined, including international public diplomacy, government- and advertising-supported, and business-application usages. Technical issues such as frequency allocation, spacecraft types, transmission parameters, and radio receiver characteristics are outlined. Service and system requirements, advertising revenue, and business communications services are among the economic issues discussed. The institutional framework required to provide an operational radio broadcast service is studied, and new initiatives in direct broadcast audio radio systems, encompassing studies, tests, in-orbit demonstrations of, and proposals for national and international commercial broadcast services are considered.

  2. Inverted cellular radio satellite systems

    NASA Astrophysics Data System (ADS)

    Gates, Harvey M.; Edwards, William L.; Pederson, Lee W.

    In cellular radio systems, frequencies can be reused for mobile communications because of the ability to handoff conversations as a user passes from one cell to another. One of the two focal points of this paper deals with the economics and technical issues pursuant to existing satellite technology interacted with cellular radio technology. The second focal point of this paper concerns the proposed low altitude satellite global packet network called the Multiple Satellite System (MSS).

  3. Direct broadcast satellite-radio, receiver development

    NASA Technical Reports Server (NTRS)

    Vaisnys, A.; Bell, D.; Gevargiz, J.; Golshan, Nasser

    1993-01-01

    The status of the ongoing Direct Broadcast Satellite-Radio (DBS-R) Receiver Development Task being performed at the Jet Propulsion Laboratory, California Institute of Technology (JPL) is reported. This work is sponsored by the Voice of America/U.S. Information Agency through an agreement with NASA. The objective of this task is to develop, build, test, and demonstrate a prototype receiver that is compatible with reception of digital audio programs broadcast via satellites. The receiver is being designed to operate under a range of reception conditions, including fixed, portable, and mobile, as well as over a sufficiently wide range of bit rates to accommodate broadcasting systems with different cost/audio quality objectives. While the requirements on the receiver are complex, the eventual goal of the design effort is to make the design compatible with low cost production as a consumer product. One solution may be a basic low cost core design suitable for a majority of reception conditions, with optional enhancements for reception in especially difficult environments. Some of the receiver design parameters were established through analysis, laboratory tests, and a prototype satellite experiment accomplished in late 1991. Many of the necessary design trades will be made during the current simulation effort, while a few of the key design options will be incorporated into the prototype for evaluation during the planned satellite field trials.

  4. Radio occultation based on BeiDou satellite navigation

    NASA Astrophysics Data System (ADS)

    Jiang, Hu; Hu, Haiying; Shen, Xue-min; Gong, Wenbin; Zhang, Yonghe

    2014-11-01

    With the development of GNSS systems, it has become a tendency that radio occultation is used to sense the Earth's atmosphere. By this means, the moisture, temperature, pressure, and total electron content can be derived. Based on the sensing results, more complicated models for atmosphere might come into being. Meteorology well benefits from this technology. As scheduled, the BD satellite navigation system will have a worldwide coverage by the end of 2020. Radio occultation studies in China have been highlighted in the recent decade. More and more feasibilities reports have been published in either domestic or international journals. Herein, some scenarios are proposed to assess the coverage of radio occultation based on two different phases of BD satellite navigation system. Phase one for BD is composed of GEO,IGSO and several MEO satellites. Phase two for BD consists mostly of 24 MEO satellites, some GEO and IGSO satellites. The characteristics of radio occultation based on these two phases are presented respectively.

  5. Wave propagation and earth satellite radio emission studies

    NASA Technical Reports Server (NTRS)

    Yeh, K. C.; Liu, C. H.; Flaherty, B. J.

    1974-01-01

    Radio propagation studies of the ionosphere using satellite radio beacons are described. The ionosphere is known as a dispersive, inhomogeneous, irregular and sometimes even nonlinear medium. After traversing through the ionosphere the radio signal bears signatures of these characteristics. A study of these signatures will be helpful in two areas: (1) It will assist in learning the behavior of the medium, in this case the ionosphere. (2) It will provide information of the kind of signal characteristics and statistics to be expected for communication and navigational satellite systems that use the similar geometry.

  6. Satellite emission radio interferometric earth surveying series - GPS geodetic system

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1979-01-01

    A concept called SERIES (satellite emissions radio interferometric earth surveying) which makes use of GPS (global positioning system) radio transmissions without any satellite modifications, is described. Through the use of very long baseline interferometry (VLBI) and its calibration methods, 0.5 to 3 cm three dimensional baseline accuracy can be achieved over distances of 2 to 200 km respectively, with only 2 hours of on-site data acquisition. Attention is given to such areas as: the radio flux equivalent of GPS transmissions, synthesized delay precision, transmission and frequency subsystem requirements, tropospheric and ionospheric errors. Applications covered include geodesy and seismic tectonics.

  7. Direct broadcast satellite-radio, space-segment/receiver tradeoffs

    NASA Astrophysics Data System (ADS)

    Golshan, Nasser

    The balance between receiver complexity and the required satellite equivalent isotropically radiated power (EIRP) for Direct Broadcast Satellite-Radio (DBS-R) service is addressed. In general the required receiver complexity and cost can be reduced at the expense of higher space-segment cost by allowing a higher satellite EIRP. The tradeoff outcome is sensitive to the total number of anticipated receivers in a given service area, the number of audio programs, and the required audio quality. An understanding of optimum choice of satellite EIRP for DBS-R under various service requirements is a critical issue at this time when International Radio Consultative Committee (CCIR) is soliciting input in preparation for the International Telecommunications Union (ITU) planning conference for the service.

  8. Investigations of the ionospheric using radio signals from artificial satellites

    NASA Technical Reports Server (NTRS)

    Titheridge, J. E.

    1973-01-01

    The occurrence and characteristics of ionospheric irregularities in medium latitudes and in polar regions were measured using radio signals from artificial satellites. Ionospheric changes during quiet and disturbed conditions were also measured. Electron density, elevation angle, and amplitude and frequency of these high frequency signals were determined as well as the direction of their arrival.

  9. Satellite augmentation of cellular type mobile radio telephone systems

    NASA Astrophysics Data System (ADS)

    Anderson, Roy E.

    NASA's ATS-6 satellite relayed voice bandwidth communications between five trucks and the trucking company dispatchers as the trucks traveled throughout the north-eastern quarter of the contiguous United States. The experiment, conducted over a seven month period, demonstrated that propagation characteristics are much different for the satellite-mobile links than for terrestrial-mobile links. A properly designed satellite system can provide high quality, reliable voice and data communications except where the vehicle-satellite path is shadowed by a structure or terrain feature. Mobile equipment in the experiment was adapted from commercial mobile radios. The vehicle antennas were 75 cm tall, 2 cm diam. Another experiment proved the feasibility of vehicle position surveillance using active two-way tone-code ranging through ATS-6 to provide one line of position and passive one-way ranging by measuring the time-of-arrival of a signal from an independent satellite. A position fix was printed out at an earth station 1 sec after it sent the interrogation signal to the distant vehicle, a towboat on the Mississippi River. The line of position from ATS-6 was accurate to 0.1 nautical mile using a voice bandwidth ranging signal. The line of position from the NOAA GOES satellite was accurate to 2 miles, using 100 Hz signal bandwidth. If the signal from the independent satellite had the same bandwidth and signal-to-noise ratio as ATS-6, the fixes would have been accurate to about 0.1 nautical mile. A concept study concluded that satellites might be a cost effective augmentation of terrestrial cellular type mobile radio telephone systems. The satellites would serve thinly populated areas where terrestrial systems are not cost effective. In the United States, the satellites would serve about 90% of the land area where 20% of the population resides. A multibeam satellite with many channels in each beam would be compatible with the urban terrestrial systems and together they would provide a nearly ubiquitous mobile radio telephone service.

  10. Fade durations in satellite-path mobile radio propagation

    NASA Technical Reports Server (NTRS)

    Schmier, Robert G.; Bostian, Charles W.

    1986-01-01

    Fades on satellite to land mobile radio links are caused by several factors, the most important of which are multipath propagation and vegetative shadowing. Designers of vehicular satellite communications systems require information about the statistics of fade durations in order to overcome or compensate for the fades. Except for a few limiting cases, only the mean fade duration can be determined analytically, and all other statistics must be obtained experimentally or via simulation. This report describes and presents results from a computer program developed at Virginia Tech to simulate satellite path propagation of a mobile station in a rural area. It generates rapidly-fading and slowly-fading signals by separate processes that yield correct cumulative signal distributions and then combines these to simulate the overall signal. This is then analyzed to yield the statistics of fade duration.

  11. Satellite observations of transient radio impulses from thunderstorms

    SciTech Connect

    Argo, P.E.; Kirkland, M.; Jacobson, A.; Massey, R.; Suszynsky, D.; Eack, K.; Fitzgerald, T.J.; Smith, D.

    1999-06-01

    Transient radio emissions from thunderstorms detected by satellites were first reported in 1995. The nature and source of these emissions remained a mystery until the launch of the FORTE satellite in 1997. FORTE, with its more sophisticated triggering and larger memory capacity showed that these emissions were connected to major thunderstorm systems. The analysis reported here, connecting FORTE RF events with ground based lightning location data from the National Lightning Detection Network (NLDN), shows that localized regions within thunderstorms are responsible for the creation of the satellite detected rf signals. These regions are connected with the areas of strong radar returns from the NEXRAD Doppler radar system, indicating that they are from regions of intense convection. The authors will also show data from several storms detected in the extended Caribbean, in which the height profile of the source regions can be determined. Although as a single low earth orbit satellite FORTE cannot provide global coverage of thunderstorm/lightning events, follow-on satellite constellations should be able to provide detailed information on global lightning in near real-time.

  12. ATS6-satellite radio beacon measurements at Ootacamund, India

    NASA Technical Reports Server (NTRS)

    Davies, K.; Donnelly, R. F.; Grubb, R. N.; Rama Rao, P. V. S.; Rastogi, R. G.; Deshpande, M. R.; Chandra, H.; Vats, H. O.; Sethia, G.

    1978-01-01

    In August 1975 the ATS6 was repositioned at 35 deg E. Radio beacon measurements of time delay, Faraday rotation and signal amplitude, made at Ootacamund, India in October 1975, are discussed with emphasis on the problem of determining the Faraday content under essentially transverse propagation conditions. It is shown that at the low geomagnetic latitude of Ootacamund the use of a fixed conversion coefficient gives an unreliable Faraday content. It is shown also that corrections to the measured Faraday rotation are important because of pitch and yaw of the satellite, particularly at night when the rotation on 140 MHz can be of the order of 10 to 20 deg. The shape factor shows a low predawn minimum indicating the nearly complete erosion of the F2 layer peak. Amplitude scintillation usually decreases with increase of radio frequency but exceptions are discussed.

  13. Utilizing a TDRS satellite for direct broadcast satellite-radio propagation experiments and demonstrations

    NASA Technical Reports Server (NTRS)

    Hollansworth, James E.

    1993-01-01

    The NASA/VOA Direct Broadcast Satellite-Radio (DBS-R) Program will be using a NASA Tracking Data Relay Satellite (TDRS) satellite at 62 deg. West longitude to conduct live satellite S-band propagation experiments and demonstrations of satellite sound broadcasting over the next two years (1993-1994). The NASA/VOA DBS-R program has applied intensive effort to garner domestic and international support for the DBS-R concept. An S-band DBS-R allocation was achieved for Region 2 at WARC-92 held in Spain. With this allocation, the DBS-R program now needs to conduct S-band propagation experiments and systems demonstrations that will assist in the development of planning approaches for the use of Broadcast Satellite Service (Sound) frequency bands prior to the planning conference called for by WARC-92. These activities will also support receiver concept development applied to qualities ranging from AM to Monophonic FM, Stereophonic FM, Monophonic CD, and Stereophonic CD quality.

  14. Satellites of radio AGN in SDSS: Insights into agn triggering and feedback

    SciTech Connect

    Pace, Cameron; Salim, Samir E-mail: salims@indiana.edu

    2014-04-10

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best and Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ∼1% of radio AGN.

  15. Terrestrial Myriametric Radio Burst Observed by IMAGE and Geotail Satellites

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Hashimoto, KoZo; Kojima, Hirotsugu; Boardson, Scott A.; Garcia, Leonard N.; Matsumoto, Hiroshi; Green, James L.; Reinisch, Bodo W.

    2013-01-01

    We report the simultaneous detection of a terrestrial myriametric radio burst (TMRB) by IMAGE and Geotail on 19 August 2001. The TMRB was confined in time (0830-1006 UT) and frequency (12-50kHz). Comparisons with all known nonthermal myriametric radiation components reveal that the TMRB might be a distinct radiation with a source that is unrelated to the previously known radiation. Considerations of beaming from spin-modulation analysis and observing satellite and source locations suggest that the TMRB may have a fan beamlike radiation pattern emitted by a discrete, dayside source located along the poleward edge of magnetospheric cusp field lines. TMRB responsiveness to IMF Bz and By orientations suggests that a possible source of the TMRB could be due to dayside magnetic reconnection instigated by northward interplanetary field condition.

  16. Monitoring of Earthquake Disasters by Satellite Radio Tomography

    NASA Astrophysics Data System (ADS)

    Kunitsyn, V.; Andreeva, E.; Nesterov, I.; Rekenthaler, D. A.

    2011-12-01

    This work addresses lithospheric-ionospheric coupling during strong earthquakes (EQ). Particular interest is placed on the physical phenomena preceding EQs - the precursors. We discuss both the ionospheric implications of EQs, and the ionospheric precursors to EQ. The requisite ionospheric sounding is carried out using satellite navigational system data; the data are analyzed using the methods of satellite radio tomography (RT). Signals from both low-orbiting beacons (Transit, Tsikada, etc.) and high orbiting global navigational satellite systems (GNSS including GPS and GLONASS) are used. The resulting 2D and 3D tomographic images and their time flow (4D RT) make it possible to study the spatiotemporal structure of ionospheric perturbations induced by EQs and EQ precursors, and to distinguish ionospheric responses to processes of EQ preparation against the effects of other factors. Low-orbital RT (LORT) provides almost "instantaneous" (with a time span of 5-8 min) 2-D snapshots of the electron density over the seismically active region of interest. LORT allows 2D imaging of various anomalies, including wave structures such as ionospheric manifestations of acoustic-gravity waves (AGW), wave-like disturbances, and solitary waves with the gaps between images, depending on the number of operating satellites (currently, 30-100 minutes). High-orbital RT (HORT) is capable of imaging 4D distributions of ionospheric plasma (resulting in 3D snapshots every 20-30 minutes). Using this approach, one can reconstruct RT images of ionospheric irregularities, wave structures, and perturbations such as solitary waves. In regions with a sufficient number of GNSS receivers (California, Japan), 4-D RT images can be generated every 2-4 minutes. The spatial resolution of LORT and HORT systems is on the order of 20-40, and 100 km, respectively. The combination of LORT and HORT systems has the potential for exploiting data provided by other experimental techniques, including radio occultation, ionosonde, and radar measurements, inter alia. Further integration of RT systems with other multi-instrumental observations of EQ-related phenomena is possible. We present the results of long-term RT studies of the ionosphere over California, Alaska, and Southeast Asia (Taiwan region). We used the experimental data from the LORT systems in Alaska and Taiwan. At present, LORT system in California is put into operation. The input for HORT imaging was the data from IGS, UNAVCO, and Japan GPS network stations. A variety of examples are given to illustrate the ionospheric perturbations associated with EQs and to illustrate EQ-related, ionospheric precursors including specific ionospheric disturbances, AGW, and solitary-wave-like perturbations. Several dozen precursors are identified from the results of many years of RT studies in Alaska and the Taiwan region during the period from 2006-2008. We discuss the results of a HORT analysis of a series of recent EQs including San Simeon (2003), Parkfield (2004), Sumatra (2004), Sichuan (China, 2008), Haiti (2010), Chile (2010), Japan (Tohoku, 2011), and other events. We are grateful to Dr. L.-C.Tsai and Northwest Research Associates, Inc., for providing raw RT data for Taiwan and Alaska.

  17. 76 FR 591 - Determination of Rates and Terms for Preexisting Subscription and Satellite Digital Audio Radio...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ..., respectively. 72 FR 71795 (December 19, 2007), 73 FR 4080 (January 24, 2008). Section 804(b)(3)(B) of the... Audio Radio Services AGENCY: Copyright Royalty Board, Library of Congress. ACTION: Notice announcing... subscription and satellite digital audio radio services for the digital performance of sound recordings and...

  18. The Last Millimeter: Interfacing the New Public Radio Satellite System. Info. Packets No. 14.

    ERIC Educational Resources Information Center

    Pizzi, Skip

    Public radio is about to achieve a new technological level as the new Public Radio Satellite System (PRSS) is deployed. The network will dramatically improve the capacity and quality of its interconnection system, but proper interfacing at member stations will be required to realize the full benefits of the new system. The new system uses digital

  19. Study of mutual occultation phenomena of the Galilean satellites at radio wavelengths

    NASA Astrophysics Data System (ADS)

    Pluchino, S.; Salerno, E.; Pupillo, G.; Schillirò, F.; Kraus, A.; Mack, K.-H.

    2010-01-01

    We present preliminary results for our study of mutual phenomena of the Galilean satellites performed at radio wavelengths with the Medicina and Noto antennas of the Istituto di Radioastronomia - INAF, and with the Effelsberg 100-m radio telescope of the Max-Planck-Institute for Radioastronomy, Bonn. Measurements of the radio flux density variation during the mutual occultations of Io by Europa and Ganymede were carried out during the PHEMU09 campaign at 22 GHz and 43 GHz. Flux density variations observed at radio wavelengths are consistent with the typical optical patterns measured when partial occultations occur.

  20. Satellite augmentation of cellular type mobile radio telephone systems

    NASA Astrophysics Data System (ADS)

    Anderson, R. E.

    1981-09-01

    An experiment in which the ATS-6 satellite relayed voice bandwidth communications between five trucks and the trucking company dispatchers as the trucks traveled about the northeastern part of the U.S. is described. The experiment demonstrated that propagation characteristics are much different for the satellite-mobile links than for terrestrial-mobile links. It is found that a properly designed satellite system can provide high quality, reliable voice and data communications except where the vehicle-satellite path is shadowed by a structure or terrain feature.

  1. Mobile radio alternative systems study satellite/terrestrial (hybrid) systems concepts

    NASA Technical Reports Server (NTRS)

    Kiesling, J. D.; Anderson, R. E.

    1983-01-01

    The use of satellites for mobile radio service in non-urban areas of the United States in the years from 1985 to 2000 was investigated. Several satellite concepts are considered: a system with single-beam coverage of the fifty United States and Puerto Rico, and multi-beam satellites with greater capacity. All of the needed functions and services identified in the market study are provided by the satellite systems, including nationwide radio access to vehicles without knowledge of vehicle location wideband data transmission from remote sites, two way exchange of short data and control messages between vehicles and dispatch or control centers, and automatic vehicle location (surveillance). The costs of providing the services are within acceptable limits, and the desired returns to the system investors are attractive. The criteria by which the Federal Communication judges the competing demands for public radio spectrum are reviewed with comments on how the criteria might apply to the consideration of land mobile satellites. Institutional arrangements for operating a mobile satellite system are based on the present institutional arrangements in which the services are offered to the end users through wireline and radio common carriers, with direct access by large private and government users.

  2. Communications via the radio artificial earth satellite: Design of the tracking diagram and features for conducting QSO

    NASA Technical Reports Server (NTRS)

    Dobrozhanskiy, V.; Rybkin, V.

    1980-01-01

    A detailed examination is made of the operation of a transmitting artifical Earth satellite. A tracking diagram for the satellite is constructed. The zone of radio visibility can be determined based on the techniques proposed.

  3. Satellite-aided mobile radio concepts study: Concept definition of a satellite-aided mobile and personal radio communication system

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.

    1979-01-01

    The satellite system requires the use of a large satellite antenna and spacecraft array power of about 12 kW or more depending on the operating frequency. Technology developments needed include large offset reflector multibeam antennas, satellite electrical power sybsystems providing greater than 12 kW of power, signal switching hardware, and linearized efficient solid state amplifiers for the satellite-aided mobile band. Presently there is no frequency assignment for this service, and it is recommended that an allocation be pursued. The satellite system appears to be within reasonable extrapolation of the state of the art. It is further recommended that the satellite-aided system spacecraft definition studies and supporting technology development be initiated.

  4. The Federal Communications Commission and the Communications Satellite Corporation: A Question of Ownership.

    ERIC Educational Resources Information Center

    Lee, William E.

    When NASA announced in 1960 that private enterprise would produce communication satellites, rather than the Federal government, several large corporations proposed a joint venture involving a group of international carriers and electronic manufacturers, while American Telephone and Telegraph requested sole ownership. At that time, the Federal

  5. CME-Associated Radio Bursts from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    Coronal mass ejections (CMEs) are closely associated with various types of radio bursts from the Sun. All radio bursts are due to nonthermal electrons, which are accelerated during the eruption of CMEs. Radio bursts at frequencies below about 15 MHz are of particular interest because they are associated with energetic CMEs that contribute to severe space weather. The low-frequency bursts need to be observed primarily from space because of the ionospheric cutoff. The main CME-related radio bursts are associated are: type III bursts due to accelerated electrons propagating along open magnetic field lines, type II bursts due to electrons accelerated in shocks, and type IV bursts due to electrons trapped in post-eruption arcades behind CMEs. This paper presents a summary of results obtained during solar cycle 23 primarily using the white-light coronagraphic observations from the Solar Heliospheric Observatory (SOHO) and the WAVES experiment on board Wind. Particular emphasis will be placed on what we can learn about particle acceleration in the coronal and interplanetary medium by analyzing the CMEs and the associated radio bursts.

  6. Analysis of satellite measurements of terrestrial radio noise

    NASA Technical Reports Server (NTRS)

    Bakalyar, G.; Caruso, J. A.; Vargas-Vila, R.; Ziemba, E.

    1974-01-01

    Worldwide distributions of terrestrial radio noise as monitored by Radio Astronomy Explorer 1 (RAE 1) generated and compared with CCIR predictions. These contour maps show the global morphology of radio noise at 6.55 and 9.18 MHz for fall, winter, spring and summer during the local time blocks of 00-08 LT and 16-24 LT. These computer produced maps show general agreement with CCIR predictions over large land masses. The RAE and CCIR maps diverge at high latitudes over Asia and frequently over ocean regions. Higher noise levels observed by RAE at high latitudes are attributed to magnetospheric emission while higher noise levels observed by RAE over Asia are attributable to high power transmitters. Analysis of RAE noise observations in conjunction with various geophysical phenomena showed no obvious correlation.

  7. Scientific instrumentation of the Radio-Astronomy-Explorer-2 satellite

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Kaiser, M. L.; Novaco, J. C.; Grena, F. R.; Weber, R. R.

    1975-01-01

    The instrumentation of the RAE-2 spacecraft is described. The instruments include a pair of long travelling-wave antennas, a 37-m dipole, two radiometers making one frequency scan every 144 sec, and two rapid-sampling total-power burst receivers which cover the range from 0.025 to 13.1 MHz in 32 discrete steps. Effects of terrestrial noise on RAE-1 and RAE-2 observations are discussed, and it is noted that RAE-2 is uniquely capable of observing repeated lunar occultations of strong radio sources at very low frequencies. Some observational programs are briefly noted, including observations of the galactic background distribution, measurements of lunar occultations of solar radio bursts, and searches for more radio sources among the planets, galactic objects, and extragalactic sources.

  8. Workshop on Satellite Power Systems (SPS) effects on optical and radio astronomy

    SciTech Connect

    Stokes, G.M.; Ekstrom, P.A.

    1980-04-01

    The impacts of the SPS on astronomy were concluded to be: increased sky brightness, reducing the effective aperture of terrestrial telescopes; microwave leakage radiation causing erroneous radioastronomical signals; direct overload of radioastronomical receivers at centimeter wavelengths; and unintentional radio emissions associated with massive amounts of microwave power or with the presence of large, warm structures in orbit causing the satellites to appear as individual stationary radio sources; finally, the fixed location of the geostationary satellite orbits would result in fixed regions of the sky being unusable for observations. (GHT)

  9. The radio astronomy explorer satellite, a low-frequency observatory.

    NASA Technical Reports Server (NTRS)

    Weber, R. R.; Alexander, J. K.; Stone, R. G.

    1971-01-01

    The RAE-1 is the first spacecraft designed exclusively for radio astronomical studies. It is a small, but relatively complex, observatory including two 229-meter antennas, several radiometer systems covering a frequency range of 0.2 to 9.2 MHz, and a variety of supporting experiments such as antenna impedance probes and TV cameras to monitor antenna shape. Since its launch in July, 1968, RAE-1 has sent back some 10 billion data bits per year on measurements of long-wavelength radio phenomena in the magnetosphere, the solar corona, and the Galaxy. In this paper we describe the design, calibration, and performance of the RAE-1 experiments in detail.

  10. Scientific instrumentation of the Radio-Astronomy-Explorer-2 satellite

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Kaiser, M. L.; Novaco, J. C.; Grena, F. R.; Weber, R. R.

    1974-01-01

    The RAE-2 spacecraft has been collecting radio astronomical measurements in the 25 kHz to 13 MHz frequency range from lunar orbit since June, 1973. A summary is given of the technical aspects of the program including the calibration, instrumentation and operation of the RAE-2 experiments. Performance of the experiments over the first 18 months of the flight is summarized and illustrated. Among the unique features of the RAE-2 is the capability to observe repeated lunar occultations of strong radio sources at very low frequencies.

  11. Radio detection of thunderstorm activity with an earth-orbiting satellite

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Stone, R. G.; Caruso, J. A.

    1975-01-01

    A study was made to determine the feasibility of using artificial earth satellites to monitor thunderstorm activity. The nighttime noise-temperature measurements made with the earth-oriented vee antenna of the Radio Astronomy Explorer (RAE 1) satellite in the frequency range 0.2-9.2 MHz were correlated with reported surface thunderstorm activity. Analysis shows that the minimum nighttime HF noise level (in the absence of surface thunderstorms) at an altitude of 5850 km over the United States is fixed by man-made noise. When thunderstorms are active below the satellite, the noise level is increased by about 6-12 dB. The highest level is associated with the most intense storms. It is concluded that thunderstorm regions can be detected by an orbiting satellite using HF radio techniques, but ionospheric effects must be taken into account.

  12. DSN radio science system description and requirements. [for satellite radio astronomy experiments

    NASA Technical Reports Server (NTRS)

    Mulhall, B. D. L.

    1977-01-01

    The data system created to collect the functions performed by the Deep Space Network in support of spacecraft radio science experiments is described. Some of the major functional requirements presently being considered for the system are delineated.

  13. Terrestrial Myriametric Radio Burst Observed by IMAGE and Geotail Satellites

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Hashimoto, Kozo; Boardsen, Scott A.; Garcia, Leonard N.; Green, James L.; Matsumoto, Hiroshi; Reinisch, Bodo W.

    2010-01-01

    We report IMAGE and Geotail simultaneous observations of a terrestrial myriametric radio burst (TMRB) detected on August 19, 2001. The TMRB was confined in time (0830-1006 UT) and frequency (12-50 kHz), suggesting a fan beam-like emission pattern from a single discrete source. Analysis and comparisons with existing TMR radiations strongly suggest that the TMRB is a distinct emission perhaps resulting from dayside magnetic reconnection instigated by northward interplanetary field condition.

  14. 47 CFR 25.144 - Licensing provisions for the 2.3 GHz satellite digital audio radio service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... digital audio radio service. 25.144 Section 25.144 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....144 Licensing provisions for the 2.3 GHz satellite digital audio radio service. (a) Qualification... digital audio radio service in the 2310-2360 MHz band shall describe in detail the proposed...

  15. Satellite observations of type 3 solar radio bursts at low frequencies

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.

    1973-01-01

    Type III solar radio bursts were observed from 10 MHz to 10 KHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 solar radii to at least 1 AU from the sun. This review summarizes the morphology, characteristics and analysis of individual as well as storms of bursts. Burst rise times are interpreted in terms of exciter length and dispersion while decay times refer to the radiation damping process. The combination of radio observations at the lower frequencies and in-situ measurements on nonrelativistic electrons at 1 AU provide data on the energy range and efficiency of the wave-particle interactions responsible for the radio emission.

  16. Using a Satellite Swarm for building a Space-based Radio Telescope for Low Frequencies

    NASA Astrophysics Data System (ADS)

    Bentum, Mark; Boonstra, A. J.; Verhoeven, C. J. M.; van der Veen, A. J.; Gill, E. K. A.; Saks, N.; Falcke, H.; Klein-Wolt, M.; Rajan, R. T.; Wijnholds, S. J.; Arts, M.; van't Klooster, K.; Belin, F.; Meijerink, A.; Monna, B.; Rotteveel, J.; Boer, M. A.; Bongers, E.; Boom, E.; van Tuijl, E.; van Staveren, A.

    In radio astronomy, as in astronomy in general, a wide range of frequencies is observed as each spectral band offers a unique window to study astrophysical phenomena. In the recent years, new observatories have been designed and built at the extreme limits of the radio spectrum. For the low frequencies several Earth-based radio telescopes are constructed at this moment. In the Netherlands, the Low Frequency Array (LOFAR) is being constructed at this moment and will be operational later this year. LOFAR observes the sky between 30 and 240 MHz. Observing at even lower frequencies is very interesting, but, due to the influence of the Earth's ionosphere this is not possible from Earth. Thus, the only option to observe low frequencies is a telescope in space. In the past several studies have been conducted on a low-frequency space-based radio tele-scope. In the recent ESA project Distributed Aperture Array for Radio Astronomy in Space (DARIS), such a mission was studied in detail. The study focused on a moderate-size three-dimensional satellite constellation operating as a coherent large-aperture synthesis array. The DARIS project is presented in a separate conference contribution. In the DARIS project the focus was on technology available at this moment, with an outlook and technological development plan/roadmap to be exploited for the future. Using current-day technologies, a space-based low-frequency array would be bulky and, thus, costly. A logical next step would be to investigate possibilities to miniaturize the electronics and use very small satellites, perhaps even nano satellites with masses between 1-10 kg to build the radio tele-scope. The approach is to use a swarm of satellites to establish a virtual telescope to perform the astronomical task. This is investigated in the NWO/STW-funded OLFAR (Orbiting Low Frequency Array) project. The OLFAR radio telescope will be composed of an antenna array based on satellites deployed at a location where the Earth's interference is limited, and where the satellites can be maintained in a three-dimensional configuration with a maximum diameter of 100 km. A Moon orbit could be suitable option. Each individual satellite will consist of deployable antennas. The sky signals will be amplified using an integrated ultra-low power direct sampling receiver and digitizer. Using digital fil-tering, any subband within the LNA passband can be selected. The data will be distributed over the available nodes in space. On-board signal processing will filter the data, invoke RFI mitigation algorithms (if necessary), and finally, correlate the data in a phased array mode. If more satellites are available, they will automatically join the array. The final correlated or beam-formed data will be sent to Earth as part of the telemetry data using a radio link. As the satellites will be far away from Earth, communication to and from Earth will require diversity communication schemes, using all the individual satellites together. In this paper, the design parameters for the satellites and the swarm will be discussed and status of the OLFAR project will be reported. Details will be given about the system and the signals that are expected.

  17. Radio sky mapping from satellites at very low frequencies

    NASA Technical Reports Server (NTRS)

    Storey, L. R. O.

    1991-01-01

    Wave Distribution Function (WDF) analysis is a procedure for making sky maps of the sources of natural electromagnetic waves in space plasmas, given local measurements of some or all of the three magnetic and three electric field components. The work that still needs to be done on this subject includes solving basic methodological problems, translating the solution into efficient algorithms, and embodying the algorithms in computer software. One important scientific use of WDF analysis is to identify the mode of origin of plasmaspheric hiss. Some of the data from the Japanese satellite Akebono (EXOS D) are likely to be suitable for this purpose.

  18. Femto-Satellite system for radio-occultation study of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Savio Bradford, Brandon; Gutierrez Cabello, Jordi

    This research project proposes the use of (a swarm of) Femto-Satellites in the study of Ionospheric properties using \\underline{Radio-Occultation} techniques. It makes use of GPS signals, a computing system, tiny on-board components and a data transfer module. This project is being done as a cheaper and lightweight alternative proposal to the higher cost, already running COSMIC program and other programs which use larger satellites to perform Radio-Occultation study of the Ionosphere. Being that these femto-satellites are capable of acting as a constellation, they will be able to provide higher accuracy radio-occultation readings of the Ionosphere due to the close proximity between each satellite positioned in low earth orbit. Important parameters attempted for this system include a weight of 100 grams per satellite system and an innovative power source using solar sails. The sails also serve to provide an anti-debris system of redundancy to make sure these tiny satellites don't add to the already alarming amount of space debris, in the event of a malfunction. Ultimately, having a large amount of tiny satellites serving to study the ionosphere at closer proximities and obtain more accurate results will give the scientific community a better understanding of the constant changes in the space environment at a given altitude. This could help humanity combat adverse changes in climate, which heavily affects some regions of agriculture. This could also help advance the scientific campaign against global warming, by providing real-time readings from different regions of the ionosphere.

  19. ATS-6 satellite radio beacon measurements at Ootacamund, India

    NASA Technical Reports Server (NTRS)

    Davies, K.; Donnelly, R. F.; Grubb, R. N.; Rao, P. V. S. R.; Rastogi, R. G.; Deshpande, M. R.; Chandra, H.; Vats, H. O.; Sethia, G.

    1979-01-01

    ATS-6 radio beacon measurements of modulation phase and Faraday rotation made at Ootacamund, India in 1975-1976 are discussed with emphasis on the measurement and analysis errors. The modulation-phase errors are insensitive to the geomagnetic field and provide an accurate determination of the total columnar electron content. Comparison of modulation-phase measurements at different frequencies shows a minor sensitivity to the ATS-6 pitch angle. For the low geomagnetic latitude and nearly transverse propagation conditions of Ootacamund, the use of a fixed conversion coefficient gives an unreliable Faraday content. However, the Faraday rotation measurements may be used to determine the shape factor F, which provides information about the electron density height profile.

  20. Networked Operations of Hybrid Radio Optical Communications Satellites

    NASA Technical Reports Server (NTRS)

    Hylton, Alan; Raible, Daniel

    2014-01-01

    In order to address the increasing communications needs of modern equipment in space, and to address the increasing number of objects in space, NASA is demonstrating the potential capability of optical communications for both deep space and near-Earth applications. The Integrated Radio Optical Communications (iROC) is a hybrid communications system that capitalizes on the best of both the optical and RF domains while using each technology to compensate for the other's shortcomings. Specifically, the data rates of the optical links can be higher than their RF counterparts, whereas the RF links have greater link availability. The focus of this paper is twofold: to consider the operations of one or more iROC nodes from a networking point of view, and to suggest specific areas of research to further the field. We consider the utility of Disruption Tolerant Networking (DTN) and the Virtual Mission Operation Center (VMOC) model.

  1. The Influence of The Galilean Satellites on Radio Emissions From The Jovian System

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Menietti, J. D.

    2000-01-01

    The Galilean satellites influence radio emissions from the Jovian system in a variety of ways. The best and most familiar example of these is the Io control of decametric radiation discovered in 1964 by Bigg. Voyager observations of broadband kilometric radiation revealed a low-latitude shadow zone cast by the Io torus at frequencies between a few tens of kHz and about 1 MHz. Voyager also discovered narrowband kilometric radio emissions emanating from the outer edge of the torus. In this paper we will discuss expansions in the suite of satellite influences based on new observations by Galileo. These include the discovery of Ganymede's magnetosphere and evidence of radio emissions generated via mode conversion from upper hybrid waves in the frequency range of about 20 - 100 kHz. There is evidence that Ganymede may control some of the hectometric or low-frequency decametric radio emissions based on occultation measurements and statistical studies of radio emission occurrence as a function of Ganymede phase. Direction-finding measurements in the vicinity of Io suggest that a portion of the hectometric emissions may be generated near the lo L-shell. A rotationally modulated attenuation band in the hectometric emission appears to be the result of scattering at or near the Io L-shell where the waves propagate nearly parallel to the magnetic field. There is even a tantalizing hint of a Europa connection to the source of narrowband kilometric radiation.

  2. Phase and pattern calibration of the Jicamarca Radio Observatory radar using satellites

    NASA Astrophysics Data System (ADS)

    Gao, B.; Mathews, J. D.

    2015-02-01

    The Jicamarca Radio Observatory (JRO) main 50-MHz array antenna radar system with multiple receivers is being used to study meteors via two interferometric receiving modes. One of the major challenges in these studies is the phase calibration of the various receiver (interferometric) channels (legs). While investigating some ambiguous features in meteor head-echo results, we developed a `new' calibration technique that employs satellite observations to produce more accurate phase and pattern measurements than were previously available. This calibration technique, which resolves head-echo ambiguities, uses the fact that Earth-orbiting satellites are in gravitationally well-defined orbits and thus the pulse-to-pulse radar returns must be consistent (coherent) for an entire satellite pass through the radar beam. In particular, the satellite yields a reliable point source for phase and thus interferometry-derived range, Doppler and trajectory calibration. Using several satellites observed during standard meteor observations, we derive satellite orbital parameters by matching the observed and modelled three-dimensional trajectory and Doppler results. This approach uncovered subtle phase distortions that led to interferometry-derived trajectory distortions that are important only to point targets such as meteor head-echoes. We present the array calibration and radar imaging of satellite passes from our meteor observations of 2010 April 15/16. Future observations of a priori known satellites would likely yield significantly more accurate calibrations, especially of distant side lobes.

  3. Numerical arc segmentation algorithm for a radio conference - A software tool for communication satellite systems planning

    NASA Technical Reports Server (NTRS)

    Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.

    1988-01-01

    A detailed description of a Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software package for communication satellite systems planning is presented. This software provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC - 88) on the use of the GEO and the planning of space services utilizing GEO. The features of the NASARC software package are described, and detailed information is given about the function of each of the four NASARC program modules. The results of a sample world scenario are presented and discussed.

  4. Plans and studies in the EBU for satellite broadcasting of sound radio

    NASA Astrophysics Data System (ADS)

    Waters, G. T.; Kozamernik, F.

    Consideration is given to the development of an advanced digital broadcasting technique, known as the Coded Orthogonal Frequency Division Multiplex (COFDM) technique in conjunction with a powerful audio bit-rate reduction scheme. The COFDM technique is planned to provide uninterrupted reception by portable and mobile receivers. The requirements of sound broadcasting by satellite in Europe and plans for the development of digital satellite radio are discussed. Results are presented from test of a system using COFDM channel coding and MASCAM subband sound source coding.

  5. Propagation measurements for satellite radio reception inside buildings

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1993-01-01

    Swept CW signals (from 700 to 1800 MHz) were received inside six buildings of brick, corrugated sheet-metal, wood-frame, mobile-home, and reinforced concrete-wall construction. A transmitter antenna was mounted outdoors on top of an 18 m tower to simulate a satellite, and a linearly scanned directional receiver antenna was used to probe the spatial, spectral, and temporal variability of the signal indoors. Levels were found to have much structure in the spatial and frequency domain, but were relatively stable in time. Typically, people moving nearby produced variations of less than 0.5 dB, whereas a person blocking the transmission path produced fades of 6 to 10 dB. Severe losses (17.5 dB) were observed in the concrete-wall building, which also exhibited the longest multipath delays (over 100 ns). Losses inside a mobile home were even larger (over 20 dB) and were independent of antenna orientation. The power-frequency distortion increased with the logarithm of the bandwidth, but could be reduced by moving to a position of higher power. Only the losses showed a clear frequency dependence, but they could be mitigated by moving the antenna.

  6. Analysis of type 3 solar radio bursts observed at kilometric wavelengths from the OGO-5 satellite

    NASA Technical Reports Server (NTRS)

    Alvarez, H.

    1971-01-01

    Research was conducted to analyze the data on solar radio bursts obtained by the OGO-5 satellite. Since the wavelengths corresponding to the three lowest frequencies of observations exceeded one kilometer, the bursts detected in those channels were designated as kilometer-waves. The data search covered approximately 9200 hours between March 1968 and February 1970, and included the maximum of solar cycle No. 20. The study concentrated on 64 Type 3 solar radio events reaching frequencies equal or lower than 0.35 MHz. This selection criteria led to the choice of the most intense radio events. Measurements included: times of start, times of decay, and amplitudes of the 64 events. The consistency of the results, within the accuracy of the measurements, lends support to some of the assumptions made for the analysis, notably, the validity of the local plasma hypothesis, the constancy of the exciter particles velocity, and spiral shape of their trajectory.

  7. Simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    NASA Astrophysics Data System (ADS)

    Fllekrug, M.; Hanuise, C.; Parrot, M.

    2010-10-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz radio waves from fifty terrestrial Long Range Aid to Navigation (LORAN) transmitters. Their mean luminosity patch in the plasmasphere is a circular area with a radius of 300 km and a power density of 22 ?W/Hz as observed at 660km height above the ground. The luminosity patches exhibit a southward displacement of 450 km with respect to the locations of the LORAN transmitters. The displacement is reduced to 150 km when an upward propagation of the radio waves along the geomagnetic field line is assumed. This residual displacement indicates that the radio waves undergo 150 km sub-ionospheric propagation prior to entering a magnetospheric duct and escaping into near-Earth space. The residual displacement at low (L<2.14) and high (L>2.14) geomagnetic latitudes ranges from 100 km to 200 km which suggests that the smaller inclination of the geomagnetic field lines at low latitudes helps to trap the radio waves and to keep them in the magnetospheric duct. Diffuse luminosity areas are observed northward of the magnetic conjugate locations of LORAN transmitters at extremely low geomagnetic latitudes (L<1.36) in Southeast Asia. This result suggests that the propagation along the geomagnetic field lines results in a spatial spreading of the radio wave energy over distances of 1 Mm. The summative assessment of the electric field intensities measured in space show that nadir observations of terrestrial 100 kHz radio waves, e.g., from relativistic electron beams above thunderclouds, are attenuated by at least 50 dB when taking into account a transionospheric attenuation of 40 dB.

  8. Pulsed radio frequency interference effects on data communications via satellite transponder

    NASA Technical Reports Server (NTRS)

    Weinberg, A.; Hong, Y.

    1979-01-01

    Power-limited communication links may be susceptible to significant degradation if intentional or unintentional pulsed high level radio frequency interference (RFI) is present. Pulsed RFI is, in fact, of current interest to NASA in studies relating to its Tracking and Data Relay Satellite System (TDRSS). The present paper examines the impact of pulsed RFI on the error probability performance of a power-limited satellite communication link: the assumed modulation scheme is PN coded binary PSK. The composite effects of thermal noise, pulsed CW and pulsed Gaussian noise are analyzed, where RFI arrivals are assumed to follow Poisson statistics. Under the assumption that the satellite repeater is ideal and that integrate and dump filtering is employed at the ground receiver, an exact error probability expression and associated approximations are derived. Computed results are generated using an arbitrarily specified RFI model.

  9. 47 CFR 25.214 - Technical requirements for space stations in the satellite digital audio radio service and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Technical requirements for space stations in the satellite digital audio radio service and associated terrestrial repeaters. 25.214 Section 25.214... Technical Standards § 25.214 Technical requirements for space stations in the satellite digital audio...

  10. Study of sub-auroral radio emissions observed by ICE experiment onboard DEMETER satellite

    NASA Astrophysics Data System (ADS)

    Boudjada, M. Y.; Galopeau, P. H. M.; Mogilevski, M. M.; Sawas, S.; Blecki, J.; Berthelier, J. J.; Voller, W.

    2012-04-01

    We report on the terrestrial kilometric and hectometric radio emissions recorded by the DEMETER/ICE (Instrument Champ Electrique) experiment. This instrument measures the electric field components of electromagnetic and electrostatic waves in the frequency range from DC to 3.25 MHz. Despite the limited satellite invariant latitude (data acquisition below about 65), specific events have been observed, close to the sub-auroral region, in the frequency range from 100 kHz to about 1 MHz. This range covers the well-known auroral kilometric radiation (AKR), the terrestrial kilometric continuum, and the sub-auroral terrestrial emission at higher frequency up to 3 MHz. The high spectral capability of the experiment leads us to distinguish between the bursty and the continuum emissions. Selected events have been found to principally occur in the late evening and early morning sectors of the magnetosphere (22 MLT - 02 MLT) but others have been observed on the dayside. Our first results are compared to previous radio observations performed on board INTERBALL-1 (Kuril'chik et al, Cosmic Research, 43, 2005) and GEOTAIL (Hashimoto et al., JGR, 104, 1999) satellites. We also discuss the common and different features of the Earth and Jovian radio emissions. We emphasis on the observational parameters: the occurrence probability, the emission beam and the spectral emission types. We show that the physical interpretation of the auroral phenomena needs a good knowledge of the geometric configuration of the source and observer and the reception system (antenna beam and receivers).

  11. Digital Radio Broadcasting using the mixed satellite/terrestrial approach: An application study

    NASA Technical Reports Server (NTRS)

    Paiement, Richard V.; Voyer, Rene; Prendergast, Doug

    1995-01-01

    Digital radio broadcasting (DRB) is a new service that offers CD quality stereo programs to fixed, portable and mobile receivers. Terrestrial DRB in Canada is considered as a replacement technology for existing AM and FM services, and it is expected to start up in 1996. Canada currently favors Eureka 147 technology operating in the L-band, in the 1452-1492 MHz frequency band allocated during WARC'92 for DRB. Terrestrial DRB delivery is appropriate for small to medium sized service areas, such as cities and their associated suburbs. For larger areas such as provinces, as well as for sparsely populated areas such as the regions in northern Canada, satellite delivery is more appropriate. The mixed approach is based on both satellite and terrestrial broadcasting services using a common frequency band. Spectrum efficiency is achieved through close coordination of both service types, to achieve proper frequency sharing and spectrum re-use. As well, use of a common transmission format by both types of services allows for a common receiver. This mixed satellite/terrestrial approach to DRB is being seriously considered in Canada and in other countries. This paper studies the feasibility of such a mixed satellite/terrestrial DRB system. It looks at possible coverage scenarios for Canada, and at the satellite and receiver technology requirements.

  12. Sounding of HF heating-induced artificial ionospheric disturbances by navigational satellite radio transmissions

    NASA Astrophysics Data System (ADS)

    Kunitsyn, V. E.; Andreeva, E. S.; Frolov, V. L.; Komrakov, G. P.; Nazarenko, M. O.; Padokhin, A. M.

    2012-01-01

    During experiments carried out in 2009-2011 the midlatitude ionosphere was modified by powerful HF pulses from the Sura heating facility located near Nizhny Novgorod (Russia) and operated by the Radio Physical Research Institute. GPS/GLONASS and Parus/Tsikada satellite radio transmissions responding to the heating-induced disturbances in electron density were analyzed. The variations in the total electron content (TEC), which are proportional to the reduced phase of navigational signals, were studied for various schemes of radiation of the heating wave. The variations in TEC (their amplitudes and temporal behavior) caused by HF heating are identified in several examples. The TEC spectra contain frequency components corresponding to the modulation periods of the heating wave. For the first time, the spatial structure of the wave disturbances generated in the ionosphere by high-power radio waves radiated by the Sura heating facility with a square wave modulation of the effective radiated power at a frequency lower than or of the order of the Brunt-Vaisala frequency of the neutral atmosphere is imaged using the method of low-orbital radio tomography and GPS/GLONASS data.

  13. Rural land mobile radio market assessment and satellite and terrestrial system concepts

    NASA Technical Reports Server (NTRS)

    Stevenson, S.; Provencher, C.

    1984-01-01

    The market for satellite-based mobile radio in the rural U.S. is evaluated, summarizing the results of two NASA-funded studies reported by Anderson et al. and Hornstein. The study aims are listed, and the results are presented in tables, graphs, and maps and discussed. Space systems are found to be competitive with land-based systems, providing superior service at lower subscriber charges, but having limited compatibility with urban cellular mobile-radio systems. Of the three system concepts evaluated from a technological standpoint (direct-to-mobile, mobile-translator, and hybrid), the mobile-translator concept is considered most cost effective, at least within the constraints assumed in the study.

  14. Adaptive sparse signal processing of satellite-based radio frequency (RF) recordings of lightning events

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Smith, David A.

    2014-05-01

    Ongoing research at Los Alamos National Laboratory studies the Earth's radio frequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. Such impulsive events are dispersed through the ionosphere and appear as broadband nonlinear chirps at a receiver on-orbit. They occur in the presence of additive noise and structured clutter, making their classification challenging. The Fast On-orbit Recording of Transient Events (FORTE) satellite provided a rich RF lightning database. Application of modern pattern recognition techniques to this database may further lightning research in the scientific community, and potentially improve on-orbit processing and event discrimination capabilities for future satellite payloads. Conventional feature extraction techniques using analytical dictionaries, such as a short-time Fourier basis or wavelets, are not comprehensively suitable for analyzing the broadband RF pulses under consideration here. We explore an alternative approach based on non-analytical dictionaries learned directly from data, and extend two dictionary learning algorithms, K-SVD and Hebbian, for use with satellite RF data. Both algorithms allow us to learn features without relying on analytical constraints or additional knowledge about the expected signal characteristics. We then use a pursuit search over the learned dictionaries to generate sparse classification features, and discuss their performance in terms of event classification. We also use principal component analysis to analyze and compare the respective learned dictionary spaces to the real data space.

  15. Classification of satellite-based radio frequency transient recordings using sparse approximations over learned dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Smith, David A.

    2014-01-01

    Ongoing research at Los Alamos National Laboratory studies the Earth's radio frequency (RF) background utilizing satellite-based RF observations of terrestrial lightning. Such impulsive events occur in the presence of additive noise and structured clutter and appear as broadband nonlinear chirps at a receiver on-orbit due to ionospheric dispersion. The Fast On-orbit Recording of Transient Events (FORTE) satellite provided a rich RF lightning database. Application of modern pattern recognition techniques to this database may further lightning research and potentially improve event discrimination capabilities for future satellite payloads. We extend two established dictionary learning algorithms, K-SVD and Hebbian, for use in classification of satellite RF data. Both algorithms allow us to learn features without relying on analytical constraints or additional knowledge about the expected signal characteristics. We use a pursuit search over the learned dictionaries to generate sparse classification features and discuss performance in terms of event classification using a nearest subspace classifier. We show a use of the two dictionary types in a mixed implementation to showcase algorithm distinctions in extracting discriminative information. We use principal component analysis to analyze and compare the learned dictionary spaces to the real data space, and we discuss some aspects of computational complexity and implementation.

  16. Recovery of refractivity profiles and pressure and temperature distributions in the lower atmosphere from satellite-to-satellite radio occultation data

    NASA Technical Reports Server (NTRS)

    Murray, C. W., Jr.

    1977-01-01

    The feasibility of recovering parameters from one-way range rate between two earth orbiting spacecraft during occultation of the tracking signal by the earth's lower atmosphere. The tracking data is inverted by an integral transformation (Abel transform) to obtain a vertical refractivity profile above the point of closest approach of the ray connecting the satellites. Pressure and temperature distributions can be obtained from values of dry refractivity using the hydrostatic equation and perfect gas law. Two methods are investigated for recovering pressure and temperature parameters. Results show that recovery is much more sensitive to satellite velocity errors than to satellite position errors. An error analysis is performed. An example is given demonstrating recovery of parameters from radio occultation data obtained during satellite-to-satellite tracking of Nimbus 6 by the ATS 6 satellite.

  17. Numerical arc segmentation algorithm for a radio conference: A software tool for communication satellite systems planning

    NASA Technical Reports Server (NTRS)

    Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.

    1988-01-01

    The Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC) on the Use of the Geostationary Satellite Orbit and the Planning of Space Services Utilizing It. Through careful selection of the predetermined arc (PDA) for each administration, flexibility can be increased in terms of choice of system technical characteristics and specific orbit location while reducing the need for coordination among administrations. The NASARC software determines pairwise compatibility between all possible service areas at discrete arc locations. NASARC then exhaustively enumerates groups of administrations whose satellites can be closely located in orbit, and finds the arc segment over which each such compatible group exists. From the set of all possible compatible groupings, groups and their associated arc segments are selected using a heuristic procedure such that a PDA is identified for each administration. Various aspects of the NASARC concept and how the software accomplishes specific features of allotment planning are discussed.

  18. The evolution of satellite-monitored radio tags for large whales: One laboratory's experience

    NASA Astrophysics Data System (ADS)

    Mate, Bruce; Mesecar, Roderick; Lagerquist, Barbara

    2007-02-01

    Despite several centuries of whaling and directed research, there are only a few whale stocks whose year-round whereabouts are reasonably well known. For the vast majority of depleted populations, the link between seasonal feeding and breeding concentrations remains unknown. This lack of information on range, seasonal distribution, stock structure, and migration routes makes it difficult to design and implement effective conservation measures to promote recovery. The use of such information would have been valuable to develop stock-specific quotas for whaling, but now it may be even more important for recovery of depleted stocks and identifying anthropogenic threats throughout a depleted stock's range. Building upon the preliminary findings of Discovery tags and more recent photo identification studies, satellite-monitored radio tags are now providing range and seasonal distribution information for many stocks of depleted large whales. These parameters are important to better estimate population abundance, characterize habitats, identify threats to recovery, and design effective protection measures when needed. This paper traces one laboratory's experience with the development of satellite-monitored radio tag technology for large whales, including attachment mechanisms and delivery systems, in the hope that others will profit from our successes and our mistakes. Selected examples are used to demonstrate how such tags contribute to new insights about whales' habitats, migrations, behaviour, and management.

  19. Voyager 2 radio science observations of the uranian system: atmosphere, rings, and satellites.

    PubMed

    Tyler, G L; Sweetnam, D N; Anderson, J D; Campbell, J K; Eshleman, V R; Hinson, D P; Levy, G S; Lindal, G F; Marouf, E A; Simpson, R A

    1986-07-01

    Voyager 2 radio occultation measurements of the Uranian atmosphere were obtained between 2 and 7 degrees south latitude. Initial atmospheric temperature profiles extend from pressures of 10 to 900 millibars over a height range of about 100 kilometers. Comparison of radio and infrared results yields mole fractions near the tropopause of 0.85 and 0.15 +/- 0.05 for molecular hydrogen and helium, respectively, if no other components are present; for this composition the tropopause is at about 52 kelvins and 110 millibars. Distinctive features in the signal intensity measurements for pressures above 900 millibars strongly favor model atmospheres that include a cloud deck of methane ice. Modeling of the intensity measurements for the cloud region and below indicates that the cloud base is near 1,300 millibars and 81 kelvins and yields an initial methane mole fraction of about 0.02 for the deep atmosphere. Scintillations in signal intensity indicate small-scale stucture throughout the stratosphere and upper troposphere. As judged from data obtained during occultation ingress, the ionosphere consists of a multilayer structure that includes two distinct layers at 2,000 and 3,500 kilometers above the 100-millibar level and an extended topside that may reach altitudes of 10,000 kilometers or more. Occultation measurements of the nine previously known rings at wavelengths of 3.6 and 13 centimeters show characteristic values of optical depth between about 0.8 and 8; the maxim value occurs in the outer region of the in ring, near its periapsis. Forward-scattered signals from this ring have properties that differ from those of any of Saturn's rings, and they are inconsistent with a discrete scattering object or local (three-dimensional) assemblies of orbiting objects. These signals suggest a new kdnd of planetary ring feature characterized by highly ordered cylindrical substructures of radial scale on the order of meters and azimuthal scale of kilometers or more. From radio data alone the mass of the Uranian system is GM(sys) = 5,794,547- 60 cubic kilometers per square second; from a combination of radio and optical navigation data the mass of Uranus alone is GM(u) = 5,793,939+/- 60 cubic kilometers per square second. From all available Voyager data, induding imaging radii, the mean uncompressed density of the five major satellites is 1.40+/- 0.07 grams per cubic centimeter; this value is consistent with a solar mix of material and apparently rules out a cometary origin of the satellites. PMID:17812893

  20. Unexpected Very Low Frequency (VLF) Radio Events Recorded by the Ionospheric Satellite DEMETER

    NASA Astrophysics Data System (ADS)

    Parrot, M.; Berthelier, J. J.; Blecki, J.; Brochot, J. Y.; Hobara, Y.; Lagoutte, D.; Lebreton, J. P.; N?mec, F.; Onishi, T.; Pinon, J. L.; Pa, D.; Santolk, O.; Sauvaud, J. A.; Slominska, E.

    2015-05-01

    DEMETER was a low Earth orbiting microsatellite in operation between July 2004 and December 2010. Its scientific objective was the study of ionospheric perturbations in relation to seismic activity and man-made activities. Its payload was designed to measure electromagnetic waves over a large frequency range as well as ionospheric plasma parameters (electron and ion densities, fluxes of energetic charged particles). This paper will show both expected and unusual events recorded by the satellite when it was in operation. These latter events have been selected from the DEMETER database because they are rare or even have never been observed before, because they have a very high intensity, or because they are related to abnormalities of the experiments under particular plasma conditions. Some events are related to man-made radio waves emitted by VLF ground-based transmitters or power line harmonic radiation. Natural waves, such as atypical quasi-periodic emissions or uncommon whistlers, are also shown.

  1. 78 FR 44029 - Establishment of Rules and Policies for the Digital Audio Radio Satellite Service in the 2310...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ....263(b) and 25.263(c) published at 78 FR 9605, February 11, 2013, are effective July 23, 2013. FOR...- 130, published at 78 FR 9605, February 11, 2013. The OMB Control Number is 3060-1153. The Commission... COMMISSION 47 CFR Part 25 Establishment of Rules and Policies for the Digital Audio Radio Satellite...

  2. Airborne Remote Observations of L-Band Radio Frequency Interference and Implications for Satellite Missions

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Srinivasan, Karthik; Limaye, Ashutosh

    2011-01-01

    Passive remote sensing of the Earth s surface and atmosphere from space has significant importance in operational and research environmental studies, in particular for the scientific understanding, monitoring and prediction of climate change and its impacts. Passive remote sensing requires the measurement of naturally occurring radiations, usually of very low power levels, which contain essential information on the physical process under investigation. As such, these sensed radio frequency bands are a unique natural resource enabling space borne passive sensing of the atmosphere and the Earth s surface that deserves adequate allocation to the Earth Exploration Satellite Service and absolute protection from interference. Unfortunately, radio frequency interference (RFI) is an increasing problem for Earth remote sensing, particularly for passive observations of natural emissions. Because these natural signals tend to be very weak, even low levels of interference received by a passive sensor may degrade the fidelity of scientific data. The characteristics of RFI (low-level interference and radar-pulse noise) are not well known because there has been no systematic surveillance, spectrum inventory or mapping of RFI. While conducting a flight experiment over central Tennessee in May 2010, RFI, a concern for any instrument operating in the passive L band frequency, was observed across 16 subbands between 1402-1427 MHz. Such a survey provides rare characterization data from which to further develop mitigation technologies as well as to identify bandwidths to avoid in future sensor formulation.

  3. Efficient use of the Earth exploration-satellite service radio frequency allocation in 8025-8400 MHz

    NASA Astrophysics Data System (ADS)

    McGinnis, David F., Jr.; Whyte, Wayne A., Jr.; Davison, Edward M.

    2005-08-01

    The radio frequency spectrum (9 kHz-275 GHz) is a limited finite resource for which many radio services compete. Most of the 525 radio frequency bands are shared by two or more of the 30 recognized services. Worldwide, except for some individual country differences, in the 8025-8400 MHz range, often referred to as the X-band, the Earth exploration-satellite service (EESS) shares its space-to-Earth allocation with the fixed-satellite service (Earth-to-space) and the terrestrial fixed and mobile services. Additionally, the adjacent band, 8400-8450 MHz, is allocated to the space research service (deep space) in the space-to-Earth direction and radio frequency emissions from spaceborne or airborne stations can be particularly serious sources of interference to these space research operations. Managing the use of this spectrum requires consideration of not only the sharing among the allocated services but also within a given service. In particular, the continued growth in use of the EESS allocation by Earth-exploration satellites is nearing the capacity of the 375 MHz. In order to permit the maximum utilization, it is incumbent upon satellite network operators to consider innovative design techniques that result in spectral efficiency without causing harmful interference to other systems using the allocation. International and U.S. spectrum regulators, as well as the entities that manage Earth resource satellites using this band, have established guidelines that support such spectrum efficiency. This paper provides the three Federal agencies' thoughts on the current policy and the steps being taken to ensure the continued availability of this spectrum into the future.

  4. Overview of techniques for mitigation of fading and shadowing in the direct broadcast satellite radio environment

    NASA Technical Reports Server (NTRS)

    Bell, David; Gevargiz, John; Vaisnys, Arvydas; Julian, David

    1995-01-01

    The DBS radio propagation environment is divided into three sub-environments, indoor, rural-suburban mobile and urban mobile. Indoor propagation effects are in a large part determined by construction material. Non-metallic materials afford direct, albeit attenuated penetration of the satellite signal with a minimum of multipath signal scattering. Signal penetration into structures using significant metallic materials is often indirect, through openings such as doors and windows and propagation will involve significant multipath components. Even so, delay spread in many situations is on the order of 10's of nanoseconds resulting in relatively flat fading. Thus frequency diversity techniques such as Orthogonal Frequency Division Multiplex (OFDM) and Code Division Multiple Access (CDMA) or equalization techniques do not realize their intended performance enhancement. Antenna diversity, directivity and placement are key mitigation techniques for the indoor environment. In the Rural-Suburban mobile environment with elevation angles greater than 20 deg, multipath components from the satellite signal are 15-20 dB below the line-of-sight signal level and often originate from nearby reflectors. Thus shadowing is the dominant signal impairment and fading effects are again found to be relatively flat for a large fading margin. Because receiver motion induces rapid variations in the signal level, temporal diversity techniques such as interleaving, channel coding and retransmission can be used to combat short intermittent fading events. Antenna diversity and directivity techniques are again useful in this environment. Finally, in the Urban mobile environment, slower vehicle speeds and blockage by buildings causes signal fades that are too long and too deep to combat with signal margin or time diversity. Land-based signal boosters are needed to fill in the coverage gaps of the satellite only broadcast scheme. On frequency boosters are suggested to conserve bandwidth yet these produce long delay multipath and create a frequency selective fading environment. Enter now OFDM, spread spectrum, equalization and other techniques that are capable of deconvolving the channel effects and effecting significant performance improvements by extracting the frequency diversity or time diversity components comprising the received signal.

  5. Direct broadcast satellite-radio market, legal, regulatory, and business considerations

    NASA Technical Reports Server (NTRS)

    Sood, Des R.

    1991-01-01

    A Direct Broadcast Satellite-Radio (DBS-R) System offers the prospect of delivering high quality audio broadcasts to large audiences at costs lower than or comparable to those incurred using the current means of broadcasting. The maturation of mobile communications technologies, and advances in microelectronics and digital signal processing now make it possible to bring this technology to the marketplace. Heightened consumer interest in improved audio quality coupled with the technological and economic feasibility of meeting this demand via DBS-R make it opportune to start planning for implementation of DBS-R Systems. NASA-Lewis and the Voice of America as part of their on-going efforts to improve the quality of international audio broadcasts, have undertaken a number of tasks to more clearly define the technical, marketing, organizational, legal, and regulatory issues underlying implementation of DBS-R Systems. The results and an assessment is presented of the business considerations underlying the construction, launch, and operation of DBS-R Systems.

  6. Direct broadcast satellite-radio market, legal, regulatory, and business considerations

    NASA Astrophysics Data System (ADS)

    Sood, Des R.

    1991-03-01

    A Direct Broadcast Satellite-Radio (DBS-R) System offers the prospect of delivering high quality audio broadcasts to large audiences at costs lower than or comparable to those incurred using the current means of broadcasting. The maturation of mobile communications technologies, and advances in microelectronics and digital signal processing now make it possible to bring this technology to the marketplace. Heightened consumer interest in improved audio quality coupled with the technological and economic feasibility of meeting this demand via DBS-R make it opportune to start planning for implementation of DBS-R Systems. NASA-Lewis and the Voice of America as part of their on-going efforts to improve the quality of international audio broadcasts, have undertaken a number of tasks to more clearly define the technical, marketing, organizational, legal, and regulatory issues underlying implementation of DBS-R Systems. The results and an assessment is presented of the business considerations underlying the construction, launch, and operation of DBS-R Systems.

  7. Forecasting ionospheric space weather with applications to satellite drag and radio wave communications and scintillation

    NASA Astrophysics Data System (ADS)

    Mannucci, Anthony J.; Tsurutani, Bruce T.; Verkhoglyadova, Olga P.; Meng, Xing; Pi, Xiaoqing; Kuang, Da; Wang, Chunming; Rosen, Gary; Ridley, Aaron; Lynch, Erin; Sharma, Surja; Manchester, Ward B.; van der Holst, Bart

    2015-04-01

    The development of quantitative models that describe physical processes from the solar corona to the Earths upper atmosphere opens the possibility of numerical space weather prediction with a lead-time of a few days. Forecasting solar wind-driven variability in the ionosphere and thermosphere poses especially stringent tests of our scientific understanding and modeling capabilities, in particular of coupling processes to regions above and below. We will describe our work with community models to develop upper atmosphere forecasts starting with the solar wind driver. A number of phenomena are relevant, including high latitude energy deposition, its impact on global thermospheric circulation patterns and composition, and global electrodynamics. Improved scientific understanding of this sun to Earth interaction ultimately leads to practical benefits. We will focus on two ways the upper atmosphere affects life on Earth: by changing satellite orbits, and by interfering with long-range radio communications. Challenges in forecasting these impacts will be addressed, with a particular emphasis on the physical bases for the impacts, and how they connect upstream to the sun and the heliosphere.

  8. Assimilation of global navigation satellite radio occultation observations in GRAPES: Operational implementation

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Xue, Jishan

    2014-12-01

    This paper presents the design of an observation operator for assimilation of global navigation satellite system (GNSS) radio occultation (RO) refractivity and the related operational implementation strategy in the global GRAPES variational data assimilation system. A preliminary assessment of the RO data assimilation effect is performed. The results show that the RO data are one of the most important observation types in GRAPES, as they have a significant positive impact on the analysis and forecast at all ranges, especially in the Southern Hemisphere and the global stratosphere where in-situ measurements are lacking. The GRAPES model error cannot be controlled in the Southern Hemisphere without RO data being assimilated. In addition, it is found that the RO data play a key role in the stable running of the GRAPES global assimilation and forecast system. Even in a relatively simple global data assimilation experiment, in which only the conventional and RO data are assimilated, the system is able to run for more than nine months without drift compared with NCEP analyses. The analysis skills in both the Northern and Southern Hemispheres are still relatively comparable even after nine-month integration, especially in the stratosphere where the number of conventional observations decreases and RO observations with a uniform global coverage dominate gradually.

  9. A technique for measurement of earth station antenna G/T by radio stars and Applications Technology Satellites.

    NASA Technical Reports Server (NTRS)

    Kochevar, H. J.

    1972-01-01

    A new technique has been developed to accurately measure the G/T of a small aperture antenna using geostationary satellites and the well established radio star method. A large aperture antenna having the capability of accurately measuring its G/T by using a radio star of known power density is used to obtain an accurate G/T to use as a reference. The CNR of both the large and small aperture antennas are then measured using an Applications Technology Satellite (ATS). After normalizing the two C/N ratios to the large antenna system noise temperature the G/T or the gain G of the small aperture antenna can then be determined.

  10. Product amount and quality monitoring in agricultural fields with remote sensing satellite and radio-control helicopter

    NASA Astrophysics Data System (ADS)

    Arai, Kohei

    Product amount and quality monitoring in agricultural fields with remote sensing satellite and radio-control helicopter is proposed. In particular, tealeaves and rice crop quality and amoujnt monitorings are peoposed as examples. Nitrogen rich tealeaves tasts good. Therefore, quality of tealeaves can be estimated with nitrogen content which is related with near infrared reflectance of the tealeves in concern. Also, rice crop quality depends on protein content in rice grain which is related to near infrared reflectance of rice leaves. Therefore, product quality can be estimated with observation of near infrared reflectance of the leaves in concern. Near infared reflectance is provided by near infrared radiometers onboard remote sensing satellites and by near infrared cameras onboard radio-control helicopter. This monitoring system is applicable to the other agricultural plant products. Through monitoring near ingfrared reflectance, it is possible to estimate quality as well as product amount.

  11. 76 FR 57923 - Establishment of Rules and Policies for the Satellite Digital Audio Radio Service in the 2310...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ....144(e)(3), 25.144(e)(8), 25.144(e)(9), 25.263(b) and 25.263(c), published at 75 FR 45058, August 2... (SDARS) Second Report and Order (FCC 10-82; IB Docket No. 95-91), 75 FR 45058, August 2, 2010. Synopsis... COMMISSION 47 CFR Part 25 Establishment of Rules and Policies for the Satellite Digital Audio Radio...

  12. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S.; Hrique, A.; Santovito, M. R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J.-L.; Bruzzone, L.; Kofman, W.

    2012-02-01

    Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA-led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are under study for radar, which ranges between 5 and 50 MHz. Part of this frequency range overlaps with that of the natural jovian radio emissions, which are very intense in the decametric range, below 40 MHz. Radio observations above 40 MHz are free of interferences, whereas below this threshold, careful observation strategies have to be investigated. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emissions are strongly beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. We also review the radiation belts synchrotron emission characteristics. We present radio sources visibility products (dynamic spectra and radio source location maps, on still frames or movies), which can be used for operation planning. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation. We show that this radio noise has to be taken into account very early in the observation planning and strategies for both JGO and JEO. We also point out possible synergies with RPW (Radio and Plasma Waves) instrumentations.

  13. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S.; Hrique, A.; Santovito, M. R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J. L.; Bruzzone, L.; Kofman, W.

    2011-10-01

    Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA-led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are under study for radar, which ranges between 5MHz and 50MHz. Part of this frequency range overlaps with that of the natural Jovian radio emissions, which are very intense in the decametric range, below 40 MHz. Radio observations above 40 MHz are free of interferences, whereas below this threshold, careful observation strategies have to be investigated. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emission are strongly beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. We also review the radiation belts synchrotron emission characteristics. We present radio sources visibility products (dynamic spectra and radio source location maps, on still frames or movies), which can be used for operation planning. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation. We show that this radio noise has to be taken into account very early in the observation planning and strategies for both JGO and JEO. We also point out possible synergies with RPW (Radio and Plasma Waves) instrumentations.

  14. Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    NASA Astrophysics Data System (ADS)

    Fllekrug, M.; Hanuise, C.; Parrot, M.

    2011-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz radio waves from fifty terrestrial Long Range Aid to Navigation (LORAN) transmitters. Their mean luminosity patch in the plasmasphere is a circular area with a radius of 300 km and a power density of 22 ?W/Hz as observed at 660 km height above the ground. The luminosity patches exhibit a southward displacement of 450 km with respect to the locations of the LORAN transmitters. The displacement is reduced to 150 km when an upward propagation of the radio waves along the geomagnetic field line is assumed. This residual displacement indicates that the radio waves undergo 150 km sub-ionospheric propagation prior to entering a magnetospheric duct and escaping into near-Earth space. The residual displacement at low (L < 2.14) and high (L > 2.14) geomagnetic latitudes ranges from 100 km to 200 km which suggests that the smaller inclination of the geomagnetic field lines at low latitudes helps to trap the radio waves and to keep them in the magnetospheric duct. Diffuse luminosity areas are observed northward of the magnetic conjugate locations of LORAN transmitters at extremely low geomagnetic latitudes (L < 1.36) in Southeast Asia. This result suggests that the propagation along the geomagnetic field lines results in a spatial spreading of the radio wave energy over distances of 1 Mm. The summative assessment of the electric field intensities measured in space show that nadir observations of terrestrial 100 kHz radio waves, e.g., from relativistic electron beams above thunderclouds, are attenuated by at least 50 dB when taking into account a transionospheric attenuation of 40 dB.

  15. An experimental investigation of the power spectrum of phase modulation induced on a satellite radio signal by the ionosphere

    NASA Technical Reports Server (NTRS)

    Moser, D. T.

    1972-01-01

    The power spectrum of phase modulation imposed upon satellite radio signals by the inhomogeneous F-region of the ionosphere (100 - 500 km) was studied. Tapes of the S-66 Beacon B Satellite recorded during the period 1964 - 1966 were processed to yield or record the frequency of modulation induced on the signals by ionospheric dispersion. This modulation is produced from the sweeping across the receiving station as the satellite transits of the two dimensional spatial phase pattern are produced on the ground. From this a power spectrum of structure sizes comprising the diffracting mechanism was determined using digital techniques. Fresnel oscillations were observed and analyzed along with some comments on the statistical stationarity of the shape of the power spectrum observed.

  16. Precise line-of-sight vector estimation based on an inter-satellite radio frequency system

    NASA Astrophysics Data System (ADS)

    Sun, R.; Guo, J.; Gill, E.

    2013-04-01

    This paper proposes a precise line-of-sight (LOS) vector estimation using an inter-satellite radio frequency system. GNSS-like technology is inherited such that the ranging signals are locally generated inside the formation. However, the approach differs from the standard GNSS model usage in that the LOS vector to be of a unit length is fully explored as a priori constraint for the carrier phase integer ambiguity resolution. The constraint is lumped to the mapping process from the real-valued ambiguities to the integers by what is called validation or subset ambiguity bounding. These two approaches have the same rules of regarding the constraint as a gateway to accept or reject the ambiguity candidates, but differ by using "all-ambiguity-set" and "subset-ambiguity". Both show remarkable improvement with up to 80% lower integer fixing failure rates than without treating the constraint. Validation provides a slightly better performance than the subset ambiguity bounding in terms of the integer fixing failure rates and the computational efficiency. The predefined tolerance regions that are critical for these two methods are analytically determined as function of the carrier noise. The paper also introduces a LOS dependent ambiguity dilution of precision (ADOPLOS) measure that can serve as a metric to characterize the expectation of being able to successfully resolve the ambiguities. The region of ADOPLOS lower than 0.21 is empirically summarized as the safe region where the integer fixing failure rates are less than 1%. A closed form of the ADOPLOS is derived which is able to capture the impact of the various factors. Antenna baseline geometries and multiple frequencies in the form of an ultra-BOC signal structure are demonstrated as the most important influencing factors. With multiple properly arrayed antennas and using ultra-BOC structure, instantaneous ambiguity resolution can be achieved and the LOS accuracy can reach millimeter level.

  17. Conversion of a 30-m former satellite communications antenna to a radio telescope

    NASA Astrophysics Data System (ADS)

    Deboer, David R.; Steffes, Paul G.; Glowacki, John M.

    1998-05-01

    A class of large satellite communication antennas built in the mid-1970's comprise a potential set of large antennas available for use by radio astronomers upon upgrade. With the advent of low noise technology these facilities have been superseded in the communications industry by smaller, more manageable facilities. Although many have sat idle and decaying over the intervening years, these facilities remain a potential resource for research and education. A pair of such dishes has been acquired by Georgia Tech and one of the 30 meter antennas has been completely mechanically and electrically stripped and new mechanical, control, RF, and electrical systems installed. The antenna is now driven by four continuous-speed vector-controlled three-phase AC induction motors with variable frequency vector motor drives. Sixteen bit resolution optical absolute position encoders on each axis provide telescope pointing data. Sixteen bit resolution optical absolute position encoders on each axis provide telescope pointing data. A programmable logic controller provides interlock monitoring and control. The antenna is controllable both manually via a portable remote control unit and via a Pentium PC running control software on a real-time UNIX-based platform. The manual unit allows limited control at two user-selectable speeds while computer control allows full tracking capability with accuracies of better than 0.3 arcminutes. The facility can be remotely controlled via the internet, although currently only a dedicated line is used. The antenna has been refitted with an ultra-broadband feed system capable of operating from 1-7 GHz.

  18. Direct Broadcast Satellites: An Interview with Hartford Gunn.

    ERIC Educational Resources Information Center

    Library Hi Tech, 1984

    1984-01-01

    In this interview with Hartford Gunn, Vice-President of Program Development for Satellite Television Corporation (STC), the concept of direct broadcast by satellite (DBS) is explored. Allocation of radio frequencies, services provided by DBS network, home installation and purchase of dish antenna, and comparison of DBS with cable television are

  19. Direct Broadcast Satellites: An Interview with Hartford Gunn.

    ERIC Educational Resources Information Center

    Library Hi Tech, 1984

    1984-01-01

    In this interview with Hartford Gunn, Vice-President of Program Development for Satellite Television Corporation (STC), the concept of direct broadcast by satellite (DBS) is explored. Allocation of radio frequencies, services provided by DBS network, home installation and purchase of dish antenna, and comparison of DBS with cable television are…

  20. Satellites

    SciTech Connect

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system.

  1. The RadioSat (sm) network

    NASA Technical Reports Server (NTRS)

    Noreen, Gary K.

    1991-01-01

    The RadioSat network under development by radio Satellite Corporation will use mobile satellite (MSAT) technology to provide diverse personal communications, broadcast, and navigation services. The network will support these services simultaneously for integrated mobile radios throughout Canada and the United States. The RadioSat network takes advantage of several technological breakthroughs, all coming to fruition by the time the first MSAT satellite is launched in 1994. The most important of these breakthroughs is the enormous radiated power of each MSAT spacecraft - orders of magnitude greater than the radiated power of previous L-band spacecraft. Another important breakthrough is the development of advanced digital audio compression algorithms, enabling the transmission of broadcast quality music at moderate data rates. Finally, continuing dramatic increases in VLSI capabilities permit the production of complex, multi-function mobile satellite radios in very large quantities at prices little more than those of conventional car radios. In addition to performance breakthroughs and their economic implications to RadioSat, the design of the RadioSat network is reviewed.

  2. 1.6 GHz distress radio call system (DRCS) via geostationary satellite (Inmarsat-E) - Results of the preoperational demonstration

    NASA Astrophysics Data System (ADS)

    Goebel, Walter

    1990-10-01

    The paper discusses features and operations of the spaceborne Emergency Position Indicating Radio Beacons (EPIRBs) system for distress alerting, which is expected to be used on every ship by August 1, 1993. Two types of EPIRBs that were developed to date are described: the floatable EPIRB, used by vessels over 300 GRT (convention ships subjected to the IMO rules) and the hand-held EPIRB used by smaller vessels such as fishing boats or yachts. The transmitted message formats of both are fully compatible. The distress alerts are presently transmitted through the polar orbiting satellite service at 406 MHz. However, the 36th Inmarsat Council in 1990 passed a decision to the effect that the Inmarsat geostationary satellite shall provide service at 1.6 GHz.

  3. The CERTO and CITRIS Instruments for Radio Scintillation and Electron Density Tomography from the C/NOFS, COSMIC, NPSAT1 and STPSAT1 Satellites

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.

    2004-05-01

    A new constellation of radio beacon and radio beacon receivers will be providing global measurements of radio scintillations and total electron content (TEC) for near real time measurements of the ionosphere. This constellation is comprised of the NRL Coherent Electromagnetic Radio Tomography (CERTO) beacons on the Communications/Navigation Forecast Outage System (C/NOFS) satellite, the six Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) satellites, and the Naval Postgraduate (NPSAT1) Satellite. These satellites will be launched in the time period of 2004 through 2006. The CERTO beacons operating at 150.012, 400.032, and 1066.752 MHz will be transmitting to ground receivers located in chains to acquire TEC data for computerized ionospheric tomography (CIT). In addition, in early 2006 a five frequency receiver will be placed in low earth orbit with the United States Air Force Space Test Program (STPSAT1) satellite. This CITRIS receiver will use radio beacon transmissions from the French DORIS network of ground beacons at 401.25 and 2036.25 MHz and space-based beacons at 150, 400 and 1067 MHz to measure the earth's ionosphere. On board tracking software will lock onto Doppler shifted frequencies to determine total electron content (TEC) and scintillation parameters. The STPSAT1 will be launched along with a companion satellite (NPSAT1) which carries the CERTO radio beacon and a Langmuir probe. All of the CERTO beacons as well as the ionospheric sensors on STPSAT1 and NPSAT1 are being constructed at the Naval Research Laboratory. The data obtained using the CITRIS instrument will provide a global description of the ionosphere from orbits with inclinations ranging from 15 degrees to 70 degrees and altitudes from 375 to 800 km. The tandem operations of the CITRIS and CERTO instruments will provide the fully low-earth-orbit based occultation measurements of the ionosphere. All of the data will be available for rapid assimilation ionospheric, space-weather models.

  4. Results of 17 Independent Geopositional Accuracy Assessments of Earth Satellite Corporation's GeoCover Landsat Thematic Mapper Imagery. Geopositional Accuracy Validation of Orthorectified Landsat TM Imagery: Northeast Asia

    NASA Technical Reports Server (NTRS)

    Smith, Charles M.

    2003-01-01

    This report provides results of an independent assessment of the geopositional accuracy of the Earth Satellite (EarthSat) Corporation's GeoCover, Orthorectified Landsat Thematic Mapper (TM) imagery over Northeast Asia. This imagery was purchased through NASA's Earth Science Enterprise (ESE) Scientific Data Purchase (SDP) program.

  5. Engineering parameter determination from the radio astronomy explorer /RAE I/ satellite attitude data

    NASA Technical Reports Server (NTRS)

    Lawlor, E. A.; Davis, R. M.; Blanchard, D. L.

    1974-01-01

    An RAE-I satellite description is given, taking into account a dynamics experiment and the attitude sensing system. A computer program for analyzing flexible spacecraft attitude motions is considered, giving attention to the geometry of rod deformation. The characteristics of observed attitude data are discussed along with an analysis of the main boom root angle, the bending rigidity, and the damper plane angle.

  6. Detection of Transionospheric SuperDARN HF Waves by the Radio Receiver Instrument on the enhanced Polar Outflow Probe Satellite

    NASA Astrophysics Data System (ADS)

    Gillies, R. G.; Yau, A. W.; James, H. G.; Hussey, G. C.; McWilliams, K. A.

    2014-12-01

    The enhanced Polar Outflow Probe (ePOP) Canadian small-satellite was launched in September 2013. Included in this suite of eight scientific instruments is the Radio Receiver Instrument (RRI). The RRI has been used to measure VLF and HF radio waves from various ground and spontaneous ionospheric sources. The first dedicated ground transmission that was detected by RRI was from the Saskatoon Super Dual Auroral Radar Network (SuperDARN) radar on Nov. 7, 2013 at 14 MHz. Several other passes over the Saskatoon SuperDARN radar have been recorded since then. Ground transmissions have also been observed from other radars, such as the SPEAR, HAARP, and SURA ionospheric heaters. However, the focus of this study will be on the results obtained from the SuperDARN passes. An analysis of the signal recorded by the RRI provides estimates of signal power, Doppler shift, polarization, absolute time delay, differential mode delay, and angle of arrival. By comparing these parameters to similar parameters derived from ray tracing simulations, ionospheric electron density structures may be detected and measured. Further analysis of the results from the other ground transmitters and future SuperDARN passes will be used to refine these results.

  7. GIANT LOBES OF CENTAURUS A RADIO GALAXY OBSERVED WITH THE SUZAKU X-RAY SATELLITE

    SciTech Connect

    Stawarz, L.; Gandhi, P.; Takahashi, T.; Takei, Y.; Tanaka, Y. T.; Fukazawa, Y.; Madejski, G.; O'Sullivan, S. P.; Cheung, C. C.; Feain, I. J.; Hardcastle, M. J.; Kataoka, J.; Takeuchi, Y.; Ostrowski, M.; Reville, B.; Siemiginowska, A.; Simionescu, A.; Werner, N.

    2013-03-20

    We report on Suzaku observations of selected regions within the southern giant lobe of the radio galaxy Centaurus A. In our analysis we focus on distinct X-ray features detected with the X-ray Imaging Spectrometer within the range 0.5-10 keV, some of which are likely associated with fine structure of the lobe revealed by recent high-quality radio intensity and polarization maps. With the available photon statistics, we find that the spectral properties of the detected X-ray features are equally consistent with thermal emission from hot gas with temperatures kT > 1 keV, or with a power-law radiation continuum characterized by photon indices {Gamma} {approx} 2.0 {+-} 0.5. However, the plasma parameters implied by these different models favor a synchrotron origin for the analyzed X-ray spots, indicating that a very efficient acceleration of electrons up to {approx}> 10 TeV energies is taking place within the giant structure of Centaurus A, albeit only in isolated and compact regions associated with extended and highly polarized radio filaments. We also present a detailed analysis of the diffuse X-ray emission filling the whole field of view of the instrument, resulting in a tentative detection of a soft excess component best fitted by a thermal model with a temperature of kT {approx} 0.5 keV. The exact origin of the observed excess remains uncertain, although energetic considerations point to thermal gas filling the bulk of the volume of the lobe and mixed with the non-thermal plasma, rather than to the alternative scenario involving a condensation of the hot intergalactic medium around the edges of the expanding radio structure. If correct, this would be the first detection of the thermal content of the extended lobes of a radio galaxy in X-rays. The corresponding number density of the thermal gas in such a case is n{sub g} {approx} 10{sup -4} cm{sup -3}, while its pressure appears to be in almost exact equipartition with the volume-averaged non-thermal pressure provided by the radio-emitting electrons and the lobes' magnetic field. A prominent large-scale fluctuation of the Galactic foreground emission, resulting in excess foreground X-ray emission aligned with the lobe, cannot be ruled out. Although tentative, our findings potentially imply that the structure of the extended lobes in active galaxies is likely to be highly inhomogeneous and non-uniform, with magnetic reconnection and turbulent acceleration processes continuously converting magnetic energy to internal energy of the plasma particles, leading to possibly significant spatial and temporal variations in the plasma {beta} parameter around the volume-averaged equilibrium condition {beta} {approx} 1.

  8. Orbital positioning of domestic satellites. [area coverage and radio frequency interference optimization

    NASA Technical Reports Server (NTRS)

    Gubin, S.; Kane, D.

    1973-01-01

    An important factor in establishing domestic or regional communication satellite systems which share a given frequency band is the positioning of the satellites in the arc of the geostationary orbit that is visible to the area to be served. A description is given of the results of orbit spacing studies performed with respect to the eight different space systems proposed to provide U.S. domestic communication services. Some tentative guidelines which may be of general use are proposed. Four sets of computer models were studied, taking into account quasi-homogeneous models, a five-system model, a heterogeneous model with 3-degree spacings, and a heterogeneous model with unequal spacings and with coordination.

  9. Recent Results From the Whistler- and Z-mode Radio Sounding From the IMAGE Satellite

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Reddy, A.; Mayank, K.; Hazra, S.; Carpenter, D. L.

    2014-12-01

    Whistler mode radio sounding method [Sonwalkar et al., JGR, 2011] was applied to two case studies: (1) daytime and nighttime cases of whistler mode echoes observed on IMAGE inside the plasmasphere (L<4, altitude <5000 km), and (2) cases of whistler mode echoes observed during geomagnetic storm activity. Preliminary results indicate: (i) O+/H+ and O+/ (H+ + He+) transition heights at nighttime are a few hundred kilometers lower than that at daytime. (ii) Electron and ion densities found from whistler mode sounding are consistent with those from the past in situ and radio sounding measurements, but differ from those predicted by IRI-2012 and GCPM. (iii) Electron and ion densities undergo temporal changes as a function of geomagnetic storm activity, and each species has different recovery period. (iv) Major, moderate, and minor storms affect Ne, H+, and O+ densities in a similar manner, but affect He+ density differently-the minor storm did not affect it. By comparing the electron and ion densities measured by whistler mode radio sounding with those predicted by physics based ionospheric models (e.g. SAMI 2) it may be possible to understand how thermospheric winds influence the evolution of the ionospheric electron and ion densities during geomagnetic storms. The application of Sonwalkar et al. [2011] method to nonducted and ducted fast Z mode echoes observed on IMAGE has led to the measurement of field aligned electron density and duct width and enhancement factor from ~1000 km up to the equator. In two cases, ducts with widths of ~0.05-0.1 L and density depletions of ~5-10 % accounted for the observed properties of ducted Z mode echoes. The measurements of both electron density and ducts are consistent with past measurements. The results from the whistler and Z mode sounding will lead to new empirical models of field aligned electron and ion densities and a statistical characterization of ducts in the magnetosphere.

  10. Results from the northern New Mexico satellite-beacon radio interferometer

    SciTech Connect

    Carlos, R.; Jacobson, A.; Massey, R.; Wu, G.

    1994-09-01

    An interferometer described in the Boston, 1992, meeting of the Beacon Satellite Symposium has been in full operation for over a year now. It consists of four autonomous stations; three are in a triangle 70 km on a side and one is in the center. The stations receive the VHF beacons from two geosynchronous satellites, GOES-2 and ATS-3. The phases of the beacons are tracked at each station by referring them to an extremely stable rubidium oscillator. The studies of the two satellites are virtually separate experiments. The received phase of the beacon is retarded by the increased Total-Electron-Content of the dense regions of waves in the ionosphere. By comparing the phase history at four spatially separated stations, the authors can determine the two-dimensional propagation vector of the waves. This array is optimal for wavelengths of 70--300 km (periods of 300--3,000 seconds). Since the measurement is of the phase of the signal rather than the difference between the O-mode and X-mode phases, and since the beacons are in the VHF rather than in the L-band of GPS beacons, the array is very sensitive. It has a noise level of 10{sup 13} electrons/m{sup 2}, or 10{sup {minus}4} of the normal daytime TEC. This has been verified by operating two stations in the same location, so that they saw the same ionosphere. The first interesting results from a year`s study is that the authors do not see the same TID`s when looking at the two satellites. One conclusion they draw is that they do not see evidence of ionospheric winds.

  11. A novel method for measuring the polarization angle of satellite radio waves

    NASA Technical Reports Server (NTRS)

    Antoniadis, D. A.

    1974-01-01

    One of the most important parameters for the study of the physics of the ionosphere is the columnar electron content. This can be obtained indirectly by measuring the Faraday rotation of signals emitted from satellites. Many different types of polarimeters have been developed for this purpose. Efforts to develop a new type of polarimeter, suitable for extensive network operation, led to a novel technique for measuring the polarization angle.

  12. Interplanetary baseline observations of type 3 solar radio bursts. [by Helios satellites

    NASA Technical Reports Server (NTRS)

    Weber, R. R.; Fitzenreiter, R. J.; Novaco, J. C.; Fainberg, J.

    1977-01-01

    Simultaneous observations of type III radio bursts using spacecraft separated by several tenths of an AU were made using the solar orbiters HELIOS-A and -B. The burst beginning at 1922 UT on March 28, 1976, was located from the intersection of the source directions measured at each spacecraft, and from the burst arrival time differences. Wide baseline observations give the radial distance of the source at each observing frequency. Consequently, coronal electron densities and exciter velocity were determined directly, without the need to assume a density model as is done with single spacecraft observations. The separation of HELIOS-A and -B also provided the first measurements of burst directivity at low frequencies. For the March 28 burst, the intensity observed from near the source longitude (HELIOS-B) was significantly greater than from 60 W of the source (HELIOS-A).

  13. Habitats used by black and surf scoters in eastern North America as determined by satellite radio telemetry

    USGS Publications Warehouse

    Perry, M.C.; Kidwell, D.M.; Wells-Berlin, A. M.; Lohnes, E.J.R.; Olsen, G.H.; Osenton, P.C.

    2005-01-01

    Satellite radio telemetry was used to determine the movements and habitats of black scoters (Melanitta nigra) and surf scoters (Melanitta perspicillata) in eastern North America. A total of 21 surf scoters were instrumented during five years (2001-05) and 32 black scoters were instrumented during three years (2002-04) with implanted PTT 100 satellite transmitters (39 g) with external antenna. Nesting habitat of black scoters was more open than surf scoters (44% vs. 11%), whereas nesting habitat for surf scoters was located in more forested areas (66% vs. 20%). Locations of black scoters in breeding areas on average were at significantly higher latitude and lower elevations than sites used by surf scoters. Satellite telemetry determined that James Bay was the major molting area for male black and surf scoters, although some males molted along the coast of Labrador-Newfoundland. Black scoters instrumented on the Restigouche River, which is a major staging area, were widely distributed along the Atlantic Coast from Cape Cod to Georgia during winter. Major wintering areas for black scoters were Cape Cod (Martha's Vineyard and Nantucket Island), Long Island, and New Jersey. In these northern marine wintering areas, black scoters were located farther from shore (4.2 km) and in deeper water (8.3 m) than black scoters in more southern estuarine areas, where distance from shore was 3.1 km and water depth was 5.2 m. Surf scoters instrumented in Chesapeake Bay in late winter showed a strong tendency to return to the Bay the following winter after they had migrated to and from breeding areas. In Chesapeake Bay, black scoters and surf scoters were located mostly in mesohaline areas that had similar water depths (5.1 m vs. 7.5 m) and distances from shore (3.0 km vs. 2.9 km). Distance from shore and depth of water increased over time during the winter for both species. Updated information from the ARGOS Systems aboard the NOAA satellites on scoter movements was made accessible on the Patuxent Website.

  14. Comparison of radio frequency and optical architectures for deep-space communications via a relay satellite

    NASA Astrophysics Data System (ADS)

    Mecherle, G. Stephen; Horstein, Michael

    1994-08-01

    Parametric tradeoffs were performed for candidate technologies to support an orbiting relay satellite for communication with spacecraft in deep-space in the early 21st century. Both RF and optical system architectures were examined with a methodology which equitably compared the performance and attractiveness for the deep-space communication mission. Two candidate system architectures based on optical technologies were recommended for more detailed design-a system using coherent detection with an astronomical quality 4 meter telescope, and a system using direct detection with a 10 meter photon bucket telescope. Both of these systems appear capable of providing more than an order of magnitude improvement in communication performance over the DSN after it is upgraded to Ka Band.

  15. Direct conversion of light to radio frequency energy. [using photoklystrons for solar power satellites

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.; Simons, S.

    1981-01-01

    A description is presented of the test results obtained with the latest models of the phototron. The phototron was conceived as a replacement for the high voltage solar cell-high power klystron combination for the solar power satellite concept. Physically, the phototron is a cylindrical evacuated glass tube with a photocathode, two grids, and a reflector electrode in a planar configuration. The phototron can be operated either in a biased mode where a low voltage is used to accelerate the electron beam produced by the photocathode or in an unbiased mode referred to as self-oscillation. The device is easily modulated by light input or voltage to broadcast in AM or FM. The range of operation of the present test model phototrons is from 2 to 200 MHz.

  16. Satellite radio occultation investigations of internal gravity waves in the planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander

    Internal gravity waves (IGWs) modulate the structure and circulation of the Earth’s atmosphere, producing quasi-periodic variations in the wind velocity, temperature and density. Similar effects are anticipated for the Venus and Mars since IGWs are a characteristic of stably stratified atmosphere. In this context, an original method for the determination of IGW parameters from a vertical temperature profile measurement in a planetary atmosphere has been developed [Gubenko et al., 2008, 2011, 2012]. This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, the analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitudes of the wave field and on the linear IGW saturation theory in which these amplitudes are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal wave reaches the shear instability threshold, energy is assumed to be dissipated in such a way that the IGW amplitude is maintained at the instability threshold level as the wave propagates upwards. We have extended the developed technique [Gubenko et al., 2008] in order to reconstruct the complete set of wave characteristics including such important parameters as the wave kinetic and potential energy per unit mass and IGW fluxes of the energy and horizontal momentum [Gubenko et al., 2011]. We propose also an alternative method to estimate the relative amplitudes and to extract IGW parameters from an analysis of perturbations of the Brunt-Vaislala frequency squared [Gubenko et al., 2011]. An application of the developed method to the radio occultation (RO) temperature data has given the possibility to identify the IGWs in the Earth's, Martian and Venusian atmospheres and to determine the magnitudes of key wave parameters such as the intrinsic frequency, amplitudes of vertical and horizontal wind velocity perturbations, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase (and group) speeds, kinetic and potential energy per unit mass, vertical fluxes of the wave energy and horizontal momentum. Vertical profiles of temperature retrieved from RO measurements of the CHAMP (Earth), Mars Global Surveyor (Mars), Magellan and Venus Express (Venus) missions are used and analyzed to identify discrete or “narrow spectral” wave events and to determine IGW characteristics in the Earth’s, Martian and Venusian atmospheres. This work was partially supported by the RFBR grant 13-02-00526-а and Program 22 of the RAS Presidium. References. Gubenko V.N., Pavelyev A.G., Andreev V.E. Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement // J. Geophys. Res. 2008. V. 113. No.D08109, doi:10.1029/2007JD008920. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Pavelyev A.A. Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the Earth’s atmosphere // Atmos. Meas. Tech. 2011. V. 4. No.10. P. 2153-2162, doi:10.5194/amt-4-2153-2011. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Andreev V.E. A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth’s atmosphere // Cosmic Res. 2012. V. 50. No.1. P. 21-31, doi: 10.1134/S0010952512010029.

  17. Future communications satellite applications

    NASA Technical Reports Server (NTRS)

    Bagwell, James W.

    1992-01-01

    The point of view of the research is made through the use of viewgraphs. It is suggested that future communications satellite applications will be made through switched point to point narrowband communications. Some characteristics of which are as follows: small/low cost terminals; single hop communications; voice compatible; full mesh networking; ISDN compatible; and possible limited use of full motion video. Some target applications are as follows: voice/data networks between plants and offices in a corporation; data base networking for commercial and science users; and cellular radio internodal voice/data networking.

  18. Onboard Photo: Astronauts Use Shuttle Amateur Radio Experiment II (SAREX-II)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Space Shuttle Discovery (STS-56) onboard photo of Pilot Stephen S. Oswald (wearing a headset) uses the Shuttle Amateur Radio Experiment II (SAREX-II) while sitting at the pilot's station on the forward flight deck. Oswald smiled from behind the microphone as he talks to amateur radio operators on Earth via the SAREX equipment. SAREX cables and the interface module freefloat in front of Oswald. The anterna located in the forward flight deck window is visible in the background. SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center (JSC) Amateur Radio Club to encourage public participation in the space program through a program to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques.

  19. Radio data transmission for SCADA

    SciTech Connect

    Frasier, W.E. )

    1989-09-01

    Enron has used such wireless systems as meteor burst radio, 952 MHz multiple address radio, VSAT and L-band satellite, cellular radio and ACSB radio. The company's experience with meteor burst radio communications is discussed in this paper. It indicates good system reliability and consequently all back-up telephone lines have been removed from sites using this system.

  20. User applications unique to mobile satellites

    NASA Technical Reports Server (NTRS)

    Castiel, David

    1990-01-01

    As AMSC enters the market with its mobile satellite services, it faces a sophisticated user group that has already experimented with a wide range of communications services, including cellular radio and Ku-band satellite messaging. AMSC's challenge is to define applications unique to the capabilities of its dedicated L band satellite and consistent with the provisions outlined in its FCC license. Through a carefully researched approach to its three main markets (aeronautical, land mobile, and maritime) AMSC is discovering a wellspring of interest in corporate and general aviation, trucking companies, pipeline monitoring and control companies, maritime management firms, telecommunications companies, and government agencies. A general overview is provided of AMSC's FCC license and corporate history, and the specific applications unique to each user group is discussed.

  1. The effect of secular resonances on the long-term orbital evolution of uncontrollable objects on satellite radio navigation systems in the MEO region

    NASA Astrophysics Data System (ADS)

    Bordovitsyna, T. V.; Tomilova, I. V.; Chuvashov, I. N.

    2012-09-01

    We present the results of the study of long-term orbital evolution of space debris objects, formed from end-of-life space vehicles (SV) of satellite radio navigation systems in the medium Earth orbit (MEO) region. Dynamical features of the evolution of objects in this region have been studied on the basis of 20-year laser surveillance with the Etalon-1 and Etalon-2 satellites and the results of numerical simulation of the long-term evolution of operating and disposal orbits of uncontrolled GLONASS and GPS SVs. It is shown that perturbations from secular lunisolar resonances produce an eccentricity growth for orbits with inclinations chosen for navigation constellations; this significantly changes the positions of these orbits in space and results in the ingress of end-of-life objects into the area of operating SVs.

  2. 78 FR 1252 - CalAmp Wireless Networks Corporation (CWNC), Satellite Products Division, Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    .../amplifiers for satellite television. The Department's Notice was published in the Federal Register on December 13, 2011 (76 FR 77556). At the request of the State of Minnesota, the Department reviewed...

  3. Concept and Analysis of a Satellite for Space-Based Radio Detection of Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew; Gorham, P.; Booth, J.; Chen, P.; Duren, R. M.; Liewer, K.; Nam, J.; Saltzberg, D.; Schoorlemmer, H.; Wissel, S.; Zairfian, P.

    2014-01-01

    We present a concept for on-orbit radio detection of ultra-high energy cosmic rays (UHECRs) that has the potential to provide collection rates of ~100 events per year for energies above 10^20 eV. The synoptic wideband orbiting radio detector (SWORD) mission's high event statistics at these energies combined with the pointing capabilities of a space-borne antenna array could enable charged particle astronomy. The detector concept is based on ANITA's successful detection UHECRs where the geosynchrotron radio signal produced by the extended air shower is reflected off the Earth's surface and detected in flight.

  4. STS-35 Shuttle Amateur Radio Experiment (SAREX) equipment held by R. Parise

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Shuttle Amateur Radio Experiment II (SAREX-II) window antenna is held by Payload Specialist Ronald A. Parise outside the JSC Full Fuselage Trainer (FFT) located in the Mockup and Integration Laboratory (MAIL) Bldg 9A. The antenna was built at no cost to the government by the Motorola Amateur Radio Club in Schaumburg, Illinois. SAREX was designed to conduct shortwave radio transmissions between ground amateur radio operators and a licensed onboard operator (in this case, Parise). Parise's call letters are WA4SIR. SAREX will communicate with amateur stations in Line-of-Site (LOS) of Columbia, Orbiter Vehicle (OV) 102, in one of four transmission modes: voice, Slow Scan Television (SSTV), data or (uplink only) Fast Scan Television (FSTV). SAREX is a jont effort of NASA and the American Radio Relay League (ARRL) / Amateur Radio Satellite Corporation (AMSAT).

  5. STS-35 Shuttle Amateur Radio Experiment (SAREX) equipment stowed on middeck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Shuttle Amateur Radio Experiment II (SAREX-II) window antenna is shown in its stowage location (inside the window shade and filter kit) on the middeck of JSC's Full Fuselage Trainer (FFT) located in the Mockup and Integration Laboratory (MAIL) Bldg 9A. The antenna was built at no cost to the government by the Motorola Amateur Radio Club in Schaumburg, Illinois. SAREX was designed to conduct shortwave radio transmissions between ground amateur radio operators and a licensed onboard operator (in this case, Parise). Parise's call letters are WA4SIR. SAREX will communicate with amateur stations in Line-of-Site (LOS) of Columbia, Orbiter Vehicle (OV) 102, in one of four transmission modes: voice, Slow Scan Television (SSTV), data or (uplink only) Fast Scan Television (FSTV). SAREX is a jont effort of NASA and the American Radio Relay League (ARRL) / Amateur Radio Satellite Corporation (AMSAT).

  6. Boundary layer remote sensing with combined active and passive techniques: GPS radio occultation and high-resolution stereo imaging (WindCam) small satellite concept

    NASA Astrophysics Data System (ADS)

    Mannucci, A. J.; Wu, D. L.; Teixeira, J.; Ao, C. O.; Xie, F.; Diner, D. J.; Young, D. F.

    2010-12-01

    Observation of the cloudy boundary layer from satellite poses great challenges for satellite remote sensing. Sensor systems must resolve fine scale structure in the lowest few km of the atmosphere (horizontal scales < 10 km, vertical < 200 m), often in the presence of partial or complete cloud cover. A new concept is being developed that combines high vertical resolution active sounding (GPS radio occultation-GPSRO) with high horizontal resolution multi-angle visible imaging (WindCam). The Decadal Survey missions planned over the next 1-2 decades do not directly address observations of the atmospheric boundary layer, despite its importance for climate feedback processes, heat/momentum exchanges, and dispersion of air pollutants. Improved BL observations will benefit other missions for climate and weather research including: SMAP, ICESAT-2, CLARREO, ASCENDS and OCO-2. The GPSRO+WindCam concept will significantly enhance the overall science return from these missions, and yet it is implementable as a pair of small satellites. Significant remote sensing challenges in developing the concept will be addressed, including improved RO retrievals of temperature and water vapor in the boundary layer, and combining RO retrievals with WindCam-like visible wavelength stereoscopic observations of cloud top heights and winds. We will present case studies of combined RO with MISR observations to describe candidate retrieval methods being developed.

  7. 47 CFR 25.214 - Technical requirements for space stations in the Satellite Digital Audio Radio Service and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Service and associated terrestrial repeaters. (a) (b) Each system authorized under this section will be conditioned upon construction, launch and operation milestones as outlined in § 25.144(b). The failure to meet... for each satellite DARS system as follows: (1) Exclusive SDARS licenses are limited to the...

  8. 47 CFR 25.214 - Technical requirements for space stations in the satellite digital audio radio service and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Each system authorized under this section will be conditioned upon construction, launch and operation... particular case. (c) Frequency assignments will be made for each satellite DARS system as follows: (1... 47 Telecommunication 2 2011-10-01 2011-10-01 false Technical requirements for space stations...

  9. 47 CFR 25.214 - Technical requirements for space stations in the Satellite Digital Audio Radio Service and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Each system authorized under this section will be conditioned upon construction, launch and operation... particular case. (c) Frequency assignments will be made for each satellite DARS system as follows: (1... 47 Telecommunication 2 2013-10-01 2013-10-01 false Technical requirements for space stations...

  10. 47 CFR 25.214 - Technical requirements for space stations in the satellite digital audio radio service and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Each system authorized under this section will be conditioned upon construction, launch and operation... particular case. (c) Frequency assignments will be made for each satellite DARS system as follows: (1... 47 Telecommunication 2 2012-10-01 2012-10-01 false Technical requirements for space stations...

  11. 47 CFR 25.144 - Licensing provisions for the 2.3 GHz satellite digital audio radio service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25... station or begin space station construction; (2) Two years: If applied for, complete contracting for construction of second space station or begin second space station construction; (3) Four years: In...

  12. 47 CFR 25.144 - Licensing provisions for the 2.3 GHz satellite digital audio radio service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25... station or begin space station construction; (2) Two years: If applied for, complete contracting for construction of second space station or begin second space station construction; (3) Four years: In...

  13. 47 CFR 25.144 - Licensing provisions for the 2.3 GHz satellite digital audio radio service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25... station or begin space station construction; (2) Two years: If applied for, complete contracting for construction of second space station or begin second space station construction; (3) Four years: In...

  14. 47 CFR 25.144 - Licensing provisions for the 2.3 GHz satellite digital audio radio service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25... authorization: (1) One year: Complete contracting for construction of first space station or begin space station construction; (2) Two years: If applied for, complete contracting for construction of second space station...

  15. Migration and wintering areas of American Bitterns (Botaurus lentiginosus) that summer in central North America as determined by satellite and radio telemetry, 1998-2003

    USGS Publications Warehouse

    Huschle, Guy; Toepfer, John E.; Douglas, David C.

    2013-01-01

    Twenty adult male American Bitterns (Botaurus lentiginosus) were marked on summer range in central North America with satellite tracking Platform Transmitter Terminals (PTTs) to document migration routes and wintering range. Nineteen complete fall migration routes were documented for 17 individuals. Of the successful migrations, 63% (n = 12) went to southern Florida, 32% (n = 6) to southern Louisiana, and 5% (n = 1) to the Gulf coast of Texas. Spring migrations for nine birds were documented, and 78% (n = 7) showed fidelity to breeding range. Two complete migrations for two individuals were documented, and they demonstrated fidelity to winter range. The longest, fastest movement documented was 2,300 km in less than 74 hr. Extensive, post-breeding dispersal was not observed in the adult male American Bitterns in this study. Six male American Bitterns were marked with PTTs on winter range in Florida and Texas. Spring migration for these birds was documented to Nebraska, North Dakota, Saskatchewan, Manitoba and Ontario. Sixty-seven American Bitterns were marked with Very High Frequency radio transmitters on summer ranges, and 16% (n = 11) were located on wintering grounds used by the satellite-tracked birds, further documenting the importance of the Everglades and the Louisiana coast as winter habitat for American Bitterns that breed in Central North America.

  16. Theory of intense radio waves in an underdense ionosphere: application to solar power satellite transmissions. Final report

    SciTech Connect

    Goldman, M V

    1980-11-01

    The instabilities in the F-region plasma are investigated that can be created by the passage of a solar power satellite beam (2.45 Ghz frequency, at a power flux of 23 mW/cm/sup 2/) at frequencies much higher than the cut-off plasma frequency of the ionosphere. The threshold geometry and frequency and intensity scaling laws are calculated for the thermal self-focusing instability, and its saturation level is estimated. The possibility is considered of scaled experiments at HF power to detect the thermal self-focusing instability for an underdense ionosphere. Other experimental possibilities are discussed in terms of the scaling laws. (LEW)

  17. Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  18. Radio Science Observations of the Mars Express December 2013 Phobos Flyby and Implications for the Satellite's Gravity Field

    NASA Astrophysics Data System (ADS)

    Andert, T.; Paetzold, M.; Rosenblatt, P.; Lainey, V.; Pasewaldt, A.; Oberst, J.; Jaumann, R.; Thuillot, W.; Remus, S.; Gurvits, L.; Pogrebenko, S.; Bocanegra Bahamon, T.; Cimo, G.; Duev, D.; Molera Calves, G.

    2014-12-01

    On 29th December 2013, the European spacecraft Mars Express performed a very close flyby at the Martian moon Phobos dedicated to the radio science experiment MaRS. The flyby distance was 58 km, the closest ever. Almost 32 hours of continuous tracking data were collected by ESTRACK (35 m) and DSN (70 m) ground station antennas. 31 VLBI antennas worldwide also recorded the radio signal. The tracking data were interrupted by occultations of approximately 1 hour duration in each orbit revolution, when the spacecraft in Mars orbit disappeared behind the planet as seen from the ground station. Images were taken with the Super Resolution Channel (SRC) of the High Resolution Stereo Camera (HRSC) onboard Mars Express before and after the flyby in order to improve the ephemeris of Phobos. The gravity field of Phobos was estimated from a close MEX flyby in 2010 at a distance of 77 km. The derived second degree and order gravity coefficients, however, showed large errors and could not resolve the interior structure of Phobos. Hence, the close flyby in 2013 was the opportunity to estimate the gravity field of Phobos at a higher precision because of the closer flyby distance, improved Phobos ephemeris obtained from the HRSC/SRC camera, and longer observation times with the ground station antennas. We aim at measurements of the gravity coefficients C20 and C22, which are linked with the main moments of inertia of the body. By comparison with the Phobos shape model and assuming a homogeneous mass distribution these can help in interpretations of the internal structure of Phobos. The main contribution to the error budget of the gravity field is caused by the uncertainty of the Phobos ephemeris, which potentially can be improved by HRSC/SRC observations.

  19. The effect of solar radio bursts on the GNSS radio occultation signals

    NASA Astrophysics Data System (ADS)

    Yue, Xinan; Schreiner, William S.; Kuo, Ying-Hwa; Zhao, Biqiang; Wan, Weixing; Ren, Zhipeng; Liu, Libo; Wei, Yong; Lei, Jiuhou; Solomon, Stan; Rocken, Christian

    2013-09-01

    radio burst (SRB) is the radio wave emission after a solar flare, covering a broad frequency range, originated from the Sun's atmosphere. During the SRB occurrence, some specific frequency radio wave could interfere with the Global Navigation Satellite System (GNSS) signals and therefore disturb the received signals. In this study, the low Earth orbit- (LEO-) based high-resolution GNSS radio occultation (RO) signals from multiple satellites (COSMIC, CHAMP, GRACE, SAC-C, Metop-A, and TerraSAR-X) processed in University Corporation for Atmospheric Research (UCAR) were first used to evaluate the effect of SRB on the RO technique. The radio solar telescope network (RSTN) observed radio flux was used to represent SRB occurrence. An extreme case during 6 December 2006 and statistical analysis during April 2006 to September 2012 were studied. The LEO RO signals show frequent loss of lock (LOL), simultaneous decrease on L1 and L2 signal-to-noise ratio (SNR) globally during daytime, small-scale perturbations of SNR, and decreased successful retrieval percentage (SRP) for both ionospheric and atmospheric occultations during SRB occurrence. A potential harmonic band interference was identified. Either decreased data volume or data quality will influence weather prediction, climate study, and space weather monitoring by using RO data during SRB time. Statistically, the SRP of ionospheric and atmospheric occultation retrieval shows ~4% and ~13% decrease, respectively, while the SNR of L1 and L2 show ~5.7% and ~11.7% decrease, respectively. A threshold value of ~1807 SFU of 1415 MHz frequency, which can result in observable GNSS SNR decrease, was derived based on our statistical analysis.

  20. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  1. The GNSS polarimetric radio-occultation technique to sense precipitation events: a new concept to be tested aboard PAZ Low Earth Satellite

    NASA Astrophysics Data System (ADS)

    Tomás, Sergio; Oliveras, Santi; Cardellach, Estel; Rius, Antonio

    2013-04-01

    The Radio Occultation and Heavy Precipitation (ROHP) experiment, to be conducted aboard the Spanish PAZ satellite, consists of a radio occultation (RO) mission provided with dual-polarization capabilities. The research with polarimetric RO data has the goal of assessing the capabilities and limitations of this technique to infer profiles of heavy precipitation. The technique aims to provide vertical profiles of precipitation simultaneously to the vertical profiles of thermodynamic parameters (standard RO products) perfectly collocated both in space and time. If successful, the polarimetric RO will represent the first technique able to provide these complementary information on precipitation. This is a relevant input for studies on heavy and violent rainfall events, which being poorly represented by the current-generation of Numerical Weather Prediction and General Circulation Models appear to be difficult to forecast on all time-scales. The Low Earth Orbiter hosting this experiment, to be launched in 2013, will orbit at 500 km altitude in a near-Polar orbit. The Radio Occulation payload includes a RO GNSS receiver and a dual polarization (H/V) limb oriented antenna to capture the signals of setting GNSS transmitters. NOAA and UCAR participate in the ground-segment of the radiometric experiment to enable near-real time dissemination of the level-1 standard RO products. The space-based GNSS RO technique scans the atmosphere vertically at fine resolution (close to 300 meter in the troposphere) by precisely measure the delay between a GNSS transmitter and a GNSS receiver aboard a Low Earth Orbiter, when the former is setting below or rising above the Earth limb. The standard, thermodynamical, products are extracted from the excess delay induced by the atmosphere at different layers. This presentation will not focus on this well-established application, but a novel concept using polarimetry to also retrieve rain information. The precipitation-measurement principle is based on the asymmetry between the vertical and horizontal axis of the rain droplets, especially when intense rates of precipitation occur. As a first approximation, the RO signals propagate across the precipitation-volume tangentially, that is, along the local horizontal axis of the droplets. Forward scattering models have been implemented to quantify the sensitivity of L-band signals to different rain rates and precipitation extension being crossed by the signals. The observable considered so far is the polarimetric phase shift: difference between the phase delay suffered by the H- and V-polarizations. Real RO events have been collocated with TRMM precipitation data. The path traveled by the RO signal under a given altitude has been projected on the TRMM grid of observations, to obtain a profile of the precipitation being crossed by the RO link at a given moment of the occultation event. This mechanism has been used to feed the propagation models and thus estimate the polarimetric phase shift that each precipitation event would have induced into the occultation observation. This simulation exercise permits to determine the detectability thresholds and the expected statistics of such collocated events. Methodology and results will be presented.

  2. DBS Radio: Deathstar or Dud? Info. Packets No. 24.

    ERIC Educational Resources Information Center

    Pizzi, Skip

    The Federal Communications Commission (FCC) has been progressing over the past 5 years toward the institution of Direct Broadcast Satellite Radio (DBS-R) which would institute a new type of radio service. The FCC refers to the service as Satellite DARS (Digital Audio Radio Service), and it would provide reliable, high-fidelity satellite-delivered…

  3. Domestic Communication Satellites

    ERIC Educational Resources Information Center

    Horowitz, Andrew

    1974-01-01

    A discussion of the Federal Communications Commission's new policy on domestic satellites in light of our 1) military and economic history; 2) corporate interests; 3) citizen surveillance; and 4) media control. (HB)

  4. The Use of Satellites by Schools and Colleges, Part 1.

    ERIC Educational Resources Information Center

    Duff, D. A.

    1981-01-01

    Provides information about and suggestions for using orbital satellite-carrying amateur radio (OSCAR) and National Oceanic and Atmospheric Administration (NOAA) satellites for instructional purposes. (JN)

  5. 33 CFR 401.63 - Radio procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Radio procedures. 401.63 Section 401.63 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Radio Communications § 401.63 Radio procedures....

  6. 33 CFR 401.63 - Radio procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Radio procedures. 401.63 Section 401.63 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Radio Communications § 401.63 Radio procedures....

  7. 33 CFR 401.63 - Radio procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Radio procedures. 401.63 Section 401.63 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Radio Communications § 401.63 Radio procedures....

  8. 33 CFR 401.63 - Radio procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Radio procedures. 401.63 Section 401.63 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Radio Communications § 401.63 Radio procedures....

  9. 33 CFR 401.63 - Radio procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Radio procedures. 401.63 Section 401.63 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Radio Communications § 401.63 Radio procedures....

  10. A Question of Interference: FM Radio's Early Struggle for Survival 1934-1945.

    ERIC Educational Resources Information Center

    Zenaty, Jayne W.

    This paper explores FM radio's struggle for survival in the 1940s, focusing primarily on the impact of Federal Communications Commission (FCC) decision making and on the influence and activities of the well-established radio corporations, primarily the Radio Corporation of America (RCA). It describes the invention of FM radio by Edwin H. Armstrong

  11. Fundamentals of satellite navigation

    NASA Astrophysics Data System (ADS)

    Stiller, A. H.

    The basic operating principles and capabilities of conventional and satellite-based navigation systems for air, sea, and land vehicles are reviewed and illustrated with diagrams. Consideration is given to autonomous onboard systems; systems based on visible or radio beacons; the Transit, Cicada, Navstar-GPS, and Glonass satellite systems; the physical laws and parameters of satellite motion; the definition of time in satellite systems; and the content of the demodulated GPS data signal. The GPS and Glonass data format frames are presented graphically, and tables listing the GPS and Glonass satellites, their technical characteristics, and the (past or scheduled) launch dates are provided.

  12. Telemetry Data Collection from Oscar Satellite

    NASA Technical Reports Server (NTRS)

    Haddock, Paul C.; Horan, Stephen

    1998-01-01

    This paper discusses the design, configuration, and operation of a satellite station built for the Center for Space Telemetering and Telecommunications Laboratory in the Klipsch School of Electrical and Computer Engineering Engineering at New Mexico State University (NMSU). This satellite station consists of a computer-controlled antenna tracking system, 2m/70cm transceiver, satellite tracking software, and a demodulator. The satellite station receives satellite,telemetry, allows for voice communications, and will be used in future classes. Currently this satellite station is receiving telemetry from an amateur radio satellite, UoSAT-OSCAR-11. Amateur radio satellites are referred to as Orbiting Satellites Carrying Amateur Radio (OSCAR) satellites as discussed in the next section.

  13. Boundary Layer Remote Sensing with Combined Active and Passive Techniques: GPS Radio Occultation and High-Resolution Stereo Imaging (WindCam) Small Satellite Concept

    NASA Technical Reports Server (NTRS)

    Mannucci, A.J.; Wu, D.L.; Teixeira, J.; Ao, C.O.; Xie, F.; Diner, D.J.; Wood, R.; Turk, Joe

    2012-01-01

    Objective: significant progress in understanding low-cloud boundary layer processes. This is the Single largest uncertainty in climate projections. Radio occultation has unique features suited to boundary layer remote sensing (1) Cloud penetrating (2) Very high vertical resolution (approximately 50m-100m) (3) Sensitivity to thermodynamic variables

  14. Analysis, prediction and control of radio frequency interference with respect to DSN

    NASA Technical Reports Server (NTRS)

    Degroot, N. F.

    1982-01-01

    Susceptibility modeling, prediction of radio frequency interference from satellites, operational radio frequency interference control, and international regulations are considered. The existing satellite interference prediction program DSIP2 is emphasized. A summary status evaluation and recommendations for future work are given.

  15. Corporate Change and Corporate Giving.

    ERIC Educational Resources Information Center

    Pollack, Rachel H.; Toward, Christopher

    1999-01-01

    With each merger or corporate restructuring comes the possibility that corporate giving to higher education will suffer. A combination of patience, understanding of the processes at work in corporate change, and regular contact with affected companies can help position the college or university to make the most of any outcome. (MSE)

  16. Radio Journalism.

    ERIC Educational Resources Information Center

    Bittner, John R.; Bittner, Denise A.

    This book, a how-to-do-it guide for the novice and the professional alike, deals with several aspects of radio journalism: producing documentaries, preparing and announcing radio news, ethics and responsibility, regulation of radio journalism, and careers. It traces the history and growth of radio news, shows its impact on the public, and

  17. Public service satellites

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.

    1977-01-01

    The development of the communications satellite system is discussed, taking into account a suggestion by Clarke in 1945 concerning the significance of geosynchronous satellites, the establishment of Intelsat, reductions in the cost of transatlantic telephone calls as a result of satellite communications service, questions of satellite cost, and the need for larger satellites. It is pointed out that the use of the Space Shuttle will reduce the cost of placing a satellite in orbit from more than half to less than a quarter of the total cost of design, construction, and launch. Attention is given to studies of a personal communications system which involves direct broadcast from a 'wrist watch radio' to a high-capacity, multibeam satellite for retransmission to ground communications centrals.

  18. Satellite networks for education

    NASA Technical Reports Server (NTRS)

    Singh, J. P.; Morgan, R. P.; Rosenbaum, F. J.

    1972-01-01

    Satellite based educational networking is discussed with particular attention given to the potential uses of communications satellites to help meet educational needs in the United states. Four major subject areas were covered; (1) characteristics and structure of networks, (2) definition of pressures within educational establishment that provide motivation for various types of networks, (3) examination of current educational networking status for educational radio and television, instructional television fixed services, inter- and intra-state educational communication networks, computer networks, and cable television for education, and (4) identification of possible satellite based educational telecommunication services and three alternatives for implementing educational satellite systems.

  19. The ionosphere as a focusing lens - A case study involving simultaneous type III solar radio storm measurements from the ISIS 1 and 2 and ISEE 3 satellites

    NASA Technical Reports Server (NTRS)

    James, H. G.; Benson, R. F.; Fainberg, J.; Stone, R. G.

    1990-01-01

    The possibility of using terrestrial ionospheric focusing to improve the directivity of electric dipoles on space missions has been investigated by comparing simultaneous observations of a solar radio storm by the ISIS 1 and ISIS 2 spacecraft, in near earth orbit, and the ISEE 3 spacecraft located beyond the magnetosphere. To this end, a three-dimensional ray tracing in a spherically stratified ionosphere has been carried out for conditions appropriate to the observations by the ISIS spacecraft of a solar radio storm in September 1983. The procedure allows Poynting flux spectral densities measured on ISIS to be converted to spectral densities well outside the ionosphere where they can be compared directly with simultaneous observations on ISEE 3. The results demonstrate good agreement over their common observing frequency range (1-2 MHz).

  20. The ionosphere as a focusing lens - A case study involving simultaneous type III solar radio storm measurements from the ISIS 1 and 2 and ISEE 3 satellites

    SciTech Connect

    James, H.G.; Benson, R.F.; Fainberg, J.; Stone, R.G. NASA, Goddard Space Flight Center, Greenbelt, MD )

    1990-06-01

    The possibility of using terrestrial ionospheric focusing to improve the directivity of electric dipoles on space missions has been investigated by comparing simultaneous observations of a solar radio storm by the ISIS 1 and ISIS 2 spacecraft, in near earth orbit, and the ISEE 3 spacecraft located beyond the magnetosphere. To this end, a three-dimensional ray tracing in a spherically stratified ionosphere has been carried out for conditions appropriate to the observations by the ISIS spacecraft of a solar radio storm in September 1983. The procedure allows Poynting flux spectral densities measured on ISIS to be converted to spectral densities well outside the ionosphere where they can be compared directly with simultaneous observations on ISEE 3. The results demonstrate good agreement over their common observing frequency range (1-2 MHz). 21 refs.

  1. Improvements in search and rescue distress alerting and locating using satellites

    NASA Technical Reports Server (NTRS)

    Brandel, D. L.; Schmid, P. E.; Trudell, B. J.

    1976-01-01

    This paper describes a system concept for search and rescue which is capable of making a major contribution to saving lives and reducing the search time for downed aircraft. In addition, a beacon location experiment is described using the Amateur Radio Satellite Corporation Oscar-6 and Oscar-7 spacecraft. The purpose of this experiment was to demonstrate the system concept above by determining the geographical location of a low power 'distress beacon' via satellite based on a single pass of Doppler frequency measurements. Preliminary results are presented showing beacon location recovery on the order of 10 km with indications that an order of magnitude improvement is entirely possible. This experiment is in support of NASA's current exploration into the role satellites might play in providing much needed improvements in the reliability, coverage and accuracy of present search and rescue procedures.

  2. Galileo radio science investigations

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Eshleman, V. R.; Hinson, D. P.; Kliore, A. J.; Lindal, G. F.; Woo, R.; Bird, M. K.; Volland, H.; Edenhoffer, P.; Paetzold, M.

    1992-01-01

    Galileo radio-propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements can be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system provides linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. A highly-stable, dual-frequency, spacecraft radio system is developed that is suitable for simultaneous measurements of all the parameters normally attributed to radio waves.

  3. Firefighters' Radios

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Public Technology Inc. asked for NASA assistance to devise the original firefighter's radio. Good short-range radio communications are essential during a fire to coordinate hose lines, rescue victims, and otherwise increase efficiency. Useful firefighting tool is lower cost, more rugged short range two-way radio. Inductorless electronic circuit replaced inductances and coils in radio circuits with combination of transistors and other low-cost components. Substitution promises reduced circuit size and cost. Enhanced electrical performance made radio more durable and improved maintainability by incorporating modular construction.

  4. Satellite (IRLS) tracking of elk

    NASA Technical Reports Server (NTRS)

    Buechner, H. K.

    1972-01-01

    The practicability of tracking free roaming animals in natural environments by satellite systems is reported. Satellite systems combine continuous tracking with simultaneous monitoring of physiological and environmental parameters through a combination of radio tracking and biotelemetric ground systems that lead to a better understanding of animal behavior and migration patterns.

  5. Mobile satellite service communications tests using a NASA satellite

    NASA Technical Reports Server (NTRS)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.

    1995-01-01

    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  6. Corporal Punishment.

    ERIC Educational Resources Information Center

    Ball, Joan

    1989-01-01

    The National PTA opposes the use of corporal punishment in schools. Several states and foreign countries have banned this form of discipline, and studies show it to be ineffective. Alternative methods of controlling student behaviors are suggested. (IAH)

  7. Solar Power Satellite (SPS) pilot beam and communication link subsystem investigation study, phase 1. [ionospheric propagation, radio frequency interference, and microwave transmission

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A preliminary engineering model of ionospheric interactions with the pilot beam was established and used to demonstrate that the dual frequency baseline pilot beam system might not be viable in the presence of an unstable transmission path. Alternate approaches to remove this difficulty are described. Although ionospheric fluctuations will not significantly degrade beam pointing or raise the sidelobe levels, they will reduce transmission efficiency by upwards of 25%. Mitigating strategies to substantially reduce this effect are proposed. Based on the Klystron noise spectrum, the pilot beam transmitter power was determined as a function of frequency offset from the power beam carrier frequency. The RFI from the pilot beam, on the ground and at geosynchronous orbit is shown. Noise levels on the earth's surface due to the SPS are presented as a function of frequency and the number of SPS systems. Analysis of the communication subsystem indicates that a standard telemetry line of 1.544 MB/s would satisfy both voice and data link requirements. Additional links would be required for TV and radio transmissions.

  8. Satellite networks for education.

    NASA Technical Reports Server (NTRS)

    Singh, J. P.; Morgan, R. P.; Rosenbaum, F. J.

    1972-01-01

    Consideration of satellite-based educational networking. The characteristics and structure of networks are reviewed, and pressures within the educational establishment that are providing motivation for various types of networks are discussed. A number of studies are cited in which networking needs for educational sectors and services are defined. The current status of educational networking for educational radio and television, instructional television fixed services, inter- and intrastate educational communication networks, computer networks, cable television for education, and continuing and proposed educational experiments using NASA's Applications Technology Satellites is reviewed. Possible satellite-based educational telecommunication services and three alternatives for implementing educational satellite systems are described. Some remarks are made concerning public policy aspects of future educational satellite system development.

  9. Radio wave.

    PubMed

    Elkin, V

    1992-01-01

    In developing countries with high rates of poverty and illiteracy, radio is emerging as an excellent medium for delivering information on health issues, family planning, nutrition, and agricultural development. Since radio does not require wired electricity, it can reach remote rural populations. Surveys have found that between 50-75% of poor rural households in developing countries own radios, and the majority listen to educational radio at least once a week. A program that reaches the urban poor outside of Lima, Peru, has been instrumental in controlling the spread of cholera. A Bolivian station broadcasts 8 hours of literacy, health, agricultural, and cultural programming a day to an audience of more than 2 million Aymara Indians. Small village radio stations with a broadcast range of 15 miles can be established for under US$400 and can generally achieve sustainability through local fundraising events such as raffles. In many cases, listeners have become broadcasters at their local radio stations. PMID:12286181

  10. Regulation of Wire and Radio Communication.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    This bulletin reviews early federal regulation of telegraphy, telephone, and radio communications, and the development of the Radio Acts of 1912 and 1927, the Communications Act of 1934, and the Communications Satellite Act of 1962. A large portion of the discussion focuses on the regulatory power and procedures of the Federal Communications

  11. Investigation of a rift zone in the western Fimbulisen by means of airborne radio echo sounding, satellite imagery, and ice flow modelling

    NASA Astrophysics Data System (ADS)

    Humbert, Angelika; Steinhage, Daniel

    2010-05-01

    The Fimbulisen, an ice shelf located roughly between 3°W-8°E at the coast of Dronning Maud Land, East Antarctica, consists of the fast flowing extension of Jutulstraumen and slower moving parts west and east of it. The largely rifted western part of the Fimbulisen is the subject of this study, which combines observations and modelling. Airborne radio echo sounding performed by the Alfred Wegener Institute between 1996 and 2008 with a frequency of 150 MHz and pulse length of 60 ns, respectively 600 ns, is analysed in order to study the internal structure of the ice in parts of the rift zone and to estimate the ice thickness in this area precisely. High-resolution radar imagery acquired by the TerraSAR-X in 2008 and 2009 is used to evaluate principal deformation axis at characteristic locations, to detect crack modes as well as to classify zones of similar structural characteristics. These zones were incorporated in a 2D diagnostic ice flow model as sub-domains with variable stress enhancement factor and thus treated as zones of different damage related stiffness. The temperature-dependent stiffness is calculated by applying the solution of a validated 3D temperature model of the ice shelf and thus the simulations focus on the softening effect caused by cracks. Extensive parameter studies show the effect of the stress enhancement factor on the principal deformation rates and axis. Comparison with the estimated deformation pattern aims to confine the softening effect for each zone separately.

  12. Radio science

    NASA Astrophysics Data System (ADS)

    1984-10-01

    Radio science experiments use electromagnetic waves to probe or study the solar system. Three major research areas were identified within this discipline: radio astronomy, radar astronomy, and celestial mechanics. Radio astronomy (or radiometry) is the detection and measurement of naturally produced radio frequency emissions. Sources include surfaces, atmospheres, rings, and plasmas. Radar astronomy is the observation of man-made signals after their interaction with a target. Both imaging and non-imaging results. Celestial mechanics includes all studies related to the motions of (and gravity fields of) bodies within the solar system. These should not be considered rigid separations, but aid in the discussion of the data sets.

  13. Radio sociology

    NASA Astrophysics Data System (ADS)

    Swenson, George W., Jr.

    1996-04-01

    A work was conducted, using radio telemetry, to locate a migrating, radio-tagged, sharp-shinned hawk. The hawk was monitored through the noise radiation it created. The hawk was found. During this study, it was found that the concentration of population corresponds with areas of increased noise temperature. Through this study, a bigger study was planned. The study would involved the relationship between a place's radiation signature and its other attributes, such as economic type, population, geographic concentration. The method of radio sociology would be used to track the sources of radio noise.

  14. Assessing the relations between spectral sensitivity and integrated water vapor for NDSA processing applied to a radio link between two LEO satellites

    NASA Astrophysics Data System (ADS)

    Facheris, Luca; Cuccoli, Fabrizio; Schweitzer, Susanne

    2012-11-01

    The NDSA (Normalized Differential Spectral Attenuation) approach is based on the conversion of a spectral parameter (the spectral sensitivity S) derived from power measurements, into the total content of water vapor (IWV, Integrated Water Vapor) along the propagation path between the two LEO satellites, through pre-determined IWV-S relations. This paper shows how some problems concerning the relationships between IWV (Integrated Water Vapor) and S could be overcome. In fact, two basic problems affected the reliability of such empirical IWV-S relations found so far: the first was the fact that the accuracy of the radiosonde data used to derive them was not uniformly distributed in the northern and southern hemisphere; the second was the limited amount of radiosonde data available at the highest altitudes (above 10 km), and their scarce reliability. Furthermore, the problem of correcting for the presence of liquid water needed to be considered. Here we present the results of a global scale analysis of the IWV-S relations made utilizing the ECMWF global atmospheric model. S and IWV were simulated and computed at all altitudes from 0 to 20 km, obtaining IWV-S relations for 17, 19, 21, 179 and 182 GHz. Also, the correction of IWV estimates by the presence of liquid water is shown to be effective by using an additional frequency around 30 GHz.

  15. Astronomy research at the Aerospace Corporation. [research projects - NASA programs

    NASA Technical Reports Server (NTRS)

    Paulikas, G. A.

    1974-01-01

    This report reviews the astronomy research carried out at The Aerospace Corporation during 1974. The report describes the activities of the San Fernando Observatory, the research in millimeter wave radio astronomy as well as the space astronomy research.

  16. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  17. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  18. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Niell, A. E.

    1981-01-01

    The activities of the DSN in support of Radio and Radar Astronomy Operations during September through December 1980 are described. Emphasis is on a report of an experiment selected for use of the DSN by the radio Astronomy Experiment Selection Panel: that of VLBI observations of the energetic galactic object SS-433.

  19. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Schaffer, R. D.; Gorenstein, M. V.

    1981-01-01

    The activities of the Deep Space Network in support of Radio Astronomy Operations during April and May 1981 are reported. Work in progres in support of an experiment selected for use of the DSN by the Radio Astronomy Experiment Selection Panel, Twin Quasi-Stellar Object VLBI, is reported.

  20. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Gulkis, S.

    1981-01-01

    The activities of the Deep Space Network in support of radio astronomy operations during the first quarter of 1981 are reported. Results of the use of a low noise maser are presented, as well as updates in DSN support of experiments sanctioned by the Radio Astronomy Experiment Selection Panel.

  1. Corporal punishment.

    PubMed

    Zolotor, Adam J

    2014-10-01

    Corporal punishment is used for discipline in most homes in the United States. It is also associated with a long list of adverse developmental, behavioral, and health-related consequences. Primary care providers, as trusted sources for parenting information, have an opportunity to engage parents in discussions about discipline as early as infancy. These discussions should focus on building parents' skills in the use of other behavioral techniques, limiting (or eliminating) the use of corporal punishment and identifying additional resources as needed. PMID:25242709

  2. TV via satellite from AT&T

    NASA Astrophysics Data System (ADS)

    Kiely, J.

    1982-04-01

    AT&T's Satellite Television Service, which relays TV feeds by means of the Comstar domestic communications satellite system, is discussed. Advantages include the ability to provide multiple feeds of program and advertising material simultaneously to affiliates, which can help accommodate the trend toward greater program diversity, and the ability to distribute one signal to many points, making their use economically attractive. A proposed radio service from AT&T is also discussed, which could provide radio broadcasters and programmers with a high-quality, versatile means of transmitting radio programs via satellite.

  3. Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Ekers, Ron; Wilson, Thomas L.

    ``Radio Telescopes" starts with a brief historical introduction from Jansky's1931 discovery of radio emission from the Milky Way through the development ofradio telescope dishes and arrays to aperture synthesis imaging. It includessufficient basics of electromagnetic radiation to provide some understanding of thedesign and operation of radio telescopes. The criteria such as frequencyrange, sensitivity, survey speed, angular resolution, and field of view thatdetermine the design of radio telescopes are introduced. Because it is soeasy to manipulate the electromagnetic waves at radio frequencies, radiotelescopes have evolved into many different forms, sometimes with "wire"structures tuned to specific wavelengths, which look very different from anykind of classical telescope. To assist astronomers more familiar with otherwavelength domains, the appendix A.1. includes a comparison of radioand optical terminology. Some of the different types of radio telescopesincluding the filled aperture dishes, electronically steered phased arrays, andaperture synthesis radio telescopes are discussed, and there is a sectioncomparing the differences between dishes and arrays. Some of the morerecent developments including hierarchical beam forming, phased arrayfeeds, mosaicing, rotation measure synthesis, digital receivers, and longbaseline interferometers are included. The problem of increasing radiofrequency interference is discussed, and some possible mitigation strategies areoutlined.

  4. Weather, land satellite sale

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    President Ronald Reagan announced on March 8 plans to sell to private industry the nation's land and meteorological remote-sensing satellites, including the responsibility for any future ocean-observing systems. According to the plan, the private firm successful in its bid to buy the five satellites would sell back to the government the data received by the satellites. The Reagan administration says the sale will save money and will put activities appropriate for commercial ventures into the commercial sector. Response to the announcement from scientists and congressmen has been anything but dulcet; one senator, in fact, charges that the Commerce Department and the corporation most likely to purchase the satellites are engaged in a sweetheart deal.

  5. Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernov, S. V.; Gwinn, C. R.; Tchekhovskoy, A. A.

    2015-10-01

    Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.

  6. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  7. Broadcast satellite service: The international dimension

    NASA Technical Reports Server (NTRS)

    Samara, Noah

    1991-01-01

    The dawn of the 1990's has witnessed the birth of a new satellite service - satellite sound broadcasting. This new service is characterized by digital transmission at data rates up to 256 kb/s from satellites in geostationary orbit to small, low-cost, mobile and portable receivers. The satellite sound broadcasting service is a logical step beyond navigation satellite service, such as that provided by the GPS Navstar system. The mass market appeal of satellite sound broadcasting in the area of lightsat technology and low-cost digital radios has greatly facilitated the financing of this type of space service.

  8. Satellite Communication.

    ERIC Educational Resources Information Center

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies

  9. Radio Relays Improve Wireless Products

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Signal Hill, California-based XCOM Wireless Inc. developed radio frequency micromachine (RF MEMS) relays with a Phase II Small Business Innovation Research (SBIR) contract through NASA?s Jet Propulsion Laboratory. In order to improve satellite communication systems, XCOM produced wireless RF MEMS relays and tunable capacitors that use metal-to-metal contact and have the potential to outperform most semiconductor technologies while using less power. These relays are used in high-frequency test equipment and instrumentation, where increased speed can mean significant cost savings. Applications now also include mainstream wireless applications and greatly improved tactical radios.

  10. 47 CFR 73.4091 - Direct broadcast satellites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Direct broadcast satellites. 73.4091 Section 73.4091 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations 73.4091 Direct broadcast satellites. (a) See Report and Order, General Docket...

  11. 47 CFR 73.4091 - Direct broadcast satellites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Direct broadcast satellites. 73.4091 Section 73.4091 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations 73.4091 Direct broadcast satellites. (a) See Report and Order, General Docket...

  12. 47 CFR 73.4091 - Direct broadcast satellites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Direct broadcast satellites. 73.4091 Section 73.4091 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations 73.4091 Direct broadcast satellites. (a) See Report and Order, General Docket...

  13. 47 CFR 73.4091 - Direct broadcast satellites.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Direct broadcast satellites. 73.4091 Section 73.4091 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations 73.4091 Direct broadcast satellites. (a)...

  14. 47 CFR 73.4091 - Direct broadcast satellites.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Direct broadcast satellites. 73.4091 Section 73.4091 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations 73.4091 Direct broadcast satellites. (a)...

  15. Gentris corporation.

    PubMed

    Crean, Jennifer

    2002-01-01

    Gentris Corporation is engaged in the development and rapid commercialization of innovative proprietary clinical pharmacogenomic products and services. The company provides global pharmaceutical research organizations with turn-key pharmacogenomic solutions to improve the efficiency and predictability of drug development. The ultimate benefit to these organizations is to shorten drug development cycles, improve new drug approval rates and allow marginal drugs to advance towards final approval. In the near future, the company will develop specialized, high quality, reliable diagnostic products, which will provide physicians and their patients with access to pharmacogenomic testing, as personalized medicine becomes the new standard of medical practice. PMID:11966411

  16. Satellite sound broadcast research aspect in CRL

    NASA Technical Reports Server (NTRS)

    Hase, Yoshihiro; Kondo, Kimio; Ohmori, Shingo

    1990-01-01

    Researches on Satellite Sound Broadcasting Services (SSBS) have become active in the past few years. Activities of the Consultative Committee for International Radio (CCIR) and the World Administrative Radio Conference (WARC), especially about digital systems proposed in the CCIR report, are briefly reviewed. The Communications Research Laboratory (CRL) future plan of SSBS research, stressing propagation rather than communications aspects, is described.

  17. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  18. Corporate manslaughter.

    PubMed

    Berry, Christopher

    2006-01-01

    The Government published its long-awaited draft Bill on the creation of a new criminal offence of corporate manslaughter shortly before the May 2005 general election. The Bill was included in the Queen's Speech after the general election and, with a Labour government back in power, the new offence could be on to the statute book as early as 2006. The Home Affairs Committee and the Work and Pensions Committee announced ajoint inquiry to consider and report on the Bill. This is expected to be completed by the end of 2005. Pressure for reform of the law relating to manslaughter and corporate killing arose out of a series of high profile fatal accidents, including several rail crashes. There has been said to be an increasing concern amongst the public that companies and organisations are not being held sufficiently accountable for deaths caused by their criminal negligence. The author acted in the first of the major cases, representing the directors accused of manslaughter following the Herald of Free Enterprise capsize disaster in 1987. PMID:16454457

  19. The Cooperative Satellite Learning Project.

    ERIC Educational Resources Information Center

    Caler, Michelle

    This document describes the Cooperative Satellite Learning Project (CSLP) which is designed to educate students in the areas of space science, engineering, and technology in a business-like atmosphere. The project is a partnership between the National Aeronautics and Space Association (NASA), Allied Signal Technical Services Corporation, and

  20. The Direct Satellite Connection: Definitions and Prospects.

    ERIC Educational Resources Information Center

    Wigand, Rolf T.

    1980-01-01

    Defines direct satellite broadcasting as the transmission of broadcast signals via high-powered satellites that permit direct reception of television or radio programs by means of small antennas. Outlines American, European, and Japanese plans for direct-to-home television reception and implications for the broadcasting industry. (JMF)

  1. Voyager-Jupiter radio science data papers

    NASA Technical Reports Server (NTRS)

    Levy, G. S.; Wood, G. E.

    1980-01-01

    The reduction and interpretation of the radio science data from the Voyager 1 and 2 encounters of the planet Jupiter and its satellites resulted in the preparation of several papers for publication in the special Voyager-Jupiter issue of the Journal of Geophysical Research. The radio science and tracking systems of the Deep Space Network provide the data which makes this research possible. This article lists submitted papers by title, with their authors and with abstracts of their contents.

  2. 77 FR 2241 - Radio Broadcasting Services; Ehrenberg, First Mesa, Kachina Village, Wickenburg, and Williams, AZ...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... by Rocket Radio, Inc., proposes the allotment of FM Channel 287C2 at Williams, Arizona, as the..., Flour Mill Building, Washington, DC 20007-3501 (Counsel to Rocket Radio, Inc.); and Scott R. Flick, Esq... and hybrid application, filed by Univision Radio License Corporation, licensee of Station...

  3. The advisability of competitive international satellites

    NASA Astrophysics Data System (ADS)

    Greenhalgh, D. I.

    This analysis examines the legal, political, and economic issues raised by the applications of Orion Satellites Corporation and International Satellite, Inc., before the Federal Communications Commission. The proposals request approval for the establishment of communications satellite systems potentially competitive with the International Telecommunications Satellite Organization (INTELSAT), a consortium of 109 member nations, which currently maintains a monopoly of international communications satellite traffic. The breadth of consequences resulting from a positive FCC action warrants a close scrutiny of U.S. international foreign policy objectives.

  4. Use of communications. [satellite communication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Progress in the field of satellite communications is reviewed, and useful services which may be provided by future satellite communications systems are considered. Recommendations are made with regard to mobile communications for use on land and at sea, position determination, mineral and energy exploration, the possibility of using electronic means to assist in main delivery, education and health-care experiments, and the use of satellite telecommunications to enhance the quality of life in rural areas by making available a full range of educational and entertainment programs. The needs of the amateur radio community are also considered.

  5. Design of the American Mobile Satellite System

    NASA Technical Reports Server (NTRS)

    Kittiver, Charles

    1991-01-01

    This paper presents an overview of the American Mobile Satellite Corporation (AMSC) Mobile Satellite System (MSS). A summary of the mobile satellite (MSAT) design and overall performance is provided. The design and components of both the forward link and return link transponders are described in detail. The design and operation of a unique hybrid matrix amplifier that offers flexible power distribution is outlined. The conceptual design and performance of three types of land mobile antennas are described.

  6. Corporate Universities: Corporate-College Alliances.

    ERIC Educational Resources Information Center

    Justus, Marianne

    2000-01-01

    Reviews the increase in corporate universities and in corporation-university partnerships, survival strategies that academic institutions have adopted to meet complex technological demands of the corporate sector, and benefits of innovation and collaboration. Discusses shifting paradigms, planning models, and future directions. (Contains 15

  7. A study of satellite emergency locator systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Satellite emergency locator systems were studied. The objective of the study was to determine the feasibility and hardware requirements for satellite systems capable of identifying and locating the position emergency locator transmitters and emergency position indicating radio beacons. Both geosynchronous and near-polar-orbiting satellites were considered. One of the most important aspects of the study was to minimize the cost of the hardware required.

  8. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Walton, E.; Aebker, E.; Mata, F.; Reilly, C.

    1991-01-01

    The final phase of a satellite synthesis project is described. Several methods for generating satellite positionings with improved aggregate carrier to interference characteristics were studied. Two general methods for modifying required separation values are presented. Also, two methods for improving aggregate carrier to interference (C/I) performance of given satellite synthesis solutions are presented. A perturbation of the World Administrative Radio Conference (WARC) synthesis is presented.

  9. Pre-Flight Testing and Performance of a Ka-Band Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Reinhart, Richard C.; Kacpura, Thomas

    2012-01-01

    National Aeronautics and Space Administration (NASA) has developed a space-qualified, reprogrammable, Ka-band Software Defined Radio (SDR) to be utilized as part of an on-orbit, reconfigurable testbed. The testbed will operate on the truss of the International Space Station beginning in late 2012. Three unique SDRs comprise the testbed, and each radio is compliant to the Space Telecommunications Radio System (STRS) Architecture Standard. The testbed provides NASA, industry, other Government agencies, and academic partners the opportunity to develop communications, navigation, and networking applications in the laboratory and space environment, while at the same time advancing SDR technology, reducing risk, and enabling future mission capability. Designed and built by Harris Corporation, the Ka-band SDR is NASA's first space-qualified Ka-band SDR transceiver. The Harris SDR will also mark the first NASA user of the Ka-band capabilities of the Tracking Data and Relay Satellite System (TDRSS) for on-orbit operations. This paper describes the testbed's Ka-band System, including the SDR, travelling wave tube amplifier (TWTA), and antenna system. The reconfigurable aspects of the system enabled by SDR technology are discussed and the Ka-band system performance is presented as measured during extensive pre-flight testing.

  10. Layered sensing with radio (LSWR)

    NASA Astrophysics Data System (ADS)

    Mitra, Atindra K.

    2010-04-01

    An alternative approach to a Layered Sensing System-of-Systems methodology, denoted as LSWR (Layered Sensing With Radio), is outlined in this paper. This is a novel Broadcast-TV-Driven layered sensing technique that shows potential for finding embedded objects within, for example, buildings via leveraging and combining existing commercial satellite technologies with COTS (Commercial Off-the-Shelf) wireless network technologies and state-of-the-art wireless sensor mote technologies. Specifically, compact sensor mote technologies are employed in a cost-effective manner to interface with and control low-cost satellite radio/broadcast tuners. With this approach, initial concepts of this type are investigated via the analysis of compact custom sensor node technology (i.e. wireless sensor mote interfaced with satellite broadcast tuner) integrated onto a UGV (unmanned ground vehicle) robot arm for purposes developing prototype UGV robot systems with passive integrated RF sensors that support, for example, networked thru-wall embedded object detection. The primary category of commercial satellite signal considered for analysis within this paper is known as DVB (Digital Video Broadcast).

  11. Analysis and Modeling of Jovian Radio Emissions Observed by Galileo

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.

    2003-01-01

    Our studies of Jovian radio emission have resulted in the publication of five papers in refereed journals, with three additional papers in progress. The topics of these papers include the study of narrow-band kilometric radio emission; the apparent control of radio emission by Callisto; quasi-periodic radio emission; hectometric attenuation lanes and their relationship to Io volcanic activity; and modeling of HOM attenuation lanes using ray tracing. A further study of the control of radio emission by Jovian satellites is currently in progress. Abstracts of each of these papers are contained in the Appendix. A list of the publication titles are also included.

  12. The Radio JOVE Project - Shoestring Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  13. Satellite reconnaissance

    NASA Astrophysics Data System (ADS)

    Deloor, G. P.

    1984-06-01

    The potential of the observation equipment in remote sensing satellites is described. United States meteorology, land use and oceanography satellites and the major US Earth observation programs are listed. Imaging satellite systems are described such as: visible light and near infrared, thermal IR window, and microwave window. It is concluded that a geometrical resolution between 10 and 40 m can be expected. In order to reduce the data flow from the satellite system the input side of the system (the object-sensor interaction) has to be known. Satellites with synthetic aperture radar are increasingly important, but satellites can never fully replace observations with aircraft and drones.

  14. Space Telecommunications Radio System STRS Cognitive Radio

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  15. Radio Seeing Monitor Interferometer

    NASA Astrophysics Data System (ADS)

    Hiriart, David; Valdez, Jorge; Zaca, Placido; Medina, Jos L.

    2002-10-01

    A two-element interferometer for monitoring atmospheric phase fluctuations (radio seeing) is presented; this uses the unmodulated beacon signal at 11.715 GHz from a geostationary satellite. The system measures phase differences on the signal received by two small antennas separated by 50 m. The system incorporates the best features from previous designs: a heterodyne phase-lock receiver and an IQ demodulator system. Phase fluctuations measured at this frequency may be extrapolated to millimetric and submillimetric wavelengths since the atmosphere is not dispersive at these frequencies. The instrument has been tested at the Observatory San Pedro Martir (Mexico) at 2800 m above sea level. The final destination of the instrument is Cerro la Negra (Mexico), where the Large Millimeter Telescope is under construction, at an altitude of 4600 m.

  16. Information and Corporate Cultures.

    ERIC Educational Resources Information Center

    Drake, Miriam A.

    1984-01-01

    This paper defines "corporate culture" (set of values and beliefs shared by people working in an organization which represents employees' collective judgments about future) and discusses importance of corporate culture, nature of corporate cultures in business and academia, and role of information in shaping present and future corporate cultures.

  17. Radio Tagged Adult Female Walrus on Ice Floe

    USGS Multimedia Gallery

    Adult female walrus on ice floe photographed shortly after receiving a behavior monitoring satellite-linked radio tag from USGS researchers.  Data acquired from such radio-tags are providing insights on the distribution and behavior of Pacific walruses during a time when their summer sea ice h...

  18. Ultra-stable radio frequency dissemination in free space.

    PubMed

    Miao, J; Wang, B; Gao, C; Bai, Y; Zhu, X; Wang, L J

    2013-10-01

    We demonstrate an ultra-stable radio frequency (RF) dissemination scheme over 80 m free space. The frequency dissemination stability is 3.2 10(-13)/s and 4.4 10(-17)/day, which can be applied to transfer frequency signal without compromising its stability in a global navigation satellite system (GNSS) or radio astronomy. PMID:24182140

  19. RADIO ALTIMETERS

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A radio ranging device is described which utilizes a superregenerative oscillator having alternate sending and receiving phases with an intervening ranging interval between said phases, means for varying said ranging interval, means responsive to an on-range noise reduction condition for stopping said means for varying the ranging interval and indicating means coupled to the ranging interval varying means and calibrated in accordance with one-half the product of the ranging interval times the velocity of light whereby the range is indicated.

  20. Definition phase of Grand Tour missions/radio science investigations study for outer planets missions

    NASA Technical Reports Server (NTRS)

    Tyler, G. L.

    1972-01-01

    Scientific instrumentation for satellite communication and radio tracking systems in the outer planet exploration mission is discussed. Mission planning considers observations of planetary and satellite-masses, -atmospheres, -magnetic fields, -surfaces, -gravitational fields, solar wind composition, planetary radio emissions, and tests of general relativity in time delay and ray bending experiments.

  1. A School Radio Telescope for Two Metres

    ERIC Educational Resources Information Center

    Codling, J. C.

    1973-01-01

    Discusses the arrangement, specifications, and operation of a setup designed for use as a student project to record radio storms, continuous level of the quiet sun, and scientific satellites operating near the amateur 2-m band. Included is an example of records of solar activity during 1968-73. (CC)

  2. LDEF Satellite Radiation Analyses

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    This report covers work performed by Science Applications International Corporation (SAIC) under contract NAS8-39386 from the NASA Marshall Space Flight Center entitled LDEF Satellite Radiation Analyses. The basic objective of the study was to evaluate the accuracy of present models and computational methods for defining the ionizing radiation environment for spacecraft in Low Earth Orbit (LEO) by making comparisons with radiation measurements made on the Long Duration Exposure Facility (LDEF) satellite, which was recovered after almost six years in space. The emphasis of the work here is on predictions and comparisons with LDEF measurements of induced radioactivity and Linear Energy Transfer (LET) measurements. These model/data comparisons have been used to evaluate the accuracy of current models for predicting the flux and directionality of trapped protons for LEO missions.

  3. Satellite orbit determination

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.; Boggs, D. H.; Born, G. H.; Christensen, E. J.; Ferrari, A. J.; Green, D. W.; Hylkema, R. K.; Mohan, S. N.; Reinbold, S. J.; Sievers, G. L.

    1973-01-01

    A historic account of the activities of the Satellite OD Group during the MM'71 mission is given along with an assessment of the accuracy of the determined orbit of the Mariner 9 spacecraft. Preflight study results are reviewed, and the major error sources described. Tracking and data fitting strategy actually used in the real time operations is itemized, and Deep Space Network data available for orbit fitting during the mission and the auxiliary information used by the navigation team are described. A detailed orbit fitting history of the first four revolutions of the satellite orbit of Mariner 9 is presented, with emphasis on the convergence problems and the delivered solution for the first orbit trim maneuver. Also included are a solution accuracy summary, the history of the spacecraft orbit osculating elements, the results of verifying the radio solutions with TV imaging data, and a summary of the normal points generated for the relativity experiment.

  4. Radio Jove: Jupiter Radio Astronomy for Citizens

    NASA Astrophysics Data System (ADS)

    Higgins, Charles; Thieman, J. R.; Flagg, R.; Reyes, F. J.; Sky, J.; Greenman, W.; Brown, J.; Typinski, D.; Ashcraft, T.; Mount, A.

    2014-01-01

    Radio JOVE is a hands-on educational activity that brings the radio sounds of the Sun, Jupiter, the Milky Way Galaxy, and terrestrial radio noise to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with professional radio observatories in real-time over the Internet. Our website (http://radiojove.gsfc.nasa.gov) includes science information, construction manuals, observing guides, and education resources for teachers and students. Radio Jove is continually expanding its participants with over 1800 kits sold to more than 70 countries worldwide. Recently some of our most dedicated observers have upgraded their Radio Jove antennas to semi-professional observatories. We have spectrographs and wide band antennas, some with 8 MHz bandwidth and some with dual polarization capabilities. In an effort to add to the science literature, these observers are coordinating their efforts to pursue some basic questions about Jupiters radio emissions (radio source locations, spectral structure, long term changes, etc.). We can compare signal and ionosphere variations using the many Radio Jove observers at different locations. Observers are also working with members of the Long Wavelength Array Station 1 (LWA1) radio telescope to coordinate observations of Jupiter; Radio Jove is planning to make coordinated observations while the Juno Mission is active beginning in 2015. The Radio Jove program is overviewed, its hardware and software are highlighted, recent sample observations are shown, and we demonstrate that we are capable of real citizen science.

  5. Communication satellite services for special purpose users

    NASA Technical Reports Server (NTRS)

    Wright, D. L.; Kiesling, J. D.

    1977-01-01

    The present study identifies potential satellite services, examines the technology necessary for efficient implementation of these services, and determines minimum service cost versus user network size. The generic satellite services evaluated comprise TV and radio distribution (for retransmission), video teleconferencing (interactive), audio/facsimile teleconferencing (interactive), multiplexed data/voice (point-to-point), and satellite-supported land mobile. Satellite costs are based on extrapolations from ongoing commercial satellite programs. Production methods, new technology, and effect of production quantities on present and future production costs are examined to provide information on earth station equipment cost versus the variable 'buy'. Six different launch vehicles from a Delta 2914 to a dedicated Shuttle and three frequency bands and both broadcast (no eclipse capability) and fixed service satellites are considered to assess the effect of satellite size on cost and performance. It is assumed that the user pays only for his prorata share of the space segment costs.

  6. Radio Quiet Protection at the Australian Square Kilometre array site

    NASA Astrophysics Data System (ADS)

    Harvey-Smith, Lisa

    2015-08-01

    Radio astronomy relies on the detection of very faint signals from the universe. Many radio telescopes are now detrimentally affected by radio frequency interference (RFI), which results from a wide range of active spectrum users such as communications, aviation and satellites. This is why many new radio observatories are being sited at increasingly remote locations.The site for the Square Kilometre Array and its pathfinders in Australia is the Murchison Radio-Astronomy Observatory (MRO). The MRO is located more than 350km from the nearest population centre and has a large radio-quiet zone that is managed under a range of legislative agreements.In this talk I will describe the radio quiet zone, what protection it gives, how it works and how astronomers interact with the spectrum management authorities.

  7. Coordinated observations of PHEMU at radio wavelengths.

    NASA Astrophysics Data System (ADS)

    Pluchino, S.; Schillirò, F.; Salerno, E.; Pupillo, G.; Kraus, A.; Mack, K.-H.

    We present preliminary results for our study of mutual phenomena of the Galilean satellites performed at radio wavelengths with the Medicina and Noto antennas of the Istituto di Radioastronomia \\textendash{} INAF, and with the Effelsberg 100-m radio telescope of the Max-Planck-Institute for Radioastronomy. Measurements of the radio flux density variation occurred during the mutual occultations of Io by Europa and Ganymede were carried out during the PHEMU09 campaign at K- and Q-band. Flux density variations observed for the first time at radio wavelengths are consistent with the typical optical patterns measured when partial occultations occurred. The flux density drops indicate a non-linear dependence with the percentage of overlapped area.

  8. Petite Amateur Navy Satellite (PANSAT)

    NASA Technical Reports Server (NTRS)

    Sakoda, D.; Hiser, J. K.

    1989-01-01

    The Naval Postgraduate School's (NPS) Space Systems Academic Group (SSAG) is designing and developing a small communications satellite for launch aboard the shuttle as a complex autonomous payload (CAP). The objectives of PANSAT are three-fold. First, PANSAT will provide an ideal educational tool for the officer students at NPS supporting Space Systems Engineering and Space Systems Operations with hands-on hardware development. Second, the satellite will provide digital store-and-forward communications, or packet radio, for the amateur radio community. The third objective is to provide a low-cost, space-based platform for small experiments. PANSAT will be launched from the shuttle at a nominal altitude of 200 n.m. and an inclination of at least 37 degrees. The satellite weight is 150 lbs. Since there is no attitude control, eight dipole whip antennas will be used to provide isotropic ground coverage for communications. FM digital communications will be used with up-link and down-link on a single frequency in the amateur band of 437.25 MHz. A maximum 50 kHz of bandwidth is envisioned for the satellite. The expected lifetime of the satellite is 1 1/2 to 2 years before atmospheric reentry. The PANSAT design consists of the following: communications subsystem (COMM); computer, or data processor and sequencer (DP&S); power subsystem; structure subsystem; and experiment payload.

  9. The 'Moskva' satellite television broadcasting system

    NASA Astrophysics Data System (ADS)

    Kantor, L. Ia.; Minashin, V. P.; Povolotskii, I. S.; Sokolov, A. V.; Talyzin, N. V.

    1980-01-01

    The Moskva television broadcasting system which uses the high-power links from the Gorizont satellite is described. The transmitting device of the ground station is similar to that of the Ekran and Intersputnik systems. The system includes a special television signal processing unit, a unit for introducing dispersion signals, and transmitting equipment for the sound and radio-broadcasting channels. The signal translated by the satellite is received by a network of ground receiving stations and fed to a television transmitter with a power of 1, 10, or 100 W. The signal in the radio-broadcasting channel can be transmitted into the local radio repeater network or transmitted by a USW FM radio-broadcasting transmitter. The results of system tests are provided.

  10. Reinventing Corporate Communications.

    ERIC Educational Resources Information Center

    Toth, Elizabeth L.; Trujillo, Nick

    1987-01-01

    Urges a "re-inventing" of corporate communications in today's organizations, and provides information about how corporations can change in new and positive ways during the current "information age." Discusses specific public relations and organizational communication concepts essential for a comprehensive understanding of corporate communications…

  11. Understanding Corporate Culture.

    ERIC Educational Resources Information Center

    Cluff, Gary A.

    1988-01-01

    Considers concept of corporate culture and discusses several values which can be considered when assessing corporate culture, and the "compatibility scales" used to measure them. Included are discussions of employee attitudes, work atmosphere, internal communications, management style, employment opportunity, stability, business ethics, corporate

  12. Scaling the Corporate Heights.

    ERIC Educational Resources Information Center

    Campbell, Bebe Moore

    1983-01-01

    Reviews "Black Life in Corporate America" (Davis and Watson), "Women at Work: A Psychologist's Secrets to Getting Ahead in Business" (Senter), and "The Black Manager, Making It in the Corporate World" (Dickens and Dickens). All three books address general issues confronting Black/female managers, and two offer guidance to corporate newcomers. (CMG)

  13. Validation of COSMIC radio occultation electron density profiles by incoherent scatter radar and ionosonde data

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Zakharenkova, Irina

    2010-05-01

    Various Radio Occultation space missions have proved successful in addressing a broad range of scientific questions on climate change analysis, operational weather prediction, ionospheric research and space weather forecasting, calibrating other observing systems (e.g., radiosonde and other satellite observations), ionosphere studies (layered structures of the F and E layers and global distribution of the Sporadic Es layers), and Geodesy. The FORMOSAT-3/COSMIC is a joint Taiwan - US mission that provides a constellation of six micro-satellites. Each satellite carries three atmospheric science payloads: (1) a GPS RO receiver for ionospheric and neutral atmospheric profiling and precision orbit determination; (2) a Tiny Ionospheric Photometer (TIP) for monitoring the electron density via nadir radiance measurements along the sub-satellite track; and (3) a Tri-Band Beacon (TBB) transmitter for ionospheric tomography and scintillation studies. So, this mission provides the unprecedented opportunities for global observations of the ionosphere and space weather research. In the given paper we used the measurements provided by IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6oN, 36.3oE, geomagnetic coordinates: 45.7oN, 117.8oE) for the cases of winter and summer seasons (2007 and 2008) during quiet geomagnetic conditions and compare these ground measured data with the GPS COSMIC radio occultation ionospheric profiles. We also used data provided by Pruhonice ionosonde, that located at same latitude with Kharkiv ISR and Juliusruch ionosonde located at same longitude with Pruhonice ionosonde. The comparison of RO indicates that usually COSMIC RO profiles are in a good agreement with IS radar's profiles both in the F2 layer peak electron density (NmF2) and the bottom side part of the profiles and a good agreement with ionosonde profiles below the F2 layer peak. The coincidence of profiles is better in the cases when projection of the ray path of tangent points is closer to the ground based facility location. This result is important to validate the reliability of the COSMIC ionospheric observations using the radio occultation technique. We acknowledge the Taiwan's National Space Organization (NSPO) and the University Corporation for Atmospheric Research (UCAR) for providing the COSMIC Data and we are grateful to European Digital Upper Atmosphere Server (DIAS) for providing the ionosondes' products.

  14. The Radio Amateur's Handbook.

    ERIC Educational Resources Information Center

    Blakeslee, Douglas, Ed.

    The objectives of this basic reference work for the radio amateur are to present radio theory and practice in terms of application and to reflect both the fundamentals and the rapidly-advancing technology of radio communications so that the radio amateur will have a guide to what is practical, meaningful, proven, and useful. Twenty-three chapters

  15. Engineers checkout Early Bird-Communication Satellite

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Engineers Stanley R. Peterson (left) and Ray Bowerman (right), checkout the Early Bird, the world's first communication satellite. NASA launched the satellite built by Hughes Aircraft Corporation on April 6, 1955 at 6:48pm E.S.T. from Complex 17a at Cape Kennedy, Florida. Early Bird was built for the Communications Satellite Corporation and weighed about 85 pounds after being placed in a synchronous orbit of 22,300 miles above the earth. It was positioned over the Atlantic to provide 240 two-way telephone channels or 2-way television between Europe and North America. The outer surface of Early Bird was covered with 6,000 silicon-coated solar cells, which absorbed the sun's rays to provide power to the satellite for its intricate transmitting and receiving equipment.

  16. Meteorological satellites

    NASA Technical Reports Server (NTRS)

    Allison, L. J. (editor); Schnapf, A.; Diesen, B. C., III; Martin, P. S.; Schwalb, A.; Bandeen, W. R.

    1980-01-01

    An overview is presented of the meteorological satellite programs that have been evolving from 1958 to the present, and plans for the future meteorological and environmental satellite systems that are scheduled to be placed into service in the early 1980's are reviewed. The development of the TIROS family of weather satellites, including TIROS, ESSA, ITOS/NOAA, and the present TIROS-N (the third generation operational system) is summarized. The contribution of the Nimbus and ATS technology satellites to the development of the operational-orbiting and geostationary satellites is discussed. Included are descriptions of both the TIROS-N and the DMSP payloads currently under development to assure a continued and orderly growth of these systems into the 1980's.

  17. The Use of the Cypriot-Greek Dialect in the Commercials of the Cyprus Broadcasting Corporation.

    ERIC Educational Resources Information Center

    Pavlou, Pavlos Y.

    A study investigated the use of the Cypriot Greek dialect (CG) in radio commercials of the Cyprus Broadcasting Corporation (CBC) over a period of ten years. CG, the language of everyday interaction in Cypriot villages, is distinguished from the other language variety commonly used, one closer to standard modern Greek. Analysis of the radio

  18. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Mccluskey, J. T.; Gulkis, S.; Klein, M.; Kuiper, T.

    1981-01-01

    A K-band reflected-wave ruby maser was used on the 64-meter (DSS-43) antenna at the Tidbinbilla Tracking Station, near Canberra, Australia. Spectral line observations were carried out near 22 GHz for water vapor sources and near 24 GHz for ammonia sources. The water vapor observations were made in the direction of known southern OH and H2O maser sources. All of the previously detected water line sources examined were detected. In addition, two new water vapor maser sources were discovered, G301.1+1.1and G308.9+0.1. The spectrum of G301.0+1.1 is presented six ammonia sources were found: G291.3-0.7, G305.4+0.2, G322.2+0.6, G327.3-0.5, G333.6-0.2, and G268.4-0.8. Spectra of two of these sources, G291.3-0.7 (RCW 57) and G305.4+0.2, are presented. Both show clearly the presence of the quadrupole splitting satellite lines that will allow the determination of NH3 optical depths in these clouds.

  19. ECS - The European Communication Satellite system

    NASA Astrophysics Data System (ADS)

    Wooster, C. B.

    1981-09-01

    The evolution of the European Communication Satellite system (ECS) is traced from feasibility studies in 1970 to the development and launch in 1978 of the Orbital Test Satellite (OTS) by the European Space Agency to prove the new satellite and radio transmission technology being used on ECS. This was followed by the establishment of 'Interim EUTELSAT' in 1979 as the organization to operate ECS. The satellite, which operates at 11/14 GHz, covers all the capitals in Europe via three spot beam antennas, supplemented by a 'Eurobeam' regional coverage antenna which extends the range to cover all of Europe and the Mediterranean basin. Telephony channels are transmitted digitally using time division multiple access (TDMA) with digital speech interpolation (DSI) to optimize satellite capacity. Television transmission is by analog FM over the Eurobeam antenna to North African as well as European capitals. System implications of TDMA operation are discussed, and the EUTELSAT policy for Special Services or satellite business systems is discussed.

  20. Satellite Broadcast of Graphical Weather Data Flight Tested

    NASA Technical Reports Server (NTRS)

    Mallasch, Paul G.

    2000-01-01

    NASA Glenn Research Center at Lewis Field's aviation Weather Information Communications (WINCOMM) and NASA Langley Research Center's Aviation Weather Information (AWIN) programs collaborated in a flight test and evaluation of a worldwide weather data-link capability using satellites. This successful flight testing moves NASA closer to its goal of developing advanced communications and information technologies to enable high-quality and timely dissemination of aviation weather information to all relevant users on the aviation information network. Recognized as a major contributing factor in aviation accidents and incidents, weather contributes directly or indirectly to nearly 80 percent of fatal general aviation (small private aircraft) accidents. In 1997, the Aeronautics Safety Investment Strategy Team s weather team produced a prioritized list of investment areas under weather accident prevention. Weather data dissemination is the most critical and highest ranked priority on the list. NASA's Aviation Safety Program founded the Aviation Weather Information initiative to focus efforts on significantly reducing the number of weather-related aviation fatalities. Access to accurate and timely weather data could contribute to a major reduction of weather-related incidents and accidents. However, a cost-effective solution has eluded most general aviation pilots because of the high cost of onboard weather radar equipment. Rockwell Collins, through a contract with NASA and in cooperation with WorldSpace Corporation, successfully completed ground and flight testing of a receiver and antenna in Johannesburg, South Africa. This NASA/Rockwell Collins project is an evaluation of worldwide weather data-link capability using transmissions from the Satellite Digital Audio Radio Services (S DARS) AfriStar satellite. Owned and operated by WorldSpace, AfriStar is a geostationary satellite that broadcasts commercial digital audio services to stationary and mobile platforms. S DARS satellites are the most powerful communications satellites produced to date, allowing users to receive signals using simple, low-cost patch antennas instead of more expensive, beam-steered antenna arrays. Engineers connected an inexpensive, commercially available radio receiver to a laptop computer and an antenna designed and built by Rockwell Collins, enabling them to receive WorldSpace signals from the AfriStar satellite during flight tests. WorldSpace broadcast their composite color graphical weather data files, which were multiplexed with normal audio streams, to the flat patch antenna mounted on a single-engine aircraft. The aircraft was equipped with a modified commercial S-DARS receiver, a Global Positioning Satellite (GPS) receiver, and a laptop computer with color display. Continuous data reception occurred during normal aircraft maneuvers performed throughout takeoff, cruise, and landing operations. In addition, engineers monitored receiver power levels during steep turns and banks. In most instances, the receiver was able to maintain acceptable power levels during all phases of flight and to obtain weather data with little or with the successful completion of ground and flight testing of a receiver and antenna in Johannesburg, South Africa, the team has started to prepare for experiments using highspeed aircraft in areas of the world with limited access to timely weather data. NASA plans to provide a more advanced antenna design and consultation support. This successful test of real-time aviation-related weather data is a positive step toward solving communications-specific issues associated with the dissemination of weather data directly to the cockpit.

  1. Managing Mobile/Satellite Propagation Data

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1990-01-01

    "Data Management System for Mobile Satellite Propagation" software package collection of FORTRAN programs and UNIX shell scripts designed to handle huge amounts of data resulting from mobile/satellite radio-propagation experiments. Data from experiments converted into standard and more useful forms. Software package contains program to convert binary format of data into standard ASCII format suitable for use with wide variety of computing-machine architectures. Written in either FORTRAN 77 or UNIX shell scripts.

  2. Leo satellite-based telecommunication network concepts

    NASA Technical Reports Server (NTRS)

    Aiken, John G.; Swan, Peter A.; Leopold, Ray J.

    1991-01-01

    Design considerations are discussed for Low Earth Orbit (LEO) satellite based telecommunications networks. The satellites are assumed to be connected to each other via intersatellite links. They are connected to the end user either directly or through gateways to other networks. Frequency reuse, circuit switching, packet switching, call handoff, and routing for these systems are discussed by analogy with terrestrial cellular (mobile radio) telecommunication systems.

  3. Leo satellite-based telecommunication network concepts

    NASA Astrophysics Data System (ADS)

    Aiken, John G.; Swan, Peter A.; Leopold, Ray J.

    1991-09-01

    Design considerations are discussed for Low Earth Orbit (LEO) satellite based telecommunications networks. The satellites are assumed to be connected to each other via intersatellite links. They are connected to the end user either directly or through gateways to other networks. Frequency reuse, circuit switching, packet switching, call handoff, and routing for these systems are discussed by analogy with terrestrial cellular (mobile radio) telecommunication systems.

  4. 47 CFR 74.643 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Interference to geostationary-satellites. 74.643 Section 74.643 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Television Broadcast Auxiliary Stations ...

  5. 47 CFR 74.643 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Interference to geostationary-satellites. 74.643 Section 74.643 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Television Broadcast Auxiliary Stations ...

  6. 47 CFR 74.643 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Interference to geostationary-satellites. 74.643 Section 74.643 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Television Broadcast Auxiliary Stations ...

  7. Heart Monitoring By Satellite

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ambulance antenna shown is a specially designed system that allows satellite-relayed two-way communications between a moving emergency vehicle and a hospital emergency room. It is a key component of a demonstration program aimed at showing how emergency medical service can be provided to people in remote rural areas. Satellite communication permits immediate, hospital- guided treatment of heart attacks or other emergencies by ambulance personnel, saving vital time when the scene of the emergency is remote from the hospital. If widely adopted, the system could save tens of thousands of lives annually in the U.S. alone, medical experts say. The problem in conventional communication with rural areas is the fact that radio signals travel in line of sight. They may be blocked by tall buildings, hills and mountains, or even by the curvature of the Earth, so signal range is sharply limited. Microwave relay towers could solve the problem, but a complete network of repeater towers would be extremely expensive. The satellite provides an obstruction-free relay station in space.

  8. Radio frequency detection assembly and method for detecting radio frequencies

    SciTech Connect

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  9. Satellite Laser

    NASA Astrophysics Data System (ADS)

    Ibrahim, Makram; Hanna, Y. S.; Samwel, S. W.; Hegazy, Maroof A.

    2015-06-01

    The paper concerns on the satellite laser ranging (SLR) in Egypt. The three generations which can be loosely defined by their single shot root mean square precision, are discussed. The laser generators used at the Helwan half automatic and full automatic stations are described. The equipments used for the operation of the satellite laser ranging and their upgrading are presented. The observations carried out from Helwan-SLR stations are mentioned. The importance of the satellite laser ranging from Egypt and their contributions to the SLR network are explained. The modification requested for increasing the performance of the Helwan-SLR station is given.

  10. Calibration of Solar Radio Spectrometer of the Purple Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Lu, L.; Liu, S. M.; Song, Q. W. Ning, Z. J.

    2015-03-01

    Calibration is a basic and important procedure in the radio astronomy. It deduces the solar radio flux which is an important physical quantity of solar observation. It also deducts the flat-field of the spectrometer, displaying the radio spectrogram clearly. In this paper, we first introduce the basic method of calibration based on the data of solar radio spectrometer of the Purple Mountain Observatory. We then analyze the variation of the calibration coefficients, and give the calibrated results for a few flares. These results are compared with those from the Nobeyama solar radio polarimeters and hard X-ray band of RHESSI (The Reuven Ramaty High Energy Solar Spectroscopic Imager) satellite, which shows the consistency with the characteristics of the typical solar flare light curves. In particular, the correlation between the radio flux and hard X-ray flux variations can be used to study the relevant emission mechanism, the related energy release and particle acceleration process.

  11. The Mexican national satellite system

    NASA Astrophysics Data System (ADS)

    Sanchez Ruiz, M. E.; Briskman, R. D.

    1983-10-01

    The satellites, tracking, telemetry, command, and monitoring facilities, and the earth station complex for the Mexican national satellite system, Morelos, are described. The spacecraft are intended to provide educational television, rural telephony, data transmission, and business and industrial services. Scheduled for 1985 launch, the satellites will be placed in GEO and use the C and Ku bands with 12 narrow band and six wideband transponders. Spin-stabilized and solar cell powered, the functional mass will be 666 kg, including propellant. The solar panels will provide 940 W of power and 830 W will be available from NiCd batteries during eclipse conditions. The earth station will be located at Iztapalapa, which will have a 12 m antenna, redundant uplink and downlink radios, and command and ranging equipment. Back-up capability will be provided by a station at Tulancingo. Ku band and C band stations are in planning.

  12. 76 FR 55388 - Radio Broadcasting Services; AM or FM Proposals To Change the Community of License.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ...The following applicants filed AM or FM proposals to change the community of license: CBS Radio East Inc., Station WLZL, Facility ID 72177, BPH-20110812ACL, from Annapolis, MD, to Bowie, MD; Indiana Community Radio Corporation, Station WYER, Facility ID 173401, BPED- 20110705AAO, from Carmi, IL, To Albion, IL; Mount Wilson FM Broadcasters, Inc., Station NEW, Facility ID 183343,......

  13. Coping with Radio Frequency Interference

    NASA Astrophysics Data System (ADS)

    Lewis, B. M.

    2009-01-01

    The radio spectrum is a finite resource, on which humanity makes many demands. And pressure on it is ever increasing with the development of new technology and ideas for radio services. After all, we all benefit from wifi and cell phones. Radio astronomers have a small percentage of the spectrum allocated to them at octave intervals in the metre-centimetre bands, and at important frequencies, such as that of the 21cm line of HI. Signals from other services, as well as from our own poorly-engineered equipment, sometimes contaminate our bands: these signals constitute RFI. These may totally obliterate the astronomical signal, or, in the case of CLOUDSAT, may be capable of completely destroying a receiver, which introduces us to the new possibility of 'destructive interference'. A geo-stationary satellite can block access to a piece of sky from one site. Good equipment design eliminates self-inflicted interference, while physical separation often provides adequate practical mitigation at many frequencies. However, new observatories end up being located in the West Australian desert or Antarctica. In future they may be on the back side of the Moon. But there is no Earth-bound protection via physical separation against satellite signals. Some mitigation can be achieved by frequent data dumps and the excision of RFI, or by real-time detection and blanking of the receiver, or by more sophisticated algoriths. Astronomers of necessity aim to achieve mitigation via coordination, at the local level, and by participating in spectrum management at the national and international levels. This involves them spending a lot of time in Geneva at the International Telegraphic Union protecting their access to spectrum, and access to clean spectrum from the L3 point and the far side of the Moon.

  14. 25 CFR 213.14 - Corporations and corporate information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Commission, see 17 CFR chapter II. ... 25 Indians 1 2010-04-01 2010-04-01 false Corporations and corporate information. 213.14 Section... Corporations and corporate information. If the applicant for a lease is a corporation, it shall file...

  15. 47 CFR 78.106 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Interference to geostationary-satellites. 78.106 Section 78.106 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY SERVICE Technical Regulations 78.106 Interference to geostationary-satellites. Applicants and licensees must...

  16. 47 CFR 78.106 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Interference to geostationary-satellites. 78.106 Section 78.106 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY SERVICE Technical Regulations 78.106 Interference to geostationary-satellites. Applicants and licensees must...

  17. 47 CFR 78.106 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Interference to geostationary-satellites. 78.106 Section 78.106 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY SERVICE Technical Regulations 78.106 Interference to geostationary-satellites. Applicants and licensees must...

  18. Communications Satellite Receiver Systems for Public Schools: A Technical Primer.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    Designed to aid school districts contemplating use of some of the telecommunications services now available by satellite, this document contains information on home satellite receiving dishes (Television Receive-Only--TVROs), which can receive radio signals carrying television, sound, and data. This information includes: some factors involved in

  19. Aeronautical mobile satellite service: Air traffic control applications

    NASA Astrophysics Data System (ADS)

    Sim, Dave

    Canada's history both in aviation and in satellite communications development spans several decades. The introduction of aeronautical mobile satellite communications will serve our requirements for airspace management in areas not served by line-of-sight radio and radar facilities. The ensuing improvements in air safety and operating efficiency are eagerly awaited by the aviation community.

  20. Aeronautical mobile satellite service: Air traffic control applications

    NASA Technical Reports Server (NTRS)

    Sim, Dave

    1990-01-01

    Canada's history both in aviation and in satellite communications development spans several decades. The introduction of aeronautical mobile satellite communications will serve our requirements for airspace management in areas not served by line-of-sight radio and radar facilities. The ensuing improvements in air safety and operating efficiency are eagerly awaited by the aviation community.

  1. Creating corporate advantage.

    PubMed

    Collis, D J; Montgomery, C A

    1998-01-01

    What differentiates truly great corporate strategies from the merely adequate? How can executives at the corporate level create tangible advantage for their businesses that makes the whole more than the sum of the parts? This article presents a comprehensive framework for value creation in the multibusiness company. It addresses the most fundamental questions of corporate strategy: What businesses should a company be in? How should it coordinate activities across businesses? What role should the corporate office play? How should the corporation measure and control performance? Through detailed case studies of Tyco International, Sharp, the Newell Company, and Saatchi and Saatchi, the authors demonstrate that the answers to all those questions are driven largely by the nature of a company's special resources--its assets, skills, and capabilities. These range along a continuum from the highly specialized at one end to the very general at the other. A corporation's location on the continuum constrains the set of businesses it should compete in and limits its choices about the design of its organization. Applying the framework, the authors point out the common mistakes that result from misaligned corporate strategies. Companies mistakenly enter businesses based on similarities in products rather than the resources that contribute to competitive advantage in each business. Instead of tailoring organizational structures and systems to the needs of a particular strategy, they create plain-vanilla corporate offices and infrastructures. The company examples demonstrate that one size does not fit all. One can find great corporate strategies all along the continuum. PMID:10179655

  2. Satellite multiple access systems for mobile communication

    NASA Technical Reports Server (NTRS)

    Lewis, J. L.

    1979-01-01

    This paper considers multiple access techniques for a mobile radio system which incorporates a geosynchronous orbiting satellite repeater through which mobile terminals communicate. The communication capacities of FDMA, TDMA and CDMA systems are examined for a 4 MHz bandwidth system to serve up to 10,000 users. An FDMA system with multibeam coverage is analyzed in detail. The system includes an order-wire network for demand-access control and reassignment of satellite channels. Satellite and terminal configurations are developed to a block diagram level and system costs and implementation requirements are discussed.

  3. Resonance and Radio

    ERIC Educational Resources Information Center

    Starrett, Malin J.

    2008-01-01

    The science and technology of radio receives little attention in contemporary education. This article discusses ways to explore the basic operating principles of radio. (Contains 4 figures, 3 footnotes, and 2 notes.)

  4. Satellite Doppler data processing using a microcomputer

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.; Lynn, J. J.

    1977-01-01

    A microcomputer which was developed to compute ground radio beacon position locations using satellite measurements of Doppler frequency shift is described. Both the computational algorithms and the microcomputer hardware incorporating these algorithms were discussed. Results are presented where the microcomputer in conjunction with the NIMBUS-6 random access measurement system provides real time calculation of beacon latitude and longitude.

  5. Corporal Punishment in Tennessee Schools.

    ERIC Educational Resources Information Center

    Kinnard, Karren Q; Rust, James O.

    1981-01-01

    Responses of 101 Tennessee school superintendents indicate: all allow and use corporal punishment; 57 keep records of corporal punishment usage; corporal punishment is considered effective in many cases; the community is seen as supportive of corporal punishment; and the paddle appears to be the most popular method of corporal punishment. (NEC)

  6. Extragalactic Radio Sources

    ERIC Educational Resources Information Center

    Kellerman, Kenneth I.

    1973-01-01

    Discusses new problems arising from the growing observational data through radio telescope arrays, involving the origin of radio sources, apparent superluminal velocities, conversion of radio sources to relativistic particles, and the nature of compact opaque and extended transparent sources. New physics may be needed to answer these cosmological

  7. Small satellites

    NASA Technical Reports Server (NTRS)

    Thomas, P.; Veverka, J.; Dermott, S.

    1986-01-01

    Satellites smaller than Mimas (r = 195 km) are distinguished by irregular overall shapes and by rough limb topography. Material properties and impact cratering dominate the shaping of these objects. Long fragmentation histories can produce a variety of internal structures, but so far there is no direct evidence that any small satellite is an equilibrium ellipsoid made up of noncohesive gravitationally bound rubble. One many bodies that orbit close to their primary the tidal and rotational components of surface gravity strongly affect the directions of local g and thereby affect the redistribution of regolith by mass wasting. Downslope movement of regolith is extensive on Deimos, and is probably effective on many other small satellites. It is shown that in some cases observed patterns of downslope mass wasting cold produce useful constraints on the satellite's mean density. The diversity of features seen in the few high-resolution images of small satellites currently available suggests that these objects have undergone complex histories of cratering, fragmentation, and regolith evolution.

  8. A Deep Space Network Portable Radio Science Receiver

    NASA Technical Reports Server (NTRS)

    Jongeling, Andre P.; Sigman, Elliott H.; Chandra, Kumar; Trinh, Joseph T.; Navarro, Robert; Rogstad, Stephen P.; Goodhart, Charles E.; Proctor, Robert C.; Finley, Susan G.; White, Leslie A.

    2009-01-01

    The Radio Science Receiver (RSR) is an open-loop receiver installed in NASA s Deep Space Network (DSN), which digitally filters and records intermediate-frequency (IF) analog signals. The RSR is an important tool for the Cassini Project, which uses it to measure perturbations of the radio-frequency wave as it travels between the spacecraft and the ground stations, allowing highly detailed study of the composition of the rings, atmosphere, and surface of Saturn and its satellites.

  9. Corporation as College.

    ERIC Educational Resources Information Center

    Brazziel, William F.

    1988-01-01

    The Ph.D. program of the Rand Corporation Graduate School is described. Environmental press as the engine of change and creativity as the wellspring of innovative programming is illustrated in the beginnings of the Rand Corporation and its establishment of the Graduate School in policy analysis. (Author/MLW)

  10. Corporal Punishment: An Overview.

    ERIC Educational Resources Information Center

    Illinois State Board of Education, Springfield.

    This report is a 1983 update on corporal punishment prepared for the Illinois State Board of Education. It gives a historical perspective and reviews the practices in selected states and metropolitan districts. Corporal punishment is allowed in 46 states; 4 states prohibit it. Among large school districts in metropolitan areas there is a tendency

  11. Bank Community Development Corporations.

    ERIC Educational Resources Information Center

    Illinois State Dept. of Commerce and Community Affairs, Springfield.

    This handbook provides a brief overview of bank and bank holding company community development corporations (CDCs), the types of activities for which they can be used, the legal requirements in establishing such an entity, and how they are organized and operated. Case studies, including studies of the Shorebank Corporation of Chicago, the First…

  12. The Corporate Law Curriculum

    ERIC Educational Resources Information Center

    Mofsky, James S.

    1976-01-01

    On the premise that corporate counsel must be an able diagnostician before he can focus on highly specialized and interrelated issues of business law, the author suggests an approach to corporate law curriculum in which the basic course balances the quality and quantity of material designed to create the needed sensitivity. (JT)

  13. Corporal Punishment Handbook.

    ERIC Educational Resources Information Center

    Maurer, Adah

    This handbook describes the use of corporal punishment, attitudes towards it, and alternatives to it. Topics covered include: (1) a definition of corporal punishment; (2) descriptions and examples of different types; (3) a brief history of its use in schools and society; (4) arguments in favor of its use; (5) arguments for abolition; (6)

  14. Making the Corporate Connection.

    ERIC Educational Resources Information Center

    Cornforth, Suzanne; Simpson, Kristen

    1999-01-01

    Corporate sponsorship is a marketing strategy by which companies communicate about their products or services by affiliating with events or institutions valued by targeted customer groups. Increasingly, campus communicators are seeking to establish corporate sponsorships but first must resolve legal and ethical concerns. Various types of

  15. Corporal Punishment Revisited.

    ERIC Educational Resources Information Center

    Wilson, John

    2002-01-01

    Lists arguments for using corporal punishment in educational institutions and considers some advantages of its use. Asks when it should be used, who should be empowered to administer it, and why there are increasingly strong feelings against corporal punishment in some societies while others continue to use it. (BT)

  16. Radio Science Concepts and Approaches for Jupiter Icy Moons Orbiter

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Asmar, S. W.; Castillo, J. C.; Folkner, W. M.; Konopliv, A. S.; Marouf, E. A.; Rappaport, N. J.; Schubert, G.; Spilker, T. R.; Tyler, G. L.

    2003-01-01

    Radio Science experiments have been conducted on most deep space missions leading to numerous scientific discoveries. A set of concepts and approaches are proposed for the Jupiter Icy Moons Orbiter (JIMO) to apply Radio Science tools to investigate the interior structures of the Galilean Satellites and address key questions on their thermal and dynamical evolution. Measurements are identified that utilize the spacecraft's telecommunication system. Additional instruments can augment these measurements in order to leverage observational synergies. Experiments are also offered for the purpose of investigating the atmospheres and surfaces of the satellites.

  17. Nanosail-D: The Small Satellite That Could!

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Casas, Joseph P.; Agasid, Elwood F.; Adams, Charles L.; Laue, Greg; Kitts, Christopher; O'Brien, Sue

    2011-01-01

    Three years from its initial design review, NanoSail-D successfully deployed its sail on January 20th, 2011. It became the first solar sail vehicle to orbit the earth and the second sail ever unfurled in space. The NanoSail-D mission had two main objectives: eject a nanosatellite from a microsatellite; deploy its sail from a highly compacted volume and low mass system to validate large structure deployment and potential de-orbit technologies. These objectives were successfully achieved and the de-orbit analysis is in process. This paper presents an overview of the NanoSail-D project and insights into how potential setbacks were overcome. Many lessons have been learned during these past three years and are discussed in light of the phenomenal success and interest that this small satellite has generated. NanoSail-D was jointly designed and built by NASA's Marshall Space Flight Center and NASA's Ames Research Center. ManTech/NeXolve Corporation also provided key sail design support. The NanoSail-D experiment is managed by Marshall and jointly sponsored by the Army Space and Missile Defense Command, the Von Braun Center for Science and Innovation and Dynetics Inc. Ground operations support was provided by Santa Clara University, with radio beacon packets received from amateur operators around the world.

  18. Satellite sound broadcasting system, portable reception

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser; Vaisnys, Arvydas

    1990-01-01

    Studies are underway at JPL in the emerging area of Satellite Sound Broadcast Service (SSBS) for direct reception by low cost portable, semi portable, mobile and fixed radio receivers. This paper addresses the portable reception of digital broadcasting of monophonic audio with source material band limited to 5 KHz (source audio comparable to commercial AM broadcasting). The proposed system provides transmission robustness, uniformity of performance over the coverage area and excellent frequency reuse. Propagation problems associated with indoor portable reception are considered in detail and innovative antenna concepts are suggested to mitigate these problems. It is shown that, with the marriage of proper technologies a single medium power satellite can provide substantial direct satellite audio broadcast capability to CONUS in UHF or L Bands, for high quality portable indoor reception by low cost radio receivers.

  19. Satellite description

    NASA Astrophysics Data System (ADS)

    Gillett, F. C.; Clegg, P. E.; Neugebauer, G.; Langford, D.; Pouw, A.; Irace, W.; Houck, J.

    The onboard computers and their associated software, the attitude control system, and data recording and the communication links of the infrared astronomy satellite (TRAS) are discussed. The IRAS telescope system is considered in detail. Attention is directed towards the cryogenics, thermal control, optics, focal plane assembly, and electronics associated with the telescope system.

  20. Satellite Telecommunications.

    ERIC Educational Resources Information Center

    Forum, 1986

    1986-01-01

    This issue of a quarterly publication of the Council of Europe covers aspects of the history, technology, policies, and impact of telecommunications in Europe, with an emphasis on European television. The following articles are included: (1) "Man and the World of Telecommunications" (Piet Stoffelen); (2) "The European Communications Satellite

  1. Advances in magnetospheric radio wave analysis and tomography

    NASA Astrophysics Data System (ADS)

    Cummer, S. A.; Green, J. L.; Reinisch, B. W.; Fung, S. F.; Kaiser, M. L.; Pickett, J. S.; Christopher, I.; Mutel, R.; Gurnett, D. A.; Escoubet, C. P.

    Initial theoretical studies of multi-spacecraft radio tomographic imaging of the magnetosphere have shown the potential scientific value of the technique. We report a series of multistatic radio propagation experiments with the goal of testing and verifying the capabilities of radio tomography. These experiments focused specifically on measuring the plasma-induced rotation of the wave polarization (Faraday rotation), from which the path integrated product of magnetospheric electron density and magnetic field can be directly inferred. These experiments used the Radio Plasma Imager (RPI) on the IMAGE satellite as the transmitter. The receiving instruments were the WAVES instrument on WIND and the WBD instrument on CLUSTER. These experiments showed that Faraday rotation can be measured on relatively long (>10 RE) magnetospheric propagation paths with existing transmitter and receiver technology. We conclude that radio tomographic imaging of magnetospheric electron density and magnetic field is a powerful technique with unique, large-scale measurement capabilities that can effectively address important questions in magnetospheric physics.

  2. Satellite Survivability Module

    NASA Astrophysics Data System (ADS)

    Buehler, P.; Smith, J.

    The Satellite Survivability Module (SSM) is an end-to-end, physics-based, performance prediction model for directed energy engagement of orbiting spacecraft. SSM was created as an add-on module for the Satellite Tool Kit (STK). Two engagement types are currently supported: laser engagement of the focal plane array of an imaging spacecraft; and Radio Frequency (RF) engagement of spacecraft components. This paper will focus on the laser engagement scenario, the process by which it is defined, and how we use this tool to support a future laser threat detection system experiment. For a laser engagement, the user creates a spacecraft, defines its optical system, adds any protection techniques used by the optical system, introduces a laser threat, and then defines the atmosphere through which the laser will pass. SSM models the laser engagement and its impact on the spacecraft's optical system using four impact levels: degradation, saturation, damage, and destruction. Protection techniques, if employed, will mitigate engagement effects. SSM currently supports two laser protection techniques. SSM allows the user to create and implement a variety of "what if" scenarios. Satellites can be placed in a variety of orbits. Threats can be placed anywhere on the Earth or, for version 2.0, on other satellites. Satellites and threats can be mixed and matched to examine possibilities. Protection techniques for a particular spacecraft can be turned on or off individually; and can be arranged in any order to simulate more complicated protection schemes. Results can be displayed as 2-D or 3-D visualizations, or as textual reports. A new report feature available in version 2.0 will allow laser effects data to be displayed dynamically during scenario execution. In order to test SSM capabilities, the Ball team used SSM to model several engagement scenarios for our future laser threat detection system experiment. Actual test sites, along with actual laser, optics, and detector characteristics were entered into SSM to determine what effects we can expect to see, and to what extent. We concluded that SSM results are accurate when compared to actual field test results. The work is currently funded by the Air Force Research Laboratory, Space Vehicles directorate at Kirtland AFB, New Mexico, under contract number FA9453-06-C-0371.

  3. Astrometric goals of the Radio Astron mission

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir E.; Gerasimov, Igor A.; Kuimov, Konstantin V.; Rodin, Aleksander E.; Ilyasov, Yury P.

    2005-01-01

    It is planned that the RadioAstron mission will be started since March 2006. According the RadioAstron program initiated by Astro Space Center of Lebedev Physical Institute of Russian Academy of Science (supervisor N.S.Kardashev) in collaboration with other institutes of Russia a satellite carrying a 10-meter radio telescope will be launched in high elliptical orbit around the Earth. In apogee distance will be 350000 km. It is planned that VLBI observations will be conducted with large ground based radio telescopes. Main astrometric goal of the mission is the realization of new International Celestial Reference Frame on base of measurements of the coordinates of the defining sources with microarcsecond accuracy. Observations of some pulsars on the space-ground interferometers and by the timing technique will allow us to connect kinematical and dynamical systems with unprecedented accuracy. Coordinates of ground radio telescopes will be determined with respect to the geocenter. Status of work will be reported: program of observations model of the VLBI reduction procedure expected accuracies.

  4. Cognitive Radio will revolutionize American transportation

    ScienceCinema

    None

    2013-12-06

    Cognitive Radio will revolutionize American transportation. Through smart technology, it will anticipate user needs; detect available bandwidths and frequencies then seamlessly connect vehicles, infrastructures, and consumer devices; and it will support the Department of Transportation IntelliDrive Program, helping researchers, auto manufacturers, and Federal and State officials advance the connectivity of US transportation systems for improved safety, mobility, and environmental conditions. Using cognitive radio, a commercial vehicle will know its driver, onboard freight and destination route. Drivers will save time and resources communicating with automatic toll booths and know ahead of time whether to stop at a weigh station or keep rolling. At accident scenes, cognitive radio sensors on freight and transportation modes can alert emergency personnel and measure on-site, real-time conditions such as a chemical leak. The sensors will connect freight to industry, relaying shipment conditions and new delivery schedules. For industry or military purposes, cognitive radio will enable real-time freight tracking around the globe and its sensory technology can help prevent cargo theft or tampering by alerting shipper and receiver if freight is tampered with while en route. For the average consumer, a vehicle will tailor the transportation experience to the passenger such as delivering age-appropriate movies via satellite. Cognitive radio will enhance transportation safety by continually sensing what is important to the user adapting to its environment and incoming information, and proposing solutions that improve mobility and quality of life.

  5. Cognitive Radio will revolutionize American transportation

    SciTech Connect

    2013-07-22

    Cognitive Radio will revolutionize American transportation. Through smart technology, it will anticipate user needs; detect available bandwidths and frequencies then seamlessly connect vehicles, infrastructures, and consumer devices; and it will support the Department of Transportation IntelliDrive Program, helping researchers, auto manufacturers, and Federal and State officials advance the connectivity of US transportation systems for improved safety, mobility, and environmental conditions. Using cognitive radio, a commercial vehicle will know its driver, onboard freight and destination route. Drivers will save time and resources communicating with automatic toll booths and know ahead of time whether to stop at a weigh station or keep rolling. At accident scenes, cognitive radio sensors on freight and transportation modes can alert emergency personnel and measure on-site, real-time conditions such as a chemical leak. The sensors will connect freight to industry, relaying shipment conditions and new delivery schedules. For industry or military purposes, cognitive radio will enable real-time freight tracking around the globe and its sensory technology can help prevent cargo theft or tampering by alerting shipper and receiver if freight is tampered with while en route. For the average consumer, a vehicle will tailor the transportation experience to the passenger such as delivering age-appropriate movies via satellite. Cognitive radio will enhance transportation safety by continually sensing what is important to the user adapting to its environment and incoming information, and proposing solutions that improve mobility and quality of life.

  6. The Impact of Radio Interference on Future Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Mitchell, Daniel A.; Robertson, Gordon J.; Sault, Robert J.

    While future radio telescopes will require technological advances from the communications industry interference from sources such as satellites and mobile phones is a serious concern. In addition to the fact that the level of interference is growing constantly the increased capabilities of next generation instruments make them more prone to harmful interference. These facilities must have mechanisms to allow operation in a crowded spectrum. In this report some of the factors which may limit the effectiveness of these mechanisms are investigated. Radio astronomy is unique among other observing wavelengths in that the radiation can be fully sampled at a rate which completely specifies the electromagnetic environment. Knowledge of phases and antennae gain factors affords one the opportunity to attempt to mitigate interference from the astronomical data. At present several interference mitigation techniques have been demonstrated to be extremely effective. However the observational scales of the new facilities will push the techniques to their limits. Processes such as signal decorrelation varying antenna gain and instabilities in the primary beam will have a serious effect on some of the algorithms. In addition the sheer volume of data produced will render some techniques computationally and financially impossible.

  7. 25 CFR 226.8 - Corporation and corporate information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Corporation and corporate information. 226.8 Section 226.8 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE... corporate information. (a) If the applicant for a lease is a corporation, it shall file evidence...

  8. 25 CFR 227.6 - Corporations and corporate information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Corporations and corporate information. 227.6 Section 227.6 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER INDIAN RESERVATION, WYOMING, FOR OIL AND GAS MINING How to Acquire Leases § 227.6 Corporations and corporate information....

  9. Radio occultation experiments with INAF-IRA radiotelescopes.

    NASA Astrophysics Data System (ADS)

    Pluchino, S.; Schillirò, F.; Salerno, E.; Pupillo, G.

    The Radio Occultation research program performed at the Medicina and Noto Radioastronomical Stations of the Istituto Nazionale di Astrofisica (INAF) - Istituto di Radioastronomia (IRA) includes observations of spacecraft by satellite and satellite by satellite events. The Lunar Radio Occultation (LRO) part of the program consists in collecting data of the lunar Total Electron Content (TEC), at different limb longitudes and at different time, in order to study long term variation of the Moon's ionosphere. The LRO program started at Medicina in September 2006 with the observation of the European probe SMART-1 during its impact on the lunar soil. It proceeded in 2007 with the observation of the lunar occultations of Saturn and Venus, and with the observation of Mars in 2008. On this occasion the probes Cassini, Venus Express, Mars Express, Mars Reconaissance Orbiter and Mars Odissey were respectively occulted by the moon. On Dec 1st 2008 a Venus lunar occultation occurred. On that occasion we performed the first Italian-VLBI (I-VLBI) tracking experiment by detecting the carrier signals coming from the Venus Express (VEX) spacecraft with both the IRA radiotelescopes together with the Matera antenna of the Italian Space Agency. The second part of the radio occultation program includes the observation of satellite by satellite occultation events, as well as mutual occultations of Jupiter satellites. These events are referred to as mutual phenomena (PHEMU). These observations are aimed to measure the radio flux variation during the occultation and to derive surface spatial characteristics such as Io's hot spots. In this work preliminary results of the Radio Occultation program will be presented.

  10. Satellite Fingerprints

    NASA Astrophysics Data System (ADS)

    Richmond, D.

    Techniques for improved characterization of Satellites located at GEO have been an area of research for several years. Our team has begun a research activity to use multiple phenomenologies to establish a fingerprint of on-orbit assets located at GEO. Preliminary results have revealed that, in many cases, a single phenomenology (Optical, Radar, etc.) is not capable of positively characterizing deep space objects. The paper will identify the techniques used to gather data and will detail progress in establishing a fingerprint database. The paper will discuss the impact of changes in satellite characteristics over the life of an on-orbit asset to the fingerprint database. The benefits of such a database will be discussed, to include re-acquiring objects after a maneuver.

  11. Managing Satellites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Integral Systems, Inc.'s EPOCH 2000 forms the core of NASA's Near Earth Asteroid Rendezvous (NEAR) mission's command and control center. EPOCH 2000, which allows ground operators to monitor and control satellites over a wide area network, owes part of its heritage from work completed to support Goddard Space Flight Center. The software automates telemetry processing, commanding, anomaly detection, and archiving collected data. The NEAR spacecraft, launched in February 1996, will rendezvous in early 1999 and orbit the Asteroid Eros for a year. Integral Systems also provided Low Earth Orbit Autonomous Ground Terminals (LEO-Ts) to NASA. The LEO-T is designed to make it easier and less expensive for principal investigators to obtain telemetry, tracking and control services for their science missions. The company products have supported well over 70 satellite missions aimed at scientific research, meteorology, or communications applications.

  12. Saturn: Satellites

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Murdin, P.

    2001-10-01

    We now know that SATURN has at least 30 satellites, forming a largely diverse set of bodies (figure 1). They range from the planet-like TITAN, surrounded by a dense atmosphere and half the Earth's size, to small, barren objects, of irregular shapes (table 1). The surfaces of the latter objects are all believed to be covered with some type of frozen volatile, primarily water ice, but also carbon d...

  13. Dominion Radio Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Dominion Radio Astrophysical Observatory began operating in 1959, and joined the NATIONAL RESEARCH COUNCIL in 1970. It became part of the Herzberg Institute of Astrophysics in 1975. The site near Penticton, BC has a 26 m radio telescope, a seven-antenna synthesis telescope on a 600 m baseline and two telescopes dedicated to monitoring the solar radio flux at 10.7 cm. This part of the Institu...

  14. Virtual Satellite

    NASA Technical Reports Server (NTRS)

    Hammrs, Stephan R.

    2008-01-01

    Virtual Satellite (VirtualSat) is a computer program that creates an environment that facilitates the development, verification, and validation of flight software for a single spacecraft or for multiple spacecraft flying in formation. In this environment, enhanced functionality and autonomy of navigation, guidance, and control systems of a spacecraft are provided by a virtual satellite that is, a computational model that simulates the dynamic behavior of the spacecraft. Within this environment, it is possible to execute any associated software, the development of which could benefit from knowledge of, and possible interaction (typically, exchange of data) with, the virtual satellite. Examples of associated software include programs for simulating spacecraft power and thermal- management systems. This environment is independent of the flight hardware that will eventually host the flight software, making it possible to develop the software simultaneously with, or even before, the hardware is delivered. Optionally, by use of interfaces included in VirtualSat, hardware can be used instead of simulated. The flight software, coded in the C or C++ programming language, is compilable and loadable into VirtualSat without any special modifications. Thus, VirtualSat can serve as a relatively inexpensive software test-bed for development test, integration, and post-launch maintenance of spacecraft flight software.

  15. Solar satellites

    NASA Astrophysics Data System (ADS)

    Poher, C.

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  16. STEM on the radio

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-10-01

    Looking for an Internet radio station focusing on programing about science, technology, engineering, and math (STEM)? The U.S. National Science Foundation (NSF) announced on 26 September the launch of Science360 Radio, which it says is the first Internet radio stream dedicated to STEM programing. Science360 includes more than 100 radio shows and podcasts that are available on the Web as well as on iPhone and Android devices. The shows originate from a variety of sources, including NSF, other U.S. government agencies, science organizations, universities, and media outlets. For more information, see http://science360.gov/files/.

  17. A preliminary error analysis of the gravity field recovery from a lunar Satellite-to-Satellite mission

    NASA Technical Reports Server (NTRS)

    Iz, Huseyin B.

    1993-01-01

    A low cost lunar Satellite-to-Satellite radio tracking mission in a low-low configuration could considerably improve the existing knowledge about the lunar gravity field. The impact of various mission parameters that may contribute to the recovery of the gravity field, such as satellite altitude, satellite separation mission duration, measurement precision and sampling interval were quantified using the Jekeli-Rapp algorithm. Preliminary results indicate that the gravity field resolution up to harmonic degree 40 to 80 is feasible depending on various mission configurations. Radio tracking data from a six-month mission with a precision of 1 mm/s every 10 s and 300 km satellite separation at 150 km altitude will permit the determination of 5 deg x 5 deg mean gravity anomalies with an error of approximately 15 mgals. Consideration of other unaccounted error sources of instrumental, operational, and environmental nature may lower this resolution.

  18. The Arctic Regional Communications Small SATellite (ARCSAT)

    NASA Technical Reports Server (NTRS)

    Casas, Joseph; Kress, Martin; Sims, William; Spehn, Stephen; Jaeger, Talbot; Sanders, Devon

    2013-01-01

    Traditional satellite missions are extremely complex and expensive to design, build, test, launch and operate. Consequently many complementary operational, exploration and research satellite missions are being formulated as a growing part of the future space community capabilities using formations of small, distributed, simple to launch and inexpensive highly capable small scale satellites. The Arctic Regional Communications small SATellite (ARCSAT) initiative would launch a Mini-Satellite "Mothership" into Polar or Sun Sync low-earth-orbit (LEO). Once on orbit, the Mothership would perform orbital insertion of four internally stored independently maneuverable nanosatellites, each containing electronically steerable antennas and reconfigurable software-defined radios. Unlike the traditional geostationary larger complex satellite communication systems, this LEO communications system will be comprised of initially a five small satellite formation that can be later incrementally increased in the total number of satellites for additional data coverage. ARCSAT will provide significant enabling capabilities in the Arctic for autonomous voice and data communications relay, Maritime Domain Awareness (MDA), data-extraction from unattended sensors, and terrestrial Search & Rescue (SAR) beacon detection missions throughout the "data starved desert" of the Arctic Region.

  19. A new digital land mobile satellite system

    NASA Technical Reports Server (NTRS)

    Schneider, Philip

    1990-01-01

    A description is given of the different digital services planned to be carried over existing and planned mobile satellite systems. These systems are then compared with analog services in terms of bandwidth and power efficiency. This comparison provides the rationale for the establishment of a digital land mobile satellite service (DLMSS) to use frequencies that are currently available but not yet assigned to a domestic mobile satellite system in the United States. The focus here is on the expected advantages of digital transmission techniques in accommodating additional mobile satellite systems in this portion of the spectrum, and how such techniques can fully satisfy voice, data and facsimile mobile communications requirements in a cost effective manner. A description is given of the system architecture of the DMLSS service proposed by the Geostar Messaging Corporation (GMC) and the market potential of DLMSS.

  20. Galilean satellite remote sensing by the Galileo Jupiter Orbiter

    NASA Technical Reports Server (NTRS)

    Yeates, C. M.; Klaasen, K. P.; Clarke, T. C.

    1983-01-01

    The derivation of a mission design strategy for the Galileo Jupiter Orbiter which best satisfies the requirements for remote sensing of the surfaces of the Galilean satellites during a 20-month orbital tour of the Jovian system is described. The celestial mechanics of a spacecraft orbiting about Jupiter and interacting with the Galilean satellites is discussed. A satellite tour strategy designed to optimize the accomplishment of remote sensing, field and particle science, and radio science objectives is developed. Finally, an assessment is made of how well these objectives can be met given the spacecraft, the capabilities of the scientific instruments, and the structure of the satellite tour.

  1. Satellite-aided land mobile communications system implementation considerations

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.

    1982-01-01

    It was proposed that a satellite-based land mobile radio system could effectively extend the terrestrial cellular mobile system into rural and remote areas. The market, technical and economic feasibility for such a system is studied. Some of the aspects of implementing an operational mobile-satellite system are discussed. In particular, two key factors in implementation are examined: (1) bandwidth requirements; and (2) frequency sharing. Bandwidth requirements are derived based on the satellite antenna requirements, modulation characteristics and numbers of subscribers. Design trade-offs for the satellite system and potential implementation scenarios are identified. Frequency sharing is examined from a power flux density and modulation viewpoint.

  2. Galilean satellite remote sensing by the Galileo Jupiter Orbiter

    NASA Astrophysics Data System (ADS)

    Yeates, C. M.; Klaasen, K. P.; Clarke, T. C.

    The derivation of a mission design strategy for the Galileo Jupiter Orbiter which best satisfies the requirements for remote sensing of the surfaces of the Galilean satellites during a 20-month orbital tour of the Jovian system is described. The celestial mechanics of a spacecraft orbiting about Jupiter and interacting with the Galilean satellites is discussed. A satellite tour strategy designed to optimize the accomplishment of remote sensing, field and particle science, and radio science objectives is developed. Finally, an assessment is made of how well these objectives can be met given the spacecraft, the capabilities of the scientific instruments, and the structure of the satellite tour.

  3. Radio Frequency Interference: Radio Astronomy's Biggest Enemy

    NASA Astrophysics Data System (ADS)

    Acevedo, F.; Ghosh, Tapasi

    1997-12-01

    As technology progresses, the demand for the usage of the electromagnetic spectrum increases with it. The development is so fast and prolific that clean band space for passive users such as Radio Astronomy is becoming ever so scarce. Even though, several spectral bands have been protected for Radio Astronomy by Federal Communication Commission (in the USA) under the recommendations of the International Telecommunication Union (ITU), pressure for making more spectral space commercially usable is extreme. Although these commercial usages make our modern living at all possible, often the extreme vulnerability of passive users are are not fully appreciated, resulting in unwanted emissions (RFI) in the Radio Astronomy Bands. Another source of RFI is the fact that many of the electronic devices used in the observatories themselves generate radio waves. If proper precautions are not taken, these can be received back through the Radio Telescope itself. This problem is referred to as internal RFI. The focus of this paper is the search and diminution of internal RFI in the Arecibo Observatory in Arecibo, Puerto Rico. Using a simple setup of a log-periodic antenna and a Spectrum Analyzer, spectra spanning a frequency range of 100 - 1800 MHZ were recorded in some areas of the Observatory and the new Visitor Center (AOVEF). The measurements disclosed sources of radio emission among some of the digital electronic equipment in the Equipment room and a few displays in the AOVEF. Most prominent of these was a 2.5 MHz comb spanning the entire range of the measurements emitted from the SRENDIP and AOFTM machines. The respective groups were informed and corrective shielding & isolations were implemented immediately. In AOVEF, three displays, some audio-visual equipment, and video/digital cameras used by the visitors were found to be "leaky". In future, the use of such cameras will be prohibited and the exhibits will be screened appropriately.

  4. Terrestrial structured radio emissions occurring close to the equatorial regions

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed Y.; Galopeau, Patrick H. M.; Sawas, Sami; Berthelier, Jean-Jacques

    2015-04-01

    We study the occurrence of terrestrial radio emissions observed by the electric field experiment (ICE) onboard DEMETER micro-satellite. We principally consider the ICE observations recorded in the HF frequency range between 10 kHz and 3.175 MHz. A dynamic spectrum is recorded each half-orbit with a time and frequency resolutions, respectively, in the order of 3.25 kHz and 2.048 sec. The terrestrial structured radio emission is found to occur when the satellite is approaching the equatorial region of the Earth. It appears as a structured narrow band 'continuum' with a positive or negative low frequency drift rate, less than 1 kHz/s. The bandwidth is, on average, of about 30 kHz. We derive from our investigation the beam and the probable location of the emission source. We discuss the origin of this terrestrial radio emission and its dependence, or not, on the solar and geomagnetic activities.

  5. Film, Radio, and Television.

    ERIC Educational Resources Information Center

    Hardesty, Carolyn, Ed.

    1990-01-01

    This journal issue covers the history of film, radio, and television in Iowa. The first article, "When Pictures and Sound Came to Iowa," summarizes the origin of movies and radio and their early beginnings in Iowa. Using old photographs and measurement charts, the viewing, reading, and listening habits of young people in 1950 and 1958 are

  6. Broadcast Management: Radio; Television.

    ERIC Educational Resources Information Center

    Quaal, Ward L.; Martin, Leo A.

    After outlining the qualities necessary in a good radio or television manager, the book describes his duties which fall in three major areas: programming, engineering, and sales. It discusses the relationship between the station and its audience in detail. Sections on radio and television programming describe the way most stations operate and…

  7. Optical and radio rangefinders

    NASA Astrophysics Data System (ADS)

    Kostetskaia, Iaromira Mikhailovna

    This handbook expounds the theory of optical and radio rangefinders and radiogeodesic systems. Particular attention is given to instrument design, investigations using geodesic phase rangefinders, ranging errors, and the effect of meteorological factors in the atmospheric surface layer. Applications of optical and radio rangefinders are considered, including the establishment of geodetic networks and the assessment of the accuracy of triangulation networks.

  8. The Radio Jove Project

    NASA Technical Reports Server (NTRS)

    Thieman, J. R.

    2010-01-01

    The Radio love Project is a hands-on education and outreach project in which students, or any other interested individuals or groups build a radio telescope from a kit, operate the radio telescope, transmit the resulting signals through the internet if desired, analyze the results, and share the results with others through archives or general discussions among the observers. Radio love is intended to provide an introduction to radio astronomy for the observer. The equipment allows the user to observe radio signals from Jupiter, the Sun, the galaxy, and Earth-based radiation both natural and man-made. The project was started through a NASA Director's Discretionary Fund grant more than ten years ago. it has continued to be carried out through the dedicated efforts of a group of mainly volunteers. Dearly 1500 kits have been distributed throughout the world. Participation can also be done without building a kit. Pre-built kits are available. Users can also monitor remote radio telescopes through the internet using free downloadable software available through the radiosky.com website. There have been many stories of prize-winning projects, inspirational results, collaborative efforts, etc. We continue to build the community of observers and are always open to new thoughts about how to inspire the observers to still greater involvement in the science and technology associated with Radio Jove.

  9. Film, Radio, and Television.

    ERIC Educational Resources Information Center

    Hardesty, Carolyn, Ed.

    1990-01-01

    This journal issue covers the history of film, radio, and television in Iowa. The first article, "When Pictures and Sound Came to Iowa," summarizes the origin of movies and radio and their early beginnings in Iowa. Using old photographs and measurement charts, the viewing, reading, and listening habits of young people in 1950 and 1958 are…

  10. Radio Astronomy for Amateurs

    NASA Astrophysics Data System (ADS)

    Quinn, N.; Murdin, P.

    2003-04-01

    Karl Jansky is considered the father of RADIOASTRONOMY. During the 1930s, Jansky worked for the Bell Telephone Laboratories studying the origin of static noise from thunderstorms. During the course of this work he discovered that some signals had an extraterrestrial origin. However, it was Grote Reber, a professional radio engineer and radio amateur, who carried out further investigations. In 1937...

  11. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  12. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1984-12-25

    Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.

  13. Writing for Radio.

    ERIC Educational Resources Information Center

    Tupper, Marianna S.

    1995-01-01

    Describes a 24-hour commercial radio station simulation class project for eighth-grade language arts. Students wrote their own scripts, chose music and were disc jockeys on their own music and talk shows, and prepared news and traffic reports. Guest speakers from actual commercial radio came in to discuss issues such as advertising, censorship,

  14. Expected results of Cassini Radio Science experiments

    NASA Astrophysics Data System (ADS)

    Castillo, J.; Rappaport, N.

    Cassini gravity radio science experiments scheduled from February 2005 to July 2008 are expected to improve our knowledge of the Saturnian system through direct measurements of gravity parameters performed in a multidisciplinary and comparative planetary science approach. In 2005, direct mass determination will be achieved for Enceladus, Hyperion, and Dione, as well as gravity field measurement of Rhea. Detection of an ocean suspected to lie within Titan is expected to happen by 2007. However, after the two first flybys scheduled in 2006, the determination of the dimensionless moment of inertia of this body will provide scientists with enough information to build detailed models to be compared with the Galilean satellites. Density determination of all major satellites will be performed through navigation passes scheduled throughout the tour. Accurate and independent determination of Saturn's high zonal harmonics up to degree 8 will provide crucial constraints on the interior of this giant planet by the end of the initial mission. Comparison of direct mass determination with values inferred from analytical theories is very important. Besides, density distribution sampling in the Saturnian system will provide new constraints on the models of evolution of Saturn's subnebula, as well as references for compared planetology with the Jovian satellites. This is particularly timely as a mission toward Jupiter is being scheduled in the frame of NASA New Frontiers program. Fresh geophysical observations of icy satellites and the finding or absence of a deep ocean within Titan will be crucial inputs for constraining numerical models of internal and external dynamics of this category of bodies. We will especially stress out the synergy between the information provided by the Radio Science Subsystems with the other instruments onboard Cassini to leverage our understanding of the phenomena responsible for the dynamics and evolution of the icy satellites.

  15. Exploration of the Saturnian System with Cassini Radio Science

    NASA Technical Reports Server (NTRS)

    Kliore, Arvydas J.

    1999-01-01

    The ongoing Galileo mission has provided many new insights into the Jovian system. Among them are new discoveries from the Radio Science investigations , including multiple measurements of the Jovian ionosphere, the ionospheres and plasma environments of Io, Europa, Ganymede, and Callisto, and the internal structure of the Galilean satellites. The Cassini spacecraft, which will be placed in orbit about Saturn in 2004, will conduct Radio Science investigations of many aspects of the Saturnian system with a radio instrument of unprecedented stability and versatility. It will use radio links at three wavelengths : S-band(13 cm), X-band (3.5 cm), and Ka-band (1 cm) to probe the atmospheres and ionospheres of Saturn and Titan and Saturn's rings by means of radio occultations, and to measure the masses and gravity fields of Saturn, Titan, and selected icy satellites by precision tracking. In addition, the stability of the radio instrument will be utilized to conduct a search for gravitational waves during solar oppositions, and to precisely measure general relativistic effects during solar conjunctions during the interplanetary cruise prior to arrival at Saturn.

  16. Domestic mobile satellite systems in North America

    NASA Technical Reports Server (NTRS)

    Wachira, Muya

    1990-01-01

    Telest Mobile Inc. (TMI) and the American Mobile Satellite Corporation (AMSC) are authorized to provide mobile satellite services (MSS) in Canada and the United States respectively. They are developing compatible systems and are undertaking joint specification and procurement of spacecraft and ground segment with the aim of operational systems by late 1993. Early entry (phase 1) mobile data services are offered in 1990 using space segment capacity leased from Inmarsat. Here, an overview is given of these domestic MSS with an emphasis on the TMI component of the MSAT systen.

  17. An economic systems analysis of land mobile radio telephone services

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.; Stevenson, S. M.

    1980-01-01

    This paper deals with the economic interaction of the terrestrial and satellite land-mobile radio service systems. The cellular, trunked and satellite land-mobile systems are described. Parametric equations are formulated to allow examination of necessary user thresholds and growth rates as functions of system costs. Conversely, first order allowable systems costs are found as a function of user thresholds and growth rates. Transitions between satellite and terrestrial service systems are examined. User growth rate density (user/year/km squared) is shown to be a key parameter in the analysis of systems compatibility. The concept of system design matching the price demand curves is introduced and examples are given. The role of satellite systems is critically examined and the economic conditions necessary for the introduction of satellite service are identified.

  18. Radio efficiency of pulsars

    SciTech Connect

    Szary, Andrzej; Melikidze, George I.; Gil, Janusz; Zhang, Bing; Xu, Ren-Xin E-mail: zhang@physics.unlv.edu

    2014-03-20

    We investigate radio emission efficiency, ξ, of pulsars and report a near-linear inverse correlation between ξ and the spin-down power, E-dot , as well as a near-linear correlation between ξ and pulsar age, τ. This is a consequence of very weak, if any, dependences of radio luminosity, L, on pulsar period, P, and the period derivative, P-dot , in contrast to X-ray or γ-ray emission luminosities. The analysis of radio fluxes suggests that these correlations are not due to a selection effect, but are intrinsic to the pulsar radio emission physics. We have found that, although with a large variance, the radio luminosity of pulsars is ≈10{sup 29} erg s{sup –1}, regardless of the position in the P-- P-dot diagram. Within such a picture, a model-independent statement can be made that the death line of radio pulsars corresponds to an upper limit in the efficiency of radio emission. If we introduce the maximum value for radio efficiency into the Monte Carlo-based population syntheses we can reproduce the observed sample using the random luminosity model. Using the Kolmogorov-Smirnov test on a synthetic flux distribution reveals a high probability of reproducing the observed distribution. Our results suggest that the plasma responsible for generating radio emission is produced under similar conditions regardless of pulsar age, dipolar magnetic field strength, and spin-down rate. The magnetic fields near the pulsar surface are likely dominated by crust-anchored, magnetic anomalies, which do not significantly differ among pulsars, leading to similar conditions for generating electron-positron pairs necessary to power radio emission.

  19. The 1992 World Administrative Radio Conference: Technology and Policy Implications

    NASA Astrophysics Data System (ADS)

    1993-05-01

    As the 20th century draws to a close, new radio technologies and services are poised to change the ways we communicate. Radio waves already make possible a wide range of services considered commonplace--AM and FM radio broadcasting, television, cellular telephones, remote garage-door openers, and baby monitors. Advances in radio technology are giving birth to even more new products and services, including pocket-sized telephones that may allow people to make and receive calls anywhere in the world, high-definition televisions (HDTV) with superior quality pictures and sound, and static-free digital radios. The 1992 World Administrative Radio Conference (WARC-92) authorized frequencies for many of these new radio communication services, and granted additional frequencies for many existing services, including international broadcasting, satellite-based mobile communications, and communications in space. The effects of these changes will be felt well into the 21st century as countries around the world develop and deploy new communications systems to serve the needs of consumers, businesses, and governments. For the United States, the decisions made at the conference will critically affect how we develop new radio technologies and applications, how competitive this country will be in radio communications equipment and services, and how effectively the United States can exercise its role as a leader in world radio communication policymaking. This study of the outcomes and implications of WARC-92 was requested by the House Committee on Energy and Commerce and the Senate Committee on Commerce, Science, and Transportation. OTA was asked to evaluate the success of U.S. proposals at the conference, discuss the implications of the decisions made for U.S. technology and policy development, and identify options for improving U.S. participation in future world radio communication conferences.

  20. The United States regional mobile satellite system

    NASA Astrophysics Data System (ADS)

    Anderson, Roy E.; Cooperman, Richard S.

    Commercial interests within the United States and Canada are preparing to implement cooperative systems that will provide land and aeronautical mobile satellite services in those two countries and in Mexico. Wide bandwidth, linear satellites ('bent pipe transponders') in geostationary orbit will be built and operated by a consortium of companies in the United States. The consortium will act as a carrier's carrier, leasing bandwidth and power to resellers and private radio leasees who will tailor the ground systems and signal characteristics to the needs of end users. A variety of voice, data, and position fixing services will add new dimensions to mobile communications throughout North America.

  1. Petite Amateur Navy Satellite (PANSAT)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The subsystem and structural design of the Naval Post Graduate School's Petite Amateur Navy Satellite (PANSAT) is described. The objectives of PANSAT are: (1) to provide an ideal educational tool for officer students; (2) to provide digital store-and-forward communications, or packet radio, for the amateur radio community; and (3) to provide a low-cost space-based platform for small experiments. PANSAT will be launched from the Shuttle at a nominal altitude of 200 nmi. and an inclination of at least 37 deg. Since there is no attitude control, eight dipole whip antennas will be used to provide isotropic ground coverage for communications. FM digital communications will be used with up-link and down-link on a single frequency in the amateur band of 144 to 146 MHz or 437 to 438 MHz. The satellite's communications subsystem, data processor and sequencer, power subsystem, structure subsystem, and experiment payload are described. The major experiment being considered will test the on-orbit annealing of radiation damaged solar cells.

  2. A Small Radio Telescope for Instructional Purposes

    NASA Astrophysics Data System (ADS)

    Spangler, S. R.; Wurster, J. E.; Nellermoe, B. L.

    1996-12-01

    Radio astronomers nowadays have a number of excellent instruments to choose from for their research projects, such as the VLA, VLBA, Arecibo,etc. However, these instruments do not readily furnish the opportunity for student instruction in the technical aspects of radio astronomy that was available twenty five years ago or more. Such experience can in part be provided by small dedicated telescopes at universities. Such a radiotelescope has been installed at the University of Iowa. A commercial 4.5 meter satellite TV antenna has been modified to work as a radiotelescope. The radio telescope operates as a transit instrument, with computer control of elevation pointing. Working receivers exist at 5.0 and 1.4 GHz. Components exist for construction of receivers at 610 MHz and 15.0 GHz. Observations to date have been made of the Sun, Moon, Crab Nebula, and galactic HI. We have recently installed a mechanical switch in the 5 GHz front end, built switching electronics, and written a Labview virtual instrument to provide a Dicke radiometer. In the immediate future we plan to use this instrument to repeat the determination of the 5.0 GHz radio phase function of the Moon. Our presentation will include information on commercial sources of critical components for the system, such as low loss RF cables, low insertion loss mechanical switches, low noise amplifiers, etc.

  3. Radio astronomy - Quest for the invisible

    NASA Astrophysics Data System (ADS)

    Atkinson, B.

    The 46-meter reflector of the Algonquin Radio Observatory (ARO) scans the heavens 24 hours a day, almost all year round to receive a stream of stellar photons. The antenna's paraboloid reflective surface is checked using a technique called satellite holography to determine its sensitivity to these photons, and therefore its ability to operate at shorter wavelengths. Although the dish operates at a wavelength of 3 cm, studies are underway to resurface it and enable it to focus to millimeter wavelengths. NRC research teams have made discoveries such as molecular gas within the spiral arms of the Galaxy and extended atmospheres of carbon stars. At the Dominion Radio Astrophysical Observatory near Vancouver, B.C., astronomers are using supernova blast waves to examine the interstellar medium, theorizing that stellar winds are the outflow of physical particles from stars and that the sun has a mild wind which is probably responsible for the polar auroras. In the past fifty years, new objects such as quasars, pulsars and giant molecular clouds have been discovered by means of radio astronomy. Faint radio emissions from these objects, which were once invisible to instruments on earth, can now be detected.

  4. attitude control design for the solar polar orbit radio telesope

    NASA Astrophysics Data System (ADS)

    Gao, D.; Zheng, J.

    This paper studies the attitude dynamics and control of the Solar Polar Orbit Radio Telescope SPORT The SPORT which consists of one parent satellite and eight tethered satellites runs around the Sun in a polar orbit The parent satellite locates at the mass center of the constellation and tethered satellites which are tied with the parent satellite through a non-electric rope rotate around the parent satellite It is also supposed that the parent satellite and all tethered satellites are in a plane when the constellation works begin figure htbp centerline includegraphics width 3 85in height 2 38in 75271331 6a6eb71057 doc1 eps label fig1 end figure Fig 1 the SPORT constellation Firstly this paper gives the dynamic equations of the tethered satellite and the parent satellite From the dynamic characteristic of the tethered satellite we then find that the roll axis is coupled with the yaw axis The control torque of the roll axis can control the yaw angle But the control torque of the roll axis and pitch axis provided by the tether is very small it can not meet the accuracy requirement of the yaw angle In order to improve the attitude pointing accuracy of the tethered satellite a gradient pole is set in the negative orientation of the yaw axis The gradient pole can improve not only the attitude accuracy of roll angle and pitch angle but also that of the yaw angle indirectly As to the dynamic characteristic of the parent satellite the roll axis is coupled with the pitch axis due to the spinning angular velocity At the same

  5. Satellite observations of transionospheric pulse pairs

    SciTech Connect

    Holden, D.N.; Munson, C.P.; Devenport, J.C.

    1995-04-15

    The BLACKBEARD payload aboard the ALEXIS satellite has been making broadband observations in the VHF band of the radio spectrum. Since November of 1993 several hundred unusual signals have been recorded. The peculiar nature of these bursts of radio noise is that they have a duration of approximately 10 {mu}sec, are typically 20 to 40 dB brighter than the average background, and occur in pairs separated by approximately 50 {mu}sec. The authors have dubbed these emissions TransIonospheric Pulse Pairs, or TIPP events. They do not know what the source of these emissions is, but the dispersion of these signals is consistent with an origin at or near the earth`s surface. The satellite field of view and time of day when TIPP events are generally detected are consistent with regions of thunderstorm activity such as south-central Africa or Indonesia. 4 refs., 5 figs.

  6. Radio Science in Africa

    NASA Astrophysics Data System (ADS)

    Lefeuvre, Francois; Mc Kinnel, Lee-Anne; Chukwuma, Victor; Amory-Mazaudier, Christine

    2010-05-01

    Radio science activities covered by URSI (International Radio Science Union) are briefly reviewed. They encompass the knowledge and study of all aspects of electromagnetic fields and waves in a wide frequency range running from micro pulsation frequencies (i.e. from ~1 mHz) to Terahertz. The topics include: electromagnetic measurements and standards, electromagnetic theory and applications, radio-communication systems and signal processing, electronics and Photonics, electromagnetic environment and interference, wave propagation and remote sensing, ionospheric radio and propagation, waves in plasmas, radio astronomy, and electromagnetics in biology and medicine. The main radio science activities conducted by the URSI national Committees of South Africa, Egypt and Nigeria, and by African radio scientists groups gathered in GIRGEA (Groupe International de Recherche en Gophysique Europe Afrique) are reviewed. The emphasis is put on the activities developed in the context of the IHY programme and of the SCINDA network for forecasting ionospheric irregularities that adversely impact communication and navigation systems in the low latitude regions.

  7. The Radio Transient Sky

    NASA Astrophysics Data System (ADS)

    Lazio, J.; Ray, P. S.; Ellingson, S.; Close, S.; Crane, P.; Hyman, S. D.; Jacoby, B. A.; Junor, W.; Kassim, N. E.; Kulkarni, S. R.; Pihlstrom, Y. M.; Taylor, G. B.; Werthimer, D.

    2006-08-01

    Transient radio sources are necessarily compact and usually are the locations of explosive or dynamic events, therefore offering unique opportunities for probing fundamental physics and astrophysics. In addition, short-duration transients are powerful probes of intervening media owing to dispersion, scattering, and Faraday rotation that modify the signals. While radio astronomy has an impressive record obtaining high time resolution, usually it is achieved in quite narrow fields of view. Consequently, the dynamic radio sky is poorly sampled, in contrast to the situation in the X-ray and ?-ray bands. Operating in the 20-80 MHz range, the Long Wavelength Array (LWA) is one of a suite of next-generation radio telescopes that will explore the radio transient sky. Composed of phased "stations" of dipoles, the LWA can probe the sky for transients on a range of angular and temporal scales, by using an individual station to scan much of the sky or correlating the signals from multiple stations to monitor possible transients. Numerous classes of radio transients, both known and hypothesized, are accessible to the LWA, ranging from cosmic ray air showers and Jovian emission, to bursts from extrasolar planets or other coherent emitters and prompt emission from ?-ray bursts, to possible electromagnetic counterparts of gravitational wave burst sources. We summarize the scientific potential of radio transient observations with the LWA as well as some of the technical challenges, the most notable of which is the robust excision or avoidance of radio frequency interference (RFI). Basic research in radio astronomy at the NRL is supported by the Office of Naval Research.

  8. Low cost satellite land mobile service for nationwide applications

    NASA Technical Reports Server (NTRS)

    Weiss, J. A.

    1978-01-01

    A satellite land mobile system using mobile radios in the UHF band, and Ku-band Communications Routing Terminals (earth stations) for a nationwide connection from any mobile location to any fixed or mobile location, and from any fixed location to any mobile location is proposed. The proposed nationwide satellite land mobile service provides: telephone network quality (1 out of 100 blockage) service, complete privacy for all the users, operation similar to the telephone network, alternatives for data services up to 32 Kbps data rates, and a cost effective and practical mobile radio compatible with system sizes ranging from 10,000 to 1,000,000 users. Seven satellite alternatives (ranging from 30 ft diameter dual beam antenna to 210 ft diameter 77 beam antenna) along with mobile radios having a sensitivity figure of merit (G/T) of -15 dB/deg K are considered. Optimized mobile radio user costs are presented as a function of the number of users with the satellite and mobile radio alternatives as system parameters.

  9. Ultraviolet and radio flares from UX Arietis and HR 1099

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.; Willson, Robert F.

    1988-01-01

    Simultaneous observations of the RS CVn systems UX Ari and HR 1099 with the IUE satellite and the VLA are presented. Flaring activity is observed at ultraviolet wavelengths with the IUE when none is detected at radio wavelengths with the VLA. Radio flares with no detectable ultraviolet activity have also been observed. Thus, flares in the two spectral regions are either uncorrelated or weakly correlated. The flaring emission probably originates in different regions at the two wavelengths. Radio flares from RS CVn stars may originate in sources that are larger than, or comparable to, a star in size. This is in sharp contrast to compact, coherent radio flares from dwarf M stars. The ultraviolet flares from RS CVn stars probably originate in sources that are smaller than a component star.

  10. Satellite altimetry

    NASA Technical Reports Server (NTRS)

    Cheney, Robert E.

    1992-01-01

    Since altimetry data are not really old enough to use the term data archaeology, Mr. Cheney referred to the stewardship of these data. He noted that it is very important to document the basis for an altimetry data set as the algorithms and corrections used to arrive at the Geophysical Data Record (GDR) have been improving and are continuing to improve the precision of sea level data derived from altimetry. He noted that the GEOSAT Exact Repeat Mission (ERM) data set has recently been reprocessed by his organization in the National Ocean Service of NOAA and made available to the scientific community on CD/ROM disks by the National Oceanographic Data Center of the U.S. (NODC). The new data set contains a satellite orbit more precise by an order of magnitude together with an improved water vapor correction. A new, comprehensive GDR Handbook has also been prepared.

  11. Mesures Radio Spatiales : Goniopolarimtrie

    NASA Astrophysics Data System (ADS)

    Cecconi, B.

    2011-04-01

    Space-based radioastronomy is an essential tool for remote studies of solar system plasmas. Indeed, any radio wave emitted below the Earth ionospheric cutoff (~10~MHz) will not reach the ground and thus requires observation from space. Space-based radio receivers, as well as their antennas, have to fulfill space instrumentation constraints. The antennas used with these receivers do not have any instantaneous angular resolution. Goniopolarimetric (also known as direction-finding) techniques, as well as goniopolarimetric capable receivers, have thus been developed to retrieve the wave parameters (not only the flux density and polarization state, but also the direction of arrival) of the observed radio emissions.

  12. Case study on complex sporadic E layers observed by GPS radio occultations

    NASA Astrophysics Data System (ADS)

    Yue, X.; Schreiner, W. S.; Zeng, Z.; Kuo, Y.-H.; Xue, X.

    2015-01-01

    The occurrence of sporadic E (Es) layers has been a hot scientific topic for a long time. The GNSS (global navigation satellite system)-based radio occultation (RO) has proven to be a powerful technique for detecting the global Es layers. In this paper, we focus on some cases of complex Es layers based on the RO data from multiple missions processed in UCAR/CDAAC (University Corporation for Atmospheric Research (UCAR) the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Data Analysis and Archive Center (CDAAC)). We first show some examples of multiple Es layers occurred in one RO event. Based on the evaluations between colocated simultaneous RO events and between RO and lidar observations, it could be concluded that some of these do manifest the multiple Es layer structures. We then show a case of the occurrence of Es in a broad region during a certain time interval. The result is then validated by independent ionosondes observations. It is possible to explain these complex Es structures using the popular wind shear theory. We could map the global Es occurrence routinely in the near future, given that more RO data will be available. Further statistical studies will enhance our understanding of the Es mechanism. The understanding of Es should benefit both Es-based long-distance communication and accurate neutral RO retrievals.

  13. Impact of the 1985 Space World Administrative Radio Conference on frequency/orbit planning and use

    NASA Technical Reports Server (NTRS)

    Miller, E. F.

    1986-01-01

    The 1985 World Administrative Radio Conference (WARC-ORB-85) was held to determine which space radio services should be planned and which planning methods should be used. The second session of this Conference (WARC-ORB-88) will meet to develop the required plans. This paper presents the results of WARC-ORB-85, assesses the impact of those decisions, and identifies the intersessional work to be conducted by administrations and the CCIR (Consultative Committee on International Radio). The major decisions of WARC-ORB-85 were: (1) the restriction of additional planning to the fixed satellite service at identified frequencies; and (2) the selection of a planning method consisting of two parts (a) an allotment plan, and (b) improved procedures. The paper also discusses WARC-ORB-85 decisions relative to the Region 2 broadcast satellite service plans at 12 GHz, feederlink planning for Regions 1 and 3 broadcast satellites at 12 GHz, and sound broadcast satellite service.

  14. Impact of the 1985 space World Administrative Radio Conference on frequency/orbit planning and use

    NASA Technical Reports Server (NTRS)

    Miller, E. F.

    1986-01-01

    The 1985 World Administrative Radio Conference (WARC-ORB-85) was held to determine which space radio services should be planned and which planning methods should be used. The second session of this Conference (WARC-ORB-88) will meet to develop the required plans. This paper presents the results of WARC-ORB-85, assesses the impact of those decisions, and identifies the intersessional work to be conducted by administrations and the CCIR (consultative Committee on International Radio). The major decisions of WARC-ORB-85 were: (1) the restriction of additional planning to the fixed satellite service at identified frequencies; and (2) the selection of a planning method consisting of two parts: (a) an allotment plan, and (b) improved procedures. The paper also discusses WARC-ORB-85 decisions relative to the Region 2 broadcast satellite service plans at 12 GHz, feederlink planning for Regions 1 and 3 broadcast satellites at 12 GHz, and sound broadcast satellite service.

  15. 25 CFR 226.8 - Corporation and corporate information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Corporation and corporate information. 226.8 Section 226.8 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Leasing Procedure, Rental and Royalty § 226.8 Corporation...

  16. 25 CFR 226.8 - Corporation and corporate information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Corporation and corporate information. 226.8 Section 226.8 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Leasing Procedure, Rental and Royalty § 226.8 Corporation...

  17. Properties of SELENE Small Satellites for Selenodetic Measurements: Rstar (OKINA) and Vstar (OUNA)

    NASA Astrophysics Data System (ADS)

    Iwata, Takahiro; Namiki, Noriyuki; Hanada, Hideo; Noda, Hirotomo; Kawano, Nobuyuki; Matsumoto, Koji; Tsuruta, Seiitsu; Liu, Qinghui; Kikuchi, Fuyuhiko; Minamino, Hiroyuki; Sasaki, Takeshi

    SELENE Main Orbiter (KAGUYA) has separated two small sub-satellite (1) the Relay Satellite Rstar (OKINA), and (2) the VLBI Radio Satellite Vstar (OUNA). These sub-satellites started to perform 4-way Doppler measurements using Relay Satellite Transponder (RSAT) and multi frequency differential VLBI using VLBI Radio Sources (VRAD) for selenodesy. Initial check out was executed and properties of satellite bus equipments, onboard mission instruments, and observation systems including ground stations were evaluated. Electric power and thermal control subsystems have shown that they conduct as designed and inspected in the ground tests. The release mechanisms have given the spin which can maintain the stability of the satellite attitudes. Communication functions of mission instruments conform to the link budgets. These results suggest that Rstar and Vstar have enough performances to produce efficient selenodetic data by RSAT/VRAD observations.

  18. Corporate Training in Museums

    ERIC Educational Resources Information Center

    Causey, Adera

    2011-01-01

    Museums often court corporate audiences through special event rentals and development and promotional partnerships. But we rarely approach them as potential adult learners. In overlooking them, we miss the potential of reaching a large number of often novice museum participants who can gain from gallery learning and develop a relationship with our

  19. Corporate information management guidance

    SciTech Connect

    1997-08-01

    At the request of the Department of Energy`s (DOE) Information Management (IM) Council, IM representatives from nearly all Headquarters (HQ) organizations have been meeting over the past year as the Corporate Guidance Group (CGG) to develop useful and sound corporate information management (IM) guidance. The ability of the Department`s IM community to develop such unified guidance continues to be critical to the success of future Departmental IM planning processes and the establishment of a well-coordinated IM environment between Headquarters and field organizations. This report, with 26 specific corporate IM guidance items documented and unanimously agreed to, as well as 12 items recommended for further development and 3 items deferred for future consideration, represents a highly successful effort by the IM community. The effort has proven that the diverse DOE organizations can put aside individual preferences and work together towards a common and mutually beneficial goal. In examining most areas and issues associated with information management in the Department, they have developed specific, far-reaching, and useful guidance. The IM representatives recommend that the documented guidance items provided in this report and approved by the DOE IM Council be followed by all IM organizations. The representatives also strongly recommend that the guidance process developed by the CGG be the single process for developing corporate IM guidance.

  20. Second Corporate Plan.

    ERIC Educational Resources Information Center

    TAFE National Centre for Research and Development, Payneham (Australia).

    The Technical and Further Education (TAFE) National Centre for Research and Development has two broad areas of activity: the undertaking and encouragement of research and development projects that are of national significance to TAFE and the dissemination of information on research and development in TAFE. The center issued its first corporate

  1. A corporate supersonic transport

    NASA Technical Reports Server (NTRS)

    Greene, Randall; Seebass, Richard

    1996-01-01

    This talk address the market and technology for a corporate supersonic transport. It describes a candidate configuration. There seems to be a sufficient market for such an aircraft, even if restricted to supersonic operation over water. The candidate configuration's sonic boom overpressure may be small enough to allow overland operation as well.

  2. The corporate trustee evolution

    SciTech Connect

    Joiner, B.A.; Ross, M.D.

    1994-03-01

    Trustees have an increasing role in the public debt market for project finance. With the responsibility comes the need for clearly defined guidelines. This article examines the need for public financing of power projects, and the role and responsibilities of corporate trustees in this environment.

  3. Of Corporate Bondage

    ERIC Educational Resources Information Center

    Ridgeway, James

    1975-01-01

    "While it is entirely possible that the university will continue to function as an essential arm of the giant agribusiness and energy corporations, there are, nevertheless, a wealth of opportunities for it to direct its energies to more useful purposes." The author traces universities' past involvement noting alternatives in energy and agriculture

  4. The Corporate Classroom.

    ERIC Educational Resources Information Center

    Stenger, Richard S.

    1991-01-01

    In many states, schools use programs developed by industry to teach about environmental issues. Corporate-sponsored curricula appear to expose children to knowledge about nature, energy use, solid waste, and recycling, but they often actually display an incomplete and self-serving picture that is raising concern among environmentalists and

  5. Corporate Management Invades Academe.

    ERIC Educational Resources Information Center

    Nielsen, Robert M.

    Measures taken to cut costs at the expense of the faculty and the loss in academic quality are shown to be part of a well-organized plan being adopted throughout higher education. Problems have arisen from the activities of the private or semi-private corporate consulting organization in higher education. Taken as a whole, the uncritical use of…

  6. Characteristics of Corporate Libraries.

    ERIC Educational Resources Information Center

    Charny, Wendy

    This paper reports on a study conducted to collect the data pertaining to corporate libraries in the United States in order to provide a statistical profile of these special libraries. A review of the literature was performed. The researcher used the online "1996 Directory of Special Libraries and Information Centers," which lists 21,380 special

  7. The allocation of the radio spectrum

    NASA Astrophysics Data System (ADS)

    Jackson, C. L.

    1980-02-01

    The system of the radio spectrum (10 kHz-300 GHz) allocation is discussed in its technical, economic, and managerial aspects. Possible improvements to the system are considered, such as minimizing human management, establishing a single authority for the allocation of the spectrum, and stimulating a more efficient use of the spectrum with economic incentives. The 'anarchy band' concept, a system of dynamic allocation, is suggested as a means of replacing human management with electronic equipment. The growing importance of the satellite portion of the spectrum is also shown.

  8. The first radio astronomy from space - RAE

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.

    1987-01-01

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed.

  9. Corporal Communication in Special Education.

    ERIC Educational Resources Information Center

    Johnson, Dan

    1981-01-01

    The author distinguishes between corporal punishment and bodily contact or corporal communication in special education. Policies are suggested which make available needed stimulation and negative reinforcement but guard against abuse. (CL)

  10. Propagation considerations in the American Mobile Satellite system design

    NASA Technical Reports Server (NTRS)

    Kittiver, Charles; Sigler, Charles E., Jr.

    1993-01-01

    An overview of the American Mobile Satellite Corporation (AMSC) mobile satellite services (MSS) system with special emphasis given to the propagation issues that were considered in the design is presented. The aspects of the voice codec design that effect system performance in a shadowed environment are discussed. The strategies for overcoming Ku-Band rain fades in the uplink and downlink paths of the gateway station are presented. A land mobile propagation study that has both measurement and simulation activities is described.

  11. Science Priorities of the RadioAstron Space VLBI Mission

    NASA Astrophysics Data System (ADS)

    Langston, Glen; Kardashev, N.; International Space VLBI Collaboration

    2006-12-01

    The main scientific goal of the RadioAstron Space VLBI mission is study of Active Galactic Nuclei (AGN), Masers and other astronomical objects with unprecedented angular resolution, up to few millionths of an arc-second. The resolution achieved with RadioAstron will allow study the following phenomena and problems: * Central engine of AGN and physical processes near super massive black holes providing an acceleration of cosmic rays size, velocity and shape of emitting region in the core, spectrum, polarization and variability of emitting components; * Cosmological models, dark matter and dark energy by studying dependence of above mentioned AGN's parameters with redshift, and by observing gravitational lensing; * Structure and dynamics of star and planets forming regions in our Galaxy and in AGN by studying maser and Mega maser radio emission; * Neutron (quark?) stars and black holes in our Galaxy, their structure and dynamics by VLBI and measurements of visibility scintillations, proper motions and parallaxes; * Structure and distribution of interstellar and interplanetary plasma by fringe visibility scintillations of pulsars; The RadioAstron mission uses the satellite SPECTR (astrophysical module), developed by Lavochkin Association of Russian Aviation and Space Agency (RASA). This module will be used in several other scientific missions. The total mass of the scientific payload is about 2500 kg, of which the unfolding parabolic 10-m radio astronomy antenna's mass is about 1500 kg, and scientific package holding the receivers, power supply, synthesizers, control units, frequency standards and data transmission radio system. The mass of the whole system (satellite and scientific payload) to be carried into orbit by the powerful "Zenit-2SB"-"Fregat-2CB" launcher is about 5000 kg. The RadioAstron project is an international collaboration between RASA and ground radio telescope facilities around the world.

  12. Satellites in Education.

    ERIC Educational Resources Information Center

    Jones, David

    1988-01-01

    Describes the methods and materials used to obtain satellite pictures from weather satellites. Discusses possible physics lessons which can be done using this equipment including orbital mechanics, and how the satellite works. (CW)

  13. The Deep Space Network as an instrument for radio science research

    NASA Technical Reports Server (NTRS)

    Asmar, S. W.; Renzetti, N. A.

    1993-01-01

    Radio science experiments use radio links between spacecraft and sensor instrumentation that is implemented in the Deep Space Network. The deep space communication complexes along with the telecommunications subsystem on board the spacecraft constitute the major elements of the radio science instrumentation. Investigators examine small changes in the phase and/or amplitude of the radio signal propagating from a spacecraft to study the atmospheric and ionospheric structure of planets and satellites, planetary gravitational fields, shapes, masses, planetary rings, ephemerides of planets, solar corona, magnetic fields, cometary comae, and such aspects of the theory of general relativity as gravitational waves and gravitational redshift.

  14. Type 2 solar radio events observed in the interplanetary medium. Part 1: General characteristics

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.

    1980-01-01

    Twelve type 2 solar radio events were observed in the 2 MHz to 30 kHz frequency range by the radio astronomy experiment on the ISEE-3 satellite over the period from September 1978 to December 1979. These data provide the most comprehensive sample of type 2 radio bursts observed at kilometer wavelengths. Dynamic spectra of a number of events are presented. Where possible, the 12 events were associated with an initiating flare, ground based radio data, the passage of a shock at the spacecraft, and the sudden commencement of a geomagnetic storm. The general characteristics of kilometric type 2 bursts are discussed.

  15. The performance of a satellite link using the BBC Transportable Earth Station with EBU-leased capacity in the European Communication Satellite System

    NASA Astrophysics Data System (ADS)

    Gandy, C.

    1985-11-01

    A series of tests on a satellite link established between the British Broadcasting Corporation (BBC) Transportable Satellite Earth Station and a BTI fixed earth station using an EBU-leased transponder on the European Communication Satellite (ECS) 2 satellite are described. The transmitted power was limited to comply with new regulations imposed by the satellite operator, but the results indicate that a high quality television link can still be established over a potential coverage area which includes most of Europe. Also, under these conditions an adequate fading margin is obtained for all but 1.75 hours per year.

  16. Algonquin Radio Observatory

    NASA Astrophysics Data System (ADS)

    Berube, Mario; Klatt, Calvin

    1999-08-01

    This report gives an overview of the activities at the Algonquin Radio Observatory. It also summarizes the technical parameters and upgrades done to improve the antenna performance. Finally, the Algonquin VLBI team is introduced.

  17. Eratosthenes via Ham Radio

    ERIC Educational Resources Information Center

    Koser, John F.

    1975-01-01

    A secondary geology class used Eratosthenes' method for measuring the circumference of the earth by comparing their measurements of the shadow of a vertical rod to the measurements made by another person contacted by ham radio. (MLH)

  18. Carp and Radio Transmitters

    USGS Multimedia Gallery

    Iowa Unit Graduate student Chris Penne listens for signals from carp with surgically implanted radio transmitters in Clear Lake. Chris studied carp aggregation to assist in planning for carp reduction by the DNR....

  19. Radio Sources and Scintillation

    NASA Astrophysics Data System (ADS)

    Rickett, Barney

    2001-10-01

    A review is given of the interplay between studies of compact radio sources and the scattering and scintillations that occur as the signals travel through the irregular refractive index of the interstellar and interplanetary plasmas.

  20. The Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi

    2011-08-01

    We present the status of the Sardinia Radio Telescope (SRT) project, a new general purpose, fully steerable 64 m diameter parabolic radio telescope under construction in Sardinia. The instrument is funded by Italian Ministry of University and Research (MIUR), by the Sardinia Regional Government (RAS), and by the Italian Space Agency (ASI), and it is charge to three research structures of the National Institute for Astrophysics (INAF): the Institute of Radio Astronomy of Bologna, the Cagliari Astronomical Observatory (in Sardinia), and the Arcetri Astrophysical Observatory in Florence. The radio telescope has a shaped Gregorian optical configuration with a 8 m diameter secondary mirror and additional Beam-Wave Guide (BWG) mirrors. One of the most challenging feature of SRT is the active surface of the primary reflector which provides good efficiency up to about 100 GHz. This paper reports on the most recent advances of the construction.

  1. Packet Radio for Library Automation.

    ERIC Educational Resources Information Center

    Brownrigg, Edwin B.; And Others

    1984-01-01

    This tutorial on packet radio (communication system using radio and digital packet-switching technology) highlights radio transmission of data, brief history, special considerations in applying packet radio to library online catalogs, technology, defining protocol at physical and network levels, security, geographic coverage, and components. (A…

  2. Packet Radio for Library Automation.

    ERIC Educational Resources Information Center

    Brownrigg, Edwin B.; And Others

    1984-01-01

    This tutorial on packet radio (communication system using radio and digital packet-switching technology) highlights radio transmission of data, brief history, special considerations in applying packet radio to library online catalogs, technology, defining protocol at physical and network levels, security, geographic coverage, and components. (A

  3. The Radio JOVE Project

    NASA Astrophysics Data System (ADS)

    Garcia, L.; Thieman, J.; Higgins, C.

    1999-09-01

    Radio JOVE is an interactive educational activity which brings the radio sounds of Jupiter and the Sun to students, teachers, and the general public. This is accomplished through the construction of a simple radio telescope kit and the use of a real-time radio observatory on the Internet. Our website (http://radiojove.gsfc.nasa.gov/) will contain science information, instruction manuals, observing guides, and education resources for students and teachers. Our target audience is high school science classes, but subjects can be tailored to college undergraduate physics and astronomy courses or even to middle school science classes. The goals of the project are: 1) Educate people about planetary and solar radio astronomy, space physics, and the scientific method 2) Provide teachers and students with a hands-on radio astronomy exercise as a science curriculum support activity by building and using a simple radio telescope receiver/antenna kit 3) Create the first ever online radio observatory which provides real-time data for those with internet access 4) Allow interactions among participating schools by facilitating exchanges of ideas, data, and observing experiences. Our current funding will allow us to impact 100 schools by partially subsidizing their participation in the program. We expect to expand well beyond this number as publicity and general interest increase. Additional schools are welcome to fully participate, but we will not be able to subsidize their kit purchases. We hope to make a wide impact among the schools by advertising through appropriate newsletters, space grant consortia, the INSPIRE project (http://image.gsfc.nasa.gov/poetry/inspire/), electronic links, and science and education meetings. We would like to acknoledge support from the NASA/GSFC Director's Discretionary Fund, the STScI IDEAS grant program and the NASA/GSFC Space Science Data Operations Office.

  4. Conceptual Background to Radio

    NASA Astrophysics Data System (ADS)

    Ponsonby, J. E. B.

    2004-06-01

    The International Telecommunications Union (ITU) conceives the radio spectrum as primarily a resource for telecommunications. Indeed most applications of radio are for communications and other radio services, particularly the Radio Astronomy Service, are deemed to be `pretend'communication serviceas for spectrum amnagement purposes. The language of Radio Spectrum Management is permeated by the terminology ofcommunications, some derived from the physics of radio and some from aspects of information theory. This contribution touches on all the essential concepts of radiocommunications which the author thinks should be the common mental equipment of the Spectrum Manager. The fundamental capacity of a communication channel is discussed in terms of the degrees of freedom and bandwidth of a signal, and the signal to noise ratio. It is emphasized that an information bearing signal is inherently unpredictable, and must, at some level, be discontinuous. This has important consequences for the form of its power spectrum. The effect of inserting filters is discussed particularly with regard to constant amplitude signals and, in the context of non-linear power amplifiers, the phenomenon of`sideband recovery'. All the common generic forms of modulation are discussed including the very different case of `no-modulation' which applies in all forms of passive remote sensing. Whilst all are agreed that the radio spectrum should be used `efficiently', there is no quantitative measure of spectral efficiency which embraces all relevant aspects of spectral usage. These various aspects are dicussed. Finally a brief outline of some aspects of antennae are reviewed. It is pointed out that the recent introduction of so-called `active antennnae', which have properties unlike traditional passive antennae, has confused the interpretation of those ITU Radio Regulations which refer to antennae.

  5. Taxation of Small Business Corporations

    PubMed Central

    Flynn, W. Rand

    1980-01-01

    On December 6 1979, new legislation substantially changed the taxation of business income from Canadian-controlled private corporations. The new rules will be of particular interest to corporations providing personal, financial or management services, and to professionals contemplating the use of such corporations. PMID:21293665

  6. Constructive Engagement with the Corporation

    ERIC Educational Resources Information Center

    Siegel, David J.

    2007-01-01

    Many of the gravest concerns that critics of corporate culture have about the consequences of academic-corporate relationships are built on little more than ill-informed speculation, fueled by a lack of direct engagement with corporations. The solution to knowledge gap--and the key to liberation from fears of "creeping corporatization"--may

  7. Corporal Punishment and the Schools.

    ERIC Educational Resources Information Center

    Bauer, Gordon B.; And Others

    1990-01-01

    In order to understand and evaluate the continued prevalence of corporal punishment in school systems, this article reviews the following topics: (1) historical issues; (2) current demographics and correlates; (3) the effectiveness of corporal punishment in school settings; (4) myths; (5) alternatives to corporal punishment; and (6) social policy.

  8. Comparison of the Ionospheric Electron Density Profiles Obtained by COSMIC Radio Occultation with Ground-based Measurements

    NASA Astrophysics Data System (ADS)

    Zakharenkova, I.; Shagimuratov, I.; Krankowski, A.

    2009-04-01

    The Radio Occultation technique using GPS signals has been proven to be a promising technique to retrieve accurate profiles of the ionospheric electron density with high vertical resolution on a global scale. Formosat-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) is a joint scientific mission between Taiwan and the U.S.A. The mission placed six small micro-satellites into six different orbits at 700~800 kilometer above the earth surface. Each microsatellite has a GPS Occultation Experiment payload to operate the ionospheric radio occultation (RO). With the ability of performing both rising and setting occultation, Formosat-3/COSMIC has been producing about 2000 profiles of the ionospheric electron density per day - much more than ever before. In the given paper we used the ionograms recorded by European ionosonde stations for the cases of winter and summer solstices and time of quiet and geomagnetically disturbed days in March 2008 and compare these ground measured data with the GPS COSMIC radio occultation ionospheric profiles. This result is important to validate the reliability of the COSMIC ionospheric observations using the radio occultation technique. The comparison of RO data with measurements provided by European ionosondes (Pruhonice, Iuliusruh, Ebre, Rome) indicates that usually COSMIC RO profiles are in a good agreement with ionosonde's profiles both in the F2 layer peak electron density (NmF2) and the bottom side part of the profiles. The coincidence of profiles is better in the cases when projection of the ray path of tangent points is closer to the ionosonde location. But it is necessary to mention that practically for all analyzed cases there are observed the understated values of electron density in the topside part of the ionosonde's profiles in compare with RO profiles. As the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC radio occultation measurements can make an important contribution to the investigation of the topside part of the ionosphere. We acknowledge the Taiwan's National Space Organization (NSPO) and the University Corporation for Atmospheric Research (UCAR) for providing the COSMIC Data. We are grateful to European Digital Upper Atmosphere Server (DIAS) for providing the ionosondes' products.

  9. Building and Operating Weather Satellite Ground Stations for High School Science. Teachers Guide.

    ERIC Educational Resources Information Center

    Summers, R. Joe; Gotwald, Timothy

    Automatic Picture Transmission (APT) images are real-time weather pictures transmitted from satellites on a radio frequency in a video format. Amateur radio enthusiasts and electronic experimenters have for a number of years designed, built, and operated direct readout stations capable of receiving APT photographs. The equipment to receive weather…

  10. Astrometry of southern radio sources.

    PubMed

    White, G L; Jauncey, D L; Harvey, B R; Savage, A; Gulkis, S; Preston, R A; Peterson, B A; Reynolds, J E; Nicolson, G D; Malin, D F

    1991-01-01

    An overview is presented of a number of astrometry and astrophysics programs based on radio sources from the Parkes 2.7 GHz catalogues. The programs cover the optical identification and spectroscopy of flat-spectrum Parkes sources and the determination of their milliarc-second radio structures and positions. Work is also in progress to tie together the radio and Hipparcos positional reference frames. A parallel program of radio and optical astrometry of southern radio stars is also under way. PMID:11538705

  11. Industrial Analytics Corporation

    SciTech Connect

    Industrial Analytics Corporation

    2004-01-30

    The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

  12. Satellite sound broadcasting system study: Mobile considerations

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser

    1990-01-01

    Discussed here is the mobile reception part of a study to investigate a satellite sound broadcast system in the UHF or L bands. Existing propagation and reception measurements are used with proper interpretation to evaluate the signaling, coding, and diversity alternatives suitable for the system. Signal attenuation in streets shadowed by buildings appear to be around 29 db, considerably higher than the 10 db adopted by CCIR. With the marriage of proper technologies, an LMSS class satellite can provide substantial direct satellite audio broadcast capability in UHF or L bands for high quality mobile and portable indoor reception by low cost radio receivers. This scheme requires terrestrial repeaters for satisfactory mobile reception in urban areas. A specialized bandwidth efficient spread spectrum signalling technique is particularly suitable for the terrestrial repeaters.

  13. The impact of WARC '79 on space applications and research. [World Administrative Radio Conference

    NASA Technical Reports Server (NTRS)

    Kiebler, J. W.

    1980-01-01

    Prior to the 1979 World Administrative Radio Conference (WARC), no frequency bands were allocated for remote sensing measurements. Actions taken by the WARC insure that frequencies will be available for such use, and that operations can be conducted without harmful interference on a worldwide basis for the benefit of all nations. New global allocations for Space Research will permit worldwide acquisition of research data via relay satellites. Wideband allocations for deep-space research will allow more accurate position determination of deep-space probes and transmission of higher resolution data. The WARC had an impact on a number of other applications and research areas such as: meteorological satellites, land-mobile satellites, search and rescue systems, solar power satellites, standard-frequency satellites, radio astronomy and the search for extraterrestrial intelligence. The actions taken at the WARC affecting these services and applications will be described in the paper.

  14. "SpaceCam": Legal Issues in the Use of Remote-Sensing Satellites for News Gathering.

    ERIC Educational Resources Information Center

    Smith, William E.

    News media representatives foresee a growing use of remote-sensing satellites to gather data, including data that could be used to check government claims about military and other activities occurring anywhere on the planet. The satellite technology is developing rapidly, and several nations and private corporations are involved in separate

  15. Satellite Communications for U.S. Schools; A Proposed Public Service Offering by Private Business.

    ERIC Educational Resources Information Center

    Krause, Lloyd I.

    The Federal Communications Commission has asked that companies seeking authorization to construct and operate communications satellite facilities for multi-purpose commercial uses in the United States give consideration to the communications needs of schools. In response to this request, MCI Lockheed Satellite Corporation proposes a low-cost

  16. Short-term GNSS satellite clock stability

    NASA Astrophysics Data System (ADS)

    Griggs, E.; Kursinski, E. R.; Akos, D.

    2015-08-01

    Global Navigation Satellite System (GNSS) clock stability is characterized via the modified Allan deviation using active hydrogen masers as the receiver frequency reference. The high stability of the maser reference allows the GNSS clock contribution to the GNSS carrier phase variance to be determined quite accurately. Satellite clock stability for four different GNSS constellations are presented, highlighting the similarities and differences between the constellations as well as satellite blocks and clock types. Impact on high-rate applications, such as GNSS radio occultation (RO), is assessed through the calculation of the maximum carrier phase error due to clock instability. White phase noise appears to dominate at subsecond time scales. However, while we derived the theoretical contribution of white phase modulation to the modified Allan deviation, our analysis of the GNSS satellite clocks was limited to 1-200 s time scales because of inconsistencies between the subsecond results from the commercial and software-defined receivers. The rubidium frequency standards on board the Global Positioning System (GPS) Block IIF, BeiDou, and Galileo satellites show improved stability results in comparison to previous GPS blocks for time scales relevant to RO. The Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) satellites are the least stable of the GNSS constellations in the short term and will need high-rate corrections to produce RO results comparable to those from the other GNSS constellations.

  17. Iodine Satellite

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to include iodine compatible control valves with internal heaters and temperature sensors to coincide with the iodine-compatible thruster. A key advantage to using iodine as a propellant is that it may be stored in the tank as an unpressurized solid on the ground and before flight operations. During operations, the tank is heated to vaporize the propellant. Iodine vapor is then routed through custom flow control valves to control mass flow to the thruster and cathode assembly. The thruster then ionizes the vapor and accelerates it via magnetic and electrostatic fields, resulting in high specific impulse, characteristic of a highly efficient propulsion system. The iSat spacecraft is a 12-unit (12U) CubeSat with dimensions of about 8 inches x 8 inches x 12 inches (20 centimeters x 20 centimeters x 30 centimeters). The spacecraft frame will be constructed from aluminum with a finish to prevent iodine-driven corrosion. The iSat spacecraft includes full three-axis control and will leverage heat generated by spacecraft components and radiators for a passive thermal control system. After the CubeSat has successfully detached from its launch vehicle, it will deploy its solar panels, correct for tip-off and maintain attitude control before ground contact. An initial check-out period of two weeks is planned for testing all subsystems. The spacecraft will charge the power system while in sunlight, using momentum wheels and magnetic torque rods to rotate the vehicle to the required attitude.

  18. Radio frequency observations of lightning discharges by the forte satellite.

    SciTech Connect

    Shao, X.; Jacobson, A. R.; Light, T.; Suszcynsky, D. M.

    2002-01-01

    FORTE-observed VHF signatures for different lightning discharges are presented. For in-cloud discharges, a pulse pair is typically recorded and is named a 'transionospheric pulse pair' (TIPP). Many intense TIPPs are coherent and polarized, whereas initial and dart leaders do not show a recognizable degree of polarization. TIPPs are optically weaker than cloud-to-ground (CG) strokes, and stronger VHF TIPPs are optically darker. About 10% of CG strokes, mostly over seawater, produce extremely narrow, powerful VHF pulses at the very beginning of the return strokes. These narrow pulses are found to form an upward beam pattern.

  19. Single pass Doppler positioning for Search and Rescue satellite missions

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.; Vonbun, F. O.; Lynn, J. J.

    1976-01-01

    This paper describes the implementation of beacon location experiments involving the NASA Nimbus-6 and the Amateur Satellite Corporation (AMSAT) Oscar-6 and Oscar-7 spacecraft. The purpose of these experiments is to demonstrate the feasibility of determining the geographical location of a low power VHF 'distress beacon' via satellite. Doppler data collected during satellite passes is reduced in a mini-computer by means of a simple algorithm resulting in the simultaneous recovery of the unknown receiver coordinates and the unknown Doppler bias frequency. Results indicate point positioning to within a few kilometers - which is within the required accuracies for the positioning of downed aircraft for Search/Rescue missions.

  20. Orbit Modelling for Satellites Using the NASA Prediction Bulletins

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Koch, D. W.; Maslyar, G. A.; Foreman, J. C.

    1976-01-01

    For some satellites the NASA Prediction Bulletins are the only means available to the general user for obtaining orbital information. A computational interface between the information given in the NASA Prediction Bulletins and standard orbit determination programs is provided. Such an interface is necessary to obtain accurate orbit predictions. The theoretical considerations and their computational verification in this interface modelling are presented. This analysis was performed in conjunction with satellite aided search and rescue position location experiments where accurate orbits of the Amateur Satellite Corporation (AMSAT) OSCAR-6 and OSCAR-7 spacecraft are a prerequisite.

  1. An overview of satellite transmission issues and the ISDN

    NASA Astrophysics Data System (ADS)

    Knight, Ivor N.; Neibert, Mark T.

    Satellite communications are examined in terms of services, flexibility, connectivity, and quality. Present business communications services and the need for a corporate communication network are discussed. The development of an integrated services digital network (ISDN) is proposed; the capabilities and advantages of ISDN are described. Consideration is given to the interconnectibility of ISDN and methods for improving transmission quality.

  2. A Guide to the Literature on Application of Communications Satellites to Educational Development.

    ERIC Educational Resources Information Center

    Morgan, Robert P.; Singh, Jai P.

    Because of the ability of communications satellites to distribute electronic information (radio, television, digital computer data) over wide areas with potentially attractive costs, considerable interest has been shown in using satellite technology to enhance educational programs, both in the United States and in other countries. In view of these

  3. Effects of implanted radio transmitters with percutaneous antennas on the behavior of Canada Geese

    USGS Publications Warehouse

    Hupp, J.W.; Ruhl, G.A.; Pearce, J.M.; Mulcahy, D.M.; Tomeo, M.A.

    2003-01-01

    We examined whether surgically-implanted radio transmitters with percutaneous antennas affected behavior of Lesser Canada Geese (Branta canadensis parvipes) in Anchorage, Alaska. We implanted either a 26-g VHF radio transmitter or a larger VHF radio that was the same mass (35 g) and shape as a satellite transmitter in the coelom of adult females captured during molt in 2000. A control group of females was marked with leg bands. We simultaneously observed behavior of radio-marked and control females from 4-62 d following capture. We observed no differences in the proportion of time birds in different treatments allocated among grazing, resting, comfort, walking, and alert behavior. Females in different treatments spent a similar proportion of time in the water. Implantation of radio transmitters did not affect the frequency of agonistic interactions. We conclude that coelomic radio transmitters with percutaneous antennas had minimal effects on the behavior of Canada Geese.

  4. Feasibility of microminiature satellites

    NASA Astrophysics Data System (ADS)

    Imai, Ryouichi

    1991-07-01

    A conceptual study is conducted on technical problems and system design techniques to accomplish higher performance microminiature satellites by smaller systems. Applications of microminiature satellite technology to practical satellite mission are mentioned. Concepts of microminiature satellites, measures to miniaturize satellites, and micro-miniaturization technologies for communication and data processing, electric solar power paddle, attitude and orbit control, structure, thermal control, propulsion, and instrumentation systems are outlined. Examples of miniaturizing satellite missions such as planet exploration, low-altitude communication networks, space positioning system, low-altitude earth observation mission, clustered satellites, tethered satellites, and timely observation are described. Satellite miniaturizing technology can also be used to launch systems by lasers, and superconductive linear catapults (space escalator). It is pointed out that keys to promote satellite miniaturization are electronics, precision machining, raw material, electric power source technologies, and system design technology to integrate those technologies.

  5. CMB quenching of high-redshift radio-loud AGNs

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Haardt, F.; Ciardi, B.; Sbarrato, T.; Gallo, E.; Tavecchio, F.; Celotti, A.

    2015-10-01

    The very existence of more than a dozen of high-redshift (z ≳ 4) blazars indicates that a much larger population of misaligned powerful jetted active galactic nucleus (AGN) was already in place when the Universe was ≲1.5 Gyr old. Such parent population proved to be very elusive, and escaped direct detection in radio surveys so far. High-redshift blazars themselves seem to be failing in producing extended radio lobes, raising questions about the connection between such class and the vaster population of radio galaxies. We show that the interaction of the jet electrons with the intense cosmic microwave background (CMB) radiation explains the lack of extended radio emission in high-redshift blazars and in their parent population, helping to explain the apparently missing misaligned counterparts of high-redshift blazars. On the other hand, the emission from the more compact and more magnetized hotspots are less affected by the enhanced CMB energy density. By modelling the spectral energy distribution of blazar lobes and hotspots, we find that most of them should be detectable by low-frequency deep radio observations, e.g. by LOw-Frequency ARray for radio astronomy and by relatively deep X-ray observations with good angular resolution, e.g. by the Chandra satellite. At high redshifts, the emission of a misaligned relativistic jet, being debeamed, is missed by current large sky area surveys. The isotropic flux produced in the hotspots can be below ˜1 mJy and the isotropic lobe radio emission is quenched by the CMB cooling. Consequently, even sources with very powerful jets can go undetected in current radio surveys, and misclassified as radio-quiet AGNs.

  6. Analyses for a Modernized GNSS Radio Occultation Receiver

    NASA Astrophysics Data System (ADS)

    Griggs, Erin R.

    Global Navigation Satellite System (GNSS) radio occultation (RO) is a remote sensing technique that exploits existing navigation signals to make global, real-time observations of the Earth's atmosphere. A specialized RO receiver makes measurements of signals originating from a transmitter onboard a GNSS spacecraft near the Earth's horizon. The radio wave is altered during passage through the Earth's atmosphere. The changes in the received signals are translated to the refractivity characteristics of the intervening medium, which enable the calculation of atmospheric pressure, temperature, and humidity. Current satellite missions employing GNSS RO have provided invaluable and timely information for weather and climate applications. Existing constellations of occultation satellites, however, are aging and producing fewer quality measurements. Replacement fleets of RO satellites are imperative to sustain and improve the global coverage and operational impact achieved by the current generation of RO satellites. This dissertation describes studies that facilitate the development of next generation RO receivers and satellite constellations. Multiple research efforts were conducted that aim to improve the quantity and quality of measurements made by a future satellite-based RO collection system. These studies range in magnitude and impact, and begin with a receiver development study using ground-based occultation data. Future RO constellations and collection opportunities were simulated and autonomous occultation prediction and scheduling capabilities were implemented. Finally, a comprehensive study was conducted to characterize the stability of the GNSS atomic frequency standards. Oscillator stability for a subset of satellites in the GNSS was found to be of insufficient quality at timescales relevant to RO collections and would degrade the atmospheric profiling capabilities of an RO system utilizing these signals. Recommendations for a high-rate clock correction network are proposed, which provides significant improvement to the fractional errors in the derived refractivity, pressure, and temperature values caused by the oscillator instabilities.

  7. Low-cost small satellites for astrophysical missions

    SciTech Connect

    Priedhorsky, W.C.

    1989-01-01

    A miniature satellite is a low-cost platform to support a small space experiment. Space astrophysics has been hindered by decades-long delays in important experiments. With miniature satellites, one hopes to reduce both experiment cost and lead time to an affordable level. Miniature satellites are not a new idea. The first scientific satellites, including Explorer I, were small and developed on a timescale of months. Important science was done by these pioneer missions. Though the easy discoveries have been made, important missions in exploration and follow-up can still be carried out from small platforms. Successful small satellite programs continue to this day. These include the OSCAR amateur radio satellite program, in which 12 small satellites, built by amateurs, have been flown over 25 years with no satellite failures (Fleeter, 1988). Two small free-flyers, GLOMAR and NUSAT, were ejected from the Shuttle in 1985. GLOMAR, a radio-relay experiment, was built in less than a year for under $1 million, and operated over a year in orbit. Small satellite projects continue to this day. Approaching launch are the Air Force STACKSAT array of 3 small satellites (P87-2), a number of other small satellites under Department of Defense auspices. The Air Force Space Test Program is developing a standard small experiment platform called STEP (Space Test Experiment Platform). NASA has started a small explorer program, beginning with SAMPEX, a solar and magnetospheric particle explorer, FAST, a fast auroral snapshot experiment, and SWAS, a submillimeter astronomy experiment. 5 refs., 2 figs., 2 tabs.

  8. The advent of land mobile satellite service systems

    NASA Astrophysics Data System (ADS)

    Pattan, Bruno

    1987-09-01

    The FCC has allocated the L-band spectrum to geostationary satellite-based mobile radio, mobile telephone, and other similar services, which will then become available for large numbers of rural and suburban users. An expedient means of increasing capacity involves the use of single channel per carrier, demand-assignment multiple access with voice and frequency reuse via multiple beams, and orbital reuse by means of multiple satellites. Attention is given to several of the operational, systematic, and technological considerations of the first generation of land mobile satellite services furnishing thin-route services throughout North America.

  9. Quad-Tree Visual-Calculus Analysis of Satellite Coverage

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.; Hockney, George; Kwan, Bruce

    2003-01-01

    An improved method of analysis of coverage of areas of the Earth by a constellation of radio-communication or scientific-observation satellites has been developed. This method is intended to supplant an older method in which the global-coverage-analysis problem is solved from a ground-to-satellite perspective. The present method provides for rapid and efficient analysis. This method is derived from a satellite-to-ground perspective and involves a unique combination of two techniques for multiresolution representation of map features on the surface of a sphere.

  10. FORTE satellite observations of VHF radiation from lightning discharges

    SciTech Connect

    Junor, William; Suszcynsky, D. M.; Jacobson, A. R.

    2004-01-01

    The Los Alamos National Laboratory/Sandia National Laboratory FORTE satellite is described and its capabilities for global remote sensing of lightning in the radio regime are described. Some results from 7 years of successful operation are presented. A future global lightning monitoring mission, VGLASS, is described. The FORTE satellite program has provided a powerful tool for the observation and understanding of the natural RF background due to thunderstorm activity. Unfortunately, because of hardware failures, the satellite ceased operation in late summer of 2003 after 6 years of very successful operation.

  11. Outer planet satellites

    SciTech Connect

    Schenk, P.M. )

    1991-01-01

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon. 210 refs.

  12. High redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Mccarthy, Patrick J.

    1993-01-01

    High redshift galaxies that host powerful radio sources are examined. An overview is presented of the content of radio surveys: 3CR and 3CRR, 4C and 4C/USS, B2/1 Jy, MG, MRC/1Jy, Parkes/PSR, B3, and ESO Key-Project. Narrow-line radio galaxies in the visible and UV, the source of ionization and excitation of the emission lines, emission-line luminosities, morphology of the line-emitting gas, physical properties and energetics, kinematics of the line-emitting gas, and implications from the emission lines are discussed. The morphologies and environments of the host galaxies, the alignment effect, and spectral energy distributions and ages are also examined.

  13. Radio emissions from Uranus

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Evans, D. R.; Romig, J. H.; Sawyer, C. B.

    1987-01-01

    The hardware of the Planetary Radio Astronomy Experiment aboard Voyager 2 and the results of the measurements of radio emissions from Uranus are described. Strong 40-kHz to 850-kHz radio emissions were detected after closest approach on the day-side of Uranus. The time variations of these emissions were periodic, with a period of 17.24 h closely matching that of Uranus's rotation and evidently being controlled by the strength and shape of its magnetic field. The instrument also recorded possible Uranian electrostatic discharges, vertex early arcs occurring in sequences of more than a dozen events with approximately 10-min period, and very intense isolated bursts lasting tens of minutes.

  14. Planetary radio waves

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1986-01-01

    Three planets, the earth, Jupiter and Saturn are known to emit nonthermal radio waves which require coherent radiation processes. The characteristic features (frequency spectrum, polarization, occurrence probability, radiation pattern) are discussed. Radiation which is externally controlled by the solar wind is distinguished from internally controlled radiation which only originates from Jupiter. The efficiency of the externally controlled radiation is roughly the same at all three planets (5 x 10 to the -6th) suggesting that similar processes are active there. The maser radiation mechanism for the generation of the radio waves and general requirements for the mechanism which couples the power generator to the region where the radio waves are generated are briefly discussed.

  15. Invisible Milky Way Satellite Uncovered With Help from NERSC

    SciTech Connect

    2011-01-01

    Astronomers predict that large spiral galaxies, like our Milky Way, have hundreds of satellite galaxies orbiting around them. While a few satellites are visible, like the Magellanic Clouds, many other galaxies are too dim to see. Scientists suspect that these faint satellite galaxies are primarily comprised of mysterious "dark matter," which makes up 85 percent of all matter in the universe and so far remains undetected. Using supercomputers at the National Energy Research Scientific Computing Center (NERSC), Sukanya Chakrabarti, an assistant professor of physics at Florida Atlantic University, developed a mathematical method to uncover these "dark" satellites. When she applied this method to our own Milky Way galaxy, Chakrabarti discovered a faint satellite might be lurking on the opposite side of the galaxy from Earth, approximately 300,000 light-years from the galactic center. According to Chakrabarti, the dark satellite galaxies create disturbances in the cold atomic hydrogen gas at the edges of the spiral galaxy's disk, and these perturbations reveal the mass, distance and location of the satellite. With the help of NERSC systems, she successfully validated her method by analyzing the radio observations of the Whirlpool Galaxy, which has a visible satellite one-third of its size, and NGC 1512, which has a satellite one-hundredth its size. Her calculations correctly predicted the mass and location of both of the known satellite galaxies. http://www.lbl.gov/cs/Archive/news031411.html

  16. Remote Radio Sounding Science for JIMO

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Reinisch, B. W.; Song, P.; Fung, S. F.; Benson, R. F.; Taylor, W. W.; Cooper, J. F.; Garcia, L.; Gallagher, D.

    2003-01-01

    Radio sounding of the Earth's top side ionosphere and magnetosphere is a proven technique from geospace missions such as the International Satellites for Ionospheric Studies (ISIS) and the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). Application of this technique to the Jupiter Icy Moons Orbiter (JIMO) mission will provide unique remote sensing observations of the plasma and magnetic field environments, and the subsurface conductivities, of Europa, Ganymede, and Callisto. Spatial structures of ionospheric plasma above the moon surfaces vary in response to magnetic field perturbations from (1) magnetospheric plasma flows, (2) ionospheric currents from ionization of sputtered surface material, and (3) induced electric currents in salty subsurface oceans. Radio sounding at 3 kHz to 10 MHz can provide globally-determined electron densities necessary for the extraction of the oceanic current signals and supplements in-situ plasma and magnetic field measurements. Subsurface variations in conductivity, can be investigated by radio sounding from 10 MHz to 40 MHz allowing the determination of the presence of dense and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts.

  17. Energy distributions of radio galaxies

    NASA Technical Reports Server (NTRS)

    Impey, Chris; Gregorini, Loretta

    1993-01-01

    Far-infrared observations of 140 radio galaxies which span a range of over four orders of magnitude in radio power, (from weak nuclear sources in nearby galaxies, to powerful FR II doubled lobed sources at moderate redshift) are presented. The strength of the far-infrared emission is more closely correlated with core than total radio emission. Far-infrared emission in radio galaxies represents star formation that is more closely tied to the active nucleus than to the global properties of the galaxy. The far-infrared luminosity function shows good continuity between radio galaxies and radio loud quasars.

  18. 47 CFR 101.145 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Interference to geostationary-satellites. 101.145 Section 101.145 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.145 Interference to...

  19. 47 CFR 101.145 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Interference to geostationary-satellites. 101.145 Section 101.145 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.145 Interference to...

  20. 47 CFR 101.145 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Interference to geostationary-satellites. 101.145 Section 101.145 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.145 Interference to...

  1. 47 CFR 101.145 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Interference to geostationary-satellites. 101.145 Section 101.145 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.145 Interference to...

  2. 47 CFR 101.145 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Interference to geostationary-satellites. 101.145 Section 101.145 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.145 Interference to...

  3. Advances in Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Baars, Jacob W. M.; D'Addario, Larry R.; Thompson, A. Richard

    2009-08-01

    The editors of the third Special Issue on Radio Telescopes, which appeared in the Proceedings of the IEEE in May 1994, surmised in their introduction that "perhaps yet a future issue is merited, one devoted to those new telescopes that are still on the drawing boards." Now, 15 years later, such an issue lies in front of you, featuring 16 papers describing both the realization of new instruments and the status of several giant radio telescopes, most of which are moving from the drawing board to different stages of construction. The development of astronomy over this period has led radio astronomers to concentrate on both the highest and the lowest ranges of the radio spectrum. The technological advance in the millimeter wavelength domain has enabled an enormous improvement in observing capabilities. In the low frequency range, roughly 10 - 2000 MHz, new telescopes are being planned that combine a large instantaneous field of view with a large number of high- resolution antenna beams. In addition to these developments, this issue features papers on several new single aperture telescopes. We also have three papers covering advances in technologies that are applicable to multiple projects, namely, antenna metrology, imaging techniques, and the use of phased array techniques. The issue begins with a short paper by the guest editors on "Radio Astronomy in the Early Twenty-First Century." There we attempt to put the topics of the following papers in historical perspective and to provide background information for readers whose expertise lies outside astronomy. The remaining papers are organized into three broad categories: single antenna telescopes, synthesis array telescopes, and the Square Kilometre Array (SKA). Although the last is also a synthesis array, the intensity of SKA-related work now under way around the world justifies a separate set of papers devoted to it. This issue features new single-aperture and synthesis array radio telescopes and covers advances in antenna metrology, imaging techniques, and the use of phased array technology.

  4. Satellite Broadcasting; Congress on Electronics, 32nd, Rome, Italy, March 26-28, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Current developments in the technology of satellite radio and TV broadcasting are discussed in reviews and reports. System design aspects, economic factors, ground-station and receiver technology, and standardization and regulation problems are considered. Topics examined include the Olympus satellite and satellite broadcating in Italy, satellite broadcasting for third-world countries, CFRP support structures for high-stability reflector antennas, a 12-GHz DBS front end, TV standards, and legal problems of satellite TV broadcasting. The volume also contains papers from a workshop on biomedical computer-aided-imaging and graphics technology.

  5. Sensors Locate Radio Interference

    NASA Technical Reports Server (NTRS)

    2009-01-01

    After receiving a NASA Small Business Innovation Research (SBIR) contract from Kennedy Space Center, Soneticom Inc., based in West Melbourne, Florida, created algorithms for time difference of arrival and radio interferometry, which it used in its Lynx Location System (LLS) to locate electromagnetic interference that can disrupt radio communications. Soneticom is collaborating with the Federal Aviation Administration (FAA) to install and test the LLS at its field test center in New Jersey in preparation for deploying the LLS at commercial airports. The software collects data from each sensor in order to compute the location of the interfering emitter.

  6. Algonquin Radio Observatory

    NASA Astrophysics Data System (ADS)

    Berube, Mario; Klatt, Calvin

    2001-04-01

    The Algonquin Radio Observatory (ARO) is situated in Algonquin provincial park, about 250 km north of Ottawa and is operated by the Geodetic Survey Division of Natural Resources Canada in partnership with the Space Geodynamics Laboratory, CRESTech. The antenna is involved in a large number of international geodetic Very Long Base Interferometry (VLBI) experiments each year and is a key site in the ongoing Canadian S2 developments. The ARO is the most sensitive IVS Network Station. This report summarizes recent activities at the Algonquin Radio Observatory.

  7. Radio Emission from Supernovae

    SciTech Connect

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; Van Dyk, Schuyler D.; Stockdale, Christopher J.; Kelley, Matthew T.

    2009-05-03

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect dumpiness of the circumstellar material.

  8. Radio astronomy with microspacecraft

    NASA Technical Reports Server (NTRS)

    Collins, D.

    2001-01-01

    A dynamic constellation of microspacecraft in lunar orbit can carry out valuable radio astronomy investigations in the frequency range of 30kHz--30MHz, a range that is difficult to explore from Earth. In contrast to the radio astronomy ivestigations that have flown on individual spacecraft, the four microspacecraft together with a carrier spacecraft, which transported them to lunar orbit, form an interferometer with far superior angular resolution. Use of microspacecraft allows the entire constellation to be launched with a Taurus-class vehicle. Also distinguishing this approach is that the Moon is used as needed to shield the constellation from RF interference from the Earth and Sun.

  9. BeiDou Navigation Satellite System and its time scales

    NASA Astrophysics Data System (ADS)

    Han, Chunhao; Yang, Yuanxi; Cai, Zhiwu

    2011-08-01

    The development and current status of BeiDou Navigation Satellite System are briefly introduced. The definition and realization of the system time scales are described in detail. The BeiDou system time (BDT) is an internal and continuous time scale without leap seconds. It is maintained by the time and frequency system of the master station. The frequency accuracy of BDT is superior to 2 × 10-14 and its stability is better than 6 × 10-15/30 days. The satellite synchronization is realized by a two-way time transfer between the uplink stations and the satellite. The measurement uncertainty of satellite clock offsets is less than 2 ns. The BeiDou System has three modes of time services: radio determination satellite service (RDSS) one-way, RDSS two-way and radio navigation satellite service (RNSS) one-way. The uncertainty of the one-way time service is designed to be less than 50 ns, and that of the two-way time service is less than 10 ns. Finally, some coordinate tactics of UTC from the viewpoint of global navigation satellite systems (GNSS) are discussed. It would be helpful to stop the leap second, from our viewpoint, but to keep the UTC name, the continuity and the coordinate function unchanged.

  10. Detection of two satellites in the Cassini division of Saturn's rings

    NASA Technical Reports Server (NTRS)

    Marouf, E. A.; Tyler, G. L.

    1986-01-01

    The presence of two about 10-km-radius satellites within a 100-km-wide gap in the Cassini division of Saturn's rings is inferred from the observation of perturbations of nearby ring material. The perturbations are detected as regular fluctuations in the optical depth profile measured during Voyager radio occultation by the rings and are used to estimate the satellite's orbits and masses. The two satellites appear to 'shepherd' a 30-km-wide ringlet within the gap.

  11. Review of propagation characteristics and prediction for satellite links at frequencies of 10-40 GHz

    NASA Astrophysics Data System (ADS)

    Davies, P. G.; Lane, J. A.

    1986-07-01

    The paper is intended to provide a short review on earth-space propagation, concentrating on developments dating primarily from about 1982. The review is orientated towards the needs of radio services, specifically the fixed satellite, broadcasting satellite and mobile satellite services, and draws substantially on the work of the International Radio Consultative Committee (CCIR). The prediction methods on slant path attenuation and interference, including ducting, tropospheric scatter and unwanted crosspolar coupling, are treated in a general way. However, particular emphasis is placed on application to systems within Europe.

  12. 75 FR 10439 - Cognitive Radio Technologies and Software Defined Radios

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... Order 1. On March 17, 2005, the Commission adopted the Cognitive Radio Report and Order, 70 FR 23032... Memorandum Opinion and Order (MO&O), 72 FR 31190, June 6, 2007, which responded to two petitions filed in... COMMISSION 47 CFR Part 2 Cognitive Radio Technologies and Software Defined Radios AGENCY:...

  13. Prism beamswitch for radio telescopes.

    PubMed

    Payne, J M; Ulich, B L

    1978-12-01

    A dielectric prism and switching mechanism have been constructed for beamswitching a Cassegrain radio telescope. Spatially extended radio sources may be mapped without significant confusion utilizing the sensitivity and stability inherent in the conventional Dicke radiometer. PMID:18699031

  14. "Radio Theatre: A 'Laboratory' Approach."

    ERIC Educational Resources Information Center

    Potter, Douglas

    1983-01-01

    Presents guidelines and activities for radio theatre production. Covers playwriting, production techniques, skits, and improvisations. Includes an opening segment of a script adapted for radio of Chekhov's "A Marriage Proposal." (PD)

  15. 76 FR 46294 - Radio Broadcasting Services; AM or FM Proposals To Change the Community of License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ...The following applicants filed AM or FM proposals to change the community of license: ALEX MEDIA, INC., Station NEW, Facility ID 189554, BNPH-20110602AAW, From BLANCA, CO, To AVONDALE, CO; BLACK CROW RADIO, LLC, DEBTOR-IN-POSSESSION, Station WKRO-FM, Facility ID 5464, BPH-20110609ADM, From EDGEWATER, FL, To PORT ORANGE, FL; ETHER MINING CORPORATION, Station KPSF, Facility ID 161373,......

  16. 77 FR 45352 - Radio Broadcasting Services; AM or FM Proposals To Change the Community of License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ...The following applicants filed AM or FM proposals to change the community of license: NORTHSTAR BROADCATING CORPORATION, Station WRSV, Facility ID 54823, BPH-20120530AFQ, From ROCKY MOUNT, NC, To ELM CITY, NC; SIERRA RADIO, INC., Station KVXX, Facility ID 31618, BPH- 20101004ACX, From QUINCY, CA, To CONCOW,...

  17. Summary Statistics of CPB-Qualified Public Radio Stations, Fiscal Year 1972.

    ERIC Educational Resources Information Center

    Lee, S. Young; Pedone, Ronald J.

    Statistics in the areas of finance, employment, and broadcast and production for CPB-qualified (Corporation for Public Broadcasting) public radio stations are given in this report. Tables in the area of finance are presented specifying total funds, income, direct operating costs, and capital expenditure. Employment is divided into all employment

  18. Summary Statistics of CPB-Qualified Public Radio Stations: Fiscal Year 1971.

    ERIC Educational Resources Information Center

    Lee, S. Young; Pedone, Ronald J.

    Basic statistics on finance, employment, and broadcast and production activities of 103 Corporation for Public Broadcasting (CPB)--qualified radio stations in the United States and Puerto Rico for Fiscal Year 1971 are collected. The first section of the report deals with total funds, income, direct operating costs, capital expenditures, and other

  19. The First Wave: The Beginnings of Radio in Canadian Distance Education

    ERIC Educational Resources Information Center

    Buck, George H.

    2006-01-01

    This article describes one of the first developments and deployment of radio for distance learning and education in Canada, beginning in the early 1920s. Anticipating a recent initiative of public-private partnerships, the impetus, infrastructure, and initial programs were provided by a large corporation. Description of the system, its purpose,…

  20. Torun Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Torun Center for Astronomy is located at Piwnice, 15 km north of Torun, Poland. A part of the Faculty of Physics and Astronomy of the Nicolaus Copernicus University, it was created by the union of Torun Radio Astronomy Observatory (TRAO) and the Institute of Astronomy on 1 January 1997....

  1. Goldstone radio spectrum protection

    NASA Astrophysics Data System (ADS)

    Gaudian, B. A.; Cushman, R. B.

    1980-12-01

    Potential electromagnetic interference to the Goldstone tracking receivers due to neighboring military installations is discussed. Coordination of the military and NASA Goldstone activities in the Mojave Desert area is seen to be an effective method to protect the Goldstone radio spectrum while maintaining compatible operations for the military and Goldstone.

  2. Albanian: Basic Radio Communications.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This volume has been designed as a supplement to a course in Albanian developed by the Defense Language Institute. The emphasis in this text is placed on radio communications instruction. The volume is divided into five exercises, each of which contains a vocabulary, dictation, and an air-to-ground communications procedure conducted in Albanian

  3. Radio Channel Simulator (RCSM)

    Energy Science and Technology Software Center (ESTSC)

    2007-01-31

    This is a simulation package for making site specific predictions of radio signal strength. The software computes received power at discrete grid points as a function of the transmitter location and propagation environment. It is intended for use with wireless network simulation packages and to support wireless network deployments.

  4. Telling It by Radio

    ERIC Educational Resources Information Center

    Milander, Henry M.

    1975-01-01

    Olympic College purchased eight one-minute advertising spots per day for use seven days a week at a local independent radio station. Ten sample spots are presented. This economical approach was successful in increasing over-all enrollment and the number of FTE students; it also attracted many adults to the college. (DC)

  5. Svetloe Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Rahimov, Ismail

    2013-01-01

    This report summarizes information about the Svetloe Radio Astronomical Observatory activities in 2012. Last year, a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to their required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  6. RADIO RANGING DEVICE

    DOEpatents

    Nieset, R.T.

    1961-05-16

    A radio ranging device is described. It utilizes a super regenerative detector-oscillator in which echoes of transmitted pulses are received in proper phase to reduce noise energy at a selected range and also at multiples of the selected range.

  7. Zelenchukskaya Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Dyakov, Andrei

    2013-01-01

    This report summarizes information about Zelenchukskaya Radio Astronomical Observatory activities in 2012. Last year a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to the required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  8. Working for Cairo Radio.

    ERIC Educational Resources Information Center

    Drake, Harold L.

    This paper reports the personal experiences of a Fulbright scholar working in the Egyptian government's Cairo broadcast facility, offering an inside understanding of some of the broadcasting procedures used by Egyptian mass media. Besides descriptions of the broadcasting procedures at Cairo Radio, the paper contains notes on announcers' training

  9. A Tour of the Goldstone-Apple Valley Radio Telescope

    NASA Technical Reports Server (NTRS)

    Ardenski, Brooke; Stephan, George R.

    1997-01-01

    Goldstone-Apple Valley Radio Telescope (GAVRT) is located in a remote area of the Mojave Desert, 40 miles north of Barstow, California. The antenna, identified as DSS-12, is a 34-meter diameter dish, 11 times the diameter of a ten foot microwave dish used for satellite television. DSS-12 has been used by NASA to communicate with robotic space probes for more than thirty years.

  10. Corporate citizenship: Statoil.

    PubMed

    Fjell, Olav

    2003-01-01

    Open markets alone do not guarantee equitable and sustainable development. Income disparities are growing both within and between countries to the extent that the marginalization of the poor has become a key challenge of globalization. To meet this challenge, the global community must address the governance gap between global finance/economics and local or national politics in world affairs. This article discusses how globalization is shaping Statoil's approach to corporate citizenship. The Norwegian firm, with 17,000 workers in some 25 countries, is one of the major net sellers of crude oil and supplies Europe with natural gas. Statoil maintains that corporations can contribute to global governance by conducting business in a manner that is ethical, economically viable, environmentally sound, and socially responsible. This contribution can be achieved through development partnerships with national governments, multilateral institutions, and nongovernmental organizations. Norway's Statoil ASA is one of the world's largest net sellers of crude oil and a major supplier of natural gas to Europe. It is the leading Scandinavian retailer of petroleum and other oil products. Statoil employs approximately 17,000 workers and operates in 25 countries. PMID:17208716

  11. Business Development Corporation, Inc.

    SciTech Connect

    Jasek, S.

    1995-12-31

    Business Development Corporation, Inc., is a company specializing in opportunity seeking and business development activities in the {open_quotes}new{close_quotes} post communist Central and Eastern Europe, with particular emphasis on the Republics of Poland and Slovakia. The company currently focuses its expertise on strategic investing and business development between Central Europe and the United States of America. In Poland and Slovakia, the company specializes in developing large scale energy and environmental {open_quotes}infrastructure{close_quotes} development projects on the federal, state, and local level. In addition, the company assists large state owned industries in the transformation and privatization process. Business Development Corporation has assisted and continues to assist in projects of national importance. The staff of experts advise numerous large Polish and Slovak companies, most owned or in the process of privatization, on matters of restructuring, finance, capital structure, strategic parternships or investors, mergers, acquisitions and joint ventures with U.S. based firms. The company also assists and advises on a variety of environmental and energy matters in the public and private sector.

  12. Developing Radio Beam Geometry and Luminosity Models of Pulsars

    NASA Astrophysics Data System (ADS)

    Story, S.; Giacherio, B.; Gonthier, P.; Harding, A.

    2004-12-01

    Our recent studies of pulsar population statistics suggest that improvements of radio and gamma-ray beam geometry and luminosity models require further refinement. The polarization properties of radio profiles of gamma-ray pulsars do not suggest that short period pulsars are core dominated, as discussed by the study of Arzoumanian, Chernoff & Cordes (2002). Furthermore, the predicted radio luminosity in this model seems to be too large compared to those observed. The goal of this project is to constrain the viewing geometry for some radio pulsars, especially three-peaked pulse profiles, in order to limit the uncertainty of the magnetic inclination and impact angles. We perform fits of the pulse profile and position angle sweep of radio pulsars for the available frequencies. We assume a single core and conal beams described by Gaussians. We incorporate three different size cones with frequency dependence from the work of Mitra and Deshpande (1999). We obtain separate spectral indices for the core and cone beams and explore the trends of the ratio of core to cone peak fluxes. This ratio is observed to have some dependence with period. However, we cannot establish the suggested functional form of this ratio as indicated by the work of Arzoumanian, Chernoff & Cordes (2002). We will present our current findings and implications. We express our gratitude for the generous support of the Research Corporation (CC5813), of the National Science Foundation (REU and AST-0307365), the Michigan Space Grant Consortium and the NASA Astrophysics Theory Program.

  13. The LOFAR radio environment

    NASA Astrophysics Data System (ADS)

    Offringa, A. R.; de Bruyn, A. G.; Zaroubi, S.; van Diepen, G.; Martinez-Ruby, O.; Labropoulos, P.; Brentjens, M. A.; Ciardi, B.; Daiboo, S.; Harker, G.; Jelić, V.; Kazemi, S.; Koopmans, L. V. E.; Mellema, G.; Pandey, V. N.; Pizzo, R. F.; Schaye, J.; Vedantham, H.; Veligatla, V.; Wijnholds, S. J.; Yatawatta, S.; Zarka, P.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, M.; Beck, R.; Bell, M.; Bell, M. R.; Bentum, M.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Butcher, H.; Conway, J.; de Vos, M.; Dettmar, R. J.; Eisloeffel, J.; Falcke, H.; Fender, R.; Frieswijk, W.; Gerbers, M.; Griessmeier, J. M.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hessels, J.; Hoeft, M.; Horneffer, A.; Karastergiou, A.; Kondratiev, V.; Koopman, Y.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Mann, G.; McKean, J.; Meulman, H.; Mevius, M.; Mol, J. D.; Nijboer, R.; Noordam, J.; Norden, M.; Paas, H.; Pandey, M.; Pizzo, R.; Polatidis, A.; Rafferty, D.; Rawlings, S.; Reich, W.; Röttgering, H. J. A.; Schoenmakers, A. P.; Sluman, J.; Smirnov, O.; Sobey, C.; Stappers, B.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; van Ardenne, A.; van Cappellen, W.; van Duin, A. P.; van Haarlem, M.; van Leeuwen, J.; van Weeren, R. J.; Vermeulen, R.; Vocks, C.; Wijers, R. A. M. J.; Wise, M.; Wucknitz, O.

    2013-01-01

    Aims: This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods: We have analysed the radio-frequency interference (RFI) situation in two 24-h surveys with Dutch LOFAR stations, covering 30-78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz/1 s resolution. Results: We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFAR's nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linearly when decreasing the data frequency resolution. Conclusions: Currently, by using an automated RFI detection strategy, the LOFAR radio environment poses no perceivable problems for sensitive observing. It remains to be seen if this is still true for very deep observations that integrate over tens of nights, but the situation looks promising. Reasons for the low impact of RFI are the high spectral and time resolution of LOFAR; accurate detection methods; strong filters and high receiver linearity; and the proximity of the antennas to the ground. We discuss some strategies that can be used once low-level RFI starts to become apparent. It is important that the frequency range of LOFAR remains free of broadband interference, such as DAB stations and windmills.

  14. Collaborative Beamfocusing Radio (COBRA)

    NASA Astrophysics Data System (ADS)

    Rode, Jeremy P.; Hsu, Mark J.; Smith, David; Husain, Anis

    2013-05-01

    A Ziva team has recently demonstrated a novel technique called Collaborative Beamfocusing Radios (COBRA) which enables an ad-hoc collection of distributed commercial off-the-shelf software defined radios to coherently align and beamform to a remote radio. COBRA promises to operate even in high multipath and non-line-of-sight environments as well as mobile applications without resorting to computationally expensive closed loop techniques that are currently unable to operate with significant movement. COBRA exploits two key technologies to achieve coherent beamforming. The first is Time Reversal (TR) which compensates for multipath and automatically discovers the optimal spatio-temporal matched filter to enable peak signal gains (up to 20 dB) and diffraction-limited focusing at the intended receiver in NLOS and severe multipath environments. The second is time-aligned buffering which enables TR to synchronize distributed transmitters into a collaborative array. This time alignment algorithm avoids causality violations through the use of reciprocal buffering. Preserving spatio-temporal reciprocity through the TR capture and retransmission process achieves coherent alignment across multiple radios at ~GHz carriers using only standard quartz-oscillators. COBRA has been demonstrated in the lab, aligning two off-the-shelf software defined radios over-the-air to an accuracy of better than 2 degrees of carrier alignment at 450 MHz. The COBRA algorithms are lightweight, with computation in 5 ms on a smartphone class microprocessor. COBRA also has low start-up latency, achieving high accuracy from a cold-start in 30 ms. The COBRA technique opens up a large number of new capabilities in communications, and electronic warfare including selective spatial jamming, geolocation and anti-geolocation.

  15. The Nicaragua Radio Mathematics Project.

    ERIC Educational Resources Information Center

    Searle, Barbara

    The Radio Mathematics Project was funded by the Agency for International Development to design, implement, and evaluate, in conjunction with personnel of a developing country, a system for teaching primary-grade mathematics by radio. In July 1974, a project in Nicaragua began with a series of radio presentations, each followed by 20 minutes of

  16. The DSN radio science system

    NASA Technical Reports Server (NTRS)

    Buckles, B. J.

    1981-01-01

    The Radio Science experiments at Voyager 1 Saturn encounter which included two atmospheric occultations, a planetary ring occultation, and ring scattering experiment were supported by Deep Space Stations in Australia (DSS 43) and Spain (DSS 63). The DSN Radio Science System data flow from receipt of the radio signals at the antenna to delivery of the recorded data to the project are described.

  17. Writing the Instructional Radio Script.

    ERIC Educational Resources Information Center

    de Fossard, Esta

    This guide was developed for script writers on the Radio Language Arts Project, which was designed to develop, implement, and test the effectiveness of an instructional radio system to teach English as a second language at the primary school level in Kenya. The project was planned to produce a radio-based, English language program with

  18. Ham Radio is Mir Magic.

    ERIC Educational Resources Information Center

    Evans, Gary

    1997-01-01

    Presents a classroom activity in which students communicated with U.S. and Russian astronauts via ham radio while they were in orbit on the space station Mir. Gives suggestions for other ham radio classroom activities as well as names of organizations, publications, and grant programs that teachers can access to help in bring ham radio into their

  19. Stories of a Corporate World: The Corporate Colonization of Narrative.

    ERIC Educational Resources Information Center

    Combs, Jason E.

    Following Stanley Deetz's (1992) work, this paper argues that storytelling can operate as a powerful medium for corporate colonization. Stories exist as sites where subjectivity forms through the intersection of various ideologies. As one such ideology, managerialism structures the world in ways that privilege the interests of corporate elites.

  20. Local oscillator distribution using a geostationary satellite

    NASA Technical Reports Server (NTRS)

    Bardin, Joseph; Weinreb, Sander; Bagri, Durga

    2004-01-01

    A satellite communication system suitable for distribution of local oscillator reference signals for a widely spaced microwave array has been developed and tested experimentally. The system uses a round-trip correction method of the satellite This experiment was carried out using Telstar-5, a commercial Ku-band geostationary satellite. For this initial experiment, both earth stations were located at the same site to facilitate direct comparison of the received signals. The local oscillator reference frequency was chosen to be 300MHz and was sent as the difference between two Ku-band tones. The residual error after applying the round trip correction has been measured to be better than 3psec for integration times ranging from 1 to 2000 seconds. For integration times greater then 500 seconds, the system outperforms a pair of hydrogen masers with the limitation believed to be ground-based equipment phase stability. The idea of distributing local oscillators using a geostationary satellite is not new; several researchers experimented with this technique in the eighties, but the achieved accuracy was 3 to 100 times worse than the present results. Since substantially and the performance of various components has improved. An important factor is the leasing of small amounts of satellite communication bandwidth. We lease three 100kHz bands at approximately one hundredth the cost of a full 36 MHz transponder. Further tests of the system using terminal separated by large distances and comparison tests with two hydrogen masers and radio interferometry is needed.

  1. Potential markets for advanced satellite communications

    NASA Technical Reports Server (NTRS)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-01-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  2. The Canadian Corporate-Academic Complex

    ERIC Educational Resources Information Center

    Turk, James

    2010-01-01

    As universities more aggressively embrace corporate values, corporate management practices, corporate labor-relations policies, and corporate money, faculty associations face troubling challenges. The new reality is particularly hostile to academic freedom, and people see that hostility in the actions of corporate funders and university

  3. 12 CFR 5.42 - Corporate title.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Corporate title. 5.42 Section 5.42 Banks and... CORPORATE ACTIVITIES Other Changes in Activities and Operations 5.42 Corporate title. (a) Authority. 12 U... change its corporate title. (c) Standards. A national bank may change its corporate title provided...

  4. The Canadian Corporate-Academic Complex

    ERIC Educational Resources Information Center

    Turk, James

    2010-01-01

    As universities more aggressively embrace corporate values, corporate management practices, corporate labor-relations policies, and corporate money, faculty associations face troubling challenges. The new reality is particularly hostile to academic freedom, and people see that hostility in the actions of corporate funders and university…

  5. 27 CFR 40.494 - Corporate documents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Corporate documents. 40... Processed Tobacco 40.494 Corporate documents. Every corporation that files an application for a permit as... 40.492 a true copy of the corporate charter or a certificate of corporate existence or...

  6. 27 CFR 41.234 - Corporate documents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Corporate documents. 41... Processed Tobacco 41.234 Corporate documents. Every corporation that files an application for a permit as....231 a true copy of the corporate charter or a certificate of corporate existence or...

  7. Corporate Support of Higher Education, 1974.

    ERIC Educational Resources Information Center

    Council for Financial Aid to Education, New York, NY.

    This report presents some of the results of the first annual Survey of Corporate Contributions. The information included in this document relates primarily to corporate support of education. Tables cover: (1) national trends in corporate pre-tax net income and contributions; (2) corporate support of education as a percentage of total corporate

  8. Astronomers Make First Images With Space Radio Telescope

    NASA Astrophysics Data System (ADS)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as part of the VLBA instrument, was modified over the past four years to allow it to incorporate data from the satellite. Correlation of the observational data was completed successfully on June 12, after the exact timing of the satellite recording was established. Further computer processing produced an image of PKS 1519-273 -- the first image ever produced using a radio telescope in space. For Jim Ulvestad, the NRAO astronomer who made the first image, the success ended a long quest for this new capability. Ulvestad was involved in an experiment more than a decade ago in which a NASA communications satellite, TDRSS, was used to test the idea of doing radio astronomical imaging by combining data from space and ground radio telescopes. That experiment showed that an orbiting antenna could, in fact, work in conjunction with ground-based radio observatories, and paved the way for HALCA and a planned Russian radio astronomy satellite called RadioAstron. "This first image is an important technical milestone, and demonstrates the feasibility of a much more advanced mission, ARISE, currently being considered by NASA," Ulvestad said. The first image showed no structure in the object, even at the extremely fine level of detail achievable with HALCA; it is what astronomers call a "point source." This object also appears as a point source in all-ground-based observations. In addition, the 1986 TDRSS experiment observed the object, and, while this experiment did not produce an image, it indicated that PKS 1519-273 should be a point source. "This simple point image may not appear very impressive, but its beauty to us is that it shows our entire, complex system is functioning correctly. The system includes not only the orbiting and ground-based antennas, but also the orbit determination, tracking stations, the correlator, and the image-processing software," said Jonathan Romney, the NRAO astronomer who led the development of the VLBA correlator, and its enhancement to process data from orbiting radio telescopes. "We would b

  9. Galileo satellite antenna modeling

    NASA Astrophysics Data System (ADS)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  10. EMC of ground-based and space radio services - Criteria, conditions, and calculations

    NASA Astrophysics Data System (ADS)

    Borodich, Sergei V.

    Attention in this monograph is first given to the types of radio signals employed in ground-based and space radio services; their energy spectra are examined, and a description is given of methods for calculating interference for different combinations of signal and interference. Conditions for the satisfaction of EMC criteria are described, and the calculation of the required angular distribution of geostationary satellites is discussed. The effective utilization of the geostationary orbit and its potential capacity is considered.

  11. Observations of OH in comet Levy with the Nancay radio telescope

    NASA Technical Reports Server (NTRS)

    Bockelee-Morvan, Dominique; Colom, P.; Crovisier, Jacques; Gerard, E.; Bourgois, G.

    1992-01-01

    Due to extremely favorable excitation conditions, comet Levy (1990c) exhibited in August-September 1990 the strongest OH 18-cm signal ever recorded in a comet at the Nancay radio telescope. This unique opportunity was used to measure the OH satellite lines at 1612 and 1721 MHz, to perform extensive mapping of the OH radio emission and to make a sensitive evaluation of the cometary magnetic field, of the H2O outflow velocity and of the OH production rate.

  12. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  13. Digital Audio Radio Broadcast Systems Laboratory Testing Nearly Complete

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Radio history continues to be made at the NASA Lewis Research Center with the completion of phase one of the digital audio radio (DAR) testing conducted by the Consumer Electronics Group of the Electronic Industries Association. This satellite, satellite/terrestrial, and terrestrial digital technology will open up new audio broadcasting opportunities both domestically and worldwide. It will significantly improve the current quality of amplitude-modulated/frequency-modulated (AM/FM) radio with a new digitally modulated radio signal and will introduce true compact-disc-quality (CD-quality) sound for the first time. Lewis is hosting the laboratory testing of seven proposed digital audio radio systems and modes. Two of the proposed systems operate in two modes each, making a total of nine systems being tested. The nine systems are divided into the following types of transmission: in-band on-channel (IBOC), in-band adjacent-channel (IBAC), and new bands. The laboratory testing was conducted by the Consumer Electronics Group of the Electronic Industries Association. Subjective assessments of the audio recordings for each of the nine systems was conducted by the Communications Research Center in Ottawa, Canada, under contract to the Electronic Industries Association. The Communications Research Center has the only CCIR-qualified (Consultative Committee for International Radio) audio testing facility in North America. The main goals of the U.S. testing process are to (1) provide technical data to the Federal Communication Commission (FCC) so that it can establish a standard for digital audio receivers and transmitters and (2) provide the receiver and transmitter industries with the proper standards upon which to build their equipment. In addition, the data will be forwarded to the International Telecommunications Union to help in the establishment of international standards for digital audio receivers and transmitters, thus allowing U.S. manufacturers to compete in the world market.

  14. Antenna system characteristics and solar radio burst observations

    NASA Astrophysics Data System (ADS)

    Li, Sha; Yan, Yi-Hua; Chen, Zhi-Jun; Wang, Wei; Liu, Dong-Hao

    2015-11-01

    The Chinese Spectral Radio Heliograph (CSRH) is an advanced aperture synthesis solar radio heliograph, independently developed by National Astronomical Observatories, Chinese Academy of Sciences. It consists of 100 reflector antennas, which are grouped into two antenna arrays (CSRH-I and CSRH-II) for low and high frequency bands respectively. The frequency band of CSRH-I is 0.4-2 GHz and that for CSRH-II is 2-15 GHz. In the antenna and feed system, CSRH uses eleven feeds to receive signals coming from the Sun. The radiation pattern has a lower side lobe and the back lobe of the feed is well illuminated. The characteristics of gain G and antenna noise temperature T affect the quality of solar radio imaging. For CSRH, the measured G is larger than 60 dBi and T is less than 120 K. After CSRH-I was established, we successfully captured a solar radio burst between 1.2-1.6 GHz on 2010 November 12 using this instrument and this event was confirmed through observations with the Solar Broadband Radio Spectrometer at 2.84 GHz and the Geostationary Operational Environmental Satellite. In addition, an image obtained from CSRH-I clearly revealed the profile of the solar radio burst. The other observational work involved the imaging the Fengyun-2E geosynchronous satellite which is assumed to be a point source. Results indicate that the data processing method applied in this study for deleting errors in a noisy image could be used for processing images from other sources.

  15. Satellite-Delivered Learning.

    ERIC Educational Resources Information Center

    Arnall, Gail C.

    1987-01-01

    Discusses the application of satellite information delivery to training. Describes a new trend, horizontal programming. Also discusses vertical programming and in-house production of training materials. Lists vendors of satellite-based training. (CH)

  16. Stereo Measurements from Satellites

    NASA Technical Reports Server (NTRS)

    Adler, R.

    1982-01-01

    The papers in this presentation include: 1) 'Stereographic Observations from Geosynchronous Satellites: An Important New Tool for the Atmospheric Sciences'; 2) 'Thunderstorm Cloud Top Ascent Rates Determined from Stereoscopic Satellite Observations'; 3) 'Artificial Stereo Presentation of Meteorological Data Fields'.

  17. Density waves in Saturn's rings probed by radio and optical occultation - Observational tests of theory

    NASA Technical Reports Server (NTRS)

    Brophy, Thomas G.; Rosen, Paul A.

    1992-01-01

    A parallel examination is conducted of Voyager radio and photopolarimeter occultation observations of the Saturn A ring's density waves. The radio instrument waves exhibit an average -90 deg offset from the dynamical phase. A warping height of about 100-m amplitude can qualtitatively reproduce this phase shift, while preserving the overall model wave shape. These results may be profoundly relevant for satellite-ring torque calculations in Saturn's rings, given the deposition of all of the net torque of the standard model in the first wavelength.

  18. Radio and optical identification of giant radio galaxies from NVSS radio survey

    NASA Astrophysics Data System (ADS)

    Solovyov, D. I.; Verkhodanov, O. V.

    2014-04-01

    We investigate giant radio galaxy candidates that were selected based on the components cataloged as separate sources in the NVSS survey. The radio and optical identification is done for fifty radio galaxies using the CATS, NED, and SkyView databases.

  19. Irregularities in ionospheric plasma clouds: their evolution and effect on radio communication. Technical report

    SciTech Connect

    Vesecky, J.F.; Chamberlain, J.W.; Cornwall, J.M.; Hammer, D.A.; Perkins, F.W.

    1980-09-01

    Both satellite radio communications, which travel through the Earth's ionosphere, and high frequency (HF) sky wave circuits, which use the ionosphere as a refracting medium, can be strongly affected by radio wave scintillation. High altitude nuclear explosions cause scintillation (by strongly disturbing the ionosphere) and thus severely degrade satellite radio communications over a large region. Since further atmospheric nuclear tests are banned, a thorough understanding of the physics involved in both the disturbed ionosphere and its interaction with radio waves is necessary in order to design radio communications systems which will operate satisfactorily in a nuclear environment. During the 1980 JASON Summer Study we addressed some aspects of the evolution of ionospheric irregularities following a high altitude nuclear explosion--the radio wave propagation theory being apparently well understood for the satellite link case. In particular, we have worked on irregularity evolution at late times (approx. hours) after an explosion and the impact of early time irregularity structure on late time evolution. We also raise the question of scintillation effects on HF sky wave communications.

  20. Irregularities in ionospheric plasma clouds: Their evolution and effect on radio communication

    NASA Astrophysics Data System (ADS)

    Vesecky, J. F.; Chamberlain, J. W.; Cornwall, J. M.; Hammer, D. A.; Perkins, F. W.

    1980-09-01

    Both satellite radio communications, which travel through the Earth's ionosphere, and high frequency (HF) sky wave circuits, which use the ionosphere as a refracting medium, can be strongly affected by radio wave scintillation. High altitude nuclear explosions cause scintillation (by strongly disturbing the ionosphere) and thus severely degrade satellite radio communications over a large region. Since further atmospheric nuclear tests are banned, a thorough understanding of the physics involved in both the disturbed ionosphere and its interaction with radio waves is necessary in order to design radio communications systems which will operate satisfactorily in a nuclear environment. During the 1980 JASON Summer Study we addressed some aspects of the evolution of ionospheric irregularities following a high altitude nuclear explosion--the radio wave propagation theory being apparently well understood for the satellite link case. In particular, we have worked on irregularity evolution at late times (approx. hours) after an explosion and the impact of early time irregularity structure on late time evolution. We also raise the question of scintillation effects on HF sky wave communications.

  1. Corporal Punishment and Child Adjustment

    ERIC Educational Resources Information Center

    Aucoin, Katherine J.; Frick, Paul J.; Bodin, S. Doug

    2006-01-01

    The association between corporal punishment and children's emotional and behavioral functioning was studied in a sample of 98 non-referred children with a mean age of 12.35 (SD=1.72) recruited from two school systems in the southeastern United States. Children were divided into those who had experienced no corporal punishment over approximately a…

  2. Corporal Punishment and Child Adjustment

    ERIC Educational Resources Information Center

    Aucoin, Katherine J.; Frick, Paul J.; Bodin, S. Doug

    2006-01-01

    The association between corporal punishment and children's emotional and behavioral functioning was studied in a sample of 98 non-referred children with a mean age of 12.35 (SD=1.72) recruited from two school systems in the southeastern United States. Children were divided into those who had experienced no corporal punishment over approximately a

  3. Corporal Punishment in the Schools.

    ERIC Educational Resources Information Center

    Review and Evaluation Bulletins, 1981

    1981-01-01

    A continuing dichotomy in public opinion concerning the use of corporal punishment in Canadian schools provided the impetus for this paper, which includes a review of the relevant literature. Morality issues surrounding corporal punishment are discussed and public opinion data are exerpted from the Provincial Review of School Disciplinary Policy

  4. The Changing Shape of Corporations.

    ERIC Educational Resources Information Center

    Wagner, June G.

    2003-01-01

    This newsletter contains two articles dealing with the changing shape of corporations. The article "Trends in Business Culture" argues that Wal-Mart's emergence as the largest corporation in the United States reflects the larger economic shift in the U.S. economy from production of goods to provision of abstract goods such as services and

  5. The Banning of Corporal Punishment.

    ERIC Educational Resources Information Center

    Cryan, John R.

    1995-01-01

    Presents the 1985 resolution of the Association for Childhood Education International (ACEI) for participation in the interdisciplinary effort to ban corporal punishment. Discusses distinctions between discipline and child abuse. Reports medical and psychological effects of physical punishment, and relationships between school corporal punishment

  6. Fostering Rural/Corporate Partnerships.

    ERIC Educational Resources Information Center

    Vermillion, Mark

    1986-01-01

    Discusses how rural groups might approach corporations to forge partnerships for a variety of educational and community programs and activities. Makes specific suggestions for selecting corporations, writing the first requests for information, evaluating responses, and following up leads. Includes a section on the workings of Apple Computer's

  7. Mobile satellite systems. A review

    NASA Astrophysics Data System (ADS)

    McNally, J. L.; Breithaupt, R. W.

    The advantages of a mobile satellite system have been recognized worldwide, and after the 1979 World Administrative Radio Conference (WARC) identified spectrum in the 806 to 890 MHz band for region 2, the Canadian Government quickly took steps to provide mobile satellite services for all of Canada including the 200 mile offshore ocean territorial limits. A comprehensive set of technical, economic, and policy studies have been completed in Canada to determine the viability of a mobile service to satisfy Canada's requirements. This paper will present an overall review of these studies, give a rationale as to why narrowband technologies are necessary for the commercial viability of this service, and the approach taken in the development of these technologies. A brief review of activities and proposed mobile satellite systems in other areas besides North America is also given. The effect of an early entry by commercial interests (Telesat in Canada) will be examined including system parameters which require careful coordination within Canada and the U.S. operations in order to assure commercial viability in both countries. A review of some common requirements in the Canadian and U.S. systems will be discussed in order to standardize the system and equipment approaches for each country and provide mutual back-up in the event of a spacecraft anomaly. The trade-offs between the use of UHF (800 MHz) and L-Band (1.5 GHz) when used for true mobile applications are discussed. A hybrid system design is explored which would make the most appropriate use of both bands.

  8. Strange doings on Io. [Jupiter radio emission modification, sodium cloud, ionized sulfur and extreme brightness

    NASA Technical Reports Server (NTRS)

    Goody, R.

    1978-01-01

    Some unusual properties of Io are discussed, and possible explanations for these are considered. The properties discussed include Io's ability to modify radio waves emitted by Jupiter in the decametric band, the satellite's ionosphere and sodium cloud, its extraordinary brightness, and the presence of ionized sulfur just inside the satellite's orbit. Io's ability to modulate Jovian decametric radio emission is explained on the basis of the hypothesis that the satellite conducts electricity and interacts with Jupiter's magnetic field. Characteristics of the sodium cloud are reviewed, and the probable mechanism responsible for this cloud is outlined. It is concluded that the only plausible explanation for the brightness of Io is the presence of cat's-eye-type reflectors, possibly composed of crystalline deposits, on the satellite's surface.

  9. Tracking Weather Satellites.

    ERIC Educational Resources Information Center

    Martin, Helen E.

    1996-01-01

    Describes the use of weather satellites in providing an exciting, cohesive framework for students learning Earth and space science and in providing a hands-on approach to technology in the classroom. Discusses the history of weather satellites and classroom satellite tracking. (JRH)

  10. Predicting Close Satellite Encounters

    NASA Technical Reports Server (NTRS)

    Mccormick, B. R.; Vedder, J. D.; Compton, J. W.; Hirsch, G. N.

    1987-01-01

    Method for predicting probabilities of collisions between nominally geosynchronous satellites gives results without large computer resources. Realistically assesses possibility of collision between expired, drifting satellite and active, station-keeping satellite. Mathematical techniques in paper useful in analysis of such terrestrial risks as floods and nuclear accidents.

  11. Corporate U. Takes the Job Training Field.

    ERIC Educational Resources Information Center

    Greenberg, Richard

    1998-01-01

    Discusses corporations such as Sears, Motorola, Saturn, and Intel that have created their own corporate universities to train and retrain their workers. Highlights Motorola, the largest of the corporate universities. (JOW)

  12. Corporate Support of Education: Some Strings Attached

    ERIC Educational Resources Information Center

    Malott, Robert H.

    1978-01-01

    Corporate self-interest should guide corporate giving. Managers of publicly held corporations have the right, the capability, and the obligation to establish a philosophical screen to use in determining how shareholders' money is to be donated. (Author/MLF)

  13. Microarcsecond Radio Astrometry

    NASA Astrophysics Data System (ADS)

    Reid, M. J.; Honma, M.

    2014-08-01

    Astrometry provides the foundation for astrophysics. Accurate positions are required for the association of sources detected at different times or wavelengths, and distances are essential to estimate the size, luminosity, mass, and ages of most objects. Very long baseline interferometry at radio wavelengths, with diffraction-limited imaging at submilliarcsecond resolution, has long held the promise of microarcsecond astrometry. However, only in the past decade has this been routinely achieved. Currently, parallaxes for sources across the Milky Way are being measured with ˜10 μas accuracy, and proper motions of galaxies are being determined with accuracies of ˜1 μas year-1. The astrophysical applications of these measurements cover many fields, including star formation, evolved stars, stellar and supermassive black holes, Galactic structure, the history and fate of the Local Group, the Hubble constant, and tests of general relativity. This review summarizes the methods used and the astrophysical applications of microarcsecond radio astrometry.

  14. Distributed radio interferometric calibration

    NASA Astrophysics Data System (ADS)

    Yatawatta, Sarod

    2015-06-01

    Increasing data volumes delivered by a new generation of radio interferometers require computationally efficient and robust calibration algorithms. In this paper, we propose distributed calibration as a way of improving both computational cost as well as robustness in calibration. We exploit the data parallelism across frequency that is inherent in radio astronomical observations that are recorded as multiple channels at different frequencies. Moreover, we also exploit the smoothness of the variation of calibration parameters across frequency. Data parallelism enables us to distribute the computing load across a network of compute agents. Smoothness in frequency enables us to reformulate calibration as a consensus optimization problem. With this formulation, we enable flow of information between compute agents calibrating data at different frequencies, without actually passing the data, and thereby improving robustness. We present simulation results to show the feasibility as well as the advantages of distributed calibration as opposed to conventional calibration.

  15. Radio Interferometric Array - SCMA

    NASA Astrophysics Data System (ADS)

    Zekovic, V.; Segan, S.

    2012-12-01

    This paper gives the analysis and the solution to a radio interferometric array - SCMA (Serbian Centimeter/Millimeter Array). SCMA will be made of three experimental dish antennas, with an aim to study the high energy processes mainly in the Solar atmosphere, by application of detection and localization in the microwave frequency range (1-50 GHz). System design is modeled as e-VLBI configuration, providing the maximum angular resolution of ? 0?004. We simulate interferometric observations using models of idealized radio sources. The corresponding data were reconstructed using the CLEAN algorithm. The research shows that SCMA observing efficiency of non-thermal, thermal and line emissions of Galactic and cosmic scale sources is theoretically affirmed.

  16. Rosetta Radio Science Investigations

    NASA Technical Reports Server (NTRS)

    Patzold, M.; Neubauer, F. M.; Wennmacher, A.; Aksnes, K.; Anderson, J. D.; Asmar, S. W.; Tinto, M.; Tsurutani, B. T.; Yeomans, D. K.; Barriot, J. -P.; Bird, M. K.; Boehnhardt, H.; Gill, E.; Montenbruck, O.; Grun, E.; Hausler, B.; Ip, W. H.; Thomas, N.; Marouf, E. A.; Rickman, H.; Wallis, M. K.; Wickramasinghe, N. C.

    1996-01-01

    The Rosetta Radio Science Investigations (RSI) experiment was selected by the European Space Agency to be included in the International Rosetta Mission to comet P/Wirtanen (launch in 2003, arrival and operational phase at the comet 2011-2013). The RSI science objectives address fundamental aspects of cometary physics such as the mass and bulk density of the nucleus, the gravity field, non-gravitational forces, the size and shape, the internal structure, the composition and roughness of the nucleus surface, the abundance of large dust grains and the plasma content in the coma and the combined dust and gas mass flux on the orbiter. RSI will make use of the radio system of the Rosetta spacecraft.

  17. The optical communication link outage probability in satellite formation flying

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi; Gill, Eberhard

    2014-02-01

    In recent years, several space systems consisting of multiple satellites flying in close formation have been proposed for various purposes such as interferometric synthetic aperture radar measurement (TerraSAR-X and the TanDEM-X), detecting extra-solar earth-like planets (Terrestrial Planet Finder-TPF and Darwin), and demonstrating distributed space systems (DARPA F6 project). Another important purpose, which is the concern of this paper, is for improving radio frequency communication to mobile terrestrial and maritime subscribers. In this case, radio frequency signals from several satellites coherently combine such that the received/transmit signal strength is increased proportionally with the number of satellites in the formation. This increase in signal strength allows to enhance the communication data rate and/or to reduce energy consumption and the antenna size of terrestrial mobile users' equipment. However, a coherent combination of signals without aligning the phases of the individual communication signals interrupts the communication and outage link between the satellites and the user. The accuracy of the phase estimation is a function of the inter-satellite laser ranging system performance. This paper derives an outage probability model of a coherent combination communication system as a function of the pointing vibration and jitter statistics of an inter-satellite laser ranging system tool. The coherent combination probability model, which could be used to improve the communication to mobile subscribers in air, sea and ground is the main importance of this work.

  18. Operating frequencies for educational satellite services

    NASA Technical Reports Server (NTRS)

    Singh, J. P.

    1971-01-01

    The factors affecting the choice of transmission frequencies are identified. These include international radio regulations, natural environment, man-made environment, hardware considerations, and interconnection and spectrum space considerations. An analysis is presented of international radio regulations with emphasis on 1963 EARC and 1971 WARC frequency allocations, powerflux density restrictions, and resolutions concerning introduction of broadcasting-satellite systems. Natural-environmental effects were divided into two categories: (1) those due to transionospheric propagation, and (2) those that can be credited to the earth's atmosphere and its constituents. The frequency dependence of the signal attenuation, signal distortion, and contributions to system noise temperature due to environmental effects are discussed, and comparisons were made for frequencies of interest. Man-made environmental effects were examined in terms of various sharing limitations as well as the indigenous noise contribution to the overall system noise.

  19. Mobile satellite communications in the Forest Service

    NASA Technical Reports Server (NTRS)

    Warren, John R.

    1988-01-01

    There are usually some places within a forest that do not have adequate communication coverage due to line-of-sight or other reasons. These areas are generally known by the foresters and radio technicians and allowances are made for that when working or traveling in those areas. However, when wildfire or other emergencies occur, communications are vital because wildfires can require hundreds of firefighters and cover thousands of acres. During these emergency operations, the existing communications are not adequate and complete radio systems are moved into the area for the conduct of fire communications. Incident command posts (ICPs) and fire camps are set up in remote locations and there is constant need for communications in the fire area and to agency headquarters and dispatch offices. Mobile satellite communications would be an ideal supplement to the Forest Service's current communications system in aiding forest fire control activities.

  20. Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters

    NASA Astrophysics Data System (ADS)

    2008-10-01

    (Washington, DC. 08)- A team of scientists, including astronomers from the Naval Research Laboratory (NRL), have detected long wavelength radio emission from a colliding, massive galaxy cluster which, surprisingly, is not detected at the shorter wavelengths typically seen in these objects. The discovery implies that existing radio telescopes have missed a large population of these colliding objects. It also provides an important confirmation of the theoretical prediction that colliding galaxy clusters accelerate electrons and other particles to very high energies through the process of turbulent waves. The team revealed their findings in the October 16, 2008 edition of Nature. This new population of objects is most easily detected at long wavelengths. Professor Greg Taylor of the University of New Mexico and scientific director of the Long Wavelength Array (LWA) points out, "This result is just the tip of the iceberg. When an emerging suite of much more powerful low frequency telescopes, including the LWA in New Mexico, turn their views to the cosmos, the sky will 'light up' with hundreds or even thousands of colliding galaxy clusters." NRL has played a key role in promoting the development of this generation of new instruments and is currently involved with the development of the LWA. NRL radio astronomer and LWA Project Scientist Namir Kassim says "Our discovery of a previously hidden class of low frequency cluster-radio sources is particularly important since the study of galaxy clusters was a primary motivation for development of the LWA." The discovery of the emission in the galaxy cluster Abell 521 (or A521 for short) was made using the Giant Metrewave Radiotelescope (GMRT) in India, and its long wavelength nature was confirmed by the National Science Foundation's (NRAO) Very Large Array (VLA) radio telescope in New Mexico. The attached image shows the radio emission at a wavelength of 125cm in red superimposed on a blue image made from data taken by the Chandra X-ray Observatory. X-ray Chandra X-ray Image The X-ray emission comes from hot thermal gas, a well-known sign-post of massive galaxy clusters. Furthermore, its elongated shape indicates that the cluster has undergone a recent violent collision or "merger event" in which another group or cluster of galaxies was swallowed up by the gravitational potential of the main cluster. Interferometrics Inc. and NRL scientist Tracy Clarke, who is also the LWA System Scientist, notes "In addition to teaching us about the nature of Dark Matter, merging clusters are also important in studies of the mysterious nature of Dark Energy. Understanding these two strange components of the Universe will help us understand its ultimate destiny." In the radio image there is a strong, oblong source of emission located on the lower left periphery of the X-ray gas detected by Chandra; this is a separate source. In the center of the cluster, within the region indicated by a dashed circle, there is radio emission which changes significantly with wavelength. At the longest wavelength (125 cm, shown) it is clearly detected, but at a wavelength of 49 cm it is much fainter, and it is almost entirely gone at 21 cm wavelength. This multi-wavelength picture of the diffuse emission is in good agreement with theoretical predictions for particle acceleration by turbulent waves generated by a violent collision. People Who Read This Also Read... Black Holes Have Simple Feeding Habits NASAs Swift Satellite Catches First Supernova in The Act of Exploding Oldest Known Objects Are Surprisingly Immature Chandra Data Reveal Rapidly Whirling Black Holes In a broader astrophysical context, galaxy clusters are the largest gravitationally bound systems in the Universe and their collisions are the most energetic events since the Big Bang. Says team leader Gianfranco Brunetti (Instituto di Radioastronomia, Bologna, Italy), "The A521 system provides evidence that turbulence acts as a source of particle acceleration in an environment that is unique in the Universe due to its large spatial and temporal scales, and due to the low density and high temperature of the gas." The team included scientists from Instituto di Radioastronomia, the University of Bologna, the Smithsonian Astrophysical Observatory, the National Radio Astronomy Observatory, and the Naval Research Laboratory. Basic research in radio astronomy at the Naval Research Laboratory is supported by 6.1 base funding. The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. The LWA, funding for which is provided by the Office of Naval Research, is led by the University of New Mexico, and includes NRL, The Applied Research Laboratory at the University of Texas at Austin, Virginia Tech, the Los Alamos National Laboratory, and the University of Iowa, with contributions and cooperation from NRAO. The Long Wavelength Array (LWA) website is http://lwa.unm.edu The Naval Research Laboratory is the Department of the Navy's corporate laboratory. NRL conducts a broad program of scientific research, technology, and advanced development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, DC, with other major sites at the Stennis Space Center, MS; and Monterey, CA.

  1. The Askaryan Radio Array

    NASA Astrophysics Data System (ADS)

    Hoffman, Kara D.

    2013-01-01

    Ultra high energy cosmogenic neutrinos could be most efficiently detected in dense, radio frequency (RF) transparent media via the Askaryan effect. Building on the expertise gained by RICE, ANITA and IceCube's radio extension in the use of the Askaryan effect in cold Antarctic ice, we are currently developing an antenna array known as ARA (The Askaryan Radio Array) to be installed in boreholes extending 200 m below the surface of the ice near the geographic South Pole. The unprecedented scale of ARA, which will cover a fiducial area of ~ 100 square kilometers, was chosen to ensure the detection of the flux of neutrinos suggested by the observation of a drop in high energy cosmic ray flux consistent with the GZK cutoff by HiRes and the Pierre Auger Observatory. Funding to develop the instrumentation and install the first prototypes has been granted, and the first components of ARA were installed during the austral summer of 2010-2011. Within 3 years of commencing operation, the full ARA will exceed the sensitivity of any other instrument in the 0.1-10 EeV energy range by an order of magnitude. The primary goal of the ARA array is to establish the absolute cosmogenic neutrino flux through a modest number of events. This information would frame the performance requirements needed to expand the array in the future to measure a larger number of neutrinos with greater angular precision in order to study their spectrum and origins.

  2. Solar radio continuum storms

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1976-01-01

    The paper reviews the current status of research on solar radio continuum emissions from metric to hectometric wave frequencies, emphasizing the role of energetic electrons in the 10-100 keV range in these emissions. It is seen that keV-energy electrons generated in active sunspot groups must be the sources of radio continuum storm emissions for wide frequency bands. These electrons excite plasma oscillations in the medium, which in turn are converted to electromagnetic radiation. The radio noise continuum sources are usually associated with type III burst activity observed above these sources. Although the mechanism for the release of the energetic electrons is not known, it seems they are ejected from storm source regions in association with rapid variation of associated sunspot magnetic fields due to their growth into complex types. To explain some of the observed characteristics, the importance of two-stream instability and the scattering of ambient plasma ions on energetic electron streams is pointed out.

  3. Massachusetts Corporation for Educational Telecommunications: Models of Collaboration for the Integration of Telecommunications in Education.

    ERIC Educational Resources Information Center

    Flores, John G.

    1997-01-01

    The Massachusetts Corporation for Educational Telecommunications (MCET), a quasi-public agency, plays a leadership role in distance education and the integration of telecommunications and education locally and nationally. Operator of the Mass LearnPike satellite network and the Mass Ed OnLine LearnNet computer network, MCET provides expanded

  4. International Ultraviolet Explorer (IUE) satellite mission analysis

    NASA Technical Reports Server (NTRS)

    Cook, R. A.; Griffin, J. H.

    1975-01-01

    The results are presented of the mission analysis performed by Computer Sciences Corporation (CSC) in support of the International Ultraviolet Explorer (IUE) satellite. The launch window is open for three separate periods (for a total time of 7 months) during the year extending from July 20, 1977, to July 20, 1978. The synchronous orbit shadow constraint limits the launch window to approximately 88 minutes per day. Apogee boost motor fuel was computed to be 455 pounds (206 kilograms) and on-station weight was 931 pounds (422 kilograms). The target orbit is elliptical synchronous, with eccentricity 0.272 and 24 hour period.

  5. Survey: National Environmental Satellite Service

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The national Environmental Satellite Service (NESS) receives data at periodic intervals from satellites of the Synchronous Meteorological Satellite/Geostationary Operational Environmental Satellite series and from the Improved TIROS (Television Infrared Observational Satellite) Operational Satellite. Within the conterminous United States, direct readout and processed products are distributed to users over facsimile networks from a central processing and data distribution facility. In addition, the NESS Satellite Field Stations analyze, interpret, and distribute processed geostationary satellite products to regional weather service activities.

  6. Satellite-computer interface

    NASA Astrophysics Data System (ADS)

    1985-02-01

    Data received in Thailand from satellites are to be put on disk for use with small computers in order to meet the needs of the private sector. Producing computer disks of data from satellites should result in data from satellites being used more widely. Private companies can read and analyze the data stored on the disks. At present, when private companies need data from satellites, besides having to buy satellite photographs from the Research Council, they must also use the computers of the Research Council or hire units that have computers to run the analysis for them.

  7. The ideal satellite pharmacy.

    PubMed

    Suzuki, N T

    1987-02-01

    The pharmacy service at the Seattle Veterans Administration Medical Center moved into a replacement facility in September 1986. A description of the present medical center and the satellite pharmacy is presented. The ideal satellite pharmacy for this medical center is then described. The satellite is discussed with respect to the satellite door, transportation systems (i.e., dumbwaiter, pneumatic tubes), communication systems (i.e., Omnifax, intercom, typewriter, telephone, computer), equipment (i.e., IV hood, refrigerator, shelving), stock, and space. Because each medical center has specific needs and equipment available, the information presented should be used as a guide when designing a satellite pharmacy. PMID:10280299

  8. A utility oriented radio resource management algorithm for heterogenous network

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan; Dong, Yan; Huang, Zailu

    2007-11-01

    A utility oriented radio resource management algorithm is proposed for broadband nongeostationary satellite network which works in the heterogeneous network environment and provides access services for various customers on the ground. Based on the game theory, the problem for optimizing the network's performance is turned into the problem for maximizing the network's long term utility in the proposed algorithm. With evaluation to the traffic condition and dimensions of Qos for the network at the moment while the access service requirements changing, the influence of this service requirement to the long term utility of the satellite network is audited and then the resource assignment decision can be made according to the rule for maximizing the satellite network's long term utility. The process directed by game theory guaranteed both that the benefit of the network and the requirements of the customers could be considered synthetically. The simulation results demonstrate the effectiveness of the proposed algorithm.

  9. Yakov Alpert: Sputnik-1 and the first satellite ionospheric experiment

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. D.; Sinelnikov, V. M.; Alpert, S. N.

    2015-06-01

    The world first scientific space experiment was carried out in 1957 during the flight of the First Artificial Earth Satellite (AES) - Sputnik-1. It was an ionospheric experiment performed at IZMIRAN under the direction of Prof. Ya.L. Alpert (1911-2010). The sunrise and sunset variations in the AES radio signal were recorded to determine the distribution of electron density in the topside ionosphere (above the maximum). The experiment demonstrated the capabilities of the satellite radio beacon method, which is now very important and widely used for studying the ionosphere. The paper describes the history and results of that experiment as well as the contribution of Ya.L. Alpert to ionospheric research. Ya.L. Alpert was one of the most famous and influential radiophysicists, the author of many fundamental studies and a number of classic books on the theory of propagation of electromagnetic waves, interaction of artificial bodies with ionospheric plasma, ionospheric radio scattering, and the use of satellite radio beacon methods for studying the ionosphere. We give in the paper some extracts from Ya.L. Alpert's research notes. They include the history of the publication of the results from recordings of the Sputnik-1 transmitter signals, and described the method of data analysis. The first scientific publication based on Sputnik-1 data is given in the abbreviated summary. At the end of the paper there is an outline of Ya.L. Alpert's scientific biography.

  10. Sputnik 1 and the First Satellite Ionospheric Experiment

    NASA Astrophysics Data System (ADS)

    Sinelnikov, Vyacheslav; Kuznetsov, Vladimir; Alpert, Svetlana

    The world's first scientific space experiment was carried out in 1957 during the flight of the first Artificial Earth Satellite (AES) - Sputnik 1. It was an ionospheric experiment performed at IZMIRAN under the direction of Prof. Ya.L.Alpert (1911-2010). The sunrise and sunset variations in the AES radio signal were recorded in order to determine the distribution of electron density in the topside ionosphere (above the maximum). The experiment demonstrated the capabilities of the satellite radio beacon method, which is now very important and widely used for studying the ionosphere. Our report submitted to the COSPAR General Assembly in Russia describes the history and results of that experiment, as well as some other contributions by Ya.L.Alpert to ionospheric research. Yakov L.Alpert was one of the most famous and influential radiophysicists of his time, the author of many fundamental studies and of a number of classic books on the theory of propagation of electromagnetic waves, interaction of artificial bodies with ionospheric plasmas, ionospheric radio scattering, and the use of satellite radio beacon methods for studying the ionosphere.

  11. Workshop on Radio Transients

    NASA Astrophysics Data System (ADS)

    Croft, Steve; Gaensler, Bryan

    2012-04-01

    abstract-type="normal">SummaryWe are entering a new era in the study of variable and transient radio sources. This workshop discussed the instruments and the strategies employed to study those sources, how they are identified and classified, how results from different surveys can be compared, and how radio observations tie in with those at other wavelengths. The emphasis was on learning what common ground there is between the plethora of on-going projects, how methods and code can be shared, and how best practices regarding survey strategy could be adopted. The workshop featured the four topics below. Each topic commenced with a fairly brief introductory talk, which then developed into discussion. By way of preparation, participants had been invited to upload and discuss one slide per topic to a wiki ahead of the workshop. 1. Telescopes, instrumentation and survey strategy. New radio facilities and on-going projects (including upgrades) are both studying the variability of the radio sky, and searching for transients. The discussion first centred on the status of those facilities, and on projects with a time-domain focus, both ongoing and planned, before turning to factors driving choices of instrumentation, such as phased array versus single pixel feeds, the field of view, spatial and time resolution, frequency and bandwidth, depth, area, and cadence of the surveys. 2. Detection, pipelines, and classification. The workshop debated (a) the factors that influence decisions to study variability in the (u,v) plane, in images, or in catalogues, (b) whether, and how much, pipeline code could potentially be shared between one project and another, and which software packages are best for different approaches, (c) how data are stored and later accessed, and (d) how transients and variables are defined and classified. 3. Statistics, interpretation, and synthesis. It then discussed how (i) the choice of facility and strategy and (ii) detection and classification schemes influence what is seen (in terms of types of object and rates) by different surveys, (iii) how results from different surveys could be compared, and (iv) how what we know from existing surveys drives choices (i) and (ii), particularly as regards finding new classes of object. 4. Multiwavelength approaches. The workshop concluded by discussing what information is needed from wavelengths other than radio in order to classify transients and variables adequately and predict their rates as a function of topics (1), (2) and (3). It asked what the constraints are on responding to, and issuing triggers for, follow-up observations, and how that might feed back into considerations for designing our telescopes and surveys.

  12. Satellite Communications with NRAO Green Bank Antennas

    NASA Astrophysics Data System (ADS)

    Ford, John M.; Ford, H. Alyson; Watts, Galen

    2014-11-01

    The National Radio Astronomy Observatory's Green Bank facility has several medium and large antennas that are available for satellite communications. The 100 meter Robert C. Byrd Green Bank Telescope (GBT), the largest and most sensitive antenna on site, is capable of receiving signals at frequencies as high as 86 GHz. In addition to the GBT are the fully operational 43 meter, 20 meter, and 13.7 meter antennas, and three mothballed 26 meter antennas. A transmitter could be fitted to any of these antennas for spacecraft uplinks. We discuss the characteristics of these antennas and possible operational models for future planetary science mission support.

  13. Cosmological Fast Radio Bursts from Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Totani, Tomonori

    2013-10-01

    Fast radio bursts (FRBs) at cosmological distances have recently been discovered, whose duration is about milliseconds. We argue that the observed short duration is difficult to explain by giant flares of soft gamma-ray repeaters, though their event rate and energetics are consistent with FRBs. Here, we discuss binary neutron star (NS-NS) mergers as a possible origin of FRBs. The FRB rate is within the plausible range of the NS-NS merger rate and its cosmological evolution, while a large fraction of the NS-NS mergers must produce observable FRBs. A likely radiation mechanism is coherent radio emission, like radio pulsars, by magnetic braking when magnetic fields of neutron stars are synchronized to binary rotation at the time of coalescence. Magnetic fields of the standard strength ( 1012-13 G) can explain the observed FRB fluxes, if the conversion efficiency from magnetic braking energy loss to radio emission is similar to that of isolated radio pulsars. Corresponding gamma-ray emission is difficult to detect by current or past gamma-ray burst satellites. Since FRBs tell us the exact time of mergers, a correlated search would significantly improve the effective sensitivity of gravitational wave detectors.

  14. A Spectral Study of a New Class of Radio Quasars

    NASA Technical Reports Server (NTRS)

    Perlman, Eric S.

    2003-01-01

    This document serves as a final technical report for NASA grants NAG5-9995 and NAG5-9533, entitled 'A Spectral Study of a New Class of Radio Quasars.' The purpose of these grants were to support observations made using the BeppoSAX satellite. The observations took place over two years and covered two SAX observing cycles, respectively AO-3 and AO-4. During this time, I was employed both at Johns Hopkins University (NAG5-9995) and the University of Maryland, Baltimore County (NAG5-9533). As the research on these grants was on the same subject and my employment at JHU and UMBC has been consecutive, this document therefore covers both grants. The targets for these observations were four radio-loud quasars chosen from the first two X-ray selected samples of such objects. These were the brightest examples of the newly found class of X-ray loud flat-spectrum radio quasars, which prior to 1997, had never been seen before. However, my previous work with collaborators Paolo Padovani and Paolo Giommi on the DXRBS survey showed that they make up about 25% of the population of flat-spectrum radio quasars, but had not been seen before because of selection biases (all previous samples of these objects had been compiled in the radio). The purpose of the SAX observations was to investigate the shape of their X-ray spectrum, which would tell us where the peak of their synchrotron emission was located.

  15. Launch Will Create a Radio Telescope Larger than Earth

    NASA Astrophysics Data System (ADS)

    NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long Baseline Interferometry project at JPL. "Observations of cosmic masers -- naturally-occurring microwave radio amplifiers -- will tell us new things about the process of star formation and activity in the heart of other galaxies." "By the 1980s, radio astronomers were observing the universe with assemblages of radio telescopes whose resolving power was limited only by the size of the Earth. Now, through a magnificent international effort, we will be able to break this barrier and see fine details of celestial objects that are beyond the reach of a purely ground-based telescope array. We anticipate a rich harvest of new scientific knowledge from VSOP," said Dr. Paul Vanden Bout, Director of NRAO. In the first weeks after launch, scientists and engineers will "test the deployment of the reflecting mesh telescope in orbit, the wide-band data link from the satellite to the ground, the performance of the low noise amplifiers in orbit, and the high-precision orbit determination and attitude control necessary for VLBI observations with an orbiting telescope," according to Dr. Joel Smith, manager of the U.S. Space VLBI project at JPL. Scientific observations are expected to begin in May. The 26-foot diameter orbiting radio telescope will observe celestial radio sources in concert with a number of the world's ground-based radio telescopes. The 1,830-pound satellite will be launched from ISAS' Kagoshima Space Center, at the southern tip of Kyushu, one of Japan's main islands, and will be the first launch with ISAS' new M-5 series rocket. The satellite will go into an elliptical orbit, varying between 620 to 12,400 miles above the Earth's surface. This orbit provides a wide range of distances between the satellite and ground-based telescopes, which is important for producing a high-quality image of the radio source being observed. One orbit of the Earth will take about six hours. The satellite's observations will concentrate on some of the most distant and intriguing objects in the universe, where the extremely sharp

  16. Doppler experiments with Cassini radio system

    NASA Technical Reports Server (NTRS)

    Comoretto, G.; Bertotti, B.; Iess, L.; Ambrosini, R.

    1992-01-01

    The radio system of the Cassini orbiter will include a K-alpha band downlink channel, mainly intended for telemetry. A K-alpha uplink has also been proposed to allow for a highly accurate gravitational wave experiment. The fourfold increase in frequency will reduce the plasma noise by a factor of 12 and will allow a Doppler accuracy better than 10 exp -15 for time scales of 10 exp 3 - 10 exp 4 s. Extensive Doppler measurements of the gravitational field of Saturn and its satellites can be performed, exploiting the induced change in the velocity of the spacecraft. Possible sources of low-frequency gravitational waves and errors in the Doppler link are discussed.

  17. The Lunar Observer Radio Astronomy Experiment (LORAE)

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.

    1990-01-01

    The paper proposes to place a simple low-frequency dipole antenna on board the Lunar Observer (LO) satellite. LO will orbit the moon in the mid-1990's, mapping the surface at high resolution and gathering new geophysical data. In its modest concept, LORAE will collect crucial data on the radio interference environment while on the near-side (to aid in planning future arrays) and will monitor bursts of emission from the sun and the Jovian planets. LORAE will also be capable of lunar occultation studies of greater than 100 of the brightest sources, gathering arcminute resolution data on sizes and measuring source fluxes. A low resolution all-sky map below 10 MHz, when combined with data from the Gamma-Ray Observatory, will uniquely determine the density of Galactic cosmic ray electrons and the strength of the Galaxy's magnetic field. LORAE also will be able to measure the density of the moon's ionosphere.

  18. A direct broadcast satellite-audio experiment

    NASA Technical Reports Server (NTRS)

    Vaisnys, Arvydas; Abbe, Brian; Motamedi, Masoud

    1992-01-01

    System studies have been carried out over the past three years at the Jet Propulsion Laboratory (JPL) on digital audio broadcasting (DAB) via satellite. The thrust of the work to date has been on designing power and bandwidth efficient systems capable of providing reliable service to fixed, mobile, and portable radios. It is very difficult to predict performance in an environment which produces random periods of signal blockage, such as encountered in mobile reception where a vehicle can quickly move from one type of terrain to another. For this reason, some signal blockage mitigation techniques were built into an experimental DAB system and a satellite experiment was conducted to obtain both qualitative and quantitative measures of performance in a range of reception environments. This paper presents results from the experiment and some conclusions on the effectiveness of these blockage mitigation techniques.

  19. Digital audio and video broadcasting by satellite

    NASA Astrophysics Data System (ADS)

    Yoshino, Takehiko

    In parallel with the progress of the practical use of satellite broadcasting and Hi-Vision or high-definition television technologies, research activities are also in progress to replace the conventional analog broadcasting services with a digital version. What we call 'digitalization' is not a mere technical matter but an important subject which will help promote multichannel or multimedia applications and, accordingly, can change the old concept of mass media, such as television or radio. NHK Science and Technical Research Laboratories has promoted studies of digital bandwidth compression, transmission, and application techniques. The following topics are covered: the trend of digital broadcasting; features of Integrated Services Digital Broadcasting (ISDB); compression encoding and transmission; transmission bit rate in 12 GHz band; number of digital TV transmission channels; multichannel pulse code modulation (PCM) audio broadcasting system via communication satellite; digital Hi-Vision broadcasting; and development of digital audio broadcasting (DAB) for mobile reception in Japan.

  20. Satellite Threat Warning and Attack Reporting

    SciTech Connect

    Hilland, D.; Phipps, G.; Jingle, C.; Newton, G.

    1997-12-31

    The Air Force Research Laboratory`s Satellite Threat Warning and Attack Reporting (STW/AR) program will provide technologies for advanced threat warning and reporting of radio frequency (RF) and laser threats. The STW/AR program objectives are: (a) develop cost- effective technologies to detect, identify, locate, characterize, and report attacks or interference against U.S. and Allied satellites. (b) demonstrate innovative, light-weight, low-power, laser and RF sensors. The program focuses on the demonstration of RF and laser sensors. The RF sensor effort includes the investigation of interferometric antenna arrays, multi-arm spiral and butler matrix antennas, wideband receivers, adaptive processors, and improved processing algorithms. The laser sensor effort includes the investigation of alternative detectors, broadband grating and optical designs, active pixel sensing, and improved processing algorithms.

  1. SERIES - Satellite Emission Range Inferred Earth Surveying

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.; Spitzmesser, D. J.; Buennagel, L. A.

    1983-01-01

    The Satellite Emission Range Inferred Earth Surveying (SERIES) concept is based on the utilization of NAVSTAR Global Positioning System (GPS) radio transmissions without any satellite modifications and in a totally passive mode. The SERIES stations are equipped with lightweight 1.5 m diameter dish antennas mounted on trailers. A series baseline measurement accuracy demonstration is considered, taking into account a 100 meter baseline estimation from approximately one hour of differential Doppler data. It is planned to conduct the next phase of experiments on a 150 m baseline. Attention is given to details regarding future baseline measurement accuracy demonstrations, aspects of ionospheric calibration in connection with subdecimeter baseline accuracy requirements of geodesy, and advantages related to the use of the differential Doppler or pseudoranging mode.

  2. Satellite systems for the direct radiation of broadcasting programs

    NASA Astrophysics Data System (ADS)

    Lothaller, W.

    1980-11-01

    A brief historical enumeration of the earliest satellite experiments is presented, concentrating first on NASA's ATS-6, the Canadian Technology Satellite, 'Hermes', and the Japanese Broadcasting Satellite for Experimental Purposes. The three European news satellites now in geostationary orbit are mentioned: Symphonie, a German-French joint project, the Italian research satellite, SIRIO-1, and the ESA Orbital Test Satellite. Specifications for ESA's two direct broadcasting satellite projects are discussed: the H-Sat, with its two transmitting channels per broadcasting program, the increased lobe span of the antennas, its traveling wave tube transmitters at 150 W and 450 W, and its frequencies of 12168.62 MHz and 12053.54 MHz; the L-Sat, based on the H-Sat, with an improved ECS system and a potential for more flexible and widespread service. Great attention is given to West Germany's TV-Sat, built in three modules - payload, service, driving - and is marked by its high capacity traveling wave tubes, an ultra-light solar generator, high precision infrared sensors, and a radio frequency ion thrust assembly that is low on fuel consumption. Finally mention is given to NORDSAT, the Scandinavian satellite, which on a 12 GHz frequency band will have a total of 13 channels.

  3. Unbundling the corporation.

    PubMed

    Hagel, J; Singer, M

    1999-01-01

    No matter how monolithic they may seem, most companies are really engaged in three kinds of businesses. One business attracts customers. Another develops products. The third oversees operations. Although organizationally intertwined, these businesses have conflicting characteristics. It takes a big investment to find and develop a relationship with a customer, so profitability hinges on achieving economies of scope. But speed, not scope, drives the economics of product innovation. And the high fixed costs of capital-intensive infrastructure businesses require economies of scale. Scope, speed, and scale can't be optimized simultaneously, so trade-offs have to be made when the three businesses are bundled into one corporation. Historically, they have been bundled because the interaction costs--the friction--incurred by separating them were too high. But we are on the verge of a worldwide reduction in interaction costs, the authors contend, as electronic networks drive down the costs of communicating and of exchanging data. Activities that companies have always believed were central to their businesses will suddenly be offered by new, specialized competitors that won't have to make trade-offs. Ultimately, the authors predict, traditional businesses will unbundle and then rebundle into large infrastructure and customer-relationship businesses and small, nimble product innovation companies. And executives in many industries will be forced to ask the most basic question about their companies: What business are we really in? Their answer will determine their fate in an increasingly frictionless economy. PMID:10387769

  4. AIS/GMSK receiver on FPGA platform for satellite application

    NASA Astrophysics Data System (ADS)

    Hicks, James E.; Clark, James S.; Stocker, Jeffrey; Mitchell, Gregory S.; Wyckoff, Peter

    2005-06-01

    The automatic identification system (AIS) signal is of particular interest to the defense and security community because of its capability to identify and classify ships in U.S. waters. Placing an AIS receiver on a satellite provides a low cost solution to enhance security over a wide region. This paper describes the development of an AIS burst-acquisition receiver on a software radio consisting of a field programmable gate array (FPGA) and general purpose processor (GPP). A simple hybrid 1-bit/2-bit differential receiver can be easily implemented on such a software radio platform, and is sufficient to reliably demodulate collision free bursts in a space-borne signal environment.

  5. Satellite-aided land mobile communications system implementation considerations

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.

    1982-01-01

    It was proposed that a satellite-based land mobile radio system could effectively extend the terrestrial cellular mobile system into rural and remote areas. The market, technical and economic feasibility for such a system is studied. Some of the aspects of implementing an operational mobile-satellite system are discussed. In particular, two key factors in implementation are examined: (1) bandwidth requirements; and (2) frequency sharing. Bandwidth requirements are derived based on the satellite antenna requirements, modulation characteristics and numbers of subscribers. Design trade-offs for the satellite system and potential implementation scenarios are identified. Frequency sharing is examined from a power flux density and modulation viewpoint. Previously announced in STAR as N82-25290

  6. The concept of an integrated terrestrial/land mobile satellite system

    NASA Technical Reports Server (NTRS)

    Knouse, G. H.; Castruccio, P. A.

    1980-01-01

    Potential satellite markets in the Public Safety (disaster relief, emergency medical and law enforcement) and Common Carrier (mobile radio telephone) service areas are identified. The public mobile telephone segment is then examined to illustrate a methodology for identifying a potential satellite addressable market, including capacity requirements for roughly sizing a satellite. It is postulated that satellites could serve this lower density (mobiles/sq. km), thin-route markets at a competitive cost and thus complement terrestrial systems in the urban and more densely populated areas to provide an integrated nationwide mobile service.

  7. Use of the 30/20 GHz band by multipurpose satellite systems

    NASA Technical Reports Server (NTRS)

    Mcneil, Stephen; Mimis, Vassilios; Sahay, Vishnu; Bowen, Robert

    1993-01-01

    The World Administrative Radio Conference (WARC) held in 1992 allocated the bands 19.7-20.2 GHz and 29.5-30.0 GHz to both the Mobile Satellite Service (MSS) and the Fixed Satellite Service (FSS) on a co-primary basis. An economic and flexible solution for the provision of both services is to place both payloads on one spacecraft. Some of the proposed applications of such a hybrid satellite network are described. It also examines the facility for spectrum sharing between the various applications and discusses the impact on coordination. It is concluded that the coordination process would not be more onerous than traditional FSS inter-satellite coordination.

  8. Decimetric radio dot emissions

    NASA Astrophysics Data System (ADS)

    Mszrosov, H.; Karlick, M.; Sawant, H. S.; Fernandes, F. C. R.; Cecatto, J. R.; de Andrade, M. C.

    2008-11-01

    Context: We study a rare type of solar radio bursts called decimetric dot emissions. Aims: In the period 1999-2001, 20 events of decimetric dot emissions observed by the Brazilian Solar Spectroscope (BSS) in the frequency range 950-2640 MHz are investigated statistically and compared with radio fine structures of zebras and fibers. Methods: For the study of the spectral characteristics of the dot emissions we use specially developed Interactive Data Language (IDL) software called BSSView and basic statistical methods. Results: We have found that the dm dot emissions, contrary to the fine structures of the type IV bursts (i.e. zebras, fibers, lace bursts, spikes), are not superimposed on any background burst emission. In the radio spectrum, in most cases the dot emissions form chains that appear to be arranged in zebra patterns or fibers. Because some zebras and fibers, especially those observed with high time and high spectral resolutions, also show emission dots (but superimposed on the background burst emission), we compared the spectral parameters of the dot emissions with the dots being the fine structure of zebras and fibers. For both these dots, similar spectral characteristics were found. Some similarities of the dot emissions can be found also with the lace bursts and spikes. For some events the dot emissions show structural evolution from patterns resembling fibers to patterns resembling zebras and vice versa, or they evolve into fully chaotic patterns. Conclusions: For the first time, we present decimetric dot emissions that appear to be arranged in zebra patterns or fibers. We propose that these emissions are generated by the plasma emission mechanism at the locations in the solar atmosphere where the double resonance condition is fulfilled.

  9. Locating Radio Noise from Sprites

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Mezentsev, A.; Watson, R.; Gaffet, S.; Astin, I.; Evans, A.

    2014-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into exponentially growing streamer tips (McHarg et al., 2010). The acceleration of the electrons to a few eV results in the radiation of a small amount of electromagnetic energy. The incoherent superposition of many streamers causes the low frequency radio noise from sprites near ~40 km height (Qin et al., 2012). The presence of this theoretically predicted radiation was recently confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). To locate the radio noise from sprites in the sky, an interferometric network of low frequency radio receivers was developed (Mezentsev and Fullekrug, JGR, 2013). The key parameter for the interferometric signal processing is the frequency dependent wave propagation velocity of the radio waves within the Earth's atmosphere. This wave propagation velocity is determined by the wave number vector which needs to be inferred from the measurements. Here we adapt and subsequently apply array analyses which have been developed for seismic and infrasound arrays to determine the horizontal wave number vectors of ~20-24 kHz radio waves measured with an array of ten radio receivers distributed over an area of ~1 km 1 km. It is found that the horizontal slowness of ~20-24 kHz radio waves ranges from ~2.7 ns/m to ~4.1 ns/m depending on the arrival azimuth of the radio wave. For comparison, an electromagnetic wave in vacuum has a slowness of ~3.34 ns/m. A larger slowness indicates an apparent velocity which is smaller than the speed of light and a smaller slowness indicates that the radio wave arrives at the array from an elevation angle. The observed variability of the observed slowness almost certainly results from the distance dependent superposition of the transverse electric and magnetic TEn and TMn radio wave propagation modes.

  10. Mexart Measurements of Radio Sources

    NASA Astrophysics Data System (ADS)

    Gonzlez-Esparza, A.; Andrade, E.; Carrillo, A.; Jeyakumar, S.; Ananthakrishnan, S.; Praveenkumar, A.; Sankarasubramanian, G.; Sureshkumar, S.; Sierra, P.; Vazquez, S.; Perex-Enriguez, R.; Kurtz, S.

    2005-09-01

    The Mexican Array Radio Telescope (MEXART) consists of a 64x64 array of full-wave dipoles operating at 139.65 MHz. The primary aim of the array is to perform Interplanetary Scintillations (IPS) observations of radio sources to track large-scale solar wind perturbations within 1 AU. We describe the initial measurements of radio sources and the advances in the calibration of the antenna.

  11. In situ observations of medium frequency auroral radio emissions

    NASA Astrophysics Data System (ADS)

    Broughton, M.; Labelle, J. W.; Pfaff, R. F.; Parrot, M.; Yan, X.; Burchill, J. K.

    2013-12-01

    The auroral ionosphere is a region rich with plasma waves that can be studied both in space and on the ground. These waves may mediate energy exchange between particle populations and provide information about the local plasma properties and boundaries. Auroral medium frequency (MF) burst is an impulsive radio emission observed at ground-level from 1.3-4.5 MHz that is associated with local substorm onset. There have been two recent reports of impulsive, broadband, MF waves at high latitudes. Burchill and Pfaff [2005] reported observations from the FAST satellite of impulsive, broadband, MF and low frequency (LF) radio waves. Using data from the DEMETER satellite, Parrot et al. [2009] surveyed MF waves caused by lightning. This study did show a high-latitude population of MF waves. We investigate whether the waves observed by these two satellites are related to auroral MF burst. Using FAST satellite burst mode electric field data from high-latitude (> 60 degrees magnetic), low-altitude (< 1000 km) intervals of moderate to large geomagnetic activity (Kp > 3) from 1996-2002, we have found forty-four examples of impulsive MF waves, all of which are associated with impulsive LF waves. Although MF burst and the waves observed by FAST have similar spectral signatures, they have different magnetic local time dependencies, which suggests that they may be unrelated. A study of MF waves observed at high latitude by DEMETER is ongoing. In situ observations of MF burst could provide crucial information about this heretofore unexplained natural radio emission.

  12. Performance assessment of GPS receivers during the September 24, 2011 solar radio burst event

    NASA Astrophysics Data System (ADS)

    Muhammad, Bilal; Alberti, Valentina; Marassi, Alessandro; Cianca, Ernestina; Messerotti, Mauro

    2015-10-01

    The sudden outburst of in-band solar radio noise from the Sun is recognized as one of the potential Radio Frequency Interference (RFI) sources that directly impact the performance of Global Navigation Satellite System (GNSS) receivers. On September 24, 2011, the solar active region 1302 unleashed a moderate M7.1 soft X-ray flare associated with a very powerful radio burst at 1415 MHz. The Solar Radio Burst (SRB) event spanned over three distinct episodes of solar radio noise emission that reached the maximum radio flux density of 114,144 Solar Flux Units (SFU) at 13:04:46 UTC. This paper analyzes the impact of September 24, 2011 SRB event on the performance of a significant subset of NAVSTAR Global Positioning System (GPS) receivers located in the sunlit hemisphere. The performance assessment is carried out in terms of Carrier-to-Noise power spectral density ratio (C/N0) degradation, dual-frequency pseudorange measurements availability, pseudorange residual errors, and dual-frequency positioning errors in the horizontal and vertical dimensions. We observed that during the SRB event the GPS C/N0 is reduced at most by 13 dB on L1 and 24 dB on L2. The C/N0 degradation caused the loss of lock on GPS L1 and L2 signals and significant code-tracking errors. We noticed that many stations experienced less than four satellite measurements, which are the minimum required number of measurements for position estimation. The deteriorated satellite-receiver geometry due to loss of signal lock and significant code-tracking errors during the solar radio burst event introduced large positioning errors in both the horizontal and vertical dimensions. Rise in vertical positioning error of 303 m and rise in horizontal positioning of 55 m could be noticed during the solar radio burst event.

  13. The microwave holography system for the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Serra, G.; Bolli, P.; Busonera, G.; Pisanu, T.; Poppi, S.; Gaudiomonte, F.; Zacchiroli, G.; Roda, J.; Morsiani, M.; López-Pérez, J. A.

    2012-09-01

    Microwave holography is a well-established technique for mapping surface errors of large reflector antennas, particularly those designed to operate at high frequencies. We present here a holography system based on the interferometric method for mapping the primary reflector surface of the Sardinia Radio Telescope (SRT). SRT is a new 64-m-diameter antenna located in Sardinia, Italy, equipped with an active surface and designed to operate up to 115 GHz. The system consists mainly of two radio frequency low-noise coherent channels, designed to receive Ku-band digital TV signals from geostationary satellites. Two commercial prime focus low-noise block converters are installed on the radio telescope under test and on a small reference antenna, respectively. Then the signals are amplified, filtered and downconverted to baseband. An innovative digital back-end based on FPGA technology has been implemented to digitize two 5 MHz-band signals and calculate their cross-correlation in real-time. This is carried out by using a 16-bit resolution ADCs and a FPGA reaching very large amplitude dynamic range and reducing post-processing time. The final holography data analysis is performed by CLIC data reduction software developed within the Institut de Radioastronomie Millimétrique (IRAM, Grenoble, France). The system was successfully tested during several holography measurement campaigns, recently performed at the Medicina 32-m radio telescope. Two 65-by-65 maps, using an on-the-fly raster scan with on-source phase calibration, were performed pointing the radio telescope at 38 degrees elevation towards EUTELSAT 7A satellite. The high SNR (greater than 60 dB) and the good phase stability led to get an accuracy on the surface error maps better than 150 μm RMS.

  14. Solar radio emission

    NASA Technical Reports Server (NTRS)

    Goldman, M. V.; Smith, D. F.

    1981-01-01

    Active areas of both observational and theoretical research in which rapid progress is being made are discussed. These include: (1) the dynamic spectrum or frequency versus time plot; (2) physical mechanisms in the development of various types of bursts; (3) microwave type 1, 2, 3, and moving type 4 bursts; (4) bursts caused by trapped electrons; (5) physics of type 3bursts; (6) the physics of type 2 bursts and their related shocks; (7) the physics of both stationary and moving traps and associated type 1 and moving type 4 bursts; and (8) the status of the field of solar radio emission.

  15. Circumstellar radio molecular lines

    NASA Technical Reports Server (NTRS)

    NGUYEN-QUANG-RIEU

    1987-01-01

    Radio molecular lines appear to be useful probes into the stellar environment. Silicon oxide masers provide information on the physical conditions in the immediate vicinity of the stellar photosphere. Valuable information on the physics operating in the envelope of IRC + 10216 was recently obtained by high sensitivity observations and detailed theoretical analyses. Infrared speckle interferometry in the molecular lines and in the continuum is helpful in the investigation of the inner region of the envelope. These techniques are discussed in terms of late-type star mass loss.

  16. Radio frequency pulse compression

    SciTech Connect

    Farkas, Z.D.

    1988-12-01

    High gradients require peak powers. One possible way to generate high peak powers is to generate a relatively long pulse at a relatively low power and compress it into a shorter pulse with higher peak power. It is possible to compress before dc to rf conversion as is done for the relativistic klystron or after dc to rf conversion as is done with SLED. In this note only radio frequency pulse compression (RFPC) is considered. Three methods of RFPC will be discussed: SLED, BEC, and REC. 3 refs., 8 figs., 1 tab.

  17. RADIO FREQUENCY ATTENUATOR

    DOEpatents

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  18. The Case Against Corporal Punishment

    ERIC Educational Resources Information Center

    Divoky, Diane

    1973-01-01

    Tells why reformers are out to ban the ancient custom of corporal punishment in the schools. Suggests that school boards should scrutinize their policies on discipline now, before potential storms of controversy break out in their communities. (Author)

  19. Children's Perceptions of Corporal Punishment

    ERIC Educational Resources Information Center

    McCann, E.

    1978-01-01

    Explores views of children in English schools who have received corporal punishment from teachers. Findings indicated that most children accepted firm and non-excessive punishment as an integral part of their relationship with adults. (Author/DB)

  20. Campuses Weld the Corporate Link.

    ERIC Educational Resources Information Center

    El-Khawas, Elaine

    1985-01-01

    A 1984 survey by American Council on Education, Campus Trends, offers evidence of the extent of academe's involvement in corporate-college collaborative activities. Links including assisting students, supporting research, training employees, and joint programs are discussed. (MLW)