Science.gov

Sample records for radio wave scintillations

  1. Radio wave scintillations at equatorial regions

    NASA Technical Reports Server (NTRS)

    Poularikas, A. D.

    1972-01-01

    Radio waves, passing through the atmosphere, experience amplitude and phase fluctuations know as scintillations. A characterization of equatorial scintillation, which has resulted from studies of data recorded primarily in South America and equatorial Africa, is presented. Equatorial scintillation phenomena are complex because they appear to vary with time of day (pre-and postmidnight), season (equinoxes), and magnetic activity. A wider and more systematic geographical coverage is needed for both scientific and engineering purposes; therefore, it is recommended that more observations should be made at earth stations (at low-geomagnetic latitudes) to record equatorial scintillation phenomena.

  2. Morphology of auroral zone radio wave scintillation

    SciTech Connect

    Rino, C.L.; Matthews, S.J.

    1980-08-01

    This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effect due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation.

  3. Scintillation effects on radio wave propagation through solar corona

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Sue, M. K.; Bedrossian, A.; Sniffin, R. W.

    2002-01-01

    When RF waves pass through the solar corona and solar wind regions close to the Sun, strong scintillation effects appear at their amplitude, frequency and phase, especially in the regions very close to the Sun (less than 4 solar radius).

  4. Radio scintillations in Venus's atmosphere: application of a theory of gravity wave generation.

    NASA Astrophysics Data System (ADS)

    Leroy, S. S.; Ingersoll, A. P.

    1996-04-01

    Radio scintillations in Pioneer Venus radio occultation data are simulated assuming that the index of refraction fluctuations in Venus's atmosphere responsible for the scintillations are directly caused by gravity wave fluctuations. The gravity waves are created by a global convection layer between 50- and 55-km altitude in Venus's atmosphere and propagate vertically. The authors compare the simulated scintillations with data from Pioneer Venus. These gravity waves can explain the spectral shape and amplitude of the radio scintillations. The shape at high frequencies is controlled by wave breaking, which yields a saturated spectrum. The amplitude is subject to parameters such as the intensity of the convection, the angle between the zonal winds and the beam path, and the zonal wind profile at polar latitudes. To match the observed amplitude of the scintillations, the velocity variations of the energy-bearing eddies in the convection must be at least 2 m s-1. This value is consistent with the Venus balloon results of Sagdeev et al. (1986) and is in the middle of the range considered by Leroy and Ingersoll (1994) in their study of convectively generated gravity waves. The latter study, combined with the lower bound on velocity from the present study, then yields lower bounds on the vertical fluxes of momentum and energy in the Venus atmosphere.

  5. Radio Sources and Scintillation

    NASA Astrophysics Data System (ADS)

    Rickett, Barney

    2001-10-01

    A review is given of the interplay between studies of compact radio sources and the scattering and scintillations that occur as the signals travel through the irregular refractive index of the interstellar and interplanetary plasmas.

  6. Spacecraft Radio Scintillation and Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1993-01-01

    When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of the scintillation measurements, and to highlight some of the scientific results obtained to date. Special emphasis is placed on comparing the remote sensing features of planetary and terrestrial scintillation measurements, and on contrasting spacecraft and natural radio source scintillation measurements. I will first discuss planetary atmospheres and ionospheres, and then the solar wind.

  7. Seasonal Variations of the Ionosphere Scintillations Parameters Obtained from the Long Observations of the Power Cosmic Radio Sources at the Decameter Wave Range

    NASA Astrophysics Data System (ADS)

    Lytvynenko, O. A.; Panishko, S. K.

    Observations of the four power cosmic radio sources were carried out on the radio telescope (RT) URAN-4 during 1987-1990 and 1998-2007 at the frequencies 20 and 25 MHz. Effects of ionosphere and in particular existence of intensity fluctuations on the cosmic radio sources records, or scintillations, are essential at the decameter wave range. Long series of the ionosphere scintillations parameters such as indices, periods and spectrum slopes were obtained after observation data proceeding. Behavior of the seasonal variations was investigated on this data. Obtained dependencies were compared with the indices of the solar and geomagnetic activity.

  8. Using Radio Transmitter to Simulate Amplitude Scintillation on Radio Signals

    NASA Astrophysics Data System (ADS)

    Eccles, V.; Ilayian, R.

    2014-12-01

    Rapid fluctuation of radio-frequency signal phase and/or amplitude that is generated as a signal passing through the ionosphere is commonly referred to as ionospheric scintillation. Scintillation occurs as radio frequency signals pass through a field of plasma bubbles or irregularities that can lead to signal power fading, phase cycle slips, poor GPS signals and unusable information. The goal of this research is to use radio wave transmission to simulate scintillation under controlled conditions in order examine the performance of different GPS receivers and their ability to suppress the scintillation. The information gained from the VHF (Very High Frequency) transmitter would serve as a diagnostic tool to better understand the environmental conditions that are causing these irregularities. This system could then be used as a baseline design to be upgraded by NASA engineers to 1.2 GHz - 1.5 GHz for testing out the performance of different GPS receivers. The methodology of VHF testing could be translated to higher frequencies, such as CW (Continuous Wave), which could enhance our understanding of this phenomenon.

  9. Some new results on the statistics of radio wave scintillation. I - Empirical evidence for Gaussian statistics

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Livingston, R. C.; Whitney, H. E.

    1976-01-01

    This paper presents an analysis of ionospheric scintillation data which shows that the underlying statistical structure of the signal can be accurately modeled by the additive complex Gaussian perturbation predicted by the Born approximation in conjunction with an application of the central limit theorem. By making use of this fact, it is possible to estimate the in-phase, phase quadrature, and cophased scattered power by curve fitting to measured intensity histograms. By using this procedure, it is found that typically more than 80% of the scattered power is in phase quadrature with the undeviated signal component. Thus, the signal is modeled by a Gaussian, but highly non-Rician process. From simultaneous UHF and VHF data, only a weak dependence of this statistical structure on changes in the Fresnel radius is deduced. The signal variance is found to have a nonquadratic wavelength dependence. It is hypothesized that this latter effect is a subtle manifestation of locally homogeneous irregularity structures, a mathematical model proposed by Kolmogorov (1941) in his early studies of incompressible fluid turbulence.

  10. Forecasting ionospheric space weather with applications to satellite drag and radio wave communications and scintillation

    NASA Astrophysics Data System (ADS)

    Mannucci, Anthony J.; Tsurutani, Bruce T.; Verkhoglyadova, Olga P.; Meng, Xing; Pi, Xiaoqing; Kuang, Da; Wang, Chunming; Rosen, Gary; Ridley, Aaron; Lynch, Erin; Sharma, Surja; Manchester, Ward B.; van der Holst, Bart

    2015-04-01

    The development of quantitative models that describe physical processes from the solar corona to the Earths upper atmosphere opens the possibility of numerical space weather prediction with a lead-time of a few days. Forecasting solar wind-driven variability in the ionosphere and thermosphere poses especially stringent tests of our scientific understanding and modeling capabilities, in particular of coupling processes to regions above and below. We will describe our work with community models to develop upper atmosphere forecasts starting with the solar wind driver. A number of phenomena are relevant, including high latitude energy deposition, its impact on global thermospheric circulation patterns and composition, and global electrodynamics. Improved scientific understanding of this sun to Earth interaction ultimately leads to practical benefits. We will focus on two ways the upper atmosphere affects life on Earth: by changing satellite orbits, and by interfering with long-range radio communications. Challenges in forecasting these impacts will be addressed, with a particular emphasis on the physical bases for the impacts, and how they connect upstream to the sun and the heliosphere.

  11. Scintillation noise in widefield radio interferometry

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.

    2015-10-01

    In this paper, we consider random phase fluctuations imposed during wave propagation through a turbulent plasma (e.g. ionosphere) as a source of additional noise in interferometric visibilities. We derive expressions for visibility variance for the wide field of view case (FOV 10) by computing the statistics of Fresnel diffraction from a stochastic plasma, and provide an intuitive understanding. For typical ionospheric conditions (diffractive scale 5-20 km at 150 MHz), we show that the resulting ionospheric `scintillation noise' can be a dominant source of uncertainty at low frequencies (? ? 200 MHz). Consequently, low-frequency widefield radio interferometers must take this source of uncertainty into account in their sensitivity analysis. We also discuss the spatial, temporal, and spectral coherence properties of scintillation noise that determine its magnitude in deep integrations, and influence prospects for its mitigation via calibration or filtering.

  12. MEXART Measurements of Radio Sources. Interplanetary Scintillation Array in Mexico

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; Carrillo, A.; Andrade, E.; Jeyakumar, S.; Ananthakrishnan, S.; Praveenkumar, A.; Sankarasubramanian, G.; Sureshkumar, S.; Sierra, P.; Vazquez, S.; Perez-Enriquez, R.; Kurtz, S.

    2005-12-01

    The Mexican Array Radio Telescope (MEXART) consists of a 64x64 array of full-wave dipoles operating at 139.65 MHz. The primary aim of the array is to perform Interplanetary Scintillations (IPS) observations of radio sources to track large-scale solar wind perturbations within 1~AU. We describe the initial measurements of radio sources and the advances in the calibration of the antenna.

  13. Radio wave.

    PubMed

    Elkin, V

    1992-01-01

    In developing countries with high rates of poverty and illiteracy, radio is emerging as an excellent medium for delivering information on health issues, family planning, nutrition, and agricultural development. Since radio does not require wired electricity, it can reach remote rural populations. Surveys have found that between 50-75% of poor rural households in developing countries own radios, and the majority listen to educational radio at least once a week. A program that reaches the urban poor outside of Lima, Peru, has been instrumental in controlling the spread of cholera. A Bolivian station broadcasts 8 hours of literacy, health, agricultural, and cultural programming a day to an audience of more than 2 million Aymara Indians. Small village radio stations with a broadcast range of 15 miles can be established for under US$400 and can generally achieve sustainability through local fundraising events such as raffles. In many cases, listeners have become broadcasters at their local radio stations. PMID:12286181

  14. A decametric wavelength radio telescope for interplanetary scintillation observations

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.

    1975-01-01

    A phased array, electrically steerable radio telescope (with a total collecting area of 18 acres), constructed for the purpose of remotely sensing electron density irregularity structure in the solar wind, is presented. The radio telescope is able to locate, map, and track large scale features of the solar wind, such as streams and blast waves, by monitoring a large grid of natural radio sources subject to rapid intensity fluctuation (interplanetary scintillation) caused by the irregularity structure. Observations verify the performance of the array, the receiver, and the scintillation signal processing circuitry of the telescope.

  15. Radio tomography and scintillation studies of ionospheric electron density modification caused by a powerful HF-wave and magnetic zenith effect at mid-latitudes

    NASA Astrophysics Data System (ADS)

    Tereshchenko, E. D.; Khudukon, B. Z.; Gurevich, A. V.; Zybin, K. P.; Frolov, V. L.; Myasnikov, E. N.; Muravieva, N. V.; Carlson, H. C.

    Observations of the ionospheric electron density modified by a powerful wave of the Sura HF heating facility were carried out in Russia at middle latitudes in August 2002. Amplitude scintillations and variations of the phase of VHF signals from Russian orbiting satellites passing over the heated region along the chain of three satellite receivers have been recorded. The experimental data were converted to electron density maps using a stochastic inversion. Tomographic measurements conducted during a low magnetic activity revealed that HF powerful waves can produce significant electron density disturbances up to heights significantly exceeding altitudes of the F layer peak. Both large-scale plasma enhancements and small- scale density irregularities can be generated by the HF radiation. Wavy density structures were also observed within a sector which is much wider than the area covered by the main lobe of the heating antenna. Small-scale density irregularities are mostly field-aligned although large-scale structures can be detected within a much larger area. A distinctive peculiarity of electron density changes occurred during heating is producing a zone of low density inside the area illuminated by the antenna beam. The results indicate that satellite radio tomography and scintillation measurements are effective diagnostic techniques giving a valuable information to studies of effects induced by HF modification. The complete system of plasma density disturbances describing by the theory of "the magnetic zenith effect" has been for the first time studied in this paper. A good agreement between the theory and experimental data has been obtained.

  16. Radio tomography and scintillation studies of ionospheric electron density modification caused by a powerful HF-wave and magnetic zenith effect at mid-latitudes

    NASA Astrophysics Data System (ADS)

    Tereshchenko, E. D.; Khudukon, B. Z.; Gurevich, A. V.; Zybin, K. P.; Frolov, V. L.; Myasnikov, E. N.; Muravieva, N. V.; Carlson, H. C.

    2004-05-01

    Observations of the ionospheric electron density modified by a powerful wave of the Sura HF heating facility were carried out in Russia at middle latitudes in August 2002. Amplitude scintillations and variations of the phase of VHF signals from Russian orbiting satellites passing over the heated region along the chain of three satellite receivers have been recorded. The experimental data were converted to electron density maps using a stochastic inversion. Tomographic measurements conducted during a low magnetic activity revealed that HF powerful waves can produce significant electron density disturbances up to heights significantly exceeding altitudes of the F layer peak. Both large-scale plasma enhancements and small-scale density irregularities can be generated by the HF radiation. Wavy density structures were also observed within a sector which is much wider than the area covered by the main lobe of the heating antenna. Small-scale density irregularities are mostly field-aligned although large-scale structures can be detected within a much larger area. A distinctive peculiarity of electron density changes occurred during heating is producing a zone of low density inside the area illuminated by the antenna beam. The results indicate that satellite radio tomography and scintillation measurements are effective diagnostic techniques giving a valuable information to studies of effects induced by HF modification. The complete system of plasma density disturbances describing by the theory of the magnetic zenith effect has been for the first time studied in this Letter. A good agreement between the theory and experimental data has been obtained.

  17. Radio scintillations observed during atmospheric occultations of Voyager: Internal gravity waves at Titan and magnetic field orientations at Jupiter and Saturn. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.

    1983-01-01

    The refractive index of planetary atmospheres at microwave frequencies is discussed. Physical models proposed for the refractive irregularities in the ionosphere and neutral atmosphere serve to characterize the atmospheric scattering structures, and are used subsequently to compute theoretical scintillation spectra for comparison with the Voyager occultation measurements. A technique for systematically analyzing and interpreting the signal fluctuations observed during planetary occultations is presented and applied to process the dual-wavelength data from the Voyager radio occultations by Jupiter, Saturn, and Titan. Results concerning the plasma irregularities in the upper ionospheres of Jupiter and Saturn are reported. The measured orientation of the irregularities is used to infer the magnetic field direction at several locations in the ionospheres of these two planets; the occultation measurements conflict with the predictions of Jovian magnetic field models, but generally confirm current models of Saturn's field. Wave parameters, including the vertical fluxes of energy and momentum, are estimated, and the source of the internal gravity waves discovered in Titan's upper atmosphere is considered.

  18. Interstellar Scintillation of Extragalactic Radio Sources

    NASA Astrophysics Data System (ADS)

    Rickett, Barney

    1998-05-01

    Interstellar scintillation (ISS) causes a Galactic seeing problem for radio astronomy. Thus the flux density from a very compact radio source appears to scintillate on a time scale that ranges from days to minutes depending on the wavelength and Galactic path length. I will review the observed variations from various sources, which are among the most compact cores of active galactic nuclei (AGN). An ISS interpretation of the observed variations yields estimates of the source sizes in the range 0.01 to 10 milliarcsec, often much smaller than the resolution from earth-based VLBI. The recognition of such variations as apparent reduces the implied brightness temperature by a factor as large as one million, compared to the extreme values deduced by interpreting the variations as intrinsic. Some such intraday variable sources also exhibit partially correlated variations in their polarized flux and angle. The changes in interstellar Faradya rotation are too slow to cause such variations by many orders of magnitude. I will report on attempts to model the polarized flux variations as due to independent ISS from polarized components with intrinsic polarization structure in the source at a level of tens of microarcseconds. I will also discuss how Frail et al. (Nature, 389, 261, 1997) used interstellar scintillation to estimate the size of the expanding fireball in the radio afterglow of gamma-ray burst 970508.

  19. Planetary radio waves

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1986-01-01

    Three planets, the earth, Jupiter and Saturn are known to emit nonthermal radio waves which require coherent radiation processes. The characteristic features (frequency spectrum, polarization, occurrence probability, radiation pattern) are discussed. Radiation which is externally controlled by the solar wind is distinguished from internally controlled radiation which only originates from Jupiter. The efficiency of the externally controlled radiation is roughly the same at all three planets (5 x 10 to the -6th) suggesting that similar processes are active there. The maser radiation mechanism for the generation of the radio waves and general requirements for the mechanism which couples the power generator to the region where the radio waves are generated are briefly discussed.

  20. Probing the Cores of Radio Jets through Interstellar Scintillation

    NASA Astrophysics Data System (ADS)

    Rickett, B. J.

    2007-03-01

    Interstellar Scintillation (ISS) has been established as the cause of the random variations in compact radio radio sources on times of a day or less. This interpretation provides quantitative information on the structure of the inner regions of the Radio-Emitting Jets on scales down to 10 ?arcsec, once the distance to the scattering region is known. In turn these imply Doppler factors 5-75, which are on the same order as derived from VLB interferometry.

  1. The Origin of Radio Scintillation in the Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.; Rickett, Barney J.; Redfield, Seth

    2008-03-01

    We study three quasar radio sources (B1257-326, B1519-273, and J1819+385) that show large-amplitude intraday and annual scintillation variability produced by the Earth's motion relative to turbulent-scattering screens located within a few parsecs of the Sun. We find that the lines of sight to these sources pass through the edges of partially ionized warm interstellar clouds where two or more clouds may interact. From the gas flow vectors of these clouds, we find that the relative radial and transverse velocities of these clouds are large and could generate the turbulence that is responsible for the observed scintillation. For all three sight lines the flow velocities of nearby warm local interstellar clouds are consistent with the fits to the transverse flows of the radio scintillation signals.

  2. Interplanetary scintillation observations with the Cocoa Cross radio telescope

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Erskine, F. T.; Huneke, A. H.; Mitchell, D. G.

    1976-01-01

    Physical and electrical parameters for the 34.3-MHz Cocoa Cross radio telescope are given. The telescope is dedicated to the determination of solar-wind characteristics in and out of the ecliptic plane through measurement of electron-density irregularity structure as determined from IPS (interplanetary scintillation) of natural radio sources. The collecting area (72,000 sq m), angular resolution (0.4 deg EW by 0.6 deg NS), and spatial extent (1.3 km EW by 0.8 km NS) make the telescope well suited for measurements of IPS index and frequency scale for hundreds of weak radio sources without serious confusion effects.

  3. HF produced ionospheric electron density irregularities diagnosed by UHF radio star scintillations

    SciTech Connect

    Alfred, F.

    1982-01-01

    HF-waves incident on an overdense (HF-frequency < penetration frequency) ionosphere are known to produce large scale electron density irregularities. It is predicted that similar irregularities are formed during underdense HF-modification. The propagation of UHF radio waves originating from radio stars will be affected by such irregularities in the ionosphere. The interest in a scintillation experiment is twofold. One may obtain information on the electron density irregularies and one may learn about the propagation of radio waves through such a perturbed medium. A thin screen (diffractive) theory is derived which allows to draw conclusons on the electron density irregularities from the intensity fluctuations measured on the ground if the phase perturbations are much less than one radian. Since radio stars suitable for scintillation measurements at UHF are very faint an antenna with a large collection area is required. The observations reported in this dissertation were performed with the 300m diameter spherical reflector of the Arecibo Observatory. Successful observations were performed at 430 MHz and at 1400 MHz. Intensity fluctuations at such high frequencies measured with a large antenna suffer severe filtering in the thin phase screen regime. The theory presented in this dissertation includes these filtering effects. Many observations agree with the predictions of that theory. Some observations indicate that refraction effects have to be included to explain the data. HF-induced electron density irregularities were only observed during overdense heating.

  4. Outflow structure of the quiet sun corona probed by spacecraft radio scintillations in strong scattering

    SciTech Connect

    Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato; Tokumaru, Munetoshi; Shiota, Daikou; Isobe, Hiroaki; Asai, Ayumi; Miyamoto, Mayu; Häusler, Bernd; Pätzold, Martin; Nabatov, Alexander; Yaji, Kentaro; Yamada, Manabu

    2014-06-20

    Radio scintillation observations have been unable to probe flow speeds in the low corona where the scattering of radio waves is exceedingly strong. Here we estimate outflow speeds continuously from the vicinity of the Sun to the outer corona (heliocentric distances of 1.5-20.5 solar radii) by applying the strong scattering theory to radio scintillations for the first time, using the Akatsuki spacecraft as the radio source. Small, nonzero outflow speeds were observed over a wide latitudinal range in the quiet-Sun low corona, suggesting that the supply of plasma from closed loops to the solar wind occurs over an extended area. The existence of power-law density fluctuations down to the scale of 100 m was suggested, which is indicative of well-developed turbulence which can play a key role in heating the corona. At higher altitudes, a rapid acceleration typical of radial open fields is observed, and the temperatures derived from the speed profile show a distinct maximum in the outer corona. This study opened up a possibility of observing detailed flow structures near the Sun from a vast amount of existing interplanetary scintillation data.

  5. Scintillation of spacecraft radio signals on the interplanetary plasma

    NASA Astrophysics Data System (ADS)

    Molera Calves, Guifre; Pogrebenko, Sergei; Cimo, Giuseppe; Duev, Dmitry; Bocanegra, Tatiana

    2015-04-01

    Observations of planetary spacecraft radio signals within the solar system give a unique opportunity to study the temporal and spatial behaviour of the signal's phase fluctuations caused by its propagation through the interplanetary plasma and the Earth's ionosphere. The phase scintillation of the telemetry signal of the European Space Agency's (ESA) Venus Express (VEX) and Mars Express (MEX) spacecraft was observed at X-band with a number of radio telescopes of the European VLBI Network (EVN) in the period 2008-15, within the scope of Planetary Radio Interferometry and Doppler Experiment (PRIDE) project. It was found that the phase scintillation spectra follow a Kolmogorov distribution with nearly constant spectral index of -2.42 for a full range of Venus orbital phases, from superior to inferior conjunctions and back. The solar wind plasma dominates the scintillation index and Doppler noise along the orbit from superior conjunction to the greatest elongation. Here, I will present the latest results of these observations, while approaching the inferior conjunction, where the Earth ionosphere starts to dominate, and also at the superior conjunction. Empirical coefficients for both contributions were estimated and compared for VEX and MEX.

  6. Application of refractive scintillation theory to radio transmission through the ionosphere and the solar wind, and to reflection from a rough ocean

    NASA Astrophysics Data System (ADS)

    Booker, H. G.

    1981-11-01

    The theory of diffractive scattering by small-scale irregularities is combined with the results of Booker and MajidiAhi (1981) concerning refractive scattering by large-scale irregularities in a phase-changing screen, in a study of three intensity scintillation phenomena: (1) the reflection of radio and optical waves from an ocean surface disturbed by a spectrum of water waves; (2) the scintillation of VHF, UHF and SHF radio waves traversing the ionospheric F-region; and (3) the scintillation of the radio waves mentioned while traversing the solar wind. Spectral diagrams are drawn to show how the outer, inner, Fresnel, focal, lens and peak scales vary with such relevant parameters as electromagnetic wave-frequency for the ocean, RMS fractional fluctuation of ionization density for the ionosphere, and distance of closest approach to the sun for the solar wind.

  7. Interstellar Scattering and Scintillation as Tools in Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Rickett, B. J.

    1998-05-01

    In recent years Interstellar Scintillation (ISS) has been identified as causing variations in flux density in a variety of radio astronomical observations. Although this ``Galactic seeing'' effect is in some ways a nuisance, ISS is also a valuable tool that provides information on radio source structure at angular scales well beyond the reach of all current interferometers. In addition to ISS, angular and temporal broadening have been measured on many lines of sight in the Galaxy. Such measurements also provide a probe for the fine scale structure in the ionized interstellar plasma. The session will explore the science that can be done using these tools to probe both very compact radio sources and the interstellar plasma. Examples include: ISS provides an explanation of rapid (hours to days - intraday) flux variations at centimeter wavelengths from compact cores of AGNs, reducing the implied brightness temperature by up to six orders of magnitude. ISS has beeen recognised as causing the flux variations from the radio afterglow of the gamma-ray burst observed on May 8 1997, from which a diameter of a few microarcseconds has been estimated for the expanding fireball. A study of the interstellar speckle pattern of the Vela pulsar has achieved nanoarcsecond angular resolution of the pulsar magnetosphere. The Galaxy is permeated by irregular density structures, whose wavenumber spectrum is like a turbulent fluid over at least six and as many as ten orders of magnitude in length scale. However, the local strength of turbulence is itself non-uniform, with localized enhancemnents by more than six orders of magnitude, whose physical origin is still obscure.

  8. Interstellar Scintillation Observations of 146 Extragalactic Radio Sources

    NASA Astrophysics Data System (ADS)

    Rickett, Barney J.; Lazio, T. J. W.; Ghigo, Frank D.

    2006-08-01

    From 1979 to 1996 the Green Bank Interferometer was used by the Naval Research Laboratory to monitor the flux density from 146 compact radio sources at frequencies near 2 and 8 GHz. We filter the ``light curves'' to separate intrinsic variations on times of a year or more from more rapid interstellar scintillation (ISS) on times of 5-50 days. Whereas the intrinsic variation at 2 GHz is similar to that at 8 GHz (although diminished in amplitude), the ISS variation is much stronger at 2 than at 8 GHz. We characterize the ISS variation by an rms amplitude and a timescale and examine the statistics of these parameters for the 121 sources with significant ISS at 2 GHz. We model the scintillations using the NE2001 Galactic electron model assuming the sources are brightness-limited. We find the observed rms amplitude to be in general agreement with the model, provided that the compact components of the sources have about 50% of their flux density in a component with maximum brightness temperatures 1011-1012 K. Thus, our results are consistent with centimeter-wavelength VLBI studies of compact active galactic nuclei, in that the maximum brightness temperatures found are consistent with the inverse synchrotron limit at 31011 K, boosted in jet configurations by Doppler factors up to about 20. The average of the observed 2 GHz ISS timescales is in reasonable agreement with the model at Galactic latitudes above about 10. At lower latitudes the observed timescales are too fast, suggesting that the transverse velocity increases beyond about 1 kpc, which may be due to differential Galactic rotation.

  9. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  10. Antenna Construction and Propagation of Radio Waves.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  11. Speckles in interstellar radio-wave scattering

    NASA Technical Reports Server (NTRS)

    Desai, K. M.; Gwinn, C. R.; Reynolds, J.; King, E. A.; Jauncey, D.; Nicholson, G.; Flanagan, C.; Preston, R. A.; Jones, D. L.

    1991-01-01

    Observations of speckles in the scattering disk of the Vela pulsar are presented and speckle techniques for studying and circumventing scattering of radio waves by the turbulent interstellar plasma are discussed. The speckle pattern contains, in a hologrammatic fashion, complete information on the structure of the radio source as well as the distribution of the scattering material. Speckle observations of interstellar scattering of radio waves are difficult because of their characteristically short timescales and narrow bandwidths. Here, first observations are presented, taken at 13 cm wavelength with elements of the SHEVE VLBI network, of speckles in interstellar scattering.

  12. Ionospheric scintillations at Guilin detected by GPS ground-based and radio occultation observations

    NASA Astrophysics Data System (ADS)

    Zou, Yuhua

    2011-03-01

    The occurrence of ionospheric scintillations with S4 ? 0.2 was studied using GPS measurements at Guilin, China (25.29N, 110.33E; geomagnetic: 15.04N, 181.98E), a station located near the northern crest of the equatorial anomaly. The results are presented for data collected from January 2009 to March 2010. The results show that nighttime amplitude scintillations only took place in February and March of the considered years, while daytime amplitude scintillations occurred in August and December of 2009. Nighttime amplitude scintillations, observed in the south of Guilin, always occurred with phase scintillations, TEC (Total Electron Content) depletions, and ROT (Rate Of change of TEC) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations always took place simultaneously for most of the GPS satellites which appeared over Guilin in different azimuth directions. Ground-based GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio (SNR) measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively. Moreover, strong daytime amplitude scintillations may be associated with the plasma density enhancements in ionospheric E region caused by the Perseid and Geminid meteor shower activities.

  13. Gas scintillation drift chambers with wave shifter fiber readout

    NASA Technical Reports Server (NTRS)

    Sadoulet, Bernard; Weiss, Steven; Parsons, Ann; Lin, Robert P.; Smith, Garth

    1988-01-01

    Results for a prototype xenon gas scintillation drift chamber are presented. Its operation is discussed using two types of light detection schemes: one based on an Anger camera geometry and one based on an array of wave-shifting light fibers. The results are judged to demonstrate the instrument's potential.

  14. Ionospheric irregularities causing scintillation of GHz frequency radio signals

    NASA Technical Reports Server (NTRS)

    Wernik, A. W.; Liu, C. H.

    1974-01-01

    Consideration of the recently observed phenomenon of scintillation of satellite signals at GHz frequency range. Based on the scintillation data and results from in situ measurements, several ionospheric irregularity models with different power spectra are studied. Scintillation index is computed for the various models and compared with observed results. Both magnitude and frequency dependence of the scintillation index are investigated. It is found that a thick irregularity slab of the order of 200 km with an electron density fluctuation of about 20 per cent of its background value and with a nonmonotonic power spectrum may account for the maximum observed values of the scintillation index as well as its frequency dependence. Some future observations and measurements are suggested.

  15. Information Content in Radio Waves: Student Investigations in Radio Science

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  16. Magellan radio occultation measurements of atmospheric waves on Venus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Jenkins, J. M.

    1995-01-01

    Radio occultation experiments were conducted at Venus on three consecutive orbits of the Magellan spacecraft in October 1991. Each occultation occurred over the same topography (67 deg N, 127 deg E) and at the same local time (22 hr 5 min), but the data are sensitive to zonal variations because the atmosphere rotates significantly during one orbit. Through comparisons between observations and predictions of standard wave theory, we have demonstrated that small-scale oscillations in retrieved temperature profiles as well as scintillations in received signal intensity are caused by a spectrum of vertically propagating internal gravity waves. There is a strong similarity between the intensity scintillations observed here and previous measurements, which pertain to a wide range of locations and experiment dates. This implies that the same basic phenomenon underlies all the observations and hence that gravity waves are a persistent, global feature of Venus' atmosphere. We obtained a fairly complete characterization of a gravity wave that appears above the middle cloud in temperature measurements on all three orbits. The amplitude and vertical wavelength are about 4 K and 2.5 km respectively, at 65 km. A model for radiative damping implies that the wave intrinsic frequency is approximately 2 x 10(exp 4) rad/sec, the corresponding ratio between horizontal and vertical wavelengths is approximately 100. The wave is nearly stationary relative to the surface or the Sun. Radiative attenuation limits the wave amplitude at altitudes above approximately 65 km, leading to wave drag on the mean zonal winds of about +0.4 m/sec per day (eastward). The sign, magnitude, and location of this forcing suggest a possible role in explaining the decrease with height in the zonal wind speed that is believed to occur above the cloud tops. Temperature oscillations with larger vertical wavelengths (5-10 km) were also observed on all three orbits, but we are able unable to interpret these unambiguously.

  17. Wave-wave interactions in solar type III radio bursts

    SciTech Connect

    Thejappa, G.; MacDowall, R. J.

    2014-02-11

    The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

  18. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Sjogren, William L.; Kliore, Arvydas J.; Luhmann, Janet G.; Brace, Larry H.

    1989-01-01

    The observation of S-band (2.3 GHz) radio scintillations in the ionosphere of Venus by the Pioneer Venus Orbiter is reported. In situ plasma measurements and propagation calculations show that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. It is suggested that these topside plasma irregularities are associated with the penetration of large-scale magnetic fields in the ionosphere. It is found that the disturbed plasma and the scintillations are a manifestation of high-dynamic solar wind interaction with the ionosphere.

  19. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    NASA Astrophysics Data System (ADS)

    Woo, R.; Sjogren, W. L.; Luhmann, J. G.; Kliore, A. J.; Brace, L. H.

    1989-02-01

    The observation of S-band (2.3 GHz) radio scintillations in the ionosphere of Venus by the Pioneer Venus Orbiter is reported. In situ plasma measurements and propagation calculations show that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. It is suggested that these topside plasma irregularities are associated with the penetration of large-scale magnetic fields in the ionosphere. It is found that the disturbed plasma and the scintillations are a manifestation of high-dynamic solar wind interaction with the ionosphere.

  20. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    SciTech Connect

    Woo, R.; Sjogren, W.L.; Kliore, A.J. ); Luhmann, J.G. ); Brace, L.H. )

    1989-02-01

    This paper presents the first S-band (2.3 GHz) radio scintillations observed in the ionosphere of Venus and discovered when the Pioneer Venus Orbiter spacecraft traversed the ionosphere of Venus. In situ plasma measurements as well as propagation calculations confirm that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. While these topside plasma irregularities have not been studied before, simultaneous magnetic field measurements presented here reveal that they are associated with the penetration of large-scale magnetic fields in the ionosphere. Previous studies based on extensive magnetic field measurements have shown that the presence of large-scale magnetic fields occurs in the subsolar region when the solar wind dynamic pressure exceeds the ionospheric plasma pressure. As with the large-scale magnetic fields, the disturbed plasma and resulting scintillations are therefore a manifestation of high-dynamic solar wind interaction with the ionosphere. Since the scintillations only occur in the subsolar region of Venus, the global morphology of ionospheric scintillations at Venus is different from that of the terrestrial ionosphere, where scintillations are observed in both polar and equatorial regions, with peaks occurring during nighttime. This difference apparently stems from the fact that Venus is not a magnetic planet. The authors also demonstrate that the disturbed plasma produced by the high-dynamic solar wind interaction can be remotely sensed by scintillations during radio occultation measurements, that is, when the spacecraft is outside the ionosphere.

  1. VizieR Online Data Catalog: Catalogue of scintillating radio sources (Artyukh+, 1996-1998)

    NASA Astrophysics Data System (ADS)

    Artyukh, V. S.; Tyul'Bashev, S. A.; Isaev, E. A.

    2001-01-01

    A surveys of compact (<1") radio sources exhibiting interplanetary scintillation were conducted at 102MHz on the Large Phased Array of the Lebedev Institute of Physics. The surveys cover a 0.047 steradian area of the 7C survey in the direction RA=6h28m and DE=45{deg} and a 0.097-steradian area in the direction RA=10h28m and DE=41{deg}. A total of 395 scintillating radio sources in a 0.144 sr region were detected. (2 data files).

  2. The Unified Radio and Plasma wave investigation

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Bougeret, J. L.; Caldwell, J.; Canu, P.; De Conchy, Y.; Cornilleau-Wehrlin, N.; Desch, M. D.; Fainberg, J.; Goetz, K.; Goldstein, M. L.

    1992-01-01

    The scientific objectives of the Ulysses Unified Radio and Plasma wave (URAP) experiment are twofold: (1) the determination of the direction, angular size, and polarization of radio sources for remote sensing of the heliosphere and the Jovian magnetosphere and (2) the detailed study of local wave phenomena, which determine the transport coefficients of the ambient plasma. A brief discussion of the scientific goals of the experiment is followed by a comprehensive description of the instrument. The URAP sensors consist of a 72.5 m electric field antenna in the spin plane, a 7.5-m electric field monopole along the spin axis of a pair of orthogonal search coil magnetic antennas. The various receivers, designed to encompass specific needs of the investigation, cover the frequency range from dc to 1 MHz. A relaxation sounder provides very accurate electron density measurements. Radio and plasma wave observations are shown to demonstrate the capabilities and limitations of the URAP instruments: radio observations include solar bursts, auroral kilometric radiation, and Jovian bursts; plasma waves include Langmuir waves, ion acousticlike noise, and whistlers.

  3. Effects of multiple scattering on scintillation of transionospheric radio signals

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Yeh, K. C.; Youakim, M. Y.; Wernik, A. W.

    1974-01-01

    Recent development in the optical scintillation theory has been adapted to the ionospheric geometry in order to study the ionospheric scintillation phenomenon in the presence of multiple scattering. Under approximations well satisfied in typical ionospheres for a frequency above about 20 MHz, the first through fourth moment equations have been derived and some analytic solutions given. The fourth moment equation has also been solved numerically. The numerical results show clearly the occurrence of focusing and saturation phenomena. The new multiple-scatter effects are emphasized.

  4. Radio Scintillation Due to Discontinuities in the Interstellar Plasma Density

    NASA Astrophysics Data System (ADS)

    Lambert, H.; Rickett, B.

    1996-12-01

    We develop the theory of interstellar scintillation as caused by an irregular plasma having a power-law spatial density spectrum with a spectral index of beta = 4 corresponding to a medium with abrupt changes in its density. An ``outer scale'' is included in the model representing the range over which the density of the medium remains uniform. Such a spectrum could be used to model plasma shock fronts in supernova remnants. We investigate and develop equations for pulse broadening, decorrelation bandwidth of diffractive scintillations, and the refractive scintillation index and compare our results with pulsar measurements. We consider both a medium concentrated in a thin layer and an extended irregular medium. We conclude that the beta = 4 model gives satisfactory agreement for many diffractive measurements, but that for the refractive scintillation index, it gives less satisfactory agreement than does the Kolmogorov turbulence spectrum. We propose to investigate a composite spectrum, featuring a uniform background turbulence with randomly distributed discrete objects, as modelled by the beta = 4 spectrum.

  5. HF Radio Wave Production of Artificial Ionospheres

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert

    In 1993 it was predicted that artificial ionospheres would be produced by high power HF radio waves, once HF transmitters approached a GWatt ERP. When that threshold was very recently achieved, such production was indeed detected and published at two high latitude high power HF facilities. Here we review: the first-principles logic behind that prediction, which aspects of such production are critically dependent on magnetic latitude, and which aspects of such production depend only on physical parameters independent of latitude. These distinctions follow directly from decomposition of the problem of ionization production into its components of: radio-wave propagation, wave-particle interactions, electron transport, and quantitative elastic/inelastic cross-sections. We outline this analysis to show that, within the context of early observations, the production of ionization is inevitable, and only a question of competing instability thresholds, and scale of ionization production. This illustrates complimentary aeronomy and plasma physics to advance understanding of both.

  6. Radio Scintillation due to Discontinuities in the Interstellar Plasma Density

    NASA Astrophysics Data System (ADS)

    Lambert, H. C.; Rickett, B. J.

    2000-03-01

    We develop the theory of interstellar scintillation as caused by an irregular plasma having a power-law spatial-density spectrum with a spectral exponent of ?=4 corresponding to a medium with abrupt changes in its density. An ``outer scale'' is included in the model that represents the typical scale over which the density of the medium remains uniform. Such a spectrum could be used to model plasma shock fronts in supernova remnants or other plasma discontinuities. We investigate and develop equations for the decorrelation bandwidth of diffractive scintillations and the refractive scintillation index and compare our results with pulsar measurements. We consider both a medium concentrated in a thin layer and an extended irregular medium. We conclude that the ?=4 model gives satisfactory agreement for many diffractive measurements, in particular the VLBI measurements of the structure function exponent between 5/3 and 2. However, it gives less satisfactory agreement for the refractive scintillation index than does the Kolmogorov turbulence spectrum. The comparison suggests that the medium consists of a pervasive background distribution of turbulence embedded with randomly placed discrete plasma structures such as shocks or H II regions. This can be modeled by a composite spectrum following the Kolmogorov form at high wavenumbers and steepening at lower wavenumbers corresponding to the typical (inverse) size of the discrete structures. Such a model can also explain the extreme scattering events. However, lines of sight through the enhanced scattering prevalent at low Galactic latitudes are accurately described by the Kolmogorov spectrum in an extended medium and do not appear to have a similar low-wavenumber steepening.

  7. The Mexican Array Radio Telescope (MEXART). An Interplanetary Scintillation Array in Mexico in the IHY

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, J.A.; Andrade, E.; Carrillo, A.; Jeyakumar, S.; Kurtz, S.; Perez-Enriquez, R.; Vazquez, S.; Sierra, P.; Manoharan, P.K.; Anathakrishnan, S.

    The Mexican Array Radio Telescope (MEXART) consists of a 64x64 (4096) full wavelength dipole antenna array, operating at 140 MHz, occupying 9,500 square meters (70 m x 140 m) to carry out interplanetary scintillation (IPS) observations. This is a dedicated radio array for IPS observations located in the state of Michoacan (350 km north-west from Mexico City, lat. 19 48' N, long. 101 41' W and 1964 m above sea level). The aim of this instrument is to track large-sclae solar wind disturbances propagating between the Sun and the Earth using the Interplanetary scintillation technique. We report the system testings, radio source measurements and the collaboration plans for the International Heliophysical Year 2007.

  8. Frequency structure of radio scintillations from the pulsar PSR 1508+55

    NASA Astrophysics Data System (ADS)

    Kondrat'ev, V. I.; Popov, M. V.; Skulachev, A. D.; Soglasnov, V. A.

    1998-07-01

    Using the method of predetector dispersion removal, we analyze the radio pulses recorded from the pulsar PSR 1508+55 at 102.5 MHz to determine the scattering parameters. The measured decorrelation bandwidth is 87 Hz, and the scintillation time scale is 13 s. The rms scattering angle is estimated to be 0.14". We plot the power-law frequency dependences of the scintillation time scale and the decorrelation bandwidth by using our data and the results of other authors for this pulsar. The exponents in these dependences lie between the values corresponding to the Gaussian and Kolmogorov spectra of nonuniformities.

  9. CONSTRAINING THE VELA PULSAR'S RADIO EMISSION REGION USING NYQUIST-LIMITED SCINTILLATION STATISTICS

    SciTech Connect

    Johnson, M. D.; Gwinn, C. R.; Demorest, P. E-mail: cgwinn@physics.ucsb.edu

    2012-10-10

    Using a novel technique, we achieve {approx}100 picoarcsec resolution and set an upper bound of less than 4 km for the characteristic size of the Vela pulsar's emission region. Specifically, we analyze flux-density statistics of the Vela pulsar at 760 MHz. Because the pulsar exhibits strong diffractive scintillation, these statistics convey information about the spatial extent of the radio emission region. We measure both a characteristic size of the emission region and the emission sizes for individual pulses. Our results imply that the radio emission altitude for the Vela pulsar at this frequency is less than 340 km.

  10. Effect of geomagnetic activity on equatorial radio VHF scintillations and spread F

    SciTech Connect

    Rastogi, R.G.; Mullen, J.P.; MacKenzie, E.

    1981-05-01

    The paper discusses the occurrence of scintillations of ATS 3 (137 MHz) beacons recorded at Huancayo on geomagnetically quiet and disturbed days during the years 1969--1976 and compared the results with the corresponding occurrence of range and frequency spread F at Huancayo. During the equinoctial months and the December solstical months the geomgnetic activity reduces the equatorial scintillations during premidnight hours but increases their occurrence during the postmidnight hours. These features are very similar to the effect of geomagnetic activity on the occurrence of the range type of equatorial spread F rather than on the occurrence of frequency spread, which decreases for any hour of the night during geomagnetic active periods. During the June solsticial months, the occurrence of both scintillations and spread F is very much reduced; however, both the phenomena are more frequent on disturbed than on quiet days for any of the hours of the night. These effects are consistently the same for any of the years within the solar cycle. It is suggested that the equatorial radio scintillations at 137 MHz during the nighttime are produced primarily by the occurrence of the range type of spread F. The geomagnetic effects are due to the modifications of the equatorial electric field by the geomagnetic disturbance and thereby affect the development of F region irregularities causing scintillations.

  11. Modifying the ionosphere with intense radio waves.

    PubMed

    Utlaut, W F; Cohen, R

    1971-10-15

    The ionospheric modification experiments provide an opportunity to better understand the aeronomy of the natural ionosphere and also afford the control of a naturally occurring plasma, which will make possible further progress in plasma physics. The ionospheric modification by powerful radio waves is analogous to studies of laser and microwave heating of laboratory plasmas (20). " Anomalous" reflectivity effects similar to the observed ionospheric attenuation have already been noted in plasmas modulated by microwaves, and anomalous heating may have been observed in plasmas irradiated by lasers. Contacts have now been established between the workers in these diverse areas, which span a wide range of the electromagnetic spectrum. Perhaps ionospheric modification will also be a valuable technique in radio communications. PMID:17778050

  12. Strong scintillations during atmospheric occultations Theoretical intensity spectra. [radio scattering during spacecraft occultations by planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.

    1986-01-01

    Each of the two Voyager spacecraft launched in 1977 has completed a reconnaissance of the Jovian and Saturnian systems. In connection with occultation experiments, strong scintillations were observed. Further theoretical work is required before these scintillations can be interpreted. The present study is, therefore, concerned with the derivation of a theory for strong scattering during atmospheric occultation experiments, taking into account as fundamental quantity of interest the spatial spectrum (or spectral density) of intensity fluctuations. Attention is given to a theory for intensity spectra, and numerical calculations. The new formula derived for Phi-i accounts for strong scattering of electromagnetic waves during atmospheric occultations.

  13. Radio wave heating of the lower ionosphere

    SciTech Connect

    Freeman, M.J.

    1993-01-01

    The interaction of high power, high frequency radio waves with the lower ionosphere is becoming an area of considerable theoretical and experimental interest. In particular, significant ohmic heating of the collisional, weakly ionized ionospheric plasma is possible, which can change the absorptive and conductive properties of the plasma in a nonlinear fashion. Precisely controlled heating may have applications to the production of ELF/VLF waves in the ionosphere by the stimulation when inferring the physical parameters of the sources. The necessary generalizations to the standard synchrotron self-Compton theory are presented. Relativistic induced Compton scattering is very sensitive to the number of mildly relativistic electrons in the source, and so may be a useful probe to this portion of the electron energy distribution.

  14. Detection Of Cosmic Rays Air Showers Using Radio Antenna Arrays And Scintillation Counters

    NASA Astrophysics Data System (ADS)

    Papageorgiou, K.; Tzamarias, S.; Gkialas, I.; Tsirigotis, A.; Bourlis, G.; Manthos, I.; Avgitas, G.

    2014-06-01

    In this progress report we describe a test bench developed in order to evaluate the performance of radio antennas and other gaseous detectors in detecting air showers initiating by cosmic rays. This test bench is based on an array of HELYCON scintillation counters and is used to operate a digital radio telescope. The results of this research and development activity will be applied in developing a sea top calibration array of an underwater neutrino telescope. We also describe the performance of a single HELYCON station in detecting and reconstructing showers as well as on the pilot operation of a single low frequency radio antenna in order to develop techniques to suppress the contribution of the anthropogenic RF background originated from human activities.

  15. Near-Sun solar wind consequences of solar structure and dynamic phenomena observed by radio scintillation measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1994-01-01

    Since radio propagation measurements using either natural or spacecraft radio signals are used for probing the solar wind in the vicinity of the sun, they represent a key tool for studying the interplanetary consequences of solar structure and dynamic phenomena. New information on the near sun consequences was obtained from radio scintillation observations of coherent spacecraft signals. The results covering density fluctuations, fractional density fluctuations, coronal streamers, heliospheric current sheets, coronal mass ejections and interplanetary shocks are reviewed. A joint ICE S-band (13 cm wavelength) Doppler scintillation measurement with the SOHO white-light coronograph (LASCO) is described.

  16. Scintillation of radio astronomical sources due to anisotropic inhomogeneities in the ionospheric plasma

    SciTech Connect

    Bezrodnyi, V.G.

    1988-02-01

    We have investigated the properties of scintillation of sources of cosmic radio emission due to inhomogeneities in the ionospheric F-region. The inhomogeneities are elongated along the geomagnetic field lines. We show that when the line of sight coincides with the magnetic field direction, we should observe an increase in the magnitude of the scintillation index. The amount of the increase, as well as the angular range in which it occurs, depend on the explicit shape of the spectrum of spatial scales of the inhomogeneities. We have given consideration to models which have been adopted in the literature for three-dimensional and two-dimensional anisotropy in the ionospheric turbulence. Based on this analysis, we propose a diagnostic method for the inhomogeneous ionospheric plasma. It is based on multifrequency measurements of the scintillation index of radio astronomical sources which culminate near the direction of the geomagnetic field lines at the latitude of the observing point. We establish the limits which are imposed on our proposed method because of the finite dimensions of the sources.

  17. Radio wave scattering in the outer heliosphere

    NASA Astrophysics Data System (ADS)

    Armstrong, J. W.; Coles, W. A.; Rickett, B. J.

    2000-03-01

    The Voyager 1 and 2 plasma wave instruments have observed low-frequency (1.5-4 kHz) radio waves apparently generated near the heliopause. The waves are found in two distinct bands. Power at the lower frequencies centered on 1.78 kHz shows no modulation when the spacecraft is rolled about the Earth-spacecraft line, indicating that the radiation is isotropic. Power in the higher band centered on 3.11 kHz shows roll modulation as high as 60%, indicating that the source of the radiation is quite compact, subtending an angle <1 rad at the spacecraft. Simple estimates of the scattering of 3.11 kHz radiation from electron density fluctuations indicate that, if the radiation had originated from the distance of the heliopause, the scattering would be so large that no roll modulation should be observed. Here we show that these earlier scattering estimates were too high because they ignored the latitude variation of scattering and the inner scale of the electron density fluctuation spectrum. With these two effects properly included, the expected scattering is consistent with the observations and the postulate that the radiation originates from near the nose of the heliosphere.

  18. Effects of D region ionization on radio wave propagation

    NASA Technical Reports Server (NTRS)

    Larsen, T. R.

    1979-01-01

    The effects of anomalous D region ionization upon radio wave propagation are described for the main types of disturbances: sudden ionospheric disturbances, relativistic electron events, magnetic storms, auroral disturbances, polar cap events, and stratospheric warmings. Examples of radio wave characteristics for such conditions are given for the frequencies between the extremely low (3-3000 Hz) and high (3-30 MHz) frequency domains. Statistics on the disturbance effects and radio wave data are given in order to contribute towards the evaluation of possibilities for predicting the radio effects.

  19. Radio-wave propagation for space communications systems

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1981-01-01

    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  20. Magnetospheric radio and plasma wave research - 1987-1990

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1991-01-01

    This review covers research performed in the area of magnetospheric plasma waves and wave-particle interactions as well as magnetospheric radio emissions. The report focuses on the near-completion of the discovery phase of radio and plasma wave phenomena in the planetary magnetospheres with the successful completion of the Voyager 2 encounters of Neptune and Uranus. Consideration is given to the advances made in detailed studies and theoretical investigations of radio and plasma wave phenomena in the terrestrial magnetosphere or in magnetospheric plasmas in general.

  1. A Review of Ionospheric Scintillation Models

    NASA Astrophysics Data System (ADS)

    Priyadarshi, S.

    2015-03-01

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  2. HF produced ionospheric electron density irregularities diagnosed by UHF radio star scintillations

    NASA Technical Reports Server (NTRS)

    Frey, A.; Gordon, W. E.

    1982-01-01

    Three observations of radio star intensity fluctuations at UHF are reported for HF ionospheric modification experiments carried out at the Arecibo Observatory. Two observations at 430 MHz and one at 1400 MHz suggest that the the thin phase screen theory is a good approximation to the observed power spectra. It is noted, however, that the theory has to be extended to include antenna filtering. This type of filtering is important for UHF radio star scintillations since the antenna usually has a narrow beamwidth. HF power densities of less than 37 microwatts/sq m incident on the ionosphere give rise to electron density irregularities larger than 13% of the ambient density (at 260 km) having scale sizes of approximately 510 m perpendicular to the geomagnetic field. The irregularities are found to form within 20-25 s after the HF power is turned on. The drift velocities of the irregularities can be estimated from the observed power spectra.

  3. Coronal Radio Sounding Experiments with Mars Express: Scintillation Spectra during Low Solar Activity

    SciTech Connect

    Efimov, A. I.; Lukanina, L. A.; Samoznaev, L. N.; Rudash, V. K.; Chashei, I. V.; Bird, M. K.; Paetzold, M.; Tellmann, S.

    2010-03-25

    Coronal radio sounding observations were carried out with the radio science experiment MaRS on the ESA spacecraft Mars Express during the period from 25 August to 22 October 2004. Differential frequency and log-amplitude fluctuations of the dual-frequency signals were recorded during a period of low solar activity. The data are applicable to low heliographic latitudes, i.e. to slow solar wind. The mean frequency fluctuation and power law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The radial dependence of the frequency fluctuation spectral index alpha reflects the previously documented flattening of the scintillation power spectra in the solar wind acceleration region. Temporal spectra of S-band and X-band normalized log-amplitude fluctuations were investigated over the range of fluctuation frequencies 0.01 Hzscintillation data. Evidence for a weak increase in the fractional electron density turbulence level is obtained in the range 10-40 solar radii.

  4. The Scintillation and TEC Radio Instrument in Space (SCITRIS) Program at the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Bernhardt, P.; Siefring, C.; Huba, J.; Galysh, I.

    SCITRIS, a new space-based system to monitor total electron content (TEC) and ionospheric scintillations (IS), is scheduled for launch in late 2006. Two satellites, the Air Force S ace Test Program STPSAT1 and the Naval Postgraduate Schoolp NPSAT1, will host the SCITRIS instruments. The satellites will orbit at 560 km altitude with an inclination of 35 degrees. The CITRIS receiver on STPSAT1 will record signals from radio beacons o erating near 150, 400, 1067 and 2036 MHz.p The frequency pair 401.25 and 2036.25 MHz will be transmitted from the 50 ground transmitters that comprise the Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) system maintained by CNES in France. The frequencies 150.012, 400.032, and 1066.752 MHz will be transmitted using the Naval Research Laboratories' Coherent Electromagnetic Radio Tomography (CERTO) beacon from the NPSAT1 satellite. The NRL Langmuir probe will also be located on NPSAT1 to provide in situ electron density. The CITRIS receiver will process the measurements of complex amplitude from the multifrequency beacons to yield TEC and scintillation indices (S 4, ). Global maps of electron density and ionospheric irregularities will be produced using the SCITRIS instruments.

  5. Plasma distribution of Comet ISON (C/2012 S1) observed using the radio scintillation method

    NASA Astrophysics Data System (ADS)

    Iju, Tomoya; Abe, Shinsuke; Tokumaru, Munetoshi; Fujiki, Ken'ichi

    2015-05-01

    We report the electron density in a plasma tail of Comet ISON (C/2012 S1) derived from interplanetary scintillation (IPS) observations during November 1-28, 2013. Comet ISON showed a well-developed plasma tail (longer than 2.98 ×107 km) before its perihelion passage on November 28. We identified a radio source whose line-of-sight approached the ISON's plasma tail in the above period and obtained its IPS data using the Solar Wind Imaging Facility at 327 MHz. We used the Heliospheric Imager onboard the Solar-Terrestrial Relation Observatory to distinguish between the cometary tail and solar eruption origins of their enhanced scintillation. From our examinations, we confirmed three IPS enhancements of a radio source 1148-00 on November 13, 16, and 17, which could be attributed to the disturbance in the cometary tail. Power spectra of 1148-00 had the steeper slope than normal ones during its occultation by the plasma tail. We estimated the electron density in the ISON's plasma tail and found 84 cm-3 around the tail axis at a distance of 3.74 ×107 km from the cometary nucleus and an unexpected variation of the electron density in the vicinity of the tail boundary.

  6. Radio Waves for Space-Based Construction

    NASA Astrophysics Data System (ADS)

    Komerath, Narayanan M.; Wanis, Sameh S.

    2004-02-01

    This paper follows up on the idea of using potential fields for automatic construction of massive objects of desired shape in Space. In STAIF03, we showed the commonality between the theories for acoustic and optical positioning/shaping methods. Using this theoretical framework, we developed a simple engineering estimation scheme to predict the acceleration per unit intensity. The radiation pressure is achieved by interaction of electromagnetic waves and particles of a given dielectric material and size. The theory was limited to the Rayleigh domain, where particle size is much less than the wavelength, and isotropic scattering could be assumed. With this theoretical framework in hand, we now consider how electromagnetic waves could be utilized in a Space-based construction project. In the test case project, the question of how to construct a safe radiation shelter for humans, in the Near-Earth Object (NEO) region is considered. NEO material, pulverized to an average particle size of 0.1m radius, is formed into desired shapes using the radiation pressure and gradient forces experienced by dielectric objects in a standing-wave field of radio waves. The force field is produced by solar-powered transmitter/antenna carrying spacecraft, which are positioned in formation around the particle cloud to set up a resonant field of the desired mode. As a test case, formation of cylindrical shells is considered. The field level is set to induce an average particle acceleration of a millionth of an Earth-surface gravitational acceleration. Once in position, the particles are fused by solar-powered energy beams through a sintering process. Results show that 50m diameter, 50m-tall cylinders can be formed in the course of 12 to 13 hours per cylinder. Order-of-magnitude arguments show that the selected acceleration level is adequate to overcome noise from all other forces in this region. The paper also begins the consideration of tradeoffs between solar collector area, number of resonators, and capacitive storage-discharge of energy in the fabrication process.

  7. Making Waves: Pirate Radio and Popular Music.

    ERIC Educational Resources Information Center

    Jones, Steve

    The history of pirate radio--radio broadcasts offered by unlicensed broadcasters as alternatives to licensed, commercial radio programming--is difficult to trace, both in America and the United Kingdom (UK) since mention of pirate broadcasts of a less-then-thrilling nature are rarely found. Also, until 1927, the U.S. government did not formally

  8. Radio wave scattering in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    Current models for the 2-3 kHz emissions observed by the Voyager spacecraft in the outer heliosphere involve 2f(p) radiation generated near the termination shock or the heliopause. Radio wave scattering by solar wind density irregularities strongly affects observed sources of f(p) and 2f(p) emission in the inner heliosphere and the characteristics of astrophysical sources. In particular, the angular size, brightness temperature, and time variability of the source are strongly affected by scattering, thereby having major implications for the inferred size, energy budget, time variability, location, and nature of the source if scattering is ignored. This paper addresses whether scattering is important for interpreting the Voyager 2-3 kHz emissions. Quantitative calculations (with and without diffraction) are performed for the angular broadening of an outer heliospheric source as a function of path length, radiation frequency relative to f(p) and the spectrum of density irregularities. The effects of scattering in both the solar wind and the heliosheath are considered. Predictions for radial gradients in the source's apparent angular size and in the source's modulation index are presented. The calculations are compared with observations and the results discussed. First estimates suggest that scattering plausibly dominates the observed source size. The observed trend in modulation index with heliocentric distance is consistent with scattering being important and the source being in the outer heliosphere. Additional arguments for scattering being important are summarized.

  9. Plasma and radio waves from Neptune: Source mechamisms and propagation

    NASA Technical Reports Server (NTRS)

    Menietti, J. Douglas

    1994-01-01

    The purpose of this project was to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as it flew by Neptune. The study has included data analysis, theoretical and numerical calculations, and ray tracing to determine the possible source mechanisms and locations of the radiation, including the narrowband bursty and smooth components of the Neptune radio emission.

  10. Observations of Interplanetary Scintillation (IPS) Using the Mexican Array Radio Telescope (MEXART)

    NASA Astrophysics Data System (ADS)

    Mejia-Ambriz, J. C.; Villanueva-Hernandez, P.; Gonzalez-Esparza, J. A.; Aguilar-Rodriguez, E.; Jeyakumar, S.

    2010-08-01

    The Mexican Array Radio Telescope (MEXART) consists of a 6464 (4096) full-wavelength dipole antenna array, operating at 140 MHz, with a bandwidth of 2 MHz, occupying about 9660 square meters (69 m 140 m) ( http://www.mexart.unam.mx ). This is a dedicated radio array for Interplanetary Scintillation (IPS) observations located at latitude 1948'N, longitude 10141'W. We characterize the performance of the system. We report the first IPS observations with the instrument, employing a Butler Matrix (BM) of 1616 ports, fed by 16 east - west lines of 64 dipoles (1/4 of the total array). The BM displays a radiation pattern of 16 beams at different declinations (from -48, to +88 degrees). We present a list of 19 strong IPS radio sources (having at least 3 ? in power gain) detected by the instrument. We report the power spectral analysis procedure of the intensity fluctuations. The operation of MEXART will allow us a better coverage of solar wind disturbances, complementing the data provided by the other, previously built, instruments.

  11. Polycrystalline para-terphenyl scintillator adopted in a β- detecting probe for radio-guided surgery

    NASA Astrophysics Data System (ADS)

    Solfaroli Camillocci, E.; Bellini, F.; Bocci, V.; Collamati, F.; De Lucia, E.; Faccini, R.; Marafini, M.; Mattei, I.; Morganti, S.; Paramatti, R.; Patera, V.; Pinci, D.; Recchia, L.; Russomando, A.; Sarti, A.; Sciubba, A.; Senzacqua, M.; Voena, C.

    2015-06-01

    A radio-guided surgery technique exploiting β- emitters is under development. It aims at a higher target-to-background activity ratio implying both a smaller radiopharmaceutical activity and the possibility of extending the technique to cases with a large uptake of surrounding healthy organs. Such technique requires a dedicated intraoperative probe detecting β- radiation. A first prototype has been developed relying on the low density and high light yield of the diphenylbutadiene doped para-therphenyl organic scintillator. The scintillation light produced in a cylindrical crystal, 5 mm in diameter and 3 mm in height, is guided to a photo-multiplier tube by optical fibres. The custom readout electronics is designed to optimize its usage in terms of feedback to the surgeon, portability and remote monitoring of the signal. Tests show that with a radiotracer activity comparable to those administered for diagnostic purposes the developed probe can detect a 0.1 ml cancerous residual of meningioma in a few seconds.

  12. The ISPM unified radio and plasma wave experiment

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Caldwell, J.; Deconchy, Y.; Deschanciaux, C.; Ebbett, R.; Epstein, G.; Groetz, K.; Harvey, C. C.; Hoang, S.; Howard, R.

    1983-01-01

    Hardware for the International Solar Polar Mission (ISPM) Unified Radio and Plasma (URAP) wave experiment is presented. The URAP determines direction and polarization of distant radio sources for remote sensing of the heliosphere, and studies local wave phenomena which determine the transport coefficients of the ambient plasma. Electric and magnetic field antennas and preamplifiers; the electromagnetic compatibility plan and grounding; radio astronomy and plasma frequency receivers; a fast Fourier transformation data processing unit waveform analyzer; dc voltage measurements; a fast envelope sampler for the solar wind, and plasmas near Jupiter; a sounder; and a power converter are described.

  13. Plasma and radio waves from Neptune: Source mechanisms and propagation

    NASA Technical Reports Server (NTRS)

    Wong, H. K.

    1994-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.

  14. Advances in magnetospheric radio wave analysis and tomography

    NASA Astrophysics Data System (ADS)

    Cummer, S. A.; Green, J. L.; Reinisch, B. W.; Fung, S. F.; Kaiser, M. L.; Pickett, J. S.; Christopher, I.; Mutel, R.; Gurnett, D. A.; Escoubet, C. P.

    Initial theoretical studies of multi-spacecraft radio tomographic imaging of the magnetosphere have shown the potential scientific value of the technique. We report a series of multistatic radio propagation experiments with the goal of testing and verifying the capabilities of radio tomography. These experiments focused specifically on measuring the plasma-induced rotation of the wave polarization (Faraday rotation), from which the path integrated product of magnetospheric electron density and magnetic field can be directly inferred. These experiments used the Radio Plasma Imager (RPI) on the IMAGE satellite as the transmitter. The receiving instruments were the WAVES instrument on WIND and the WBD instrument on CLUSTER. These experiments showed that Faraday rotation can be measured on relatively long (>10 RE) magnetospheric propagation paths with existing transmitter and receiver technology. We conclude that radio tomographic imaging of magnetospheric electron density and magnetic field is a powerful technique with unique, large-scale measurement capabilities that can effectively address important questions in magnetospheric physics.

  15. Ionospheric applications of the scintillation and tomography receiver in space (CITRIS) mission when used with the DORIS radio beacon network

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul A.; Siefring, Carl L.; Galysh, Ivan J.; Rodilosso, Thomas F.; Koch, Douglas E.; MacDonald, Thomas L.; Wilkens, Matthew R.; Landis, G. Paul

    2006-11-01

    The scintillation and tomography receiver in space (CITRIS) instrument will orbit the Earth near 560 km altitude to detect signals from the ground-based array of more than 50 DORIS UHF/S-band radio beacons established at sites around the world by the French Centre National dEtudes Spatiales (CNES) and the Institut Gographique National (IGN). The CITRIS receiver is on the US Air Force Space Test Program satellite STPSAT1, which is scheduled for launch in November 2006. CITRIS will record ionospheric total electron content (TEC) and radio scintillations with a unique ground-to-space geometry. The new instrument has been developed to study the ionosphere using data obtained with the UHF and S-band radio transmissions from the DORIS beacons because ionospheric radio scintillations can seriously degrade the performance of many space-geodetic systems, including the DORIS precise satellite orbitography system and GNSS (Global Navigation Satellite Systems). The ionospheric data will be based on radio signals sampled at a rate of 200 Hz by the CITRIS receiver. Numerical models have been used to predict that the DORIS signals measured by CITRIS may have 30 dB fluctuations in amplitude and 30 rad in phase as the satellite flies over kilometer-scale ionospheric structures. The data from the space-based CITRIS receiver will help update and validate theories on the generation and effect of ionospheric irregularities known to influence radio systems. By using simultaneous beacon transmissions from DORIS on the ground and from low-Earth-orbit beacons in space, the concept of reciprocity in a non-bilateral propagation medium like the ionosphere will be tested. Computer simulations are used to predict the magnitude of amplitude and phase scintillations that are expected to be recorded with the CITRIS instrument.

  16. Optical and millimeter-wave radio seamless MIMO transmission based on a radio over fiber technology.

    PubMed

    Kanno, Atsushi; Kuri, Toshiaki; Hosako, Iwao; Kawanishi, Tetsuya; Yoshida, Yuki; Yasumura, Yoshihiro; Kitayama, Ken-ichi

    2012-12-31

    Multi-input multi-output (MIMO) transmission of two millimeter-wave radio signals seamlessly converted from polarization-division-multiplexed quadrature-phase-shift-keying optical signals is successfully demonstrated, where a radio access unit basically consisting of only optical-to-electrical converters and a radio receiver performs total signal equalization of both the optical and the radio paths and demodulation with digital signal processing (DSP). Orthogonally polarized optical components that are directly converted to two-channel radio components can be demultiplexed and demodulated with high-speed DSP as in optical digital coherent detection. 20-Gbaud optical and radio seamless MIMO transmission provides a total capacity of 74.4 Gb/s with a forward error correction overhead of 7%. PMID:23388767

  17. Roles Played by Electrostatic Waves in Producing Radio Emissions

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    2000-01-01

    Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.

  18. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Mahoney, M. J.; Jacobson, A. R.; Knowles, S. H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities.

  19. Coincidently Searching for Gravitational Waves and Low Frequency Radio Transients

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Yancey, C.; Shawhan, P. S.; Cutchin, S.; Simonetti, J. H.; Bear, B.; Tsai, J.

    2014-01-01

    The transient sky has become an important area of astrophysical study, especially with the appearance of recent fast transients, but little is known about the sources of these transients. One possible approach which can shed light on this area is multi-messenger astronomy using gravitational waves and prompt emission meter-wavelength radio to observe fast transients. This is made possible with gravitational-wave detectors such as LIGO, VIRGO, and GEO (IndIGO and KAGRA proposed or under construction) and phased-array radio-telescopes such LWA, LOFAR, LoFASM, and MWA. This talk presents a method for coincidence of gravitational wave and meter-wavelength radio observations to enable multi-messenger astronomy and discusses the optimization of gravitational-wave and radio sensitivities to attain effective combined observational sensitivities. It is shown that coincidence provides a 52.9% increase to the sensitivity distance for LIGO and a 200% increase to the SNR of radio arrays for particular cases.

  20. Observation of local radio emission associated with type III radio bursts and Langmuir waves

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.; Fainberg, J.

    1992-01-01

    The first clear detection of fundamental and harmonic radiation from the type III radio source region is presented. This radiation is characterized by its lack of frequency drift, its short rise and decay times, its relative weakness compared to the remotely observed radiation and its temporal coincidence with observed Langmuir waves. The observations were made with the radio and plasma frequency (URAP) receivers on the Ulysses spacecraft between about 1 and 2 AU from the Sun.

  1. Embracing the Wave: Using the Very Small Radio Telescope to Teach Students about Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Fish, Vincent L.; Needles, M. M.; Rogers, A. E. E.; Doherty, M.; Minnigh, S.; Arndt, M. B.; Pratap, P.

    2010-01-01

    The Very Small Radio Telescope (VSRT) is a low-cost educational tool appropriate for laboratory demonstrations of the nature of radio waves and the principles of interferometry for use in both high school and undergraduate physics/astronomy classes. The system consists of small direct broadcast antenna dishes and other commercially available parts and can be assembled for under $500. Complete teaching units have been developed and tested by high school physics teachers to demonstrate radio wave transmission and exponential absorption though materials (Beer's law), the polarization of electromagnetic waves (Malus' law), the inverse square law, and interferometry. These units can be used to explore the properties of electromagnetic waves, including similarities and differences between radio and visible light, while challenging students' misconceptions about a wavelength regime that is important to both astronomy and everyday life. In addition, the VSRT can be used as a radio astronomical interferometer to measure the diameter of the Sun at 12 GHz. Full details, including a parts list, comprehensive assembly instructions, informational memos, teaching units, software, and conformance to national and Massachusetts educational standards, are available on the web at http://www.haystack.mit.edu/edu/undergrad/VSRT/index.html . Development of the VSRT at MIT Haystack Observatory is made possible through funding provided by the National Science Foundation.

  2. Excitation of parametric instabilities by radio waves in the ionosphere.

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.; Leer, E.

    1972-01-01

    The excitation of parametric instabilities by radio waves in a magnetoplasma is discussed. A uniform medium is assumed and linear approximations are used. Excitation by a pump wave of ordinary polarization is hardly affected by the magnetic field. Low or zero frequency ion waves and high frequency Langmuir waves are excited simultaneously. For an extraordinary pump wave, the excited high frequency electrostatic waves are in the Bernstein mode. The threshold is slightly higher and excitation can occur only within certain 'allowed' frequency bands. A new type of parametric instability in which the excited waves are electromagnetic in nature and which is more strongly affected by the inhomogeneous nature of the medium is discussed qualitatively.

  3. Artificial ionospheric disturbances caused by powerful radio waves

    NASA Astrophysics Data System (ADS)

    Lee, M. C.; Kuo, S. P.

    1984-11-01

    Artificial ionospheric disturbances evidenced as fluctuations in plasma density and geomagnetic field can be caused by powerful radio waves with a broad frequency band ranging from a few KHz to several GHz. The filamentation instability of radio waves with a broad frequency band ranging from a few KHz to several GHz can produce both large-scale plasma density fluctuations and large-scale geomagnetic field fluctuations simultaneously. The excitation of this instability is examined in the VLF wave injection experiments, the envisioned MF ionospheric heating experiments, the HF ionospheric heating experiments and the conceptualized Solar Power Satellite project. Significant geomagnetic field fluctuations with magnitudes even comparable to those observed in magnetospheric (sub)systems can be excited in all of the cases investigated. Particle precipitation and airglow enhancement are expected to be the concomitant ionospheric effects associated with the wave-induced geomagnetic field fluctuations.

  4. Low and Mid-Latitude Ionospheric Irregularities Studies Using TEC and Radio Scintillation Data from the CITRIS Radio Beacon Receiver in Low-Earth-Orbit

    NASA Astrophysics Data System (ADS)

    Siefring, C. L.; Bernhardt, P. A.; Huba, J.; Krall, J.; Roddy, P. A.

    2009-12-01

    Unique data on ionospheric plasma irregularities from the Naval Research Laboratory (NRL) CITRIS (Scintillation and TEC Receiver in Space) instrument will be presented. CITRIS is a multi-band receiver that recorded TEC (Total Electron Content) and radio scintillations from Low-Earth Orbit (LEO) on STPSat1. The 555+/5 km altitude 35 inclination orbit covers low and mid-latitudes. The measurements require propagation from a transmitter to a receiver through the F-region plasma. CITRIS used both 1) satellite beacons in LEO, such as the NRL CERTO (Coherent Electromagnetic Radio TOmography) beacons and 2) the global network of ground-based DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) beacons. The TEC measurements allow for tracking of ionospheric disturbances and irregularities while the measurements of scintillations can simultaneously characterize their effects. CITRIS was operated in a complementary fashion with the C/NOFS (Communication/Navigations Outages Forecasting System) satellite during most of its first year of operations. C/NOFS carries a three-frequency 150/400/1067 MHz CERTO beacon and is dedicated to the study of Spread-F. In the case of Spread-F, ionospheric irregularities start with large scale size density gradients (100s of km) and cascade through complex processes to short scale sizes (10s of meters). It is typically the 100m-1km scale features that harm communication and navigation systems through scintillations. A multi-sensor approach is needed to completely understand this complex system, such as, the combination of CITRIS remote radio sensing and C/NOFS in-situ data. Several types of irregularities have been studied including Spread-F and the newly discovered dawn-side depletions. Comparisons with the physics based SAMI3 model are being performed to help our understanding of the morphology of the irregularities.

  5. X-Shaped Radio Galaxies and the Gravitational Wave Background

    NASA Astrophysics Data System (ADS)

    Hall Roberts, David; Saripalli, Lakshmi; Subrahmanyan, Ravi

    2015-08-01

    Coalescence of super massive black holes (SMBH's) in galactic mergers is potentially the dominant contributor to the low frequency gravitational wave background (GWB). It was proposed by Merritt and Ekers (2002) that X-shaped radio galaxies are signposts of such coalescences, and that their abundance might be used to predict the magnitude of the gravitational wave background. In Roberts et al. (2015) we presented radio images of all 52 X-shaped radio source candidates out of the sample of 100 selected by Cheung (2007) for which archival VLA data were available. These images indicate that at most 21% of the candidates might be genuine X-shaped radio sources that were formed by a restarting of beams in a new direction following a major merger. This suggests that fewer than 1.3% of extended radio sources appear to be candidates for genuine axis reorientations, much smaller than the 7% suggested by Leahy & Parma (1992). Thus the associated gravitational wave background may be substantially smaller than previous estimates. These results can be used to normalize detailed calculations of the SMBH coalescence rate and the GWB.

  6. Short-Wave Radio: An Aid to Language Learning.

    ERIC Educational Resources Information Center

    Lutcavage, Charles P.

    1982-01-01

    Discusses use of short-wave radio broadcasts as method for expanding students' appreciation of practical advantages of language learning. Suggests use of news broadcasts and gives guidelines for using broadcasts such as level of aural comprehension in class. (Author/BK)

  7. Radio wave propagation at frequencies exceeding MUF-F2 in the short wave band

    NASA Technical Reports Server (NTRS)

    Ashkaliyev, Y. F.; Bocharov, V. I.

    1972-01-01

    The results of measurements of field strength and signal/noise ratio on experimental ionospheric-scattering short wave radio links are presented. It is shown that the seasonal and diurnal variations of field strength are determined by features of solar and meteoric activity. The role of the sporadic E-layer in propagation of short radio waves at frequencies exceeding MUF-F2 is noted.

  8. High pressure gas scintillation drift chambers with wave-shifter fiber readout. II

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Edberg, T. K.; Sadoulet, B.; Weiss, S.; Wilkerson, J.

    1990-01-01

    Results from a prototype high-pressure xenon gas scintillation drift chamber using a novel wave-shifter fiber readout scheme are presented. The primary scintillation light yield was measured to be one photon per 76 + or - 12 eV deposited energy. Initial results on the chamber are presented for two-interaction separation (less than 4 mm in the drift direction and about 7 mm orthogonal to the drift); for position resolution (less than 400 microns rms in the plane orthogonal to the drift direction); and for energy resolution (less than 6 percent FWHM at 122 keV).

  9. Tracking the CME-driven Shock Wave on 2012 March 5 and Radio Triangulation of Associated Radio Emission

    NASA Astrophysics Data System (ADS)

    Magdaleni?, J.; Marqu, C.; Krupar, V.; Mierla, M.; Zhukov, A. N.; Rodriguez, L.; Maksimovi?, M.; Cecconi, B.

    2014-08-01

    We present a multiwavelength study of the 2012 March 5 solar eruptive event, with an emphasis on the radio triangulation of the associated radio bursts. The main points of the study are reconstruction of the propagation of shock waves driven by coronal mass ejections (CMEs) using radio observations and finding the relative positions of the CME, the CME-driven shock wave, and its radio signatures. For the first time, radio triangulation is applied to different types of radio bursts in the same event and performed in a detailed way using goniopolarimetric observations from STEREO/Waves and WIND/Waves spacecraft. The event on 2012 March 5 was associated with a X1.1 flare from the NOAA AR 1429 situated near the northeast limb, accompanied by a full halo CME and a radio event comprising long-lasting interplanetary type II radio bursts. The results of the three-dimensional reconstruction of the CME (using SOHO/LASCO, STEREO COR, and HI observations), and modeling with the ENLIL cone model suggest that the CME-driven shock wave arrived at 1 AU at about 12:00 UT on March 7 (as observed by SOHO/CELIAS). The results of radio triangulation show that the source of the type II radio burst was situated on the southern flank of the CME. We suggest that the interaction of the shock wave and a nearby coronal streamer resulted in the interplanetary type II radio emission.

  10. Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission

    SciTech Connect

    Magdalenić, J.; Marqué, C.; Mierla, M.; Zhukov, A. N.; Rodriguez, L.; Krupar, V.; Maksimović, M.; Cecconi, B.

    2014-08-20

    We present a multiwavelength study of the 2012 March 5 solar eruptive event, with an emphasis on the radio triangulation of the associated radio bursts. The main points of the study are reconstruction of the propagation of shock waves driven by coronal mass ejections (CMEs) using radio observations and finding the relative positions of the CME, the CME-driven shock wave, and its radio signatures. For the first time, radio triangulation is applied to different types of radio bursts in the same event and performed in a detailed way using goniopolarimetric observations from STEREO/Waves and WIND/Waves spacecraft. The event on 2012 March 5 was associated with a X1.1 flare from the NOAA AR 1429 situated near the northeast limb, accompanied by a full halo CME and a radio event comprising long-lasting interplanetary type II radio bursts. The results of the three-dimensional reconstruction of the CME (using SOHO/LASCO, STEREO COR, and HI observations), and modeling with the ENLIL cone model suggest that the CME-driven shock wave arrived at 1 AU at about 12:00 UT on March 7 (as observed by SOHO/CELIAS). The results of radio triangulation show that the source of the type II radio burst was situated on the southern flank of the CME. We suggest that the interaction of the shock wave and a nearby coronal streamer resulted in the interplanetary type II radio emission.

  11. Improved spacecraft radio science using an on-board atomic clock: Application to gravitational wave searches

    NASA Astrophysics Data System (ADS)

    Tinto, Massimo; Dick, George J.; Prestage, John D.; Armstrong, J. W.

    2009-05-01

    Recent advances in space-qualified atomic clocks (low-mass, low power-consumption, frequency stability comparable to that of ground-based clocks) can enable interplanetary spacecraft radio science experiments at unprecedented Doppler sensitivities. The addition of an on-board digital receiver would allow the up- and down-link Doppler frequencies to be measured separately. Such separate, high-quality measurements allow optimal data combinations that suppress the currently leading noise sources: phase scintillation noise from the Earths atmosphere and Doppler noise caused by mechanical vibrations of the ground antenna. Here we provide a general expression for the optimal combination of ground and on-board Doppler data and compute the sensitivity such a system would have to low-frequency gravitational waves (GWs). Assuming a plasma scintillation noise calibration comparable to that already demonstrated with the multilink CASSINI radio system, the space-clock/digital-receiver instrumentation enhancements would give GW strain sensitivity of 3.710-14Hz-1/2 for randomly polarized, monochromatic GW signals isotropically distributed over the celestial sphere, over a two-decade (0.0001-0.01Hz) region of the low-frequency band. This is about an order of magnitude better than currently achieved with traditional two-way coherent Doppler experiments. The utility of optimally combining simultaneous up- and down-link observations is not limited to GW searches. The Doppler tracking technique discussed here could be performed at minimal incremental cost to improve also other radio science experiments (i.e., tests of relativistic gravity, planetary and satellite gravity field measurements, atmospheric and ring occultations) on future interplanetary missions.

  12. Improved spacecraft radio science using an on-board atomic clock: Application to gravitational wave searches

    SciTech Connect

    Tinto, Massimo; Dick, George J.; Prestage, John D.; Armstrong, J. W.

    2009-05-15

    Recent advances in space-qualified atomic clocks (low-mass, low power-consumption, frequency stability comparable to that of ground-based clocks) can enable interplanetary spacecraft radio science experiments at unprecedented Doppler sensitivities. The addition of an on-board digital receiver would allow the up- and down-link Doppler frequencies to be measured separately. Such separate, high-quality measurements allow optimal data combinations that suppress the currently leading noise sources: phase scintillation noise from the Earth's atmosphere and Doppler noise caused by mechanical vibrations of the ground antenna. Here we provide a general expression for the optimal combination of ground and on-board Doppler data and compute the sensitivity such a system would have to low-frequency gravitational waves (GWs). Assuming a plasma scintillation noise calibration comparable to that already demonstrated with the multilink CASSINI radio system, the space-clock/digital-receiver instrumentation enhancements would give GW strain sensitivity of 3.7x10{sup -14} Hz{sup -1/2} for randomly polarized, monochromatic GW signals isotropically distributed over the celestial sphere, over a two-decade ({approx}0.0001-0.01 Hz) region of the low-frequency band. This is about an order of magnitude better than currently achieved with traditional two-way coherent Doppler experiments. The utility of optimally combining simultaneous up- and down-link observations is not limited to GW searches. The Doppler tracking technique discussed here could be performed at minimal incremental cost to improve also other radio science experiments (i.e., tests of relativistic gravity, planetary and satellite gravity field measurements, atmospheric and ring occultations) on future interplanetary missions.

  13. Status of RadioWave Neutrino Detection

    NASA Astrophysics Data System (ADS)

    Besson, Dave

    2012-12-01

    As of this writing, there are three dedicated experiments, all based in Antarctica, which seek first-ever measurement of the ultra-high energy neutrino flux at Earth. All three (ANITA, ARA and ARIANNA) exploit the Askaryan Effect to detect the so-called cosmogenic neutrinos which should result from interactions of ultra-high energy baryons with the Cosmic Microwave Background Radiation (CMBR). Photoproduction of those neutrinos, via N? ? ? ? N?+/-, with subsequent weak decays of those pions resulting in neutrinos. In-ice weak and neutral scattering of those neutrinos off ice molecules can yield in a detectable pulse of coherent, radio-frequency radiation. We summarize the three experiments, and discuss prospects.

  14. Twisted Radio Waves and Twisted Thermodynamics

    PubMed Central

    Kish, Laszlo B.; Nevels, Robert D.

    2013-01-01

    We present and analyze a gedanken experiment and show that the assumption that an antenna operating at a single frequency can transmit more than two independent information channels to the far field violates the Second Law of Thermodynamics. Transmission of a large number of channels, each associated with an angular momenta twisted wave mode, to the far field in free space is therefore not possible. PMID:23424647

  15. Characteristics of layers, waves and turbulence in the atmosphere and ionosphere as estimated by GPS space radio-holography

    NASA Astrophysics Data System (ADS)

    Pavelyev, Alexander; Gubenko, Vladimir; Matyugov, Stanislav; Pavelyev, Alexey

    The spatial, seasonal and geographical distrubutions of the intensity of layers, turbulence and internal waves at different altitudes in the atmosphere and ionosphere of the Earth are presented. The results have been obtained on the base of locality principle using a new phase acceleration-intensity method for analysis of the GPS radio occultation signals. This methodology has been applied to mesearements of the inclination and altitude of ionospheric layers. Obtained information has been used for estimation of the front orientation, internal frequency and phase speed of the internal waves in the ionosphere and neutral atmosphere. A new index of the ionospheric activity as measured from the phase of radio waves passed through the ionosphere is introduced and its high correlation with S4 scintillation index is established. This correlation indicates the significant influence of ionospheric layers on variations of characteristics of radio waves in transionospheric communication links. Specially for the troposphere the geographical distribution of the weak total absorption (about of 1-2 db) of the radio waves at GPS frequencies in the Earth atmosphere corresponding to influence of the oxygen and water vapor in the troposphere is measured with accuracy better than 0.1 db. Obtained results expanded the applicable domain of the GPS space radio-holography for global investigation of the natural processes in the atmosphere and ionosphere as function of solar activity and space weather effects. The new phase acceleration-intensity method is also a basic tool which can be applied for data analysis of future planetary radio occultation missions

  16. Ulysses radio and plasma wave observations in the Jupiter environment

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Pedersen, B. M.; Harvey, C. C.; Canu, P.; Cornilleau-Wehrlin, N.; Desch, M. D.; De Villedary, C.; Fainberg, J.; Farrell, W. M.; Goetz, K.

    1992-01-01

    The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of auroral-like hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the Io plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the Io torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.

  17. A New Method for Studying the Solar Wind Using Radio Scintillations (IPS)

    NASA Astrophysics Data System (ADS)

    Coles, W. A.; Harmon, J. K.; Rickett, B. J.; Venkataraman, A.

    2003-12-01

    Intensity scintillations (IPS) have been used to measure the velocity and the micro-structure of the solar wind for many years. Observations with a single antenna are simple and easily arranged, but they provide only one-dimensional information on the microstructure and they are subject to bias if the microstructure is anisotropic or the scattering becomes ``strong.'' Observations with two or more antennas provide a two-dimensional measure of the microstructure; a vector velocity; and they are more robust in the onset of strong scattering. However there are few suitable arrays and they are difficult to schedule. In either case a reliable estimate requires that many time scales be observed - typically about 10 minutes of observation. Here we report a robust new method which requires only one antenna, but is not sensitive to either anisotropic structure or strong scattering. Furthermore a reliable speed estimate can be made in about 2 s. The method obviously requires additional data - the intensity must be measured with a multi-channel spectrometer. Fortunately such spectrometers are standard equipment at radio observatories. The resulting dynamic spectra can be processed to show the 2-dimensional microstructure and the flow speed. Theory, simulations, and observations will be presented to demonstrate the method. It appears particularly suitable for measuring transients such as coronal mass ejections (CME's) in the interplanetary medium. It will be possible to track many sources with a single antenna, spending only a few seconds on each source, and thus to map the space-time evolution of the CME in turbulence level, flow speed, and anisotropy.

  18. Electron Acceleration by High Power Radio Waves in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul

    2012-10-01

    At the highest ERP of the High Altitude Auroral Research Program (HAARP) facility in Alaska, high frequency (HF) electromagnetic (EM) waves in the ionosphere produce artificial aurora and electron-ion plasma layers. Using HAARP, electrons are accelerated by high power electrostatic (ES) waves to energies >100 times the thermal temperature of the ambient plasma. These ES waves are driven by decay of the pump EM wave tuned to plasma resonances. The most efficient acceleration process occurs near the harmonics of the electron cyclotron frequency in earth's magnetic field. Mode conversion plays a role in transforming the ES waves into EM signals that are recorded with ground receivers. These diagnostic waves, called stimulated EM emissions (SEE), show unique resonant signatures of the strongest electron acceleration. This SEE also provides clues about the ES waves responsible for electron acceleration. The electron gas is accelerated by high frequency modes including Langmuir (electron plasma), upper hybrid, and electron Bernstein waves. All of these waves have been identified in the scattered EM spectra as downshifted sidebands of the EM pump frequency. Parametric decay is responsible low frequency companion modes such as ion acoustic, lower hybrid, and ion Bernstein waves. The temporal evolution of the scattered EM spectrum indicates development of field aligned irregularities that aid the mode conversion process. The onset of certain spectral features is strongly correlated with glow plasma discharge structures that are both visible with the unaided eye and detectable using radio backscatter techniques at HF and UHF frequencies. The primary goals are to understand natural plasma layers, to study basic plasma physics in a unique ``laboratory with walls,'' and to create artificial plasma structures that can aid radio communications.

  19. Waves in Saturn's rings probed by radio occultation

    SciTech Connect

    Rosen, P.A.

    1989-01-01

    Thirty wave features, observed in 3.6 and 13 cm-wavelength optical depth profiles of Saturn's rings obtained by Voyager 1 radio occultation, are analyzed individually and comparatively. Many are the signature of spiral density waves and bending waves excited by gravitational resonances with Saturn's satellites. A new technique for locating waveform extrema, which fits a sinusoid to each half cycle of wave data, quantifies the wavelength variation across a feature. Fitting dispersion models to the derived wavelengths provides new estimates of ambient surface mass density {sigma} in each wave region. For fourteen weak density waves in Ring A, modelling of the waveform near resonance with linear density wave theory gives independent estimates of {sigma}, as well as reliable estimates of resonance location. Measurements of wave amplitude damping give an upper bound for ring thickness 2H, where H is the ring scale height. In the wave regions studied, Rings A, B, and C have 30 {approx lt} {sigma} {approx lt} 70, {sigma} {approx gt} 65, and {sigma} {approximately} 1 g/cm{sup 2}, respectively. Mass loading estimates from waveform modelling are 20 to 40% larger than dispersion-derived values, suggesting accumulation of mass in the wave regions. The average offset of derived wave location from theoretical resonance is about 1 km. Model waveforms of overlapping waves excited by the satellites Janus and Epimethenus agree well with observed morphologies in the linear region near resonance. In Ring C, dispersion analysis indicates that the most prominent wave feature, previously unidentified, is a one-armed spiral wave.

  20. Data compression for the Cassini radio and plasma wave instrument

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Gurnett, D. A.; Kirchner, D. L.; Kurth, W. S.; Woolliscroft, L. J. C.

    1993-01-01

    The Cassini Radio and Plasma Wave Science experiment will employ data compression to make effective use of the available data telemetry bandwidth. Some compression will be achieved by use of a lossless data compression chip and some by software in a dedicated 80C85 processor. A description of the instrument and data compression system are included in this report. Also, the selection of data compression systems and acceptability of data degradation is addressed.

  1. Electron Transport by Radio Frequency Waves in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Ram, A. K.; Kominis, Y.; Hizanidis, K.

    2009-11-01

    A relativistic kinetic description for momentum and spatial diffusion of electrons by radio frequency (RF) waves and non-axisymmetric magnetic field perturbations in a tokamak is formulated. The Lie perturbation technique is used to obtain a non-singular, time dependent evolution equation for resonant and non-resonant electron diffusion in momentum space and diffusion in configuration space. The kinetic equation for the electron distribution function is different from the usual quasilinear equations as it includes interactions that are non-Markovian. It is suitable for studying wave-particle interaction in present tokamaks and in ITER. A primary goal of RF waves, and, in particular, of electron cyclotron waves, in ITER is to control instabilities like the neoclassical tearing mode (NTM). Non-axisymmetric effects due to NTMs are included in the kinetic formalism.

  2. Electron Transport by Radio Frequency Waves in Tokamak Plasmas

    SciTech Connect

    Ram, A. K.; Kominis, Y.; Hizanidis, K.

    2009-11-26

    A relativistic kinetic description for momentum and spatial diffusion of electrons by radio frequency (RF) waves and non-axisymmetric magnetic field perturbations in a tokamak is formulated. The Lie perturbation technique is used to obtain a non-singular, time dependent evolution equation for resonant and non-resonant electron diffusion in momentum space and diffusion in configuration space. The kinetic equation for the electron distribution function is different from the usual quasilinear equations as it includes interactions that are non-Markovian. It is suitable for studying wave-particle interaction in present tokamaks and in ITER. A primary goal of RF waves, and, in particular, of electron cyclotron waves, in ITER is to control instabilities like the neoclassical tearing mode (NTM). Non-axisymmetric effects due to NTMs are included in the kinetic formalism.

  3. Theories of radio emissions and plasma waves. [in Jupiter magnetosphere

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Goertz, C. K.

    1983-01-01

    The complex region of Jupiter's radio emissions at decameter wavelengths, the so-called DAM, is considered, taking into account the basic theoretical ideas which underly both the older and newer theories and models. Linear theories are examined, giving attention to direct emission mechanisms, parallel propagation, perpendicular propagation, and indirect emission mechanisms. An investigation of nonlinear theories is also conducted. Three-wave interactions are discussed along with decay instabilities, and three-wave up-conversio. Aspects of the Io and plasma torus interaction are studied, and a mechanism by which Io can accelerate electrons is reviewed.

  4. Radio observations of atmospheric gravity waves with Callisto

    NASA Astrophysics Data System (ADS)

    Monstein, C.

    2013-12-01

    On December 12th 2013 NOAA reported between 08:04 and 12:08 only radio noise at 245 MHz observed in San Vito. But some European observatories of the e-Callisto network (Germany, UK and Ireland) observed very strange reverse drifting and v-type bursts which was never recognized by the author before. Private communication with P. Zucca from TCD showed that these strange structures are due to focusing effects in the ionosphere. Interestingly it is possible to observe complex ionospheric behavior with cheap and simple radio-telescopes like Callisto. People who are interested in such kind of observations to study ionospheric gravity waves should generate observing programs for frequencies below 100 MHz, ideally with an additional up-converter for frequencies from 15 MHz - 100 MHz. Callisto again proved to be a powerful tool for solar science and radio-monitoring. Below are shown recent observations from Bir castle in Ireland, Essen in Germany and Glasgow in Scotland. For comparison I added an observation from a LOFAR node from Chibolton in UK which was provided by Richard Fallows from Astron NL. And finally a plot from Nanay radio heliograph, provided by Karl-Heinz Gansel, Dingden Amateur Radio- Astronomy Observatory DARO, Germany. Although Callisto instruments are almost identical, the spectra look completely different, depending on their geographical longitude and latitude.

  5. Radio fiber bursts and fast magnetoacoustic wave trains

    NASA Astrophysics Data System (ADS)

    Karlick, M.; Mszrosov, H.; Jelnek, P.

    2013-02-01

    Aims: We present a model for dm-fiber bursts that is based on assuming fast sausage magnetoacoustic wave trains that propagate along a dense vertical filament or current sheet. Methods: Eight groups of dm-fiber bursts that were observed during solar flares were selected and analyzed by the wavelet analysis method. To model these fiber bursts we built a semi-empirical model. We also did magnetohydrodynamic simulations of a propagation of the magnetoacoustic wave train in a vertical and gravitationally stratified current sheet. Results: In the wavelet spectra of the fiber bursts computed at different radio frequencies we found the wavelet tadpoles, whose head maxima have the same frequency drift as the drift of fiber bursts. It indicates that the drift of these fiber bursts can be explained by the propagating fast sausage magnetoacoustic wave train. Using new semi-empirical and magnetohydrodynamic models with a simple radio emission model we generated the artificial radio spectra of the fiber bursts, which are similar to the observed ones.

  6. Experimental observations of the spatial structure of wave-like disturbances generated in midlatitude ionosphere by high power radio waves

    NASA Astrophysics Data System (ADS)

    Kunitsyn, V.; Andreeva, E.; Padokhin, A. M.; Nazarenko, M.; Frolov, V.; Komrakov, G.; Bolotin, I.

    2012-12-01

    We present the results of the experiments carried out in 2009-2012 on the Sura heating facility (Radio Physical Research Institute, N. Novgorod, Russia) on modification of the midlatitude ionosphere by powerful HF radiowaves. The experiments were conducted using O-mode radiowaves at frequencies lower than critical frequency of the ionospheric F2 layer both in daytime and nighttime ionosphere. Various schemes of the radiation of the heating wave were used including square wave modulation of the effective radiated power (ERP) at various frequencies and power stepping. Radio transmissions of the low- (Parus/Tsikada) and high-orbital (GPS/GLONASS) navigational satellites received at the mobile network of receiving sites were used for the remote sensing of the heated area of the ionosphere. The variations in the slant total electron content (TEC), which are proportional to the reduced phase of navigational signals, were studied for the satellite passes for which ionospheric penetration points crossed the disturbed area during HF heating. The variations in TEC caused by HF heating are identified in a number of examples. It is shown that the GNSS TEC spectra contain frequency components corresponding to the modulation periods of the ERP of the heating wave. The manifestations of the heating-induced variations in TEC are most prominent in the area of magnetic zenith of the pumping wave. Different behavior of TEC variations was observed during nighttime and daytime heating experiments. In daytime conditions the pump wave switched ON causes the increase of TEC while in the nighttime it causes a decrease in TEC. This can be explained by the different contribution of the processes responsible for the increase and decrease of TEC in daytime in nighttime conditions. In this work we also present the first time radiotomographic reconstructions of the spatial structure of the wave-like disturbances, generated in the ionosphere by high-power radio waves radiated by the Sura heater with a square wave modulation of the ERP at a frequency lower than or of the order of the Brunt-Vaisala frequency of the neutral atmosphere. The observed wavelike structures, which are possibly AGWs, diverge from the heated area of the ionosphere (observed like a narrow trough with dimensions corresponding to the diagram pattern of the Sura heater), the spatial period of these disturbances is 200-250 km and they are easily traced up to a distance of 700-800 km from the heated region. These observations are in good agreement with complimentary GPS/GLONASS data. We also present the examples of amplitude scintillations of the signals of low-orbital radio beacons corresponding to small-scale field-aligned irregularities in the heated area of ionosphere. The possibility of generation of electromagnetic waves by moving wave-like structures in ionosphere (like AGWs induced by HF-heating observed in our experiments) is also addressed in this work. The authors are grateful to the staff of the Sura facility for their help in conducting the experiments and acknowledge the support of the Russian Foundation for Basic Research (grants 10-05-01126, 11-02-00374, 11-05-01157, 12-02-31839, 12-05-33065, 12-05-10068), grant of the President of Russian Federation MK-2544.2012.5 and Lomonosov Moscow State University Program of Development.

  7. Remote sensing of irregularities in the equatorial ionosphere using the radio scintillation technique

    SciTech Connect

    Franke, S.J.

    1984-01-01

    Experimental measurements of signal level fluctuations (scintillation) on VHF and microwave signals from two geostationary communications satellites are studied in detail. The signals were recorded at an equatorial location which is almost directly beneath the satellites. The scintillation is caused by refraction and diffraction of the signals by variations of the refractive index in the Flayer of the ionosphere. This study is directed toward using the observed multifrequency scintillation to remotely sense the characteristics of the ionospheric irregularities. This is done by considering both statistical and deterministic models for the scintillation producing irregularities. The models are combined with existing propagation theory using analytical and numerical simulation techniques in order to predict the spatial and temporal characteristics of the multifrequency scintillation. Comparison with the observations is used to verify the models. Extensive use is made of numerical simulation. This makes it possible to study both weak and strong scintillations which occur simultaneously on the microwave and VHF frequencies, respectively. In all cases, the models are chosen to be consistent with results from other remote sensing techniques and in situ measurements. Geophysical implications of the results are discussed in light of what is known about equatorial irregularities from previous experimental and theoretical studies.

  8. Scattering of radio frequency waves by blobs in tokamak plasmas

    SciTech Connect

    Ram, Abhay K.; Hizanidis, Kyriakos; Kominis, Yannis

    2013-05-15

    The density fluctuations and blobs present in the edge region of magnetic fusion devices can scatter radio frequency (RF) waves through refraction, reflection, diffraction, and coupling to other plasma waves. This, in turn, affects the spectrum of the RF waves and the electromagnetic power that reaches the core of the plasma. The usual geometric optics analysis of RF scattering by density blobs accounts for only refractive effects. It is valid when the amplitude of the fluctuations is small, of the order of 10%, compared to the background density. In experiments, density fluctuations with much larger amplitudes are routinely observed, so that a more general treatment of the scattering process is needed. In this paper, a full-wave model for the scattering of RF waves by a blob is developed. The full-wave approach extends the range of validity well beyond that of geometric optics; however, it is theoretically and computationally much more challenging. The theoretical procedure, although similar to that followed for the Mie solution of Maxwell's equations, is generalized to plasmas in a magnetic field. Besides diffraction and reflection, the model includes coupling to a different plasma wave than the one imposed by the external antenna structure. In the model, it is assumed that the RF waves interact with a spherical blob. The plasma inside and around the blob is cold, homogeneous, and imbedded in a uniform magnetic field. After formulating the complete analytical theory, the effect of the blob on short wavelength electron cyclotron waves and longer wavelength lower hybrid waves is studied numerically.

  9. Propagation of radio frequency waves through density filaments

    NASA Astrophysics Data System (ADS)

    Ram, Abhay K.; Hizanidis, Kyriakos

    2015-12-01

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. In this paper we develop an analytical formalism for the scattering of radio frequency waves by filaments which are cylindrical with their major axis aligned along the toroidal magnetic field lines. Since the magnitude of the ratio of the density inside the filaments to the background density is generally of order 1, the geometric optics approximation cannot be used to describe the scattering. A full-wave model is formulated which assumes that the plasma is cold and that the plasma in the cylindrical filament has uniform density. The background plasma, in which the filament is present, is also assumed to be cold and uniform. The theoretical framework applies to the scattering of any plasma wave.

  10. On Microwave Radio Scintillation Effects and Space Weather Impacts on Electric Power Supply Systems in Middle Latitudes

    NASA Astrophysics Data System (ADS)

    Babayev, E. S.; Hashimov, A. M.; Asgarov, A. B.; Yusifbeyli, N. A.; Shustarev, P. N.

    2006-12-01

    In this paper results of morphological studies and investigations on revealing of main characteristics of ionospheric scintillation effects experienced for microwave radio signals for the Space-Earth path, its impacts on navigation and communication systems, dependence on the solar and geomagnetic activity, geophysical and other processes/factors are briefly provided to help system designers who are involved in the activities related to the development and functioning of systems, particularly, for consumers in middle geographical latitudes. Ionospheric propagation model computer code was applied for studying of scintillation effects on microwave radio signals used in the area of Azerbaijan for worst case scenario of main space weather and ionosphere parameters. Part of main results of the complex investigations on possible impact of geomagnetic disturbances of various strengths on electric power supply systems in middle latitudes is described. Daily data on power failures and breakdowns that occurred in Baku capital city (Azerbaijan) and surrounded big urban area in years of descending phase of solar 11-year activity cycle was investigated and analyzed.

  11. Cassini Radio and Plasma Wave Observations at Saturn

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Hospodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Ceccni, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.

    2005-01-01

    Results are presented from the Cassini radio and plasma wave instrument during the approach and first few orbits around Saturn. During the approach the intensity modulation of Saturn Kilometric Radiation (SKR) showed that the radio rotation period of Saturn has increased to 10 hr 45 min plus or minus 36 sec, about 6 min longer than measured by Voyager in 1980-81. Also, many intense impulsive radio signals called Saturn Electrostatic Discharges (SEDs) were detected from saturnian lightning, starting as far as 1.08 AU from Saturn, much farther than terrestrial lightning can be detected from Earth. Some of the SED episodes have been linked to cloud systems observed in Saturn s atmosphere by the Cassini imaging system. Within the magnetosphere plasma wave emissions have been used to construct an electron density profile through the inner region of the magnetosphere. With decreasing radial distance the electron density increases gradually to a peak of about 100 per cubic centimeter near the outer edge of the A ring, and then drops precipitously to values as low as .03 per cubic centimeter over the rings. Numerous nearly monochromatic whistler-mode emissions were observed as the spacecraft passed over the rings that are believed to be produced by meteoroid impacts on the rings. Whistlermode emissions, similar to terrestrial auroral hiss were also observed over the rings, indicating that an electrodynamic interaction, similar to auroral particle acceleration, may be occurring in or near the rings. During the Titan flybys Langmuir probe and plasma wave measurements provided observations of the density and temperature in Titan's ionosphere.

  12. Mexart Measurements of Radio Sources

    NASA Astrophysics Data System (ADS)

    Gonzlez-Esparza, A.; Andrade, E.; Carrillo, A.; Jeyakumar, S.; Ananthakrishnan, S.; Praveenkumar, A.; Sankarasubramanian, G.; Sureshkumar, S.; Sierra, P.; Vazquez, S.; Perex-Enriguez, R.; Kurtz, S.

    2005-09-01

    The Mexican Array Radio Telescope (MEXART) consists of a 64x64 array of full-wave dipoles operating at 139.65 MHz. The primary aim of the array is to perform Interplanetary Scintillations (IPS) observations of radio sources to track large-scale solar wind perturbations within 1 AU. We describe the initial measurements of radio sources and the advances in the calibration of the antenna.

  13. Hertz and the Discovery of Radio Waves and the Photoelectric Effect.

    ERIC Educational Resources Information Center

    Spradley, Joseph L.

    1988-01-01

    Describes the discoveries by Hertz historically, such as photoelectric effect, radio waves, their impact on modern physics and some applications. Presents several diagrams and two chronological tables. (YP)

  14. Radio Wave Propagation Handbook for Communication on and Around Mars

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser; Kliore, Arvydas

    2002-01-01

    This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.

  15. Optical detection of radio waves through a nanomechanical transducer.

    PubMed

    Bagci, T; Simonsen, A; Schmid, S; Villanueva, L G; Zeuthen, E; Appel, J; Taylor, J M; Srensen, A; Usami, K; Schliesser, A; Polzik, E S

    2014-03-01

    Low-loss transmission and sensitive recovery of weak radio-frequency and microwave signals is a ubiquitous challenge, crucial in radio astronomy, medical imaging, navigation, and classical and quantum communication. Efficient up-conversion of radio-frequency signals to an optical carrier would enable their transmission through optical fibres instead of through copper wires, drastically reducing losses, and would give access to the set of established quantum optical techniques that are routinely used in quantum-limited signal detection. Research in cavity optomechanics has shown that nanomechanical oscillators can couple strongly to either microwave or optical fields. Here we demonstrate a room-temperature optoelectromechanical transducer with both these functionalities, following a recent proposal using a high-quality nanomembrane. A voltage bias of less than 10?V is sufficient to induce strong coupling between the voltage fluctuations in a radio-frequency resonance circuit and the membrane's displacement, which is simultaneously coupled to light reflected off its surface. The radio-frequency signals are detected as an optical phase shift with quantum-limited sensitivity. The corresponding half-wave voltage is in the microvolt range, orders of magnitude less than that of standard optical modulators. The noise of the transducer--beyond the measured 800 pV Hz-1/2 Johnson noise of the resonant circuit--consists of the quantum noise of light and thermal fluctuations of the membrane, dominating the noise floor in potential applications in radio astronomy and nuclear magnetic imaging. Each of these contributions is inferred to be 60 pV Hz-1/2 when balanced by choosing an electromechanical cooperativity of ~150 with an optical power of 1?mW. The noise temperature of the membrane is divided by the cooperativity. For the highest observed cooperativity of 6,800, this leads to a projected noise temperature of 40 mK and a sensitivity limit of 5 pV Hz-1/2. Our approach to all-optical, ultralow-noise detection of classical electronic signals sets the stage for coherent up-conversion of low-frequency quantum signals to the optical domain. PMID:24598636

  16. Flare Generated Coronal Fast Wave Trains of Decimetric Radio Pulsations

    NASA Astrophysics Data System (ADS)

    Meszarosova, H.; Sawant, H. S.; Cecatto, J. R.; Rybak, J.; Karlicky, M.; Fernandes, F. C. R.; Jiricka, K.; Andrade, M. C.

    2008-09-01

    The 22 minutes lasting interval of broadband dm-radio pulsations observed simultaneously during a decay phase of the June 6, 2000 flare by the Brazilian Solar Spectroscope (BSS) and Ondrejov radiospectrograph in frequency range 1200-4500 MHz has been analyzed. We have realized that dominant periods (32-64 s) belong to fast wave trains with a tadpole pattern in their wavelet power spectra. The whole time interval contains series of about 4 wave trains. These trains propagate in whole frequency range 1200-4500 MHz. The propagation of individual trains at lower levels of the solar atmosphere (higher frequencies) is different from propagation of individual trains at higher ones (lower frequencies). The wave trains at the same frequencies but in different time subintervals have some common as well as different properties. The main statistical parameters (periodical, quasi-periodical and decay phase) of these wave trains in their wavelet power spectra have been studied and the first results will be presented and discussed.

  17. First tsunami gravity wave detection in ionospheric radio occultation data

    SciTech Connect

    Coïsson, Pierdavide; Lognonné, Philippe; Walwer, Damian; Rolland, Lucie M.

    2015-05-09

    After the 11 March 2011 earthquake and tsunami off the coast of Tohoku, the ionospheric signature of the displacements induced in the overlying atmosphere has been observed by ground stations in various regions of the Pacific Ocean. We analyze here the data of radio occultation satellites, detecting the tsunami-driven gravity wave for the first time using a fully space-based ionospheric observation system. One satellite of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) recorded an occultation in the region above the tsunami 2.5 h after the earthquake. The ionosphere was sounded from top to bottom, thus providing the vertical structure of the gravity wave excited by the tsunami propagation, observed as oscillations of the ionospheric Total Electron Content (TEC). The observed vertical wavelength was about 50 km, with maximum amplitude exceeding 1 total electron content unit when the occultation reached 200 km height. We compared the observations with synthetic data obtained by summation of the tsunami-coupled gravity normal modes of the Earth/Ocean/atmosphere system, which models the associated motion of the ionosphere plasma. These results provide experimental constraints on the attenuation of the gravity wave with altitude due to atmosphere viscosity, improving the understanding of the propagation of tsunami-driven gravity waves in the upper atmosphere. They demonstrate that the amplitude of the tsunami can be estimated to within 20% by the recorded ionospheric data.

  18. First tsunami gravity wave detection in ionospheric radio occultation data

    DOE PAGESBeta

    Coïsson, Pierdavide; Lognonné, Philippe; Walwer, Damian; Rolland, Lucie M.

    2015-05-09

    After the 11 March 2011 earthquake and tsunami off the coast of Tohoku, the ionospheric signature of the displacements induced in the overlying atmosphere has been observed by ground stations in various regions of the Pacific Ocean. We analyze here the data of radio occultation satellites, detecting the tsunami-driven gravity wave for the first time using a fully space-based ionospheric observation system. One satellite of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) recorded an occultation in the region above the tsunami 2.5 h after the earthquake. The ionosphere was sounded from top to bottom, thus providing themore » vertical structure of the gravity wave excited by the tsunami propagation, observed as oscillations of the ionospheric Total Electron Content (TEC). The observed vertical wavelength was about 50 km, with maximum amplitude exceeding 1 total electron content unit when the occultation reached 200 km height. We compared the observations with synthetic data obtained by summation of the tsunami-coupled gravity normal modes of the Earth/Ocean/atmosphere system, which models the associated motion of the ionosphere plasma. These results provide experimental constraints on the attenuation of the gravity wave with altitude due to atmosphere viscosity, improving the understanding of the propagation of tsunami-driven gravity waves in the upper atmosphere. They demonstrate that the amplitude of the tsunami can be estimated to within 20% by the recorded ionospheric data.« less

  19. Chaotic behavior of ionospheric turbulence from scintillation measurements

    SciTech Connect

    Bhattacharyya, A. )

    1990-05-01

    Ionospheric amplitude and phase scintillation data have been analyzed to estimate the information dimension associated with the attractor of the system. For weak scintillations, both amplitude and phase data yield identical results which demonstrate that spatial fluctuations of electron density in the ionosphere may be characterized by a few degrees of freedom. Stronger scintillations are attributed to steepened density irregularities which cause focusing of the incident radio wave. This results in the amplitude scintillations exhibiting higher dimensional chaos but spatial fluctuations in ionospheric density still involve low dimensional chaos.

  20. Rapid Radio Followups of LIGO Gravitational Wave Events

    NASA Astrophysics Data System (ADS)

    Jenet, Rick; Stevens, Jamie; Wieringa, Mark; Creighton, Teviet

    2010-10-01

    We propose real time follow-up observations with the ATCA to search for radio counterparts to candidate gravitational-wave events detected by the LIGO and Virgo detectors. Electromagnetic and gravitational radiation provide complementary views of the Universe: the former being generated by the microphysical processes of charged particles, the latter by coherent bulk motion of masses. A complete picture of the most violent events in nature, such as supernovae and mergers of stellar remnants, will require both types of observation: Gravitational waves (GWs) to uncover the mechanics of the underlying (gravitational) energy source, and electromagnetic waves to reveal how that energy is then dissipated in matter. The search for GWs is entering an exciting phase with kilometer-scale interferometric detectors LIGO and Virgo achieving sensitivities for which detection of GWs is plausible. Since the sensitivity of these instruments improves incrementally, it is likely that the first verifiable detections of GWs will have signal-to-noise ratios that are just barely statistically significant. Observations in the electromagnetic spectrum will help confirm the first GW detections.

  1. Waves in the Martian Atmosphere: Results from MGS Radio Occultations

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Hinson, D. P.; Tyler, G. L.

    1999-01-01

    Temperatures retrieved from Mars Global Surveyor radio occultations have been searched for evidence of waves. Emphasis has been on the initial series of occultations between 29 deg N and 64 deg S, obtained during the early martian southern summer, L(sub s) = 264 deg - 308 deg. The profiles exhibit an undulatory behavior that is suggestive of vertically propagating waves. wavelengths approximately 10 km are often dominant, but structure on smaller scales is evident. The undulatory structure is most pronounced between latitudes 29 deg N and 10 deg S, usually in regions of "interesting" topography, e.g., in the Tharsis region and near the edge of Syrtis Major. Several temperature profiles, particularly within 30 deg of the equator, exhibit lapse rates that locally become superadiabatic near the 0.4-mbar level or at higher altitudes. This implies that the waves are "breaking" and depositing horizontal momentum into the atmosphere. Such a deposition may play an important role in modulating the atmospheric winds, and characterizing the spatial and temporal distribution of these momentum transfers can provide important clues to understanding how the global circulation is maintained.

  2. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate

  3. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  4. Grating formation by a high power radio wave in near-equator ionosphere

    SciTech Connect

    Singh, Rohtash; Sharma, A. K.; Tripathi, V. K.

    2011-11-15

    The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Such a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.

  5. Radio Wave Scattering in the Outer Heliosphere: Preliminary Calculations

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    Detailed first estimates are presented of angular broadening in the outer heliosphere due to scattering of radio waves by density irregularities. The application is to the 2-3 kHz radiation observed by Voyager. Two plausible turbulence models, which account very well for scattering within 1 AU, are extrapolated beyond 10 AU. Both models predict significant angular broadening in the outer heliosphere, accounting semi- quantitatively alone for the source sizes inferred from roll modulation data. Predictions are presented for radial variations in the apparent source size if scattering is important. Comparisons with available data argue that scattering is important (and indeed is the dominant contributor to the apparent source size) and that the radiation source is located in the outer heliosphere. Other evidence that scattering is important, such as the fluctuations in apparent source direction and intensity, are also identified. The effects of scattering should be included in future analyses of the 2-3 kHz emissions.

  6. Solar and geomagnetic activity control on equatorial VHF Scintillations in the Indian region

    NASA Astrophysics Data System (ADS)

    Banola, S.; Maurya, R. N.; Prasad, D. S. V.; Rama Rao, P. S. V.

    The ionospheric plasma density irregularities are responsible for scintillation of trans-equatorial radio signals. VHF radio wave Scintillation technique is extensively used to study plasma density irregularities of sub-km size. A ground network of 14 stations were operated by Indian Institute of Geomagnetism (and one station at Waltair) under All India coordinated Programme of Ionospheric and Thermospheric Studies (AICPITS), monitoring amplitude scintillations of 244/250 MHz signal from FLEETSAT (73° E) in India for more than a solar cycle. Effect of solar and geomagnetic activity on scintillation is studied in detail. Using long series of simultaneous amplitude scintillation data at different stations for the period 1989-2000, solar cycle association of scintillation is studied. Boundary of the equatorial belt of scintillation is determined using the entire network data. Geomagnetic control on the width of the scintillation belt is studied from the latitudinal variations of scintillation occurrence separately for geomagnetic quiet and disturbed days and also for the groups of days with low, medium and high Kp values. Kp and Ap indices, characterizing the geomagnetic activity which are shown extensively related to the dynamic properties of the plasma from the sun, are examined for their association with the scintillations. It is noticed that with increase in geomagnetic activity at low and equatorial regions scintillation occurrence is inhibited. Scintillation activity under different magnetic storm conditions is studied using Dst index and classification of the various geomagnetic storms into 3 types of Aaron's criteria (Radio Science,1991), satisfying in about 70 % of cases.

  7. Kinetic Analysis of Radio Frequency Wave Induced Momentum Transport

    NASA Astrophysics Data System (ADS)

    Berry, L. A.; Jaeger, E. F.; Batchelor, D. B.

    1998-11-01

    The use of radio frequency (RF) waves to drive the sheared plasma flows needed for enhanced confinement has been examined by several authors. Some of the more promising approaches are based on FLR modes such as IBW. However, these analyses use the Reynolds-stress approximation for the RF pressure and, as was needed for energy, we might expect that a kinetic model for momentum transport is needed. To address this issue, we have derived the 2^nd order distribution function and its velocity moments for a homogeneous plasma that is valid for all k_??. Our derivation parallels that of Vaclavik(J. Vaclavik and K. Appert,Plasma Phys. Contr. Fusion) 29, 257 (1986). with the objective of obtaining the distribution function rather than just the energy moment. The evaluation of velocity moments is complicated by a portion of the distribution function that is proportional to time that contains information regarding rates of change. The result is an RF pressure that also depends on time. Our approach is to neglect the time-dependent component as representing the plasma response to the RF, rather than the RF interaction itself.(T. H. Stix, Waves in Plasmas) (AIP, New York, 1992), pp. 451, 455.

  8. Upper limits on gravitational wave emission from 78 radio pulsars

    SciTech Connect

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Anderson, S. B.; Araya, M.; Armandula, H.; Ballmer, S.; Barish, B. C.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bork, R.; Boschi, V.; Busby, D.; Cardenas, L.; Cepeda, C.; Chatterji, S.; Coyne, D.

    2007-08-15

    We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO 600 gravitational wave detectors. The data from both runs have been combined coherently to maximize sensitivity. For the first time, pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits. Our upper limits are therefore the first measured for 56 of these pulsars. For the remaining 22, our results improve on previous upper limits by up to a factor of 10. For example, our tightest upper limit on the gravitational strain is 2.6x10{sup -25} for PSR J1603-7202, and the equatorial ellipticity of PSR J2124-3358 is less than 10{sup -6}. Furthermore, our strain upper limit for the Crab pulsar is only 2.2 times greater than the fiducial spin-down limit.

  9. Wave propagation simulation of radio occultations based on ECMWF refractivity profiles

    NASA Astrophysics Data System (ADS)

    Benzon, Hans-Henrik; Heg, Per

    2015-08-01

    This paper describes a complete radio occultation simulation environment, including realistic refractivity profiles, wave propagation modeling, instrument modeling, and bending angle retrieval. The wave propagator is used to simulate radio occultation measurements. The radio waves are propagated through a refractivity field which has been calculated with the use of numerical weather prediction models. The numerical weather prediction model used in this paper is a model from the European Centre for Medium-Range Weather Forecasts (ECMWF). The wave propagator has been used to simulate a number of radio occultations. The output from the wave propagator simulator is used as input to a Full Spectrum Inversion retrieval module which calculates geophysical parameters. These parameters can be compared to the ECMWF atmospheric profiles. The comparison can be used to reveal system errors and get a better understanding of the physics. The wave propagation simulations will in this paper also be compared to real measurements. These radio occultations have been exposed to the same atmospheric conditions as the radio occultations simulated by the wave propagator. This comparison reveals that precise radio occultations can be simulated when the simulations are based on wave propagation and refractivity field inputs from a numerical weather prediction model.

  10. Daytime scintillations induced by high-power HF waves at Tromso, Norway

    NASA Astrophysics Data System (ADS)

    Basu, Santimay; Waaramaa, J.; Basu, Sunanda; Stubbe, P.; Kopka, H.

    1987-10-01

    During March 1984, the high-power HF heating facility at Ramfjuordmoen near Tromso was used to modify the F-region in the daytime. The dominant scale length of the artificial irregularities at 225 km was found to be about 750 m when the heater radiated waves with O mode polarization at 5.4 MHz and developed an an estimated power density of 0.3 mW/sq m at the reflection height. The magnitude of the intensity scintillation S4 at 250 MHz was about 0.15 and the rms phase deviation computed over 82 s increased by 0.5 radian. This corresponds to an irregularity amplitude of about 3 percent for an assumed outer scale length of 1 km.

  11. Measurements of turbulence in the Venus atmosphere deduced from Pioneer Venus multiprobe radio scintillations

    NASA Technical Reports Server (NTRS)

    Woo, R.; Armstrong, J. W.; Kendall, W. B.

    1979-01-01

    The 2.3-GHz log-amplitude fluctuations observed in the radio links of the Pioneer Venus entry probes during Venus encounter have been used to study turbulence in the Venus atmosphere. The deduced estimates of the upper bound of the structure constant of the refractive index fluctuations (less than approximately 4 x 10 to the -8th/cu root cm) are inconsistent with similar entry probe measurements by Veneras 4 to 8 but are consistent with the radio occultation measurements by flyby (Mariners 5 and 10) and orbiting (Venera 9) spacecraft. The Pioneer Venus measurements therefore provide a resolution of the long-standing order of magnitude discrepancy between these earlier measurements of the structure constant.

  12. Low Frequency Radio-wave System for subsurface investigation

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Gennarelli, Gianluca; Kudelya, Anatoliy; Denisov, Alexander

    2015-04-01

    Low frequency radio-wave methods (RWM) allow subsurface investigations in terms of lithological structure characterization, detection of filtration flows of ground water, anthropogenic and natural cavities. In this contribution, we present a RWM that exploits two coils working at frequencies of few MHz as transmitting and receiving antennas. The basic principle of this inductive method is as follows. The primary alternating electromagnetic field radiated by the transmitting coil induces eddy currents in the subsurface mainly due to the conductivity anomalies. These eddy currents generate a secondary (scattered) magnetic field which overlaps to the incident magnetic field and is detected by the receiving coil. Despite the simple operation of the system, the complexity of the electromagnetic scattering phenomenon at hand must be properly modeled to achieve adequate performance. Therefore, an advanced data processing technique, belonging to the class of the inverse scattering approaches, has been developed by the authors in a full 3D geometry. The proposed method allows to deal with data collected on a scanning surface under a dipole inductive profiling (DIP) modality, where the transmitting/receiving coils are moved simultaneously with fixed offset (multi-bistatic configuration). The hardware, called Dipole Inductive Radio-wave System (DIRS), is composed by an electronic unit and transmitting and receiving loop antennas radiating at frequencies of few MHz (2-4 MHz), which are installed on theodolite supports. The compactness of DIRS and its robustness to external electromagnetic interference offers the possibility to perform geophysical research up to the depth of some tens of meters and under several types of ground and water surfaces, vegetation, and weather conditions. The light weight and small size of system (the single antenna with support weights about 5 kg and has a diameter of 0.5m) allows two operators to perform geophysical research without disturbing the surface integrity of investigated ground massif. The value of base and the value of voltage induced on the digital voltmeter of the receiver are stored in memory on a SD-card for a subsequent visualization and processing. Realistic cases of application of the DIRS system enhanced by the inverse scattering approach will be presented at the conference with regard to the geological characterization of a mine shaft and an archaeological site.

  13. Multipath propagation of low-frequency radio waves inferred from high-resolution array analysis

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Smith, Nathan; Mezentsev, Andrew; Watson, Robert; Astin, Ivan; Gaffet, Stéphane; Evans, Adrian; Rycroft, Michael

    2015-11-01

    The low-frequency radio sky shows the locations of electromagnetic radio sources with a characteristic dilution of precision. Here we report a thorough high-resolution analysis of radio waves from low-frequency (˜20-150 kHz) radio communication transmitters which are recorded with a small aperture array of radio receivers during the day. It is found that the observed dilution of precision results from the array geometry of the radio receivers, a birefringent wave propagation, and the correlated multipath propagation of low-frequency radio waves. The influence of the array geometry on the dilution of precision is reduced by taking into account the impulse response of the array. This procedure reveals for the very first time the splitting of one single radio source into two distinct source locations separated by ˜0.2°-1.9° which result from a birefringent wave propagation. The two locations are yet more clearly identified by using the polarity of the modulated wave number vectors of the radio waves. This polarity is also used to quantify the dilution of precision arising from correlated multipath propagation which is discriminated against wave number fluctuations arising from the timing accuracy of the radio receivers. It is found that ˜69% of the wave number variability is of natural origin and ˜31% originates from the timing accuracy of the receivers. The wave number variability from correlated multipath propagation results in a standard deviation ˜2-8% relative to the source location. This compact measurement of correlated multipath propagation is used to characterize the uncertainty of source locations in the radio sky. The identification of correlated multipath propagation strongly suggests the existence of very fast processes acting on time scales <1 ms in the D region ionosphere with physically meaningful effects on low-frequency radio wave propagation. This important result has implications for practical applications in that the observed multipath propagation enables the determination of natural limits for the accuracy of navigation and lightning location methods using low-frequency radio waves.

  14. Scattering of Radio Frequency Waves by Edge Density Blobs in Tokamak Plasmas

    SciTech Connect

    Ram, A. K.; Hizanidis, K.; Kominis, Y.

    2011-12-23

    The density blobs and fluctuations present in the edge region of magnetic fusion devices can scatter radio frequency (RF) waves through refraction and diffraction. The scattering can diffuse the rays in space and in wave-vector space. The diffusion in space can make the rays miss their intended target region, while the diffusion in wave-vector space can broaden the wave spectrum and modify the wave damping and current profile.

  15. Relations among low ionosphere parameters and A3 radio wave absorption

    NASA Technical Reports Server (NTRS)

    Cipriano, J. P.; Hale, L. C.; Mitchell, J. D.

    1974-01-01

    Charged particle conductivities measured in the very low ionosphere are compared with atmospheric parameters and high-frequency radio wave absorption measurements. Between 33 and 58 km, positive conductivity is well correlated with neutral atmospheric temperature. Good correlations are found also between high-frequency radio wave absorption and negative conductivity at altitudes as low as 53 km, this fact suggesting that day-to-day variations in absorption may be principally due to variations in electron loss rate. These correlations do not apply to some days of very low or very high radio wave absorption, for which the effects of transport on nitric oxide appear to be important.

  16. Nonlinear interaction of powerful radio waves with the plasma in the Earth's lower ionosphere

    SciTech Connect

    Shukla, P.K. ); Stenflo, L. ); Borisov, N.D. )

    1992-08-01

    The nonlinear interaction of powerful radio waves with nonresonant density fluctuations in a nonuniform weakly ionized magnetoplasma is considered. It is shown that the interaction can generate a high-frequency radio wave envelope, which generally is governed by a nonlinear Schroedinger equation. Accounting for the dependence of the attachment frequency on the radiation intensity, as well as the differential Joule heating nonlinearity, the authors derive the equations for the nonthermal electron density and temperature perturbations. The various nonlinear terms in the electron motion are compared. The implications of the investigation for the filamentation of radio waves in the lower part of the Earth's ionosphere are pointed out.

  17. Worst-Case GPS Scintillations on the Ground Estimated from Radio Occultation Observations of FORMOSAT-3/COSMIC During 2007-2014

    NASA Astrophysics Data System (ADS)

    Liu, J. Y.; Chen, S. P.; Yeh, W. H.; Tsai, H. F.; Rajesh, P. K.

    2016-01-01

    The FORMOSAT-3/COSMIC (F3/C) satellite probes the S4 scintillation index profile of GPS signals by using the radio occultation (RO) technique. In this study, for practical use on the Earth's surface, a method is developed to convert and integrate the probed RO S4 index, so obtaining the scintillation on the ground. To estimate the worst case, the maximum value on each profile probed by F3/C, which is termed S4max, is isolated. The isolated data are further used to construct the global three-dimensional distributions of S4max for various local times, seasons, solar activities, and locations. The converted S4max for the first time estimates the global distribution of ionospheric scintillations in the GPS L1 band C/A code signal on the ground. The results show that the worst-case scintillations appear within the low-latitude region of ±30°N, peaking around ±20°N magnetic latitude; they begin at 1900 MLT, reach their maximum at 2100 MLT, and vanish by about 0200-0300 MLT. The most pronounced low-latitude scintillation occurs over the South American and African sectors.

  18. Characteristics of coronal shock waves and solar type 2 radio bursts

    NASA Technical Reports Server (NTRS)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  19. Comparison of LaBr 3:Ce and NAI(Tl) scintillators for radio-isotope identification devices

    NASA Astrophysics Data System (ADS)

    Milbrath, B. D.; Choate, B. J.; Fast, J. E.; Hensley, W. K.; Kouzes, R. T.; Schweppe, J. E.

    2007-03-01

    Lanthanum bromide (LaBr 3:Ce) scintillators offer significantly better resolution (<3 percent at 662 keV) relative to sodium iodide (NaI(Tl)) but contain internal radioactivity that contributes to spectral counts. LaBr 3:Ce has recently become available commercially in sizes large enough for the hand-held radio-isotope identification device (RIID) market. To study its potential for RIIDs, a series of measurements were performed comparing a 1.51.5-in. LaBr 3:Ce detector with an Exploranium GR-135 RIID, which contains a 1.52.2-in. NaI(Tl) detector. Measurements were taken for short time frames and included examples of naturally occurring radioactive material (NORM), typically found in cargo, and special nuclear materials. To facilitate direct comparison, spectra from the different detectors were analyzed with the same isotope identification software (ORTEC ScintiVision). In general, the LaBr 3:Ce detector was able to find more peaks and find them faster than the NaI(Tl) detector. To the same level of significance, the LaBr 3:Ce detector was usually two to three times faster. The notable exception was for 40K-containing NORM where interfering internal activity due to 138La in the LaBr 3:Ce detector exists and NaI(Tl) consistently outperformed LaBr 3:Ce.

  20. Jupiter: As a planet. [its physical characteristics and radio waves emitted from Jupiter

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The planet Jupiter, its planetary mass and atmosphere, radio waves emitted from Jupiter, thermal radiation, internal structure of Jupiter, and the possibility of life on Jupiter are discussed. Educational study projects are included.

  1. Radio-frequency wave trajectories for current drive in tokamak reactors

    SciTech Connect

    Wong, K.L.; Ono, M.

    1982-12-01

    Detailed ray tracing calculations were carried out for three modes of waveguide-launched radio-frequency waves for tokamak reactor parameters to evaluate their applicability for steady state current drive. The merits and demerits of each mode are discussed.

  2. Put a Short-Wave Radio in Your Foreign Language Classroom

    ERIC Educational Resources Information Center

    Oksenholt, Svein

    1977-01-01

    Advantages of the short-wave radio as a supplement to foreign language instruction as well as practical hints on wavelength, antenna, and techniques for use are provided. Selective annotated bibliography. (STS)

  3. New theoretical aspects of potential radio wave emission from Jupiter like exoplanets

    NASA Astrophysics Data System (ADS)

    Weber, Christof; Rucker, Helmut; Vocks, Christian

    2015-04-01

    The UTR-2 (Ukrainian T-shaped Radio Telescope 2nd generation), LOFAR (Low Frequency Array) or the upgrade of LOFAR in Nancay (the NENUFAR project) are promising facilities with sensitivities sufficiently low to be able to detect radio emission from exoplanets, especially from so-called Hot Jupiters. These are Jovian like planets very close to their host star (about 0.045 AU) and their radio emission is expected to be up to 10E5 times higher than the emission from Jupiter in our solar system. Also recent investigations of the possibility of moons around a Jovian exoplanet (an analog of the Io-Jupiter system) are promising candidates amongst the exoplanets for a future detection of exoplanetary radio emission. As is well known Io triggers radio emission up to 40 MHz in the Jovian case, a frequency which lies well above the ionospheric cutoff of 10 MHz and thus can be measured with ground-based facilities on Earth. We present simulation results for wave growth rates at Jupiter-like exoplanets orbiting at distances smaller than 0.1 AU from their parent star. Under sophisticated assumptions for the plasma environment at these exoplanets we find that the cyclotron maser instability (CMI), the process which is very likely responsible for the generation of radio waves in our solar system, produces radio waves which can propagate away from the planet. Furthermore we check the influence of a magnetodisc at Hot Jupiters on the possible power of the emitted radio waves.

  4. Interplanetary energetic ions and polar radio wave absorption

    SciTech Connect

    Armstrong, T.P.; Laird, C.M. ); Venkatesan, D. ); Krishnaswamy, S.; Rosenberg, T.J. )

    1989-04-01

    This is a study of the ionization input of interplanetary (including solar flare) energetic protons and alpha particles into the south polar ionosphere over the interval 1982-1985. It is well known that interplanetary ions have full and prompt access to the polar ionosphere. The incremental ionization produced at 20-120 km. altitudes causes enhanced radio wave absorption which is observed by riometers operated by the University of Maryland, at South Pole, Antarctica. The authors compute the expected absorption from the vertical structure of the ionization deposited by these energetic particles and compare the computed values with the observations. The contribution of the alpha particles is found to be quite small as a percentage of the absorption except at the peak of the day 35, 1983, event, when their contribution to the absorption is about 0.6 dB out of a total of 3.4 dB. The dominant contribution to absorption at 30 MHz usually arises from protons below 10 MeV, specifically in the 2- to 4-MeV interval. They have propagated the observed fluxes and energy spectra of protons and alpha particles through a seasonally adjusted slab model of the polar atmosphere. The atmospheric ionization resulting from the slowing and stopping of protons and alpha particles is used to estimate an equilibrium vertical ionization profile which is then convolved with an absorption efficiency profile to yield a calculated absorption. There is good agreement between the computed and observed absorption when the daily averaged absorption is above 0.1 dB; this shows that the interplanetary ions are the dominant contributors on those days.

  5. The CERTO and CITRIS Instruments for Radio Scintillation and Electron Density Tomography from the C/NOFS, COSMIC, NPSAT1 and STPSAT1 Satellites

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.

    2004-05-01

    A new constellation of radio beacon and radio beacon receivers will be providing global measurements of radio scintillations and total electron content (TEC) for near real time measurements of the ionosphere. This constellation is comprised of the NRL Coherent Electromagnetic Radio Tomography (CERTO) beacons on the Communications/Navigation Forecast Outage System (C/NOFS) satellite, the six Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) satellites, and the Naval Postgraduate (NPSAT1) Satellite. These satellites will be launched in the time period of 2004 through 2006. The CERTO beacons operating at 150.012, 400.032, and 1066.752 MHz will be transmitting to ground receivers located in chains to acquire TEC data for computerized ionospheric tomography (CIT). In addition, in early 2006 a five frequency receiver will be placed in low earth orbit with the United States Air Force Space Test Program (STPSAT1) satellite. This CITRIS receiver will use radio beacon transmissions from the French DORIS network of ground beacons at 401.25 and 2036.25 MHz and space-based beacons at 150, 400 and 1067 MHz to measure the earth's ionosphere. On board tracking software will lock onto Doppler shifted frequencies to determine total electron content (TEC) and scintillation parameters. The STPSAT1 will be launched along with a companion satellite (NPSAT1) which carries the CERTO radio beacon and a Langmuir probe. All of the CERTO beacons as well as the ionospheric sensors on STPSAT1 and NPSAT1 are being constructed at the Naval Research Laboratory. The data obtained using the CITRIS instrument will provide a global description of the ionosphere from orbits with inclinations ranging from 15 degrees to 70 degrees and altitudes from 375 to 800 km. The tandem operations of the CITRIS and CERTO instruments will provide the fully low-earth-orbit based occultation measurements of the ionosphere. All of the data will be available for rapid assimilation ionospheric, space-weather models.

  6. Wave Normal and Poynting Vector Calculations using the Cassini Radio and Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Hospodarsky, G. B.; Averkamp, T. F.; Kurth, W. S.; Gurnett, D. A.; Dougherty, M.; Inan, Umran; Wood, Troy

    2001-01-01

    Wave normal and Poynting vector measurements from the Cassini radio and plasma wave instrument (RPWS) are used to examine the propagation characteristics of various plasma waves during the Earth flyby on August 18, 1999. Using the five-channel waveform receiver (WFR), the wave normal vector is determined using the Means method for a lightning-induced whistler, equatorial chorus, and a series of low-frequency emissions observed while Cassini was in the magnetosheath. The Poynting vector for these emissions is also calculated from the five components measured by the WFR. The propagation characteristics of the lightning-induced whistler were found to be consistent with the whistler wave mode of propagation, with propagation antiparallel to the magnetic field (southward) at Cassini. The sferic associated with this whistler was observed by both Cassini and the Stanford VLF group at the Palmer Station in Antarctica. Analysis of the arrival direction of the sferic at the Palmer Station suggests that the lightning stroke is in the same sector as Cassini. Chorus was observed very close (within a few degrees) to the magnetic equator during the flyby. The chorus was found to propagate primarily away from the magnetic equator and was observed to change direction as Cassini crossed the magnetic equator. This suggests that the source region of the chorus is very near the magnetic equator. The low-frequency emission in the magnetosheath has many of the characteristics of lion roars. The average value of the angle between the wave normal vector and the local magnetic field was found to be 16 degrees, and the emissions ranged in frequency from 0. 19 to 0.75 f(sub ce), where f(sub ce) is the electron cyclotron frequency. The wave normal vectors of these waves were primarily in one direction for each individual burst (either parallel or antiparallel to the local field) but varied in direction throughout the magnetosheath. This suggests that the sources of the emissions are far from the spacecraft and that there are multiple source regions.

  7. Ulysses observations of wave activity at interplanetary shocks and implications for type II radio bursts

    SciTech Connect

    Lengyel-Frey, D.; Thejappa, G.; MacDowall, R.J.; Stone, R.G.; Phillips, J.L.

    1997-02-01

    We present the first quantitative investigation of interplanetary type II radio emission in which in situ waves measured at interplanetary shocks are used to compute radio wave intensities for comparison with type II observations. This study is based on in situ measurements of 42 in-ecliptic forward shocks as well as 10 intervals of type II emission observed by the Ulysses spacecraft between 1 AU and 5 AU. The analysis involves comparisons of statistical properties of type II bursts and in situ waves. Most of the 42 shocks are associated with the occurrence of electrostatic waves near the time of shock passage at Ulysses. These waves, which are identified as electron plasma waves and ion acoustic-like waves, are typically most intense several minutes before shock passage. This suggests that wave-wave interactions might be of importance in electromagnetic wave generation and that type II source regions are located immediately upstream of the shocks. We use the in situ wave measurements to compute type II brightness temperatures, assuming that emission at the fundamental of the electron plasma frequency is generated by the merging of electron plasma waves and ion acoustic waves or the decay of electron plasma waves into ion acoustic and transverse waves. Second harmonic emission is assumed to be produced by the merging of electron plasma waves. The latter mechanism requires that a portion of the electron plasma wave distribution is backscattered, presumably by density inhomogeneities in regions of observed ion acoustic wave activity. The computed type II brightness temperatures are found to be consistent with observed values for both fundamental and second harmonic emission, assuming that strong ({approx_equal}10{sup {minus}4}V/m) electron plasma waves and ion acoustic waves are coincident and that the electron plasma waves have phase velocities less than about 10 times the electron thermal velocity. (Abstract Truncated)

  8. Wave propagation and earth satellite radio emission studies

    NASA Technical Reports Server (NTRS)

    Yeh, K. C.; Liu, C. H.; Flaherty, B. J.

    1974-01-01

    Radio propagation studies of the ionosphere using satellite radio beacons are described. The ionosphere is known as a dispersive, inhomogeneous, irregular and sometimes even nonlinear medium. After traversing through the ionosphere the radio signal bears signatures of these characteristics. A study of these signatures will be helpful in two areas: (1) It will assist in learning the behavior of the medium, in this case the ionosphere. (2) It will provide information of the kind of signal characteristics and statistics to be expected for communication and navigational satellite systems that use the similar geometry.

  9. Density waves in Saturn's rings probed by radio and optical occultation - Observational tests of theory

    NASA Technical Reports Server (NTRS)

    Brophy, Thomas G.; Rosen, Paul A.

    1992-01-01

    A parallel examination is conducted of Voyager radio and photopolarimeter occultation observations of the Saturn A ring's density waves. The radio instrument waves exhibit an average -90 deg offset from the dynamical phase. A warping height of about 100-m amplitude can qualtitatively reproduce this phase shift, while preserving the overall model wave shape. These results may be profoundly relevant for satellite-ring torque calculations in Saturn's rings, given the deposition of all of the net torque of the standard model in the first wavelength.

  10. Cassini radio and plasma wave investigation: Data compression and scientific applications

    NASA Technical Reports Server (NTRS)

    Woolliscroft, L. J. C.; Farrell, W. M.; Alleyne, H. St. C.; Gurnett, D. A.; Kirchner, D. L.; Kurth, W. S.; Thompson, J. A.

    1993-01-01

    The Radio and Plasma Wave Science (RPWS) experiment being built for the Cassini spacecraft will study a wide range of plasma and radio wave phenomena in the magnetosphere of Saturn and will also make valuable measurements during the cruise phase and at other encounters. A feature of data from wave receivers is the capability of producing vastly more data than the spacecraft telemetry link is capable of transmitting back to the Earth. Thus, techniques of on-board data compression and data reduction are important. The RPWS instrument has one processor dedicated to data compression tasks.

  11. Cassini radio and plasma wave investigation - Data compression and scientific applications

    NASA Technical Reports Server (NTRS)

    Woolliscroft, L. J. C.; Farrell, W. M.; Alleyne, H. St. C.; Gurnett, D. A.; Kirchner, D. L.; Kurth, W. S.; Thompson, J. A.

    1993-01-01

    The Radio and Plasma Wave Science (RPWS) experiment being built for the Cassini spacecraft will study a wide range of plasma and radio wave phenomena in the magnetosphere of Saturn and will also make valuable measurements during the cruise phase and at other encounters. A feature of data from wave receivers is the capability of producing vastly more data than the spacecraft telemetry link is capable of transmitting back to the Earth. Thus, techniques of on-board data compression and data reduction are important. The RPWS instrument has one processor dedicated to data compression tasks.

  12. Simultaneous observations of periodic non-Io decametric radio emission by ground radio telescope URAN-2 and STEREO/WAVES

    NASA Astrophysics Data System (ADS)

    Panchenko, M.; Brazhenko, A. I.; Rucker, H. O.; Frantzusenko, A.; Shaposhnikov, V. E.; Konovalenko, A. A.

    2013-09-01

    Periodic bursts of the non-Io component of Jovian decametric radio emission (non-Io DAM) is observed as (1) series of arc-like radio bursts with negative frequency drift which reoccur with 1.5% longer period than the Jovian magnetosphere rotation rate, (2) series of bursts with positive frequency drift which reoccur with Jupiter's rotation period and (3) periodic non-arc like radio features [1, 2]. These bursts are typically detected during several Jupiter rotations in decametric frequency range from 4 MHz to 12 - 16 MHz between 300° and 60° of CML. We present simultaneous observations of the periodic non-Io controlled DAM performed by the WAVES radio experiment onboard the two STEREO spacecraft and the groundbased radio telescope URAN-2 (Poltava, Ukraine) operated in the decametric frequency range. URAN-2 with an effective area of about 30000 m2 consists of 512 broadband crossed dipoles and equipped with the high performance digital radio spectrometer with polarization measurement capability. During the observation campaign Sep., 2012 - Apr., 2013 URAN-2 recorded a large amount of Jovian DAM events with the high time-frequency resolution (4 kHz - 100 ms) in a frequency range 8-32 MHz. In the same time the two spatially separated STEREO spacecraft was able to observe DAM in the frequency range up to 16 MHz. The first analysis of the acquired stereoscopic observations is presented. In particular, we show one episode when the periodic non-arc DAM was recorded together with long lasting Jovian narrow band (NB) emissions. These NB emission was observed at the high frequency cutoff of DAM and can be interpreted as propagation of the decametric radiation in the Jovian ionosphere [3]. We discuss the possible relations between the observed NB events and the periodic non-Io controlled Jovian decametric radio emission.

  13. Double layers and plasma-wave resistivity in extragalactic jets - Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    Current driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur in extragalactic jets for estimated values of the carried currents. Strong plasma double layers, however, may exist within self-maintained density cavities. The relativistic double-layer-emitted electron and ion beams drive plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  14. Double layers and plasma-wave resistivity in extragalactic jets: Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    For estimated values of the currents carried by extragalactic jets, current-driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur. Strong plasma double layers, however, may exist within self-maintained density cavities, the relativistic double-layer-emitted electron, and ion beams driving plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  15. Simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    NASA Astrophysics Data System (ADS)

    Fllekrug, M.; Hanuise, C.; Parrot, M.

    2010-10-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz radio waves from fifty terrestrial Long Range Aid to Navigation (LORAN) transmitters. Their mean luminosity patch in the plasmasphere is a circular area with a radius of 300 km and a power density of 22 ?W/Hz as observed at 660km height above the ground. The luminosity patches exhibit a southward displacement of 450 km with respect to the locations of the LORAN transmitters. The displacement is reduced to 150 km when an upward propagation of the radio waves along the geomagnetic field line is assumed. This residual displacement indicates that the radio waves undergo 150 km sub-ionospheric propagation prior to entering a magnetospheric duct and escaping into near-Earth space. The residual displacement at low (L<2.14) and high (L>2.14) geomagnetic latitudes ranges from 100 km to 200 km which suggests that the smaller inclination of the geomagnetic field lines at low latitudes helps to trap the radio waves and to keep them in the magnetospheric duct. Diffuse luminosity areas are observed northward of the magnetic conjugate locations of LORAN transmitters at extremely low geomagnetic latitudes (L<1.36) in Southeast Asia. This result suggests that the propagation along the geomagnetic field lines results in a spatial spreading of the radio wave energy over distances of 1 Mm. The summative assessment of the electric field intensities measured in space show that nadir observations of terrestrial 100 kHz radio waves, e.g., from relativistic electron beams above thunderclouds, are attenuated by at least 50 dB when taking into account a transionospheric attenuation of 40 dB.

  16. Verification of nonlinear particle simulation of radio frequency waves in tokamak

    NASA Astrophysics Data System (ADS)

    Kuley, A.; Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.; Zhang, W.; Sun, G. Y.; Fisch, N. J.

    2015-10-01

    Nonlinear simulation model for radio frequency waves in fusion plasmas has been developed and verified using fully kinetic ion and drift kinetic electron. Ion cyclotron motion in the toroidal geometry is implemented using Boris push in the Boozer coordinates. Linear dispersion relation and nonlinear particle trapping are verified for the lower hybrid wave and ion Bernstein wave (IBW). Parametric decay instability is observed where a large amplitude pump wave decays into an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating, with a heating rate proportional to the pump wave intensity.

  17. Broadband Ionospheric Scintillation Measurements from Space

    NASA Astrophysics Data System (ADS)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2014-12-01

    The U.S. Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 825 - 1100 MHz. In this paper, we present an overview of the RFProp on-orbit research and analysis effort with particular focus on an equatorial scintillation experiment called ESCINT. The 3-year ESCINT project is designed to characterize equatorial ionospheric scintillation in the upper HF and lower VHF portions of the radio spectrum (20 - 150 MHz). Both a 40 MHz continuous wave (CW) signal and 30 - 42 MHz swept frequency signal are transmitted to the satellite receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in four separate campaigns centered on the 2014 and 2015 equinoxes. Results from the first campaign conducted from April 22 - May 15, 2014 will be presented including (a) coherence bandwidth measurements over a full range of transmission frequencies and scintillation activity levels, (b) spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities, and (c) supporting ray-trace simulations. The broadband nature of the measurements is found to offer unique insight into both the structure of ionospheric irregularities and their impact on HF/VHF trans-ionospheric radio wave propagation.

  18. The influence of polarization on millimeter wave propagation through rain. [radio signals

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.

    1973-01-01

    The measurement and analysis of the depolarization and attenuation that occur when millimeter wave radio signals propagate through rain are described. Progress was made in three major areas: the processing of recorded 1972 data, acquisition and processing of a large amount of 1973 data, and the development of a new theoretical model to predict rain cross polarization and attenuation. Each of these topics is described in detail along with radio frequency system design for cross polarization measurements.

  19. Variation of Langmuir wave polarization with electron beam speed in type III radio bursts

    SciTech Connect

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.

    2013-06-13

    Observations by the twin STEREO spacecraft of in-situ electric field waveforms and radio signatures associated with type III radio bursts have demonstrated that the polarization of electron beam-driven waves near the local plasma frequency depends strongly on the speed of the driving electron beam. We expand upon a previous study by including all radio bursts with in-situ waveforms observed by STEREO in 2011. The expanded data set contains five times more radio bursts (35 up from 7) and three times as many Langmuir waves (663 up from 168). While this expanded study supports the results of the original study, that faster (slower) beam electrons drive waves with strong (weak) electric fields perpendicular to the local magnetic field, the larger data set emphasizes that the observation of strong perpendicular electric fields at high electron beam speeds is probabilistic rather than definite. This property supports the interpretation of wave polarization dependence on beam speed as Langmuir/z-mode waves shifted to small wave number through interaction with turbulent solar wind density fluctuations.

  20. Radio wave dissipation in turbulent auroral plasma during the precipitation of energetic electrons

    SciTech Connect

    Mishin, E.V.; Luk'ianova, L.N.; Makarenko, S.F.; Atamaniuk, B.M. Polish Academy of Sciences, Institute of Fundamental Technological Research, Warsaw )

    1992-04-01

    The results of the theoretical analysis of anomalous (collisionless) radio wave absorption in the turbulent auroral ionosphere during the intrusion of energetic electrons (i.e., in aurorae) are presented. The implications of the plasma turbulent layer (PTL) theory are used. It is shown that the dissipation of radio waves with frequencies much higher than the plasma frequency is caused by the nonlinear (combined) scattering in turbulent plasma of the PTL. In the auroral electrojet layer the principal dissipative process for the radio waves with frequencies close to the plasma frequency is O-Z transformation on the field-aligned, small-scale density fluctuations. The typical dissipation decrements are estimated. 26 refs.

  1. Application of surface acoustic wave devices to radio telemetry

    NASA Technical Reports Server (NTRS)

    Strasilla, U.

    1983-01-01

    Three experimental Surface Acoustic Wave Resonators (SAWR) are developed and evaluated. A desired center frequency is obtained by correct spacing of the Inter-Digital Transducers (IDT). Transmitting and receiving IDT's must be close for adequate coupling and a sufficient number of reflectors are required to create a high quality standing wave. A review of oscillator theory is given and current technology evaluated.

  2. Relations among low ionosphere parameters and high frequency radio wave absorption

    NASA Technical Reports Server (NTRS)

    Cipriano, J. P.

    1973-01-01

    Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.

  3. The modeling of HF radio wave propagation characteristics during the periods of solar flares

    NASA Astrophysics Data System (ADS)

    Ponomarchuk, S. N.; Kurkin, V. I.; Lyakhov, A. N.; Romanova, E. B.; Tashchilin, A. V.

    2015-11-01

    The results for modeling of HF radio waves propagation characteristics are given for the periods of solar flares 25.02.2014, 25.10.2013, 13-14.05.2013. The distance-frequency and amplitude-frequency propagation characteristics are calculated on the base of the complex algorithm which includes modules of ionosphere and plasmasphere global models and radio waves propagation model. The results of calculations were compared with experimental data of oblique ionosphere sounding obtained by chirp ionosonde on paths Magadan - Irkutsk, Khabarovsk - Irkutsk and Norilsk - Irkutsk.

  4. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA. PMID:19257596

  5. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    SciTech Connect

    Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  6. The generation of ELF and VLF radio waves in the ionosphere using powerful HF transmitters

    NASA Astrophysics Data System (ADS)

    Barr, R.

    The generation of Extremely Low Frequency (ELF) and Very Low Frequency (VLF) waves by ionospheric heating using powerful High Frequency (HF) radio waves is reviewed. Most attention is given to natural current modulation using modulated HF heating and results are presented from all the major heating facilities in chronological order. Both ground based and satellite measurements are described, as are techniques for enhancing ELF/VLF wave generation efficiency. Techniques for ELF/VLF wave generation which do not require the presence of natural ionospheric currents are also reviewed.

  7. Excitation of artificial airglow by high power radio waves from the SURA ionospheric heating facility

    SciTech Connect

    Bernhardt, P.A.; Scales, W.A. ); Grach, S.M.; Keroshtin, A.N.; Kotik, D.S.; Polyakov, S.V. )

    1991-08-01

    The SURA facility for generation of high power radio waves, located near the village of Vasil'sursk USSR, operates between 4.5 and 9.0 MHz and has a maximum effective radiated power (ERP) of 300 MW. Nonlinear interactions between the HF radio waves and F-layer plasma occur near the electromagnetic wave reflection point. Energetic electrons are accelerated out of the interaction regions by the electrostatic waves. Ambient oxygen atoms collisionally excited by these suprathermal electrons yield enhanced airglow. Low-light-level, optical measurements were made at SURA during September 1990. Images of enhanced red-line (630 nm) emissions were recorded during radio wave transmissions at 4.786, 5.455, and 5.828 MHz. The antenna radiation pattern, ionospheric irregularities, and the magnetic field orientation affected the shape of the observed airglow structures. The airglow clouds drifted across the night sky, disappeared, and reformed at the zenith of the antenna array. This has been interpreted in terms of radio beam refraction in drifting plasma irregularities and bifurcation when the beam is split between two density cavities. Subject to clear skies, the authors experience indicates that the low-light-level-imaging technique is a reliable method to study large scale irregularities and electron acceleration with high-power HF transmitting facilities.

  8. Radio-Wave Oscillations of Molecular-Chain Resonators

    NASA Astrophysics Data System (ADS)

    Mllegger, Stefan; Rashidi, Mohammad; Mayr, Karlheinz; Fattinger, Michael; Ney, Andreas; Koch, Reinhold

    2014-03-01

    We report a new type of nanomechanical resonator system based on one-dimensional chains of only 4 to 7 weakly coupled small molecules. Experimental characterization of the truly nanoscopic resonators is achieved by means of a novel radio-frequency scanning tunneling microscopy detection technique at cryogenic temperatures. Above 20 K we observe concerted oscillations of the individual molecules in chains, reminiscent of the first and second eigenmodes of a one-dimensional harmonic resonator. Radio-frequency scanning tunneling microscopy based frequency measurement reveals a characteristic length dependence of the oscillation frequency (between 51 and 127 MHz) in reasonable agreement with one-dimensional oscillator models. Our study demonstrates a new strategy for investigating and controlling the resonance properties of nanomechanical oscillators.

  9. Solar type III radio bursts modulated by homochromous Alfvén waves

    SciTech Connect

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2013-12-10

    Solar type III radio bursts and their production mechanisms have been intensively studied in both theory and observation and are believed to be the most important signatures of electron acceleration in active regions. Recently, Wu et al. proposed that the electron-cyclotron maser emission (ECME) driven by an energetic electron beam could be responsible for producing type III bursts and pointed out that turbulent Alfvén waves can greatly influence the basic process of ECME via the oscillation of these electrons in the wave fields. This paper investigates effects of homochromous Alfvén waves (HAWs) on ECME driven by electron beams. Our results show that the growth rate of the O-mode wave will be significantly modulated by HAWs. We also discuss possible application to the formation of fine structures in type III bursts, such as so-called solar type IIIb radio bursts.

  10. Radio Wave Generation by a Collision or Contact between Various Materials

    NASA Astrophysics Data System (ADS)

    Takano, T.; Hanawa, R.; Saegusa, K.; Ikeda, H.

    2014-12-01

    In fracture of rock, radio wave emission was found experimentally [1]. This phenomenon could be used to detect a rock fracture during an earthquake or a volcanic activity [2]. The cause of the radio wave is expected to be micro-discharges, which are generated by an inhomogeneous potential distribution around micro-cracks. In order to better understand the phenomena and clarify the cause of radio wave emission, we carried out experiments to detect the emission in the cases of a collision or contact between various materials. We used receiving systems with great sensitivities and sufficient frequency bandwidths at 1 MHz-, 300 MHz-, 2 GHz-, and 18 GHz-bands. The specimen materials are as follows: Steel (2) Brass (3) Copper (4)Small coin (5)Celluloid. We obtained the following results: The signal was detected for the specimen of (1) to (4), but not for (5). The signal is composed of intermittent spikes which include waves with a frequency close to the center frequency of each frequency band. The power is strongest at the lower frequencies among all frequency bands. The more details will be given in the presentation. The origin of radio wave emission from the metal is supposed to be discharges between materials in these experiments. It is surprising that even a small coin can generate a significant amount of radio wave. Accordingly, it is inferred that all amount of charges are discharged through a conductive metal. On the other hand, celluloid did not generate radio wave, though the specimen was sufficiently charged by brushing. It is inferred that a quite localized charge was discharged but the remaining charges were blocked due to poor conductivity. Extending this hypothesis, large-scale contact should have occurred between broken fragments for the radio wave generation in the aforementioned rock fracture experiments. Turbulence of the fragments is a candidate for the explanation. [1] K. Maki et al., "An experimental study of microwave emission from compression failure of rocks" (in Japanese), Jour. of the Seismological Society of Japan, vol.58, no.4, pp.375-384, 2006.[2] T. Takano al., "Detection of microwave emission due to rock fracture as a new tool for geophysics: A field test at a volcano in Miyake Island, Japan", Journal of Applied Geophysics, 94, pp.1-14, 2013.

  11. Radio wave propagation experiments to probe the ionosphere

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.

    1972-01-01

    Ionospheric bias corrections associated with radio tracking of spacecraft depend on the following measuring techniques for integrated electron content: (1) Faraday rotation measurements from an earth synchronous satellite; (2) ranging measurements at two frequencies; and (3) group and phase velocity measurements obtained from tracking data. The extraction of the integrated electron content directly from tracking data is achieved by comparison of range-rate measurements based on Doppler shift with differentiated range measurements based on tone delay. This method is most desirable because the measured corrections pertain directly to the spacecraft whose orbit is being determined and can be used in near earth as well as deep space tracking data.

  12. Foggy scintillation counting technique.

    PubMed

    Fujii, H; Takiue, M

    2001-10-01

    A new "foggy scintillator" was developed for the measurement of low-energy beta-emitters in air. By the use of an ultrasonic wave generator, a liquid scintillator can be converted into the "foggy scintillator". In order to obtain reasonable detection efficiency, it is necessary to prepare a liquid scintillator with a very high concentration of the first solute (PPO). The foggy scintillation counting technique avoids the trouble of the sample preparation usually necessary for the measurement of radionuclides in air, since the radionuclide in the air can be measured directly. PMID:11545505

  13. Excitation of artificial airglow by high power radio waves from the 'SURA' ionospheric heating facility

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Scales, Wayne A.; Grach, S. M.; Keroshtin, A. N.; Kotik, D. S.

    1991-08-01

    The present study considers low-light-level optical measurements made in September 1990 at a Soviet facility for generation of high power radio waves. Images of enhanced red-line (630-nm) emissions were recorded during radio wave transmissions. The antenna radiation pattern, ionospheric irregularities, and the magnetic field orientation affected the shape of the observed airglow structures. The airglow clouds drifted across the night sky, disappeared, and reformed at the zenith of the antenna array. This was interpreted in terms of radio beam refraction in drifting plasma irregularities and bifurcation when the beam is split between two density cavities. It is concluded that given clear skies, the low-light-level imaging technique is a reliable method for studying large-scale irregularities and electron acceleration with high-power HF transmitting facilities.

  14. Radio and Plasma Wave Observations at Saturn from Cassini's Approach and First Orbit

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Haspodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Cecconi, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.

    2005-01-01

    We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 k 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings.

  15. Radio and plasma wave observations at Saturn from Cassini's approach and first orbit.

    PubMed

    Gurnett, D A; Kurth, W S; Hospodarsky, G B; Persoon, A M; Averkamp, T F; Cecconi, B; Lecacheux, A; Zarka, P; Canu, P; Cornilleau-Wehrlin, N; Galopeau, P; Roux, A; Harvey, C; Louarn, P; Bostrom, R; Gustafsson, G; Wahlund, J-E; Desch, M D; Farrell, W M; Kaiser, M L; Goetz, K; Kellogg, P J; Fischer, G; Ladreiter, H-P; Rucker, H; Alleyne, H; Pedersen, A

    2005-02-25

    We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 +/- 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings. PMID:15604362

  16. Radio wave emitted by an extensive air showers in 10KHz to 1MHz region

    NASA Technical Reports Server (NTRS)

    Nichimura, J.

    1985-01-01

    The importance of radio waves in a frequency range of less than 1MHz in an EAS shower is discussed. Estimates of radio intensities at 10KHz, 100KHz and 1MHz in EAS showers made on the basis of the Kahn-Lerche theory. Negative charge excess in a shower is the main source of low frequency radio emission, in spite of the importance of the contribution of transverse current in the geomagnetic field in a higher frequency range. An estimate is also made for radio intensity produced when the shower hits the ground. The contribution of this process seems to be important at a large distance, i.e., beyond 1km from the shower axis.

  17. GPS phase scintillation correlated with auroral forms

    NASA Astrophysics Data System (ADS)

    Hampton, D. L.; Azeem, S. I.; Crowley, G.; Santana, J.; Reynolds, A.

    2013-12-01

    The disruption of radio wave propagation due to rapid changes in electron density caused by auroral precipitation has been observed for several decades. In a few cases the disruption of GPS signals has been attributed to distinct auroral arcs [Kintner, 2007; Garner, 2011], but surprisingly there has been no systematic study of the characteristics of the auroral forms that cause GPS scintillation. In the Fall of 2012 ASTRA deployed four CASES GPS receivers at UAF observatories in Alaska (Kaktovik, Fort Yukon, Poker Flat and Gakona) specifically to address the effects of auroral activity on the high latitude ionosphere. We have initiated an analysis that compares the phase scintillation, recorded at high cadence, with filtered digital all-sky camera data to determine the auroral morphology and electron precipitation parameters that cause scintillation. From correlation studies from a single site (Poker Flat), we find that scintillation is well correlated with discrete arcs that have high particle energy flux (power per unit area), and not as well correlated with pulsating forms which typically have high characteristic energy, but lower energy flux . This indicates that the scintillation is correlated with the magnitude of the change in total electron density as expected. We will also report on ongoing work where we correlate the scintillation from the Fort Yukon receiver with the all-sky images at Poker Flat to determine the altitude that produces the greatest disturbance. These studies are aimed at a model that can predict the expected local disturbance to navigation due to auroral activity.

  18. A Simple Demonstration for Exploring the Radio Waves Generated by a Mobile Phone

    ERIC Educational Resources Information Center

    Hare, Jonathan

    2010-01-01

    Described is a simple low cost home-made device that converts the radio wave energy from a mobile phone signal into electricity for lighting an LED. No battery or complex circuitry is required. The device can form the basis of a range of interesting experiments on the physics and technology of mobile phones. (Contains 5 figures.)

  19. Dust Detection Using Radio and Plasma Wave Instruments in the Solar System

    NASA Astrophysics Data System (ADS)

    Ye, S.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, S.; Srama, R.; Grün, E.; Morooka, M. W.; Sakai, S.; Wahlund, J. E.

    2014-12-01

    Nanometer to micrometer sized dust particles pervade our solar system. The origins of these dust particles include asteroid collisions, cometary activity, and geothermal activity of the planetary moons, for example, the water dust cloud ejected from Saturn's moon Enceladus. Radio and plasma wave instruments have been used to detect such dust particles via voltage pulses induced by impacts on the spacecraft body and antennas. The first detection of such dust impacts occurred when Voyager 1 passed through Saturn's ring plane. Since then, dust impacts have been detected by radio and plasma wave instruments on many spacecraft, including ISEE-3, Cassini, and STEREO. In this presentation, we review the detection of dust particles in the solar system using radio and plasma wave instruments aboard various spacecraft since the Voyager era. We also show characteristics of the dust particles derived from recent observations by Cassini RPWS in Saturn's magnetosphere. The dust size distribution and density are consistent with those measured by the conventional dust detectors. A new method of measuring the electron density inside the Enceladus plume based on plasma oscillations observed after dust impacts will also be discussed. The dust measurement by radio and plasma wave instruments complements that by conventional dust detectors and provide important information about the spatial distribution of dust particles due to less pointing constraints and the larger detection area.

  20. Motion of metric type 4 radio sources and its relation to shock waves responsible for type 2 radio bursts

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1973-01-01

    The relation of the motion of type 4mA sources with shock waves responsible for type 2 bursts were considered using the observed data for these two radio sources. The difference of the emission mechanism between type 2 and type 4mA bursts suggest that the moving speed of the shock waves mentioned above is not necessarily equal to the metric type 4 sources. By analyzing the observed data on the speeds for both type 2 and type 4 sources., it was found that type 4 bursts decelerate and often cease to move in the solar envelop and that type 2 sources move at higher speeds than type 4 sources.

  1. Remote Sensing of Low and Mid-Latitude Ionospheric Disturbances During Solar Minimum Using CITRIS and CERTO Measurements of TEC and Radio Scintillation

    NASA Astrophysics Data System (ADS)

    Siefring, C. L.; Bernhardt, P. A.

    2010-12-01

    Unique data on ionospheric plasma disturbances from the Naval Research Laboratory CITRIS (Scintillation and TEC Receiver in Space) instrument will be presented. CITRIS is a multi-band receiver that recorded TEC (Total Electron Content) and radio scintillations from Low-Earth Orbit (LEO) on STPSat1. The 555+/5 km altitude 35 inclination orbit covers low and mid-latitudes. The measurements require propagation from a transmitter to a receiver through the F-region plasma. CITRIS used both 1) satellite beacons in LEO, such as the NRL CERTO (Coherent Electromagnetic Radio TOmography) three-frequency beacons transmitting at 150/400/1067 MHz and 2) the French global network of ground-based DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) beacons transmitting at 401.25 and 2036.25 MHz. CITRIS was operated in a complementary fashion with the C/NOFS satellite during most of its first year of operations; C/NOFS carries CERTO beacon along with in-situ diagnostics. CITRIS and ground receivers can simultaneously measure TEC and scintillations on different paths using CERTO on C/NOFS. When C/NOFS is not in view, CITRIS makes measurements from DORIS beacons and other LEO satellites. Because of the orbits CITRIS will always make measurements at the same longitude within 48 min of C/NOFS. The ability to look at multiple paths is unique and useful for studying the spatial extent and time duration of disturbances. The combination of TEC and scintillation measurements provides information on a range of scale-sizes from >1 km to about 100 m. The joint data set on plasma structures at low-latitudes is a focus of our presentation, with the addition of comparisons to CITRIS data taken at mid-latitude. Several types of irregularities have been studied including Spread-F and the newly discovered dawn-side depletions. The data covers large portions of the Earth (including the Pacific, African and South American sectors) during an unusually quite portion of the most recent solar minimum.

  2. Radio-wave emission due to hypervelocity impacts and its correlation with optical observations

    NASA Astrophysics Data System (ADS)

    Takano, T.; Maki, K.; Yamori, A.

    This paper describes the most interesting phenomena of radio-wave emission due to hypervelocity impacts. A projectile of polycarbonate with 1.1 g weight was accelerated by a rail gun to 3.8 km/sec, and hit two targets which are a 2 mm thick aluminum plate upstream and a 45 mm diameter aluminum column downstream, respectively. The projectile first breaks wires to give a triggering signal to a data recorder, then penetrates the aluminum plate, and finally hit the column, The emitted radio-waves propagate through the chamber window, and are received by antennas at each frequency band. The receivers in 22 GHz- and 2 GHz-bands consist of a low noise amplifier, a mixer, a local oscillator and an IF amplifier , respectively. The receiver in 1 MHz-band is a simple RF amplifier. The outputs of all receivers are fed to a data recorder which is actually a high-speed digital oscilloscope with a large amount of memory. The radio-waves were successfully recorded in 22 GHz-band with 500 MHz bandwidth, in 2 GHz-band with 300 MHz bandwidth, and in 1MHz-band. The waveforms in 22 GHz- and 2 GHz-bands coincide well each other, and are composed of two groups of sharp impulses with a separation of about 20 micro seconds. The width of an impulse is less than 2 n sec. which is the resolution limit of the data recorder. We carried out optical observations using an ultra-high speed camera simultaneously through another window of the chamber. The time interval between scenes is 2 micro sec. We can see a faint light of the projectile before the first impact to the plate, and then a brilliant gas exploding backward from the plate and forward to the column. After hitting the column target, the brilliant gas flows to the chamber wall and is reflected back to make a mixture with dark gas in the chamber. Excellent correlation between radio-wave emission and the observed optical phenomena was obtained in the experiment. It is easily conceived that the radio-waves consist of quite a wide frequency spectrum because of the spiky waveforms. The emission of the radio-waves is delayed from the optical events by several micro seconds. The optical phenomena are said to be mostly attributed to Bremstrahlung. The radio-wave phenomena are esteemed to be partially due to Bremstrahlung, but mainly due to other causes such as the heating effects of the targets or energy release from broken lattices of the targets.

  3. Analytical study of nighttime scintillations using GPS at low latitude station Bhopal

    NASA Astrophysics Data System (ADS)

    Maski, Kalpana; Vijay, S. K.

    2015-07-01

    Sporadically structured ionosphere (i.e. in-homogeneities in refractive index) can cause fluctuations (due to refraction effects) on the radio signal that is passing through it. These fluctuations are called ionospheric scintillations. Low latitude region is suitable for studying these scintillations. The influence of the ionosphere on the propagation of the radio wave becomes very marked with reference to communication or navigational radio system at very low frequency (VLF) to a high frequency (HF), which operate over the distances of 1000 km or more. Radio wave communication at different frequencies depends on structure of the ionosphere. With the advent of the artificial satellites, they are used as a prime mode of radio wave communication. Some natural perturbation termed as irregularities, are present in the form of electron density of the ionosphere that cause disruption in the radio and satellite communications. Therefore the study of the ionospheric irregularities is of practical importance, if one wishes to understand the upper atmosphere completely. In order to make these communications uninterrupted the knowledge of irregularities, which are present in the ionosphere are very important. These irregularities can be located and estimated with the help of Ionospheric TEC and Scintillation. Scintillation is generally confined to nighttime hours, particularly around equatorial and low latitudes

  4. Linear mode conversion in inhomogeneous magnetized plasmas during ionospheric modification by HF radio waves

    NASA Astrophysics Data System (ADS)

    Gondarenko, N. A.; Guzdar, P. N.; Ossakow, S. L.; Bernhardt, P. A.

    2003-12-01

    The propagation of high-frequency (HF) radio waves in an inhomogeneous magnetoactive plasma and generation of plasma waves at the resonance layer near the reflection layer of the ordinary mode are studied using one-dimensional (1-D) and two-dimensional full-wave codes. The characteristics of the mode-conversion process are investigated in linear and parabolic density profiles as the angle of incidence is varied. We present the 1-D results for the wave propagation relevant to the high-latitude heater facility at Troms and the midlatitude facility at Arecibo. For the facility at Arecibo, the 2-D wave propagation in a plasma density approximating an overdense sporadic-E patch is investigated to determine the localized regions of amplified intensity, where plasma waves can facilitate acceleration of fast energetic electrons, resulting in observed enhanced airglow.

  5. Reflection of radio waves by sporadic-E layers

    NASA Technical Reports Server (NTRS)

    Miller, K. L.; Smith, L. G.

    1977-01-01

    A full-wave analysis of the reflection coefficient is developed and applied to electron-density profiles of midlatitude sporadic-E layers observed by rocket-borne probes. It is shown that partial reflection from the large electron-density gradients at the upper and lower boundaries of sporadic-E layers does not account for the partial transparency observed by ionosondes.

  6. Inconsistency of Ulysses Millisecond Langmuir Spikes with Wave Collapse in Type 3 Radio Sources

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Recent Ulysses observations of millisecond spikes superposed on broader Langmuir wave packets in type 3 radio sources are compared quantitatively with constraints from the theory of wave collapse. It is found that both the millisecond spikes and the wave packets have fields at least 10 times too small to be consistent with collapse, contrary to previous interpretations in terms of this process. Several alternative explanations are considered and it is argued that the spikes should be interpreted as either non-collapse phenomena or observational artifacts. To the extent the observations are representative, this rules out theories for type 3 bursts at approx. 1 - 4 AU that rely on collapse.

  7. Kilometric radio waves generated along auroral field lines observed by ground facilities - A theoretical model

    NASA Technical Reports Server (NTRS)

    Ziebell, L. F.; Wu, C. S.; Yoon, Peter H.

    1991-01-01

    A theory of generation of radio waves observed by ground-based facilities in the frequency range 150-700 kHz is discussed. This work is a continuation of an earlier discussion (Wu et al., 1989) in which it was proposed that the trapped electrons along the auroral field lines can lead to a cyclotron instability which amplifies the whistler waves observed at ground level. The objective of the present study is to investigate the propagation effect on the wave amplification and to examine whether the proposed mechanism is indeed viable.

  8. NONLINEAR WAVE INTERACTIONS AS EMISSION PROCESS OF TYPE II RADIO BURSTS

    SciTech Connect

    Ganse, Urs; Kilian, Patrick; Spanier, Felix; Vainio, Rami

    2012-06-01

    The emission of fundamental and harmonic frequency radio waves of type II radio bursts are assumed to be products of three-wave interaction processes of beam-excited Langmuir waves. Using a particle-in-cell code, we have performed simulations of the assumed emission region, a coronal mass ejection foreshock with two counterstreaming electron beams. Analysis of wavemodes within the simulation shows self-consistent excitation of beam-driven modes, which yield interaction products at both fundamental and harmonic emission frequencies. Through variation of the beam strength, we have investigated the dependence of energy transfer into electrostatic and electromagnetic modes, confirming the quadratic dependence of electromagnetic emission on electron beam strength.

  9. Artificial airglow excited by high-power radio waves.

    PubMed

    Bernhardt, P A; Duncan, L M; Tepley, C A

    1988-11-18

    High-power electromagnetic waves beamed into the ionosphere from ground-based transmitters illuminate the night sky with enhanced airglow. The recent development of a new intensified, charge coupled-device imager made it possible to record optical emissions during ionospheric heating. Clouds of enhanced airglow are associated with large-scale plasma density cavities that are generated by the heater beam. Trapping and focusing of electromagnetic waves in these cavities produces accelerated electrons that collisionally excite oxygen atoms, which emit light at visible wavelengths. Convection of plasma across magnetic field lines is the primary source for horizontal motion of the cavities and the airglow enhancements. During ionospheric heating experiments, quasi-cyclic formation, convection, dissipation and reappearance of the cavites comprise a major source of long-term variability in plasma densities during ionospheric heating experiments. PMID:17834046

  10. Radio frequency wave experiments on the MST reversed field pinch

    SciTech Connect

    Forest, C.B.; Chattopadhyay, P.K.; Nornberg, M.D.; Prager, S.C.; Thomas, M.A.; Uchimoto, E.; Smirnov, A.P.; Harvey, R.W.; Ram, A.K.

    1999-04-01

    Experiments, simulations, and theory all indicate that the magnetic fluctuations responsible for the poor confinement in the reversed field pinch (RFP) can be controlled by altering the radial profile of the current density. The magnetic fluctuations in the RFP are due to resistive MHD instabilities caused by current profile peaking; thus confinement in the RFP is ultimately the result of a misalignment between inductively driven current profiles and the stable current profiles characteristic of the Taylor state. If a technique such as rf current drive can be developed to non-inductively sustain a Taylor state (a current profile linearly stable to all tearing modes), the confinement of the RFP and its potential as a reactor concept are likely to increase. Whether there is a self-consistent path from poor confinement to greatly improved confinement through current profile modification is an issue for future experiments to address if and only if near term experiments can demonstrate: (1) coupling to and the propagation of rf waves in RFP plasmas, (2) efficient current drive, and (3) control of the power deposition which will make it possible to control the current profile. In this paper, modeling results and experimental plans are presented for two rf experiments which have the potential of satisfying these three goals: high-n{sub {parallel}} lower hybrid (LH) waves and electron Bernstein waves (EBWs).

  11. The seasonal variation of the D region as inferred from propagation characteristics of LF radio waves

    NASA Technical Reports Server (NTRS)

    Ishimine, T.; Ishii, T.; Echizenya, Y.

    1985-01-01

    The propagation data of JG2AS 40 kHz (Japanese Standard Frequency), Loran C 100 kHz radio waves, and meteorological data were analyzed to study the association of propagation characteristics of LF radio waves with the atmospheric circulation in the mesosphere. The monthly averaged electric fields were depicted on the complex plane for typical summer and winter months, June and November. The locus traced out by the electric field vector during daytime is nearly circular. This is because during daytime the amplitude of the sky wave remains nearly constant while its phase changes in accord with the height change of the reflection layer, and thus the electric field vector traces out a circular locus with its center at the tip of the supposed ground wave vector. The locus has a loop during the sunrise or sunset period, which seems to arise from interference of two waves reflected by two different layers. In June the amplitude of the sky wave decreases rapidly before the dawn or increases after the dusk. In November such rapid change is not observed. During nighttime, the sky wave phase changes in such a way as to suggest that the reflection height moves upwards with time before midnight or lowers after midnight in November. In June it changes similarly before midnight, but after midnight it varies erratically. These characteristics are closely related to the structure of the D region, which is clearly shown by simulating the loci traced out by electric fields.

  12. Determining the solar wind speed above active regions using remote radio-wave observations

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.; Bougeret, J.-L.

    1983-01-01

    A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.

  13. Excitation of small-scale waves in the F region of the ionosphere by powerful HF radio waves

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Chernyshev, M. Y.; Kornienko, V. A.

    1998-01-01

    Ionospheric small-scale waves in the F region, initiated by heating facilities in Nizhniy Novgorod, have been studied by the method of field-aligned scattering of diagnostic HF radio signals. Experimental data have been obtained on the radio path Kiev-N. Novgorod-St. Petersburg during heating campaigns with heater radiated power ERP = 20 MW and 100 MW. Observations of scattered HF signals have been made by a Doppler spectrum device with high temporal resolution. Analysis of the experimental data shows a relation between the heater power level and the parameters of ionospheric small-scale oscillations falling within the range of Pc 3-4 magnetic pulsations. It is found that the periods of wave processes in the F region of the ionosphere, induced by the heating facility, decrease with increasing heating power. The level of heating power also has an impact on the horizontal east-west component of the electric field E, the vertical component of the Doppler velocity Vd and the amplitude of the vertical displacements M of the heated region. Typical magnitudes of these parameters are the following: E = 1.25 mVm, Vd = 6 ms, M = 600-1500 m for ERP = 20 MW and E = 2.5-4.5 mVm, Vd = 11-25 ms, M = 1000-5000 m for ERP = 100 MW. The results obtained confirm the hypothesis of excitation of the Alfvén resonator by powerful HF radio waves which leads to the generation of magnetic field oscillations in the heated region giving rise to artificial Pc 3-4 magnetic pulsations and ionospheric small-scale wave processes. In this situation an increase of the heater power would lead to a growth of the electric field of hydromagnetic waves propagating in the ionosphere as well as the amplitude of the vertical displacements of the heated region.

  14. Thunderstorms, Lightning, Sprites and Magnetospheric Whistler-Mode Radio Waves

    NASA Astrophysics Data System (ADS)

    Siingh, Devendraa; Singh, A. K.; Patel, R. P.; Singh, Rajesh; Singh, R. P.; Veenadhari, B.; Mukherjee, Madhuparna

    2008-12-01

    Thunderstorms and the lightning that they produce are inherently interesting phenomena that have intrigued scientists and mankind in general for many years. The study of thunderstorms has rapidly advanced during the past century and many efforts have been made towards understanding lightning, thunderstorms and their consequences. Recent observations of optical phenomena above an active lightning discharge along with the availability of modern technology both for data collection and data analysis have renewed interest in the field of thunderstorms and their consequences in the biosphere. In this paper, we review the electrification processes of a thunderstorm, lightning processes and their association with global electric circuit and climate. The upward lightning discharge can cause sprites, elves, jets, etc. which are together called transient luminous events. Their morphological features and effects in the mesosphere are reviewed. The wide spectrum of electromagnetic waves generated during lightning discharges couple the lower atmosphere with the ionosphere/magnetosphere. Hence various features of these waves from ULF to VHF are reviewed with reference to recent results and their consequences are also briefly discussed.

  15. Research to Operations of Ionospheric Scintillation Detection and Forecasting

    NASA Astrophysics Data System (ADS)

    Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.

    Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of operational integration are discussed as well as lessons learned to improve performance on future projects.

  16. Antenna Construction & Propagation of Radio Waves, 5-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Marine Corps, Washington, DC.

    These military-developed curriculum materials consist of five individualized, self-paced chapters dealing with antenna construction and propagation of radio waves. Covered in the individual lessons are the following topics: basic electricity; antenna transmission-line fundamentals; quarter-wave antennas, half-wave antennas, and associated radio…

  17. Auto- and cross-correlation analysis of the QSOs radio wave intensity

    NASA Astrophysics Data System (ADS)

    Demin, S. A.; Panischev, O. Yu; Nefedyev, Yu A.

    2015-12-01

    We discuss here the Flicker-Noise Spectroscopy approach to studying astrophysical systems, for example the radio wave intensity of quasi-stellar object (QSO) 1641+399 and BL Lacertae (BL Lac) 0215+015 in different frequency ranges. The presented method allows to parameterize the study dynamics using a short set of characteristics. The considering sources have a significant differences in manifesting the non-stationary effects, dynamical intermittency and synchronization. The radio wave intensity dynamics of the BL Lac 0215+015 is characterized by well-defined set of natural frequencies, persistent behavior with low effects of non-stationarity and high level of frequency-phase synchronization. For dynamics of the QSO 1641+399 reverse occurs including the asymmetrical structure of cross-correlator. Our findings show that using the flicker-noise spectroscopy approach to studying astrophysical objects allows to carry out the more detail analysis of their behavior and evolution.

  18. Detectable radio flares following gravitational waves from mergers of binary neutron stars.

    PubMed

    Nakar, Ehud; Piran, Tsvi

    2011-10-01

    Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves. They can also launch subrelativistic and mildly relativistic outflows and are often assumed to be the sources of short γ-ray bursts. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled. PMID:21964342

  19. An Overview of Observations by the Cassini Radio and Plasma Wave Investigation at Earth

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Hospodarsky, G. B.; Gurnett, D. A.; Kaiser, M. L.; Wahlund, J.-E.; Roux, A.; Canu, P.; Zarka, P.; Tokarev, Y.

    2001-01-01

    On August 18, 1999, the Cassini spacecraft flew by Earth at an altitude of 1186 km on its way to Saturn. Although the flyby was performed exclusively to provide the spacecraft with sufficient velocity to get to Saturn, the radio and plasma wave science (RPWS) instrument, along with several others, was operated to gain valuable calibration data and to validate the operation of a number of capabilities. In addition, an opportunity to study the terrestrial radio and plasma wave environment with a highly capable instrument on a swift fly-through of the magnetosphere was afforded by the encounter. This paper provides an overview of the RPWS observations, at Earth, including the identification of a number of magnetospheric plasma wave modes, an accurate measurement of the plasma density over a significant portion of the trajectory using the natural wave spectrum in addition to a relaxation sounder and Langmuir probe, the detection of natural and human-produced radio emissions, and the validation of the capability to measure the wave normal angle and Poynting flux of whistler-mode chorus emissions. The results include the observation of a double-banded structure at closest' approach including a band of Cerenkov emission bounded by electron plasma and upper hybrid frequencies and an electron cyclotron harmonic band just above the second harmonic of the electron cyclotron frequency. In the near-Earth plasma sheet, evidence for electron phase space holes is observed, similar to those first reported by Geotail in the magnetotail. The wave normal analysis confirms the Polar result that chorus is generated very close to the magnetic equator and propagates to higher latitudes. The integrated power flux of auroral kilometric radiation is also used to identify a series of substorms observed during the outbound passage through the magnetotail.

  20. Detection of fundamental and harmonic type III radio emission and the associated Langmuir waves at the source region

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.; Fainberg, J.

    1992-01-01

    Type III radio emission generated in the vicinity of the Ulysses spacecraft has been detected at both the fundamental and harmonic of the local plasma frequency. The observations represent the first clear evidence of locally generated type III radio emission. This local emission shows no evidence of frequency drift, exhibits a relatively short rise time, is less intense than the observed remotely generated radio emission, and is temporally correlated with observed in situ Langmuir waves. The observations were made with the unified radio astronomy and wave (URAP) experiment on the Ulysses spacecraft between 1990 November 4 and 1991 April 30, as it traveled from 1 to 3 AU from the sun. During this time period many thousands of bursts were observed. However, only three examples of local emission and associated Langmuir waves were identified. This supports previous suggestions that type III radio emission is generated in localized regions of the interplanetary medium, rather than uniformly along the extent of the electron exciter beam.

  1. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    NASA Astrophysics Data System (ADS)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati R.

    2015-12-01

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications.

  2. Coronal Alfven waves detected by radio sounding during the solar occultations of the Helios spacecraft

    NASA Technical Reports Server (NTRS)

    Bird, M. K.; Volland, H.; Efimov, A. I.; Levy, G. S.; Seidel, B. L.; Stelzried, C. T.

    1992-01-01

    The two Helios spacecraft underwent regular solar occultations during their extended missions from Dec 1974-Feb 1986 (Helios 1) and Jan 1976-Mar 1980 (Helios 2) thereby providing many opportunities for radio propagation experiments in the solar corona. On certain rare occasions over the course of these investigations, Faraday rotation measurements of the linearly polarized Helios signals could be recorded simultaneously at two widely-spaced ground stations. Many of these two-station measurement intervals display clear evidence of wave-like structures with quasi-periods of the order of a few minutes to a few hours. These structures are attributed to coronal Alfven waves. The radial propagation direction and velocity of these waves are estimated from a cross-correlation analysis of the data between the two stations. The majority of the waves appear to propagate away from the Sun, but about 30 percent of the cases indicate a propagation direction toward the Sun.

  3. A Minimal Radio and Plasma Wave Investigation For a Mercury Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    2001-01-01

    The primary thrust of the effort at The University of Iowa for the definition of an orbiter mission to Mercury is a minimum viable radio and plasma wave investigation. While it is simple to add sensors and capability to any payload, the challenge is to do reasonable science within limited resources; and viable missions to Mercury are especially limited in payload mass. For a wave investigation, this is a serious concern, as the sensor mass often makes up a significant fraction of the instrumentation mass.

  4. The Abundance of X-shaped Radio Sources: Implications for the Gravitational Wave Background

    NASA Astrophysics Data System (ADS)

    Roberts, David H.; Saripalli, Lakshmi; Subrahmanyan, Ravi

    2015-09-01

    Coalescence of supermassive black holes (SMBHs) in galaxy mergers is potentially the dominant contributor to the low frequency gravitational wave background (GWB). It was proposed by Merritt & Ekers that X-shaped radio galaxies are signposts of such coalescences and that their abundance might be used to predict the magnitude of the GWB. In Roberts et al. we presented radio images of all 52 X-shaped radio source candidates out of the sample of 100 selected by Cheung for which archival VLA data were available. These images indicate that at most 21% of the candidates might be genuine X-shaped radio sources that were formed by a restarting of beams in a new direction following a major merger. This suggests that fewer than 1.3% of extended radio sources appear to be candidates for genuine axis reorientations (spin flips), much smaller than the 7% suggested by Leahy & Parma. Thus, the associated GWB may be substantially smaller than previous estimates. These results can be used to normalize detailed calculations of the SMBH coalescence rate and the GWB.

  5. Phase Coupling in Langmuir Wave Packets: Evidence for Four Wave Interactions in Solar Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Thejappa, G.; MacDowall, R. J.; Bergamo, M.

    2012-01-01

    The four wave interaction process, known as the oscillating two stream instability (OTSI) is considered as one of the mechanisms responsible for stabilizing the electron beams associated with solar type III radio bursts. It has been reported that (1) an intense localized Langmuir wave packet associated with a type III burst contains the spectral characteristics of the OTSI: (a) a resonant peak at the local electron plasma frequency, f(sub pe), (b) a Stokes peak at a frequency slightly lower than f(sub pe), (c) anti-Stokes peak at a frequency slightly higher than f(sub pe), and (d) a low frequency enhancement below a few hundred Hz, (2) the frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI, and (3) the peak intensity of the wave packet is well above the thresholds for the OTSI as well as spatial collapse of envelope solitons. Here, for the first time, applying the trispectral analysis on this wave packet, we show that the tricoherence, which measures the degree of coherent four-wave coupling amongst the observed spectral components exhibits a peak. This provides an additional evidence for the OTSI and related spatial collapse of Langmuir envelope solitons in type III burst sources.

  6. Fokker-Planck description of the scattering of radio frequency waves at the plasma edge

    NASA Astrophysics Data System (ADS)

    Hizanidis, Kyriakos; Ram, Abhay K.; Kominis, Yannis; Tsironis, Christos

    2010-02-01

    In magnetic fusion devices, radio frequency (rf) waves in the electron cyclotron (EC) and lower hybrid (LH) range of frequencies are being commonly used to modify the plasma current profile. In ITER, EC waves are expected to stabilize the neoclassical tearing mode (NTM) by providing current in the island region [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)]. The appearance of NTMs severely limits the plasma pressure and leads to the degradation of plasma confinement. LH waves could be used in ITER to modify the current profile closer to the edge of the plasma. These rf waves propagate from the excitation structures to the core of the plasma through an edge region, which is characterized by turbulence—in particular, density fluctuations. These fluctuations, in the form of blobs, can modify the propagation properties of the waves by refraction. In this paper, the effect on rf due to randomly distributed blobs in the edge region is studied. The waves are represented as geometric optics rays and the refractive scattering from a distribution of blobs is formulated as a Fokker-Planck equation. The scattering can have two diffusive effects—one in real space and the other in wave vector space. The scattering can modify the trajectory of rays into the plasma and it can affect the wave vector spectrum. The refraction of EC waves, for example, could make them miss the intended target region where the NTMs occur. The broadening of the wave vector spectrum could broaden the wave generated current profile. The Fokker-Planck formalism for diffusion in real space and wave vector space is used to study the effect of density blobs on EC and LH waves in an ITER type of plasma environment. For EC waves the refractive effects become important since the distance of propagation from the edge to the core in ITER is of the order of a meter. The diffusion in wave vector space is small. For LH waves the refractive effects are insignificant but the diffusion in wave vector space is important. The theoretical model is general enough to study the effect of density blobs on all propagating cold plasma waves.

  7. Fokker-Planck description of the scattering of radio frequency waves at the plasma edge

    SciTech Connect

    Hizanidis, Kyriakos; Kominis, Yannis; Tsironis, Christos; Ram, Abhay K.

    2010-02-15

    In magnetic fusion devices, radio frequency (rf) waves in the electron cyclotron (EC) and lower hybrid (LH) range of frequencies are being commonly used to modify the plasma current profile. In ITER, EC waves are expected to stabilize the neoclassical tearing mode (NTM) by providing current in the island region [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)]. The appearance of NTMs severely limits the plasma pressure and leads to the degradation of plasma confinement. LH waves could be used in ITER to modify the current profile closer to the edge of the plasma. These rf waves propagate from the excitation structures to the core of the plasma through an edge region, which is characterized by turbulence--in particular, density fluctuations. These fluctuations, in the form of blobs, can modify the propagation properties of the waves by refraction. In this paper, the effect on rf due to randomly distributed blobs in the edge region is studied. The waves are represented as geometric optics rays and the refractive scattering from a distribution of blobs is formulated as a Fokker-Planck equation. The scattering can have two diffusive effects--one in real space and the other in wave vector space. The scattering can modify the trajectory of rays into the plasma and it can affect the wave vector spectrum. The refraction of EC waves, for example, could make them miss the intended target region where the NTMs occur. The broadening of the wave vector spectrum could broaden the wave generated current profile. The Fokker-Planck formalism for diffusion in real space and wave vector space is used to study the effect of density blobs on EC and LH waves in an ITER type of plasma environment. For EC waves the refractive effects become important since the distance of propagation from the edge to the core in ITER is of the order of a meter. The diffusion in wave vector space is small. For LH waves the refractive effects are insignificant but the diffusion in wave vector space is important. The theoretical model is general enough to study the effect of density blobs on all propagating cold plasma waves.

  8. Millimeter wave technology IV and radio frequency power sources; Proceedings of the Meeting, Orlando, FL, May 21, 22, 1987

    SciTech Connect

    Wiltse, J.C.; Coleman, J.T.

    1987-01-01

    The present conference on mm-wave technology and radio-frequency power sources discusses topics in the fields of vacuum devices, mm-wave antennas and transmission lines, mm-wave systems and subsystems, and mm-wave techniques and components. Attention is given to recent experiments with planar orotrons, a high peak power X-band gyroklystron for linear supercolliders, cathode-driven crossed-field amplifiers, multi-MW quasi-optical gyrotrons, the radiation coupling of interinjection-locked oscillators, air-to-air mm-wave communications, mm-wave active and passive sensors for terrain mapping, and mm-wave components for electronically controllable antennas.

  9. Influence of a high-power radio wave on velocity gradient driven instabilities in the auroral F region ionosphere

    SciTech Connect

    Shukla, P.K. ); Stenflo, L. )

    1992-02-01

    It is shown that a powerful radio wave passing through the F region of the auroral ionosphere can modify the ion velocity gradient driven low-frequency electrostatic fluctuation spectra due to parametric interaction processes. These are studied with the help of a nonlinear dispersion relation that includes the ponderomotive and differential Joule heating nonlinearities. The results show how nonthermal fluctuations can be produced and controlled by a powerful radio wave in the auroral F region plasma.

  10. Effect exerted by a radio wave electromagnetic field on the rheological properties of water and portland-cement systems

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.

    2013-09-01

    We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.

  11. Tropospheric scintillation prediction models for a high elevation angle based on measured data from a tropical region

    NASA Astrophysics Data System (ADS)

    Abdul Rahim, Nadirah Binti; Islam, Md. Rafiqul; J. S., Mandeep; Dao, Hassan; Bashir, Saad Osman

    2013-12-01

    The recent rapid evolution of new satellite services, including VSAT for internet access, LAN interconnection and multimedia applications, has triggered an increasing demand for bandwidth usage by satellite communications. However, these systems are susceptible to propagation effects that become significant as the frequency increases. Scintillation is the rapid signal fluctuation of the amplitude and phase of a radio wave, which is significant in tropical climates. This paper presents the analysis of the tropospheric scintillation data for satellite to Earth links at the Ku-band. Twelve months of data (January-December 2011) were collected and analyzed to evaluate the effect of tropospheric scintillation. Statistics were then further analyzed to inspect the seasonal, worst-month, diurnal and rain-induced scintillation effects. By employing the measured scintillation data, a modification of the Karasawa model for scintillation fades and enhancements is proposed based on data measured in Malaysia.

  12. Dynamical evidence for nonlinear Langmuir wave processes in type III solar radio bursts

    NASA Astrophysics Data System (ADS)

    Graham, D. B.; Cairns, Iver H.

    2014-04-01

    The nonlinear processes and evolution of Langmuir waves in the source regions of type III solar radio bursts are explored in detail. Langmuir waves recorded by the Time Domain Sampler of the STEREO/WAVES instrument can be roughly classified into six groups based on the waveform, power spectra, and field strength perpendicular to the local magnetic field. It is argued that these groups correspond to either different stages of the evolution of Langmuir waves generated by electron beams or differ due to the direction of the magnetic field relative to the solar wind velocity. Approximately half of the observed Langmuir waves have strong perpendicular fields, meaning that understanding how these fields are produced is crucial for understanding type III sources. Most events recorded are either localized waveforms consistent with Langmuir eigenmodes or have two or more spectral peaks consistent with electrostatic (ES) decay of Langmuir/z mode waves. The remaining events appear to correspond to either earlier or later stages of Langmuir wave evolution or are decay events for which the Doppler shift is insufficient to distinguish the beam-driven and product Langmuir waves. This is supported by the fact that most events exceed the threshold for ES decay even though their spectra show no evidence for decay and some of the events are observed when the solar wind flow is approximately perpendicular to the magnetic field, minimizing Doppler shifting. Low-frequency fields produced by intense Langmuir waves are quantitatively consistent with density perturbations produced by the ponderomotive force, ion-acoustic waves produced by ES decay, or sheath rectification. Above the observed nonlinear threshold, quantitative analysis suggests that the observed low-frequency signals are consistent with perturbations produced by ponderomotive effects and ion-acoustic waves produced by ES decay, but effects of sheath rectification may also contribute.

  13. Analysis and simulation of standing wave pattern of powerful HF radio waves in ionospheric reflection region

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhou, Chen; Zhao, Zheng-Yu; Yang, Xu-Bo

    2015-12-01

    For the study of the various non-linear effects generated in ionospheric modulation experiments, accurate calculation of the field intensity variation in the whole reflection region for an electromagnetic wave vertically impinging upon the ionosphere is meaningful. In this paper, mathematical expressions of the electric field components of the characteristic heating waves are derived, by coupling the equation describing a wave initially impinging vertically upon the ionosphere with the Forsterling equation. The variation of each component of the electric field and the total electric field intensity of the standing wave pattern under a specific density profile are calculated by means of a uniform approximation, which is applied throughout the region near the reflection point. The numerical calculation results demonstrate that the total electric field intensity of the ordinary (O)-mode wave varies rapidly in space and reaches several maxima below the reflection point. Evident swelling phenomena of the electric field intensity are found. Our results also indicate that this effect is more pronounced at higher latitudes and that the geomagnetic field is important for wave pattern variation. The electric field intensity of the standing wave pattern of the extraordinary (X)-mode wave exhibits some growth below the reflection point, but its swelling effect is significantly weaker than that of the O-mode wave.

  14. Radial distribution of compressive waves in the solar corona revealed by Akatsuki radio occultation observations

    SciTech Connect

    Miyamoto, Mayu; Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato; Tokumaru, Munetoshi; Shiota, Daikou; Isobe, Hiroaki; Asai, Ayumi; Häusler, Bernd; Pätzold, Martin; Nabatov, Alexander

    2014-12-10

    Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R{sub S} (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches ∼30% around 5 R{sub S} , implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux on the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below ∼6 R{sub S} and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfvén waves. The compressive waves should eventually dissipate through shock generation to heat the corona.

  15. Discovery of millimetre-wave excess emission in radio-quiet active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Baldi, Ranieri D.; Laor, Ari; Horesh, Assaf; Stevens, Jamie; Tzioumis, Tasso

    2015-07-01

    The physical origin of radio emission in radio-quiet active galactic nuclei (RQ AGN) remains unclear, whether it is a downscaled version of the relativistic jets typical of radio-loud (RL) AGN, or whether it originates from the accretion disc. The correlation between 5 GHz and X-ray luminosities of RQ AGN, which follows LR = 10-5LX observed also in stellar coronae, suggests an association of both X-ray and radio sources with the accretion disc corona. Observing RQ AGN at higher (mm-wave) frequencies, where synchrotron self-absorption is diminished, and smaller regions can be probed, is key to exploring this association. Eight RQ AGN, selected based on their high X-ray brightness and variability, were observed at 95 GHz with the CARMA (Combined Array for Research in Millimetre-wave Astronomy) and ATCA (the Australia Telescope Compact Array) telescopes. All targets were detected at the 1-10 mJy level. Emission excess at 95 GHz of up to ×7 is found with respect to archival low-frequency steep spectra, suggesting a compact, optically thick core superimposed on the more extended structures that dominate at low frequencies. Though unresolved, the 95 GHz fluxes imply optically thick source sizes of 10-4-10-3 pc, or ˜10-1000 gravitational radii. The present sources lie tightly along an LR (95 GHz) = 10-4LX (2-10 keV) correlation, analogous to that of stellar coronae and RQ AGN at 5 GHz, while RL AGN are shown to have higher LR/LX ratios. The present observations argue that simultaneous mm-wave and X-ray monitoring of RQ AGN features a promising method for understanding accretion disc coronal emission.

  16. Computational strategy for modeling radio wave propagation in lossy circular waveguides

    SciTech Connect

    Moses, Ronald; Cai, D Michael

    2008-01-01

    The propagation of radio waves in lossy waveguides and tunnels has been researched extensively for many years as can be seen in the detailed book by Wait. The mathematics used to model waveguides for communications is essentially the same as that needed to model radio frequency (RF) propagation in simple tunnels. The presence or lack of conductors inside a waveguide or tunnel is a key driver in the nature of the solutions one will find for a particular application, Delogne. When there are conductors passing through a waveguide or tunnel, the simplest modes of propagation are surface-guided waves following the conductor and typically enabling long-range transmission. A tunnel containing a core conductor can act rather like a coaxial cable, propagating waves at a nearly constant speed, regardless of frequency. Conversely, a tunnel or waveguide without internal conductors is subject to very different wave patterns, resulting in a much more complex propagation analysis. Holloway et al. presented an exhaustive study of RF propagation in circular structures embedded in lossy surroundings. The work of Holloway et al. is the basis for this paper, where we discuss application of their computational techniques and present refinements gleaned from our work on similar problems.

  17. Ionospheric scintillation modeling for high- and mid-latitude using B-spline technique

    NASA Astrophysics Data System (ADS)

    Priyadarshi, S.

    2015-09-01

    Ionospheric scintillation is a significant component of space-weather studies and serves as an estimate for the level of perturbation in the satellite radio wave signal caused due to small-scale ionospheric irregularities. B-spline functions are used on the GPS ground based data collected during the year 2007-2012 for modeling high- and mid-latitude ionospheric scintillation. Proposed model is for Hornsund, Svalbard and Warsaw, Poland. The input data used in this model were recorded by GSV 4004b receivers. For validation, results of this model are compared with the observation and other existing models. Physical behavior of the ionospheric scintillation during different seasons and geomagnetic conditions are discussed well. Model is found in good coherence with the ionospheric scintillation theory as well as to the accepted scintillation mechanism for high- and mid-latitude.

  18. Investigation of methods for improving models of ionospheric plasma-density irregularities and radio-frequency scintillation. Technical report

    SciTech Connect

    Secan, J.A.; Bussey, R.M.

    1993-11-01

    Many modern military systems used for communications, command and control, navigation, and surveillance depend on reliable and relatively noise-free transmission of radiowave signals through the earth's ionosphere. Small-scale irregularities in the ionospheric density can cause severe distortion, known as radiowave scintillation, of both the amplitude and phase of these signals. The WBMOD computer program can be used to estimate these effects on a wide range of systems. The objective of this study is to investigate improvements to the WBMOD model based on extensive data sets covering both the equatorial and high-latitude regimes. This report summarizes the work completed during the second year, which include completion of the new models for the equatorial region and initial development of models for the high latitude (auroral and polar cap) region.

  19. Ion Acoustic Wave Frequencies and Onset Times During Type 3 Solar Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Conflicting interpretations exist for the low-frequency ion acoustic (S) waves often observed by ISEE 3 in association with intense Langmuir (L) waves in the source regions of type III solar radio bursts near 1 AU. Two indirect lines of observational evidence, as well as plasma theory, suggest they are produced by the electrostatic (ES) decay L yields L(PRIME) + S. However, contrary to theoretical predictions, an existing analysis of the wave frequencies instead favors the electromagnetic (EM) decays L yields T + S, where T denotes an EM wave near the plasma frequency. This conflict is addressed here by comparing the observed wave frequencies and onset times with theoretical predictions for the ES and EM decays, calculated using the time-variable electron beam and magnetic field orientation data, rather than the nominal values used previously. Field orientation effects and beam speed variations are shown analytically to produce factor-of-three effects, greater than the difference in wave frequencies predicted for the ES and EM decays; effects of similar magnitude occur in the events analyzed here. The S-wave signals are extracted by hand from a sawtooth noise background, greatly improving the association between S waves and intense L waves. Very good agreement exists between the time-varying predictions for the ES decay and the frequencies of most (but not all) wave bursts. The waves occur only after the ES decay becomes kinematically allowed, which is consistent with the ES decay proceeding and producing most of the observed signals. Good agreement exists between the EM decay's predictions and a significant fraction of the S-wave observations while the EM decay is kinematically allowed. The wave data are not consistent, however, with the EM decay being the dominant nonlinear process. Often the observed waves are sufficiently broadband to overlap simultaneously the frequency ranges predicted for the ES and EM decays. Coupling the dominance of the ES decay with this frequency overlap provides support for a previous suggestion that fundamental emission occurs when the EM decay is stimulated by the ES decay product waves. The periods in which the ES and EM decays produce observable S waves are consistent with the observed and (independently) predicted times of fundamental and harmonic radio emission. This supports interpretation of fundamental emission as stimulated EM decay and harmonic emission as the coalescence L + L(prime) yields T of beam-generated L waves and L(prime) waves produced by the ES decay, where T denotes an electromagnetic wave at twice the plasma frequency. Analysis of the electron beam data reveals that the time-varying beam speed is consistent with ballistic beam propagation with minimal energy loss, implying that the beam propagates in a state close to time- and volume-averaged marginal stability. This confirms a central tenet of the stochastic growth theory for type III bursts.

  20. High power water load for microwave and millimeter-wave radio frequency sources

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  1. Verification of particle simulation of radio frequency waves in fusion plasmas

    SciTech Connect

    Kuley, Animesh; Lin, Z.; Fusion Simulation Center, Peking University, Beijing 100871 ; Wang, Z. X.; Wessel, F.

    2013-10-15

    Radio frequency (RF) waves can provide heating, current and flow drive, as well as instability control for steady state operations of fusion experiments. A particle simulation model has been developed in this work to provide a first-principles tool for studying the RF nonlinear interactions with plasmas. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation. This model has been implemented in a global gyrokinetic toroidal code using real electron-to-ion mass ratio. To verify the model, linear simulations of ion plasma oscillation, ion Bernstein wave, and lower hybrid wave are carried out in cylindrical geometry and found to agree well with analytic predictions.

  2. Gravity waves in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Friedson, A. James

    1994-05-01

    Scintillations (high frequency variations) observed in the radio signal during the occultation of Voyager 1 by Titan (Hinson and Tyler, 1983) provide information concerning neutral atmospheric density fluctuations on scales on hundreds of meters to a few kilometers. Those seen at altitudes higher than 25 km above the surface were interpreted by Hinson and Tyler as being caused by linear, freely propagating (energy-conserving) gravity waves, but this interpretation was found to be inconsistent with the scintillation data below the 25-km altitude level. Here an attempt is made to interpret the entire scintillation profile between the surface and the 90-km altitude level in terms of gravity waves generated at the surface. Numerical calculations of the density fluctuations caused by two-dimensional, nonhydrostatic, finite-amplitude gravity waves propagating vertically through Titan's atmosphere are performed to produce synthetic scintillation profiles for comparison with the observations. The numerical model accurately treats the effects of wave transience, nonlinearity, and breakdown due to convective instability in the overturned part of the wave. The high-altitude scintillation data were accurately recovered with a freely propagating wave solution, confirming the analytic model of Hinson and Tyler. It is found that the low-altitude scintillation data can be fit by a model where a component of the gravity waves becomes convectively unstable and breaks near the 15 km level. The large-scale structure of the observed scintillation profile in the entire altitude range between 5 and 85 km can be simulated by a model where the freely propagating and breaking waves are forced at the surface simultaneously. Further analysis of the Voyager 1 Titan low-altitude scintillation data, using inversion theory appropriate for strong scattering, could potentially remove some of the ambiguities remaining in this analysis and allow a better determination of the strength and source of the waves.

  3. Gravity waves in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Friedson, A. James

    1994-01-01

    Scintillations (high frequency variations) observed in the radio signal during the occultation of Voyager 1 by Titan (Hinson and Tyler, 1983) provide information concerning neutral atmospheric density fluctuations on scales on hundreds of meters to a few kilometers. Those seen at altitudes higher than 25 km above the surface were interpreted by Hinson and Tyler as being caused by linear, freely propagating (energy-conserving) gravity waves, but this interpretation was found to be inconsistent with the scintillation data below the 25-km altitude level. Here an attempt is made to interpret the entire scintillation profile between the surface and the 90-km altitude level in terms of gravity waves generated at the surface. Numerical calculations of the density fluctuations caused by two-dimensional, nonhydrostatic, finite-amplitude gravity waves propagating vertically through Titan's atmosphere are performed to produce synthetic scintillation profiles for comparison with the observations. The numerical model accurately treats the effects of wave transience, nonlinearity, and breakdown due to convective instability in the overturned part of the wave. The high-altitude scintillation data were accurately recovered with a freely propagating wave solution, confirming the analytic model of Hinson and Tyler. It is found that the low-altitude scintillation data can be fit by a model where a component of the gravity waves becomes convectively unstable and breaks near the 15 km level. The large-scale structure of the observed scintillation profile in the entire altitude range between 5 and 85 km can be simulated by a model where the freely propagating and breaking waves are forced at the surface simultaneously. Further analysis of the Voyager 1 Titan low-altitude scintillation data, using inversion theory appropriate for strong scattering, could potentially remove some of the ambiguities remaining in this analysis and allow a better determination of the strength and source of the waves.

  4. Surface-wave data acquisition and dissemination by VHF packet radio and computer networking

    NASA Astrophysics Data System (ADS)

    Briscoe, M.; Denton, E.; Frye, D.; Hunt, M.; Montgomery, E.

    1988-04-01

    Waverider buoy data are normally transmitted on a 27 MHz analog radio link to a shore station a few miles away, where the buoy data are plotted on a paper strip-chart recorder or logged digitally for later computer processing. Instead, we have constructed a relay station on Martha's Vineyard island that retransmits the received Waverider data over a digital, 148 MHz packet-radio link a personal computer in our laboratory on Cape Cod, where the data are edited, processed, spectrally analyzed, and then sent over an Ethernet line to our Institution mainframe computer for archiving. Telephone modem access of a special wave-data file on the mainframe permits unattended data dissemination to the public. The report describes the entire system, including Waverider buoy mooring hardware, computer programs, and equipment. The purpose of the project was to learn what difficulties are involved in the automated acquisition and dissemination of telemetered oceanographic data, and to gain experience with packet radio techniques. Although secondary to these purposes, the long-term surface-wave monitoring off the southwest shore of Martha's Vineyard has its own scientific, engineering, and environmental benefits.

  5. Creation of visible artificial optical emissions in the aurora by high-power radio waves.

    PubMed

    Pedersen, Todd R; Gerken, Elizabeth A

    2005-02-01

    Generation of artificial light in the sky by means of high-power radio waves interacting with the ionospheric plasma has been envisaged since the early days of radio exploration of the upper atmosphere, with proposed applications ranging from regional night-time street lighting to atmospheric measurements. Weak optical emissions have been produced for decades in such ionospheric 'heating' experiments, where they serve as key indicators of electron acceleration, thermal heating, and other effects of incompletely understood wave-particle interactions in the plasma under conditions difficult to replicate in the laboratory. The extremely low intensities produced previously have, however, required sensitive instrumentation for detection, preventing applications beyond scientific research. Here we report observations of radio-induced optical emissions bright enough to be seen by the naked eye, and produced not in the quiet mid-latitude ionosphere, but in the midst of a pulsating natural aurora. This may open the door to visual applications of ionospheric heating technology or provide a way to probe the dynamics of the natural aurora and magnetosphere. PMID:15690034

  6. An Experiment Study of the Propagation of Radio Waves in a Scaled Model of Long-Wall Coal Mining Tunnels

    SciTech Connect

    Han, G.R.; Zhang, W.M.; Zhang, Y.P.

    2009-07-01

    A long-wall coal mining tunnel is the most important working area in a coal mine. It has long been realized that radio communications can improve both productivity and safety in this dangerous area. Hence, many attempts to use radio communications in such an environment have been made. Unfortunately, no radio system has satisfactorily provided communication services there, which, we believe, is partially due to poor understanding of the propagation characteristics of radio waves in the long-wall mining tunnel. To have deeper physical insight into the propagation problem, a scaled model of the long-wall mining tunnel was built, and the propagation characteristics of UHF radio waves were measured. The experiment and the measured results are presented and discussed.

  7. HF Radio Wave Propagation in the Ionosphere Observed with the ePOP RRI (Radio Receiver Instrument) -- SuperDARN Experiment

    NASA Astrophysics Data System (ADS)

    Hussey, G. C.; Gillies, R. G.; Ridley, C. G.; Yau, A. W.; McWilliams, K. A.; Sofko, G. J.

    2014-12-01

    The Radio Receiver Instrument (RRI) on the enhanced Polar Outflow Probe (ePOP) scientific payload of the recently launched CSA (Canadian Space Agency) CASSIOPE (Cascade Demonstrator Small-Sat and Ionospheric Polar Explorer) satellite mission and the Super Dual Auroral Radar Network (SuperDARN) of HF radars have successfully executed a number of experiments since the launch of ePOP in late September, 2013. This presentation investigates the propagation delays and timing associated with HF radio waves transversing the plasma in the terrestrial ionosphere. Both the relative and absolute timing of the co-ordinated SuperDARN-RRI experiments will be presented. This knowledge is essential for interpreting HF radio wave propagation effects such as range accuracy, mode-splitting and timing, Doppler shift, and delayed 'echo' signatures, for example.

  8. Scattering of radio frequency waves by cylindrical density filaments in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Ram, Abhay K.; Hizanidis, Kyriakos

    2016-02-01

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on the properties of RF waves has not been quantified experimentally, it is of interest to carry out a theoretical study to determine if fluctuations can affect the propagation characteristics of RF waves. Usually, the difference between the plasma density inside the filament and the background plasma density is sizable, the ratio of the density difference to the background density being of order one. Generally, this precludes the use of geometrical optics in determining the effect of fluctuations, since the relevant ratio has to be much less than one, typically, of the order of 10% or less. In this paper, a full-wave, analytical model is developed for the scattering of a RF plane wave by a cylindrical plasma filament. It is assumed that the plasma inside and outside the filament is cold and uniform and that the major axis of the filament is aligned along the toroidal magnetic field. The ratio of the density inside the filament to the density of the background plasma is not restricted. The theoretical framework applies to the scattering of any cold plasma wave. In order to satisfy the boundary conditions at the interface between the filament and the background plasma, the electromagnetic fields inside and outside the filament need to have the same k∥ , the wave vector parallel to the ambient magnetic field, as the incident plane wave. Consequently, in contrast to the scattering of a RF wave by a spherical blob [Ram et al., Phys. Plasmas 20, 056110-1-056110-10 (2013)], the scattering by a field-aligned filament does not broaden the k∥ spectrum. However, the filament induces side-scattering leading to surface waves and can also couple some power to the cold plasma wave different from the incident wave. The changes induced by a filament in the propagation of electron cyclotron waves and lower hybrid waves are illustrated by numerical results displaying the properties of the Poynting vector. The Poynting flux in the wake of the filament, and directed towards the core of the plasma, develops a spatial structure due to diffraction and shadowing. Thus, the fluctuations affect the uniformity of power flow into the plasma.

  9. The coherer: with simple demonstrations of the generation, propagation and detection of radio waves

    NASA Astrophysics Data System (ADS)

    Mills, Allan

    2010-03-01

    A coherer is a bistable device based on metal filings loosely confined between solid metal electrodes. This granular material normally exhibits a very high electrical resistance (tens of kilohms), but passage of the high-frequency current generated by reception of a radio signal causes it to 'cohere' into a comparatively low resistance condition (tens of ohms). This state persists until the device is mechanically disturbed, whereupon the high resistance state is restored. This characteristic was employed by scientists in the 1890s to detect radio waves, and applied commercially by Marconi in his 'wireless' telegraph. It is easy to make a working coherer and directions are given for operating it from a distance with a spark transmitter based on a piezoelectric gas igniter. Incorporation of an 'aerial' and 'earth' enable a range of 7 m to be achieved and simple signals may be transmitted.

  10. Review of radio wave for power transmission in medical applications with safety

    NASA Astrophysics Data System (ADS)

    Day, John; Geddis, Demetris; Kim, Jaehwan; Choi, Sang H.; Yoon, Hargsoon; Song, Kyo D.

    2015-04-01

    The integration of biosensors with radio frequency (RF) wireless power transmission devices is becoming popular, but there are challenges for implantable devices in medical applications. Integration and at the same time miniaturization of medical devices in a single embodiment are not trivial. The research reported herein, seeks to review possible effects of RF signals ranging from 900 MHz to 100 GHz on the human tissues and environment. Preliminary evaluation shows that radio waves selected for test have substantial influence on human tissues based on their dielectric properties. In the advancement of RF based biosensors, it is imperative to set up necessary guidelines that specify how to use RF power safely. In this paper, the dielectric properties of various human tissues will be used for estimation of influence within the selected RF frequency ranges.

  11. Scintillation Monitoring Using Asymmetry Index

    NASA Astrophysics Data System (ADS)

    Shaikh, Muhammad Mubasshir; Mahrous, Ayman; Abdallah, Amr; Notarpietro, Riccardo

    Variation in electron density can have significant effect on GNSS signals in terms of propagation delay. Ionospheric scintillation can be caused by rapid change of such delay, specifically, when they last for a longer period of time. Ionospheric irregularities that account for scintillation may vary significantly in spatial range and drift with the background plasma at speeds of 45 to 130 m/sec. These patchy irregularities may occur several times during night, e.g. in equatorial region, with the patches move through the ray paths of the GNSS satellite signals. These irregularities are often characterized as either large scale (which can be as large as several hundred km in East-West direction and many times that in the North-South direction) or small scale (which can be as small as 1m). These small scale irregularities are regarded as the main cause of scintillation [1,2]. In normal solar activity conditions, the mid-latitude ionosphere is not much disturbed. However, during severe magnetic storms, the aurora oval extends towards the equator and the equator anomaly region may stretched towards poles extending the scintillation phenomena more typically associated with those regions into mid-latitudes. In such stormy conditions, the predicted TEC may deviate largely from the true value of the TEC both at low and mid-latitudes due to which GNSS applications may be strongly degraded. This work is an attempt to analyze ionospheric scintillation (S4 index) using ionospheric asymmetry index [3]. The asymmetry index is based on trans-ionospheric propagation between GPS and LEO satellites in a radio occultation (RO) scenario, using background ionospheric data provided by MIDAS [4]. We attempted to simulate one of the recent geomagnetic storms (NOAA scale G4) occurred over low/mid-latitudes. The storm started on 26 September 2011 at UT 18:00 and lasted until early hours of 27 September 2011. The scintillation data for the storm was taken from an ionospheric station in Cairo, Egypt (lat= 29.8641 , long= 31.3172 ). It was observed that the level of asymmetry was significantly increased during the main phase of the geomagnetic storm. This was due to the changes in ionization, which in turn produced large gradients along occulted ray path in the ionosphere. A very good correlation was found between the evaluated ionospheric asymmetry index and the S4 scintillation index. Additionally, the correlation between evaluated ionospheric asymmetry and errors related to the RO inversion products such as peak electron density (delta NmF2) and Vertical TEC (delta VTEC) estimates also showed promising results. This work is carried out under the framework of the TRANSMIT project (Training Research and Applications Network to Support the Mitigation of Ionospheric Threats - www.transmit-ionosphere.net). [1]Basu Sa. and Basu Su., (1981), Equatorial Scintillation - A Review, Journal of Atmospheric and Solar-Terrestrial Physics, 43, p. 473. [2]Davies K., (1990), Ionospheric Radio, IEEE Electromagnetic Waves Series 31, Peter Peregrinus Ltd. [3]Spencer, P., Mitchell, C.N., (2007) Imaging of fast moving electron-density structures in the polar cap, Annals of Geophysics, vol. 50, no. 3, pp. 427-434. [4]Shaikh, M.M., Notarpietro, R., Nava, B., (2013) The Impact of Spherical Symmetry Assumption on Radio Occultation Data Inversion in the Ionosphere: An Assessment Study, Advances in Space Research, doi: http://dx.doi.org/10.1016/j.asr.2013.10.025.

  12. Beat-type Langmuir wave emissions associated with a type III solar radio burst: Evidence of parametric decay

    NASA Technical Reports Server (NTRS)

    Hospodarsky, G. B.; Gurnett, D. A.

    1995-01-01

    Recent measurements from the plasma wave instrument on the Galileo spacecraft have shown that Langmuir waves observed in conjunction with a type III solar radio burst contain many beat-type waveforms, with beat frequencies ranging from about 150 to 650 Hz. Strong evidence exists that the beat pattern is produced by two closely spaced narrowband components. The most likely candidates for these two waves are a beam-generated Langmuir wave and an oppositely propagating Langmuir wave produced by parametric decay. In the parametric decay process, nonlinear interactions cause the beam-driven Langmuir wave to decay into a Langmuir wave and a low-frequency ion sound wave. Comparisons of the observed beat frequency are in good agreement with theoretical predictions for a three-wave parametric decay process. Weak low-frequency emissions are also sometimes observed at the predicted frequency of the ion sound wave.

  13. Effects in the ionosphere and HF radio-wave propagation during an intense substorm

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D. V.; Borisova, T. D.; Rogov, D. D.

    2010-08-01

    We present the results of combined radiophysical studies during the period of an intense magnetospheric substorm which occurred from 00:00 to 02:00 UT in April 12, 1999. Measurements of the ionospheric parameters by a chain of European ionosondes for this period were compared with the variations in ionospheric parameters averaged over more than 70 substorms. The latter variations were obtained by data from the ionosondes of Europe, Central Siberia, and North America in 1993-1999. Data from the CUTLASS radar as well as the DMSP and POES satellites were used for the analysis of the April 11-12 substorm. Numerical calculations of HF radio-wave propagation on the St. PetersburgLongyearbyen (Svalbard) high-latitude path were carried out by the ray tracing technique. Two simultaneous effects have been revealed in the ionosphere. One occurs immediately during the substorm and another is associated with the end of the magnetic storm in April 10, 1999. According to the CUTLASS radar data, the number of backscattering irregularities in the ionospheric F layer notably decreased during the substorm expansion phase. Satellite data showed an increase in the soft (hundreds of eV) particle precipitation before and after the substorm. Numerical calculations of HF radio-wave propagation on the St. PetersburgLongyearbyen path have demonstrated an essential change of propagation mechanisms during the substorm and a tangible change in the wave arrival angles before and after the substorm.

  14. Daytime scintillations induced by high-power HF waves at Tromsoe, Norway

    SciTech Connect

    Basu, S.; Basu, S.; Stubbe, P.; Kopka, H.; Waaramaa, J.

    1987-10-01

    During March 1984 the high-power HF heating facility located at Ramfjordmoen (69.6 deg N, 19.2 deg E geographic) near Tromso, Norway, was used to modify the ionospheric F region in the daytime. The intensity and phase scintillations of 250-MHz transmission from the quasi-stationary polar beacon satellite were measured when the ray path from the observing site to the satellite intercepted the modified ionospheric volume. Narrow band spectral enhancements corresponding to an irregularity scale length of 750 m were detected in the intensity spectra when the radiated HF power developed an estimated power density of about 0.3 mw/sq m at the height of reflection. Spectral enhancements at larger scales were not detected in the phase spectra. From the growth and decay of the intensity, spectral enhancements during the successive 10-min on and 10-min off periods of the heater the e-folding growth and decay times of approx. 750 m irregularities were estimated to be on order of 30 s and 2 min, respectively. The threshold power densities required for the generation of the observed irregularity scale sizes were calculated from the self-focusing instability theory of Cragin et al. (1977) by the use of ionospheric background parameters measured by the EISCAT radar.

  15. Radio Wave Propagation for Communication on and around Mars. Part 1; Highlights: Propagation Through Mars Environment

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser

    1999-01-01

    We recommend to use the dayside Martian ionosphere as a reflector for global communication, because the dayside ionosphere has stable density peak and usable critic frequency. This is very crucial for the future Mars ground to around communication. The dayside ionosphere has been well modeled as a Chapman layer. We suggest to perform the Martian nightside ionospheric modeling study. Because the nightside ionosphere has very little measurements available, we propose to drop a digital ionosond instrument into the Mars surface for data collection. Even though the Martian tropospheric radio refractivity has small value, it still can cause the ray bending and multipath effects. We recommend to perform an accurate calculation on excess phase and group delays (range and time delays). Other effects, such as range rate errors, appearance angle deviation, defocusing loss on Mars, etc. are also needed to be estimated. Ice depolarization effects due to Martian clouds on radio waves is unknown yet, which is expected to be small, because lower optical depth and thinner layer of cloud: Total Martian atmospheric gaseous attenuation is expected to be less than 1 dB on microwaves band, because the Martian atmosphere has very low concentration in uncondensed H2O and O2. An accurate calculation for zenith opacity requires the information about scale heights of H2O and O2 distribution. An accurate water vapor altitude profile at Mars is not available yet. Under the normal condition, CO2 and N2 gases do not have electric or magnetic dipoles and do not absorb electromagnetic energy from the waves. However, they may generate the dipoles through a collision and interact with waves under a high density condition and absorb electromagnetic waves in the infrared and visible band. Dust storm is most dominant factor to the radio wave attenuation. Large Martian dust storm can cause at least 3 dB or higher loss to Ka band wave. For a normal dust storm, the attenuation is about 1 dB. The attenuation much depends on dust mass loading, dust size distribution, etc. Most large dust storm occur in the southern hemisphere during later spring and early summer when the southern hemisphere become suddenly hot.

  16. Probing the speed of light with radio waves at extremely low frequencies.

    PubMed

    Fllekrug, Martin

    2004-07-23

    The speed of light, a fundamental physical constant and thought to be independent of frequency, is tested here with naturally occurring radio waves in the atmosphere at extremely low frequencies. It is shown that the speed of light in the frequency range 5-50 Hz is known with an accuracy determined by perturbations of the ionospheric reflection height associated with space weather phenomena, which place an upper limit on the photon rest mass mgamma < or approximately 4 x 10(-52) kg to date. PMID:15323762

  17. Application of four wave mixing in precise radio frequency dissemination via optical fiber link

    NASA Astrophysics Data System (ADS)

    Lu, Xing; Lv, Zhiqiang; Chen, Xing; Gong, Zibo; Shi, Kebin

    2014-09-01

    We report on a new phase noise detection technique for radio frequency (RF) dissemination based on transferring mode locked laser pulses via optical fiber. The proposed approach is insusceptible to optical fiber interconnection reflection by combining optical frequency comb (OFC) expansion generated by four wave mixing (FWM) in dispersion shifted fiber (DSF) and wavelength division multiplexing (WDM) technique. An experimental system based on a fiber link of 100km was demonstrated. The measured fractional stability was 1.510-13 at 1s and 1.710-16 at 1000s.

  18. Daytime scintillations induced by high-power HF waves at Tromso-dash-bar, Norway

    SciTech Connect

    Basu, S.; Basu, S.; Stubbe, P.; Kopka, H.; Waaramaa, J.

    1987-10-01

    During March 1984 the high-power HF heating facility located at Ramfjordmoen (69.6 /sup 0/N, 19.2 /sup 0/E geographic) near Tromso-dash-bar, Norway, was used to modify the ionospheric F region in the daytime. The intensity and phase scintillations of 250-MHz transmissions from the quasi-stationary polar beacon satellite were measured when the ray path from the observing site to the satellite intercepted the modified ionospheric volume. Narrow band spectral enhancements corresponding to an irregularity scale length of 750 m were detected in the intensity spectra when the radiated HF power developed an estimated power density of about 0.3 mW/m/sup 2/ at the height of reflection. Spectral enhancements at larger scales were not detected in the phase spectra. From the growth and decay of the intensity spectral enhancements during the successive 10-min ''on'' and 10-min ''off '' periods of the heater the e-folding growth and decay times of approx.750 m irregularities were estimated to be on the order of 30 s and 2 min, respectively. The threshold power densities required for the generation of the observed irregularity scale sizes were calculated from the self-focusing instability theory of Cragin et al. (1977) by the use of ionospheric background parameters measured by the EISCAT radar. The theoretical estimates were found to be within a factor of 2 of the HF power densities employed in the experiment. The presence of Fresnel oscillations in the intensity and phase spectra were attributed to a limited irregularity layer thickness less than 50 km.

  19. Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    NASA Astrophysics Data System (ADS)

    Fllekrug, M.; Hanuise, C.; Parrot, M.

    2011-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz radio waves from fifty terrestrial Long Range Aid to Navigation (LORAN) transmitters. Their mean luminosity patch in the plasmasphere is a circular area with a radius of 300 km and a power density of 22 ?W/Hz as observed at 660 km height above the ground. The luminosity patches exhibit a southward displacement of 450 km with respect to the locations of the LORAN transmitters. The displacement is reduced to 150 km when an upward propagation of the radio waves along the geomagnetic field line is assumed. This residual displacement indicates that the radio waves undergo 150 km sub-ionospheric propagation prior to entering a magnetospheric duct and escaping into near-Earth space. The residual displacement at low (L < 2.14) and high (L > 2.14) geomagnetic latitudes ranges from 100 km to 200 km which suggests that the smaller inclination of the geomagnetic field lines at low latitudes helps to trap the radio waves and to keep them in the magnetospheric duct. Diffuse luminosity areas are observed northward of the magnetic conjugate locations of LORAN transmitters at extremely low geomagnetic latitudes (L < 1.36) in Southeast Asia. This result suggests that the propagation along the geomagnetic field lines results in a spatial spreading of the radio wave energy over distances of 1 Mm. The summative assessment of the electric field intensities measured in space show that nadir observations of terrestrial 100 kHz radio waves, e.g., from relativistic electron beams above thunderclouds, are attenuated by at least 50 dB when taking into account a transionospheric attenuation of 40 dB.

  20. High Power Radio Wave Interactions within the D-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Moore, R. C.

    2014-12-01

    This paper highlights the best results obtained during D-region modification experiments performed by the University of Florida at the High-frequency Active Auroral Research Program (HAARP) observatory between 2007 and 2014. Over this period, we have seen a tremendous improvement in ELF/VLF wave generation efficiency. We have identified methods to characterize ambient and modified ionospheric properties and to discern and quantify specific types of interactions. We have demonstrated several important implications of HF cross-modulation effects, including "Doppler Spoofing" on HF radio waves. Throughout this talk, observations are compared with the predictions of an ionospheric HF heating model to provide context and guidance for future D-region modification experiments.

  1. Jovian plasma sheet density profile from low-frequency radio waves

    NASA Astrophysics Data System (ADS)

    Rucker, H. O.; Ladreiter, H. P.; Leblanc, Y.; Jones, D.; Kurth, W. S.

    1989-04-01

    By using planetary radio astronomy (PRA), plasma wave system (PWS), and magnetometer (MAG) data from Voyager 1 and 2 (V1 and V2), essential features of the nightside Jovian plasma sheet are derived, and the density gradient of the corotating plasma structure in the middle Jovian magnetosphere is calculated. The PRA experiment gives information about the plasma wave polarization. The density profile of the plasma sheet is determined using the hinge point position of the plasma disk derived from MAG data, and the low-frequency cutoffs observed at three frequencies (562 Hz, 1 kHz, and 1.78 kHz) from the PWS experiment. It is shown that the hinge point position varies with the solar wind ram pressure.

  2. Effect of a heated patch of auroral ionosphere on VLF-radio wave propagation

    NASA Astrophysics Data System (ADS)

    Barr, R.; Rietveld, M. T.; Kopka, H.; Stubbe, P.

    1984-06-01

    In the early 1960s, during the period of atmospheric nuclear tests, much theoretical interest developed in the effects of localized ionospheric depressions on the propagation of very low frequency (VLF) radio waves1-4. Similar VLF-propagation effects are also produced by the localized dumping of electrons from the radiation belts after wave-particle interactions5,6. Both nuclear explosions and particle precipitation events are of a transient nature, however, and no experimental study has yet been made to confirm these early theoretical predictions. With the development of a unique high frequency (HF) heating facility near Troms, Norway, the generation of movable controlled anomalies in the D-region has become possible. We describe here some initial observations, made in Norway, of the effect of such a movable D-region anomaly on the VLF signals received from the 12.1-kHz Omega transmitter at Aldra. The observations confirm the validity of earlier theoretical predictions.

  3. Satellite radio occultation investigations of internal gravity waves in the planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander

    Internal gravity waves (IGWs) modulate the structure and circulation of the Earth’s atmosphere, producing quasi-periodic variations in the wind velocity, temperature and density. Similar effects are anticipated for the Venus and Mars since IGWs are a characteristic of stably stratified atmosphere. In this context, an original method for the determination of IGW parameters from a vertical temperature profile measurement in a planetary atmosphere has been developed [Gubenko et al., 2008, 2011, 2012]. This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, the analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitudes of the wave field and on the linear IGW saturation theory in which these amplitudes are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal wave reaches the shear instability threshold, energy is assumed to be dissipated in such a way that the IGW amplitude is maintained at the instability threshold level as the wave propagates upwards. We have extended the developed technique [Gubenko et al., 2008] in order to reconstruct the complete set of wave characteristics including such important parameters as the wave kinetic and potential energy per unit mass and IGW fluxes of the energy and horizontal momentum [Gubenko et al., 2011]. We propose also an alternative method to estimate the relative amplitudes and to extract IGW parameters from an analysis of perturbations of the Brunt-Vaislala frequency squared [Gubenko et al., 2011]. An application of the developed method to the radio occultation (RO) temperature data has given the possibility to identify the IGWs in the Earth's, Martian and Venusian atmospheres and to determine the magnitudes of key wave parameters such as the intrinsic frequency, amplitudes of vertical and horizontal wind velocity perturbations, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase (and group) speeds, kinetic and potential energy per unit mass, vertical fluxes of the wave energy and horizontal momentum. Vertical profiles of temperature retrieved from RO measurements of the CHAMP (Earth), Mars Global Surveyor (Mars), Magellan and Venus Express (Venus) missions are used and analyzed to identify discrete or “narrow spectral” wave events and to determine IGW characteristics in the Earth’s, Martian and Venusian atmospheres. This work was partially supported by the RFBR grant 13-02-00526-а and Program 22 of the RAS Presidium. References. Gubenko V.N., Pavelyev A.G., Andreev V.E. Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement // J. Geophys. Res. 2008. V. 113. No.D08109, doi:10.1029/2007JD008920. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Pavelyev A.A. Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the Earth’s atmosphere // Atmos. Meas. Tech. 2011. V. 4. No.10. P. 2153-2162, doi:10.5194/amt-4-2153-2011. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Andreev V.E. A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth’s atmosphere // Cosmic Res. 2012. V. 50. No.1. P. 21-31, doi: 10.1134/S0010952512010029.

  4. Simulation study of the interaction between large-amplitude HF radio waves and the ionosphere

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Thidé, B.

    2007-03-01

    The time evolution of a large-amplitude electromagnetic (EM) wave injected vertically into the overhead ionosphere is studied numerically. The EM wave has a carrier frequency of 5 MHz and is modulated as a Gaussian pulse with a width of approximately 0.1 milliseconds and a vacuum amplitude of 1.5 V/m at 50 km. This is a fair representation of a modulated radio wave transmitted from a typical high-power HF broadcast station on the ground. The pulse is propagated through the neutral atmosphere to the critical points of the ionosphere, where the L-O and R-X modes are reflected, and back to the neutral atmosphere. We observe mode conversion of the L-O mode to electrostatic waves, as well as harmonic generation at the turning points of both the R-X and L-O modes, where their amplitudes rise to several times the original ones. The study has relevance for ionospheric interaction experiments in combination with ground-based and satellite or rocket observations.

  5. A novel idea of purposefully affecting radio wave propagation by coherent acoustic source-induced atmospheric refractivity fluctuation

    NASA Astrophysics Data System (ADS)

    Gong, Shuhong; Yan, Daopu; Wang, Xuan

    2015-10-01

    The mechanism generating the array-distributed atmospheric refractivity fluctuation by a coherent acoustic source is analyzed. The theoretical model is established, which is used to quantifiably analyze the array structure of the artificial dielectric irregularities. It is qualitatively validated that the array-distributed artificial dielectric irregularities really exist and that the array structure of the artificial dielectric irregularities and the scattering effect of the artificial dielectric irregularities on a radio wave can be controlled by adjusting and selecting the optimized parameters of the transmitted acoustic wave and the adopted acoustic antenna array. It can be concluded that the array-distributed artificial dielectric irregularities can be used to purposefully affect radio wave propagation. After radio acoustic sounding system, the idea of this paper is a novel development in the field of the tropospheric atmospheric refractivity artificial abnormality technique and its applications.

  6. SDN based millimetre wave radio over fiber (RoF) network

    NASA Astrophysics Data System (ADS)

    Amate, Ahmed; Milosavljevic, Milos; Kourtessis, Pandelis; Robinson, Matthew; Senior, John M.

    2015-01-01

    This paper introduces software-defined, millimeter Wave (mm-Wave) networks with Radio over Fiber (RoF) for the delivery of gigabit connectivity required to develop fifth generation (5G) mobile. This network will enable an effective open access system allowing providers to manage and lease the infrastructure to service providers through unbundling new business models. Exploiting the inherited benefits of RoF, complete base station functionalities are centralized at the edges of the metro and aggregation network, leaving remote radio heads (RRHs) with only tunable filtering and amplification. A Software Defined Network (SDN) Central Controller (SCC) is responsible for managing the resource across several mm-Wave Radio Access Networks (RANs) providing a global view of the several network segments. This ensures flexible resource allocation for reduced overall latency and increased throughput. The SDN based mm-Wave RAN also allows for inter edge node communication. Therefore, certain packets can be routed between different RANs supported by the same edge node, reducing latency. System level simulations of the complete network have shown significant improvement of the overall throughput and SINR for wireless users by providing effective resource allocation and coordination among interfering cells. A new Coordinated Multipoint (CoMP) algorithm exploiting the benefits of the SCC global network view for reduced delay in control message exchange is presented, accounting for a minimum packet delay and limited Channel State Information (CSI) in a Long Term Evolution-Advanced (LTE-A), Cloud RAN (CRAN) configuration. The algorithm does not require detailed CSI feedback from UEs but it rather considers UE location (determined by the eNB) as the required parameter. UE throughput in the target sector is represented using a Cumulative Distributive Function (CDF). The drawn characteristics suggest that there is a significant 60% improvement in UE cell edge throughput following the application, in the coordinating cells, of the new CoMP algorithm. Results also show a further improvement of 36% in cell edge UE throughput when eNBs are centralized in a CRAN backhaul architecture. The SINR distribution of UEs in the cooperating cells has also been evaluated using a box plot. As expected, UEs with CoMP perform better demonstrating an increase of over 2 dB at the median between the transmission scenarios.

  7. Irregularities in ionospheric plasma clouds: their evolution and effect on radio communication. Technical report

    SciTech Connect

    Vesecky, J.F.; Chamberlain, J.W.; Cornwall, J.M.; Hammer, D.A.; Perkins, F.W.

    1980-09-01

    Both satellite radio communications, which travel through the Earth's ionosphere, and high frequency (HF) sky wave circuits, which use the ionosphere as a refracting medium, can be strongly affected by radio wave scintillation. High altitude nuclear explosions cause scintillation (by strongly disturbing the ionosphere) and thus severely degrade satellite radio communications over a large region. Since further atmospheric nuclear tests are banned, a thorough understanding of the physics involved in both the disturbed ionosphere and its interaction with radio waves is necessary in order to design radio communications systems which will operate satisfactorily in a nuclear environment. During the 1980 JASON Summer Study we addressed some aspects of the evolution of ionospheric irregularities following a high altitude nuclear explosion--the radio wave propagation theory being apparently well understood for the satellite link case. In particular, we have worked on irregularity evolution at late times (approx. hours) after an explosion and the impact of early time irregularity structure on late time evolution. We also raise the question of scintillation effects on HF sky wave communications.

  8. Irregularities in ionospheric plasma clouds: Their evolution and effect on radio communication

    NASA Astrophysics Data System (ADS)

    Vesecky, J. F.; Chamberlain, J. W.; Cornwall, J. M.; Hammer, D. A.; Perkins, F. W.

    1980-09-01

    Both satellite radio communications, which travel through the Earth's ionosphere, and high frequency (HF) sky wave circuits, which use the ionosphere as a refracting medium, can be strongly affected by radio wave scintillation. High altitude nuclear explosions cause scintillation (by strongly disturbing the ionosphere) and thus severely degrade satellite radio communications over a large region. Since further atmospheric nuclear tests are banned, a thorough understanding of the physics involved in both the disturbed ionosphere and its interaction with radio waves is necessary in order to design radio communications systems which will operate satisfactorily in a nuclear environment. During the 1980 JASON Summer Study we addressed some aspects of the evolution of ionospheric irregularities following a high altitude nuclear explosion--the radio wave propagation theory being apparently well understood for the satellite link case. In particular, we have worked on irregularity evolution at late times (approx. hours) after an explosion and the impact of early time irregularity structure on late time evolution. We also raise the question of scintillation effects on HF sky wave communications.

  9. On seeding, large-scale wave structure, equatorial spread F, and scintillations over Vietnam

    NASA Astrophysics Data System (ADS)

    Tsunoda, Roland T.; Yamamoto, Mamoru; Tsugawa, Takuya; Hoang, Thai Lan; Tulasi Ram, S.; Thampi, Smitha V.; Chau, Ha Duyen; Nagatsuma, Tsutomu

    2011-10-01

    Understanding the day-to-day variability in occurrence of equatorial spread F (ESF) remains as a high-priority objective in space weather research. A major difficulty has been an inability to resolve the roles being played by large-scale wave structure (LSWS) and the post-sunset rise (PSSR) of the equatorial F layer, in the production of ESF. In this paper, we show conclusively that total electron content (TEC), measured as a function of latitude and longitude, provides clear, routine descriptions of LSWS. Then, together with ionosonde data, we show, for the first time, that while a seed for LSWS can occur in the late afternoon, its amplification takes place mostly during the PSSR. Implications of these findings are discussed in light of existing theories.

  10. Effect of electron-density gradients on propagation of radio waves in the mid-latitude trough. Master's thesis

    SciTech Connect

    Citrone, P.J.

    1991-01-01

    Partial contents of this thesis include: (1) Radio-wave propagation and the mid-latitude trough; (2) Ionospheric measurements; (3) Modification of time-dependent ionospheric model output with latitudinal electron-density profiles from digisonde trough depictions; (4) Ray-tracing simulations to examine ground range; and (5) Effects of three-dimensional gradients in electron density on radio-wave propagation in the trough region. Data is tabulated for geophysical conditions, solar activity level, geomagnetic activity level, conditions for vertical ray refraction to surface, and ray-tracing fixed-input conditions.

  11. The radio waves & thermal electrostatic noise spectroscopy (SORBET) experiment on BepiColombo/MMO/PWI and the importance of radio HF measurements at Mercury

    NASA Astrophysics Data System (ADS)

    Moncuquet, M.; Matsumoto, H.; Bougeret, J.-L.; Issautier, K.; Kojima, H.; Maksimovic, M.; Meyer-Vernet, N.; Zarka, P.

    SORBET (Spectroscopie des Ondes Radio & du Bruit Electrostatique Thermique) is a radio HF spectrometer designed for the radio and Plasma Waves Instrument (PWI) onboard BepiColombo/Mercury Magnetospheric Orbiter (MMO), which performs remote and in-situ measurements of waves (electromagnetic and electrostatic). Technically, SORBET includes a plasma wave spectrometer, with two E-field inputs from the two perpendicular electric antennas and one B-field input from a search coil, in the range 2.5 kHz - 640 kHz. This frequency band includes the local gyrofrequency and plasma frequency expected on most part of the MMO orbits. SORBET also includes a higher frequency radio receiver for remote sensing in the range 500kHz-10.2MHz. Owing to its capabilities, SORBET will be able to address the following scientific objectives: High resolution mapping ( 30 km) of electron density and temperature in the solar wind and Hermean magnetosphere and exo-ionosphere, via the technique of Quasi-Thermal Noise (QTN) spectroscopy. It is noteworthy that the QTN technique is weakly sensitive to spacecraft potential and photoelectron perturbations, a point highly in favour of this technique at Mercury. These QTN measurements will be determinant for the dynamic modeling of the magnetosphere and will provide a fundamental input for the chemistry of cold ionized species (Na, K, O ...) in Mercury's environment. Detection and study of Hermean radio emissions, including possible cyclotron emissions (up to 10-20 kHz) from mildly energetic electrons in highly magnetized (polar?) regions, and possible synchrotron radiation (up to a few MHz?) from more energetic electrons. Monitoring of solar radio emissions up to ~10 MHz, in order to create a solar activity index from the view point of Mercury, allowing to correlate it with the Hermean magnetospheric response. We propose to further discuss these scientific objectives and to underline that such radio HF measurements are a clue for understanding the structure and dynamics (regions, boundaries, acceleration, dissipation processes ...) of the Hermean magnetosphere/exo-ionosphere system and its interaction with the solar wind.

  12. The Radio & Plasma Wave Investigation (RPWI) for JUICE - Instrument Concept and Capabilities

    NASA Astrophysics Data System (ADS)

    Bergman, J. E. S.

    2013-09-01

    We present the concept and capabilities of the Radio & Plasma Waves Investigation (RPWI) instrument for the JUICE mission. The RPWI instrument provides measurements of plasma, electric- and magnetic field fluctuations from near DC up to 45 MHz. The RPWI sensors are four Langmuir probes for low temperature plasma diagnostics and electric field measurements, a three-axis searchcoil magnetometer for low-frequency magnetic field measurements, and a three-axial radio antenna, which operates from 80 kHz up to 45 MHz and thus gives RPWI remote sensing capabilities.. In addition, active mutual impedance measurements are used to diagnose the in situ plasma. The RPWI instrument is unique as it provides vector field measurements in the whole frequency range. This makes it possible to employ advanced diagnostics techniques, which are unavailable for scalar measurements. The RPWI instrument has thus outstanding new capabilities not previously available to outer planet missions, which and enables RPWI to address many fundamental planetary science objectives, such as the electrodynamic influence of the Jovian magnetosphere on the exospheres, surfaces and conducting oceans of Ganymede, Europa, and Callisto. RPWI will also be able to investigate the sources of radio emissions from auroral regions of Ganymede and Jupiter, in detail and with unprecedented sensitivity, and possibly also lightning. Moreover, RPWI can search for exhaust plumes from cracks on the icy moons, as well as ?m-sized dust and related dust-plasmasurface interaction processes occurring near the icy moons of Jupiter. The top-level blockdiagram of the RPWI instrument is shown here. A detailed technical description of the RPWI instrument will be given.

  13. Thermal response of the F region ionosphere in artificial modification experiments by HF radio waves

    NASA Technical Reports Server (NTRS)

    Mantas, G. P.; Lahoz, C. H.; Carlson, H. C., Jr.

    1981-01-01

    The thermal response of the nighttime F region ionosphere to local heating by HF radio waves has been observed with the incoherent scatter radar at Arecibo, Puerto Rico. The observations consist of high-resolution space and time variation of the electron temperature as a high-power HF transmitter is switched on and off with a period 240 s. As soon as the HF transmitter is turned on, the electron temperature begins to rise rapidly in a narrow altitude region near 300 km, below the F2 layer peak. The electron temperature perturbation subsequently spreads over a broader altitude region. The observations are compared with the anticipated thermal response of the ionosphere based on numerical solutions of the coupled time-dependent heat conduction equations for the electron and composite ion gases and are found to be in good agreement over the entire altitude region covered by the observations.

  14. Association of corotating magnetic sector structure with Jupiters decameter-wave radio emissions

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.

    1979-01-01

    Chree (superposed epoch) analyses of Jupiter's decameter-wave radio emission taken from the new Thieman (1979) catalog show highly significant correlation with solar activity indicated by the geomagnetic Ap index. The correlation effects can be explained in terms of corotating interplanetary magnetic sector features. At times when the solar wind velocity is relatively low, about 300 to 350 km/s, a sector boundary can encounter the Earth and Jupiter almost simultaneously during the period immediately before opposition. After opposition this will not normally occur as the solar wind velocities necessary are too low. The correlation effects are much enhanced for the three apparitions of 1962-1964 during which a relatively stable and long-lived sector pattern was present. Chree analyses for this period indicate periodicities, approximately equal to half the solar rotation period, in the Jupiter data.

  15. Direct imaging of radio-frequency modes via traveling wave magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Tonyushkin, A.; Deelchand, D. K.; Van de Moortele, P.-F.; Adriany, G.; Kiruluta, A.

    2016-01-01

    We demonstrate an experimental method for direct 2D and 3D imaging of magnetic radio-frequency (rf) field distribution in metal-dielectric structures based on traveling wave (TW) magnetic resonance imaging (MRI) at ultra-high field (>7 T). The typical apparatus would include an ultra-high field whole body or small bore MRI scanner, waveguide elements filled with MRI active dielectrics with predefined electric and magnetic properties, and TW rf transmit-receive probes. We validated the technique by obtaining TW MR images of the magnetic field distribution of the rf modes of circular waveguide filled with deionized water in a 16.4 T small-bore MRI scanner and compared the MR images with numerical simulations. Our MRI technique opens up a practical non-perturbed way of imaging of previously inaccessible rf field distribution of modes inside various shapes metal waveguides with inserted dielectric objects, including waveguide mode converters and transformers.

  16. Measurements of Antenna Surface for Millimeter-Wave Space Radio Telescope

    NASA Astrophysics Data System (ADS)

    Kamegai, Kazuhisa; Tsuboi, Masato; Doi, Akihiro; Sato, Eiichi

    2011-06-01

    In the construction of a space radio telescope, it is essential to use materials with a low noise factor and high mechanical robustness for the antenna surface. We present the results of measurements of the reflection performance of two candidates for antenna surface materials for use in a radio telescope installed in a new millimeter-wave astronomical satellite, ASTRO-G. To estimate the amount of degradation caused by fluctuations in the thermal environment in the projected orbit of the satellite, a thermal cycle test was carried out for two candidates, namely, copper foil carbon fiber reinforced plastic (CFRP) and aluminum-coated CFRP. At certain points during the thermal cycle test, the reflection loss of the surfaces was measured precisely by using a radiometer in the 41-45 GHz band. In both candidates, cracks appeared on the surface after the thermal cycle test, where the number density of the cracks increased as the thermal cycle progressed. The reflection loss also increased in proportion to the number density of the cracks. Nevertheless, the loss of the copper foil surface met the requirements of ASTRO-G at the end of the equivalent life, whereas that of the aluminum-coated surface exceeded the maximal value in the requirement even before the end of the cycle.

  17. FDTD analysis of ELF radio waves propagating in the Earth-ionosphere waveguide

    NASA Astrophysics Data System (ADS)

    Marchenko, Volodymyr; Kulak, Andrzej; Mlynarczyk, Janusz

    2015-04-01

    We developed an FDTD model of electromagnetic wave propagation in the Earth-ionosphere cavity. We present the results of FDTD calculations assuming axisymmetric system with the source located at the north pole and with no dependence on azimuthal coordinate. Therefore we reduced the Maxwell equations to 2D spherical system of Maxwell equations. To model the conductivity profile of the Earth-ionosphere waveguide we used two models, namely one- and two-exponential profiles [Mushtak and Williams, 2002]. The day-night asymmetry was introduced by setting different model parameters for the north and south hemispheres. The ground was modeled as a perfect electric conductor. Also the upper boundary for the model was a perfect conductor but it was placed at a high enough altitude to make sure there is no reflection of the waves from this boundary. We obtained the results for the electric and magnetic field components of the propagating wave in the time and frequency domains and for various locations on Earth along the meridian. In the time domain we analyzed the evolution of the electric and magnetic field components of the radio wave generated by lighting for different probe position, the penetration of the ionosphere by the electromagnetic waves and the reflection of the waves on the terminator. In the frequency domain we analyzed the Schumann resonance spectra in different field components for different location in the computational space, the behavior of the Poynting vector and the wave impedance. We also calculated real and imaginary parts of the characteristic electric and magnetic altitudes for the daytime and nighttime ionosphere. The analysis in the frequency domain was performed up to 1 kHz. We compared the results of numerical calculations with our analytical model and found a reasonably good agreement between them. The results can be used in the analysis of global thunderstorm activity based on measurements of Schumann resonance spectra. Acknowledgements. This work has been supported by the National Science Centre grant 2012/04/M/ST10/00565. The numerical computations were done using the PL-Grid infrastructure.

  18. Radio-Frequency Downstream Plasma Production by Surface-Wave in a Very High-Permittivity Material Discharge Tube

    NASA Astrophysics Data System (ADS)

    Fujiwara, Kazuya; Endo, Masakatsu; Ikeda, Yasushi; Suzuki, Tsutomu; Yanagisawa, Michihiko; Shindo, Haruo

    2005-03-01

    A novel method of radio-frequency surface-wave plasma production is proposed, with a particular interest in use of a very high permittivity material discharge tube. A discharge tube of TiCa-TiMg composite, which has the permittivity of 140, is employed to produce SF6 plasma by the 13.56 MHz radio-frequency power. The axial distribution of optical emission lines of fluorine shows a rapid decay, more than 5 times faster than that in quartz tube. This is because the speed of the surface-wave is reduced in a condition of very high permittivity. It is concluded that the method is innovative in use of radio-frequency power to produce downstream plasma with a very high permittivity discharge tube.

  19. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    SciTech Connect

    Zhao, G. Q.; Chen, L.; Wu, D. J.; Yan, Y. H.

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  20. ASSESSMENT OF THE IMMUNE RESPONSIVENESS OF MICE IRRADIATED WITH CONTINUOUS WAVE OR PULSE-MODULATED 425-MHZ RADIO FREQUENCY RADIATION

    EPA Science Inventory

    Groups of female BALB/C mice were irradiated with 425-MHz radio frequency (RF) radiation either continuous wave (CW) or pulse modulated (PM, 1-ms pulse width, 250 pulses/s). Mice were irradiated in a rectangular strip-transmission line at average forward powers of 78, 17.7, or 5 ...

  1. Fungicidal Effects of Plasma and Radio-Wave Pre-treatments on Seeds of Grain Crops and Legumes

    NASA Astrophysics Data System (ADS)

    Filatova, Irina; Azharonok, Viktor; Shik, Alexander; Antoniuk, Alexandra; Terletskaya, Natalia

    An influence of RF plasma and RF electromagnetic field pre-treatments on level of fungal infection of some important agricultural plants has been studied. It is shown that pre-sowing plasma and radio-wave seeds treatments contribute to their germination enhancement and plant productivity improvement owing to stimulative and fungicidal effect of plasma and RF electromagnetic field irradiation.

  2. Long-term integrated radiophysical studies of the ionosphere, near space, and the propagation of radio waves from space objects

    NASA Technical Reports Server (NTRS)

    Misyura, V. A.

    1974-01-01

    The radiophysical studies reported consist of direct measurements of certain effects induced in the propagation of radio waves from space objects. From measured effects and from data on the motion and position of space objects, physical parameters of the medium and bodies are determined.

  3. Simultaneous excitation of large-scale geomagnetic field fluctuations and plasma density irregularities by powerful radio waves

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kuo, S. P.

    1985-01-01

    The physical mechanism of thermal filamentation instability of radio waves whose frequencies can be as low as in the VLF band and as high as in the SHF band are investigated. This instability can excite large-scale magnetic and plasma density fluctuations simultaneously in the ionosphere and magnetosphere. Relevant experiments are reviewed in terms of this instability and other mechanisms.

  4. Thin film scintillators

    NASA Astrophysics Data System (ADS)

    McDonald, Warren; McKinney, George; Tzolov, Marian

    2015-03-01

    Scintillating materials convert energy flux (particles or electromagnetic waves) into light with spectral characteristic matching a subsequent light detector. Commercial scintillators such as yttrium aluminum garnet (YAG) and yttrium aluminum perovskite (YAP) are commonly used. These are inefficient at lower energies due to the conductive coating present on their top surface, which is needed to avoid charging. We hypothesize that nano-structured thin film scintillators will outperform the commercial scintillators at low electron energies. We have developed alternative thin film scintillators, zinc tungstate and zinc oxide, which show promise for higher sensitivity to lower energy electrons since they are inherently conductive. Zinc tungstate films exhibit photoluminescence quantum efficiency of 74%. Cathodoluminescence spectroscopy was applied in transmission and reflection geometries. The comparison between the thin films and the YAG and YAP commercial scintillators shows much higher light output from the zinc tungstate and zinc oxide at electron energies less than 5 keV. Our films were integrated in a backscattered electron detector. This detector delivers better images than an identical detector with commercial YAG scintillator at low electron energies. Dr. Nicholas Barbi from PulseTor LLC, Dr. Anura Goonewardene, NSF Grants: #0806660, #1058829, #0923047.

  5. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  6. Radio frequency CD by LH waves in the reversed field experiment

    SciTech Connect

    Bilato, R.; Brambilla, M.

    1999-09-20

    We present a feasibility study for the active control of the poloidal current density profile in the RFX (reversed field pinch) experiment using radio frequency in the range of lower hybrid waves. The main goal of the rf current drive is to reduce the magnetic fluctuations and the magnetic stochasticity, so as to improve the energy confinement. The compelling constraints of accessibility and damping of the slow waves due to the present and extrapolated RFX plasma parameters are investigated; they have been used to fix the frequency ({approx_equal}1.3 GHz) and the best n{sub parallel} values ({approx_equal}8), and therefore the antenna size (Grill). A modified version of the FELICE code, which takes into account the strong shear of the magnetic field of the RFP plasmas, has been developed and used to estimate the antenna-plasma coupling: the reflected power for the proposed antenna is found to be less than 30% for a quite wide range of plasma parameters. In order to estimate the current drive profile and efficiency a one dimensional Fokker-Planck code has been used: an additional crucial contribution to the driven current is due to the enhancement of the plasma conductivity as consequence of the suprathermal electron population increase. Although the total estimated CD efficiency is promising, the rf-power required to drive the current necessary to produce a significant reduction of the magnetic fluctuations is found to be in the MW range.

  7. Quasi-Harmonic Faraday-Rotation Fluctuations of Radio Waves When Sounding the Outer Solar Corona

    NASA Astrophysics Data System (ADS)

    Efimov, A. I.; Samoznaev, L. N.; Andreev, V. E.; Chashei, I. V.; Bird, M. K.

    2000-08-01

    A statistical analysis of the Faraday-rotation fluctuations (FRFs) of linearly polarized radio signals from the Helios 1 and Helios 2 spacecraft shows that the FRF time power spectra can be of three types. Spectra of the first type are well fitted by a single power law in the range of fluctuation frequencies 1-10 mHz. Spectra of the second type are a superposition of a power law and two quasi-harmonic components with fluctuation frequencies of about nu_1 = 4 mHz (fundamental frequency) and nu_2 = 8 mHz (second harmonic). Spectra of the third type exhibit only one of the two quasi-harmonic components against the background of a power law. The spectral density of the quasi-harmonic components can be represented by a resonance curve with a fairly broad [Delta nu =(0.5-1.3) nu_{1,2}] distribution relative to the nu = nu_{1,2} peak. The intensity of the quasi-harmonic FRF has a radial dependence that roughly matches the radial dependence for the background FRF, while their period at the fundamental frequency is approximately equal to the period of the well-known 5-min oscillations observed in the lower solar atmosphere. The fluctuations with 5-min periods in FRF records can be explained by the presence in the outer corona of isolated trains of Alfven waves generated at the base of the chromosphere-corona transition layer and by acoustic waves coming from deeper layers.

  8. Radio-frequency sheath voltages and slow wave electric field spatial structure

    NASA Astrophysics Data System (ADS)

    Colas, Laurent; Lu, Ling-Feng; K?ivsk, Alena; Jacquot, Jonathan

    2015-12-01

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the RF parallel electric field emitted by Ion Cyclotron (IC) wave launchers, using a simple model of Slow Wave (SW) evanescence coupled with Direct Current (DC) plasma biasing via sheath boundary conditions in a plasma-filled 2-dimensional (parallel, radial) rectangle. Within a "wide sheaths" asymptotic regime, valid for large-amplitude near RF fields, our model becomes partly linear: the sheath oscillating voltage at open field line boundaries is a linear combination of elementary contributions by every source point of the radiated RF field map. These individual contributions are all the more intense as the SW emission point is toroidally nearer to the sheath walls. A limit formula is given for a source infinitely close to the sheaths. The decay of sheath RF voltages with the sheath/source parallel distance is quantified as a function of two characteristic SW evanescence lengths. Decay lengths are smaller than antenna parallel extensions. The sheath RF voltages at an IC antenna side limiter are therefore mainly sensitive to SW emission near this limiter, as recent observations suggest. Toroidal proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-symmetry of the radiated field map. They could also justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  9. Study of Temperature Wave Propagation in Superfluid Helium Focusing on Radio-Frequency Cavity Cooling

    NASA Astrophysics Data System (ADS)

    Koettig, T.; Peters, B. J.; Avellino, S.; Junginger, T.; Bremer, J.

    2015-12-01

    Oscillating Superleak Transducers (OSTs) can be used to localize quenches of superconducting radio-frequency cavities. Local hot spots at the cavity surface initiate temperature waves in the surrounding superfluid helium that acts as cooling fluid at typical temperatures in the range of 1.6 K to 2 K. The temperature wave is characterised by the properties of superfluid helium such as the second sound velocity. For high heat load densities second sound velocities greater than the standard literature values are observed. This fast propagation has been verified in dedicated small scale experiments. Resistors were used to simulate the quench spots under controlled conditions. The three dimensional propagation of second sound is linked to OST signals. The aim of this study is to improve the understanding of the OST signal especially the incident angle dependency. The characterised OSTs are used as a tool for quench localisation on a real size cavity. Their sensitivity as well as the time resolution was proven to be superior to temperature sensors glued to the surface of the cavity.

  10. Multi-messenger Astronomy of Gravitational-wave Sources with Flexible Wide-area Radio Transient Surveys

    NASA Astrophysics Data System (ADS)

    Yancey, Cregg C.; Bear, Brandon E.; Akukwe, Bernadine; Chen, Kevin; Dowell, Jayce; Gough, Jonathan D.; Kanner, Jonah; Kavic, Michael; Obenberger, Kenneth; Shawhan, Peter; Simonetti, John H.; -Wei Tsai, Gregory B. Taylor, Jr.

    2015-10-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg2 sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.

  11. Multi-messenger astronomy of gravitational-wave sources with flexible wide-area radio transient surveys

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Cregg C. Yancey, Brandon E. Bear, Bernadine Akukwe, Kevin Chen, Jayce Dowell, Jonathan D. Gough, Jonah Kanner, Kenneth Obenberger, Peter Shawhan, John H. Simonetti , Gregory B. Taylor , Jr-Wei Tsai

    2016-01-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg(2) sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.

  12. EVIDENCE FOR THE OSCILLATING TWO STREAM INSTABILITY AND SPATIAL COLLAPSE OF LANGMUIR WAVES IN A SOLAR TYPE III RADIO BURST

    SciTech Connect

    Thejappa, G.; Bergamo, M.; Papadopoulos, K.; MacDowall, R. J. E-mail: mbergamo@umd.edu E-mail: Robert.MacDowall@nasa.gov

    2012-03-15

    We present observational evidence for the oscillating two stream instability (OTSI) and spatial collapse of Langmuir waves in the source region of a solar type III radio burst. High time resolution observations from the STEREO A spacecraft show that Langmuir waves excited by the electron beam occur as isolated field structures with short durations {approx}3.2 ms and with high intensities exceeding the strong turbulence thresholds. These short duration events are identified as the envelope solitons which have collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets contain an intense peak and two sidebands, corresponding to beam-resonant Langmuir waves, and down-shifted and up-shifted daughter Langmuir waves, respectively, and low-frequency enhancements below a few hundred Hz. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI. The observed high intensities, short scale lengths, sideband spectral structures, and low-frequency enhancements strongly suggest that the OTSI and spatial collapse of Langmuir waves probably control the nonlinear beam-plasma interactions in type III radio bursts.

  13. Observation of Beat Oscillation Generation by Coupled Waves Associated with Parametric Decay during Radio Frequency Wave Heating of a Spherical Tokamak Plasma

    SciTech Connect

    Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hanashima, Kentaro; Sakamoto, Takuya; Tojo, Hiroshi; An, Byung Il; Hiratsuka, Junichi; Kakuda, Hidetoshi; Wakatsuki, Takuma; Kasahara, Hiroshi

    2010-06-18

    We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.

  14. The radio waves and thermal electrostatic noise spectroscopy (SORBET) experiment on BEPICOLOMBO/MMO/PWI: Scientific objectives and performance

    NASA Astrophysics Data System (ADS)

    Moncuquet, M.; Matsumoto, H.; Bougeret, J.-L.; Blomberg, L. G.; Issautier, K.; Kasaba, Y.; Kojima, H.; Maksimovic, M.; Meyer-Vernet, N.; Zarka, P.

    2006-01-01

    SORBET ( Spectroscopie des Ondes Radio and du Bruit Electrostatique Thermique) is a radio HF spectrometer designed for the radio and Plasma Waves Instrument onboard BepiColombo/Mercury Magnetospheric Orbiter (MMO), which performs remote and in situ measurements of waves (electromagnetic and electrostatic). Technically, SORBET includes a plasma wave spectrometer, with two E-field inputs from the two perpendicular electric antennas and one B-field input from a search coil, in the range 2.5-640 kHz. This frequency band includes the local gyrofrequency and plasma frequency expected on most part of the MMO orbits. SORBET also includes a higher frequency radio receiver for remote sensing in the range 500 kHz-10.2 MHz. Owing to its capabilities, SORBET will be able to address the following scientific objectives: High resolution mapping (30 km) of electron density and temperature in the solar wind and in the Hermean magnetosphere and exo-ionosphere, via the technique of Quasi-Thermal Noise (QTN) spectroscopy. These QTN measurements will be determinant for the dynamic modeling of the magnetosphere and will provide a fundamental input for the chemistry of cold ionized species (Na, K, O, ) in Mercury's environment. Detection and study of Hermean radio emissions, including possible cyclotron emissions (up to 10-20 kHz) from mildly energetic electrons in most highly magnetized (polar?) regions, and possible synchrotron radiation (up to a few MHz?) from more energetic electrons. Monitoring of solar radio emissions up to 10 MHz in order to create a solar activity index from the view point of Mercury, allowing to correlate it with the Hermean magnetospheric response. We especially discuss the capabilities of SORBET for performing the QTN spectroscopy in Mercury's magnetosphere, using the two electric dipole antennas equipping MMO, called MEFISTO and WPT.

  15. Energetic electrons from solar flares and associated type 3 radio bursts from metric to hectometric wave frequencies

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    Distinct Kev electron events as observed by satellites near the earth are, in general, associated with solar flares which are accompained by the emission of both metric and hectometric type 3 radio bursts. The positions of these flares are mainly on the western hemisphere of the sun. These results show that Kev electrons propagate under the control of the magnetic field in the interplanetary space and that, while propagating through this space, these electrons excite type 3 radio bursts from metric to hectometric wave frequencies. Emission characteristics of hectometric type 3 bursts are briefly considered in relation to the positions of associated flares.

  16. Global estimates of gravity wave parameters from GPS radio occultation temperature data

    NASA Astrophysics Data System (ADS)

    Wang, L.; Alexander, M. J.

    2010-11-01

    Gravity waves (GWs) play critical roles in the global circulation and the temperature and constituent structures in the middle atmosphere. They also play significant roles in the dynamics and transport and mixing processes in the upper troposphere and lower stratosphere and can affect tropospheric weather. Despite significant advances in our understanding of GWS and their effects in different regions of the atmosphere in the past few decades, observational constraints on GW parameters including momentum flux and propagation direction are still sorely lacking. Global Positioning System (GPS) radio occultation (RO) technique provides global, all-weather, high vertical resolution temperature profiles in the stratosphere and troposphere. The unprecedentedly large number of combined temperature soundings from the Constellation Observing System for Meteorology, Ionosphere, and Climate and Challenging Minisatellite Payload GPS RO missions allows us to obtain GW perturbations by removing the gravest zonal modes using the wavelet method for each day. We extended the GW analysis method of Alexander et al. (2008) to three dimensions to estimate the complete set of GW parameters (including momentum flux and horizontal propagation direction) from the GW temperature perturbations thus derived. To demonstrate the effectiveness of the analysis, we showed global estimates of GW temperature amplitudes, vertical and horizontal wavelengths, intrinsic frequency, and vertical flux of horizontal momentum in the altitude range of 17.5-22.5 km during December 2006 to February 2007. Consistent with many previous studies, GW temperature amplitudes are a maximum in the tropics and are generally larger over land, likely reflecting convection and topography as main GW sources. GW vertical wavelengths are a minimum at equator, likely due to wave refraction, whereas GW horizontal wavelengths are generally longer in the tropics. Most of the waves captured in the analysis of the GPS data are low-intrinsic frequency inertia-GWs, and the estimated intrinsic frequencies scaled by the Coriolis parameter also show a strong maximum at equator. Enhanced wave fluxes are linked to convection, topography, and storm tracks, among others. As preliminary tests of the analysis in deriving horizontal propagation directions, we compared the GPS estimates with the corresponding estimates from the U.S. high vertical resolution radiosonde data using the conventional Stokes parameters method and we also conducted a separate analysis of the GPS data over the southern Andes in South America. We also showed the first global estimates of GW propagation directions from the GPS data. Finally, the sensitivity of the analysis to the temporal and spatial dimensions of the longitude × latitude × time cells and the uncertainties of the analysis and possible ways to reduce these uncertainties are discussed.

  17. An analytical theory of radio-wave scattering from meteoric ionization - I. Basic equation

    NASA Astrophysics Data System (ADS)

    Pecina, P.

    2016-01-01

    We have developed an analytical theory of radio-wave scattering from ionization of meteoric origin. It is based on an integro-differential equation for the polarization vector, P, inside the meteor trail, representing an analytical solution of the set of Maxwell equations, in combination with a generalized radar equation involving an integral of the trail volume electron density, Ne, and P represented by an auxiliary vector, Q, taken over the whole trail volume. During the derivation of the final formulae, the following assumptions were applied: transversal as well as longitudinal dimensions of the meteor trail are small compared with the distances of the relevant trail point to both the transmitter and receiver and the ratio of these distances to the wavelength of the wave emitted by the radar is very large, so that the stationary-phase method can be employed for evaluation of the relevant integrals. Further, it is shown that in the case of sufficiently low electron density, Ne, corresponding to the case of underdense trails, the classical McKinley's radar equation results as a special case of the general theory. The same also applies regarding the Fresnel characteristics. Our approach is also capable of yielding solutions to the problems of the formation of Fresnel characteristics on trails having any electron density, forward scattering and scattering on trails immersed in the magnetic field. However, we have also shown that the geomagnetic field can be removed from consideration, due to its low strength. The full solution of the above integro-differential equation, valid for any electron volume densities, has been left to subsequent works dealing with this particular problem, due to its complexity.

  18. Development of a portable system for checking radioactive sources using long wave radio frequency identification.

    PubMed

    Mori, K; Deji, S; Ito, S; Saze, T; Nishizawa, K

    2007-03-01

    A portable system for automatically checking radioactive sources stored in lead containers at low temperatures was developed in order to prevent the discharging of orphan sources and contaminated materials from a controlled area to the general public. A radio frequency identification (RFID) system using a long wave in a frequency range of 125 kHz was composed of identification tags, a reader, a notebook computer, and software. ID tags without batteries were devised by using integrated circuits with an electrically erasable programmable read-only memory of 250 bytes and antennas. This software consisted of operating and maintenance functions. The read range of the ID tags was adjusted to around 5 cm in order to avoid accidental contamination and for discriminating the multiple sources. A water layer of 6.9 cm had no influence on communication between the ID tags and the reader. The data of the ID tags stored at +4, -20, and -80 degrees C were precisely read 4 mo later. The influence of lead was completely removed by separating the ID tags more than 1.6 cm from the lead. A reader can exactly identify the data of the ID tags within 6.0 cm at a velocity less than 9.0 cm s(-1). Performance of the software was verified using mock data. Nine lists concerning registered, disposed, and missing sources, etc., were displayed on the computer monitor and printed out. An RFID system using long waves proved to be applicable for routinely checking radioactive sources. PMID:17293692

  19. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  20. Radio crickets: chirping jets from black hole binaries entering their gravitational wave inspiral

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Loeb, Abraham

    2016-03-01

    We study a novel electromagnetic signature of supermassive black hole (BH) binaries whose inspiral starts being dominated by gravitational wave (GW) emission. Recent simulations suggest that the binary's member BHs can continue to accrete gas from the circumbinary accretion disc in this phase of the binary's evolution, all the way until coalescence. If one of the binary members produces a radio jet as a result of accretion, the jet precesses along a biconical surface due to the binary's orbital motion. When the binary enters the GW phase of its evolution, the opening angle widens, the jet exhibits milliarcsecond-scale wiggles, and the conical surface of jet precession is twisted due to apparent superluminal motion. The rapidly increasing orbital velocity of the binary gives the jet an appearance of a `chirp'. This helical chirping morphology of the jet can be used to infer the binary parameters. For binaries with mass 107-1010 M⊙ at redshifts z < 0.5, monitoring these features in current and archival data will place a lower limit on sources that could be detected by Evolved Laser Interferometer Space Antenna and Pulsar Timing Arrays. In the future, microarcsecond interferometry with the Square Kilometre Array will increase the potential usefulness of this technique.

  1. The Cassini Radio & Plasma Wave Science (RPWS) view of the Enceladus Space Environment

    NASA Astrophysics Data System (ADS)

    Wahlund, Jan-Erik; Gurnett, Donald; Kurth, William; Andrews, David; Engelhardt, Ilka; Eriksson, Anders; Farrell, William; Holmberg, Mika; Hospodarsky, George; Morooka, Michiko; Sheng-Yi, Ye; Vigren, Erik

    2014-05-01

    A physical picture of the interaction between Saturn's magnetosphere and the moon Enceladus space environment is presented based on Radio and Plasma Wave Science (RPWS) observations. The space environment around Enceladus consists of several different regions with a diversity of active physical processes. Foremost, the southward exhaust plume reveals a cold, dense, conductive and dusty plasma environment where the magnetic field is piled-up. Plasma acceleration processes are active at the plume edges, and constitute an important part of the electrodynamic MHD dynamo, giving rise to Auroral hiss emissions as well as a magnetic footprint pattern in the high-latitude atmosphere of Saturn. The Enceladus wake is filled with negatively charged dust that depletes the region from electrons by water grain attachment. The grains around Enceladus can be picked-up by the magnetospheric co-rotation electric field. The charged water grains then populate the region in Enceladus orbit around Saturn and create the E-ring. Depending on the size of the grains, different grain evolutions occur and different dynamics of the grains are expected. The Enceladus plume as well as the plasma disc surrounding the E-ring constitutes complex natural laboratories for dust-plasma interaction, which has important implications also for the newly discovered Europa plume and associated plasma disk material around Jupiter to be investigated by the ESA JUICE and the NASA Europa Clipper missions. We present a detailed account of the Cassini RPWS observations around Enceladus with associated physical interpretations.

  2. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  3. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  4. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  5. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  6. Observation of the gravity waves from GPS/MET radio occultation data

    NASA Astrophysics Data System (ADS)

    Liou, Y. A.; Pavelyev, A. G.; Wickert, J.

    2005-02-01

    We show that the amplitude of the Global Positioning System (GPS) signals in the radio occultation (RO) experiments is sensitive to the atmospheric wave structures. Earlier the phase of the GPS occultation signals have been used for statistical investigation of the gravity waves (GW) activity in the height interval 10 40 km on a global scale. Analysis of the RO amplitude data revealed wave clusters (quasi-regular structures) with the vertical size of about 10 km and interior vertical period ˜0.8 2 km in the tropopause and lower stratosphere. The amplitude RO data may be utilized to determine the temperature vertical profiles and its vertical gradient in the upper troposphere and stratosphere. In the considered RO events variations of the vertical temperature gradient dT(h)/dh corresponding to the amplitude clusters are in the range from -9 K/km to 6 K/km with vertical scales ˜1 3 km. We show that these variations can be linked to the GW propagation in the atmosphere. We use the polarization and dispersion relationships and Hilbert transform to find the 1-D GW image in the atmosphere by analyzing the vertical temperature gradient dT(h)/dh. The GW image consists of the phase and amplitude of the GW as functions of height. The GW amplitude is non-uniformly distributed with main contribution associated with the tropopause and the secondary maximums in height interval 18 35 km. Using our method we find vertical profiles of the horizontal wind perturbations and their vertical gradient associated with the GW influence. The horizontal wind perturbations are changing in the interval v˜2 12 m/s with vertical gradients dv/dh˜4 25 m s-1 km-1) in the tropopause area and v˜ 3 9 m/s, dv/dh ˜ 2 15 m/(s km) in the stratosphere for the considered events. For one RO event we compared the estimated values of the horizontal wind perturbations with aero-logical data and found fairly good agreement. The height dependence of the GW vertical wavelength was inferred through the differentiation of the GW phase. Analysis of this dependence using the dispersion relationship for the GW gives estimation of the GW intrinsic phase speed. For the considered events the magnitude of the intrinsic phase speed changes between 1.5 15 m/s at heights 10 40 km. We conclude that the amplitude of the GPS occultation signals contain important information about the GW propagation in the atmosphere on a global scale.

  7. Relativistic blast-wave model for the rapid flux variations of AO 0235+164 and other compact radio sources

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.

    1978-01-01

    A relativistic blast-wave version of a signal-screen model is developed which can adequately explain the details of the flux-density and structural variations of compact extragalactic radio sources. The relativistic motion implied by flux variations is analyzed with respect to the synchrotron spectrum of the BL Lac object AO 0235+164 observed during outbursts, and a signal-screen model for rapidly expanding shells produced by ultrarelativistic blast waves is examined. The approximate observed structure of the blast wave at three stages in its evolution is illustrated, each stage is described, and the model is applied to the flux density outburst in AO 0235+164 observed in late 1975. The results show that a relativistic blast-wave model can in general reproduce the main features of the observed flux variations in compact sources. Some problems with the proposed model are briefly discussed.

  8. MHD Waves in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Ofman, L.

    This chapter focuses on reviewing several observational aspects of magnetohydrodynamic (MHD) waves in the solar wind, in particular on Alfvén waves, Alfvénic turbulent spectrum, and their role in heating and accelerating the solar wind. It also reviews computational models that incorporate Alfvén waves as the driving source of the wind in the lower corona (coronal holes) and in the inner heliosphere, with emphasis on multi-dimensional models. Evidence for MHD waves in the solar wind is obtained from interplanetary scintillation (IPS) observations using Earth-based radio telescope observations of distant (galactic) radio sources. The solar wind electron density variability in the line of sight affects the received radio signal. The propagating fluctuations and their correlations are used to estimate the solar wind velocity and the wave amplitude in the parallel and the perpendicular directions in line of sight.

  9. Generation of Acoustic Gravity Waves by Periodic Radio Transmissions from a High-Power Ionospheric Heater

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir; Chernogor, Leonid; Rozumenko, Victor

    The Radiophysical Research Institute (Nizhny Novgorod, Russia) and Kharkiv V. N. Karazin National University (Kharkiv, Ukraine) have studied opportunities for the effective generation of acoustic gravity waves (AGWs) in 3 - 180-min period range. The excitation of such waves was conducted for the last several years using the SURA heating facility (Nizhny Novgorod). The detection of the HF-induced AGWs was carried out in the Radiophysical Observatory located near Kharkiv City at a distance of about 960 km from the SURA. A coherent radar for vertical sounding, an ionosonde, and magnetometer chains were used in our measurements. The main results are the following (see [1-5]): 1. Infrasound oscillation trains with a period of 6 min are detected during periodic SURA heater turn-on and -off. Similar oscillation trains are detected after long time pumping, during periodic transmissions with a period of 20 s, as well as after pumping turn-off. The train recordings begin 28 - 54 min after the heater turn-on or -off, and the train propagation speeds are about 300 - 570 m/s, the value of which is close to the sound speed at upper atmospheric altitudes. The amplitude of the Doppler shift frequency is of 10 - 40 mHz, which fits to the 0.1 - 0.3% electron density disturbances at ionospheric altitudes. The amplitude of the infrasound oscillations depends on the SURA mode of operation and the state of the upper atmosphere and ionosphere. 2. High-power radio transmissions stimulate the generation (or enhancement) of waves at ionospheric altitudes in the range of internal gravity wave periods. The HF-induced waves propagate with speeds of 360 - 460 m/s and produce changes in electron density with amplitudes of 2 - 3%. The generation of such periodic perturbations is more preferable with periods of 10 - 60 minutes. Their features depend significantly on the heater mode of operation. It should be stressed that perturbation intensity increases when a pumping wave frequency approaches the F _{_2} layer critical frequency. High-power periodic radio transmissions are capable of enhancing/damping natural wave perturbations generated by the solar terminator. 3. The study has demonstrated that the generation and propagation of AGWs with periods close to the natural oscillation periods of the atmosphere is possible. The duration of AGW oscillation trains does not dependent on the duration of turn-on/-off trains, but it is determined by changes in the current state of the atmosphere-ionosphere-magnetosphere system in general. The period of the AGW oscillation trains is determined by the period or semi-period of the pumping. It means that the mechanism of AGW generation in this case is distinct from the agreed-upon mechanism developed earlier. The AGWs, whose periods are 5 - 10% greater than the Brunt-Vaisala period, exhibit group velocities less than the speed of sound that is of about 80 - 160 m/s. They induce electron density perturbations of about 1.1 - 1.5%. The AGW generation has the following features. When the effective radiated power (ERP) is 50 MW or less, AGWs are not detected; they are reliably observed when the ERP is equal or larger than about 100 MW. Geomagnetic storms play a dual role in the AGW generation because they: (i) increase amplitudes of AGWs with 4 - 6-min and 8 - 12-min periods and (ii) yet enhance background oscillations. The latter hampers the identification of the HF-induced oscillations. Moderate magnetic storms do not markedly exert an influence on the amplitudes of oscillations with 13 - 17-min periods. 4. The quasi-periodic variations in the horizontal components of the geomagnetic field with 8 - 12-min periods become observable near Kharkiv 35 - 45 min after the beginning of pumping. Their speeds are 355 - 460 m/s, and they form trains 40 - 90 min in duration when the [5-min on, 5-min off] or [10-min on, 10-min off] heater timing is used. The 12 - 18-min period variations become observable 35 - 45 min after the beginning of pumping. Their speeds are 355 - 460 m/s, and they form trains 55 - 90 min in duration when the [15-min on, 15-min off] heater timing is used. The revealed HF-induced geomagnetic pulsations are associated with the modulation of the ionospheric dynamo current system over Kharkiv by the AGWs produced by the periodic HF pumping of the ionosphere. References: 1. Chernogor L.F. and Frolov V.L. // Radiophys. Quant. Electron., Engl. Transl., 2012. Vol. 55(1-2), p.14. 2. Chernogor L.F., Frolov, and Pushin V.F. // Radiophys. Quant. Electron., Engl. Transl., 2012. Vol. 55(5), p.327. 3. Chernogor L.F. and Frolov V.L. // Radiophys. Quant. Electron., Engl. Transl., 2013. Vol. 56(4), p.219. 4. Chernogor L.F. and Frolov V.L. // Radiophys. Quant. Electron., Engl. Transl., 2013. Vol. 56(5), p.307. 5. Chernogor L.F. and Frolov V.L. // Radiophys. Quant. Electron., Engl. Transl., 2014. Vol. 57 (submitted for publication).

  10. Global ionospheric effects of geomagnetic storm on May 2-3, 2010 and their influence on HF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Kotova, Daria; Klimenko, Maxim; Klimenko, Vladimir; Zakharov, Veniamin

    2013-04-01

    In this work we have investigated the global ionospheric response to geomagnetic storm on May 2-3, 2010 using GSM TIP (Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere) simulation results. In the GSM TIP storm time model runs, several input parameters such as cross-polar cap potential difference and R2 FAC (Region 2 Field-Aligned Currents) varied as a function of the geomagnetic activity AE-index. Current simulation also uses the empirical model of high-energy particle precipitation by Zhang and Paxton. In this model, the energy and energy flux of precipitating electrons depend on a 3 hour Kp-index. We also have included the 30 min time delay of R2 FAC variations with respect to the variations of cross-polar cap potential difference. In addition, we use the ground-based ionosonde data for comparison our model results with observations. We present an analysis of the physical mechanisms responsible for the ionospheric effects of geomagnetic storms. The obtained simulation results are used by us as a medium for HF radio wave propagation at different latitudes in quiet conditions, and during main and recovery phase of a geomagnetic storm. To solve the problem of the radio wave propagation we used Zakharov's (I. Kant BFU) model based on geometric optics. In this model the solution of the eikonal equation for each of the two normal modes is reduced using the method of characteristics to the integration of the six ray equation system for the coordinates and momentum. All model equations of this system are solved in spherical geomagnetic coordinate system by the Runge-Kutta method. This model was tested for a plane wave in a parabolic layer. In this study, the complex refractive indices of the ordinary and extraordinary waves at ionospheric heights was calculated for the first time using the global first-principal model of the thermosphere-ionosphere system that describes the parameters of an inhomogeneous anisotropic medium during a geomagnetic storm. A comparison of the ordinary and extraordinary modes of HF radio ray paths in quiet and disturbed conditions has been done. We considered in more detail the features of the radio ray paths in the presence of F3 layer in the equatorial ionosphere, the main ionospheric trough and tongue of ionization at high latitudes. It is shown that the results obtained with use of radio propagation and GSM TIP models adequately describe HF radio ray paths in the Earth's ionosphere and can be used in applications. These investigations were carried out at financial support of Russian Foundation for Basic Research (RFBR) - Grant # 12-05-31217 and RAS Program 22.

  11. Day-fo-day Monitoring of the Comparisons Between UHF Scintillation Forecasts and GNSS Observations

    NASA Astrophysics Data System (ADS)

    Anderson, D. N.; Morton, Y.; Jiao, Y.; Redmon, R. J.

    2013-12-01

    When trans-ionospheric radio waves propagate through an irregular ionosphere with plasma depletions or 'bubbles', they are subject to sporadic enhancement and fading which is referred to as scintillation. Communication and navigation systems may be subject to these detrimental effects if the scintillation is strong enough. It is critical to have knowledge of the current ionospheric conditions so that system operators can distinguish between the natural radio environment and system-induced failures. In this paper, we present and describe a proven technique for forecasting UHF scintillation activity in the equatorial region after sunset and compare these forecasts with observed global navigation satellite systems (GNSS) L-band scintillation activity at Jicamarca, Peru, on a night-to-night basis. The UHF scintillation forecasting technique is described in a paper by Redmon et al. (Space Weather, Vol 8, 2010) entitled 'A Forecasting Ionospheric Real-time Scintillation Tool (FIRST).' The technique utilizes the observed characteristic parameter h'F from a ground-based, ionospheric sounder near the magnetic equator. This paper demonstrated that there exists an excellent correlation (R2 ~ 0.91) between h'F (1930LT) and the pre-reversal enhancement in vertical ExB drift velocity after sunset which is the prime driver for creating plasma depletions and bubbles. In addition, there exists a 'threshold' in the h'F value at 1930 LT, h'Fthr, such that, on any given evening if h'F is significantly above h'Fthr then scintillation activity is likely to occur and if it is below h'Fthr, scintillation activity is unlikely to occur. The digital sounder at Jicamarca, Peru provides the h'F values between 1830 and 2000 LT. A multi-constellation GNSS receiver at Jicamarca provides 50Hz navigation signal observables continuously since December 2012. S4 index and detrended carrier phase standard deviation, two commonly used amplitude and phase scintillation indices are computed from these observables during the equinox months in 2013. An unprecedented number of open signals from GPS, GLONASS, Galileo, Beidou, and SBAS satellites are included in the observations, providing high spatial and temporal resolution of scintillation indices measurements. In addition to the statistical analysis between the UHF scintillation forecast and observed GNSS receiver S4 index values, detailed quantitative relationships between the vertical ExB drift velocity, prompt penetration magnetic storm disturbances, and the intensity, duration, and spatial distributions of amplitude and phase scintillation will be presented.

  12. Scintillation Counters

    NASA Astrophysics Data System (ADS)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  13. Stationary Planetary Waves in the Mars Winter Atmosphere as seen by the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Pätzold, Martin; Häusler, Bernd; Tyler, Leonard G.; Hinson, David P.

    2015-11-01

    Stationary (Rossby) Waves are excited by the interaction of the zonally varying topography with the strong eastward winter jets. They lead to distinctive longitudinal temperature variations which contribute significantly to the asymmetry of the seasonal polar CO2 ice caps and are also important for the dust redistribution in the planetary atmosphere.Radio Science profiles from the Mars Express Radio Science Experiment MaRS at northern and southern high latitudes are used to gain insight into winter stationary wave structures on both hemispheres.Mars Global Surveyor (MGS) radio occultation measurements from the same season and year with their exceptionally good longitudinal and temporal coverage can be used to estimate the influence of transient eddies. Transient waves are especially important in the northern winter hemisphere.Wave number 2 stationary waves, driven by topography, are dominant in the northern winter latitudes while the wave number 1 wave is the most significant wave number during southern winter. The wave amplitudes peak around winter solstice on both hemispheres.Radio occultation measurements provide the unique opportunity to determine simultaneous measurements of temperature and geopotential height structures. Assuming geostrophic balance, these measurements can be used to determine meridional winds and eddy heat fluxes which provide further insight into the contribution of stationary waves to the heat exchange between the poles and the lower latitudes.

  14. Amplitude and phase scintillation study at Chiang Rai, Thailand

    NASA Astrophysics Data System (ADS)

    Gwal, Anurag; Dubey, Smita; Wahi, Rashmi; Feliziani, Alex

    2006-01-01

    Ionospheric scintillation is a rapid variation of amplitude and phase in radio signals caused by irregularities in the ionosphere. We have studied the effect of ionospheric scintillations on Global Positioning System (GPS) signals from the low latitude station at Chiang Rai, Thailand, and also studied the occurrence of scintillation for geomagnetic-quiet and -disturbed conditions. Amplitude and phase scintillation are investigated by using the single-frequency GPS Ionospheric Scintillation Monitor (GISM) at Chiang Rai (lat. 19.57N, Ion. 99.52E). This system is capable of tracking up to 11 GPS satellites at LI frequency of 1575.42 MHz. The purpose of the GISM receiver is to automatically record scintillation parameters of amplitude and phase at a 50 Hz rate averaged over 60 s. The result shows that the amplitude scintillation can occur with or without phase scintillation but phase scintillation is always accompanied by amplitude scintillation.

  15. Plasma wave phenomena at interplanetary shocks observed by the Ulysses URAP experiment. [Unified Radio and Plasma Waves

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Macdowall, R. J.; Stone, R. G.; Hoang, S.; Pantellini, F.; Harvey, C.; Mangeney, A.; Kellogg, P.; Thiessen, J.; Canu, P.

    1992-01-01

    We present Ulysses URAP observations of plasma waves at seven interplanetary shocks detected between approximately 1 and 3 AU. The URAP data allows ready correlation of wave phenomena from .1 Hz to 1 MHz. Wave phenomena observed in the shock vicinity include abrupt changes in the quasi-thermal noise continuum, Langmuir wave activity, ion acoustic noise, whistler waves and low frequency electrostatic waves. We focus on the forward/reverse shock pair of May 27, 1991 to demonstrate the characteristics of the URAP data.

  16. Waves in the Mesosphere of Venus as seen by the Venus Express Radio Science Experiment VeRa

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Häusler, B.; Hinson, D. P.; Tyler, G.; Andert, T. P.; Bird, M. K.; Imamura, T.; Pätzold, M.; Remus, S.

    2013-10-01

    The Venus Express Radio Science Experiment (VeRa) has retrieved more than 700 profiles of the mesosphere and troposphere of Venus. These profiles cover a wide range of latitudes and local times, enabling study of atmospheric wave phenomena over a range spatial scales at altitudes of 40-90 km. In addition to quasi-horizontal waves and eddies on near planetary scales, diurnally forced eddies and thermal tides, small-scale gravity waves, and turbulence play a significant role in the development and maintenance of atmospheric super-rotation. Small-scale temperature variations with vertical wavelengths of 4 km or less have wave amplitudes reaching TBD km in the stable atmosphere above the tropopause, in contrast with much weaker temperature perturbations observed in the middle cloud layer below. The strength of gravity waves increases with latitude in both hemispheres. The results suggest that convection at low latitudes and topographical forcing at high northern latitudes—possibly in combination with convection and/or Kelvin-Helmholtz instabilities—play key roles in the genesis of gravity waves. Further, thermal tides also play an important role in the mesosphere. Diurnal and semi-diurnal wave modes are observed at different latitudes and altitudes. The latitudinal and height dependence of the thermal tide modes will be investigated.

  17. Probe experiment characterizing 30-MHz radio wave scatter in the high-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Nishino, M.; Gorokhov, N.; Tanaka, Y.; Yamagishi, H.; Hansen, T.

    1999-07-01

    A probe experiment, consisting of radio links between a common 30-MHz transmitter located at Murmansk, Russia, and two receivers used as the imaging riometer (two-dimensional 64 multiple-beam antenna) located at Ny lesund, Svalbard, and Tjornes, Iceland, was carried out to characterize wave scatter in the high-latitude ionosphere. They are nearly aligned with and perpendicular to the geomagnetic meridian, respectively. In experiments conducted in March-April 1994, the 30-MHz probe signals were identified at nighttime more frequently than during the day at both receiver stations during periods of increased geomagnetic activity near the path midpoints, indicating that a relationship between the propagation path and the location of the auroral oval controls signal identification. For the nighttime propagation paths within or crossing through the auroral oval, duty cycles of the probe signals were roughly correlated with increases in geomagnetic activity. Their arrival directions showed a spread with a dominant power on the low elevation and a normal distribution in azimuth. These results indicate that the probe signals are characterized as nonmeteoric "auroral E" scatter caused by irregular, large-scale profiles of electron density enhancements at the lower edge of the ionosphere. However, on 2 days of weak geomagnetic activity, strong probe signals with bursty behavior were identified by an extremely high duty cycle (98%) for the nighttime meridian path only, and their arrival directions showed an isotropic spread in azimuth. Such nonmeteoric probe signals are characterized as "coherent" scatter caused by small-scale (5 m) field-aligned irregularities in electron density in the E region ionosphere, related to "sporadic E" occurrence.

  18. Long-Range Transhorizon Lunar Surface Radio Wave Propagation in the Presence of a Regolith and a Sparse Exospheric Plasma

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2008-01-01

    Long-range, over-the-horizon (transhorizon) radio wave propagation is considered for the case of the Moon. In the event that relay satellites are not available or otherwise unwarranted for use, transhorizon communication provides for a contingency or backup option for non line-of-sight lunar surface exploration scenarios. Two potential low-frequency propagation mechanisms characteristic of the lunar landscape are the lunar regolith and the photoelectron induced plasma exosphere enveloping the Moon. Although it was hoped that the regolith would provide for a spherical waveguide which could support a trapped surface wave phenomena, it is found that, in most cases, the regolith is deleterious to long range radio wave propagation. However, the presence of the plasma of the lunar exosphere supports wave propagation and, in fact, surpasses the attenuation of the regolith. Given the models of the regolith and exosphere adopted here, it is recommended that a frequency of 1 MHz be considered for low rate data transmission along the lunar surface. It is also recommended that further research be done to capture the descriptive physics of the regolith and the exospheric plasma so that a more complete model can be obtained. This comprehensive theoretical study is based entirely on first principles and the mathematical techniques needed are developed as required; it is self-contained and should not require the use of outside resources for its understanding.

  19. Making Radio Waves: Tune in to These Tips for Getting Your Campus News on the Air.

    ERIC Educational Resources Information Center

    Stubbee, Melinda

    1993-01-01

    Radio is a relatively simple and effective way to make campus news and information available to the public. Establishing a college radio news service is not difficult, and developing a sound-bite service requires little equipment or expertise, just careful attention to quality and technique. More sophisticated systems can be developed easily. (MSE)

  20. Identification and radio vision of the vertical structure of the layers and wave activity in the atmoshere

    NASA Astrophysics Data System (ADS)

    Alexander, Pavelyev; Kefei, Zhang; Vladimir, Gubenko; Erjiang, Fu; Chuan-Sheng, Wang; Yuei-An, Liou; Yuriy, Kuleshov

    2010-05-01

    Identification and radio vision of the vertical structure of the layers and wave activity in the atmosphere Alexander Pavelyev, Vladimir Gubenko Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Russia Kefei Zhang, Erjiang Fu and Chuan-Sheng Wang School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Australia Yuei-An Liou Center for Space and Remote Sensing Research (CSRSR), National Central University, Jhongli, Taiwan Yuriy Kuleshov National Climate Centre, Bureau of Meteorology, Melbourne, Australia From an analysis of the CHAMP (Challenging Minisatellite Payload, Germany) and the FORMOSAT-3/COSMIC (FORMOSA Satellite Constellation Observing Systems for Meteorology, Ionosphere, and Climate mission, USA -Taiwan) satellite data it follows that the second-order time derivative of the eikonal (eikonal acceleration) and the Doppler frequency shift are two most important parameters indispensable for the radio vision of layers in the atmosphere and the ionosphere. Measurements of the temporal evolution of the Doppler shift permit one to study the vertical structure of the atmosphere under the condition of its spherical symmetry. Analysis of the amplitude and phase of interrelated variations in the eikonal acceleration and radio-wave intensity permits one to detect and identify the layers in the atmosphere and ionosphere. Therefore the eikonal acceleration/intensity technique can be applied to separate the influence of layered structures from contributions of irregularities and turbulence in the atmosphere. In many cases the layered structures in the atmosphere indicate quasi-periodical altitude dependence that reveals their wave origin. The altitude profile of the vertical gradient of refractivity in the layered structures can be used to find the main characteristics of the internal wave activity with a global coverage. When the type of internal waves are not known, the height dependence of the vertical gradient of refractivity can be applied for monitoring the temporal and spatial distributions of wave activity at different levels in the atmosphere. In the case of the internal gravity waves one can measure their important parameters by use of the vertical profile of the refractivity: the intrinsic phase speed, the horizontal wind perturbations and, under some assumptions, the intrinsic frequency as functions of height in the atmosphere. Advantages of the eikonal acceleration/intensity technique are validated by means of analysis of the CHAMP and FORMOSAT-3/COSMIC RO data. Eikonal variations may be converted into refraction attenuation variations, which allows the integral absorption to be determined with the refraction effect on the radio-wave intensity cancelled out. This is necessary for measurements of the water-vapor density and gas minorities during multifrequency radio-occultation sounding along the satellite-to-satellite paths. The obtained results can be of common value for other remote-sounding paths, as well.

  1. Generating a lattice of density variations by heating the F region of the ionosphere with high-power radio waves

    SciTech Connect

    Nekrasov, A.K.

    1993-10-01

    A nonlinear theory is presented for the thermal parametric instability that develops in the F region of the ionosphere under the action of high-power radio waves. In the equations, which describe the evolution of ionospheric plasma density variations extremely elongated in the direction parallel to the geomagnetic field, low-frequency nonlinearities are retained. The resulting equations are studied in the Fourier representation. The conditions are found under which a steady state can develop as a result of the three-wave interaction. Cases are considered in which it is important to treat the influence of the external electric field in the ionospheric plasma and in which the field is negligible. The saturation amplitudes and the spectra of the variations are found. It is shown that time-independent irregularities produced by triads of waves form a periodic lattice moving with the drift velocity due to the electric field and the ion temperature. 31 refs.

  2. ON THE BRIGHTNESS AND WAITING-TIME DISTRIBUTIONS OF A TYPE III RADIO STORM OBSERVED BY STEREO/WAVES

    SciTech Connect

    Eastwood, J. P.; Hudson, H. S.; Krucker, S.; Bale, S. D.; Wheatland, M. S.; Maksimovic, M.; Bougeret, J.-L.; Goetz, K.

    2010-01-10

    Type III solar radio storms, observed at frequencies below {approx}16 MHz by space-borne radio experiments, correspond to the quasi-continuous, bursty emission of electron beams onto open field lines above active regions. The mechanisms by which a storm can persist in some cases for more than a solar rotation whilst exhibiting considerable radio activity are poorly understood. To address this issue, the statistical properties of a type III storm observed by the STEREO/WAVES radio experiment are presented, examining both the brightness distribution and (for the first time) the waiting-time distribution (WTD). Single power-law behavior is observed in the number distribution as a function of brightness; the power-law index is {approx}2.1 and is largely independent of frequency. The WTD is found to be consistent with a piecewise-constant Poisson process. This indicates that during the storm individual type III bursts occur independently and suggests that the storm dynamics are consistent with avalanche-type behavior in the underlying active region.

  3. Scintillation modeling.

    NASA Technical Reports Server (NTRS)

    Fremouw, E. J.; Rino, C. L.

    1972-01-01

    Results of a quantitative attempt to model the scintillation-producing ionospheric irregularities. An empirical model of rms electron-density fluctuation and transverse scale size was employed for this purpose. On the basis of an analysis of diurnal-variation curves for scintillation, it is concluded that in most instances the model will produce better than order-of-magnitude estimates of the strength of scintillation to be expected under average ionospheric conditions. However, a number of significant limitations to the model are noted.

  4. Ionosphere scintillations associated with features of equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Chandra, H.; Vats, H. O.; Sethia, G.; Deshpande, M. R.; Rastogi, R. G.; Sastri, J. H.; Murthy, B. S.

    1979-01-01

    Amplitude scintillations of radio beacons aboard the ATS-6 satellite on 40 MHz, 140 MHz and 360 MHz recorded during the ATS-6 phase II at an equatorial station Ootacamund (dip 4 deg N) and the ionograms at a nearby station Kodaikanal (dip 3.5 deg N) are examined for scintillation activity. Only sporadic E events, other than Es-q, Es-c or normal E are found to be associated with intense daytime scintillations. Scintillations are also observed during night Es conditions. The amplitude spread is associated with strong scintillations on all frequencies while frequency spread causes weaker scintillations and that mainly at 40 MHz.

  5. Measurement of radio wave reflection due to temperature rising from rock salt and ice irradiated by an electron beam for an ultra-high-energy neutrino detector

    SciTech Connect

    Tanikawa, Takahiro; Chiba, Masami; Kamijo, Toshio; Yabuki, Fumiaki; Yasuda, Osamu; Akiyama, Hidetoshi; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Utsumi, Michiaki; Fujii, Masatoshi

    2012-11-12

    An ultra-high-energy neutrino (UHE{nu}) gives temperature rise along the hadronic and electromagnetic shower when it enters into rock salt or ice. Permittivities of them arise with respect the temperatures at ionization processes of the UHE{nu} shower. It is expected by Fresnel's formula that radio wave reflects at the irregularity of the permittivity in the medium. We had found the radio wave reflection effect in rock salt. The reflection effect and long attenuation length of radio wave in rock salt and ice would yield a new UHE{nu} detection method. An experiment for ice was performed to study the reflection effect. A coaxial tube was filled with rock salt powder or ice. Open end of the coaxial tube was irradiated by a 2 MeV electron beam. Radio wave of 435 MHz was introduced to the coaxial tube. We measured the reflection wave from the open end. We found the radio wave reflection effect due to electron beam irradiation in ice as well as in rock salt.

  6. Amplitude and phase scintillation study at Chiang Rai, Thailand

    NASA Astrophysics Data System (ADS)

    Gwal, A.; Feliziani, A.; Dubey, S.; Wahi, R.; Gwal, A. K.

    Ionospheric scintillation is a rapid variation in the amplitude and phase of radio signals caused by irregularities in the ionosphere. In this paper, we study the effect of ionospheric scintillations on GPS signals from the low latitude station in Chiang Rai, Thailand. Ionospheric amplitude and phase scintillation is investigated by using the single frequency GPS Ionospheric Scintillation Monitor (GISM) at Chiang Rai. This system is capable of tracking up to 11 GPS satellites at the L1 frequency of 1575.42 MHz. The purpose of the GISM receiver is to automatically record scintillation parameters of amplitude and phase at a 50 Hz rate averaged over 60 s. The result shows that amplitude scintillation can occur with or without phase scintillation but phase scintillation is always accompanied by amplitude scintillation.

  7. National Radio Astronomy Observatory Announces Closure of Millimeter-Wave Telescope

    NASA Astrophysics Data System (ADS)

    2000-02-01

    The National Radio Astronomy Observatory (NRAO) will close down its millimeter-wavelength telescope on Kitt Peak, Arizona, in July 2000, Director Paul Vanden Bout announced today. The closure will affect the activities of 24 NRAO employees. The Arizona telescope, known as the 12 Meter Telescope because of the diameter of its dish antenna, is the only millimeter-wavelength instrument in the U.S. that is operated full-time as a national facility, open to all scientists. The action was made necessary by the current and anticipated budget for the Observatory, Vanden Bout said. "We are forced to reduce the scope of our activities," Vanden Bout said. The NRAO also operates the Very Large Array and Very Long Baseline Array from its facilities in New Mexico and is completing construction of the Green Bank Telescope in West Virginia. The 12 Meter Telescope is used to observe electromagnetic radiation with wavelengths of a few millimeters down to one millimeter, a region that lies between what is traditionally considered radio waves and infrared radiation. The NRAO is currently participating in an international partnership to develop the Atacama Large Millimeter Array (ALMA), an array of 64 antennas to observe at millimeter wavelengths from a 16,500-foot-high location in northern Chile. "We understood that ALMA eventually would replace the 12 Meter Telescope, but we had hoped to continue operating the 12 Meter until ALMA began interim operations, probably sometime in 2005. That is not possible, and we are forced to close the 12 Meter this year," Vanden Bout said. More than 150 scientists use the 12 Meter Telescope for their research every year. The NRAO's Tucson-based employees have been notified of the Observatory's decision. Some of the NRAO employees in Tucson already are working on the ALMA project. Over the next few months, the NRAO will seek to transfer 12 Meter staff to the ALMA project or to other positions within the Observatory, where that is possible. Where necessary, the Observatory will assist staff members in finding other employment, Vanden Bout said. "In the next few weeks, the Observatory will complete plans for disposing of the 12 Meter Telescope and its associated equipment. In addition, the NRAO will consult with the operators of other millimeter wavelength telescopes in an attempt to ensure that astronomers whose research depends upon such observations can obtain observing time elsewhere. We want to mitigate the effect of this closure upon the scientific community as much as possible," Vanden Bout said. The 12 Meter Telescope has a long and distinguished history of scientific achievement. Built in 1967, it was first known as the 36 Foot Telescope. It was responsible for the birth of millimeter-wavelength molecular astronomy, a field of research in which scientists seek to detect the characteristic "fingerprints" of molecules in space. Dozens of the different molecular species comprising the tenuous material between the stars were first detected by the 36 Foot Telescope. The most significant of these molecular discoveries was carbon monoxide, whose spectral lines are the primary signpost of the formation of new stars in galaxies. In 1984, the telescope was refurbished with a new reflecting surface and support structure. At that time, it was re-christened the 12 Meter Telescope. It continued to make landmark studies of the composition of the interstellar gas clouds and of star formation. In addition, the research program was expanded to include studies of celestial objects such as comets, evolved stars, and external galaxies. Throughout its history, the NRAO Tucson staff has continued to improve the technical capabilities of the 12 Meter Telescope, making it a more useful tool for a wider range of scientific studies. "When ALMA becomes operational, it will produce dramatic advancements in astronomy, and we look forward to those discoveries. However, the success of ALMA will be built in large part on a foundation of millimeter-wavelength expertise and achievement that came from the 12 Meter Telescope and the dedicated people who worked on it for many years. We are sorry that the 12 Meter has to be closed now, but its place in astronomical history is secure and all those who built, maintained, operated, and observed with it can be proud of their accomplishments," Vanden Bout said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  8. Radio science

    NASA Astrophysics Data System (ADS)

    1984-10-01

    Radio science experiments use electromagnetic waves to probe or study the solar system. Three major research areas were identified within this discipline: radio astronomy, radar astronomy, and celestial mechanics. Radio astronomy (or radiometry) is the detection and measurement of naturally produced radio frequency emissions. Sources include surfaces, atmospheres, rings, and plasmas. Radar astronomy is the observation of man-made signals after their interaction with a target. Both imaging and non-imaging results. Celestial mechanics includes all studies related to the motions of (and gravity fields of) bodies within the solar system. These should not be considered rigid separations, but aid in the discussion of the data sets.

  9. Connection between ambient density fluctuations and clumpy Langmuir waves in type III radio sources

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, I. H.; Gurnett, D. A.

    1992-01-01

    A recent stochastic-growth theory of clumpy Langmuir waves in type III sources is shown to imply that the clumps will have the same size distribution as the ambient low-frequency density fluctuations in the solar wind. Spectral analysis of Langmuir-wave time series from the ISEE 3 plasma wave instrument confirms this prediction to within the uncertainties in the spectra. The smallest Langmuir clump size is inferred to be in the range 0.4-30 km in general, and 2-30 km for beam-resonant waves, and it is concluded that the diffusion of waves in the source is anomalous.

  10. Results of Experimental and Theoretical Studies of the Atmospheric Turbulence, Internal Gravity Waves and Sporadic-E Layers by Resonant Scattering of Radio Waves on Artificial Periodic Irregularities

    NASA Astrophysics Data System (ADS)

    Bakhmetieva, Nataliya V.; Grigoriev; Tolmacheva, Ariadna V.

    Artificial periodic irregularities (API) formed by the powerful standing radio waves in the ionospheric plasma give the good chance for the lower ionosphere comprehensive studies. In this paper we present some applications of the API technique for experimental studies of sporadic E-layers (E _{s}), internal gravity waves and turbulent events in the lower ionosphere. API are formed in the field of the standing radio wave produced by interference of the incident wave and reflected one from the ionosphere (in more details about the API technique one can see in the book Belikovich et al., Ionospheric Research by Means of Artificial Periodic Irregularities - Katlenburg-Lindau, Germany. 2002. Copernicus GmbH. ISBN 3-936586-03-9). The spatial period of the irregular structure is equal to the standing wavelength Lambda or one-half the powerful wavelength lambda/2. API diagnostics are carried out at the API relaxation or decay stage by their sounding of probing radio pulses. Based on the measurement of an amplitude and a phase of the API scattered signal their relaxation time and regular vertical plasma velocity are measured. In the E-region of the ionosphere API are formed as a result of the diffusion redistribution of the non-uniformly heated plasma. The relaxation of the periodic structure is specified by the ambipolar diffusion process. The diffusion time is tau=(K (2) D _{a}) (-1) where K=2pi/Lambda and D _{a} is the ambipolar diffusion rate. The atmospheric turbulence causes reduction of the API relaxation time in comparison the diffusion time. Determination of the turbulent velocity is based on this fact. The vertical plasma velocity is determined by measuring the phase of the scattered signal. Atmospheric waves having the periods from 5-10 minutes to 5-6 hours give the contribution to temporal variations of the velocity. Parameters and effects of atmospheric waves and the turbulence on the API relaxation process are presented. Determination of the masses of the predominant metallic ions at the E _{s}-layer height is one of the API applications (Bakhmetieva N.V. and Belikovich V.V. Radiophys. Quantum Electron., 2008, Vol. 51, No 11, pp. 956-969). It is based on the observed fact of the local maximum of the API relaxation time at the sporadic E-layer location. The long-lived metallic ions cause the growth of the API relaxation time tau? at the E _{s}-layer height. It is shown by API technique the sporadic E-layers contain Mg (+) , Ca (+) and Fe (+) ions predominantly at heights of 95-110 km. The new applications are based on the so-called two-frequency method of the API creation and their diagnostics. The method allows one to define the neutral atmosphere and the ionosphere parameters with high accuracy. The main results of the lower ionosphere studies carried out in 2006-2012 by the API technique using the SURA heating facility (56,1 N; 46,15 E) are presented and discussed. We aslo discuss the studies of the HF pumping effects on the formation and parameters of the sporadic E-layers and the modification of the semitransparent E _{s}-layer by the powerful radio wave and diagnostics by the API technique. The work was supported by Russian Foundation for Basic Research under project No 13-02-97067, 13-02-12074 and 13-05-00511.

  11. Determination of sporadic E radio wave propagation parameters based on vertical and oblique sounding

    NASA Astrophysics Data System (ADS)

    Sherstyukov, O. N.; Akchurin, A. D.; Sherstyukov, R. O.

    2015-09-01

    Sporadic E layer is often determined for HF radio communication. We have to deal with oblique radiowave propagation in the radio practice. The limiting frequencies at oblique propagation depend heavily on the transmitter power and the receiver sensitivity. The reason for this, as in the case of vertical propagation, is the dependence of Es reflection coefficient, ?Es (reflection loss R(dB)), on Es operation frequencies. This paper describes the characteristics of HF Es propagation in relation to foEs obtained from ionospheric vertical observations. It was found that characteristics of Es propagation depend on the type and height of the Es layer. Also the foEs diurnal variation at definite R(dB) was detected. This investigation allows improving the prediction of limiting frequencies for HF radio propagation.

  12. Possible radio wave precursors associated with the comet Shoemaker-Levy 9/Jupiter impacts

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Kaiser, M. L.; Desch, M. D.; Macdowall, R. J.

    1994-01-01

    We suggest that prior to its impact with Jupiter, comet Shoemaker-Levy 9 will behave as an electrical generator in the Jovian magnetosphere, converting planetary rotational energy to electrical energy via a dust/plasma interaction. This electrical energy will then be deposited in the dayside auroral region where it may drive various auroral phenomena including cyclotron radio emission. Such emission could be detected by spacecraft like Ulysses and Galileo many hours prior to the actual comet impact with the upper atmosphere. We apply the theory originally developed to explain the spokes in Saturn's rings. This theory allows us to quantify the driving potential associated with the comet and, consequently, to determine the radio power created in the auroral region. We conclude that if enough fine dust is present in the cometary system, comet-induced auroral radio emissions will reach detectable levels. This emission should be observable in the dayside hemisphere about 12-24 hours prior to each fragment impact.

  13. Decameter-wave radio observations of Jupiter during the 1977 apparition

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Kaiser, M. L.; Thieman, J. R.; Vaughan, S. S.

    1978-01-01

    A catalog of observations of Jupiter's sporadic decameter wavelength radio emissions obtained with the Goddard Space Flight Center Jupiter Monitor Network between June 1977 and May 1978 is presented. Data were collected using the Goddard Space Flight Center station in Greenbelt, MD. and at facilities installed at Orroral Valley (Canberra), Australia and the Nancay Radio Observatory in France. Observations were obtained daily at frequencies of 16.7 and 22.2 MHz using five-element Yagi antennas at each end of a two-element interferometer. Plots of the two dimensional emission occurrence probability distribution are given.

  14. Violation of the coherence of radio waves induced by a cascade shower in the lunar regolith

    NASA Astrophysics Data System (ADS)

    Filonenko, A. D.

    2010-05-01

    It has been shown that small fluctuations of the refractive index of the lunar regolith owing to, e.g., a nonuniform density distribution, give rise to the loss of the coherence of a Cherenkov radio pulse induced by a cascade shower from an ultrahigh-energy particle and to a strong decrease in the spectral density of the radio signal. This can be one of the causes of why no events from ultrahigh-energy cosmic particles on the surface of the moon have been detected.

  15. Investigation of radio astronomy image processing techniques for use in the passive millimetre-wave security screening environment

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher T.; Hutchinson, Simon; Salmon, Neil A.; Wilkinson, Peter N.; Cameron, Colin D.

    2014-06-01

    Image processing techniques can be used to improve the cost-effectiveness of future interferometric Passive MilliMetre Wave (PMMW) imagers. The implementation of such techniques will allow for a reduction in the number of collecting elements whilst ensuring adequate image fidelity is maintained. Various techniques have been developed by the radio astronomy community to enhance the imaging capability of sparse interferometric arrays. The most prominent are Multi- Frequency Synthesis (MFS) and non-linear deconvolution algorithms, such as the Maximum Entropy Method (MEM) and variations of the CLEAN algorithm. This investigation focuses on the implementation of these methods in the defacto standard for radio astronomy image processing, the Common Astronomy Software Applications (CASA) package, building upon the discussion presented in Taylor et al., SPIE 8362-0F. We describe the image conversion process into a CASA suitable format, followed by a series of simulations that exploit the highlighted deconvolution and MFS algorithms assuming far-field imagery. The primary target application used for this investigation is an outdoor security scanner for soft-sided Heavy Goods Vehicles. A quantitative analysis of the effectiveness of the aforementioned image processing techniques is presented, with thoughts on the potential cost-savings such an approach could yield. Consideration is also given to how the implementation of these techniques in CASA might be adapted to operate in a near-field target environment. This may enable a much wider usability by the imaging community outside of radio astronomy and thus would be directly relevant to portal screening security systems in the microwave and millimetre wave bands.

  16. Revealing the Hidden Wave: Using the Very Small Radio Telescope to Teach High School Physics

    ERIC Educational Resources Information Center

    Doherty, Michael; Fish, Vincent L.; Needles, Madeleine

    2011-01-01

    Scientists and teachers have worked together to produce teaching materials for the Very Small Radio Telescope (VSRT), an easy-to-use, low-cost apparatus that can be used in multiple laboratory experiments in high school and university physics and astronomy classes. In this article, we describe the motivation for the VSRT and several of the

  17. The Coherer: With Simple Demonstrations of the Generation, Propagation and Detection of Radio Waves

    ERIC Educational Resources Information Center

    Mills, Allan

    2010-01-01

    A coherer is a bistable device based on metal filings loosely confined between solid metal electrodes. This granular material normally exhibits a very high electrical resistance (tens of kilohms), but passage of the high-frequency current generated by reception of a radio signal causes it to "cohere" into a comparatively low resistance condition…

  18. Revealing the Hidden Wave: Using the Very Small Radio Telescope to Teach High School Physics

    ERIC Educational Resources Information Center

    Doherty, Michael; Fish, Vincent L.; Needles, Madeleine

    2011-01-01

    Scientists and teachers have worked together to produce teaching materials for the Very Small Radio Telescope (VSRT), an easy-to-use, low-cost apparatus that can be used in multiple laboratory experiments in high school and university physics and astronomy classes. In this article, we describe the motivation for the VSRT and several of the…

  19. The First Wave: The Beginnings of Radio in Canadian Distance Education

    ERIC Educational Resources Information Center

    Buck, George H.

    2006-01-01

    This article describes one of the first developments and deployment of radio for distance learning and education in Canada, beginning in the early 1920s. Anticipating a recent initiative of public-private partnerships, the impetus, infrastructure, and initial programs were provided by a large corporation. Description of the system, its purpose,…

  20. The Coherer: With Simple Demonstrations of the Generation, Propagation and Detection of Radio Waves

    ERIC Educational Resources Information Center

    Mills, Allan

    2010-01-01

    A coherer is a bistable device based on metal filings loosely confined between solid metal electrodes. This granular material normally exhibits a very high electrical resistance (tens of kilohms), but passage of the high-frequency current generated by reception of a radio signal causes it to "cohere" into a comparatively low resistance condition

  1. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    PubMed Central

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  2. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    PubMed

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  3. Space-Borne Radio-Sounding Investigations Facilitated by the Virtual Wave Observatory (VWO)

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fung, Shing F.; Bilitza,Dieter; Garcia, Leonard N.; Shao, Xi; Galkin, Ivan A.

    2011-01-01

    The goal of the Virtual Wave Observatory (VWO) is to provide userfriendly access to heliophysics wave data. While the VWO initially emphasized the vast quantity of wave data obtained from passive receivers, the VWO infrastructure can also be used to access active sounder data sets. Here we use examples from some half-million Alouette-2, ISIS-1, and ISIS-2 digital topside-sounder ionograms to demonstrate the desirability of such access to the actual ionograms for investigations of both natural and sounder-stimulated plasma-wave phenomena. By this demonstration, we wish to encourage investigators to make other valuable space-borne sounder data sets accessible via the VWO.

  4. Can the fine structure of type II solar radio bursts at decametric and hectometric waves be the consequence of propagation effects in the solar corona?

    NASA Astrophysics Data System (ADS)

    Afanasiev, A. N.

    2009-04-01

    Dynamic spectra obtained with WIND/WAVES and STEREO/SWAVES instruments show that type II solar radio bursts at decametric and longer waves quite often reveal fine structure in the form of narrow-band fibers. The analysis of observational data has made it possible to draw a conclusion (Chernov et al., Solar Phys. 241, 145, 2007) that the fiber structure is formed when the shock wave generating the burst is catching up with a coronal mass ejection (CME) and passing through narrow jets in the wake of the CME. However, the fibers observed display variety in their characteristics, which may be related to different generation mechanisms. As one of possible generation mechanisms, we consider in this paper a mechanism based on propagation effects of radio emission in the corona. The narrow-band fibers, from this point of view, represent traces of focusings of radio emission propagating through the inhomogeneous structure of the CME. The jets with increased electron density play an important role in the mechanism under consideration. In the paper, we have carried out Monte Carlo simulations of radio emission propagation in such a structured corona. We take into account regular refraction of radio waves on the jets and inhomogeneous structure of the CME as well as scattering by the spectrum of chaotic inhomogeneities. The possibilities for identification of the fibers caused by this mechanism, based on SWAVES data are discussed.

  5. Dynamic of Langmuir and Ion-Sound Waves in Type 3 Solar Radio Sources

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Willes, A. J.; Cairns, I. H.

    1993-01-01

    The evolution of Langmuir and ion-sound waves in type 3 sources is investigated, incorporating linear growth, linear damping, and nonlinear electrostatic decay. Improved estimates are obtained for the wavenumber range of growing waves and the nonlinear coupling coefficient for the decay process. The resulting prediction for the electrostatic decay threshold is consistent with the observed high-field cutoff in the Langmuir field distribution. It is shown that the conditions in the solar wind do not allow a steady state to be attained; rather, bursty linear and nonlinear interactions take place, consistent with the highly inhomogeneous and impulsive waves actually observed. Nonlinear growth is found to be fast enough to saturate the growth of the parent Langmuir waves in the available interaction time. The resulting levels of product Langmuir and ion-sound waves are estimated theoretically and shown to be consistent with in situ ISEE 3 observations of type 3 events at 1 AU. Nonlinear interactions slave the growth and decay of product sound waves to that of the product Langmuir waves. The resulting probability distribution of ion-sound field strengths is predicted to have a flat tail extending to a high-field cutoff. This prediction is consistent with statistics derived here from ISEE 3 observations. Agreement is also found between the frequencies of the observed waves and predictions for the product S waves. The competing processes of nonlinear wave collapse and quasilinear relaxation are discussed, and it is concluded that neither is responsible for the saturation of Langmuir growth. When wave and beam inhomogeneities are accounted for, arguments from quasi-linear relaxation yield an upper bound on the Langmuir fields that is too high to be relevant. Nor are the criteria for direct wave collapse of the beam-driven waves met, consistent with earlier simulation results that imply that this process is not responsible for saturation of the beam instability. Indeed, even if the highest observed Langmuir fields are assumed to he part of a long-wavelength 'condensate' produced via electrostatic decay, they still fall short of the relevant requirements for wave collapse. The most stringent requirement for collapse is that collapsing wave packets not be disrupted by ambient density fluctuations in the solar wind. Fields of several mV m(exp -1) extending over several hundred km would be needed to satisfy this requirement; at 1 AU such fields are rare at best.

  6. Dynamics of Langmuir and ion-sound waves in type III solar radio sources

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Willes, A. J.; Cairns, I. H.

    1993-01-01

    The study traces the evolution of Langmuir and ion-sound waves in type III sources, incorporating linear growth, linear damping, and nonlinear electrostatic decay. Improved estimates are obtained for the wavenumber range of growing waves and the nonlinear coupling coefficient for the decay process. It is shown that the conditions in the solar wind do not allow a steady state to be attained; instead, bursty linear and nonlinear interactions take place, consistent with the highly inhomogeneous and impulsive waves actually observed. Nonlinear growth is found to be rapid enough to saturate the growth of the parent Langmuir waves in the available interaction time. The competing processes of nonlinear wave collapse and quasi-linear relaxation are discussed, and it is concluded that neither is responsible for the saturation of Langmuir growth.

  7. High Latitude Scintillation Monitoring at UHF with the COMMX Experiment on TACSat4

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.; Akins, K.; Nurnberger, M.

    2013-12-01

    UHF Beacon Transmissions at 253 MHz have provided high latitude scintillation monitoring from Gakona Alaska using the COMMX instrument on TACSat4. TACSat4 was constructed by the Naval Research Laboratory and was launched in September 2011 as an experimental communications satellite. Ground UHF transmissions are uplinked to TACSat4 using the 4 meter diameter antenna deployed to view the earth. These signals are coherently translated to other UHF frequency to be rebroadcast to the ground. Scintillation monitoring is achieved by taking the 401.25 MHz signals from ground DORIS beacons located in Cold Bay, Alaska; Yellowknife, Canada; Kauai, Hawaii; and Soccoro Island, Mexico. These signals are translated to 253 MHz and broadcast with the 4 meter antenna pointed to the UHF receiver located at Gakona, Alaska. The satellite antenna gain is 18 dB in this UHF band and the transmitter power is 2 Watts. The satellite is in an elliptical orbit with an inclination of 63 degrees and a perigee of 12,000 km. Doppler frequency shifts allow separation of each uplink from the ground DORIS beacons. This new scintillation monitoring system has been used to detect natural and artificial field aligned irregularity effects on the amplitude and phase of UHF carriers where typical scintillation amplitudes are 2dB or less. Using the HAARP transmitter in Alaska, TACSat4 was used to discover the artificial ionization clouds produce scintillation with as much as 16 dB and amplitude indices S4 greater than unity. This is the first demonstration of significant effects on radio scintillations using high power HF radio waves to disturb the ionosphere.

  8. Controlled stimulation of magnetospheric electrons by radio waves Experimental model for lightning effects

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Curtis, S. A.; Barcus, J. R.; Siefring, C. L.; Kelley, M. C.

    1983-01-01

    Magnetospheric electrons precipitated by ground-based coded very low frequency radio transmissions have been detected by rocket measurement of bremsstrahlung X-rays, caused by impact of the electrons with the upper atmosphere. The direct correlations obtained between the very low frequency signals and the X-rays demonstrate the limits of sensitivity required and indicate that this remote sensing technique would be useful for future study of very low frequency effects induced by single lightning strokes.

  9. Onboard Signal Processing: Wave of the Future for Planetary Radio Science?

    NASA Technical Reports Server (NTRS)

    Marouf, E. A.

    1993-01-01

    Future spacecraft-based radio observations of planetary surfaces, rings, and atmospheres could significantly benefit from recent technological advances in real-time digital signal processing (DSP) hardware. Traditionally, the radio observations have been carried out in a 'down link' configuration in which about 20-W spacecraft transmitted RF power illuminates the target of interest and the perturbed signal is collected at an Earth receiving station. The down link configuration was dictated by the large throughput of received data, corresponding to a relatively large recording band width (about 50 kHz) needed to capture the coherent and scattered signal components in the presence of trajectory, ephemeris, and measurement uncertainties. An alternative 'up link' configuration in which powerful Earth-based radio transmitters (20-200 kW) are used to illuminate the target and data are recorded on board a spacecraft could enhance the measurements' signal-to-noise ratio by a factor of about 1000, allowing a quantum leap in scientific capabilities. Various aspects of alternative signal processing technologies are discussed.

  10. Radio emission observed in decimetric waves associated with the onset of CMEs

    NASA Astrophysics Data System (ADS)

    Cecatto, J. R.; Soares, A. C.; Fernandes, F. C. R.; Madsen, F. R. H.; Andrade, M. C.; Sawant, H. S.

    2005-12-01

    Since the first observations by Skylab and SMM satellites coronal mass ejections (CME) have been more and more investigated. However, until now their origin and trigger mechanism remain an open question no matter if they are associated to flares or not. Recent observations over a broad spectrum suggest that flare energy is released in regions from where the decimetric emission is coming. Then, investigations of decimetric radio emission observed in association with CME phenomena may give clues to solve the previously mentioned questions. Using the Brazilian solar spectroscope (BSS), observations of solar bursts dynamic spectra with high time (100, 50, 20 ms) and frequency (50 100 channels) resolutions have been carried out daily (11 19 UT) within the range of 1000 2500 MHz. A sample of 274 CMEs were recorded by the large angle spectroscopic coronagraph (LASCO) instrument, on board the solar and heliospheric observatory (SOHO) satellite, within 11 19 UT, during the period of 1999 2002. From those, 42 CMEs are associated to BSS data and selected for analysis. It is interesting to note that in about half of the cases only one type of burst radio emission was recorded while in the remaining cases either two or more types were observed. There is a dominance of either continuum and/or pulsations. Here, we describe the association of burst radio emission with the starting time of CME phenomena.

  11. Interplanetary conditions during 3-kHz radio-wave detections in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Maclennan, C. G.; Gold, R. E.

    1985-01-01

    Plasma waves detected by the Voyager 1 and 2 spacecraft beyond about 12 AU that may be associated with the turbulence expected at the heliopause are interpreted in terms of the characteristics of the interplanetary medium at large heliocentric distances. The low-energy charged-particle environment in the outer heliosphere during the observations of the unusual plasma-wave signals is addressed. The particle data suggest that the outer heliosphere was unusually stable and free of transient shock and particle events for the roughly eight months during the wave observations.

  12. Internal wave activity in the polar atmospheric regions during 2006 - 2009 revealed by COSMIC radio occultation data

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander; Liou, Yuei-An

    The satellite mission Formosat-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) consists of six micro-satellites, and each of them has four GPS-antennas. It was launched in April 2006, orbiting around the Earth at approximately 800 km. The primary scientific goal of the mission is to demonstrate the value of near-real-time radio occultation (RO) observations in improving operational numerical weather predictions (NWP). The goal is readily shown by assimilating the measurements of atmospheric parameters into used NWP-models. These parameters include density, temperature, pressure and relative humidity fields in the atmosphere. An analysis of their geographic and seasonal distributions is necessary to the understanding of the energy and momentum transfer and the reaction of the polar atmosphere in response to global warming. This task is especially important as the Polar Regions are very sensitive to the change in global temperature and it may be a major cause of global sea level rising. In this work, a statistical analysis of the internal gravity wave (IGW) activity in polar atmospheric regions (latitudes more than 60º) using Formosat-3/COSMIC RO temperature data collected from July 2006 to March 2009 has been performed. Geographic and seasonal distributions of the IGW potential energy (wave activity indicator) in the altitude interval from 15 to 35 km have been determined and analyzed. The obtained results show that the wave activity in the polar atmosphere is strong in winter and spring. The potential energy of IGWs in spring is largest in Antarctic atmospheric region, while it is largest in winter in Arctic region. The wave potential energy increases with altitude up to 35 km in the atmosphere of both Earth’s hemispheres. In Antarctic region, internal waves with high potential energy occur in the atmosphere over the Antarctic Peninsula. In Arctic region, a high wave activity is mainly observed over North Atlantic Ocean (Iceland) and Scandinavian Peninsula. In this work, the results of an analysis of the wave activity and factors influencing upon it in the polar stratosphere of Arctic and Antarctic have been presented and discussed. A statistical analysis of the IGW activity in Polar Regions (latitudes more than 60º) of the Earth’s atmosphere using Formosat-3/COSMIC RO temperature data collected from July 2006 to March 2009 is performed. Geographic and seasonal distributions of the IGW potential energy per unit mass (wave activity indicator) in the altitude interval from 15 to 35 km are determined and analyzed. This work was partially supported by the RFBR grant 13-02-00526-а and Program 22 of the RAS Presidium.

  13. Numerical investigation of fast-wave propagation and radio-frequency sheath interaction with a shaped tokamak wall

    NASA Astrophysics Data System (ADS)

    Kohno, H.; Myra, J. R.; D'Ippolito, D. A.

    2015-07-01

    Interactions between propagating fast waves and radio-frequency (RF) sheaths in the ion cyclotron range of frequencies are numerically investigated based on a cold fluid plasma model coupled with a sheath boundary condition. In this two-dimensional study, the capability of the finite element code rfSOL, which was developed in previous numerical work, is extended to analyze self-consistent RF sheath-plasma interaction problems in a tokamak with a non-circular cross-section. It is found that a large sheath voltage is generated near the edges of the limiter-shaped deformation as a result of the conversion from fast to slow waves on the sheaths. The sheath voltage associated with this conversion is particularly significant in the localized region where the contact angle between the magnetic field line and the conducting wall varies rapidly along the curved sheath surface, which is consistent with the results in previous one-dimensional theoretical work. The dependences of the RF sheaths on various parameters in plasma such as the toroidal wavenumber, edge plasma density, and the degree of the RF wave absorption in the core region are also examined in detail.

  14. Coordinated Radio, Electron, and Waves Experiment (CREWE) for the NASA Comet Rendezvous and Asteroid Flyby (CRAF) instrument

    NASA Technical Reports Server (NTRS)

    Scudder, Jack D.

    1992-01-01

    The Coordinated Radio, Electron, and Waves Experiment (CREWE) was designed to determine density, bulk velocity and temperature of the electrons for the NASA Comet Rendezvous and Asteroid Flyby Spacecraft, to define the MHD-SW IMF flow configuration; to clarify the role of impact ionization processes, to comment on the importance of anomalous ionization phenomena (via wave particle processes), to quantify the importance of wave turbulence in the cometary interaction, to establish the importance of photoionization via the presence of characteristic lines in a structured energy spectrum, to infer the presence and grain size of significant ambient dust column density, to search for the theoretically suggested 'impenetrable' contact surface, and to quantify the flow of heat (in the likelihood that no surface exists) that will penetrate very deep into the atmosphere supplying a good deal of heat via impact and charge exchange ionization. This final report provides an instrument description, instrument test plans, list of deliverables/schedule, flight and support equipment and software schedule, CREWE accommodation issues, resource requirements, status of major contracts, an explanation of the non-NASA funded efforts, status of EIP and IM plan, descope options, and Brinton questions.

  15. Ionospheric Phenomena and Low-Frequency Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Herne, D.; Kennewell, J.; Lynch, M.; Carrano, C.

    2014-05-01

    The Murchison Widefield Array radio telescope (MWA), situated on the Murchison Radio Observatory (MRO) in Western Australia, has recently commenced operations. This instrument operates over the frequency range 80-300 MHz. Further, the MRO is also the site chosen to host the low-frequency component of the Square Kilometre Array, radio telescope (SKA). Each instrument is susceptible to scintillation caused by fluctuations in ionospheric plasma density and Faraday rotation of incoming signals caused by the interaction of low-frequency radio waves with dissociated electrons in the ionosphere. Observations of these parameters over several years, across periods of both subdued and elevated solar activity have demonstrated markedly differing regimes. High-precision GPS systems, combined with purpose-written data acquisition software (SCINDA), have enabled investigation of various phenomena including the effect of solar storms on the ionosphere at highly resolved time-scales. We report on aspects of phenomena observed and their significance to low-frequency radio astronomy and note that conditions of very low scintillation encountered support the decision to site world-leading instruments on the MRO.

  16. Structure of ionospheric irregularities from amplitude and phase scintillation observations

    SciTech Connect

    Bhattacharyya, A.; Rastogi, R.G. )

    1991-04-01

    The mutual coherence function Gamma 2, or the second moment of the complex amplitude of a radio wave which traverses through equatorial F region irregularities, is computed from amplitude and phase scintillation data. Theoretically, the equation satisfied by the coherence function has an analytic solution over the whole range of scintillation strength. This solution is directly related to the structure function for the phase fluctuations produced by the irregularities. Hence, the shape of the correlation function for variations in the total electron content along the signal path can be derived from the computed values of Gamma 2. With a suitable power-law model for the irregularities, an 'intermediate break scale', this scale, as well as the rms density fluctuation are deduced from a comparison of computed values for short-time lags with those expected from theory. During a postsunset scintillation event, this scale is found to increase with local time. In the context of the generalized Rayleigh-Taylor instability, which is the likely source of the irregularities, this increase may be attributed to a decline in the effective electric field prevailing in the region of the irregularities. 26 refs.

  17. Modeling of high frequency radio wave absorption on oblique soundings during a solar X-ray flare

    NASA Astrophysics Data System (ADS)

    Rogov, D. D.; Moskaleva, E. V.; Zaalov, N. Y.

    2015-01-01

    High frequency radio wave absorption induced by Solar Ultra-Violet (UV) and X-ray flux is investigated. The influence of the solar flare observed on 11 April 2013 on the structure of oblique sounding ionograms in the Arctic region of Russia is considered. An adjustable model of the ionosphere developed for high frequency (HF) propagation problems was employed for this purpose. The simulation algorithm has been designed to accept a large variety of ionospheric conditions. On the basis of the SWPC D-region Absorption model the absorption effects in the ionosphere at sub-auroral latitudes of the Earth were calculated. This approach does not require knowledge of the electron density and electron collision frequency profiles of the D-region ionosphere. The oblique ionograms simulated with the absorption effect and ionograms provided by Russian network of ionospheric observations deployed in Arctic region exhibit quite a good resemblance.

  18. Dynamics of plasma density perturbations in the upper ionosphere and the magnetosphere under the action of powerful HF radio waves

    NASA Astrophysics Data System (ADS)

    Borisov, N.; Ryabova, N.; Ruzhin, Yu.

    2015-11-01

    Dynamics of the density perturbations of the main plasma components (electrons, oxygen and hydrogen ions) in the upper ionosphere and the magnetosphere under the action of powerful HF radio waves is discussed theoretically and numerically. For finite heating pulse and different effective powers the variations of the density perturbations in time at various heights are investigated. We argue that due to collisionless damping the magnetospheric duct along the whole field line is not formed. Instead positive and negative perturbations of the main plasma components propagating with the attenuation in the magnetosphere with two different speeds are predicted. Utilization of pulsed heating provides significant information concerning plasma perturbations in the upper ionosphere and the magnetosphere.

  19. Detection of Transionospheric SuperDARN HF Waves by the Radio Receiver Instrument on the enhanced Polar Outflow Probe Satellite

    NASA Astrophysics Data System (ADS)

    Gillies, R. G.; Yau, A. W.; James, H. G.; Hussey, G. C.; McWilliams, K. A.

    2014-12-01

    The enhanced Polar Outflow Probe (ePOP) Canadian small-satellite was launched in September 2013. Included in this suite of eight scientific instruments is the Radio Receiver Instrument (RRI). The RRI has been used to measure VLF and HF radio waves from various ground and spontaneous ionospheric sources. The first dedicated ground transmission that was detected by RRI was from the Saskatoon Super Dual Auroral Radar Network (SuperDARN) radar on Nov. 7, 2013 at 14 MHz. Several other passes over the Saskatoon SuperDARN radar have been recorded since then. Ground transmissions have also been observed from other radars, such as the SPEAR, HAARP, and SURA ionospheric heaters. However, the focus of this study will be on the results obtained from the SuperDARN passes. An analysis of the signal recorded by the RRI provides estimates of signal power, Doppler shift, polarization, absolute time delay, differential mode delay, and angle of arrival. By comparing these parameters to similar parameters derived from ray tracing simulations, ionospheric electron density structures may be detected and measured. Further analysis of the results from the other ground transmitters and future SuperDARN passes will be used to refine these results.

  20. Cometary kilometric radio waves and plasma waves correlated with ion pick-up effect at Comet Halley

    NASA Technical Reports Server (NTRS)

    Oya, H.; Morioka, A.; Miyake, W.; Smith, E. J.; Tsurutani, B. T.

    1985-01-01

    Bow-shock movements at Comet Halley are inferred from the discrete spectra of the cometary kilometric radiation (30-195 kHz); the observed emissions can be interpreted as being generated and propagating from the moving shock. The shock motion is possibly associated with the time variation of the solar wind and cometary outgassing. It is concluded that these plasma wave phenomena are manifestations of ion pick-up processes, which occur even in a remote region 7 million to 10 million km from the cometary nucleus.

  1. Phenomena in the ionosphere-magnetosphere system induced by injection of powerful HF radio waves into nightside auroral ionosphere

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Kornienko, V. A.; Thid, B.; Rietveld, M. T.; Kosch, M. J.; Bsinger, T.

    2005-01-01

    Experimental results from three ionospheric HF pumping experiments in overdense E or F regions are summarized. The experiments were conducted by the use of the EISCAT HF Heating facility located near Troms, Norway, allowing HF pumping the ionosphere in a near geomagnetic field-aligned direction. Distinctive features related to auroral activations in the course of the experiments are identified. Typical features observed in all experiments are the following: generation of scattered components in dynamic HF radio scatter Doppler spectra; strong increase of ion temperatures Ti and local ionospheric electric field E0; modification of the auroral arc and local spiral-like formation. However, some effects were observed only when the HF pump wave was reflected from the F2 layer. Among them are the generation of intense field-aligned ion outflows, and a strong increase in the electron temperature Te with altitude. A possible scenario for the substorm triggering due to HF pumping into an auroral ionosphere is discussed. The authors present their interpretation of the data as follows. It is suggested that two populations of charged particles are at play. One of them is the runaway population of electrons and ions from the ionosphere caused by the effects of the powerful HF radio wave. The other is the population of electrons that precipitate from the magnetosphere. It is shown that the hydrodynamical equilibrium was disrupted due to the effects of the HF pumping. We estimate that the parallel electric field can reach values of the order of 30mV/m during substorm triggering.

  2. Solar gravitational deflection of radio waves measured by very-long-baseline interferometry

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Kent, S. M.; Knight, C. A.; Shapiro, I. I.; Clark, T. A.; Hinteregger, H. F.; Rogers, A. E. E.; Whitney, A. R.

    1974-01-01

    Utilizing a four-antenna technique, simultaneous observations were made, at each end of an 845-km baseline, of the radio sources 3C279 and 3C273B, which are 10 deg apart in the sky. Differences in interferometric phases at 3.7-cm wavelength monitored near the time of the 1972 occultation of 3C279 by the sun, yielded a gravitational deflection of 0.99 plus or minus 0.03 times the value predicted by general relativity, corresponding to gamma = 0.98 plus or minus 0.06 (standard error).

  3. Using IRI and GSM TIP model results as environment for HF radio wave propagation model during the geomagnetic storm occurred on September 26-29, 2011

    NASA Astrophysics Data System (ADS)

    Kotova, D. S.; Klimenko, M. V.; Klimenko, V. V.; Zakharov, V. E.; Ratovsky, K. G.; Nosikov, I. A.; Zhao, B.

    2015-11-01

    This paper analyses the geomagnetic storm on September 26-29, 2011. We compare the calculation results obtained using the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) and IRI-2012 (Bilitza et al., 2014) model with ground-based ionosonde data of stations at different latitudes and longitudes. We examined physical mechanisms responsible for the formation of ionospheric effects during the main phase of geomagnetic storm that occurred at the rising phase of the 24th solar cycle. We used numerical results obtained from IRI-2012 and GSM TIP models as propagation environment for HF signals from an equatorial transmitter during quiet and disturbed conditions. We used the model of HF radio wave propagation developed in I. Kant Baltic Federal University (BFU) that is based on the geometrical optics approximation. We compared the obtained radio paths in quiet conditions and during the main and recovery storm phases and evaluated radio wave attenuation in different media models.

  4. Effect of gravity waves on the tropopause temperature, height and water vapor in Tibet from COSMIC GPS Radio Occultation observations

    NASA Astrophysics Data System (ADS)

    Khan, Attaullah; Jin, Shuanggen

    2016-02-01

    The tropopause plays an important role in climate change, particularly in Tibet with complex topography and climate change system. In this paper, the temperature and height of the Cold Point Tropopause (CPT) in Tibet are obtained and investigated from COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) GPS Radio Occultation (RO) during June 2006-Feb 2014, which are compared with Lapse Rate Tropopause (LRT) from Atmospheric Infrared Sounder (AIRS/NASA). Furthermore, the impact of Gravity waves (GW) potential energy (Ep) on the CPT-Temperature, CPT-Height, and the variation of stratospheric water vapor with GW Ep variations are presented. Generally the coldest CPT temperature is in June-July-August (JJA) with -76.5 °C, resulting less water vapor into the stratosphere above the cold points. The temperature of the cold point increases up to -69 °C during the winter over the Tibetan Plateau (25-40°N, 70-100°E) that leads to increase in water vapor above the cold points (10 hPa). Mean vertical fluctuations of temperature are calculated as well as the mean gravity wave potential energy Ep for each month from June 2006 to Feb 2014. Monthly Ep is calculated at 5°×5° grids between 17 km and 24 km in altitude for the Tibetan Plateau. The Ep raises from 1.83 J/Kg to 3.4 J/Kg from summer to winter with mean Ep of 2.5 J/Kg for the year. The results show that the gravity waves affect the CPT temperature and water vapor concentration in the stratosphere. Water vapor, CPT temperature and gravity wave (Ep) have good correlation with each other above the cold points, and water vapor increases with increasing Ep.

  5. An improvement of the sensitivity of GPS radio occultation data to detect gravity waves through observational and modeling factors

    NASA Astrophysics Data System (ADS)

    Alexander, P.; de la Torre, A.; Hierro, R.; Llamedo, P.

    2016-01-01

    There is a mid-latitude region to the East of the Andes Range in the Southern Hemisphere that exhibits ideal conditions for the generation of gravity waves (GW) by topography mainly during winter. The configuration favors the generation of wavefronts that are parallel to the North-South direction. Global Positioning System (GPS) radio occultation (RO) retrievals from the COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) mission exhibit in a large proportion of the soundings an orientation which should be favorable to the detection of these wavefronts. We try to verify if this GW activity surplus on the East with respect to the West in the studied zone in winter emerges clearly in the GPS RO data between years 2007 and 2012. We argue that the orientation of the soundings but also the mathematical model selected to represent the GW energy distribution can affect the possibility of detecting the signatures of the waves. In particular, we explore a new interpretation of the GW energy distribution observed by GPS RO at the lowest values, as they stay below the precision limit of the technique. We suggest to replace that part of the measured distribution by an exponential curve that in general suits the trend of all the other observed energies. In following this alternative it is shown that the calculated mountain wave activity in the studied sector is now even more clearly larger in the East than in the West during winter. Finally, we consider that energy distributions observed with any measurement technique should in general not be considered as the solely contribution from waves, as also other variable phenomena may be adding to the final outcome.

  6. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 1

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1973-01-01

    An extensive set of ground-based measurements of the diurnal variation of medium frequency radio wave adsorption and virtual height is analyzed in terms of current understanding of the D- and lower E-region ion production and loss process. When this is done a gross discrepancy arises, the source of which is not known.

  7. The search for atmospheric waves below the clouds of Jupiter using radio wavelength observations

    NASA Astrophysics Data System (ADS)

    Cosentino, Rick; Butler, Bryan; Sault, Bob; Morales-Juberias, Raul; Simon, Amy

    2015-11-01

    We observed Jupiter at 2 cm wavelength with the VLA in early February 2015. This particular frequency is mostly sensitive to variations in ammonia opacity and probes a depth between 1 and 2 bars pressure; below the visible cloud deck at 0.7 bars. The data acquired was projected into a cartographic map of the planet following the technique of Sault et al. (2004). The horizontal resolution is ~1500 km and we have examined the map for atmospheric waves on these and larger scales. The map has revealed prominent features near 8N, in the North Equatorial Belt, where the 5 micron hotspot planetary wave feature also resides. The Great Red Spot is also prominent and has a noticeable meridional asymmetry. We will present our analysis of the spatial structure for the entire map and best fit of its wave feature spectrum.Our research is supported by NRAO and NMT.

  8. Clumpy Langmuir waves in type III radio sources - Comparison of stochastic-growth theory with observations

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, I. H.; Gurnett, D. A.

    1993-01-01

    Detailed comparisons are made between the Langmuir-wave properties predicted by the recently developed stochastic-growth theory of type III sources and those observed by the plasma wave experiment on ISEE 3, after correcting for the main instrumental and selection effects. Analysis of the observed field-strength distribution confirms the theoretically predicted form and implies that wave growth fluctuates both spatially and temporally in sign and magnitude, leading to an extremely clumpy distribution of fields. A cutoff in the field-strength distribution is seen at a few mV/m, corresponding to saturation via nonlinear effects. Analysis of the size distribution of Langmuir clumps yields results in accord with those obtained in earlier work and with the size distribution of ambient density fluctuations in the solar wind. This confirms that the inhomogeneities in the Langmuir growth rate are determined by the density fluctuations and that these fluctuations persist during type III events.

  9. Nonaxisymmetrical beaming cone of radio waves produced by cyclotron maser instability in inhomogeneous medium

    NASA Astrophysics Data System (ADS)

    Galopeau, Patrick; Boudjada, Mohammed; Rucker, Helmut

    2015-04-01

    The results we have recently obtained about the beaming of the Io-controlled decameter Jovian radio emission allow us to conclude that this radiation is emitted in a hollow cone flattened in a particular direction linked to the local magnetic field. The existence of such an emission cone leads us to understand the location of the Io-controlled sources (Io-A, Io-B, Io-C, and Io-D) in the CML-Io phase diagram and to interpret their dependence on the longitude as the manifestation of a Jovian active longitude sector, where the emission mechanism is the most efficient. We study the origin of the flattening of the emission cone in the framework of a radio emission produced by the cyclotron maser instability in an inhomogeneous medium where the local magnetic field B and the gradient of its modulus downtriangleB are not parallel, i.e., in a geometry without axial symmetry. We consider that the radiation propagates in the source region in the X-mode near its cutoff frequency.

  10. A catalog of jovian decameter-wave radio observations from 1957 - 1978

    NASA Technical Reports Server (NTRS)

    Thieman, J. R.

    1979-01-01

    Data from over 200,000 hours of observation of Jupiter radio emission in the decameter-wavelength band, were collected from 13 observing sites and are available on magnetic tape. Observations were made at 14 fixed frequencies from 5 to 30 MHz. The characteristics of the tape recording technique and the data format are described. The combination of overlapping data from observing sites scattered world-wide lessens the effect of the earth's daily interruption of the ground-received signal. A power spectral analysis of the data shows no evidence of periodicities within the data other than the well-known influences of Jupiter, Io, and the earth. The dependence of the occurrence probability of emission on System 3 longitude and the phase of Io varies smoothly with frequency down to 15 MHz and then appears quite different at 10 MHz. The morphology of the radio sources is both complex and stable for periods of at least months and probably much longer.

  11. Plasma ionization through wave-particle interaction in a capacitively coupled radio-frequency discharge

    SciTech Connect

    O'Connell, D.; Gans, T.; Vender, D.; Czarnetzki, U.; Boswell, R.

    2007-03-15

    Phase resolved optical emission spectroscopy, with high temporal resolution, shows that wave-particle interactions play a fundamental role in sustaining capacitively coupled rf plasmas. The measurements are in excellent agreement with a simple particle-in-cell simulation. Excitation and ionization mechanisms are dominated by beam-like electrons, energized through the advancing and retreating electric fields of the rf sheath. The associated large-amplitude electron waves, driven by a form of two-stream instability, result in power dissipation through electron trapping and phase mixing.

  12. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    SciTech Connect

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-07-15

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter.

  13. Observations of electron gyroharmonic waves and the structure of the Io torus. [jupiter 1 spacecraft radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Alexander, J. K.; Desch, M. D.; Hubbard, R. F.; Pedersen, B. M.

    1980-01-01

    Narrow-banded emissions were observed by the Planetary Radio Astronomy experiment on the Voyager 1 spacecraft as it traversed the Io plasma torus. These waves occur between harmonics of the electron gyrofrequency and are the Jovian analogue of electrostatic emissions observed and theoretically studied for the terrestrial magnetosphere. The observed frequencies always include the component near the upper hybrid resonant frequency, (fuhr) but the distribution of the other observed emissions varies in a systematic way with position in the torus. A refined model of the electron density variation, based on identification of the fuhr line, is included. Spectra of the observed waves are analyzed in terms of the linear instability of an electron distribution function consisting of isotropic cold electrons and hot losscone electrons. The positioning of the observed auxiliary harmonics with respect to fuhr is shown to be an indicator of the cold to hot temperature ratio. It is concluded that this ratio increases systematically by an overall factor of perhaps 4 or 5 between the inner and outer portions of the torus.

  14. Disks, Young Stars, and Radio Waves: The Quest for Forming Planetary Systems

    NASA Astrophysics Data System (ADS)

    Chandler, C. J.; Shepherd, D. S.

    2008-08-01

    Kant and Laplace suggested the Solar System formed from a rotating gaseous disk in the 18th century, but convincing evidence that young stars are indeed surrounded by such disks was not presented for another 200 years. As we move into the 21st century the emphasis is now on disk formation, the role of disks in star formation, and on how planets form in those disks. Radio wavelengths play a key role in these studies, currently providing some of the highest-spatial-resolution images of disks, along with evidence of the growth of dust grains into planetesimals. The future capabilities of EVLA and ALMA provide extremely exciting prospects for resolving disk structure and kinematics, studying disk chemistry, directly detecting protoplanets, and imaging disks in formation.

  15. Effect of radio frequency waves of electromagnetic field on the tubulin.

    PubMed

    Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi

    2013-09-01

    Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject. PMID:23470160

  16. Plasma instabilities in the high-latitude E region induced by high-power radio waves

    SciTech Connect

    Chaturvedi, P.K.; Ossakow, S.L. )

    1990-09-01

    The effect of a high-frequency powerful pump wave on high-latitude E region low-frequency plasma instabilities is theoretically considered. The growth rates and threshold criteria are calculated for instabilities associated with the electrojet (Farley-Buneman, gradient drift) and with higher-altitude parallel currents (ion acoustic, ion cyclotron, current convective). The results are discussed in the context of present ionospheric modification (heating) experiments.

  17. Growth rates for modulational instabilities of radio waves in highly collisional ionospheric plasmas

    SciTech Connect

    Shukla, P.K.; Vladimirov, S.V.

    1994-03-01

    This paper looks at the nonlinear couplings which result from the transmission of powerful electromagnetic waves thru the ionosphere, which can be considered highly collisional in nature. The authors take into account ponderomotive forces, differential Joule heating, and the relativistic mass shift of the electron. They are able to derive an expression which accounts for the growth rate of the observed modulational instability which is excited.

  18. The thresholds of ionospheric plasma instabilities pumped by high-frequency radio waves at EISCAT

    NASA Astrophysics Data System (ADS)

    Bryers, C. J.; Kosch, M. J.; Senior, A.; Rietveld, M. T.; Yeoman, T. K.

    2013-11-01

    We test the existing theories regarding the thresholds for the parametric decay instability (PDI), the oscillating two-steam instability (OTSI), and the thermal parametric instability (TPI) using the European Incoherent Scatter (EISCAT) facility's ionospheric heater. In these processes, the pump wave can couple to various electrostatic waves in the F layer ionosphere, which can be observed using the EISCAT UHF radar (PDI and OTSI) or by HF radar (TPI). On 19 October 2012, the heater power was stepped from 0.5 MW to 100 MW effective radiated power in seven steps using a 1 min on, 1 min off cycle. We use an electric field model, taking into account D region absorption, to compare theory with our observations. In all three cases, we find good agreement. In addition, the growth of striations formed during the TPI causes anomalous absorption of the heater wave, which we observe as decreased UHF ion line and plasma line backscatter power. We show evidence that heating for a prolonged period of time reduces the UHF ion line intensity throughout the experiment.

  19. Are type III radio aurorae directly excited by electrostatic ion cyclotron waves

    SciTech Connect

    McDiarmid, D.R.; Watermann, J.; McNamara, A.G. ); Koehler, J.A.; Sofko, G.J. )

    1989-10-01

    In 1981, a network of three 50-MHz radar transmitters and two receivers were operated in the CW mode on the Canadian prairies. The echoes obtained from coherent ionospheric backscatter were divided into segments of 205 ms such that their FFT spectra yielded frequency resolution of 4.9 Hz. The spectra were subsequently averaged over 10 s. Type III spectra (narrow spectra with sub ion-acoustic Doppler shifts) were observed (often simultaneously) on radar links whose wave vector components perpendicular to the geomagnetic field were almost identical while their components parallel to the field were significantly different. From a statistical analysis of more than 300 type III spectra it is inferred that these are in general unlikely to arise from electrostatic ion cyclotron waves directly excited by an essentially linear process. Doppler shifts around 55 Hz were much more frequently observed than around 30 Hz, the occurrence of type III spectra increased with increasing magnetic aspect angle (deviation of the scatter wave vector from perpendicular to the geomagnetic field), and the mean Doppler shifts of type III spectra simultaneously on different radar links went through a minimum for aspect angles between 4{degree} and 7{degree} (depending on the assumed backscatter height). These three results disagree with theoretical expectations. The spectral width the type III echoes decreased linearly with magnetic aspect by about 2 Hz/deg.

  20. Potential Spacecraft-to-Spacecraft Radio Observations with EJSM: Wave of the Future? (Invited)

    NASA Astrophysics Data System (ADS)

    Marouf, E. A.; Tortora, P.; Asmar, S. W.; Folkner, W. M.; Hinson, D.; Iess, L.; Linscott, I. R.; Lorenz, R. D.; Mueller-Wodarg, I. C.

    2010-12-01

    Future active radio observations of planetary and satellite atmospheres and surfaces could significantly benefit form the presence of two or more spacecraft in orbit around a target object. Traditionally, radio occultation and bistatic surface scattering experiments have been conducted using a single spacecraft operating in the Downlink (DL) configuration, with the spacecraft transmitting and at least one Earth-based station receiving. The configuration has the advantage of using powerful ground-based receivers for down-conversion, digitization, and digital recording of large bandwidth data for later off-line processing and analysis. It has the disadvantage of an available free-space signal-to-noise ratio (SNR) limited by the relatively small carrier power (10-20 W) a spacecraft can practically transmit. Recent technological advances in designing small-mass and small-power spacecraft-based digital receivers capable of on-board signal processing could open the door for significant performance improvement compared with the DL configuration. For example, with two spacecraft in orbit instead of one, the smaller distance D between the two spacecraft compared with the distance to Earth can boost achievable free-space SNR by one to three orders of magnitude, depending on D. In addition, richer variability in observation geometry can be captured using spacecraft-to-spacecraft (SC-to-SC) radio occultations and surface scattering. By their nature, traditional DL occultations are confined to the morning and evening terminators. Availability of on-board processing capability also opens the door for conducting Uplink (UL) occultation and bistatic observations, where very large power (> 20 kW) can be transmitted from an Earth-based station, potentially boasting achievable free-space SNR by orders of magnitude, comparable to the SC-to-SC case and much higher than the DL case. The Europa Jupiter System Mission (EJSM) will likely be the first planetary mission to benefit from the unprecedented opportunity of having two highly capable spacecraft orbiting Jupiter in concert and during the same time window. The strawman payload of the American Jupiter Europa Orbiter (JEO) and the European Jupiter Ganymede Orbiter (JGO) envisions at least one spacecraft (JGO) hosting an on-board digital receiving and processing capability. The receiver is specifically designed to allow for synergistic SC-to-SC observations, as well as Earth-to-JGO UL observations. In principle, each spacecraft can host an on-board digital receiver for rich combinations of high-performance synergistic or individual observations, depending on the opportunity. For the envisioned EJSM strawman payload and example tour, we examine achievable performance for potential observations that include SC-to-SC, UL, and DL occultations of Jupiters ionosphere and neutral atmosphere, the ionospheres and thin atmospheres of the large Jovian satellites, and of the tenuous Jovian Rings. We also consider potential bistatic scattering (bistatic-radar) observation opportunities of the surfaces of Europa and Ganymede.

  1. Statistical Survey of Type III Radio Bursts at Long Wavelengths Observed by the Solar TErrestrial RElations Observatory (STEREO)/ Waves Instruments: Goniopolarimetric Properties and Radio Source Locations

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Maksimovic, M.; Santolik, O.; Cecconi, B.; Kruparova, O.

    2014-12-01

    We have performed a statistical analysis of a large number of Type III radio bursts observed by STEREO between May 2007 and February 2013. Only intense, simple, and isolated cases have been included in our data set. We focused on the goniopolarimetric (GP, also referred to as direction-finding) properties at frequencies between 125 kHz and 2 MHz. The apparent source size ? is very extended (? 60?) for the lowest analyzed frequencies. Observed apparent source sizes ? expand linearly with a radial distance from the Sun at frequencies below 1 MHz. We show that Type III radio bursts statistically propagate in the ecliptic plane. The calculated positions of radio sources indicate that scattering of the primary beam pattern plays an important role in the propagation of Type III radio bursts in the interplanetary medium.

  2. Modeling of long-path propagation characteristics of VLF radio waves as observed from Indian Antarctic station Maitri

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudipta; Palit, Sourav; Chakrabarti, Sandip K.

    2015-10-01

    Propagation of very low frequency (VLF) radio signal through the Earth-ionosphere waveguide depends strongly on the plasma properties of the ionospheric D layer. Solar extreme ultraviolet radiation plays the central role in controlling physical and chemical properties of the lower ionospheric layers and hence determining the propagation characteristics of a VLF signal. The nature of interference among different propagating modes varies widely with the length of the propagation path. For a very long path, exposure of solar radiation and thus the degree of ionization vary by a large amount along the path. This influences the VLF signal profile by modulating the sky wave propagation. To understand the propagation characteristics over such a long path, we need a thorough investigation of the chemical reactions of the lower ionosphere which is lacking in the literature. Study of radio signal characteristics in the Antarctic region during summer period in the Southern Hemisphere gives us a unique opportunity to explore such a possibility. In addition, there is an extra feature in this path—the presence of solar radiation and hence the D region for the whole day during summer in at least some sections of the path. In this paper, we present long-distance propagation characteristics of VLF signals transmitted from VTX (18.2 kHz) and NWC (19.8 kHz) transmitters recorded at the Indian permanent station Maitri (latitude 70°45'S, longitude 114°40'E) in 2007-2008. A very stable diurnal variation of the signal has been obtained with no signature of nighttime fluctuation due the presence of 24 h of sunlight. Using ion production and recombination profiles by solar irradiance and incorporating D region ion chemistry processes, we calculate the electron density profile at different heights. Using this profile in the Long Wavelength Propagation Capability code, we are able to reproduce the amplitude of VLF signal.

  3. Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Ekers, Ron; Wilson, Thomas L.

    ``Radio Telescopes" starts with a brief historical introduction from Jansky's1931 discovery of radio emission from the Milky Way through the development ofradio telescope dishes and arrays to aperture synthesis imaging. It includessufficient basics of electromagnetic radiation to provide some understanding of thedesign and operation of radio telescopes. The criteria such as frequencyrange, sensitivity, survey speed, angular resolution, and field of view thatdetermine the design of radio telescopes are introduced. Because it is soeasy to manipulate the electromagnetic waves at radio frequencies, radiotelescopes have evolved into many different forms, sometimes with "wire"structures tuned to specific wavelengths, which look very different from anykind of classical telescope. To assist astronomers more familiar with otherwavelength domains, the appendix A.1. includes a comparison of radioand optical terminology. Some of the different types of radio telescopesincluding the filled aperture dishes, electronically steered phased arrays, andaperture synthesis radio telescopes are discussed, and there is a sectioncomparing the differences between dishes and arrays. Some of the morerecent developments including hierarchical beam forming, phased arrayfeeds, mosaicing, rotation measure synthesis, digital receivers, and longbaseline interferometers are included. The problem of increasing radiofrequency interference is discussed, and some possible mitigation strategies areoutlined.

  4. Radiation hazards of radio frequency waves on the early embryonic development of Zebrafish

    NASA Astrophysics Data System (ADS)

    Harkless, Ryan; Al-Quraishi, Muntather; Vagula, Mary C.

    2014-06-01

    With the growing use of wireless devices in almost all day-to-day activities, exposure to radio-frequency radiation has become an immediate health concern. It is imperative that the effects of such radiation not only on humans, but also on other organisms be well understood. In particular, it is critical to understand if RF radiation has any bearing on the gene expression during embryonic development, as this is a crucial and delicate phase for any organism. Owing to possible effects that RF radiation may have on gene expression, it is essential to explore the carcinogenic or teratogenic properties that it may show. This study observed the effects of RF radiation emitted from a cellular telephone on the embryonic development of zebra fish. The expression of the gene shha plays a key role in the early development of the fish. This gene has homologs in humans as well as in other model organisms. Additionally, several biomarkers indicative of cell stress were examined: including lactate dehydrogenase (LDH), superoxide dismutase (SOD), and lipid peroxidation (LPO). Results show a significant decrease in the expression of shha, a significant decrease in LDH activity. There was no significant increase in SOD and LPO activity. No morphological abnormalities were observed in the developing embryos. At present, these results indicate that exposure to cell phone radiation may have a suppressive effect on expression of shha in D. rerio, though such exposure does not appear to cause morphological detriments. More trials are underway to corroborate these results.

  5. Observations of E region irregularities generated at auroral latitudes by a high-power radio wave

    NASA Astrophysics Data System (ADS)

    Djuth, F. T.; Jost, R. J.; Noble, S. T.; Gordon, W. E.; Stubbe, P.

    1985-12-01

    The initial results of a series of observations made with the high-power HF heating facility near Tromso, Norway are reported. During these experiments, attention was focused on the production of artificial geomagnetic field-aligned irregularities (AFAIs) in the auroral E region by HF waves. A mobile 46.9-MHz radar was used to diagnose the formation of AFAIs having spatial scales of 3.2 across geomagnetic field lines. The dynamic characteristics of the AFAIs are discussed within the context of current theoretical work dealing with the natural production of AFAIs in the ionosphere.

  6. Observations of E region irregularities generated at auroral latitudes by a high-power radio wave

    NASA Technical Reports Server (NTRS)

    Djuth, F. T.; Jost, R. J.; Noble, S. T.; Gordon, W. E.; Stubbe, P.

    1985-01-01

    The initial results of a series of observations made with the high-power HF heating facility near Tromso, Norway are reported. During these experiments, attention was focused on the production of artificial geomagnetic field-aligned irregularities (AFAIs) in the auroral E region by HF waves. A mobile 46.9-MHz radar was used to diagnose the formation of AFAIs having spatial scales of 3.2 across geomagnetic field lines. The dynamic characteristics of the AFAIs are discussed within the context of current theoretical work dealing with the natural production of AFAIs in the ionosphere.

  7. Simultaneous observation of HF-enhanced plasma waves and HF-wave self-focusing

    SciTech Connect

    Frey, A.; Duncan, L.M.

    1984-07-01

    Intense HF-radiowaves of the ordinary mode transmitted from the ground enhance plasma waves near the reflection height. These have been extensively studied in the past by the use of Incohernt-Scatter-Radars. Intense HF-radiowaves propagating in the ionosphere also produce electron density irregularities with scale sizes much larger than the HF wavelength of approx.60 m. These have been observed by radio star intensity scintillations. For the past 2 years a new method was used at Arecibo, P.R. which allows radar- and scintillation-measurements at 430 MHz to be performed simultaneously along the same line of sight. The scale sizes deduced from the scintillation measurements are shorter than the scale sizes observed with the radar and are inconsistent with the HF-power density thresholds predicted by existing theories.

  8. Comparison of different mechanisms of low-frequency radio wave ionospheric generation by powerful RF facilities

    NASA Astrophysics Data System (ADS)

    Ryabov, A.; Kotik, D.

    2011-12-01

    Generation of ELF/VLF waves in the ionosphere using powerful RF facilities were studied both theoretically and experimentally since the 70th. During this time, it was suggested a several different physical mechanisms for explaining the processes occurring in the plasma, which caused the low-frequency radiation from the ionosphere. The firstly discovered phenomena of generation the VLF signals in experiments with 100kW facility in Russia (Radiophysical Research Institute) was attribute to modulation of ionospheric currents based on thermal nonlinearity. This mechanism was confirmed by numerous experiments at powerful instruments like SURA, Arecibo, EISCAT/Tromso heater, HAARP. It was shown in experiments at SURA facility in the end of 80th the possibility of generation the VLF signals at frequency bands 10-20 kHz which was caused by cubic nonlinearity and possibility of formation of the ionospheric traveling VLF wave antenna. The last experiments at HAARP displayed the effectiveness of ponderomotive mechanisms for generation both VLF and ELF signals (Popadopoulos, Kuo). The results of numerical simulation of nonlinear currents caused by different mechanisms of ULF/VLF ionospheric generations are presented in this report. The comparison of different mechanisms in low and upper ionosphere under daytime and night conditions is presented. This work was supported by a RFBR grant 11-02-00419-a.

  9. Millimetre-Wave Spectrum of Isotopologues of Ethanol for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Walters, Adam; Schäfer, Mirko; Ordu, Matthias H.; Lewen, Frank; Schlemmer, Stephan; Müller, Holger S. P.

    2015-06-01

    Complex molecules have been identified in star-forming regions and their formation is linked to the specific physical and chemical conditions there. They are suspected to form a role in the origins of life. Amongst these, ethanol is a fairly abundant molecule in warmer regions. For this reason, we have recently carried out laboratory measurements and analyses of the rotational spectra of the three mono-substituted deuterium isotopologues of ethanol (one of which, CH_2DCH_2OH, exists as two distinct conformers according to the position of the deuterium atom with respect to the molecular skeleton). Measurements were taken between 35-500 GHz, allowing accurate predictions in the range of radio telescopes. We have concentrated on the lowest energy anti conformers. The dataset was constrained for fitting with a standard Watson-S reduction Hamiltonian by rejecting transitions from high-lying states, which appear to be perturbed by the gauche states, and by averaging some small methyl torsional splits. This treatment is compatible with the needs for a first search in the interstellar medium, in particular in spectra taken by ALMA. For this purpose an appropriate set of predictions will be included on the Cologne Database for Molecular Spectroscopy. Previous results on the two mono-substituted 13C isotopologues which led to a tentative detection in Sgr B2(N) will be briefly summarized and compared with the latest measurements. The usefulness of studying different isotopologues in the interstellar medium will also be rapidly addressed. Bouchez et al, JQSRT 113 (11), pp. 1148-1154, 2012. Belloche et al. A&A 559, id.A47, 187pp., 2013.

  10. A High-Resolution Study of Quasiperiodic Radio Emissions Observed by the Galileo Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Christopher, I.; Granroth, L. J.

    2001-01-01

    We have conducted a study of quasiperiodic emission observed by the plasma wave instrument on board the Galileo spacecraft. These emissions appear as broadband bursts with dominant periods ranging from 10 min to over 40 min. For these emissions we have explicitly analyzed the high-resolution (waveform) data to determine the presence of impulsive, solitary signatures. Our investigations have indicated that the broadband bursts, as well as the background more narrowband continuum emission, are composed of a highly turbulent spectrum. Within the broadband burst, however, there are higher-frequency components present, but no impulsive electrostatic signatures. Also significantly, the broadband bursts show no low-frequency dispersion. We conclude that the bursts are consistent with a distant, electromagnetic source, probably in the near-Jupiter vicinity.

  11. Absence of chronic effect of exposure to short-wave radio broadcast signal on salivary melatonin concentrations in dairy cattle.

    PubMed

    Strk, K D; Krebs, T; Altpeter, E; Manz, B; Griot, C; Abelin, T

    1997-05-01

    A pilot study was conducted to investigate the influence of electromagnetic fields in the short-wave range (3-30 MHz) radio transmitter signals on salivary melatonin concentration in dairy cattle. The hypothesis to be tested was whether EMF exposure would lower salivary melatonin concentrations, and whether removal of the EMF source would be followed by higher concentration levels. For this pilot study, a controlled intervention trial was designed. Two commercial dairy herds at two farms were compared, one located at a distance of 500 m (exposed), the other at a distance of 4,000 m (unexposed) from the transmitter. At each farm, five cows were monitored with respect to their salivary melatonin concentrations over a period of ten consecutive days. Saliva samples were collected at two-hour intervals during the dark phase of the night. As an additional intervention, the short-wave transmitter was switched off during three of the ten days (off phase). The samples were analyzed using a radioimmunoassay. The average nightly field strength readings were 21-fold greater on the exposed farm (1.59 mA/m) than on the control farm (0.076 mA/m). The mean values of the two initial nights did not show a statistically significant difference between exposed and unexposed cows. Therefore, a chronic melatonin reduction effect seemed unlikely. However, on the first night of re-exposure after the transmitter had been off for three days, the difference in salivary melatonin concentration between the two farms (3.89 pg/ml, CI: 2.04, 7.41) was statistically significant, indicating a two- to seven-fold increase of melatonin concentration. Thus, a delayed acute effect of EMF on melatonin concentration cannot completely be excluded. However, results should be interpreted with caution and further trials are required in order to confirm the results. PMID:9247202

  12. Scintillation noise power spectrum and its impact on high redshift 21-cm observations

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.

    2016-02-01

    Visibility scintillation resulting from wave propagation through the turbulent ionosphere can be an important source of noise at low radio frequencies (ν ≲ 200 MHz). Many low frequency experiments are underway to detect the power spectrum of brightness temperature fluctuations of the neutral-hydrogen 21-cm signal from the Epoch of Reionization (EOR: 12 ≳ z ≳ 7, 100 ≲ ν ≲ 175 MHz). In this paper, we derive scintillation noise power-spectra in such experiments while taking into account the effects of typical data processing operations such as self-calibration and Fourier synthesis. We find that for minimally redundant arrays such as LOFAR and MWA, scintillation noise is of the same order of magnitude as thermal noise, has a spectral coherence dictated by stretching of the snapshot uv-coverage with frequency, and thus is confined to the well known wedge-like structure in the cylindrical (2-dimensional) power spectrum space. Compact, fully redundant (dcore ≲ rF ≈ 300 m at 150 MHz) arrays such as HERA and SKA-LOW (core) will be scintillation noise dominated at all baselines, but the spatial and frequency coherence of this noise will allow it to be removed along with spectrally smooth foregrounds.

  13. The FORMOSAT-3/COSMIC equatorial spread-F and global scintillation model

    NASA Astrophysics Data System (ADS)

    Chen, S. P.; Bilitza, D.; Liu, J. Y. G.

    2014-12-01

    Radio scintillation of receiving signal is a sensitive detector of ionospheric density irregularity or Equatorial spread-F (ESF), it is been defined as a random modulation imported to propagating wave by density irregularity in the propagation medium. Thus, scintillation observations have been vice versa employed to identify irregular structure in highly varied propagation media. However, the limitation of ground-based receiver confines the research range and caused the shortage of oceanic data. Since the launch of FORMOSAT-3/COSMIC (F3/C) in 2006, the constellation formed by six LEO satellites continuing receiving L1-band (1.5 GHz) signal from GPS system. The occultation scintillation index S4 has already been calculated and recorded for 7 years, and 72° orbital inclination makes F3/C occultation profiles capable to establishing globally observation coverage. In this report, we'll display and discuss the result from both equatorial spread-F occurrence rate and global scintillation S4 index empirical model calculated from F3/C profile data. A comparison with IRI-2012 ESF occurrence rate is also provided as reference.

  14. Design and multiphysics analysis of a 176Â MHz continuous-wave radio-frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Kutsaev, S. V.; Mustapha, B.; Ostroumov, P. N.; Barcikowski, A.; Schrage, D.; Rodnizki, J.; Berkovits, D.

    2014-07-01

    We have developed a new design for a 176 MHz cw radio-frequency quadrupole (RFQ) for the SARAF upgrade project. At this frequency, the proposed design is a conventional four-vane structure. The main design goals are to provide the highest possible shunt impedance while limiting the required rf power to about 120 kW for reliable cw operation, and the length to about 4 meters. If built as designed, the proposed RFQ will be the first four-vane cw RFQ built as a single cavity (no resonant coupling required) that does not require π-mode stabilizing loops or dipole rods. For this, we rely on very detailed 3D simulations of all aspects of the structure and the level of machining precision achieved on the recently developed ATLAS upgrade RFQ. A full 3D model of the structure including vane modulation was developed. The design was optimized using electromagnetic and multiphysics simulations. Following the choice of the vane type and geometry, the vane undercuts were optimized to produce a flat field along the structure. The final design has good mode separation and should not need dipole rods if built as designed, but their effect was studied in the case of manufacturing errors. The tuners were also designed and optimized to tune the main mode without affecting the field flatness. Following the electromagnetic (EM) design optimization, a multiphysics engineering analysis of the structure was performed. The multiphysics analysis is a coupled electromagnetic, thermal and mechanical analysis. The cooling channels, including their paths and sizes, were optimized based on the limiting temperature and deformation requirements. The frequency sensitivity to the RFQ body and vane cooling water temperatures was carefully studied in order to use it for frequency fine-tuning. Finally, an inductive rf power coupler design based on the ATLAS RFQ coupler was developed and simulated. The EM design optimization was performed using cst Microwave Studio and the results were verified using both hfss and ansys. The engineering analysis was performed using hfss and ansys and most of the results were verified using the newly developed cst Multiphysics package.

  15. Investigation of the polar electrojet-current system using radio-wave heating from a ground-based facility

    SciTech Connect

    Werner, D.H.; Ferraro, A.J.; Brandt, R.G.

    1990-10-01

    The High Power Auroral Stimulation (HIPAS) heating facility has been used to modulate D region ionospheric currents at high latitudes, producing very low frequency (VLF) radio wave emissions. The behavior of these ionospheric currents can be deduced from a comprehensive study of the VLF signals received at a local field site. This Paper examines the relationship between the VLF magnetic field strength measured on the ground and the intensity of an overhead electrojet current for the purpose of enhancing communications. The mapping of the polar electrojet current from the E region down through the D region, where it can then be modulated by the heater beam, is investigated. A finite difference solution to the electrojet mapping .problem is presented in which arbitrary conductivity profiles can be specified. Results have been obtained using a simple Cowling model of the electrojet. These results indicate that for electrojets flowing between 100 and 110 km with scale sizes in excess of 100 km, the mapping of the horizontal current density can be completely characterized in terms of the Pedersen and Hall conductivities. This indicates that the mapping becomes independent of scale sizes which exceed 100 km. A promising new diagnostic technique, for studying ionospheric D region currents, has been implemented using the HIPAS facility. This technique involves high frequency (HF) beam steering for localized VLF generation in the mapped region below electrojets. Beam steering has been used to estimate the strength and current distribution of the polar electrojet, and for charting the movements of overhead currents.

  16. Study of effects of radio-wave frequency radiation emitted from cellular telephones on embryonic development of danio rerio

    NASA Astrophysics Data System (ADS)

    Vagula, Mary; Harkless, Ryan

    2013-05-01

    Radio wave frequency (RF) radiation emitted from cellular telephones has become increasingly ubiquitous as a result of the popularity of these phones. With the increasing and unavoidable exposure to RF radiation a reality, it is imperative that the effects of such radiation on living tissue be well understood. In particular, it is critical to understand any effects that RF radiation may have as a carcinogen and on embryonic development, as pregnant women are not exempt from such exposure. As a model organism, zebrafish (Danio rerio) have been studied extensively, and their value in studies of gene expression cannot be overstated. This study observed the effects of RF radiation on the embryonic development of zebrafish. The expression of two genes, shha and hoxb9a, that are key to the early development of the fish was examined. Both genes have homologs in humans as well as in other model organisms. Preliminary results suggest that exposure to cell phone radiation might have an effect on the expression of shha in zebrafish embryos, causing under expression. More trials are necessary to validate these results.

  17. Uncertainty propagation through wave optics retrieval of bending angles from GPS radio occultation: Theory and simulation results

    NASA Astrophysics Data System (ADS)

    Gorbunov, Michael E.; Kirchengast, Gottfried

    2015-10-01

    The wave optical technique for bending angle retrieval in processing radio occultation observations is nowadays widely used by different data processing and assimilation groups and centers. This technique uses Fourier Integral Operators that map the observed records of the amplitude and phase into the impact parameter representation, which allows for the retrieval of bending angle as a function of impact parameter. We investigate the propagation of uncertainty in the observed amplitude and excess phase to the retrieved bending angle. We construct a simple linear approximation, where the excess phase uncertainty is mapped into the bending angle uncertainty. This results in a simple analytical expression for the final uncertainty. To verify our approximation, we perform numerical Monte Carlo simulations for three example occultation events (tropical, middle, and polar latitude profiles from an atmospheric analysis). We demonstrate that our approximation basically gives good results in all cases over the entire troposphere. Exception is the narrow area near the top of the sharp boundary layer, especially in tropics, where, due to nonlinear effects, a significant systematic error arises accompanied by increased uncertainty.

  18. The Radio Afterglow from GRB 980519: A Test of the Jet and Circumstellar Models

    NASA Astrophysics Data System (ADS)

    Frail, D. A.; Kulkarni, S. R.; Sari, R.; Taylor, G. B.; Shepherd, D. S.; Bloom, J. S.; Young, C. H.; Nicastro, L.; Masetti, N.

    2000-05-01

    We present multifrequency radio observations from the afterglow of GRB 980519 beginning 7.2 hr after the gamma-ray burst and ending 63 days later. The fast decline in the optical and X-ray light curves for this burst has been interpreted either as afterglow emission originating from a collimated outflow-a jet-or the result of a blast wave propagating into a medium whose density is shaped by the wind of an evolved massive star. These two models predict divergent behavior for the radio afterglow, and therefore radio observations are capable, in principle, of discriminating between the two. We show that a wind model describes the subsequent evolution of the radio afterglow rather well. However, we see strong modulation of the light curve, which we interpret as diffractive scintillation. These variations prevent us from decisively rejecting the jet model.

  19. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 2

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1975-01-01

    The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.

  20. Coronal fast wave trains of the decimetric type IV radio event observed during the decay phase of the June 6, 2000 flare

    NASA Astrophysics Data System (ADS)

    Mszrosov, H.; Sawant, H. S.; Cecatto, J. R.; Rybk, J.; Karlick, M.; Fernandes, F. C. R.; de Andrade, M. C.; Ji?i?ka, K.

    2009-05-01

    The 22 min long decimetric type IV radio event observed during the decay phase of the June 6, 2000 flare simultaneously by the Brazilian Solar Spectroscope (BSS) and the Ond?ejov radiospectrograph in frequency range 1200-4500 MHz has been analyzed. We have found that the characteristic periods of about 60 s belong to the long-period spectral component of the fast wave trains with a tadpole pattern in their wavelet power spectra. We have detected these trains in the whole frequency range 1200-4500 MHz. The behavior of individual wave trains at lower frequencies is different from that at higher frequencies. These individual wave trains have some common as well as different properties. In this paper, we focus on two examples of wave trains in a loop segment and the main statistical parameters in their wavelet power and global spectra are studied and discussed.

  1. Channeling of high-power radio waves under conditions of strong anomalous absorption in the presence of an averaged electron heating source

    SciTech Connect

    Vas'kov, V. V.; Ryabova, N. A.

    2010-02-15

    Strong anomalous absorption of a high-power radio wave by small-scale plasma inhomogeneities in the Earth's ionosphere can lead to the formation of self-consistent channels (solitons) in which the wave propagates along the magnetic field, but has a soliton-like intensity distribution across the field. The structure of a cylindrical soliton as a function of the wave intensity at the soliton axis is analyzed. Averaged density perturbations leading to wave focusing were calculated using the model proposed earlier by Vas'kov and Gurevich (Geomagn. Aeron. 16, 1112 (1976)), in which an averaged electron heating source was used. It is shown that, under conditions of strong electron recombination, the radii of individual solitons do not exceed 650 m.

  2. Large scale atmospheric waves in the Venus mesosphere as seen by the VeRa Radio Science instrument on Venus Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Häusler, Bernd; Hinson, David P.; Tyler, G. Leonard; Andert, Thomas P.; Bird, Michael K.; Imamura, Takeshi; Pätzold, Martin; Remus, Stefan

    2015-04-01

    Atmospheric waves on all spatial scales play a crucial role in the redistribution of energy, momentum, and atmospheric constituent in planetary atmosphere and are thought to be involved in the development and maintenance of the atmospheric superrotation on Venus. The Venus Express Radio-Science Experiment VeRa sounded the Venus neutral atmosphere and ionosphere in Earth occultation geometry using the spacecraft radio subsystem at two coherent frequencies. Radial profiles of neutral number density, covering the altitude range 40-90 km, are then converted to vertical profiles of temperature and pressure, assuming hydrostatic equilibrium. The extensive VeRa data set enables us to study global scale atmospheric wave phenomena like thermal tides in the mesosphere and troposphere. A pronounced local time dependency of the temperature is found in the mesosphere at different altitude levels. Wave-2 structures dominate the low latitude range in the upper mesosphere while the higher latitudes show a strong wave-1 structure at the top of the cloud layer. The investigation of these wave structures provides valuable information about the energy transport in the atmosphere.

  3. Innovative traveling-wave optoelectronic devices for radio over fiber and terahertz applications

    NASA Astrophysics Data System (ADS)

    Mortazy, Ebrahim

    The structure of conventional optoelectronic devices for new high frequency applications as well as the integration with other devices may be modified by using low-loss microwave waveguides. Also the concept of substrate integrated circuits (SICs), which has widely been used in the microwave domain, can be utilized for the integration of optoelectronic devices at millimetre wave (mmW) and sub-mmW frequency ranges. Substrate integrated waveguide (SIW) derived from the general SICs concept is a planar form of rectangular waveguide (RWG) with some metalized via holes instead of metallic side walls of RWG. New optoelectronic devices and in particular TW photodetector and modulator can be proposed based on SIW structure for mmW frequency, terahertz (THz) photonics and electro-optical applications. SIW is considered to propose new types of TW electro-optical modulators. Band-pass LiNbO3 electro-optical phase and amplitude SIW and hybrid SIW-CPW modulators are two types of the proposed devices in this work. The field overlap integral, half-wave voltage, modulation depth and bandwidth are the most important parameters in the design and characterisation of optical modulators which can be optimized for our proposed modulators. For the design of the SIW modulator, the field interaction between the microwave/mmW and optical signals in wide thick SIW and in narrow optical waveguide, respectively, is not considerable and thus low field overlap integral is obtained. This is also because of the half-sinusoidal field distribution of TE10 mode in the transverse cross-section of SIW. Furthermore, the microwave/mmW loss of a thin layer SIW to increase the overlap integral is significantly high which affects the modulation depth and bandwidth of the modulator. Therefore, to improve the overlap integral or half-wave voltage and to have simultaneously acceptable mmW loss or bandwidth of the new phase modulator, a structure with a thin LiNbO3 layer including the use of an optical waveguide array in the top of a thick LiNbO3 layer is designed and optimized. Different structures for array optical waveguides are designed and then modulator parameters are calculated. Also, an optical band-pass LiNbO3 amplitude modulator is introduced based on the SIW phase modulator. The hybrid SIW-CPW modulator is another type of our new designed band-pass electro-optical amplitude modulators using a special coupling mechanism between CPW and SIW for mmW frequencies. This structure preserves the advantages of high field interaction between the optical and microwave signals along CPW electrode structure as well as the advantages of low-loss SIW structure. This is in particular important for mmW packaging, which is critical for practical applications of electro-optical devices. Coupling from SIW to CPW is increased in the half first part of the modulation region and maximized in the middle of the proposed modulator. In the second half part, this coupling happens from CPW to SIW and the output microwave signal can be used in the integrated systems. Overlap integral of this device increases gradually while the microwave signal is transferred to the CPW along the propagation path. The mode coupling mechanism between CPW and SIW in this structure results in a band-pass amplitude modulator for mmW applications. For the probing-station measurement and the validation of the simulated results, CPW to SIW transitions are designed and optimized. THz source generation using photodetectors and photomixing techniques are also studied and realized in this thesis. Surface-type photoconductive as a photomixer as well as the integration of this photomixer with a spiral antenna are designed and fabricated for THz frequencies. Optical signal from dual-wavelength laser diode is detected by the photomixer with interdigitated fingers and the generated THz signal is then radiated from the back side of the substrate. Design and optimization of the photodetector and spiral antenna, design of multi-layer masks, fabrication and measurement of integrated circuits are presented in this work. (A

  4. Two-Way Radio in Schools (or, The Loneliness of the Long Distance Learner). An Evaluation of a High Frequency Short Wave, Two-Way Radio Trial.

    ERIC Educational Resources Information Center

    Conboy, Ian

    The Country Education Project in Victoria, Australia, tested the use of two-way radios to bring educational resources to isolated children studying correspondence courses in small rural high schools and to increase interaction among rural schools. Eight rural Victoria schools and the Secondary Correspondence School in Melbourne used two-way

  5. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN

    PubMed Central

    Şen, Alper; Gümüşay, M. Ümit; Kavas, Aktül; Bulucu, Umut

    2008-01-01

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN.

  6. Scintillator based beta batteries

    NASA Astrophysics Data System (ADS)

    Rensing, Noa M.; Tiernan, Timothy C.; Shirwadkar, Urmila; O'Dougherty, Patrick; Freed, Sara; Hawrami, Rastgo; Squillante, Michael R.

    2013-05-01

    Some long-term, remote applications do not have access to conventional harvestable energy in the form of solar radiation (or other ambient light), wind, environmental vibration, or wave motion. Radiation Monitoring Devices, Inc. (RMD) is carrying out research to address the most challenging applications that need power for many months or years and which have undependable or no access to environmental energy. Radioisotopes are an attractive candidate for this energy source, as they can offer a very high energy density combined with a long lifetime. Both large scale nuclear power plants and radiothermal generators are based on converting nuclear energy to heat, but do not scale well to small sizes. Furthermore, thermo-mechanical power plants depend on moving parts, and RTG's suffer from low efficiency. To address the need for compact nuclear power devices, RMD is developing a novel beta battery, in which the beta emissions from a radioisotope are converted to visible light in a scintillator and then the visible light is converted to electrical power in a photodiode. By incorporating 90Sr into the scintillator SrI2 and coupling the material to a wavelength-matched solar cell, we will create a scalable, compact power source capable of supplying milliwatts to several watts of power over a period of up to 30 years. We will present the latest results of radiation damage studies and materials processing development efforts, and discuss how these factors interact to set the operating life and energy density of the device.

  7. The effect of plasma inhomogeneities on (i) radio emission generation by non-gyrotropic electron beams and (ii) particle acceleration by Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2015-04-01

    Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refraction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph = ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011); http://dx.doi.org/10.1063/1.3590928 [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013); http://dx.doi.org/10.1063/1.4812453 [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012); http://dx.doi.org/10.1063/1.4768429 [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014); http://dx.doi.org/10.1063/1.4871723 [5] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 21, 012903 (2014); http://dx.doi.org/10.1063/1.4863494 This research is funded by the Leverhulme Trust Research Project Grant RPG-311

  8. The polar-ionosphere phenomena induced by high-power radio waves from the spear heating facility

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Kornienko, V. A.; Janzhura, A. S.; Kalishin, A. S.; Robinson, T. R.; Yeoman, T. K.; Wright, D. M.; Baddeley, L. J.

    2008-11-01

    We present the results of experimental studies of specific features in the behavior of small-scale artificial field-aligned irregularities (AFAIs) and the DM component in the spectra of stimulated electromagnetic emission (SEE). Analysis of experimental data shows that AFAIs in the polar ionosphere are generated under different background geophysical conditions (season, local time, the presence of sporadic layers in the E region, etc.). It is shown that AFAIs can be excited not only in the F region, but also in thick sporadic E s layers of the polar ionosphere. The AFAIs were observed in some cycles of heating when the HF heater frequency exceeded the critical frequency by 0.3-0.5 MHz. Propagation paths of diagnostic HF radio waves scattered by AFAIs were modelled for geophysical conditions prevailing during the SPEAR heating experiments. Two components, namely, a narrow-banded one with a Doppler-spectrum width of up to 2 Hz and a broadband one observed in a band of up to 20 Hz, were found in the sporadic E s layer during the AFAI excitation. Analysis of the SEE spectra shows that the behavior of the DM component in time is irregular, which is possibly due to strong variations in the critical frequency of the F 2 layer from 3.5 to 4.6 MHz. An interesting feature observed in the SPEAR heating experiments is that the generation of the DM component was similar to the excitation of AFAIs when the heater frequency was up to 0.5 MHz higher than the critical frequency.

  9. Ionospheric scintillation studies

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Freemouw, E. J.

    1973-01-01

    The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.

  10. Scintillation observations near the sun

    NASA Technical Reports Server (NTRS)

    Coles, W. A.; Rickett, B. J.; Scott, S. L.

    1978-01-01

    Results on the electron density spectrum, the random velocity and the mean velocity of the solar wind in the region from 5 to 100 solar radii are presented. Results are based on intensity scintillations of incoherent radio sources at different locations and different radio frequencies. The shape of the electron density irregularity spectrum is shown to be well modeled by a power law in wavenumber with a slope that abruptly steepens at higher wavenumbers. This two slope power law model is shown to have a break (defined as the wavenumber of the change of slope) that increases with decreasing distance from the Sun. The fractional random velocity is shown to be insignificant at distances of greater than 40 solar radii, but shows a steady increase with decreasing solar distance inside of 40 solar radii.

  11. N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, tomorrow

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. D.

    2015-06-01

    This paper describes the basic and applied research rationale for the organization of IZMIRAN and provides insight into the 75 years of the Institute's activities and development. Historically, early magnetic measurements in Russia were developed largely to meet the Navy's navigation needs and were, more generally, stimulated by the Peter the Great decrees and by the foundation of the St. Petersburg Academy of Sciences in 1724. The paper examines the roles of the early Academicians in developing geomagnetism and making magnetic measurements a common practice in Russia. The need for stable radio communications prompted ionospheric and radio wave propagation research. The advent of the space era and the 1957-1958 International Geophysical Year Project greatly impacted the development of IZMIRAN and spurred the creation of a number of geophysical research institutes throughout the country. Currently, the research topics at IZMIRAN range widely from geomagnetism to solar-terrestrial physics to the ionosphere and radio wave propagation, and its primary application areas are the study and forecast of space weather, an increasingly important determining factor in ever-expanding ground- and space-based technologies (space navigation and communications, space activities, etc.).

  12. Scintillators and applications thereof

    SciTech Connect

    Williams, Richard T.

    2015-09-01

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  13. Scintillators and applications thereof

    DOEpatents

    Williams, Richard T.

    2014-07-15

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  14. High latitude scintillations

    NASA Astrophysics Data System (ADS)

    Basu, Santimay; Basu, Sunanda

    High-latitude phase and amplitude scintillations have been observed with quasi-geostationary polar beacon satellites, high-altitude orbiting GPS satellites, and low-altitude orbiting HiLat and Polar Bear satellites. The scintillation behavior observed in the polar cap, cusp, and nightside auroral oval is described. Consideration is given to the possible mechanisms for the generation of irregularities that cause scintillations. The importance of coordinated multitechnique measurements for scintillation studies is stressed.

  15. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  16. Scintillator materials for calorimetry

    SciTech Connect

    Weber, M.J.

    1994-09-01

    Requirements for fast, dense scintillator materials for calorimetry in high energy physics and approaches to satisfying these requirements are reviewed with respect to possible hosts and luminescent species. Special attention is given to cerium-activated crystals, core-valence luminescence, and glass scintillators. The present state of the art, limitations, and suggestions for possible new scintillator materials are presented.

  17. Scintillator manufacture at Fermilab

    SciTech Connect

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  18. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  19. Monitoring and Forecasting Ionospheric Scintillation at High Latitudes (Invited)

    NASA Astrophysics Data System (ADS)

    Prikryl, P.; Jayachandran, P. T.; Chadwick, R.; Kelly, T.

    2013-12-01

    Ionospheric scintillation (rapid signal amplitude fading and phase fluctuation) poses a threat to reliable and safe operation of modern technology that relies on Global Navigation Satellite Systems (GNSS). Ionospheric scintillation of GNSS signal severely degrades positional accuracy, causes cycle slips leading to loss of lock that affects performance of radio communication and navigation systems. At high latitudes, the scintillation is caused by ionospheric irregularities produced through coupling between solar wind plasma and the magnetosphere. Climatology of GPS scintillation at high latitudes in both hemispheres shows that phase scintillation occurs predominantly on the dayside in the cusp and in the nightside auroral oval. Solar wind disturbances, in particular the co-rotating interaction regions (CIR) on the leading edge of high-speed streams (HSS) and interplanetary coronal mass ejections (ICME), have been closely correlated with the occurrence of scintillation at high latitudes. These results demonstrated a technique of probabilistic forecast of high-latitude phase scintillation occurrence relative to arrival times of HSS and ICME. The Canadian High Arctic Ionospheric Network (CHAIN) has been monitoring GPS ionospheric scintillation and total electron content (TEC) since November 2007. One-minute amplitude and phase scintillation indices from L1 GPS signals and TEC from L1 and L2 GPS signals are computed from amplitude and phase data sampled at 50 Hz. Since 2012, significant expansion of CHAIN has begun with installation of new receivers, each capable of tracking up to 30 satellites including GLONASS and Galileo. The receivers log the raw phase and amplitude of the signal up to a 100-Hz rate for scintillation measurements. We briefly review observations of ionospheric scintillation and highlight new results from CHAIN, including the climatology of scintillation occurrence, collocation with aurora and HF radar backscatter, correlation with CIRs and ICMEs, and the method of probabilistic forecasting of phase scintillation at high latitudes.

  20. Validating the use of scintillation proxies to study ionospheric scintillation over the Ugandan region

    NASA Astrophysics Data System (ADS)

    Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.

    2015-06-01

    In this study, we compare the standard scintillation indices (S4 and σΦ) from a SCINDA receiver with scintillation proxies (S4p and | sDPR |) derived from two IGS GPS receivers. Amplitude (S4) and phase (σΦ) scintillation data were obtained from the SCINDA installed at Makerere University (0.34°N, 32.57°E). The corresponding amplitude (S4p) and phase (| sDPR |) scintillation proxies were derived from data archived by IGS GPS receivers installed at Entebbe (0.04°N, 32.44°E) and Mbarara (0.60°S, 30.74°E). The results show that for most of the cases analysed in this study, σΦ and | sDPR | are in agreement. Amplitude scintillation occurrence estimated using the S4p are fairly consistent with the standard S4, mainly between 17:00 UT and 21:00 UT, despite a few cases of over and under estimation of scintillation levels by S4p. Correlation coefficients between σΦ and the | sDPR | proxy revealed positive correlation. Generally, S4p and S4 exhibits both moderate and strong positive correlation. TEC depletions associated with equatorial plasma bubbles are proposed as the cause of the observed scintillation over the region. These equatorial plasma bubbles were evident along the ray paths to satellites with PRN 2, 15, 27 and 11 as observed from MBAR and EBBE. In addition to equatorial plasma bubbles, atmospheric gravity waves with periods similar to those of large scale traveling ionospheric disturbances were also observed as one of the mechanisms for scintillation occurrence. The outcome of this study implies that GPS derived scintillation proxies can be used to quantify scintillation levels in the absence of standard scintillation data in the equatorial regions.

  1. Scintillator reflective layer coextrusion

    DOEpatents

    Yun, Jae-Chul (Naperville, IL); Para, Adam (St. Charles, IL)

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  2. Investigation of the spatial structure and developmental dynamics of near-Earth plasma perturbations under the action of powerful HF radio waves

    NASA Astrophysics Data System (ADS)

    Belov, A. S.

    2015-10-01

    Results of numerical simulations of the near-Earth plasma perturbations induced by powerful HF radio waves from the SURA heating facility are presented. The simulations were performed using a modified version of the SAMI2 ionospheric model for the input parameters corresponding to the series of in-situ SURA-DEMETER experiments. The spatial structure and developmental dynamics of large-scale plasma temperature and density perturbations have been investigated. The characteristic formation and relaxation times of the induced large-scale plasma perturbations at the altitudes of the Earth's outer ionosphere have been determined.

  3. Locating Radio Noise from Sprites

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Mezentsev, A.; Watson, R.; Gaffet, S.; Astin, I.; Evans, A.

    2014-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into exponentially growing streamer tips (McHarg et al., 2010). The acceleration of the electrons to a few eV results in the radiation of a small amount of electromagnetic energy. The incoherent superposition of many streamers causes the low frequency radio noise from sprites near ~40 km height (Qin et al., 2012). The presence of this theoretically predicted radiation was recently confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). To locate the radio noise from sprites in the sky, an interferometric network of low frequency radio receivers was developed (Mezentsev and Fullekrug, JGR, 2013). The key parameter for the interferometric signal processing is the frequency dependent wave propagation velocity of the radio waves within the Earth's atmosphere. This wave propagation velocity is determined by the wave number vector which needs to be inferred from the measurements. Here we adapt and subsequently apply array analyses which have been developed for seismic and infrasound arrays to determine the horizontal wave number vectors of ~20-24 kHz radio waves measured with an array of ten radio receivers distributed over an area of ~1 km 1 km. It is found that the horizontal slowness of ~20-24 kHz radio waves ranges from ~2.7 ns/m to ~4.1 ns/m depending on the arrival azimuth of the radio wave. For comparison, an electromagnetic wave in vacuum has a slowness of ~3.34 ns/m. A larger slowness indicates an apparent velocity which is smaller than the speed of light and a smaller slowness indicates that the radio wave arrives at the array from an elevation angle. The observed variability of the observed slowness almost certainly results from the distance dependent superposition of the transverse electric and magnetic TEn and TMn radio wave propagation modes.

  4. What Do Scintillations Tell Us about the Ionized ISM?

    NASA Astrophysics Data System (ADS)

    Rickett, B. J.

    2007-07-01

    I review what has been learned about the fine structure in the ionized interstellar medium from radio scintillation and scattering -- first, as it constrains the wavenumber spectrum of the electron density and second in terms of evidence from parabolic scintillation arcs for discrete structures on scales less than about 1 AU, which must be very widely distributed to account for the incidence of discrete parabolic arcs and Extreme Scattering Events.

  5. Adaptive photonic-assisted M-QAM millimeter-wave synthesis in multi-antenna radio-over-fiber system using M-ASK modulation.

    PubMed

    Zhang, Qi; Yu, Jianjun; Li, Xinying; Xin, Xiangjun

    2014-11-01

    A novel method for generating an adaptive photonic-assisted M2-quadrature amplitude modulation (M2-QAM) millimeter-wave signal in a multiantenna radio-over-fiber system using M-ray amplitude-shift keying (M-ASK) modulation is proposed and experimentally demonstrated. It takes full advantage of high-density small cells without introducing additional complexity into remote antenna units (RAUs) or mobile users. The 4, 8, and 12 Gb/s 4QAM millimeter-wave signals are obtained from two independent 2, 4, and 6 Gb/s on-off-keying 40 GHz channels, respectively. The experimental results show that a double bit rate can be received without additional digital signal processing in RAUs and mobile users. The results, including the constellation diagrams and bit error rate, show that the transmitted signals are received successfully. PMID:25361290

  6. Observations of interplanetary scintillation in China

    NASA Astrophysics Data System (ADS)

    Liu, Li-Jia; Peng, Bo

    2013-07-01

    The Sun affects the Earth in multiple ways. In particular, the material in interplanetary space comes from coronal expansion in the form of solar wind, which is the primary source of the interplanetary medium. Ground-based Interplanetary Scintillation (IPS) observations are an important and effective method for measuring solar wind speed and the structures of small diameter radio sources. In this paper we will discuss the IPS observations in China.

  7. Signatures and Characteristics of Internal Gravity Waves in the Venus' and Mars' Atmospheres as Revealed by the Radio Occultation Temperature Data Analysis

    NASA Astrophysics Data System (ADS)

    Gubenko, Vladimir; Pavelyev, Alexander; Andreev, Vitali; Salimzyanov, Rishat; Pavelyev, Alexey

    2012-07-01

    It is well known that internal gravity waves (IGWs) affect the structure and mean circulation of the Earth' middle and upper atmosphere by transporting energy and horizontal momentum upward from the lower atmosphere. The IGWs modulate the background atmospheric structure, producing a periodic pattern of spatial and temporal variations in the wind velocity, temperature and density. Similar effects are anticipated for the Venus and Mars since IGWs are a characteristic of stably stratified atmosphere. For instance, Yakovlev et al. (1991) and Gubenko et al. (2008a) used the radio occultation (RO) data from Venera 15 and 16 missions to investigate the thermal structure and layering of the Venus' middle atmosphere. They noted that a wavelike periodic structure commonly appears in retrieved vertical profiles at altitudes above 60 km in the atmosphere where the static stability is large. Through comparisons between Magellan RO observations in the Venus' atmosphere, Hinson and Jenkins (1995) have demonstrated that small scale variations in retrieved temperature profiles at altitudes from 60 to 90 km are caused by a spectrum of vertical propagating IGWs. Temperature profiles from the Mars Global Surveyor (MGS) measurements reveal vertical wavelike structures assumed to be atmospheric IGWs in the Mars' lower atmosphere (Creasey et al., 2006). The very large IGW amplitudes inferred from MGS RO data imply a very significant role for IGWs in the atmospheric dynamics of Mars as well. There is one general problem inherent to all measurements of IGWs. Observed wavelike variations may alternatively be caused by the IGWs, turbulence or persistent layers in the atmosphere, and it is necessary to have an IGW identification criterion for the correct interpretation of obtained results. In this context, we have developed an original method for the determination of internal gravity wave parameters from a single vertical temperature profile measurement in a planetary atmosphere (Gubenko et al., 2008b, 2011). This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, the analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitude thresholds of the wave temperature field and on the linear IGW saturation theory in which amplitude thresholds are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal wave reaches the shear instability limit, energy is assumed to be dissipated in such a way that the amplitude is maintained at the instability limit as the wave propagates upwards. An application of the developed method to the RO temperature data has given the possibility to identify the IGWs in the Venus' and Mars' atmospheres and to determine the magnitudes of key wave parameters such as the intrinsic frequency, amplitudes of vertical and horizontal perturbations of the wind velocity, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase (and group) speeds, kinetic and potential energy, vertical fluxes of the wave energy and horizontal momentum. The obtained results of internal wave studies in the Venus' and Mars' atmospheres deduced from the Magellan and MGS RO temperature profiles are presented and discussed. This work was partially supported by the RFBR Grant (No. 10-02-01015-a) and program OFN-15 of the Russian Academy of Sciences. References Creasey, J. E., Forbes, J. M., and Hinson, D. P.: Global and seasonal distribution of gravity wave activity in Mars' lower atmosphere derived from MGS radio occultation data, Geophys. Res. Lett., 33, L01803, doi: 10.1029/2005GL024037, 2006. Gubenko, V.N., Andreev, V.E., and Pavelyev, A.G.: Detection of layering in the upper cloud layer of Venus northern polar atmosphere observed from radio occultation data, J. Geophys. Res., 113, E03001, doi:10.1029/2007

  8. Subionospheric VLF/LF radio waves propagation characteristics before, during and after the Sofia, Bulgaria Mw=5.6 earthquake occurred on 22 May 2012

    NASA Astrophysics Data System (ADS)

    Moldovan, Iren Adelina; Emilian Toader, Victorin; Nenovski, Petko; Biagi, Pier Francesco; Maggipinto, Tommaso; Septimiu Moldovan, Adrian; Ionescu, Constantin

    2013-04-01

    In 2009, INFREP, a network of VLF (20-60 kHz) and LF (150-300 kHz) radio receivers, was put into operation in Europe having as principal goal, the study of disturbances produced by the earthquakes on the propagation properties of these signals. On May 22nd, 2012 an earthquake with Mw=567 occurred in Bulgaria, near Sofia, inside the "sensitive" area of the INFREP VLF/LF electromagnetic network. The data collected on different frequencies, during April-May 2012 were studied using different methods of analysis: daily correlation methods, spectral approaches and terminator time techniques, in order to find out possible connections between the seismic activity and the subionospheric propagation properties of radio waves. The studies were performed with the help of a specially designed LabVIEW application, which accesses the VLF/LF receiver through internet. This program opens the receiver's web-page and automatically retrieves the list of data files to synchronize the user-side data with the receiver's data. Missing zipped files are also automatically downloaded. The application performs primary, statistical correlation and spectral analysis, appends daily files into monthly and annual files and performs 3D colour-coded maps with graphic representations of VLF and LF signals' intensities versus the minute-of-the-day and the day-of-the-month, facilitating a near real-time observation of VLF and LF electromagnetic waves' propagation. Another feature of the software is the correlation of the daily recorded files for the studied frequencies by overlaying the 24 hours radio activity and taking into account the sunrise and sunset. Data are individually processed (spectral power, correlations, differentiation, filtered using bandpass, lowpass, highpass). JTFA spectrograms (Cone-Shaped Distribution CSD, Gabor, Wavelet, short-time Fourier transform STFT, Wigner-Ville Distribution WVD, Choi-Williams Distribution CWD) are used, too.

  9. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  10. Characteristics of Pc4-5 pulsations obtained using the method of bistatic backscatter of HF radio waves, the EISCAT HF heating facility, and ground-based magnetometers

    NASA Astrophysics Data System (ADS)

    Borisova, T. D.; Blagoveshchenskaya, N. F.; Kornienko, V. A.; Rietveld, M. T.

    2011-10-01

    The results of studying the Pc4-5 pulsation parameters based on the method of bistatic backscatter of radio waves, using the EISCAT/ Heating HF facility (Troms, Norway) and IMAGE ground-based magnetometers (Scandinavia), are presented. The observations were performed during the morning hours on October 3, 2006, when a substorm developed on the nightside. An analysis of the observational data obtained from 1000 to 1020 UT indicated that wave-like disturbances with periods corresponding to Pc4-5 pulsations (80-240 s) existed at that time. The variations in the full vector of the ionospheric irregularity motion and the electric field strength in an artificially disturbed high-latitude ionospheric F region has been reconstructed based on simultaneous Doppler observations on two paths. A general conformity is observed among the time variations in Pc4-5 pulsations in the magnetic and ionospheric data: between the velocity amplitude (|V|) and the X component of the Earth's magnetic field and between the irregularity motion azimuth and the Y component. Large-scale waves, corresponding to the natural resonances of magnetic field lines (small values of the azimuthal number | m| 2-4), and small-scale waves (large values | m| 17-20) were simultaneously registered during the experiment based on magnetic data. It has been indicated that the periods of wave-like processes registered using the method of bistatic backscatter and ground-based magnetometers were in agreement with one another. The formation of wave-like processes is explained by the nonstationary impact of the solar wind and IMF on the Earth's magnetosphere. The variations in the IMF, according to the ACE satellite measurements, were characterized by a sharp increase in the solar wind plasma dynamic pressure that occurred at about 09 UT on October 3, 2006, and was accompanied by rapid polarity reversals of the north-ward-southward ( B z) and transverse ( B y) IMF components.

  11. Experimental investigation of ULF/VLF radio wave generation and propagation in the upper atmosphere and ionosphere during EISCAT heating experiment in 2012

    NASA Astrophysics Data System (ADS)

    Ryakhovskiy, Iliya; Gavrilov, Boris; Zetzer, Julius; Rietveld, Michael; Poklad, Yuriy; Blagoveshchenskaya, Nataly

    Powerful high frequency radio waves transmitted from high-power HF heating facilities modify the ionospheric plasma. The X-mode HF pump wave generates strong small-scale artificial field aligned irregularities in the F region of the ionosphere when the heater frequency is near or above the critical frequency of F2 layer [Blagoveshchenskaya et al]. One of the tasks of the Russian EISCAT heating campaign in February 2012 was an investigation of the generation and propagation of ULF/VLF signals generated as the result of HF radiation modulation. Despite the numerous attempts of long-range detection of such signals, there are a few successful results. The most reliable and important results were obtained by [Barr et al.] more than 20 years ago. They measured the VLF radio waves in Lindau, Germany at the distance of about 2000 km from EISCAT Heater. We present the results of the ULF/VLF registrations at the same distance during heating campaign of February 2012. The measurements were conducted at Mikhnevo Geohysical Observatory located in 80 km to the south of Moscow and at the distance of about 1900 km from Troms. For measurements were used a sensitive receivers with crossed air-coil loop antennas in the frequency range from 800 Hz to 30 kHz in the femtotesla amplitude range. We recorded the radial and azimuthal magnetic component of the signals and from their ratio obtained the mode polarization. The radiated heater frequency was modulated by 517, 1017, 2017, 3017, 4017 and 6017 Hz. It was shown the signals with frequency less than 2 kHz propagate in the QTEM mode, and signals at the frequency from 2 to 4 kHz are in the QTE mode. Observed magnetic field strengths and waveguide polarizations are found to be in line with the predictions of simple waveguide models. Qualitative coincidence of the signals polarization character and its dependence on the frequency specifies adequacy of numerical models and reliability of the data received in campaign 2012. Blagoveshchenskaya N. F., M. T. Rietveld et al. Artificial field-aligned irregularities in the high-latitude F region of the ionosphere induced by an X-mode HF heater wave. // Geophys. Res. Lett. - 2011. V. 38, doi: 10.1029/2011GL046724. Barr, R., P. Stubbe, and H. Kopka, 1991, Long-range detection of VLF radiation produced by heating the auroral electrojet. Radio Science, Volume 26, Number 4, Pages 871-879, July-August 1991

  12. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  13. Mesures Radio Spatiales : Goniopolarimtrie

    NASA Astrophysics Data System (ADS)

    Cecconi, B.

    2011-04-01

    Space-based radioastronomy is an essential tool for remote studies of solar system plasmas. Indeed, any radio wave emitted below the Earth ionospheric cutoff (~10~MHz) will not reach the ground and thus requires observation from space. Space-based radio receivers, as well as their antennas, have to fulfill space instrumentation constraints. The antennas used with these receivers do not have any instantaneous angular resolution. Goniopolarimetric (also known as direction-finding) techniques, as well as goniopolarimetric capable receivers, have thus been developed to retrieve the wave parameters (not only the flux density and polarization state, but also the direction of arrival) of the observed radio emissions.

  14. An alternative to the plasma emission model: Particle-in-cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts

    SciTech Connect

    Tsiklauri, David

    2011-05-15

    High-resolution (sub-Debye length grid size and 10 000 particle species per cell), 1.5D particle-in-cell, relativistic, fully electromagnetic simulations are used to model electromagnetic wave emission generation in the context of solar type III radio bursts. The model studies generation of electromagnetic waves by a super-thermal, hot beam of electrons injected into a plasma thread that contains uniform longitudinal magnetic field and a parabolic density gradient. In effect, a single magnetic line connecting Sun to Earth is considered, for which five cases are studied. (i) We find that the physical system without a beam is stable and only low amplitude level electromagnetic drift waves (noise) are excited. (ii) The beam injection direction is controlled by setting either longitudinal or oblique electron initial drift speed, i.e., by setting the beam pitch angle (the angle between the beam velocity vector and the direction of background magnetic field). In the case of zero pitch angle, i.e., when v-vector{sub b{center_dot}}E-vector{sub perpendicular}=0, the beam excites only electrostatic, standing waves, oscillating at local plasma frequency, in the beam injection spatial location, and only low level electromagnetic drift wave noise is also generated. (iii) In the case of oblique beam pitch angles, i.e., when v-vector{sub b{center_dot}}E-vector{sub perpendicular}=0, again electrostatic waves with same properties are excited. However, now the beam also generates the electromagnetic waves with the properties commensurate to type III radio bursts. The latter is evidenced by the wavelet analysis of transverse electric field component, which shows that as the beam moves to the regions of lower density and hence lower plasma frequency, frequency of the electromagnetic waves drops accordingly. (iv) When the density gradient is removed, an electron beam with an oblique pitch angle still generates the electromagnetic radiation. However, in the latter case no frequency decrease is seen. (v) Since in most of the presented results, the ratio of electron plasma and cyclotron frequencies is close to unity near the beam injection location, in order to prove that the electromagnetic emission, generated by the non-zero pitch angle beam, oscillates at the plasma frequency, we also consider a case when the magnetic field (and the cyclotron frequency) is ten times smaller. Within the limitations of the model, the study presents the first attempt to produce synthetic (simulated) dynamical spectrum of the type III radio bursts in the fully kinetic plasma model. The latter is based on 1.5D non-zero pitch angle (non-gyrotropic) electron beam that is an alternative to the plasma emission classical mechanism for which two spatial dimensions are needed.

  15. Modification of the high latitude F region of the ionosphere by X-mode powerful HF radio waves: Experimental results from multi-instrument diagnostics

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, Nataly; Rietveld, Michael; Haggstrom, Ingemar; Borisova, Tatiana; Yeoman, Tim

    We present the experimental results for strong plasma modifications induced by the X-mode powerful HF radio waves injected towards the magnetic zenith into the high latitude F region of the ionosphere. A large number of experiments in the course of Russian EISCAT heating campaigns were conducted in 2009 - 2013 under different background conditions in a wide heater frequency range from 4 to 8 MHz. The EISCAT UHF incoherent scatter radar at Troms, the CUTLASS (SuperDARN) HF coherent radar in Finland, SEE receiver at Troms, the HF Doppler equipment near St. Petersburg, and the EISCAT ionosonde (dynasonde) were used as diagnostic instruments. The results show that the X-mode HF pump wave can generate: (1) strong small-scale artificial field aligned irregularities (AFAIs); (2) HF-induced plasma and HF-enhanced ion lines (HFPLs and HFILs) from UHF radar spectra; (3) strong electron density enhancements along magnetic field line in a wide altitude range; (4) spectral components (few tens of Hz) in the Doppler spectra of the heater signal measured at a distance of 1200 km from the Troms HF heating facility. The experimental results obtained points to the strong magnetic zenith effect due to self-focusing powerful HF radio wave with X-mode polarization. For heater frequencies in the range of about 4 - 6 MHz the mentioned above phenomena are generated when the heater frequency is equal or above the ordinary-mode critical frequency (foF2). Under high background electron density and the heater frequencies used of 6.5 - 8.0 MHz, the strong X-mode HF-induced phenomena were observed both when the heater frequency is equal or above the foF2 and the heater frequency is below the foF2.

  16. Statistics of ionospheric scintillation occurrence over European high latitudes

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Aquino, M.

    2014-12-01

    Rapid fluctuation in the amplitude and phase of transionospheric radio signals caused by small scale ionospheric plasma density irregularities is known as scintillation. Over the high latitudes, irregularities causing scintillation are associated with large scale plasma structures and scintillation occurrence is mainly enhanced during geomagnetic storms. This paper presents a statistical analysis of scintillation occurrence on GPS L1C/A signal at a high latitude station located in Bronnoysund (geographic latitude 65.5N, geographic longitude 12.2E; corrected geomagnetic (CGM) latitude 62.77N), Norway, during the periods around the peaks of solar cycles 23 (2002-2003) and 24 (2011-2013). The analysis revealed that the scintillation occurrence at Bronnoysund during both the solar maximum periods maximises close to the midnight magnetic local time (MLT) sector. A higher occurrence of scintillation is observed on geomagnetically active days during both the solar maximum periods. The seasonal pattern of scintillation occurrence indicated peaks during the summer and equinoctial months. A comparison with the interplanetary magnetic field (IMF) components By and Bz showed an association of scintillation occurrence with the southward IMF Bz conditions.

  17. A study of GPS ionospheric scintillations observed at Guilin

    NASA Astrophysics Data System (ADS)

    Zou, Yuhua; Wang, Dongli

    2009-12-01

    The occurrence of strong ionospheric scintillations with S4>=0.2 was studied using global positioning system (GPS) measurements at Guilin (25.29N, 110.33E; geomagnetic: 15.04N, 181.98E), a station located near the northern crest of equatorial anomaly in China. The results are presented for data collected from January 2007 to December 2008. The results show that amplitude scintillations occurred only during the first five months of the considered years. Nighttime amplitude scintillations, observed mainly in the south of Guilin, always occurred with phase scintillations, total electron content (TEC) depletions, and Rate Of change of TEC (ROT) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations usually occurred in most of the azimuth directions. GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively.

  18. The detection of the ionospheric irregularities by GNSS signal and the incoherent scatter radio measurements

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Shagimuratov, Irk; Krankowski, Andrzej; Sieradsky, Rafal; Zakharenkova, Irina; Rietveld, Michael; Kapcia, Jacek

    2013-04-01

    The high-latitude ionosphere has a very complicated structure and high dynamics. The ionospheric irregularities can produce scintillations of radio waves that occur predominantly in the ionosphere F-layer. The strong fluctuations can influence on the performance of the different space communication and navigation radio systems. The fluctuations of GPS/GLONASS signals are caused by the ionospheric irregularities with spatial dimensions more than 10 km. These structures can be detected by high potential incoherent scatter radars. It was proposed and carried out at the beginning of June 2012 experiment for a detailed study of the nature of the ionospheric irregularities, influencing on GPS/GLONASS signals parameters, by incoherent scatter and trans-ionospheric radio measurements simultaneously. The EISCAT facilities position provides the unique opportunity to study the ionospheric irregularities' parameters associated with TEC fluctuations and GPS/GLONASS signals scintillations. The EISCAT heating facility provides unique possibility to generate the artificial ionospheric irregularities and to estimate the impact factor of these irregularities on GPS/GLONASS signals transionospheric propagation. In order to detect the ionosphere irregularities it is used the IS radar measurements (electron density and plasma temperatures profiles) and simultaneously registered on EISCAT site amplitude and phase fluctuations in GPS/GLONASS signals by use of the Javad multi-constellation GPS/GLONASS receiver with high samples rate (100 Hz) and special scintillation GPS receiver PolaRxS PRO that dedicated to ionospheric monitoring and space weather applications and provides TEC and S4 scintillation index measurements. The low frequency fluctuations can be directly measured due to the electron density changes along the radio ray path between a GPS/GLONASS satellite and a ground-based receiver on EISCAT site. The raw data (under scintillating conditions) obtained by use of the high samples rate GPS/GLONASS receiver are processed in order to derive the scintillation parameters. The practical aspect of this investigation is a detailed study of nature and impact level of the ionospheric irregularities that can influence on the GPS/GLONASS performance especially at high latitudes and during geomagnetically disturbed period and to obtain new knowledge that may improve the reliability of the global navigation systems in Arctic and Antarctic regions. The authors are grateful to the EISCAT Scientific Association for observing time on the EISCAT facilities within the framework of Peer-reviewed Program.

  19. Robust GPS carrier tracking under ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.

    2013-12-01

    Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance of the proposed tracking scheme is assessed by using both simulated and real data. Real data have been collected in Vietnam by using a USRP (Universal Software Radio Peripheral) N210 front end connected to a rubidium oscillator. Selected events are exploited in order to challenge the algorithm with strong phase and amplitude variations. Moreover, simulated data have been collected by using the prototype of a digital front end developed by Novatel, namely the 'Firehose'. Since the latter includes a TCXO oscillator, the proposed tracking scheme is also opportunely modified to take in account the clock error contribution. References 1. R.S., Conker, M. B. El-Arini, C. J. Hegarty, and T. Hsiao, Modelling the effects of ionospheric scintillation on GPS/satellite-based augmentation system availability. Radio Sci., 38, 1, 1001, doi: 10.1029/2000RS002604, 2003. 2. B. Bougard et al, 'CIGALA: Challenging the Solar Maximum in Brazil with PolaRxS,' ION GNSS, Portland, Sept. 2011.

  20. On orbit performance of radio spectrometers of Superconducting Submillimeter-Wave Limb-Emission Sounder (JEM/SMILES)

    NASA Astrophysics Data System (ADS)

    Ozeki, Hiroyuki; Mizobuchi, Satoko; Tamaki, Kenta; Kikuchi, Ken-ichi; Nishibori, Toshiyuki; Ochiai, Satoshi; Shiotani, Masato; Mitsuda, Chihiro

    2011-11-01

    On-orbit performance of the radio spectrometer of SMILES is discussed. We focused on the telemetry data of photodiode current, laser diode current, and laser diode operating temperature. The data showed degradation trend as the mission went on. This is due to a wear-out phenomenon of commercially available laser diode, which is used as the light source of the radio spectrometer. Since the laser diodes have a certain lifetime, both screening procedure and operating condition for them must be properly defined and implemented for ensuring a good performance of the spectrometer throughout designed mission life. For these purposes, we conducted several kinds of qualification tests including an accelerated life time test during design phase, and expected life time of the laser diode was derived on the basis of these test results. In this paper, the results from the qualification tests at ground and the actual performance on orbit with the telemetry and mission data will be presented.

  1. Excitation of guided ELF-VLF waves through modification of the F{sub 2} ionospheric layer by high-power radio waves

    SciTech Connect

    Markov, G. A.; Belov, A. S.; Komrakov, G. P.; Parrot, M.

    2012-03-15

    The possibility of controlled excitation of ELF-VLF electromagnetic waves through modification of the F{sub 2} ionospheric layer by high-power high-frequency emission is demonstrated in a natural experiment by using the Sura midlatitude heating facility. The excited low-frequency waves can be used to explore the near-Earth space and stimulate the excitation of a magnetospheric maser.

  2. Scintillation crystals for PET.

    PubMed

    Melcher, C L

    2000-06-01

    In PET, inorganic scintillator crystals are used to record gamma-rays produced by the annihilation of positrons emitted by injected tracers. The ultimate performance of the camera is strongly tied to both the physical and scintillation properties of the crystals. For this reason, researchers have investigated virtually all known scintillator crystals for possible use in PET. Despite this massive research effort, only a few different scintillators have been found that have a suitable combination of characteristics, and only 2 (thallium-doped sodium iodide and bismuth germanate) have found widespread use. A recently developed scintillator crystal, cerium-doped lutetium oxyorthosilicate, appears to surpass all previously used materials in most respects and promises to be the basis for the next generation of PET cameras. PMID:10855634

  3. Review of radio science 1984-1986

    NASA Astrophysics Data System (ADS)

    Hyde, G.

    Theoretical, experimental, and applications aspects of radio science are examined in a collection of subject-area reviews. Topics addressed include EM metrology, fields and waves, signals and systems, electronic and optical devices and their applications, and EM noise and interference. Consideration is given to wave propagation and remote sensing, ionospheric radio and wave propagation in plasmas, radio astronomy, and the biological effects of EM waves. An extensive glossary of acronyms is provided.

  4. Radio wave scattering observations of the solar corona: First-order measurements of expansion velocity and turbulence spectrum using Viking and Mariner 10 spacecraft

    SciTech Connect

    Tyler, G.L.; Vesecky, J.F.; Plume, M.A.; Howard, H.T.; Barnes, A.

    1981-10-01

    Solar conjunction of Mars on 1976 November 25 occurred very near the beginning of solar cycle 21, about 4 months after the first Viking spacecraft arrived at the planet. Radio wave scattering data were collected at 3.6 and 13 cm wavelengths, using the radio link between the Viking orbiters and the Earth. These data allow measurements of solar wind properties over a range of heliocentric radial distance from approx.6 to 44 R/sub sun/ with solar latitudes ranging from -17/sup 0/ to +7/sup 0/. Observations with Mariner 10 during a period of moderate solar activity in 1974 cover from 6 to 24 R/sub sun/ and from approx.20/sup 0/ to near 90/sup 0/. We have found that the temporal frequency variance spectrum of amplitude fluctuations is useful for characterizing the bulk motion of the plasma. This spectrum has an approximately constant low frequency plateau and a power-law high frequency asymptote; the plateau-asymptote intersection frequency provides a measure of the solar wind velocity V. We also obtain the spectral index p of electron density turbulence, Phi/sub N/approx.kappa/sup -p/, where kappa is spatial wavenumber. These results apply to a cylindrical region oriented with its axis along the radio ray path and its center at the point of closest approach to the Sun. The measurements of V and p cover some 78/sup d/ for Viking and 49/sup 2/ for Mariner 10 and show the combined effects of changing heliocentric distance rho, solar latitude theta, and solar longitude Psi, as well as solar activity. The Viking results can be regarded as a function primary of rho and Psi since the observations are concentrated in the equatorial regions when solar activity was near minimum. For Mariner 10, rho, theta, and Psi variations were important. The Viking results show an abrupt change in V(rho) and the turbulence spectral index at approx.15 R/sub sun/.

  5. Broadband meter-wavelength observations of ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Fallows, R. A.; Coles, W. A.; McKay-Bukowski, D.; Vierinen, J.; Virtanen, I. I.; Postila, M.; Ulich, Th.; Enell, C.-F.; Kero, A.; Iinatti, T.; Lehtinen, M.; Orisp, M.; Raita, T.; Roininen, L.; Turunen, E.; Brentjens, M.; Ebbendorf, N.; Gerbers, M.; Grit, T.; Gruppen, P.; Meulman, H.; Norden, M. J.; de Reijer, J.-P.; Schoenmakers, A.; Stuurwold, K.

    2014-12-01

    Intensity scintillations of cosmic radio sources are used to study astrophysical plasmas like the ionosphere, the solar wind, and the interstellar medium. Normally, these observations are relatively narrow band. With Low-Frequency Array (LOFAR) technology at the Kilpisjrvi Atmospheric Imaging Receiver Array (KAIRA) station in northern Finland we have observed scintillations over a three-octave bandwidth. "Parabolic arcs," which were discovered in interstellar scintillations of pulsars, can provide precise estimates of the distance and velocity of the scattering plasma. Here we report the first observations of such arcs in the ionosphere and the first broadband observations of arcs anywhere, raising hopes that study of the phenomenon may similarly improve the analysis of ionospheric scintillations. These observations were made of the strong natural radio source Cygnus-A and covered the entire 30-250 MHz band of KAIRA. Well-defined parabolic arcs were seen early in the observations, before transit, and disappeared after transit although scintillations continued to be obvious during the entire observation. We show that this can be attributed to the structure of Cygnus-A. Initial results from modeling these scintillation arcs are consistent with simultaneous ionospheric soundings taken with other instruments and indicate that scattering is most likely to be associated more with the topside ionosphere than the F region peak altitude. Further modeling and possible extension to interferometric observations, using international LOFAR stations, are discussed.

  6. The 27-day versus 13.5-day variations in the solar Lyman-alpha radiation and the radio wave absorption in the lower ionosphere over Europe

    NASA Technical Reports Server (NTRS)

    Delamorena, B. A.; Lastovicka, Jan; Rapoport, Z. TS.; Alberca, L.

    1989-01-01

    In order to clarify the question of solar periods in absorption, the pattern was studied of the solar Lyman-alpha radiation (the principal ionizing agent of the lower ionosphere) and of the radio wave absorption at five widely spaced places in Europe. When the solar Lyman-alpha flux variability is very well developed, then it dominates in the lower ionospheric variability. The most pronounced Lyman-alpha variation on time scale day-month is the solar rotation variation (about 27 days). When the Lyman-alpha variability is developed rather poorly, as it is typical for periods dominated by the 13.5 day variability, then the lower ionospheric variability appears to be dominated by variations of meteorological origin. The conclusions hold for all five widely spaced placed in Europe.

  7. Remote sensing and modeling of energetic electron precipitation into the lower ionosphere using VLF/LF radio waves and field aligned current data

    NASA Astrophysics Data System (ADS)

    Schmitter, E. D.

    2015-11-01

    A model for the development of electron density height profiles based on space time distributed ionization sources and reaction rates in the lower ionosphere is described. Special attention is payed to the definition of an auroral oval distribution function for energetic electron energy input into the lower ionosphere based on a Maxwellian energy spectrum. The distribution function is controlled by an activity parameter which is defined proportional to radio signal amplitude disturbances of a VLF/LF transmitter. Adjusting the proportionality constant allows to model precipitation caused VLF/LF signal disturbances using radio wave propagation calculations and to scale the distribution function. Field aligned current (FAC) data from the new Swarm satellite mission are used to constrain the spatial extent of the distribution function. As an example electron precipitation bursts during a moderate substorm on the 12 April 2014 (midnight-dawn) are modeled along the subauroral propagation path from the NFR/TFK transmitter (37.5 kHz, Iceland) to a midlatitude site.

  8. Remote sensing and modeling of lightning caused long recovery events within the lower ionosphere using VLF/LF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Schmitter, E. D.

    2014-11-01

    On the 4 November 2012 at 3:04:27 UT a strong lightning in the midst of the North Sea affected the propagation conditions of VLF/LF transmitter radio signals from NRK (Iceland, 37.5 kHz) and GBZ (UK, 19.58 kHz) received at 5246 N 8 E (NW Germany). The amplitude and phase dips show a recovery time of 6-12 min pointing to a LOng Recovery Early VLF (LORE) event. Clear assignment of the causative return stroke in space and time was possible with data from the WWLLN (Worldwide Lightning Location Network). Based on a return stroke current model the electric field is calculated and an excess electron density distribution which decays over time in the lower ionosphere is derived. Ionization, attachment and recombination processes are modeled in detail. Entering the electron density distribution in VLF/LF radio wave propagation calculations using the LWPC (Long Wavelength Propagation Capability) code allows to model the VLF/LF amplitude and phase behavior by adjusting the return stroke current moment. The results endorse and quantify the conception of lower ionosphere EMP heating by strong - but not necessarily extremely strong - return strokes of both polarities.

  9. Radio Science in Africa

    NASA Astrophysics Data System (ADS)

    Lefeuvre, Francois; Mc Kinnel, Lee-Anne; Chukwuma, Victor; Amory-Mazaudier, Christine

    2010-05-01

    Radio science activities covered by URSI (International Radio Science Union) are briefly reviewed. They encompass the knowledge and study of all aspects of electromagnetic fields and waves in a wide frequency range running from micro pulsation frequencies (i.e. from ~1 mHz) to Terahertz. The topics include: electromagnetic measurements and standards, electromagnetic theory and applications, radio-communication systems and signal processing, electronics and Photonics, electromagnetic environment and interference, wave propagation and remote sensing, ionospheric radio and propagation, waves in plasmas, radio astronomy, and electromagnetics in biology and medicine. The main radio science activities conducted by the URSI national Committees of South Africa, Egypt and Nigeria, and by African radio scientists groups gathered in GIRGEA (Groupe International de Recherche en Gophysique Europe Afrique) are reviewed. The emphasis is put on the activities developed in the context of the IHY programme and of the SCINDA network for forecasting ionospheric irregularities that adversely impact communication and navigation systems in the low latitude regions.

  10. The effect of different background separation methods on gravity wave parameters in the upper troposphere and lower stratosphere region derived from GPS radio occultation data

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten; Wickert, Jens; De la Torre, Alejandro; Alexander, Peter; Faber, Antonia; Llamedo, Pablo; Heise, Stefan

    2012-07-01

    When vertical temperature profiles are used for the detection of gravity wave (GW) parameters a separation between a GW induced fluctuation and the background temperature field has to be performed. According the linear theory of GWs the measured temperature profile is expanded into a background temperature and a perturbation. The background is assumed to be steady, the fluctuations are much smaller than the background and the fluctuations should not affect the background. Usually, the fluctuations are addressed to GWs, but this depends strongly on the measuring method (observational filter) and the background separation approach. One possibility to separate GWs from the measurement is the application of band-pass filter associated to different vertical wavelengths to the measured temperature profiles. But, this analysis technique introduces an artificial enhancement of wave activity at the tropopause, mainly in the tropics, depending on the ability of the used filter to reproduce the tropopause kink. One possible method to solve this problem in the tropopause region is the separation of the profile into a tropospheric and a stratospheric part and the application of the filter for each region. A more appropriate approach is the double filtering method previously introduced. Alternatively to vertical detrending, a temperature background can be separated by horizontal detrending. For it temperature climatologies based on a sufficient temporal and spatial data density and averaging intervals must be present. In this study we demonstrate and discuss global GW temperature variances, and vertical wavelengths and amplitudes retrieved from GPS radio occultation (RO) data from COSMIC (2009 and 2010) between 10 and 40 km based on the different vertical and horizontal detrending approaches. The RO technique uses GPS radio signals received aboard low orbiting satellites for atmospheric limb sounding. Atmospheric temperature profiles are derived with high vertical resolution. The GPS RO technique is sensitive to GWs with small ratios of vertical to horizontal wavelengths.

  11. Analysis of Radio Wave Propagation for ISM 2.4 GHz Wireless Sensor Networks in Inhomogeneous Vegetation Environments

    PubMed Central

    Azpilicueta, Leire; López-Iturri, Peio; Aguirre, Erik; Mateo, Ignacio; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2014-01-01

    The use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments. PMID:25513820

  12. Analysis of radio wave propagation for ISM 2.4 GHz Wireless Sensor Networks in inhomogeneous vegetation environments.

    PubMed

    Azpilicueta, Leire; López-Iturri, Peio; Aguirre, Erik; Mateo, Ignacio; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2014-01-01

    The use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments. PMID:25513820

  13. Features of solar wind acceleration according to radio occultation data

    NASA Technical Reports Server (NTRS)

    Efimov, A. I.

    1995-01-01

    In addressing one of the fundamental problems in solar physics establishing the mechanism(s) responsible for the solar wind acceleration and the corona heating - it is essential to have a reliable knowledge of the heliocentric radial dependence of the solar wind properties. Adequate data are available for small solar distances R less than 4 R(solar mass) from coronal white light and EUV observations and at distances R greater than 60 R(solar mass) from in situ measurements. One of the few methods available to fill in the gap between these boundaries is the radio scintillation technique. Taking the example of the solar wind velocity, the most reliable such measurements are obtained when phase fluctuation observations of scattered radio waves, which are not susceptible to saturation effects, are recorded at two or more widely-spaced ground stations. Two extensive observation campaigns of this type were carried out with the Venus-orbiting satellites Venera 10 in 1976 and Venera 15/16 in 1984. The observations were performed over the course of three months near superior conjunction at solar offset distances R approximately 6-80 R(solar mass). The main results from the subsequent analysis of these data are: (1) velocities vary between 250 and 380 km s(exp -1) for R greater than 20 R(solar mass), agreeing with similar measurements using natural sources (IPS); (2) velocities derived from two-station phase fluctuation observations varv between 70 and 120 km s(exp -1) for R less than 12 R(solar mass), i.e. values substantially lower than those derived from conventional IPS data; and (3) it is suggested that the different velocity profiles derived from the two data sets at small R may be due to the effects of magnetosonic and Alfvenic waves on radio wave scattering. Further analysis of additional radio sounding data should help resolve the apparent discrepancy.

  14. Conditioning Matrices of Liquid Scintillation Cocktails Contaminated with Tritium

    SciTech Connect

    Dianu, Magdalena

    2005-07-15

    This paper describes a viable solidification technology to convert the liquid scintillation cocktail into a stable form which minimizes the probability to release tritium in the environment.This radioactive waste type is generated by the radio-chemical analysis lab of a CANDU nuclear power plant.

  15. Interstellar Scintillation as a Cosmological Probe: Prospects and Challenges

    NASA Astrophysics Data System (ADS)

    Koay, J. Y.; Macquart, J.-P.; Rickett, B. J.; Bignall, H. E.; Jauncey, D. L.; Lovell, J. E. J.; Reynolds, C.; Pursimo, T.; Kedziora-Chudczer, L.; Ojha, R.

    2012-04-01

    The discovery that interstellar scintillation (ISS) is suppressed for compact radio sources at z >~ 2 has enabled ISS surveys to be used as cosmological probes. We discuss briefly the potential and challenges involved in such an undertaking, based on a dual-frequency survey of ISS carried out to determine the origin of this redshift dependence.

  16. Simultaneous observations of equatorial ionospheric scintillation on four frequencies

    NASA Technical Reports Server (NTRS)

    Rastogi, R. G.; Deshpande, M. R.; Vadher, N. M.; Davies, K.; Parikh, P. B.

    1978-01-01

    The variation with frequency of ionospheric scintillations, simultaneously observed at 40, 140, 360, and 860 MHz at equatorial latitudes, was studied. The ATS 6 geostationary satellite was equipped with radio beacons at 40, 140, and 360 MHz, and also with a television downlink at 860 MHz. The signals were recorded at Ootacamund, India (dip 4 deg N) and were most common between 2000 and 2300 LT. It was found that the spectral index of an expression used by Aarons et al (1967) was not constant but decreased with increasing magnitude of scintillations. For weak scintillations the spectral index (referred to as the exponent) was found to be close to 1.0. The analysis of the records involved scaling at 15-sec intervals and the calculation of the average scintillation index.

  17. Radio-frequency electromagnetic field measurements for direct detection of electron Bernstein waves in a torus plasma

    SciTech Connect

    Yatsuka, Eiichi; Kinjo, Kiyotake; Morikawa, Junji; Ogawa, Yuichi

    2009-02-15

    To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic.

  18. Cosmology: Home of a fast radio burst

    NASA Astrophysics Data System (ADS)

    Lorimer, Duncan

    2016-02-01

    Our understanding of fast radio bursts -- intense pulses of radio waves -- and their use as cosmic probes promises to be transformed now that one burst has been associated with a galaxy of known distance from Earth. See Letter p.453

  19. Characterization of ionospheric amplitude scintillations using wavelet entropy detrended GNSS data

    NASA Astrophysics Data System (ADS)

    Su, Yongqing; Liu, Hao; Yue, Jiguang; Yang, Yunfan

    2014-12-01

    The extensive monitoring networks of Global Navigation Satellite System (GNSS) ionospheric scintillation have been established to continuously log observation data. Further, the amplitude scintillation index and the phase scintillation index, which are derived from scintillation observations, are anticipated to accommodate the accuracy requirement of both the user level and the monitoring station level. However, raw scintillation observations essentially measure superposed waveform impairments of GNSS signals propagating through ionosphere and troposphere. It implies that fluctuations of raw scintillation observations are caused by multiple factors from the entire radio propagation environment. Hence, it is crucial to characterize ionospheric scintillations from GNSS observation data. And the characterization is implemented through extracting fluctuations of raw observations merely induced by ionospheric scintillations. Designed to address this problem by means of Fourier filtering detrending, the present work investigates the influence of varying detrending cutoff frequencies on wavelet statistical energy and wavelet entropy distributions of scintillation data. It consequently derives criteria on the optimum detrending cutoff frequency for three types of raw amplitude scintillation data, which are classified by their wavelet energy distributions. Results of the present work verify that detrending with specific optimum cutoff frequencies rather than the fixed and universally applicable one renders the validity and credibility of characterizing ionospheric scintillations as the part of GNSS observation fluctuations purely induced by ionosphere electron density irregularities whose scale sizes are comparable with or smaller than the Fresnel scale.

  20. MEXART. Interplanetary Scintillation Array in Mexico in the IHY2007

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; Carrillo, A.; Andrade, E.; Jeyakumar, S.; Perez-Enriquez, R.; Kurtz, S.

    The Mexican Array Radio Telescope MEXART consists of a 64x64 4096 full wavelength dipole antenna array operating at 140 MHz occupying 9 500 square meters 70 m x 140 m to carry out interplanetary scintillation IPS observations This is a dedicated radio array for IPS observations located in the state of Michoacan 350 km north-west from Mexico City lat 19 48 N long 101 41 W and 1964 m above sea level We report the system testings radio source measurements and the collaboration plans for the International Heliophysical Year 2007

  1. MEXART. Interplanetary Scintillation Array in Mexico in the IHY2007

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; Andrade, E.; Carrillo, A.; Kurtz, S.; Jeyakumar, S.; Perez-Enriquez, R.; Sierra, P.; Vazquez, S.; Manoharan, P.

    2006-12-01

    The Mexican Array Radio Telescope (MEXART) consists of a 64x64 (4096) full wavelength dipole antenna array, operating at 140 MHz, occupying 9,500 square meters (70 m x 140 m) to carry out interplanetary scintillation (IPS) observations. This is a dedicated radio array for IPS observations located in the state of Michoacan (350 km north-west from Mexico City, lat. 19^ 48' N, long. 101^ 41' W and 1964 m above sea level). We report the system testings, radio source measurements and the collaboration plans for the International Heliophysical Year 2007.

  2. Scintillating fiber tracking techniques

    SciTech Connect

    Ruchti, R.

    1986-02-01

    The current status of the field of scintillating fiber detection and tracking is briefly reviewed, and avenues for further work are suggested. Attention is given to the core material, cladding material, and extra-mural absorber to be used in the scintillating fibers, as well as to the properties of attenuation length, radiation resistance, and fiber profile. Some examples are given of successful recording of tracks and interactions. Current developments are mentioned in relation to plastic and glass fibers and liquid capillaries. (LEW)

  3. Plasma instabilities in the high- and low-latitude E region induced by high-power radio waves. Interim report

    SciTech Connect

    Chaturvedi, P.K.; Ossakow, S.L.

    1990-09-14

    The effect of a high frequency (HF) powerful pump wave on high and low latitude E-region low frequency plasma instabilities is theoretically considered. The growth rates and threshold criteria are calculated for the electrojet associated (Farley-Buneman, gradient-drift) and higher altitude high latitude parallel-current associated (ion-acoustic, ion cyclotron, current convective) instabilities. The results are discussed in the context of present ionospheric modification (heating) experiments, for the high and low latitude ionosphere.

  4. The wavelet transform function to analyze interplanetary scintillation observations

    NASA Astrophysics Data System (ADS)

    Aguilar-Rodriguez, E.; Rodriguez-Martinez, M.; Romero-Hernandez, E.; Mejia-Ambriz, J. C.; Gonzalez-Esparza, J. A.; Tokumaru, M.

    2014-05-01

    Interplanetary scintillation (IPS) observations are useful to remotely sense the inner heliosphere. We present a new technique to analyze IPS observations using a wavelet transform (WT) function. This technique allows us to derive, in a straightforward way, a simple method to obtain the scintillation index (m). We tested this WT technique to analyze IPS observations obtained by the Solar-Terrestrial Environment Laboratory (STEL) radio telescope. The analysis of the m index of the radio source 3C48 detected by STEL over the year 2012 shows the expected decrease with solar elongation reported in previous studies. The WT technique has a great potential for future solar wind studies using IPS observations from contemporary radio telescopes.

  5. Radio Journalism.

    ERIC Educational Resources Information Center

    Bittner, John R.; Bittner, Denise A.

    This book, a how-to-do-it guide for the novice and the professional alike, deals with several aspects of radio journalism: producing documentaries, preparing and announcing radio news, ethics and responsibility, regulation of radio journalism, and careers. It traces the history and growth of radio news, shows its impact on the public, and

  6. Laboratory studies on the removal of radon-born lead from KamLAND's organic liquid scintillator

    NASA Astrophysics Data System (ADS)

    Keefer, G.; Grant, C.; Piepke, A.; Ebihara, T.; Ikeda, H.; Kishimoto, Y.; Kibe, Y.; Koseki, Y.; Ogawa, M.; Shirai, J.; Takeuchi, S.; Mauger, C.; Zhang, C.; Schweitzer, G.; Berger, B. E.; Dazeley, S.; Decowski, M. P.; Detwiler, J. A.; Djurcic, Z.; Dwyer, D. A.; Efremenko, Y.; Enomoto, S.; Freedman, S. J.; Fujikawa, B. K.; Furuno, K.; Gando, A.; Gando, Y.; Gratta, G.; Hatakeyama, S.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Inoue, K.; Iwamoto, T.; Kamyshkov, Y.; Karwowski, H. J.; Koga, M.; Kozlov, A.; Lane, C. E.; Learned, J. G.; Maricic, J.; Markoff, D. M.; Matsuno, S.; McKee, D.; McKeown, R. D.; Miletic, T.; Mitsui, T.; Motoki, M.; Nakajima, Kyo; Nakajima, Kyohei; Nakamura, K.; O`Donnell, T.; Ogawa, H.; Piquemal, F.; Ricol, J.-S.; Shimizu, I.; Suekane, F.; Suzuki, A.; Svoboda, R.; Tajima, O.; Takemoto, Y.; Tamae, K.; Tolich, K.; Tornow, W.; Watanabe, Hideki; Watanabe, Hiroko; Winslow, L. A.; Yoshida, S.

    2015-01-01

    The removal of radioactivity from liquid scintillator has been studied in preparation of a low background phase of KamLAND. This paper describes the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. We report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon-born lead from liquid scintillator.

  7. Gravitational waves and red shifts - A space experiment for testing relativistic gravity using multiple time-correlated radio signals

    NASA Technical Reports Server (NTRS)

    Smarr, L. L.; Vessot, R. F. C.; Lundquist, C. A.; Decher, R.; Piran, T.

    1983-01-01

    A two-step satellite mission for improving the accuracy of gravitational wave detection and for observing actual gravity waveforms is proposed. The spacecraft would carry both a highly stable hydrogen maser, which would control a transmitter sending signals to earth, and a Doppler transponder operating in the two-way mode. The use of simultaneous one- and two-way Doppler transmissions offers four time records of frequency pulsations, which can reveal gravitational radiation at 1-10 MHz with an amplitude accuracy of a factor of six. The first mission phase would consist of a Shuttle launch into a highly eccentric orbit to obtain measurements of the gravitational redshift using gravitational potentials of different earth regions to establish that gravity is describable by a metric theory. Then, after a boost into a heliocentric orbit at 6 AU, the earth-satellite system could detect gravitational waves in the solar system, as well as bursts emitted by the collisions of supermassive black holes.

  8. MILLISECOND PULSAR SCINTILLATION STUDIES WITH LOFAR: INITIAL RESULTS

    SciTech Connect

    Archibald, Anne M.; Kondratiev, Vladislav I.; Hessels, Jason W. T.; Stinebring, Daniel R. E-mail: kondratiev@astron.nl E-mail: dan.stinebring@oberlin.edu

    2014-08-01

    High-precision timing of millisecond pulsars (MSPs) over years to decades is a promising technique for direct detection of gravitational waves at nanohertz frequencies. Time-variable, multi-path scattering in the interstellar medium is a significant source of noise for this detector, particularly as timing precision approaches 10 ns or better for MSPs in the pulsar timing array. For many MSPs, the scattering delay above 1 GHz is at the limit of detectability; therefore, we study it at lower frequencies. Using the LOw-Frequency ARray (LOFAR) radio telescope, we have analyzed short (5-20 minutes) observations of 3 MSPs in order to estimate the scattering delay at 110-190 MHz, where the number of scintles is large and, hence, the statistical uncertainty in the scattering delay is small. We used cyclic spectroscopy, still relatively novel in radio astronomy, on baseband-sampled data to achieve unprecedented frequency resolution while retaining adequate pulse-phase resolution. We detected scintillation structure in the spectra of the MSPs PSR B1257+12, PSR J1810+1744, and PSR J2317+1439 with diffractive bandwidths of 6 ± 3, 2.0 ± 0.3, and ∼7 kHz, respectively, where the estimate for PSR J2317+1439 is reliable to about a factor of two. For the brightest of the three pulsars, PSR J1810+1744, we found that the diffractive bandwidth has a power-law behavior Δν{sub d}∝ν{sup α}, where ν is the observing frequency and α = 4.5 ± 0.5, consistent with a Kolmogorov inhomogeneity spectrum. We conclude that this technique holds promise for monitoring the scattering delay of MSPs with LOFAR and other high-sensitivity, low-frequency arrays like the low-frequency component of the Square Kilometre Array.

  9. Guided radio-wave propagation in the equatorial ionosphere according to the topside sounding onboard Interkosmos-19

    NASA Astrophysics Data System (ADS)

    Karpachev, A. T.; Zhbankov, G. A.; Kuleshova, V. P.; Telegin, V. A.

    2014-12-01

    In addition to normal vertical-incident ionogram traces, strongly remote (up to 2000 km) traces of HF-radio-signal reflections observed on topside-sounder ionograms of the Interkosmos-19 satellite obtained in the equatorial ionosphere are presented. Such traces are connected with waveguides (ducts). These waveguides are field-aligned irregularities of the ionospheric plasma with electron density depletions of a few percent and cross-field dimension of a few to several kilometers. Ray tracing confirms this supposition and allows an estimate of typical waveguide parameters: diameter ≤10-15 km and amplitude |ΔN/N|≥10%, where N is the electron density. The waveguide traces usually start at the cutoff frequencies of the main traces. However, sometimes they begin at much lower frequencies which indicates the satellite was transitioning through an equatorial plasma bubble during the recording of the ionogram. The X-mode of ducted echoes is more distinct then the O-mode. Only one ducted trace is usually observed on the Interkosmos-19 ionograms; a second conjugate trace is rarely recorded. The same is true for combination modes which is a combination of an oblique-incidence and guided propagation. Waveguides are observed at all heights of Interkosmos-19 (500-1000 km) inside the equatorial anomaly region (from -40° to +40° Dip). Waveguides are usually associated with other irregularities of various sizes in the equatorial ionosphere, some of which cause additional traces and spread F on the topside-sounding ionograms. Ducted-echo characteristics observed with Interkosmos-19 are different from those observed earlier with the Alouette and ISIS satellites. This difference is discussed. It is shown that the ionospheric plasma irregularities responsible for the waveguides are observed much more often during nighttime than during daytime.

  10. Coherence properties of wideband satellite signals caused by ionospheric scintillation

    NASA Technical Reports Server (NTRS)

    Rufenach, C. L.

    1975-01-01

    Radio scintillation on satellite signals caused by small-scale irregularities in F-region ionospheric electron density can be an important limitation on earth-satellite communication and navigation systems. Scintillation imposes distortion in both amplitude and phase on wideband signals. In the present work, the shallow-modulated phase screen theory is developed in terms of coherence bandwidth including a model based on a turbulent-like power-law description of the irregularities. The model results usually show a greater coherence bandwidth in the signal phase than in the signal amplitude. Therefore, systems that require phase coherence over a large bandwidth should be less affected than those requiring amplitude coherence.

  11. Interplanetary plasma scintillation parameters measurements retrieved from the spacecraft observations.

    NASA Astrophysics Data System (ADS)

    Molera Calvés, Guifré; Pogrebenko, S. V.; Wagner, J.; Maccaferri, G.; Colucci, G.; Kronschnabl, G.; Scilliro, F.; Bianco, G.; Pérez Ayúcar, M.; Cosmovici, C. B.

    2010-05-01

    Measurement of the Interplanetary Scintillations (IPS) of radio signals propagating through the plasma in the Solar System by the radio astronomical instruments is a powerful tool to characterise and study the spatial and temporal variation of the electron density in the Solar wind. Several techniques based on the observation of natural and artificial radio sources have been developed during the last 50 years. Here we report our results of the IPS parameters measurement based on the multi-station observations of the planetary mission spacecraft. The ESA Venus Express spacecraft was observed at X-band (8.4 GHz) by several European VLBI stations - Metsähovi Radio Observatory (Aalto University , FI), Medicina (INAF-RA, IT), Matera (ASI, IT), Wettzell (BKG, DE), Noto (INAF-IRA, IT) and Yebes (OAN-IGN, ES) during a 2008-2010 campaign in a framework of the PRIDE (Planetary Radio Interferometry and Doppler Experiments) project as a preparatory stage for the European Radio Astronomy VLBI facilities participation in the planned ESA planetary missions (EJSM, TESM, EVE and others). Observational data were processed at Metsähovi Radio Observatory with the on-purpose developed high performance, ultra-high spectral resolution and spacecraft tracking capable software spectrometer-correlator and analysed at the Joint Institute for VLBI in Europe (JIVE, NL). High quality of acquired and analysed data enables us to study and define several parameters of the S/C signal and accompanying "ranging" tones with milli-Hz accuracy, among which the phase fluctuations of the spacecraft signal carrier line can be used to characterise the interplanetary plasma density fluctuations along the signal propagation line at different spatial and temporal scales at different Solar elongations and which exhibits a near-Kolmogorov spectrum. Such essential parameters as the phase scintillation index and bandwidth of scintillations and their dependence on the solar elongation, distance to the target, positions of the source in the Solar system and Solar activity index were retrieved from our measurements and are reported. This study is focused on the technique of the measurements and data analysis, leaving the physical interpretation of the measurement results to the upcoming studies when more observational data is collected. Our measurements of the phase scintillations from the sources within the Solar system are complementary to the classical measurements of the power level scintillations of signals from the natural radio sources. The results presented in this paper are promising and observations will continue during 2010.

  12. High Efficiency Traveling-Wave Tube Power Amplifier for Ka-Band Software Defined Radio on International Space Station-A Platform for Communications Technology Development

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.

    2013-01-01

    The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.

  13. The Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi

    2011-08-01

    We present the status of the Sardinia Radio Telescope (SRT) project, a new general purpose, fully steerable 64 m diameter parabolic radio telescope under construction in Sardinia. The instrument is funded by Italian Ministry of University and Research (MIUR), by the Sardinia Regional Government (RAS), and by the Italian Space Agency (ASI), and it is charge to three research structures of the National Institute for Astrophysics (INAF): the Institute of Radio Astronomy of Bologna, the Cagliari Astronomical Observatory (in Sardinia), and the Arcetri Astrophysical Observatory in Florence. The radio telescope has a shaped Gregorian optical configuration with a 8 m diameter secondary mirror and additional Beam-Wave Guide (BWG) mirrors. One of the most challenging feature of SRT is the active surface of the primary reflector which provides good efficiency up to about 100 GHz. This paper reports on the most recent advances of the construction.

  14. Packet Radio: An Alternative Way to Connect.

    ERIC Educational Resources Information Center

    Lucas, Larry W.

    1995-01-01

    Explains packet radio as a form of telecomputing in which digital data is transported via radio waves instead of telephone lines or other cabling, and describes how it can be used by students to access the Internet. Highlights include packet bulletin board systems and equipment needed for a packet radio station. (LRW)

  15. Polysiloxane scintillator composition

    DOEpatents

    Walker, J.K.

    1992-05-05

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  16. Polysiloxane scintillator composition

    DOEpatents

    Walker, James K. (Gainesville, FL)

    1992-01-01

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  17. Boron loaded scintillator

    SciTech Connect

    Bell, Zane William; Brown, Gilbert Morris; Maya, Leon; Sloop, Jr., Frederick Victor; Sloop, Jr., Frederick Victor

    2009-10-20

    A scintillating composition for detecting neutrons and other radiation comprises a phenyl containing silicone rubber with carborane units and at least one phosphor molecule. The carbonate units can either be a carborane molecule dispersed in the rubber with the aid of a compatibilization agent or can be covalently bound to the silicone.

  18. Scintillator requirements for medical imaging

    SciTech Connect

    Moses, William W.

    1999-09-01

    Scintillating materials are used in a variety of medical imaging devices. This paper presents a description of four medical imaging modalities that make extensive use of scintillators: planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT (single photon emission computed tomography) and PET (positron emission tomography). The discussion concentrates on a description of the underlying physical principles by which the four modalities operate. The scintillator requirements for these systems are enumerated and the compromises that are made in order to maximize imaging performance utilizing existing scintillating materials are discussed, as is the potential for improving imaging performance by improving scintillator properties.

  19. Scintillator Waveguide For Sensing Radiation

    DOEpatents

    Bliss, Mary (West Richland, WA); Craig, Richard A. (West Richland, WA); Reeder; Paul L. (Richland, WA)

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  20. Study of cosmic ray scintillations from 5-minute data of the scintillations telescope Izmran and world-wide network stations

    NASA Technical Reports Server (NTRS)

    Gulinsky, O. V.; Dorman, L. I.; Libin, I. Y.; Prilutsky, R. E.; Yudakhin, K. F.

    1985-01-01

    During cosmic ray propagation in interplanetary space there appear characteristic cosmic-ray intensity scintillations which are due to charged particle scattering on random inhomogeneities of the interplanetary magnetic field. The power spectra of cosmic ray scintillations on the Earth during some intervals from 1977 to 1982 (for quiet periods, for solar flares and Forbush decreases due to power shock waves) have been calculated from five-minute, one and two-hour values of the cosmic-ray intensity measured by the scintillator supertelescope IZMIRAN. The spectra were estimated by the methods of spectral analysis and by autoregressive methods which mutually control each other and make it possible not only to analyze scintillation powers at distinguished frequencies, but also to determine the behavior of spectrum slopes in some frequency ranges.

  1. Comparison of the effect of high-latitude and equatorial ionospheric scintillation on GPS signals during the maximum of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Jiao, Yu; Morton, Yu T.

    2015-09-01

    Radio signal scintillation caused by electron density irregularities in the ionosphere affects the accuracy and integrity of Global Navigation Satellite Systems, especially in the equatorial and high-latitude regions during solar maxima. Scintillation in these two regions, nevertheless, is usually influenced by different factors and thus has different characteristics that cause different effects on GNSS signals. This paper compares the characteristics of high-latitude and equatorial scintillation using multifrequency GPS scintillation data collected at Gakona, Alaska, Jicamarca, Peru, and Ascension Island during the 24th solar maximum. Several statistical distributions are established based on the data to characterize the intensity, duration, and occurrence frequency of scintillation. Results show that scintillation in the equatorial region is generally more severe and longer lasting, while high-latitude scintillation is, in general, more moderate and usually dominated by phase fluctuations. Results also reveal the different impacts of solar activity, geomagnetic activity, and seasons on scintillation in different geographic locations.

  2. Sudden Stratospheric Warming Effects over L1 Scintillation at Low Latitude During Quiet and Magnetically Disturbed Periods

    NASA Astrophysics Data System (ADS)

    Paula, E. R.; Jonah, O. F.; Moraes, A. O.; Kherani, E. A.; Fejer, B. G.; Abdu, M. A.; Batista, I. S.; Negreti, P. M. D. S.; Dutra, S. L. G.; Paes, R. D. R.

    2014-12-01

    Small scale irregularities of hundred of meters, associated with bubbles cause scattering and diffraction of radio waves crossing the ionosphere and produces scintillation in amplitude and/or phase of the GNSS signal that can cause loss of lock of its code and/or carrier, affecting the positioning determination. The L1 band GPS amplitude scintillation intensities, represented by the S4 scintillation index, at the low latitude station of So Jos dos Campos (23.1 S, 45.8 W, dip latitude 17.3 S), located under the southern crest of the EIA, were analyzed during two northern hemisphere Sudden Stratospheric Warming (SSW) events. These events occurred during the northern winter months of 2003/2004 marked by moderate magnetic disturbances and 2012/2013 during a very quiet magnetic period. Normally during these months (January to February) moderate to strong scintillation occurs in this Brazilian station for moderate and high solar flux. Long lasting weakening of the scintillation amplitude at this low latitude station was observed during these two SSW events, compared to the pre-SSW periods, however stronger S4 weakening was observed during 2003/2004. The main mechanisms that can lead to scintillation weakening are the meridional neutral wind and the equatorial vertical plasma drift. Since no wind data is available during pre-SSW and SSW periods, we have sought to identify its signature in the latitudinal distribution of the TEC along the 60o magnetic meridian and we suggest that a SSW induced southward meridional wind had a large contribution to the S4 weakening. The other mechanism that could have contributed to S4 weakening is the vertical plasma drift. This parameter, inferred from So Lus (2.52S, 44.3W, dip latitude 1.73S) digisonde data for the 17 to 21 LT period during the SSW events, showed predominant decreases around the prereversal hours relative to their pre-SSW periods. The vertical drift during the period of the 2003/2004 SSW event presented a large flattening and remained constant at about 10 m/s. We suggest that this larger drift decrease during the magnetic storm, compared to the 2012/2013 SSW period, is caused by the SSW effects reinforced by the disturbance dynamo and overshielding westward polarity electric fields associated with the storm.

  3. The Radio Transient Sky

    NASA Astrophysics Data System (ADS)

    Lazio, J.; Ray, P. S.; Ellingson, S.; Close, S.; Crane, P.; Hyman, S. D.; Jacoby, B. A.; Junor, W.; Kassim, N. E.; Kulkarni, S. R.; Pihlstrom, Y. M.; Taylor, G. B.; Werthimer, D.

    2006-08-01

    Transient radio sources are necessarily compact and usually are the locations of explosive or dynamic events, therefore offering unique opportunities for probing fundamental physics and astrophysics. In addition, short-duration transients are powerful probes of intervening media owing to dispersion, scattering, and Faraday rotation that modify the signals. While radio astronomy has an impressive record obtaining high time resolution, usually it is achieved in quite narrow fields of view. Consequently, the dynamic radio sky is poorly sampled, in contrast to the situation in the X-ray and ?-ray bands. Operating in the 20-80 MHz range, the Long Wavelength Array (LWA) is one of a suite of next-generation radio telescopes that will explore the radio transient sky. Composed of phased "stations" of dipoles, the LWA can probe the sky for transients on a range of angular and temporal scales, by using an individual station to scan much of the sky or correlating the signals from multiple stations to monitor possible transients. Numerous classes of radio transients, both known and hypothesized, are accessible to the LWA, ranging from cosmic ray air showers and Jovian emission, to bursts from extrasolar planets or other coherent emitters and prompt emission from ?-ray bursts, to possible electromagnetic counterparts of gravitational wave burst sources. We summarize the scientific potential of radio transient observations with the LWA as well as some of the technical challenges, the most notable of which is the robust excision or avoidance of radio frequency interference (RFI). Basic research in radio astronomy at the NRL is supported by the Office of Naval Research.

  4. Firefighters' Radios

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Public Technology Inc. asked for NASA assistance to devise the original firefighter's radio. Good short-range radio communications are essential during a fire to coordinate hose lines, rescue victims, and otherwise increase efficiency. Useful firefighting tool is lower cost, more rugged short range two-way radio. Inductorless electronic circuit replaced inductances and coils in radio circuits with combination of transistors and other low-cost components. Substitution promises reduced circuit size and cost. Enhanced electrical performance made radio more durable and improved maintainability by incorporating modular construction.

  5. Scintillation-induced Intermittency in SETI

    NASA Astrophysics Data System (ADS)

    Cordes, James M.; Lazio, Joseph W.; Sagan, Carl

    1997-10-01

    We use scattering theory, simulations, and empirical constraints on interstellar scintillations to discuss the intermittency of radio signals from extraterrestrial intelligence (ETI). The number of ETI sources in the Galaxy has a direct influence on the expected dynamic range of fluxes in a survey, through inverse square-law effects and, equally importantly, by the number of independent statistical trials made on modulations caused by interstellar scintillations. We demonstrate that scintillations are very likely to allow initial detections of narrowband signals, while making redetections extremely improbable, a result that follows from the skewed, exponential distribution of the modulation. This conclusion holds for relatively distant sources but does not apply to radio SETI toward nearby stars (<~100 pc). Recent SETI has found nonrepeating, narrowband events that are largely unexplained. We consider three models in order to assess these events and to analyze large surveys in general: (model I) radiometer noise fluctuations; (model II) a population of constant Galactic sources that undergo deep fading and amplification due to interstellar scintillation, consistent with ETI transmissions; and (model III) real, transient signals (or hardware errors) of either terrestrial or extraterrestrial origin. We derive likelihood and Bayesian tests of the models for individual events and globally on entire surveys. Applying them to The Planetary Society/Harvard META data, we find that models II and III are both highly preferred to model I, but that models II and III are about equally likely. In the context of model II, the likelihood analysis indicates that candidate events above threshold (~32 ?) are combinations of large amplitude noise fluctuations and scintillation gains, making it highly probable that events seen once will only very rarely be seen again. Ruling out model II in favor of model III is difficult--to do so, many more reobservations (e.g., thousands) are needed than were conducted in META (hundreds) or the reobservation threshold must be much lower than was used in META. We cannot, therefore, rule out the possibility that META events are real, intrinsically steady ETI signals. Our formalism can be used to analyze any SETI program. We estimate the number of reobservations required to rule out model II in favor of model III, taking into account that reobservations made promptly sample the same scintillation gain as in the original detection, while delayed reobservations sample a decorrelated scintillation modulation. The required number is a strong function of the thresholds used in the original survey and in reobservations. We assess optimal methods for applying statistical tests in future SETI programs that use multiple site and multiple beam observations as well as single site observations. We recommend that results be recorded on many more events than have been made to date. In particular, we suggest that surveys use thresholds that are far below the false-alarm threshold that is usually set to yield a small number of noise-induced ``detections'' in a massive survey. Instead, large numbers of events should be recorded in order to (1) demonstrate that background noise conforms to the distribution expected for it; and (2) investigate departures from the expected noise distribution as due to interference or to celestial signals. In this way, celestial signals can be investigated at levels much smaller than the false-alarm threshold. The threshold level for archiving candidate intensities and their corresponding sky positions is best defined in terms of the recording and computational technology that is available at a cost commensurate with other survey costs.

  6. Radio Frequency Interference: Radio Astronomy's Biggest Enemy

    NASA Astrophysics Data System (ADS)

    Acevedo, F.; Ghosh, Tapasi

    1997-12-01

    As technology progresses, the demand for the usage of the electromagnetic spectrum increases with it. The development is so fast and prolific that clean band space for passive users such as Radio Astronomy is becoming ever so scarce. Even though, several spectral bands have been protected for Radio Astronomy by Federal Communication Commission (in the USA) under the recommendations of the International Telecommunication Union (ITU), pressure for making more spectral space commercially usable is extreme. Although these commercial usages make our modern living at all possible, often the extreme vulnerability of passive users are are not fully appreciated, resulting in unwanted emissions (RFI) in the Radio Astronomy Bands. Another source of RFI is the fact that many of the electronic devices used in the observatories themselves generate radio waves. If proper precautions are not taken, these can be received back through the Radio Telescope itself. This problem is referred to as internal RFI. The focus of this paper is the search and diminution of internal RFI in the Arecibo Observatory in Arecibo, Puerto Rico. Using a simple setup of a log-periodic antenna and a Spectrum Analyzer, spectra spanning a frequency range of 100 - 1800 MHZ were recorded in some areas of the Observatory and the new Visitor Center (AOVEF). The measurements disclosed sources of radio emission among some of the digital electronic equipment in the Equipment room and a few displays in the AOVEF. Most prominent of these was a 2.5 MHz comb spanning the entire range of the measurements emitted from the SRENDIP and AOFTM machines. The respective groups were informed and corrective shielding & isolations were implemented immediately. In AOVEF, three displays, some audio-visual equipment, and video/digital cameras used by the visitors were found to be "leaky". In future, the use of such cameras will be prohibited and the exhibits will be screened appropriately.

  7. Composite scintillator screen

    SciTech Connect

    Zeman, Herbert D.

    1994-01-01

    A scintillator screen for an X-ray system includes a substrate of low-Z material and bodies of a high-Z material embedded within the substrate. By preselecting the size of the bodies embedded within the substrate, the spacial separation of the bodies and the thickness of the screen, the sensitivity of the screen to X-rays within a predetermined energy range can be predicted.

  8. Modular scintillation camera

    SciTech Connect

    Barrett, H. H.

    1985-04-30

    Improved optical coupling modules to be used in coded-aperture-type radiographic imaging systems. In a first system, a rotating slit coded-aperture is employed between the radioactive object and the module. The module consists of one pair of side-by-side photomultipliers receiving light rays from a scintillation crystal exposed to the object via the coded-aperture. The light rays are guided to the photomultipliers by a mask having a central transverse transparent window, or by a cylindrical lens, the mask or lens being mounted in a light-conveying quartz block assembly providing internal reflections at opposite faces of the assembly. This generates output signals from the photomultipliers which can be utilized to compute one-dimensional coordinate values for restoring the image of the radioactive object on a display screen. In another form of optical coupling module, usable with other types of coded-apertures, four square photomultipliers form a substantially square block and receive light rays from scintillations from a scintillation crystal exposed to the radioactive object via the coded-aperture. The light rays are guided to the photomultipliers by a square mask or a centrally transparent square lens configuration mounted in a light-conveying assembly formed by internally reflecting quartz blocks, the optical rays being directed to the respective photomultipliers so as to generate resultant output signals which can be utilized to compute image coordinate values for two-dimensional representation of the radioactive object being examined.

  9. MEXART observations at 140 MHz: Calibration to perform the Interplanetary Scintillation (IPS) technique

    NASA Astrophysics Data System (ADS)

    Villanueva, P.; Mejia Ambriz, J. C.; Gonzalez-Esparza, A.; Aguilar-Rodriguez, E.; Carrillo Vargas, A.; Andrade Mascote, E.

    2010-12-01

    The Mexican Array Radio Telescope (MEXART) is an array of 64 X 64 dipoles, covering 9600 square meters, located in Michoacan, Mexico at a latitude of 19 and 101 longitude. The telescope has 16 beams at different declinations to detect stellar radio sources at 140 MHz in a declination range of -40 to 80. We report the sensitivity of the instrument, by using a list of radio sources characterized at 140 MHz. We also present an analysis of the scintillation index versus the elongation angle for some IPS radio sources.

  10. Pulsar scintillations from corrugated reconnection sheets in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Pen, Ue-Li; Levin, Yuri

    2014-08-01

    We show that surface waves along interstellar current sheets closely aligned with the line of sight lead to pulsar scintillation properties consistent with those observed. This mechanism naturally produces the length-scales and density scales of the interstellar medium (ISM) scattering lenses that are required to explain the magnitude and dynamical spectrum of the scintillations. In this scenario, the parts of warm ionized ISM that are responsible for the scintillations are relatively quiescent, with scintillation and scattering resulting from weak waves propagating along magnetic domain boundary current sheets. These are expected from helicity conservation and have also been observed in numerical simulations. The model statistically predicts the spacing and amplitudes of inverted parabolic arcs seen in Fourier-transformed dynamical spectra of strongly scintillating pulsars with only three parameters. Multifrequency, multi-epoch low-frequency very long baseline interferometry observations can quantitatively test this. If successful, in addition to mapping the ISM, this might allow precise nanoarcsecond pulsar astrometry, distance measurements and emission studies using these 10-au interferometers in the sky.

  11. Lunar components in Lunping scintillations

    SciTech Connect

    Koster, J.R.; Lue, H.Y.; Wu, Hsi-Shu; Huang, Yinn-Nien

    1993-08-01

    The authors report on an anlysis of a 14 year data set of ionospheric scintillation data for 136 MHz signals transmitted from a Japanese satellite. They use a lunar age superposition method to analyze this data, breaking the data into blocks by seasons of the year. They observe a number of different scintillation types in the record, as well as impacts of lunar tides on the time record. They attempt to provide an origin for the different scintillation types.

  12. Radio sociology

    NASA Astrophysics Data System (ADS)

    Swenson, George W., Jr.

    1996-04-01

    A work was conducted, using radio telemetry, to locate a migrating, radio-tagged, sharp-shinned hawk. The hawk was monitored through the noise radiation it created. The hawk was found. During this study, it was found that the concentration of population corresponds with areas of increased noise temperature. Through this study, a bigger study was planned. The study would involved the relationship between a place's radiation signature and its other attributes, such as economic type, population, geographic concentration. The method of radio sociology would be used to track the sources of radio noise.

  13. Statistical analysis of scintillation data

    SciTech Connect

    Chua, S.; Noonan, J.P.; Basu, S.

    1981-09-01

    The Nakagami-m distribution has traditionally been used successfully to model the probability characteristics of ionospheric scintillations at UHF. This report investigates the distribution properties of scintillation data in the L-band range. Specifically, the appropriateness of the Nakagami-m and lognormal distributions is tested. Briefly the results confirm that the Nakagami-m is appropriate for UHF but not for L-band scintillations. The lognormal provides a better fit to the distribution of L-band scintillations and is an adequate model allowing for an error of + or - 0.1 or smaller in predicted probability with a sample size of 256.

  14. A plastic scintillation counter prototype.

    PubMed

    Furuta, Etsuko; Kawano, Takao

    2015-10-01

    A new prototype device for beta-ray measurement, a plastic scintillation counter, was assembled as an alternative device to liquid scintillation counters. This device uses plastic scintillation sheets (PS sheets) as a sample applicator without the use of a liquid scintillator. The performance was evaluated using tritium labeled compounds, and good linearity was observed between the activity and net count rate. The calculated detection limit of the device was 0.01 Bq mL(-1) after 10 h measurement for 2 mL sample. PMID:26164628

  15. Galileo radio science investigations

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Eshleman, V. R.; Hinson, D. P.; Kliore, A. J.; Lindal, G. F.; Woo, R.; Bird, M. K.; Volland, H.; Edenhoffer, P.; Paetzold, M.

    1992-01-01

    Galileo radio-propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements can be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system provides linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. A highly-stable, dual-frequency, spacecraft radio system is developed that is suitable for simultaneous measurements of all the parameters normally attributed to radio waves.

  16. Prediction of the level of ionospheric scintillation at equatorial latitudes in Brazil using a neural network

    NASA Astrophysics Data System (ADS)

    Lima, G. R. T.; Stephany, S.; Paula, E. R.; Batista, I. S.; Abdu, M. A.

    2015-08-01

    Electron density irregularity structures, often associated with ionospheric plasma bubbles, drive amplitude and phase fluctuations in radio signals that, in turn, create a phenomenon known as ionospheric scintillation. The phenomenon occurs frequently around the magnetic equator where plasma instability mechanisms generate postsunset plasma bubbles and density depletions. A previous correlation study suggested that scintillation at the magnetic equator may provide a forecast of subsequent scintillation at the equatorial ionization anomaly southern peak. In this work, it is proposed to predict the level of scintillation over So Lus (2.52S, 44.3W; dip latitude: ~2.5S) near the magnetic equator with lead time of hours but without specifying the moment at which the scintillation starts or ends. A collection of extended databases relating scintillation to ionospheric variables for So Lus is employed to perform the training of an artificial neural network with a new architecture. Two classes are considered, not strong (null/weak/moderate) and strong scintillation. An innovative scheme preprocesses the data taking into account similarities of the values of the variables for the same class. A formerly proposed resampling heuristic is employed to provide a balanced number of tuples of each class in the training set. Tests were performed showing that the proposed neural network is able to predict the level of scintillation over the station on the evening ahead of the data sample considered between 17:30 and 19:00 LT.

  17. Assessment of the application of in situ ion-density data from DMSP to modeling of transionospheric scintillation. Final report, 15 September 1989-14 March 1990

    SciTech Connect

    Secan, J.A.; Reinleitner, L.A.; Bussey, R.M.

    1990-03-15

    Modern military communication, navigation, and surveillance systems depend on reliable, noise-free transionospheric radio-frequency channels. They can be severely impacted by small-scale electron-density irregularities in the ionosphere, which cause both phase and amplitude scintillation. Basic tools used in planning and mitigation schemes are climatological in nature and thus may greatly over- and under-estimate the effects of scintillation in a given scenario. This report summarizes the results of a three-year investigation into the feasibility of using in-situ observations of the ionosphere from the USAF DMSP satellite to calculate estimates of irregularity parameters that could be used to update scintillation models in near real-time. Estimates for the level of intensity and phase scintillation on a transionospheric UHF radio link in the early-evening auroral zone were calculated from DMSP Scintillation Meter (SM) data and compared to the levels actually observed. The intensity scintillation levels predicted and observed compared quite well, but the comparison with the phase scintillation data was complicated by low-frequency phase noise on the UHF radio link. Results are presented from analysis of DMSP SSIES data collected near Kwajalein Island in conjunction with a propagation-effects experiment. Preliminary conclusions to the assessment study are: (1) the DMSP SM data can be used to make quantitative estimates of the level of scintillation at auroral latitudes, and (2) it may be possible to use the data as a qualitative indicator of scintillation-activity levels at equatorial latitudes.

  18. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  19. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  20. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Niell, A. E.

    1981-01-01

    The activities of the DSN in support of Radio and Radar Astronomy Operations during September through December 1980 are described. Emphasis is on a report of an experiment selected for use of the DSN by the radio Astronomy Experiment Selection Panel: that of VLBI observations of the energetic galactic object SS-433.

  1. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Schaffer, R. D.; Gorenstein, M. V.

    1981-01-01

    The activities of the Deep Space Network in support of Radio Astronomy Operations during April and May 1981 are reported. Work in progres in support of an experiment selected for use of the DSN by the Radio Astronomy Experiment Selection Panel, Twin Quasi-Stellar Object VLBI, is reported.

  2. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Gulkis, S.

    1981-01-01

    The activities of the Deep Space Network in support of radio astronomy operations during the first quarter of 1981 are reported. Results of the use of a low noise maser are presented, as well as updates in DSN support of experiments sanctioned by the Radio Astronomy Experiment Selection Panel.

  3. 75th anniversary of the N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 25 February 2015)

    NASA Astrophysics Data System (ADS)

    2015-06-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) celebrating the 75th anniversary of the N V Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the RAS (IZMIRAN) was held in the IZMIRAN conference hall on 25 February 2015. The agenda of the session announced on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division contained the following reports: (1) Kuznetsov V D (IZMIRAN, Moscow) "N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, and tomorrow"; (2) Gvishiani A D (Geophysical Center, Moscow) "Studies of the terrestrial magnetic field and the network of Russian magnetic laboratories"; (3) Sokoloff D D (Faculty of Physics, Lomonosov Moscow State University, Moscow) "Magnetic dynamo questions"; (4) Petrukovich A A (Space Research Institute, RAS, Moscow) "Some aspects of magnetosphere-ionosphere relations"; (5) Lukin D S (Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region) "Current problems of ionospheric radio wave propagation"; (6) Safargaleev V V (Polar Geophysical Institute, Kola Scientific Center, RAS, Murmansk), Sergienko T I (Swedish Institute of Space Physics (IRF), Sweden), Kozlovskii A E (Sodankyl \\ddot a Geophysical Observatory, Finland), Safargaleev A V (St. Petersburg State University, St. Petersburg), Kotikov A L (St. Petersburg Branch of IZMIRAN, St. Petersburg) "Magnetic and optical measurements and signatures of reconnection in the cusp and vicinity"; (7) Kuznetsov V D (IZMIRAN, Moscow) "Space solar research: achievements and prospects". Papers written on the basis of oral reports 1, 3, 4, 6, and 7 are given below. • N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, tomorrow, V D Kuznetsov Physics-Uspekhi, 2015, Volume 58, Number 6, Pages 590-600 • Problems of magnetic dynamo, D D Sokoloff Physics-Uspekhi, 2015, Volume 58, Number 6, Pages 601-605 • Some aspects of magnetosphere-ionosphere relations, A A Petrukovich, M M Mogilevsky, A A Chernyshov, D R Shklyar Physics-Uspekhi, 2015, Volume 58, Number 6, Pages 606-611 • Magnetic and optical measurements and signatures of reconnection in the cusp and vicinity, V V Safargaleev, T I Sergienko, A V Safargaleev, A L Kotikov Physics-Uspekhi, 2015, Volume 58, Number 6, Pages 612-620 • Space solar research: achievements and prospects, V D Kuznetsov Physics-Uspekhi, 2015, Volume 58, Number 6, Pages 621-629

  4. CONFERENCES AND SYMPOSIA: Seventy years of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation (IZMIRAN) (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 25 November 2009)

    NASA Astrophysics Data System (ADS)

    2010-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 70th anniversary of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) (Troitsk, Moscow region) was held in the conference hall of IZMIRAN on 25 November 2009. The following reports were put on the session agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Gurevich A V (Lebedev Physical Institute RAS, Moscow) "The role of cosmic rays and runaway electron breakdown in atmospheric lightning discharges"; (2) Aleksandrov E B (Ioffe Physical Technical Institute, RAS, St. Petersburg) "Advances in quantum magnetometry for geomagnetic research"; (3) Dorman L I (IZMIRAN, Troitsk, Moscow region, CR & SWC, Israel) "Cosmic ray variations and space weather"; (4) Mareev E A (Institute of Applied Physics, RAS, Nizhnii Novgorod) "Global electric circuit research: achievements and prospects"; (5) Tereshchenko E D, Safargaleev V V (Polar Geophysical Institute, Kola Research Center, RAS, Murmansk) "Geophysical research in Spitsbergen Archipelago: status and prospects"; (6) Gulyaev Yu V, Armand N A, Efimov A I, Matyugov S S, Pavelyev A G, Savich N A, Samoznaev L N, Smirnov V V, Yakovlev O I (Kotel'nikov Institute of Radio Engineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow region) "Results of solar wind and planetary ionosphere research using radiophysical methods"; (7) Kunitsyn V E (Lomonosov Moscow State University, Moscow) "Satellite radio probing and the radio tomography of the ionosphere"; (8) Kuznetsov V D (IZMIRAN, Troitsk, Moscow region) "Space Research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences." Papers based on reports 2-8 are published below. The main contents of report 1 are reproduced in A V Gurevich's review, "Nonlinear effects in the ionosphere" [Phys. Usp. 50 1091 (2007)] and in the paper by A V Gurevich et al., "Nonlinear phenomena in the ionospheric plasma. Effects of cosmic rays and runaway breakdown on thunderstorm discharges" [Phys. Usp. 52 735 (2009)]. • Advances in quantum magnetometry for geomagnetic research , E B Aleksandrov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 487-496 • Cosmic ray variations and space weather, L I Dorman Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 496-503 • Global electric circuit research: achievements and prospects, E A Mareev Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 504-511 • Geophysical research in Spitsbergen Archipelago: status and prospects, V V Safargaleev, E D Tereshchenko Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 511-517 • Results of solar wind and planetary ionosphere research using radiophysical methods, N A Armand, Yu V Gulyaev, A L Gavrik, A I Efimov, S S Matyugov, A G Pavelyev, N A Savich, L N Samoznaev, V M Smirnov, O I Yakovlev Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 517-523 • Satellite radio probing and radio tomography of the ionosphere, V E Kunitsyn, E D Tereshchenko, E S Andreeva, I A Nesterov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 523-528 • Space research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences , V D Kuznetsov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 528-534

  5. Free liquid scintillation counting bibliography

    SciTech Connect

    1996-12-31

    Packard Instrument Company announces the availability of its newly updated Bibliography of Packard Tri-Carb Liquid Scintillation Analyzers. This unique new booklet lists 628 references in which Packard Tri-Carb{reg_sign} liquid scintillation analyzers have been used in life science, environmental, nuclear power and archaeological measurements. All listings are cross-referenced by radionuclide, specific field of study and author.

  6. Lithium-loaded liquid scintillators

    DOEpatents

    Dai, Sheng (Knoxville, TN); Kesanli, Banu (Mersin, TR); Neal, John S. (Knoxville, TN)

    2012-05-15

    The invention is directed to a liquid scintillating composition containing (i) one or more non-polar organic solvents; (ii) (lithium-6)-containing nanoparticles having a size of up to 10 nm and surface-capped by hydrophobic molecules; and (iii) one or more fluorophores. The invention is also directed to a liquid scintillator containing the above composition.

  7. Development of intrinsic IPT scintillator

    SciTech Connect

    Bross, A.D.

    1989-07-31

    We report on the development of a new polystyrene based plastic scintillator. Optical absorption, fluorescence and light output measurements are presented. Preliminary results of radiation damage effects are also given and compared to the effects on a commercial plastic scintillator, NE 110. 6 refs., 12 figs.

  8. Scintillation detector for carbon-14

    NASA Technical Reports Server (NTRS)

    Knoll, G. F.; Rogers, W. L.

    1971-01-01

    Detector consists of plastic, cylindrical double-wall scintillation cell, which is filled with gas to be analyzed. Thin, inner cell wall is isolated optically from outer (guard) scintillator wall by evaporated-aluminum coating. Bonding technique provides mechanical support to cell wall when device is exposed to high temperatures.

  9. Hybrid scintillators for neutron discrimination

    SciTech Connect

    Feng, Patrick L; Cordaro, Joseph G; Anstey, Mitchell R; Morales, Alfredo M

    2015-05-12

    A composition capable of producing a unique scintillation response to neutrons and gamma rays, comprising (i) at least one surfactant; (ii) a polar hydrogen-bonding solvent; and (iii) at least one luminophore. A method including combining at least one surfactant, a polar hydrogen-bonding solvent and at least one luminophore in a scintillation cell under vacuum or an inert atmosphere.

  10. Scintillation light transport and detection

    NASA Astrophysics Data System (ADS)

    Gabriel, T. A.; Lillie, R. A.

    1987-08-01

    The MORSE neutron gamma-ray transport code has been modified to allow for the transport of scintillation light. This modified code is used to analyze the light collection characteristics of a large liquid scintillator module (18 18 350 cm 3).

  11. Echo scintillation Index affected by cat-eye target's caliber with Cassegrain lens

    NASA Astrophysics Data System (ADS)

    Shan, Cong-miao; Sun, Hua-yan; Zhao, Yan-zhong; Zheng, Yong-hui

    2015-10-01

    The optical aperture of cat-eye target has the aperture averaging effect to the active detecting laser of active laser detection system, which can be used to identify optical targets. The echo scintillation characteristics of the transmission-type lens target have been studied in previous work. Discussing the differences of the echo scintillation characteristics between the transmission-type lens target and Cassegrain lens target can be helpful to targets classified. In this paper, the echo scintillation characteristics of Cat-eye target's caliber with Cassegrain lens has been discussed . By using the flashing theory of spherical wave in the weak atmospheric turbulence, the annular aperture filter function and the Kolmogorov power spectrum, the analytic expression of the scintillation index of the cat-eye target echo of the horizontal path two-way transmission was given when the light is normal incidence. Then the impact of turbulence inner and outer scale to the echo scintillation index and the analytic expression of the echo scintillation index at the receiving aperture were presented using the modified Hill spectrum and the modified Von Karman spectrum. Echo scintillation index shows the tendency of decreasing with the target aperture increases and different ratios of the inner and outer aperture diameter show the different echo scintillation index curves. This conclusion has a certain significance for target recognition in the active laser detection system that can largely determine the target type by largely determining the scope of the cat-eye target which depending on echo scintillation index.

  12. Ionospheric scintillation over Antarctica during the storms of 2010

    NASA Astrophysics Data System (ADS)

    Mitchell, C.; Kinrade, J.; Yin, P.; Smith, N.; Bust, G. S.; Weatherwax, A. T.; Rose, M.; Maxfield, D.; Jarvis, M. J.

    2011-12-01

    At the present time our knowledge of the Earth's ionosphere is dominated by measurements from the Northern Hemisphere. In spite of recent evidence indicating unexplained differences in the ionospheres from the two hemispheres, there is still very little information from the ionosphere over the Southern oceans and the Antarctic. Although the Antarctic is rather sparsely instrumented for ionospheric study, over the past decade increasing numbers of geodetic GPS receivers have been deployed there and more recently several groups have installed specialist GPS equipment for monitoring scintillation. In January 2010 a project commenced that involved the remote deployment of equipment at 81 degrees and 89 degrees South geographic. The objective of the fieldwork was to deploy GPS receiving equipment that would for the first time take simultaneous measurements of total electron content (TEC), plasma velocity and ionospheric scintillation at remote locations across the Antarctic. The paper reports on the results from the first year of data collection throughout three ionospheric storms. The first storm shows a multitude of small-scale ionospheric irregularities over the auroral and polar regions while the high-latitude ionosphere is in partial darkness. TEC is observed entering the polar cap and being broken up into a patch in a region of strong phase scintillation. The second and third storms occur in the deep Antarctic winter and show far less in the way of TEC in the polar cap; nevertheless they show strong evidence of phase scintillation and irregularities observed from multiple instruments across the polar region. The results provide new evidence for the importance of particle precipitation in causing phase scintillation in the polar regions on low-elevation GPS signals. It is anticipated that this will be useful input in forming a realistic statistical model of the irregularities in the high-latitude ionosphere that are responsible for phase and amplitude scintillation on a variety of radio signals.

  13. Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernov, S. V.; Gwinn, C. R.; Tchekhovskoy, A. A.

    2015-10-01

    Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.

  14. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  15. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  16. Measurements of the solar wind using spacecraft radio scattering observations

    NASA Technical Reports Server (NTRS)

    Woo, R.

    1977-01-01

    This paper reviews radio scattering measurements of the solar wind carried out with coherent, monochromatic, and point-source spacecraft signals. The observed phenomena which include spectral and angular broadening, and phase as well as intensity scintillations, have provided measurements of the solar wind previously not available from radio astronomical observations. These cover a wide range of heliocentric distances (as close as 1.7 solar radii), and large- as well as small-scale electron density fluctuations.

  17. Total electron content and scintillation in the vicinity of the main ionospheric trough over Northern Europe. Final report, 1 Jul 90-30 Jun 91

    SciTech Connect

    Kersley, L.; Walker, I.K.

    1991-06-30

    A receiving system for NNSS satellites located at Lerwick (60.1N, 1.2W) has been used to make differential carrier phase measurements in the vicinity of the main ionospheric trough. The observations have been calibrated to obtain absolute total electron content using measurements from a co-located GPS receiver for two months near solar maximum. Mapping techniques, developed to study the changes in night-time total electron content as a function of both latitude and time, are described. Examples are given of characteristic trough behaviour for different levels of geomagnetic activity. A new feature of the work is the limited extent of the poleward wall of the trough for moderate geomagnetic conditions. The mapping techniques can also be applied to measurements of radio-wave scintillation allowing comparison between small-scale irregularity behaviour and the larger-scale changes in total electron content.

  18. A multi-instrument case study of high-latitude ionospheric GNSS scintillation due to drifting plasma irregularities

    NASA Astrophysics Data System (ADS)

    van der Meeren, C.; Oksavik, K.; Moen, J. I.; Romano, V.

    2013-12-01

    For this study, GPS receiver scintillation and Total Electron Content (TEC) data from high-latitude locations on Svalbard have been combined with several other data sets, including the EISCAT Svalbard Radar (ESR) and allsky cameras, to perform a multi-instrument case study of high-latitude GPS ionospheric scintillations in relation to drifting plasma irregularities at night over Svalbard on 31 October 2011. Scintillations are rapid amplitude and phase fluctuations of electromagnetic signals. GNSS-based systems may be disturbed by ionospheric plasma irregularities and structures such as plasma patches (areas of enhanced electron density in the polar cap) and plasma gradients. When the GNSS radio signals propagate through such areas, in particular gradients, the signals experience scintillations that at best increases positioning errors and at worst may break the receiver's signal lock, potentially resulting in the GNSS receiver losing track of its position. Due to the importance of many GNSS applications, it is desirable to study the scintillation environment to understand the limitations of the GNSS systems. We find scintillation mainly localised to plasma gradients, with predominantly phase scintillation at the leading edge of patches and both phase and amplitude scintillation at the trailing edge. A single edge may also contain different scintillation types at different locations.

  19. Properties of scintillator solutes

    SciTech Connect

    Fluornoy, J.M.

    1998-06-01

    This special report summarizes measurements of the spectroscopic and other properties of the solutes that were used in the preparation of several new liquid scintillators developed at EG and G/Energy Measurements/Santa Barbara Operations (the precursor to Bechtel Nevada/Special Technologies Laboratory) on the radiation-to-light converter program. The data on the individual compounds are presented in a form similar to that used by Prof. Isadore Berlman in his classic handbook of fluorescence spectra. The temporal properties and relative efficiencies of the new scintillators are presented in Table 1, and the efficiencies as a function of wavelength are presented graphically in Figure 1. In addition, there is a descriptive glossary of the abbreviations used herein. Figure 2 illustrates the basic structures of some of the compounds and of the four solvents reported in this summary. The emission spectra generally exhibit more structure than the absorption spectra, with the result that the peak emission wavelength for a given compound may lie several nm away from the wavelength, {lambda}{sub avg}, at the geometric center of the emission spectrum. Therefore, the author has chosen to list absorption peaks, {lambda}{sub max}, and emission {lambda}{sub avg} values in Figures 3--30, as being most illustrative of the differences between the compounds. The compounds, BHTP, BTPB, ADBT, and DPTPB were all developed on this program. P-terphenyl, PBD, and TPB are commercially available blue emitters. C-480 and the other longer-wavelength emitters are laser dyes available commercially from Exciton Corporation. 1 ref., 30 figs.

  20. Recent Advances in Ceramic Scintillators

    SciTech Connect

    Van Loef, Edgar V.; Wang, Yimin; Glodo, Jarek; Shah, Kanai S.; Brecher, Charles; Lempicki, Alex

    2008-07-01

    A review is presented of recent ceramic scintillator R and D. Attention is focussed on Ce doped gamma-ray scintillators for medical imaging applications. Ceramic scintillators discussed in detail include SrHfO{sub 3}:Ce and Lu{sub 2}Hf{sub 2}O{sub 7}:Ce. These materials combine a high density and high atomic number with fast emission and a good light yield and may find practical application in medical imaging modalities such as Positron Emission Tomography and Computed Tomography. (authors)