Science.gov

Sample records for radio wave scintillations

  1. Radio wave scintillations at equatorial regions

    NASA Technical Reports Server (NTRS)

    Poularikas, A. D.

    1972-01-01

    Radio waves, passing through the atmosphere, experience amplitude and phase fluctuations know as scintillations. A characterization of equatorial scintillation, which has resulted from studies of data recorded primarily in South America and equatorial Africa, is presented. Equatorial scintillation phenomena are complex because they appear to vary with time of day (pre-and postmidnight), season (equinoxes), and magnetic activity. A wider and more systematic geographical coverage is needed for both scientific and engineering purposes; therefore, it is recommended that more observations should be made at earth stations (at low-geomagnetic latitudes) to record equatorial scintillation phenomena.

  2. Morphology of auroral zone radio wave scintillation

    SciTech Connect

    Rino, C.L.; Matthews, S.J.

    1980-08-01

    This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effect due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation.

  3. Scintillation effects on radio wave propagation through solar corona

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Sue, M. K.; Bedrossian, A.; Sniffin, R. W.

    2002-01-01

    When RF waves pass through the solar corona and solar wind regions close to the Sun, strong scintillation effects appear at their amplitude, frequency and phase, especially in the regions very close to the Sun (less than 4 solar radius).

  4. Radio Wave Scintillations and Models of Interstellar Turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.

    1998-05-01

    There are a number of well-established observational results from radio scintillations which have implications for the nature of interstellar turbulence. Among such results are evidence for anisotropy and a Kolmogorov spectrum for the density irregularities. It is probable the galactic magnetic field organizes these irregularities so that spatial gradients along the field are much less than those perpendicular to the field. Such a behavior for turbulence is predicted by theories of magnetohydrodynamic turbulence in which the amplitude is small. The turbulence is then described by a theory termed reduced magnetohydrodynamics. A limiting case of reduced magnetohydrodynamics is two dimensional magnetohydrodynamics, in which the direction of the large scale magnetic field z defines the ignorable coordinate. Two dimensional magnetohydrodynamics consists of a pair of coupled nonlinear partial differential equations for the velocity stream function psi and the z component of the magnetic vector potential A_z. A number of observed features of interstellar turbulence can be identified with solutions to the equations of two dimensional magnetohydrodynamics. Examples are the development of Kolmogorov-like spectra for the velocity and magnetic field from a wide class (although not totally general) initial conditions, a natural explanation for the formation of intermittancy in turbulence, and the rapid development of small scale, large spatial wavenumber fluctuations, in contrast to the eddy cascade of hydrodynamic turbulence. The equations of two dimensional magnetohydrodynamics may serve as a simple but tractable model of interstellar plasma turbulence that may complement and be superior to the traditional model of an ensemble of magnetohydrodynamic waves.

  5. Radio scintillations in Venus's atmosphere: application of a theory of gravity wave generation.

    NASA Astrophysics Data System (ADS)

    Leroy, S. S.; Ingersoll, A. P.

    1996-04-01

    Radio scintillations in Pioneer Venus radio occultation data are simulated assuming that the index of refraction fluctuations in Venus's atmosphere responsible for the scintillations are directly caused by gravity wave fluctuations. The gravity waves are created by a global convection layer between 50- and 55-km altitude in Venus's atmosphere and propagate vertically. The authors compare the simulated scintillations with data from Pioneer Venus. These gravity waves can explain the spectral shape and amplitude of the radio scintillations. The shape at high frequencies is controlled by wave breaking, which yields a saturated spectrum. The amplitude is subject to parameters such as the intensity of the convection, the angle between the zonal winds and the beam path, and the zonal wind profile at polar latitudes. To match the observed amplitude of the scintillations, the velocity variations of the energy-bearing eddies in the convection must be at least 2 m s-1. This value is consistent with the Venus balloon results of Sagdeev et al. (1986) and is in the middle of the range considered by Leroy and Ingersoll (1994) in their study of convectively generated gravity waves. The latter study, combined with the lower bound on velocity from the present study, then yields lower bounds on the vertical fluxes of momentum and energy in the Venus atmosphere.

  6. Spacecraft Radio Scintillation and Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1993-01-01

    When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of

  7. Forecasting ionospheric space weather with applications to satellite drag and radio wave communications and scintillation

    NASA Astrophysics Data System (ADS)

    Mannucci, Anthony J.; Tsurutani, Bruce T.; Verkhoglyadova, Olga P.; Meng, Xing; Pi, Xiaoqing; Kuang, Da; Wang, Chunming; Rosen, Gary; Ridley, Aaron; Lynch, Erin; Sharma, Surja; Manchester, Ward B.; van der Holst, Bart

    2015-04-01

    The development of quantitative models that describe physical processes from the solar corona to the Earth’s upper atmosphere opens the possibility of numerical space weather prediction with a lead-time of a few days. Forecasting solar wind-driven variability in the ionosphere and thermosphere poses especially stringent tests of our scientific understanding and modeling capabilities, in particular of coupling processes to regions above and below. We will describe our work with community models to develop upper atmosphere forecasts starting with the solar wind driver. A number of phenomena are relevant, including high latitude energy deposition, its impact on global thermospheric circulation patterns and composition, and global electrodynamics. Improved scientific understanding of this sun to Earth interaction ultimately leads to practical benefits. We will focus on two ways the upper atmosphere affects life on Earth: by changing satellite orbits, and by interfering with long-range radio communications. Challenges in forecasting these impacts will be addressed, with a particular emphasis on the physical bases for the impacts, and how they connect upstream to the sun and the heliosphere.

  8. A decametric wavelength radio telescope for interplanetary scintillation observations

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.

    1975-01-01

    A phased array, electrically steerable radio telescope (with a total collecting area of 18 acres), constructed for the purpose of remotely sensing electron density irregularity structure in the solar wind, is presented. The radio telescope is able to locate, map, and track large scale features of the solar wind, such as streams and blast waves, by monitoring a large grid of natural radio sources subject to rapid intensity fluctuation (interplanetary scintillation) caused by the irregularity structure. Observations verify the performance of the array, the receiver, and the scintillation signal processing circuitry of the telescope.

  9. Radio wave.

    PubMed

    Elkin, V

    1992-01-01

    In developing countries with high rates of poverty and illiteracy, radio is emerging as an excellent medium for delivering information on health issues, family planning, nutrition, and agricultural development. Since radio does not require wired electricity, it can reach remote rural populations. Surveys have found that between 50-75% of poor rural households in developing countries own radios, and the majority listen to educational radio at least once a week. A program that reaches the urban poor outside of Lima, Peru, has been instrumental in controlling the spread of cholera. A Bolivian station broadcasts 8 hours of literacy, health, agricultural, and cultural programming a day to an audience of more than 2 million Aymara Indians. Small village radio stations with a broadcast range of 15 miles can be established for under US$400 and can generally achieve sustainability through local fundraising events such as raffles. In many cases, listeners have become broadcasters at their local radio stations. PMID:12286181

  10. Radio scintillations observed during atmospheric occultations of Voyager: Internal gravity waves at Titan and magnetic field orientations at Jupiter and Saturn. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.

    1983-01-01

    The refractive index of planetary atmospheres at microwave frequencies is discussed. Physical models proposed for the refractive irregularities in the ionosphere and neutral atmosphere serve to characterize the atmospheric scattering structures, and are used subsequently to compute theoretical scintillation spectra for comparison with the Voyager occultation measurements. A technique for systematically analyzing and interpreting the signal fluctuations observed during planetary occultations is presented and applied to process the dual-wavelength data from the Voyager radio occultations by Jupiter, Saturn, and Titan. Results concerning the plasma irregularities in the upper ionospheres of Jupiter and Saturn are reported. The measured orientation of the irregularities is used to infer the magnetic field direction at several locations in the ionospheres of these two planets; the occultation measurements conflict with the predictions of Jovian magnetic field models, but generally confirm current models of Saturn's field. Wave parameters, including the vertical fluxes of energy and momentum, are estimated, and the source of the internal gravity waves discovered in Titan's upper atmosphere is considered.

  11. Planetary radio waves

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1986-01-01

    Three planets, the earth, Jupiter and Saturn are known to emit nonthermal radio waves which require coherent radiation processes. The characteristic features (frequency spectrum, polarization, occurrence probability, radiation pattern) are discussed. Radiation which is externally controlled by the solar wind is distinguished from internally controlled radiation which only originates from Jupiter. The efficiency of the externally controlled radiation is roughly the same at all three planets (5 x 10 to the -6th) suggesting that similar processes are active there. The maser radiation mechanism for the generation of the radio waves and general requirements for the mechanism which couples the power generator to the region where the radio waves are generated are briefly discussed.

  12. Looking for radio waves with a simple radio wave detector

    NASA Astrophysics Data System (ADS)

    Sugimoto (Stray Cats), Norihiro

    2011-11-01

    I created a simple device that can detect radio waves in a classroom. In physics classes I tell students that we live in a sea of radio waves. They come from TV, radio, and cell phone signals as well as other sources. Students don't realize this because those electromagnetic waves are invisible. So, I wondered if I could come up with a way to detect the waves and help students to understand them better. Electromagnetic wave meters, which measure intensity of radio waves quantitatively, are commercially available. However, to students most of these are black boxes, and at the introductory level it is more effective to detect radio waves in a simpler way. This paper describes my device and how I have used it in my classes.

  13. Characterizing Daytime GHZ Scintillation at Equatorial Regions Using Gnss Radio Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Seif, A.; Zhang, K.; Tsunoda, R. T.; Abdullah, M.; Carter, B. A.; Norman, R.; Wu, S.

    2015-12-01

    Ionospheric scintillation of radio waves can behave differently at different locations with a strong diurnal dependence; particularly in the equatorial regions. Ionospheric scintillations at gigahertz (GHz) frequencies have been observed during both daytime and nighttime. It is believed that daytime scintillation is associated with blanketing sporadic E (Esb), whereas nighttime scintillation is attributed to F layer irregularities. Scintillation events associated with Esbduring daytime are of our primary interest. Recent studies show that in the ionosphere, electron density profiles from Global Navigation Satellite System (GNSS) Radio Occultation (RO) provide valuable information to help better understand the physics of the ionosphere. In particular, GNSS RO observations of GHz scintillation in the proximity of the E-layer have been interpreted as being caused by sporadic E. In this paper the characteristics of daytime scintillations at 1.5 GHz recorded simultaneously from two stations (i) Universiti Kebangsaan Malaysia (UKM) (2.55°N, 101.461°E; dip latitude 5.78°S), and (ii) Langkawi (6.19°N, 99.51°E; dip latitude 1.90°S) during November and December 2010 are analyzed. The characteristics of daytime GHz scintillation and its relationship with E region irregularities at equatorial regions are investigated. Ground-based scintillation and Total Electron Content (TEC) data recorded by the GSV4004 receivers were utilized in combination with the amplitude scintillation measurements in terms of GPS C/A code SNR fluctuations during a ground-based GPS and space-borne GNSS RO experiment at the two equatorial stations. Scintillation activity was found to be more prominent at UKM. Moreover, strong scintillation with the S4 index exceeding 0.6 has only been observed at UKM, while at Langkawi the scintillation intensity (S4 index) did not exceed 0.3. Signal-to-noise measurements obtained from GNSS RO indicate that daytime scintillations are very likely caused by Esb. Our

  14. Interplanetary scintillation observations with the Cocoa Cross radio telescope

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Erskine, F. T.; Huneke, A. H.; Mitchell, D. G.

    1976-01-01

    Physical and electrical parameters for the 34.3-MHz Cocoa Cross radio telescope are given. The telescope is dedicated to the determination of solar-wind characteristics in and out of the ecliptic plane through measurement of electron-density irregularity structure as determined from IPS (interplanetary scintillation) of natural radio sources. The collecting area (72,000 sq m), angular resolution (0.4 deg EW by 0.6 deg NS), and spatial extent (1.3 km EW by 0.8 km NS) make the telescope well suited for measurements of IPS index and frequency scale for hundreds of weak radio sources without serious confusion effects.

  15. HF produced ionospheric electron density irregularities diagnosed by UHF radio star scintillations

    SciTech Connect

    Alfred, F.

    1982-01-01

    HF-waves incident on an overdense (HF-frequency < penetration frequency) ionosphere are known to produce large scale electron density irregularities. It is predicted that similar irregularities are formed during underdense HF-modification. The propagation of UHF radio waves originating from radio stars will be affected by such irregularities in the ionosphere. The interest in a scintillation experiment is twofold. One may obtain information on the electron density irregularies and one may learn about the propagation of radio waves through such a perturbed medium. A thin screen (diffractive) theory is derived which allows to draw conclusons on the electron density irregularities from the intensity fluctuations measured on the ground if the phase perturbations are much less than one radian. Since radio stars suitable for scintillation measurements at UHF are very faint an antenna with a large collection area is required. The observations reported in this dissertation were performed with the 300m diameter spherical reflector of the Arecibo Observatory. Successful observations were performed at 430 MHz and at 1400 MHz. Intensity fluctuations at such high frequencies measured with a large antenna suffer severe filtering in the thin phase screen regime. The theory presented in this dissertation includes these filtering effects. Many observations agree with the predictions of that theory. Some observations indicate that refraction effects have to be included to explain the data. HF-induced electron density irregularities were only observed during overdense heating.

  16. Outflow Structure of the Quiet Sun Corona Probed by Spacecraft Radio Scintillations in Strong Scattering

    NASA Astrophysics Data System (ADS)

    Imamura, Takeshi; Tokumaru, Munetoshi; Isobe, Hiroaki; Shiota, Daikou; Ando, Hiroki; Miyamoto, Mayu; Toda, Tomoaki; Häusler, Bernd; Pätzold, Martin; Nabatov, Alexander; Asai, Ayumi; Yaji, Kentaro; Yamada, Manabu; Nakamura, Masato

    2014-06-01

    Radio scintillation observations have been unable to probe flow speeds in the low corona where the scattering of radio waves is exceedingly strong. Here we estimate outflow speeds continuously from the vicinity of the Sun to the outer corona (heliocentric distances of 1.5-20.5 solar radii) by applying the strong scattering theory to radio scintillations for the first time, using the Akatsuki spacecraft as the radio source. Small, nonzero outflow speeds were observed over a wide latitudinal range in the quiet-Sun low corona, suggesting that the supply of plasma from closed loops to the solar wind occurs over an extended area. The existence of power-law density fluctuations down to the scale of 100 m was suggested, which is indicative of well-developed turbulence which can play a key role in heating the corona. At higher altitudes, a rapid acceleration typical of radial open fields is observed, and the temperatures derived from the speed profile show a distinct maximum in the outer corona. This study opened up a possibility of observing detailed flow structures near the Sun from a vast amount of existing interplanetary scintillation data.

  17. Outflow structure of the quiet sun corona probed by spacecraft radio scintillations in strong scattering

    SciTech Connect

    Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato; Tokumaru, Munetoshi; Shiota, Daikou; Isobe, Hiroaki; Asai, Ayumi; Miyamoto, Mayu; Häusler, Bernd; Pätzold, Martin; Nabatov, Alexander; Yaji, Kentaro; Yamada, Manabu

    2014-06-20

    Radio scintillation observations have been unable to probe flow speeds in the low corona where the scattering of radio waves is exceedingly strong. Here we estimate outflow speeds continuously from the vicinity of the Sun to the outer corona (heliocentric distances of 1.5-20.5 solar radii) by applying the strong scattering theory to radio scintillations for the first time, using the Akatsuki spacecraft as the radio source. Small, nonzero outflow speeds were observed over a wide latitudinal range in the quiet-Sun low corona, suggesting that the supply of plasma from closed loops to the solar wind occurs over an extended area. The existence of power-law density fluctuations down to the scale of 100 m was suggested, which is indicative of well-developed turbulence which can play a key role in heating the corona. At higher altitudes, a rapid acceleration typical of radial open fields is observed, and the temperatures derived from the speed profile show a distinct maximum in the outer corona. This study opened up a possibility of observing detailed flow structures near the Sun from a vast amount of existing interplanetary scintillation data.

  18. Scintillation of spacecraft radio signals on the interplanetary plasma

    NASA Astrophysics Data System (ADS)

    Molera Calves, Guifre; Pogrebenko, Sergei; Cimo, Giuseppe; Duev, Dmitry; Bocanegra, Tatiana

    2015-04-01

    Observations of planetary spacecraft radio signals within the solar system give a unique opportunity to study the temporal and spatial behaviour of the signal's phase fluctuations caused by its propagation through the interplanetary plasma and the Earth's ionosphere. The phase scintillation of the telemetry signal of the European Space Agency's (ESA) Venus Express (VEX) and Mars Express (MEX) spacecraft was observed at X-band with a number of radio telescopes of the European VLBI Network (EVN) in the period 2008-15, within the scope of Planetary Radio Interferometry and Doppler Experiment (PRIDE) project. It was found that the phase scintillation spectra follow a Kolmogorov distribution with nearly constant spectral index of -2.42 for a full range of Venus orbital phases, from superior to inferior conjunctions and back. The solar wind plasma dominates the scintillation index and Doppler noise along the orbit from superior conjunction to the greatest elongation. Here, I will present the latest results of these observations, while approaching the inferior conjunction, where the Earth ionosphere starts to dominate, and also at the superior conjunction. Empirical coefficients for both contributions were estimated and compared for VEX and MEX.

  19. Interstellar Scintillation and the Radio Counterpart of the Fast Radio Burst FRB 150418

    NASA Astrophysics Data System (ADS)

    Akiyama, Kazunori; Johnson, Michael D.

    2016-06-01

    Keane et al. have recently reported the discovery of a new fast radio burst (FRB), FRB 150418, with a promising radio counterpart at 5.5 and 7.5 GHz—a rapidly decaying source, falling from 200–300 μJy to 100 μJy on timescales of ˜6 days. This transient source may be associated with an elliptical galaxy at redshift z = 0.492, providing the first firm spectroscopic redshift for an FRB and the ability to estimate the density of baryons in the intergalactic medium via the combination of known redshift and radio dispersion of the FRB. An alternative explanation, first suggested by Williams & Berger, is that the identified counterpart may instead be a compact active galactic nucleus (AGN). The putative counterpart’s variation may then instead be extrinsic, caused by refractive scintillation in the ionized interstellar medium of the Milky Way, which would invalidate the association with FRB 150418. We examine this latter explanation in detail and show that the reported observations are consistent with scintillating radio emission from the core of a radio-loud AGN having a brightness temperature T b ≳ 109 K. Using numerical simulations of the expected scattering for the line of sight to FRB 150418, we provide example images and light curves of such an AGN at 5.5 and 7.5 GHz. These results can be compared with continued radio monitoring to conclusively determine the importance of scintillation for the observed radio variability, and they show that scintillation is a critical consideration for continued searches for FRB counterparts at radio wavelengths.

  20. Interstellar Scintillation and the Radio Counterpart of the Fast Radio Burst FRB 150418

    NASA Astrophysics Data System (ADS)

    Akiyama, Kazunori; Johnson, Michael D.

    2016-06-01

    Keane et al. have recently reported the discovery of a new fast radio burst (FRB), FRB 150418, with a promising radio counterpart at 5.5 and 7.5 GHz—a rapidly decaying source, falling from 200–300 μJy to 100 μJy on timescales of ∼6 days. This transient source may be associated with an elliptical galaxy at redshift z = 0.492, providing the first firm spectroscopic redshift for an FRB and the ability to estimate the density of baryons in the intergalactic medium via the combination of known redshift and radio dispersion of the FRB. An alternative explanation, first suggested by Williams & Berger, is that the identified counterpart may instead be a compact active galactic nucleus (AGN). The putative counterpart’s variation may then instead be extrinsic, caused by refractive scintillation in the ionized interstellar medium of the Milky Way, which would invalidate the association with FRB 150418. We examine this latter explanation in detail and show that the reported observations are consistent with scintillating radio emission from the core of a radio-loud AGN having a brightness temperature T b ≳ 109 K. Using numerical simulations of the expected scattering for the line of sight to FRB 150418, we provide example images and light curves of such an AGN at 5.5 and 7.5 GHz. These results can be compared with continued radio monitoring to conclusively determine the importance of scintillation for the observed radio variability, and they show that scintillation is a critical consideration for continued searches for FRB counterparts at radio wavelengths.

  1. Application of refractive scintillation theory to radio transmission through the ionosphere and the solar wind, and to reflection from a rough ocean

    NASA Astrophysics Data System (ADS)

    Booker, H. G.

    1981-11-01

    The theory of diffractive scattering by small-scale irregularities is combined with the results of Booker and MajidiAhi (1981) concerning refractive scattering by large-scale irregularities in a phase-changing screen, in a study of three intensity scintillation phenomena: (1) the reflection of radio and optical waves from an ocean surface disturbed by a spectrum of water waves; (2) the scintillation of VHF, UHF and SHF radio waves traversing the ionospheric F-region; and (3) the scintillation of the radio waves mentioned while traversing the solar wind. Spectral diagrams are drawn to show how the outer, inner, Fresnel, focal, lens and peak scales vary with such relevant parameters as electromagnetic wave-frequency for the ocean, RMS fractional fluctuation of ionization density for the ionosphere, and distance of closest approach to the sun for the solar wind.

  2. Characterization of Ionospheric Scintillation Using Simultaneous Formosat-3/COSMIC Radio Occultation Observations and AFRL SCINDA Ground Scintillation Measurements

    NASA Astrophysics Data System (ADS)

    Starks, M. J.; Lin, C. S.; Groves, K. M.; Pedersen, T. R.; Basu, S.; Syndergaard, S.; Rocken, C.

    2007-05-01

    Ionospheric scintillation at low latitudes has been studied using ionospheric radio occultation (RO) measurements by the FORMOSAT-3/COSMIC micro-satellites in conjunction with ground-based data from the Scintillation Network Decision Aid (SCINDA) station at Kwajalein Atoll. The Air Force Research Laboratory has developed the SCINDA network for monitoring low-latitude ionospheric total electron content (TEC) and scintillation associated with equatorial spread F. The network currently consists of sixteen stations distributed around the globe and the data have been used to conduct numerous studies on the characteristics and climatology of equatorial scintillation. The present study focuses on COSMIC RO and SCINDA data during the three COSMIC campaigns in 2006. Radio occultation events are selected by requiring that ionospheric scintillation was detected by the SCINDA VHF scintillation monitor at Kwajalein, and that the occultation ray path intersected the Kwajalein longitude below the satellite altitude, which varied from 500 to 800 km for the six FORMOSAT-3 satellites. In order to exclude tropospheric effects, only GPS signal amplitudes from FORMOSAT-3 with ray path tangent altitudes above 100 km are considered. Locations of ionospheric scintillation are estimated by triangulation using the satellites and the SCINDA ground station. Airglow images at Kwajalein are also used to confirm occurrence of equatorial ionospheric scintillations. For the selected events, large amplitude L1 and L2 scintillations tend to occur at altitudes below 200 km at frequencies around 0.5 Hz. The results are discussed as a potential path toward better specifying the occurrence of equatorial scintillations.

  3. Space velocities of radio pulsars from interstellar scintillations

    SciTech Connect

    Cordes, J.M.

    1986-12-01

    Scintillation observations are used to determine the space velocities of 71 radio pulsars, including most of the 26 objects with proper motions derived from interferometry. The scintillation velocity is dominated by the peculiar transverse velocity of the neutron star and is insensitive to differential galactic rotation. Velocities have a broad distribution function ranging up to about 150 km/s with a tail extending to about 300 km/s. There is no definitive appearance of a bimodal distribution, however. A correlation of velocity with PP(dot) is confirmed to be a general property of the radio pulsar population. It cannot be explained by any observational selection effect and most plausibly is due to a relationship between a neutron star's magnetic moment and the momentum impulse given to it at or near the time of its formation. A small fraction of the objects are discrepant with respect to the velocity-PP(dot) relation. For some objects, this discrepancy may be evidence for a peculiar evolutionary history. 41 references.

  4. Radio wave propagation in pulsar magnetospheres

    NASA Astrophysics Data System (ADS)

    Petrova, S. A.; Lyubarskii, Yu. E.

    Pulsar magnetospheres are known to contain an ultrarelativistic highly magnetized plasma which streams along the open magnetic lines. The radio emission observed from pulsars is believed to originate sufficiently deep in the open field line tube, so that the characteristics of outgoing waves can be influenced by propagation in the magnetospheric plasma. Refraction of radio waves in pulsar magnetospheres appears to be efficient. The effect not only influences the observed pulse width and its frequency dependency. It can alter the apparent spatial structure of pulsar emission region which can be derived from the observations of pulsar interstellar scintillations. Transverse ray separation versus pulse longitude calculated allowing for magnetospheric refraction appears to be in qualitative agreement with that observed. In particular, the nonmonotonic character of the curve can be attributed to nonmonotonic distribution of the plasma number density across the open field line tube which makes the rays emitted at different spatial locations deviate in the opposite directions. Proceeding from the frequency dependence of refraction some predictions are made about the frequency evolution of the apparent spatial structure of pulsar emission region. Magnetospheric refraction can also determine the profile shape giving rise to ray grouping into separate components. It will be demonstrated that the salient features of profile morphology can be explained within the frame of a primordial hollow-cone emission model taking into account refraction of rays in pulsar plasma. Then the frequency evolution of profile structure is naturally interpreted as a consequence of frequency dependence of refraction. As the waves propagate in the magnetospheric plasma their polarization also evolves essentially. In the vicinity of the emission region normal waves are linearly polarized and propagate independently, with the polarization plane following the orientation of the local magnetic field. As

  5. Ionospheric scintillations at Guilin detected by GPS ground-based and radio occultation observations

    NASA Astrophysics Data System (ADS)

    Zou, Yuhua

    2011-03-01

    The occurrence of ionospheric scintillations with S4 ⩾ 0.2 was studied using GPS measurements at Guilin, China (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of the equatorial anomaly. The results are presented for data collected from January 2009 to March 2010. The results show that nighttime amplitude scintillations only took place in February and March of the considered years, while daytime amplitude scintillations occurred in August and December of 2009. Nighttime amplitude scintillations, observed in the south of Guilin, always occurred with phase scintillations, TEC (Total Electron Content) depletions, and ROT (Rate Of change of TEC) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations always took place simultaneously for most of the GPS satellites which appeared over Guilin in different azimuth directions. Ground-based GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio (SNR) measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively. Moreover, strong daytime amplitude scintillations may be associated with the plasma density enhancements in ionospheric E region caused by the Perseid and Geminid meteor shower activities.

  6. UHF Radio Wave Attenuation Factor Database

    NASA Astrophysics Data System (ADS)

    Khomenko, S. I.; Kostina, V. L.; Mytsenko, I. M.; Roenko, A. N.

    2007-07-01

    As is known each sea-going vessel is equipped with navigation, communication and other radio engineering facilities that serve to secure the safety of navigation and are chiefly operated at UHF-wave band. In developing these systems and calculating the energy potential for a necessary coverage range one should be well aware of the radio signal attenuation processes on a propagation path. The key parameter of this path is the (radio) wave attenuation factor V and its distance dependence V(R). A diversity of factors influencing the radio signal attenuation over the oceanic expanses, especially well pronounced and quite stable tropospheric ducts, and the lack of experimental data were the compelling reasons why the researchers of the Institute for Radiophysics and Electronics, NASU, had spent many years on comprehensive radiophysical investigations carried out in different regions of the Atlantic, Indian, Arctic and Pacific Oceans. The experimental data obtained allow creating the database of radio wave attenuation factor V.

  7. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  8. Antenna Construction and Propagation of Radio Waves.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  9. Speckles in interstellar radio-wave scattering

    NASA Technical Reports Server (NTRS)

    Desai, K. M.; Gwinn, C. R.; Reynolds, J.; King, E. A.; Jauncey, D.; Nicholson, G.; Flanagan, C.; Preston, R. A.; Jones, D. L.

    1991-01-01

    Observations of speckles in the scattering disk of the Vela pulsar are presented and speckle techniques for studying and circumventing scattering of radio waves by the turbulent interstellar plasma are discussed. The speckle pattern contains, in a hologrammatic fashion, complete information on the structure of the radio source as well as the distribution of the scattering material. Speckle observations of interstellar scattering of radio waves are difficult because of their characteristically short timescales and narrow bandwidths. Here, first observations are presented, taken at 13 cm wavelength with elements of the SHEVE VLBI network, of speckles in interstellar scattering.

  10. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Sjogren, William L.; Kliore, Arvydas J.; Luhmann, Janet G.; Brace, Larry H.

    1989-01-01

    The observation of S-band (2.3 GHz) radio scintillations in the ionosphere of Venus by the Pioneer Venus Orbiter is reported. In situ plasma measurements and propagation calculations show that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. It is suggested that these topside plasma irregularities are associated with the penetration of large-scale magnetic fields in the ionosphere. It is found that the disturbed plasma and the scintillations are a manifestation of high-dynamic solar wind interaction with the ionosphere.

  11. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    SciTech Connect

    Woo, R.; Sjogren, W.L.; Kliore, A.J. ); Luhmann, J.G. ); Brace, L.H. )

    1989-02-01

    This paper presents the first S-band (2.3 GHz) radio scintillations observed in the ionosphere of Venus and discovered when the Pioneer Venus Orbiter spacecraft traversed the ionosphere of Venus. In situ plasma measurements as well as propagation calculations confirm that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. While these topside plasma irregularities have not been studied before, simultaneous magnetic field measurements presented here reveal that they are associated with the penetration of large-scale magnetic fields in the ionosphere. Previous studies based on extensive magnetic field measurements have shown that the presence of large-scale magnetic fields occurs in the subsolar region when the solar wind dynamic pressure exceeds the ionospheric plasma pressure. As with the large-scale magnetic fields, the disturbed plasma and resulting scintillations are therefore a manifestation of high-dynamic solar wind interaction with the ionosphere. Since the scintillations only occur in the subsolar region of Venus, the global morphology of ionospheric scintillations at Venus is different from that of the terrestrial ionosphere, where scintillations are observed in both polar and equatorial regions, with peaks occurring during nighttime. This difference apparently stems from the fact that Venus is not a magnetic planet. The authors also demonstrate that the disturbed plasma produced by the high-dynamic solar wind interaction can be remotely sensed by scintillations during radio occultation measurements, that is, when the spacecraft is outside the ionosphere.

  12. Magellan radio occultation measurements of atmospheric waves on Venus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Jenkins, J. M.

    1995-01-01

    Radio occultation experiments were conducted at Venus on three consecutive orbits of the Magellan spacecraft in October 1991. Each occultation occurred over the same topography (67 deg N, 127 deg E) and at the same local time (22 hr 5 min), but the data are sensitive to zonal variations because the atmosphere rotates significantly during one orbit. Through comparisons between observations and predictions of standard wave theory, we have demonstrated that small-scale oscillations in retrieved temperature profiles as well as scintillations in received signal intensity are caused by a spectrum of vertically propagating internal gravity waves. There is a strong similarity between the intensity scintillations observed here and previous measurements, which pertain to a wide range of locations and experiment dates. This implies that the same basic phenomenon underlies all the observations and hence that gravity waves are a persistent, global feature of Venus' atmosphere. We obtained a fairly complete characterization of a gravity wave that appears above the middle cloud in temperature measurements on all three orbits. The amplitude and vertical wavelength are about 4 K and 2.5 km respectively, at 65 km. A model for radiative damping implies that the wave intrinsic frequency is approximately 2 x 10(exp 4) rad/sec, the corresponding ratio between horizontal and vertical wavelengths is approximately 100. The wave is nearly stationary relative to the surface or the Sun. Radiative attenuation limits the wave amplitude at altitudes above approximately 65 km, leading to wave drag on the mean zonal winds of about +0.4 m/sec per day (eastward). The sign, magnitude, and location of this forcing suggest a possible role in explaining the decrease with height in the zonal wind speed that is believed to occur above the cloud tops. Temperature oscillations with larger vertical wavelengths (5-10 km) were also observed on all three orbits, but we are able unable to interpret these

  13. Information Content in Radio Waves: Student Investigations in Radio Science

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  14. Wave-wave interactions in solar type III radio bursts

    SciTech Connect

    Thejappa, G.; MacDowall, R. J.

    2014-02-11

    The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

  15. Effects of multiple scattering on scintillation of transionospheric radio signals

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Yeh, K. C.; Youakim, M. Y.; Wernik, A. W.

    1974-01-01

    Recent development in the optical scintillation theory has been adapted to the ionospheric geometry in order to study the ionospheric scintillation phenomenon in the presence of multiple scattering. Under approximations well satisfied in typical ionospheres for a frequency above about 20 MHz, the first through fourth moment equations have been derived and some analytic solutions given. The fourth moment equation has also been solved numerically. The numerical results show clearly the occurrence of focusing and saturation phenomena. The new multiple-scatter effects are emphasized.

  16. Interplanetary scintillations of the radio source ensemble at the maximum of cycle 24 of solar activity

    NASA Astrophysics Data System (ADS)

    Chashei, I. V.; Shishov, V. I.; Tyul'bashev, S. A.; Subaev, I. A.

    2016-05-01

    The results of the interplanetary scintillation observations performed in the period of the maximum of solar activity from April 2013 to April 2014 on the BSA LPI radio telescope at the frequency 111MHz are presented. Fluctuations of the radio emission flux were recorded round the clock for all sources with a scintillating flux of more than 0.2 Jy falling in a strip of sky with a width of 50° over declinations corresponding to a 96-beam directional pattern of the radio telescope. The total number of sources observed during the day reaches 5000. The processing of the observational data was carried out on the assumption that a set of scintillating sources represents a homogeneous statistical ensemble. Daily two-dimensional maps of the distribution of the level of scintillations, whose analysis shows the strong nonstationarity and large-scale irregularity of the spatial distribution of solar wind parameters, were constructed. According to maps of the distribution of the level of scintillations averaged over monthly intervals, the global structure of the distribution of the solar wind was investigated in the period of the maximum of solar activity, which was found to be on the average close to spherically symmetric. The data show that on a spherically symmetric background an east-west asymmetry is observed, which indicates the presence of a large-scale structure of a spiral type in the solar wind.

  17. The Unified Radio and Plasma wave investigation

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Bougeret, J. L.; Caldwell, J.; Canu, P.; De Conchy, Y.; Cornilleau-Wehrlin, N.; Desch, M. D.; Fainberg, J.; Goetz, K.; Goldstein, M. L.

    1992-01-01

    The scientific objectives of the Ulysses Unified Radio and Plasma wave (URAP) experiment are twofold: (1) the determination of the direction, angular size, and polarization of radio sources for remote sensing of the heliosphere and the Jovian magnetosphere and (2) the detailed study of local wave phenomena, which determine the transport coefficients of the ambient plasma. A brief discussion of the scientific goals of the experiment is followed by a comprehensive description of the instrument. The URAP sensors consist of a 72.5 m electric field antenna in the spin plane, a 7.5-m electric field monopole along the spin axis of a pair of orthogonal search coil magnetic antennas. The various receivers, designed to encompass specific needs of the investigation, cover the frequency range from dc to 1 MHz. A relaxation sounder provides very accurate electron density measurements. Radio and plasma wave observations are shown to demonstrate the capabilities and limitations of the URAP instruments: radio observations include solar bursts, auroral kilometric radiation, and Jovian bursts; plasma waves include Langmuir waves, ion acousticlike noise, and whistlers.

  18. The Propagation of Radio Waves

    NASA Astrophysics Data System (ADS)

    Budden, K. G.

    1988-08-01

    Preface; 1. The ionosphere and magnetosphere; 2. The basic equations; 3. The constitutive relations; 4. Magnetoionic theory I. Polarisation and refractive index; 5. Magnetoionic theory II. Rays and group velocity; 6. Stratified media. The booker quartic; 7. Slowly varying medium. The W.K.B. solution; 8. The Airy integral function and the Stokes phenomenon; 9. Integration by steepest descents; 10. Ray tracing in a loss-free stratified medium; 11. Reflection and transmission coefficients; 12. Ray theory results for isotropic ionosphere; 13. Ray theory results for anisotropic plasmas; 14. General ray tracing; 15. Full wave solutions for isotropic ionosphere; 16. Coupled wave eqations; 17. Coalescence of couling points; 18. Full wave methods for anisotropic stratified media; 19. Applications of full wave methods; Answers to problems; Bibliography; Index of definitions of the more important symbols; Subject and name index.

  19. HF Radio Wave Production of Artificial Ionospheres

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert

    In 1993 it was predicted that artificial ionospheres would be produced by high power HF radio waves, once HF transmitters approached a GWatt ERP. When that threshold was very recently achieved, such production was indeed detected and published at two high latitude high power HF facilities. Here we review: the first-principles logic behind that prediction, which aspects of such production are critically dependent on magnetic latitude, and which aspects of such production depend only on physical parameters independent of latitude. These distinctions follow directly from decomposition of the problem of ionization production into its components of: radio-wave propagation, wave-particle interactions, electron transport, and quantitative elastic/inelastic cross-sections. We outline this analysis to show that, within the context of early observations, the production of ionization is inevitable, and only a question of competing instability thresholds, and scale of ionization production. This illustrates complimentary aeronomy and plasma physics to advance understanding of both.

  20. Constraining the Vela Pulsar's Radio Emission Region Using Nyquist-limited Scintillation Statistics

    NASA Astrophysics Data System (ADS)

    Johnson, M. D.; Gwinn, C. R.; Demorest, P.

    2012-10-01

    Using a novel technique, we achieve ~100 picoarcsec resolution and set an upper bound of less than 4 km for the characteristic size of the Vela pulsar's emission region. Specifically, we analyze flux-density statistics of the Vela pulsar at 760 MHz. Because the pulsar exhibits strong diffractive scintillation, these statistics convey information about the spatial extent of the radio emission region. We measure both a characteristic size of the emission region and the emission sizes for individual pulses. Our results imply that the radio emission altitude for the Vela pulsar at this frequency is less than 340 km.

  1. CONSTRAINING THE VELA PULSAR'S RADIO EMISSION REGION USING NYQUIST-LIMITED SCINTILLATION STATISTICS

    SciTech Connect

    Johnson, M. D.; Gwinn, C. R.; Demorest, P. E-mail: cgwinn@physics.ucsb.edu

    2012-10-10

    Using a novel technique, we achieve {approx}100 picoarcsec resolution and set an upper bound of less than 4 km for the characteristic size of the Vela pulsar's emission region. Specifically, we analyze flux-density statistics of the Vela pulsar at 760 MHz. Because the pulsar exhibits strong diffractive scintillation, these statistics convey information about the spatial extent of the radio emission region. We measure both a characteristic size of the emission region and the emission sizes for individual pulses. Our results imply that the radio emission altitude for the Vela pulsar at this frequency is less than 340 km.

  2. Ionospheric Scintillation at Low Frequencies: Broadband Spectra and Phase Measurements from Natural Radio Sources

    NASA Astrophysics Data System (ADS)

    Fallows, Richard A.; Forte, Biagio; Coles, William A.

    2016-04-01

    Observations of strong natural radio sources such as Cassiopeia A taken using the Low Frequency Array (LOFAR) centred on the Netherlands, and the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) in arctic Finland, over the frequency range 10-250 MHz show almost continual ionospheric scintillation. Dynamic spectra of these observations show scintillation varying from weak to strong scattering and the effects of refraction due to large-scale structure in the ionosphere can also be visible. Recent efforts have also attempted to measure phase scintillation in addition to the regular intensity measurements, using simultaneous low-resolution all-sky imaging, to confirm when strong refraction is seen. Delay-Doppler spectra (the two-dimensional power spectrum of a dynamic spectrum) sometimes show an arc structure, similar to the "scintillation arcs" reported from observations of interstellar scintillation, which can be used to model parameters such as the distance to the scattering "scree" and the velocity of the scattering medium transverse to the line of sight. These two parameters are inherently linked in modelling which means that one needs to be known before the other can be established accurately. The dense core of the LOFAR array has been used to take temporal cross-correlations between station pairs to establish a picture of the velocity field in the ionosphere; with KAIRA other supporting instrumentation can be used to estimate ionospheric velocities in nearby regions. These velocities are used to attempt to establish the altitudes dominating scattering due to the ionosphere.

  3. Strong scintillations during atmospheric occultations Theoretical intensity spectra. [radio scattering during spacecraft occultations by planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.

    1986-01-01

    Each of the two Voyager spacecraft launched in 1977 has completed a reconnaissance of the Jovian and Saturnian systems. In connection with occultation experiments, strong scintillations were observed. Further theoretical work is required before these scintillations can be interpreted. The present study is, therefore, concerned with the derivation of a theory for strong scattering during atmospheric occultation experiments, taking into account as fundamental quantity of interest the spatial spectrum (or spectral density) of intensity fluctuations. Attention is given to a theory for intensity spectra, and numerical calculations. The new formula derived for Phi-i accounts for strong scattering of electromagnetic waves during atmospheric occultations.

  4. Scintillation of radio astronomical sources due to anisotropic inhomogeneities in the ionospheric plasma

    SciTech Connect

    Bezrodnyi, V.G.

    1988-02-01

    We have investigated the properties of scintillation of sources of cosmic radio emission due to inhomogeneities in the ionospheric F-region. The inhomogeneities are elongated along the geomagnetic field lines. We show that when the line of sight coincides with the magnetic field direction, we should observe an increase in the magnitude of the scintillation index. The amount of the increase, as well as the angular range in which it occurs, depend on the explicit shape of the spectrum of spatial scales of the inhomogeneities. We have given consideration to models which have been adopted in the literature for three-dimensional and two-dimensional anisotropy in the ionospheric turbulence. Based on this analysis, we propose a diagnostic method for the inhomogeneous ionospheric plasma. It is based on multifrequency measurements of the scintillation index of radio astronomical sources which culminate near the direction of the geomagnetic field lines at the latitude of the observing point. We establish the limits which are imposed on our proposed method because of the finite dimensions of the sources.

  5. Unusual radio and plasma wave phenomena observed in March 1991

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.; Fainberg, J.

    1992-01-01

    During the intense solar flare activity in March 1991 a number of unusual radio emission and Langmuir wave phenomena were observed by the radio and plasma wave (URAP) experiment on the Ulysses spacecraft. These phenomena were associated with unusual conditions in the interplanetary medium (IPM) presumably resulting from intense solar activity. Some of these URAP observations cannot be explained by mechanisms usually attributed to interplanetary (IP) radio emissions and Langmuir wave activity and require other interpretations.

  6. HF produced ionospheric electron density irregularities diagnosed by UHF radio star scintillations

    NASA Technical Reports Server (NTRS)

    Frey, A.; Gordon, W. E.

    1982-01-01

    Three observations of radio star intensity fluctuations at UHF are reported for HF ionospheric modification experiments carried out at the Arecibo Observatory. Two observations at 430 MHz and one at 1400 MHz suggest that the the thin phase screen theory is a good approximation to the observed power spectra. It is noted, however, that the theory has to be extended to include antenna filtering. This type of filtering is important for UHF radio star scintillations since the antenna usually has a narrow beamwidth. HF power densities of less than 37 microwatts/sq m incident on the ionosphere give rise to electron density irregularities larger than 13% of the ambient density (at 260 km) having scale sizes of approximately 510 m perpendicular to the geomagnetic field. The irregularities are found to form within 20-25 s after the HF power is turned on. The drift velocities of the irregularities can be estimated from the observed power spectra.

  7. Effects of D region ionization on radio wave propagation

    NASA Technical Reports Server (NTRS)

    Larsen, T. R.

    1979-01-01

    The effects of anomalous D region ionization upon radio wave propagation are described for the main types of disturbances: sudden ionospheric disturbances, relativistic electron events, magnetic storms, auroral disturbances, polar cap events, and stratospheric warmings. Examples of radio wave characteristics for such conditions are given for the frequencies between the extremely low (3-3000 Hz) and high (3-30 MHz) frequency domains. Statistics on the disturbance effects and radio wave data are given in order to contribute towards the evaluation of possibilities for predicting the radio effects.

  8. Radio-wave propagation for space communications systems

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1981-01-01

    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  9. The Scintillation and TEC Radio Instrument in Space (SCITRIS) Program at the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Bernhardt, P.; Siefring, C.; Huba, J.; Galysh, I.

    SCITRIS, a new space-based system to monitor total electron content (TEC) and ionospheric scintillations (IS), is scheduled for launch in late 2006. Two satellites, the Air Force S ace Test Program STPSAT1 and the Naval Postgraduate Schoolp NPSAT1, will host the SCITRIS instruments. The satellites will orbit at 560 km altitude with an inclination of 35 degrees. The CITRIS receiver on STPSAT1 will record signals from radio beacons o erating near 150, 400, 1067 and 2036 MHz.p The frequency pair 401.25 and 2036.25 MHz will be transmitted from the 50 ground transmitters that comprise the Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) system maintained by CNES in France. The frequencies 150.012, 400.032, and 1066.752 MHz will be transmitted using the Naval Research Laboratories' Coherent Electromagnetic Radio Tomography (CERTO) beacon from the NPSAT1 satellite. The NRL Langmuir probe will also be located on NPSAT1 to provide in situ electron density. The CITRIS receiver will process the measurements of complex amplitude from the multifrequency beacons to yield TEC and scintillation indices (S 4, ). Global maps of electron density and ionospheric irregularities will be produced using the SCITRIS instruments.

  10. Coronal Radio Sounding Experiments with Mars Express: Scintillation Spectra during Low Solar Activity

    SciTech Connect

    Efimov, A. I.; Lukanina, L. A.; Samoznaev, L. N.; Rudash, V. K.; Chashei, I. V.; Bird, M. K.; Paetzold, M.; Tellmann, S.

    2010-03-25

    Coronal radio sounding observations were carried out with the radio science experiment MaRS on the ESA spacecraft Mars Express during the period from 25 August to 22 October 2004. Differential frequency and log-amplitude fluctuations of the dual-frequency signals were recorded during a period of low solar activity. The data are applicable to low heliographic latitudes, i.e. to slow solar wind. The mean frequency fluctuation and power law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The radial dependence of the frequency fluctuation spectral index alpha reflects the previously documented flattening of the scintillation power spectra in the solar wind acceleration region. Temporal spectra of S-band and X-band normalized log-amplitude fluctuations were investigated over the range of fluctuation frequencies 0.01 Hzscintillation data. Evidence for a weak increase in the fractional electron density turbulence level is obtained in the range 10-40 solar radii.

  11. Global morphology of ionospheric F-layer scintillations using FS3/COSMIC GPS radio occultation data

    NASA Astrophysics Data System (ADS)

    Tsai, Lung-Chih; Su, Shin-Yi

    2016-07-01

    The FormoSat-3/ Constellation Observing System for Meteorology, Ionosphere and Climate (FS3/COSMIC) has been proven a successful mission on profiling and modeling of ionospheric electron density by the radio occultation (RO) technique. In this study we report FS3/COSMIC limb-viewing observations of the GPS L-band scintillation since mid 2006 and propose to study F-layer irregularity morphology. Generally the FS3/COSMIC has performed >1000 ionospheric RO observations per day. Most of these observations can provide limb-viewing profiles of S4 scintillation index at dual L-band frequencies. There are a few percentage of FS3/COSMIC RO observations having >0.08 S4 values on average. However, seven identified areas at Central Pacific Area (-20∘~ 20∘dip latitude, 160∘E~130∘W), South American Area (-20∘~ 20∘dip latitude, 100∘W~30∘W), African Area (-20∘~ 20∘dip latitude, 30∘W~50∘E), European Area (30∘~55∘N, 0∘~55∘E), Japan See Area (35∘~55∘N, 120∘~150∘E), Arctic Area (> 65∘dip latitude), and Antarctic Area (< -65∘dip latitude) have been designated to have much higher percentage of strong L-band RO scintillation. During these years in most of the last sunspot cycle from mid 2006 to end 2014 the climatology of scintillations, namely, its variations with each identified area, season, local time, magnetic activity and solar activity have been documented.

  12. Magnetospheric radio and plasma wave research - 1987-1990

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1991-01-01

    This review covers research performed in the area of magnetospheric plasma waves and wave-particle interactions as well as magnetospheric radio emissions. The report focuses on the near-completion of the discovery phase of radio and plasma wave phenomena in the planetary magnetospheres with the successful completion of the Voyager 2 encounters of Neptune and Uranus. Consideration is given to the advances made in detailed studies and theoretical investigations of radio and plasma wave phenomena in the terrestrial magnetosphere or in magnetospheric plasmas in general.

  13. Optical imaging of airglow structure in equatorial plasma bubbles at radio scintillation scales

    NASA Astrophysics Data System (ADS)

    Holmes, J. M.; Pedersen, T.; Parris, R. T.; Stephens, B.; Caton, R. G.; Dao, E. V.; Kratochvil, S.; Morton, Y.; Xu, D.; Jiao, Y.; Taylor, S.; Carrano, C. S.

    2015-12-01

    Imagery of optical emissions from F-region plasma is one of the few means available todetermine plasma density structure in two dimensions. However, the smallest spatial scalesobservable with this technique are typically limited not by magnification of the lens or resolutionof the detector but rather by the optical throughput of the system, which drives the integrationtime, which in turn causes smearing of the features that are typically moving at speeds of 100m/s or more. In this paper we present high spatio-temporal imagery of equatorial plasma bubbles(EPBs) from an imaging system called the Large Aperture Ionospheric Structure Imager(LAISI), which was specifically designed to capture short-integration, high-resolution images ofF-region recombination airglow at λ557.7 nm. The imager features 8-inch diameter entranceoptics comprised of a unique F/0.87 lens, combined with a monolithic 8-inch diameterinterference filter and a 2x2-inch CCD detector. The LAISI field of view is approximately 30degrees. Filtered all-sky images at common airglow wavelengths are combined with magneticfield-aligned LAISI images, GNSS scintillation, and VHF scintillation data obtained atAscension Island (7.98S, 14.41W geographic). A custom-built, multi-constellation GNSS datacollection system was employed that sampled GPS L1, L2C, L5, GLONASS L1 and L2, BeidouB1, and Galileo E1 and E5a signals. Sophisticated processing software was able to maintainlock of all signals during strong scintillation, providing unprecedented spatial observability ofL band scintillation. The smallest-resolvable scale sizes above the noise floor in the EPBs, as viewed byLAISI, are illustrated for integration times of 1, 5 and 10 seconds, with concurrentzonal irregularity drift speeds from both spaced-receiver VHF measurements and single-stationGNSS measurements of S4 and σφ. These observable optical scale sizes are placed in thecontext of those that give rise to radio scintillation in VHF and L band signals.

  14. Making Waves: Pirate Radio and Popular Music.

    ERIC Educational Resources Information Center

    Jones, Steve

    The history of pirate radio--radio broadcasts offered by unlicensed broadcasters as alternatives to licensed, commercial radio programming--is difficult to trace, both in America and the United Kingdom (UK) since mention of pirate broadcasts of a less-then-thrilling nature are rarely found. Also, until 1927, the U.S. government did not formally…

  15. Polycrystalline para-terphenyl scintillator adopted in a β- detecting probe for radio-guided surgery

    NASA Astrophysics Data System (ADS)

    Solfaroli Camillocci, E.; Bellini, F.; Bocci, V.; Collamati, F.; De Lucia, E.; Faccini, R.; Marafini, M.; Mattei, I.; Morganti, S.; Paramatti, R.; Patera, V.; Pinci, D.; Recchia, L.; Russomando, A.; Sarti, A.; Sciubba, A.; Senzacqua, M.; Voena, C.

    2015-06-01

    A radio-guided surgery technique exploiting β- emitters is under development. It aims at a higher target-to-background activity ratio implying both a smaller radiopharmaceutical activity and the possibility of extending the technique to cases with a large uptake of surrounding healthy organs. Such technique requires a dedicated intraoperative probe detecting β- radiation. A first prototype has been developed relying on the low density and high light yield of the diphenylbutadiene doped para-therphenyl organic scintillator. The scintillation light produced in a cylindrical crystal, 5 mm in diameter and 3 mm in height, is guided to a photo-multiplier tube by optical fibres. The custom readout electronics is designed to optimize its usage in terms of feedback to the surgeon, portability and remote monitoring of the signal. Tests show that with a radiotracer activity comparable to those administered for diagnostic purposes the developed probe can detect a 0.1 ml cancerous residual of meningioma in a few seconds.

  16. Gravity wave detection by GPS radio occultations

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten; Arras, Christina; De la Torre, Alejandro; Alexander, Peter; Llamedo, Pablo

    2016-07-01

    Gravity waves (GWs) play an important role for the general atmospheric circulation due to the related transport of energy and momentum between different regions of the atmosphere. The momentum mostly generated in the troposphere is transported to upper atmospheric levels where GWs break or dissipate and transfer their momentum to the background wind (GW drag). The deposit of GW momentum can occur in the complete altitude range from the upper troposphere-stratosphere, the mesosphere, and even in the thermosphere. A global observation of GW parameters (e.g. potential energy and vertical flux of absolute horizontal momentum) is only possible with satellite data. The radio occultation (RO) technique uses GPS signals received aboard low Earth orbiting satellites for atmospheric limb sounding. Atmospheric temperature profiles in the troposphere/stratosphere and ionospheric electron densities are derived with high vertical resolution. The GPS RO technique is sensitive to GWs with small ratios of vertical to horizontal wavelengths. In this presentation we give an overview about the derivation of GW parameters from RO temperature profiles, review some results of GW detection with RO data, and discuss the limitations of the RO technique. The focus of the presented results is (1) global GW activity in the upper troposphere and lower stratosphere for different seasons, (2) influence of the topography on GW activity from the troposphere to the ionosphere in the Andean region of South America, and (3) the variation of ionospheric sporadic E layers.

  17. Radio wave scattering in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    Current models for the 2-3 kHz emissions observed by the Voyager spacecraft in the outer heliosphere involve 2f(p) radiation generated near the termination shock or the heliopause. Radio wave scattering by solar wind density irregularities strongly affects observed sources of f(p) and 2f(p) emission in the inner heliosphere and the characteristics of astrophysical sources. In particular, the angular size, brightness temperature, and time variability of the source are strongly affected by scattering, thereby having major implications for the inferred size, energy budget, time variability, location, and nature of the source if scattering is ignored. This paper addresses whether scattering is important for interpreting the Voyager 2-3 kHz emissions. Quantitative calculations (with and without diffraction) are performed for the angular broadening of an outer heliospheric source as a function of path length, radiation frequency relative to f(p) and the spectrum of density irregularities. The effects of scattering in both the solar wind and the heliosheath are considered. Predictions for radial gradients in the source's apparent angular size and in the source's modulation index are presented. The calculations are compared with observations and the results discussed. First estimates suggest that scattering plausibly dominates the observed source size. The observed trend in modulation index with heliocentric distance is consistent with scattering being important and the source being in the outer heliosphere. Additional arguments for scattering being important are summarized.

  18. Plasma and radio waves from Neptune: Source mechamisms and propagation

    NASA Technical Reports Server (NTRS)

    Menietti, J. Douglas

    1994-01-01

    The purpose of this project was to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as it flew by Neptune. The study has included data analysis, theoretical and numerical calculations, and ray tracing to determine the possible source mechanisms and locations of the radiation, including the narrowband bursty and smooth components of the Neptune radio emission.

  19. New methods for calculating short-wave radio paths

    NASA Astrophysics Data System (ADS)

    Popov, A. V.; Tsedilina, E. E.; Cherkashin, Iu. N.

    Recent research on the calculation of short-wave paths at IZMIRAN (the Soviet Institute for the Study of Terrestrial Magnetism, the Ionosphere, and the Propagation of Radio Waves) is reviewed. Particular attention is given to: (1) the development of approximate analytical methods for ray-tracing calculations and for determining the geometrical-optics characteristics of a radio signal in a horizontally irregular ionosphere; (2) investigations of the long-range and short-wave propagation of decametric waves; and (3) the development of a parabolic-equation method for considering diffraction and scattering in a medium with regular and random irregularities.

  20. The ISPM unified radio and plasma wave experiment

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Caldwell, J.; Deconchy, Y.; Deschanciaux, C.; Ebbett, R.; Epstein, G.; Groetz, K.; Harvey, C. C.; Hoang, S.; Howard, R.

    1983-01-01

    Hardware for the International Solar Polar Mission (ISPM) Unified Radio and Plasma (URAP) wave experiment is presented. The URAP determines direction and polarization of distant radio sources for remote sensing of the heliosphere, and studies local wave phenomena which determine the transport coefficients of the ambient plasma. Electric and magnetic field antennas and preamplifiers; the electromagnetic compatibility plan and grounding; radio astronomy and plasma frequency receivers; a fast Fourier transformation data processing unit waveform analyzer; dc voltage measurements; a fast envelope sampler for the solar wind, and plasmas near Jupiter; a sounder; and a power converter are described.

  1. Plasma and radio waves from Neptune: Source mechanisms and propagation

    NASA Technical Reports Server (NTRS)

    Wong, H. K.

    1994-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.

  2. Ionospheric Scintillation Explorer (ISX)

    NASA Astrophysics Data System (ADS)

    Iuliano, J.; Bahcivan, H.

    2015-12-01

    NSF has recently selected Ionospheric Scintillation Explorer (ISX), a 3U Cubesat mission to explore the three-dimensional structure of scintillation-scale ionospheric irregularities associated with Equatorial Spread F (ESF). ISX is a collaborative effort between SRI International and Cal Poly. This project addresses the science question: To what distance along a flux tube does an irregularity of certain transverse-scale extend? It has been difficult to measure the magnetic field-alignment of scintillation-scale turbulent structures because of the difficulty of sampling a flux tube at multiple locations within a short time. This measurement is now possible due to the worldwide transition to DTV, which presents unique signals of opportunity for remote sensing of ionospheric irregularities from numerous vantage points. DTV spectra, in various formats, contain phase-stable, narrowband pilot carrier components that are transmitted simultaneously. A 4-channel radar receiver will simultaneously record up to 4 spatially separated transmissions from the ground. Correlations of amplitude and phase scintillation patterns corresponding to multiple points on the same flux tube will be a measure of the spatial extent of the structures along the magnetic field. A subset of geometries where two or more transmitters are aligned with the orbital path will be used to infer the temporal development of the structures. ISX has the following broad impact. Scintillation of space-based radio signals is a space weather problem that is intensively studied. ISX is a step toward a CubeSat constellation to monitor worldwide TEC variations and radio wave distortions on thousands of ionospheric paths. Furthermore, the rapid sampling along spacecraft orbits provides a unique dataset to deterministically reconstruct ionospheric irregularities at scintillation-scale resolution using diffraction radio tomography, a technique that enables prediction of scintillations at other radio frequencies, and

  3. Scintillation correlation between forward and return spherical waves.

    PubMed

    Perlot, Nicolas; Giggenbach, Dirk

    2012-05-20

    According to the point-source point-receiver (PSPR) reciprocity, the received field remains equal when the positions of a point source and point receiver are interchanged. We extend the PSPR scenario to a finite receiver that spatially averages scintillation over its aperture. By use of weak-fluctuation theory, an analytical expression for the correlation coefficient between the received powers at both link ends is provided. The effects of turbulence profile, receiver aperture size, and central obscuration on the correlation are assessed. Because correlation is obtained to the detriment of antenna gain and aperture averaging, the net benefit of the channel reciprocity is highly scenario dependent. PMID:22614590

  4. Roles Played by Electrostatic Waves in Producing Radio Emissions

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    2000-01-01

    Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.

  5. Evidence for nonlinear wave-wave interactions in solar type III radio bursts

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Levedahl, W. K.; Lotko, W.; Gurnett, D. A.; Scarf, F. L.

    1986-01-01

    Evidence is presented that nonlinear wave-wave interactions occur in type III solar radio bursts. Intense, spiky Langmuir waves are observed to be driven by electron beams associated with type III solar radio bursts in the interplanetary medium. Bursts of 30-300 Hz (in the spacecraft frame) waves are often observed coincident in time with the most intense spikes of the Langmuir waves. These low-frequency waves appear to be long-wavelength ion acoustic waves, with wavenumber approximately equal to the beam resonant Langmuir wavenumber. Three possible interpretations of these observations are considered: modulational instability, parametric decay of the parent Langmuir waves to daughter ion acoustic and Langmuir waves, and decay to daughter electromagnetic waves and ion acoustic waves.

  6. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Mahoney, M. J.; Jacobson, A. R.; Knowles, S. H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities.

  7. Coincidently Searching for Gravitational Waves and Low Frequency Radio Transients

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Yancey, C.; Shawhan, P. S.; Cutchin, S.; Simonetti, J. H.; Bear, B.; Tsai, J.

    2014-01-01

    The transient sky has become an important area of astrophysical study, especially with the appearance of recent fast transients, but little is known about the sources of these transients. One possible approach which can shed light on this area is multi-messenger astronomy using gravitational waves and prompt emission meter-wavelength radio to observe fast transients. This is made possible with gravitational-wave detectors such as LIGO, VIRGO, and GEO (IndIGO and KAGRA proposed or under construction) and phased-array radio-telescopes such LWA, LOFAR, LoFASM, and MWA. This talk presents a method for coincidence of gravitational wave and meter-wavelength radio observations to enable multi-messenger astronomy and discusses the optimization of gravitational-wave and radio sensitivities to attain effective combined observational sensitivities. It is shown that coincidence provides a 52.9% increase to the sensitivity distance for LIGO and a 200% increase to the SNR of radio arrays for particular cases.

  8. Trajectories of radio waves in linear layer with isometric inhomogeneities

    NASA Astrophysics Data System (ADS)

    Golynskiy, S. M.; Khlybov, G. N.

    1984-05-01

    The trajectories of radio waves in a statistically nonhomogeneous medium such as a linear ionospheric layer are estimated, taking into account their perturbation by local inhomogeneities. Assuming that the trajectories do remain in the plane of incidence, the deviation of the most probable trajectory from its unperturbed path in accordance with Snell's law is calculated for three models of wave diffusion as a Markov process (D- diffusion). The results are useful for design and operation of radio communication lines, calculation of the maximum usable frequency, and other applications.

  9. Synopsis of Mid-latitude Radio Wave Absorption in Europe

    NASA Technical Reports Server (NTRS)

    Torkar, K. M.; Friedrich, M.

    1984-01-01

    Radio wave absorption data covering almost two years from Europe to Central Asia are presented. They are normalized by relating them to a reference absorption. Every day these normalized data are fitted to a mathematical function of geographical location in order to obtain a daily synopsis of radio wave absorption. A film of these absorption charts was made which is intended to reveal movements of absorption or absorption anomaly. In addition, radiance (temperature) data from the lower D-region are also plotted onto these charts.

  10. On the Possibility of Study of the External Solar Wind Thin Structure in Decameter Radio Waves

    NASA Astrophysics Data System (ADS)

    Olyak, M. R.

    2006-08-01

    The purpose of this work is to develop the research technique of the thin structure of outer solar wind in decameter waves. The extended medium model and Feynman path-integral method were applied for calculations of the cross - spectra of weak interplanetary scintillations. The temporary spectra W(f) and phase speed dispersion dependencies V(f) for the spherically symmetric (curves 1) and two-high-speed (curves 2) models of solar wind were calculated. The meanings of solar wind parameters were chosen so that the differences of temporary spectra for two models were minimal and laid within the limits of probable measurements errors ([S:f:S][Author ID2: at Fri Jul 14 10:28:00 2006 ] F[Author ID2: at Fri Jul 14 10:28:00 2006 ]ig. 1). It is shown that the supervision of scintillations on two spatially carried antennas and study of dispersion dependence of phase speed will allow to notice the presence of the accelerated flows on a beam of sight when the measurements on one antenna do not give the unequivocal answer to the question whether the flows of solar wind with various speeds are present in external areas of interplanetary medium. It is shown that by using of simultaneous measurements of temporary spectra and dispersion dependences of phase speed the detection of fast and slow solar wind flows and the definition of their parameters are possible in decameter radio waves.

  11. Embracing the Wave: Using the Very Small Radio Telescope to Teach Students about Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Fish, Vincent L.; Needles, M. M.; Rogers, A. E. E.; Doherty, M.; Minnigh, S.; Arndt, M. B.; Pratap, P.

    2010-01-01

    The Very Small Radio Telescope (VSRT) is a low-cost educational tool appropriate for laboratory demonstrations of the nature of radio waves and the principles of interferometry for use in both high school and undergraduate physics/astronomy classes. The system consists of small direct broadcast antenna dishes and other commercially available parts and can be assembled for under $500. Complete teaching units have been developed and tested by high school physics teachers to demonstrate radio wave transmission and exponential absorption though materials (Beer's law), the polarization of electromagnetic waves (Malus' law), the inverse square law, and interferometry. These units can be used to explore the properties of electromagnetic waves, including similarities and differences between radio and visible light, while challenging students' misconceptions about a wavelength regime that is important to both astronomy and everyday life. In addition, the VSRT can be used as a radio astronomical interferometer to measure the diameter of the Sun at 12 GHz. Full details, including a parts list, comprehensive assembly instructions, informational memos, teaching units, software, and conformance to national and Massachusetts educational standards, are available on the web at http://www.haystack.mit.edu/edu/undergrad/VSRT/index.html . Development of the VSRT at MIT Haystack Observatory is made possible through funding provided by the National Science Foundation.

  12. Excitation of parametric instabilities by radio waves in the ionosphere.

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.; Leer, E.

    1972-01-01

    The excitation of parametric instabilities by radio waves in a magnetoplasma is discussed. A uniform medium is assumed and linear approximations are used. Excitation by a pump wave of ordinary polarization is hardly affected by the magnetic field. Low or zero frequency ion waves and high frequency Langmuir waves are excited simultaneously. For an extraordinary pump wave, the excited high frequency electrostatic waves are in the Bernstein mode. The threshold is slightly higher and excitation can occur only within certain 'allowed' frequency bands. A new type of parametric instability in which the excited waves are electromagnetic in nature and which is more strongly affected by the inhomogeneous nature of the medium is discussed qualitatively.

  13. X-Shaped Radio Galaxies and the Gravitational Wave Background

    NASA Astrophysics Data System (ADS)

    Hall Roberts, David; Saripalli, Lakshmi; Subrahmanyan, Ravi

    2015-08-01

    Coalescence of super massive black holes (SMBH's) in galactic mergers is potentially the dominant contributor to the low frequency gravitational wave background (GWB). It was proposed by Merritt and Ekers (2002) that X-shaped radio galaxies are signposts of such coalescences, and that their abundance might be used to predict the magnitude of the gravitational wave background. In Roberts et al. (2015) we presented radio images of all 52 X-shaped radio source candidates out of the sample of 100 selected by Cheung (2007) for which archival VLA data were available. These images indicate that at most 21% of the candidates might be genuine X-shaped radio sources that were formed by a restarting of beams in a new direction following a major merger. This suggests that fewer than 1.3% of extended radio sources appear to be candidates for genuine axis reorientations, much smaller than the 7% suggested by Leahy & Parma (1992). Thus the associated gravitational wave background may be substantially smaller than previous estimates. These results can be used to normalize detailed calculations of the SMBH coalescence rate and the GWB.

  14. Radio wave propagation at frequencies exceeding MUF-F2 in the short wave band

    NASA Technical Reports Server (NTRS)

    Ashkaliyev, Y. F.; Bocharov, V. I.

    1972-01-01

    The results of measurements of field strength and signal/noise ratio on experimental ionospheric-scattering short wave radio links are presented. It is shown that the seasonal and diurnal variations of field strength are determined by features of solar and meteoric activity. The role of the sporadic E-layer in propagation of short radio waves at frequencies exceeding MUF-F2 is noted.

  15. The Radio Wave Emission from Sgr A*

    NASA Astrophysics Data System (ADS)

    Beaklini, Pedro Paulo Bonetti

    2008-10-01

    SgrA* is a compact radio source, with radius smaller than 1 AU. Its position is coincident with the dynamic center of a star cluster that orbits the 4 million solar mass supermassive black hole found in the center of the Milky Way. SgrA* is surrounded by a complex of HII regions, with complex morphology, named SgrA. The variability of the SgrA* emission was observed at different wavelengths, as radio, infrared and X-rays, with timescales that range from hours to months. Recent observations using interferometric techniques have detected a quasiperiodicity in the radio light curve from SgrA*. In our work, we present the result of 43 GHz observations obtained with the Itapetinga radiotelescope, located in Atibaia, which aimed to detect this variability and verify the existence of a periodicity. Sgr B2, an HII complex near SgrA*, was used as a calibrator to eliminate any extrinsic variability. The obtained light curve is consistent with previous results reported in the literature, confirming the increase in the amplitude of the variability with frequency. Particularly, daily variability was found that is compatible with what was reported at 7 mm using VLBI techniques. The expected 106 days periodicity was not found in our data by the Jurkevich statistic method, which instead indicated the existence of a 90 day period. However, the superposition of the 7 mm data on a 106 day look similar to what was found from the 1.3 cm observations. Considering that the observations at 7 mm do not cover all the phases in the full cycle, more observations are needed to confirm the existence of a periodicity in the light curve.

  16. Short-Wave Radio: An Aid to Language Learning.

    ERIC Educational Resources Information Center

    Lutcavage, Charles P.

    1982-01-01

    Discusses use of short-wave radio broadcasts as method for expanding students' appreciation of practical advantages of language learning. Suggests use of news broadcasts and gives guidelines for using broadcasts such as level of aural comprehension in class. (Author/BK)

  17. Improved spacecraft radio science using an on-board atomic clock: Application to gravitational wave searches

    SciTech Connect

    Tinto, Massimo; Dick, George J.; Prestage, John D.; Armstrong, J. W.

    2009-05-15

    Recent advances in space-qualified atomic clocks (low-mass, low power-consumption, frequency stability comparable to that of ground-based clocks) can enable interplanetary spacecraft radio science experiments at unprecedented Doppler sensitivities. The addition of an on-board digital receiver would allow the up- and down-link Doppler frequencies to be measured separately. Such separate, high-quality measurements allow optimal data combinations that suppress the currently leading noise sources: phase scintillation noise from the Earth's atmosphere and Doppler noise caused by mechanical vibrations of the ground antenna. Here we provide a general expression for the optimal combination of ground and on-board Doppler data and compute the sensitivity such a system would have to low-frequency gravitational waves (GWs). Assuming a plasma scintillation noise calibration comparable to that already demonstrated with the multilink CASSINI radio system, the space-clock/digital-receiver instrumentation enhancements would give GW strain sensitivity of 3.7x10{sup -14} Hz{sup -1/2} for randomly polarized, monochromatic GW signals isotropically distributed over the celestial sphere, over a two-decade ({approx}0.0001-0.01 Hz) region of the low-frequency band. This is about an order of magnitude better than currently achieved with traditional two-way coherent Doppler experiments. The utility of optimally combining simultaneous up- and down-link observations is not limited to GW searches. The Doppler tracking technique discussed here could be performed at minimal incremental cost to improve also other radio science experiments (i.e., tests of relativistic gravity, planetary and satellite gravity field measurements, atmospheric and ring occultations) on future interplanetary missions.

  18. Lightning location with variable radio wave propagation velocity

    NASA Astrophysics Data System (ADS)

    Liu, Zhongjian; Koh, Kuang Liang; Mezentsev, Andrew; Sugier, Jacqueline; Fullekrug, Martin

    2016-04-01

    Lightning discharges can be located by triangulation of their broadband electromagnetic pulses in long-baseline (~500 km) radio receiver networks. Here we apply the time of arrival difference (TOA) method to electric field recordings with a low frequency radio receiver array consisting of four stations in western Europe. The electromagnetic wave propagation velocity at low radio frequencies is an important input parameter for the TOA calculation and it is normally assumed to be equal to the speed of light. However, the radio wave propagation depends for example on the frequency, ground conductivity and the ionospheric height and small variations can cause location differences from hundreds to thousands of meters, as demonstrated in this study. The radio wave propagation from two VLF transmissions at 20.9 kHz and 23.4 kHz are compared. The results show that the apparent phase velocities are 0.6% slower and 0.5% faster than the speed of light respectively. As a result, a variable velocity is implemented in the TOA method using continuously recorded data on the 8th August 2014, when a mesoscale convective system developed over central France. The lightning locations inferred with a variable wave propagation velocity are more clustered than those using a fixed velocity. The distribution of the lightning velocities in a given geographic area fits a normal distribution that is not centred at the speed of light. As a result, representative velocities can be calculated for smaller regions to generate a velocity map over a larger area of enhanced lightning activity. These results suggest a connection with the ground elevation and/or surface conductivity that might have an impact on the observed wave propagation velocities.

  19. Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission

    SciTech Connect

    Magdalenić, J.; Marqué, C.; Mierla, M.; Zhukov, A. N.; Rodriguez, L.; Krupar, V.; Maksimović, M.; Cecconi, B.

    2014-08-20

    We present a multiwavelength study of the 2012 March 5 solar eruptive event, with an emphasis on the radio triangulation of the associated radio bursts. The main points of the study are reconstruction of the propagation of shock waves driven by coronal mass ejections (CMEs) using radio observations and finding the relative positions of the CME, the CME-driven shock wave, and its radio signatures. For the first time, radio triangulation is applied to different types of radio bursts in the same event and performed in a detailed way using goniopolarimetric observations from STEREO/Waves and WIND/Waves spacecraft. The event on 2012 March 5 was associated with a X1.1 flare from the NOAA AR 1429 situated near the northeast limb, accompanied by a full halo CME and a radio event comprising long-lasting interplanetary type II radio bursts. The results of the three-dimensional reconstruction of the CME (using SOHO/LASCO, STEREO COR, and HI observations), and modeling with the ENLIL cone model suggest that the CME-driven shock wave arrived at 1 AU at about 12:00 UT on March 7 (as observed by SOHO/CELIAS). The results of radio triangulation show that the source of the type II radio burst was situated on the southern flank of the CME. We suggest that the interaction of the shock wave and a nearby coronal streamer resulted in the interplanetary type II radio emission.

  20. Ulysses radio and plasma wave observations in the Jupiter environment

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Pedersen, B. M.; Harvey, C. C.; Canu, P.; Cornilleau-Wehrlin, N.; Desch, M. D.; De Villedary, C.; Fainberg, J.; Farrell, W. M.; Goetz, K.

    1992-01-01

    The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of auroral-like hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the Io plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the Io torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.

  1. Cassini Radio Science Observations of Density Waves in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    McGhee, C. A.; French, R. G.; Rappaport, N. J.; Marouf, E. A.; Dawson, R.; Stack, K.

    2006-08-01

    Saturn's ring system is an elegant celestial mechanical laboratory for studying the interactions between a host of small and large moons, and the rings themselves. Resonances between the satellites and the ring particles result in spiral density waves whose detailed characteristics can be used to determine the physical properties of the rings. Over the past year, the Cassini Radio Science Team has obtained nearly a dozen exquisite radial profiles of the structure of Saturn's rings from occultations at three radio wavelengths (0.9 cm, 3 cm, and 12 cm), at sub-km resolution, after correction for the effects of diffraction. The optical depth profiles of the rings are replete with density waves produced by Mimas, Janus, Epimetheus, Prometheus, Pandora, and even smaller moons. Using wavelet decomposition as well as direct model fitting, we have determined the surface mass density and viscosity of the ring particles from weak (linear) density waves, primarily in the A ring. These are essential ingredients for dynamical models of the rings that include the effects of self-gravity and inelastic particle collisions. Future radio science occultation experiments throughout the Cassini orbital tour of Saturn will probe the rings at a range of ring opening angles, providing both additional measurements of density waves and other ring features.

  2. Remote sensing of irregularities in the equatorial ionosphere using the radio scintillation technique

    SciTech Connect

    Franke, S.J.

    1984-01-01

    Experimental measurements of signal level fluctuations (scintillation) on VHF and microwave signals from two geostationary communications satellites are studied in detail. The signals were recorded at an equatorial location which is almost directly beneath the satellites. The scintillation is caused by refraction and diffraction of the signals by variations of the refractive index in the Flayer of the ionosphere. This study is directed toward using the observed multifrequency scintillation to remotely sense the characteristics of the ionospheric irregularities. This is done by considering both statistical and deterministic models for the scintillation producing irregularities. The models are combined with existing propagation theory using analytical and numerical simulation techniques in order to predict the spatial and temporal characteristics of the multifrequency scintillation. Comparison with the observations is used to verify the models. Extensive use is made of numerical simulation. This makes it possible to study both weak and strong scintillations which occur simultaneously on the microwave and VHF frequencies, respectively. In all cases, the models are chosen to be consistent with results from other remote sensing techniques and in situ measurements. Geophysical implications of the results are discussed in light of what is known about equatorial irregularities from previous experimental and theoretical studies.

  3. Experimental observations of the spatial structure of wave-like disturbances generated in midlatitude ionosphere by high power radio waves

    NASA Astrophysics Data System (ADS)

    Kunitsyn, V.; Andreeva, E.; Padokhin, A. M.; Nazarenko, M.; Frolov, V.; Komrakov, G.; Bolotin, I.

    2012-12-01

    with a square wave modulation of the ERP at a frequency lower than or of the order of the Brunt-Vaisala frequency of the neutral atmosphere. The observed wavelike structures, which are possibly AGWs, diverge from the heated area of the ionosphere (observed like a narrow trough with dimensions corresponding to the diagram pattern of the Sura heater), the spatial period of these disturbances is 200-250 km and they are easily traced up to a distance of 700-800 km from the heated region. These observations are in good agreement with complimentary GPS/GLONASS data. We also present the examples of amplitude scintillations of the signals of low-orbital radio beacons corresponding to small-scale field-aligned irregularities in the heated area of ionosphere. The possibility of generation of electromagnetic waves by moving wave-like structures in ionosphere (like AGWs induced by HF-heating observed in our experiments) is also addressed in this work. The authors are grateful to the staff of the Sura facility for their help in conducting the experiments and acknowledge the support of the Russian Foundation for Basic Research (grants 10-05-01126, 11-02-00374, 11-05-01157, 12-02-31839, 12-05-33065, 12-05-10068), grant of the President of Russian Federation MK-2544.2012.5 and Lomonosov Moscow State University Program of Development.

  4. Electron Transport by Radio Frequency Waves in Tokamak Plasmas

    SciTech Connect

    Ram, A. K.; Kominis, Y.; Hizanidis, K.

    2009-11-26

    A relativistic kinetic description for momentum and spatial diffusion of electrons by radio frequency (RF) waves and non-axisymmetric magnetic field perturbations in a tokamak is formulated. The Lie perturbation technique is used to obtain a non-singular, time dependent evolution equation for resonant and non-resonant electron diffusion in momentum space and diffusion in configuration space. The kinetic equation for the electron distribution function is different from the usual quasilinear equations as it includes interactions that are non-Markovian. It is suitable for studying wave-particle interaction in present tokamaks and in ITER. A primary goal of RF waves, and, in particular, of electron cyclotron waves, in ITER is to control instabilities like the neoclassical tearing mode (NTM). Non-axisymmetric effects due to NTMs are included in the kinetic formalism.

  5. Data compression for the Cassini radio and plasma wave instrument

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Gurnett, D. A.; Kirchner, D. L.; Kurth, W. S.; Woolliscroft, L. J. C.

    1993-01-01

    The Cassini Radio and Plasma Wave Science experiment will employ data compression to make effective use of the available data telemetry bandwidth. Some compression will be achieved by use of a lossless data compression chip and some by software in a dedicated 80C85 processor. A description of the instrument and data compression system are included in this report. Also, the selection of data compression systems and acceptability of data degradation is addressed.

  6. Effect of Radio Frequency Waves on Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Sen, S.

    2015-11-01

    The effect of Radio Frequency waves on low frequency plasma instabilities and turbulence is studied. It is shown that the ponderomotive force can stabilize or destabilize instabilities depending on the power deposition profile and no RF induced flow generation hypothesis is required. Its possible consequence on space and fusion plasma will be discussed. Collaborations with George Vahala from William & Mary, Julio Martinell from UNAM and Atsushi Fukuyama from Kyoto University are acknowledged.

  7. Theories of radio emissions and plasma waves. [in Jupiter magnetosphere

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Goertz, C. K.

    1983-01-01

    The complex region of Jupiter's radio emissions at decameter wavelengths, the so-called DAM, is considered, taking into account the basic theoretical ideas which underly both the older and newer theories and models. Linear theories are examined, giving attention to direct emission mechanisms, parallel propagation, perpendicular propagation, and indirect emission mechanisms. An investigation of nonlinear theories is also conducted. Three-wave interactions are discussed along with decay instabilities, and three-wave up-conversio. Aspects of the Io and plasma torus interaction are studied, and a mechanism by which Io can accelerate electrons is reviewed.

  8. Radio observations of atmospheric gravity waves with Callisto

    NASA Astrophysics Data System (ADS)

    Monstein, C.

    2013-12-01

    On December 12th 2013 NOAA reported between 08:04 and 12:08 only radio noise at 245 MHz observed in San Vito. But some European observatories of the e-Callisto network (Germany, UK and Ireland) observed very strange reverse drifting and v-type bursts which was never recognized by the author before. Private communication with P. Zucca from TCD showed that these strange structures are due to focusing effects in the ionosphere. Interestingly it is possible to observe complex ionospheric behavior with cheap and simple radio-telescopes like Callisto. People who are interested in such kind of observations to study ionospheric gravity waves should generate observing programs for frequencies below 100 MHz, ideally with an additional up-converter for frequencies from 15 MHz - 100 MHz. Callisto again proved to be a powerful tool for solar science and radio-monitoring. Below are shown recent observations from Bir castle in Ireland, Essen in Germany and Glasgow in Scotland. For comparison I added an observation from a LOFAR node from Chibolton in UK which was provided by Richard Fallows from Astron NL. And finally a plot from Nançay radio heliograph, provided by Karl-Heinz Gansel, Dingden Amateur Radio- Astronomy Observatory DARO, Germany. Although Callisto instruments are almost identical, the spectra look completely different, depending on their geographical longitude and latitude.

  9. Wave optics-based LEO-LEO radio occultation retrieval

    NASA Astrophysics Data System (ADS)

    Benzon, Hans-Henrik; Høeg, Per

    2016-06-01

    This paper describes the theory for performing retrieval of radio occultations that use probing frequencies in the XK and KM band. Normally, radio occultations use frequencies in the L band, and GPS satellites are used as the transmitting source, and the occultation signals are received by a GPS receiver on board a Low Earth Orbit (LEO) satellite. The technique is based on the Doppler shift imposed, by the atmosphere, on the signal emitted from the GPS satellite. Two LEO satellites are assumed in the occultations discussed in this paper, and the retrieval is also dependent on the decrease in the signal amplitude caused by atmospheric absorption. The radio wave transmitter is placed on one of these satellites, while the receiver is placed on the other LEO satellite. One of the drawbacks of normal GPS-based radio occultations is that external information is needed to calculate some of the atmospheric products such as the correct water vapor content in the atmosphere. These limitations can be overcome when a proper selected range of high-frequency waves are used to probe the atmosphere. Probing frequencies close to the absorption line of water vapor have been included, thus allowing the retrieval of the water vapor content. Selecting the correct probing frequencies would make it possible to retrieve other information such as the content of ozone. The retrieval is performed through a number of processing steps which are based on the Full Spectrum Inversion (FSI) technique. The retrieval chain is therefore a wave optics-based retrieval chain, and it is therefore possible to process measurements that include multipath. In this paper simulated LEO to LEO radio occultations based on five different frequencies are used. The five frequencies are placed in the XK or KM frequency band. This new wave optics-based retrieval chain is used on a number of examples, and the retrieved atmospheric parameters are compared to the parameters from a global European Centre for Medium

  10. The propagation of radio waves: The theory of radio waves of low power in the ionosphere and magnetosphere

    NASA Astrophysics Data System (ADS)

    Budden, K. G.

    The effect of the ionized regions of the earth's atmosphere on radio wave propagation is comprehensively treated. After an introductory consideration of the terrestrial ionosphere and magnetosphere, wave propagation in ion plasmas, and their disturbances, attention is given to basic equations for the consideration of propagation effects, such constitutive relations as the Lorentz polarization term and the Debye length, the roles of polarization and refractive index in magnetoionic theory, rays and group velocity, the Booker quartic in stratified media, and the 'WKB' solutions. Further topics encompass the Airy integral function and the Stokes phenomenon, ray tracing in a loss-free stratified medium, ray theory and full wave solution results for an isotropic ionosphere, and full wave methods for anisotropic stratified media and their applications.

  11. The role of the magnetosphere in satellite and radio-star scintillation

    NASA Technical Reports Server (NTRS)

    Booker, H. G.

    1975-01-01

    A theory is developed to account for the scintillation phenomenon observed in equatorial regions when using communications satellites in the SHF band. The same theory is also used qualitatively to explain strong scintillations in the VHF band. Instead of confining irregularities to a narrow interval of height in the F-region and assuming that they are strong, the alternative hypothesis is used that the irregularities are weak but extend from the F-region upwards into the magnetosphere. It is suggested that the irregularities are field-aligned and extend at least up to an L-shell of 1.3 and possibly up to 2 or more.

  12. Scattering of radio frequency waves by blobs in tokamak plasmas

    SciTech Connect

    Ram, Abhay K.; Hizanidis, Kyriakos; Kominis, Yannis

    2013-05-15

    The density fluctuations and blobs present in the edge region of magnetic fusion devices can scatter radio frequency (RF) waves through refraction, reflection, diffraction, and coupling to other plasma waves. This, in turn, affects the spectrum of the RF waves and the electromagnetic power that reaches the core of the plasma. The usual geometric optics analysis of RF scattering by density blobs accounts for only refractive effects. It is valid when the amplitude of the fluctuations is small, of the order of 10%, compared to the background density. In experiments, density fluctuations with much larger amplitudes are routinely observed, so that a more general treatment of the scattering process is needed. In this paper, a full-wave model for the scattering of RF waves by a blob is developed. The full-wave approach extends the range of validity well beyond that of geometric optics; however, it is theoretically and computationally much more challenging. The theoretical procedure, although similar to that followed for the Mie solution of Maxwell's equations, is generalized to plasmas in a magnetic field. Besides diffraction and reflection, the model includes coupling to a different plasma wave than the one imposed by the external antenna structure. In the model, it is assumed that the RF waves interact with a spherical blob. The plasma inside and around the blob is cold, homogeneous, and imbedded in a uniform magnetic field. After formulating the complete analytical theory, the effect of the blob on short wavelength electron cyclotron waves and longer wavelength lower hybrid waves is studied numerically.

  13. Interpretation of gravity wave signatures in GPS radio occultations

    NASA Astrophysics Data System (ADS)

    Alexander, P.; de la Torre, A.; Llamedo, P.

    2008-08-01

    The horizontal averaging of global positioning system radio occultation retrievals produces an amplitude attenuation and phase shift in any plane gravity wave, which may lead to significant discrepancies with respect to the original values. In addition, wavelengths cannot be straightforwardly inferred due to the observational characteristics. If the waves produce small departures from spherical symmetry in the background atmosphere and under the assumption that the refractivity kernel may be represented by a delta function, an analytical expression may be derived in order to find how the retrieved amplitudes become weakened (against the original ones). In particular, we study the range of waves that may be detected and the consequent reduction in variance calculation, which is found to be around 19%. A larger discrepancy was obtained when comparing an occultation variance with the one computed from a numerical simulation of that case. Wave amplitudes can be better resolved when the fronts are nearly horizontal or when the angle between the occultation line of sight and the horizontal component of the wave vector approaches π/2. Short horizontal scale waves have a high probability of becoming attenuated or of not being detected at all. We then find geometrical relations in terms of the relative orientation between waves and sounding, so as to appropriately interpret wavelengths extracted from the acquired data. Only inertio-gravity waves, which exhibit nearly horizontal fronts, will show small differences between detected and original vertical wavelengths. Last, we analyze the retrieval effect on wave phase and find a shift between original and detected wave that generally is nonzero and approaches π/4 for the largest horizontal wavelengths.

  14. Trends and Periodicities In Nighttime Lf Radio Wave Reflection Heights

    NASA Astrophysics Data System (ADS)

    Kürschner, D.; Jacobi, Ch.

    The nighttime reflection height of low-frequency (LF) radio waves at oblique inci- dence is measured at Collm Observatory using 1.8 kHz sideband phase comparisons of the sky-wave and the ground wave of a commercial 177 kHz LF transmitter. The measurements have been carried out continuously since 1983, now allowing the anal- ysis of trends and regular variations of the reflection height. In the time series is found a) a long-term negative trend and b) a solar cycle dependence, both confirming ear- lier measurements and theoretical estimations. Moreover, a significant oscillation of quasi-biennial period is visible in LF reflection heights, indicating a reaction of the midlatitude mesosphere/lower thermosphere region on the equatorial QBO.

  15. Propagation of radio frequency waves through density filaments

    NASA Astrophysics Data System (ADS)

    Ram, Abhay K.; Hizanidis, Kyriakos

    2015-12-01

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. In this paper we develop an analytical formalism for the scattering of radio frequency waves by filaments which are cylindrical with their major axis aligned along the toroidal magnetic field lines. Since the magnitude of the ratio of the density inside the filaments to the background density is generally of order 1, the geometric optics approximation cannot be used to describe the scattering. A full-wave model is formulated which assumes that the plasma is cold and that the plasma in the cylindrical filament has uniform density. The background plasma, in which the filament is present, is also assumed to be cold and uniform. The theoretical framework applies to the scattering of any plasma wave.

  16. Propagation of radio frequency waves through density filaments

    SciTech Connect

    Ram, Abhay K.; Hizanidis, Kyriakos

    2015-12-10

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. In this paper we develop an analytical formalism for the scattering of radio frequency waves by filaments which are cylindrical with their major axis aligned along the toroidal magnetic field lines. Since the magnitude of the ratio of the density inside the filaments to the background density is generally of order 1, the geometric optics approximation cannot be used to describe the scattering. A full-wave model is formulated which assumes that the plasma is cold and that the plasma in the cylindrical filament has uniform density. The background plasma, in which the filament is present, is also assumed to be cold and uniform. The theoretical framework applies to the scattering of any plasma wave.

  17. Scattering of radio frequency waves by density fluctuations

    NASA Astrophysics Data System (ADS)

    Ram, A. K.; Hizanidis, K.; Ioannidis, Z.; Tigelis, I.

    2015-11-01

    The scattering of radio frequency waves by density fluctuations in magnetized fusion plasmas is studied theoretically and computationally. For coherent fluctuations, such as filaments in the edge region, we use a full-wave model for which the theory is similar to that for Mie scattering of electromagnetic waves by dielectric objects. The filaments are considered to be cylindrical with their axes aligned along the magnetic field. The results from the theoretical model are compared with numerical simulations using COMSOL. The simulations are extended to plasma conditions that are beyond the scope of the theoretical model, e.g., multiple filaments and filaments with density gradients. For incoherent planar fluctuations, which can be either in the core of the plasma or in the edge region, our theory is based on the Kirchhoff approach in tandem with Huygen's principle. The coherent and incoherent fluctuations scatter the incident plane wave, as well as couple some of the power to different plasma waves. The scattered spectrum is affected by the size of the fluctuations, the frequency, and the direction of propagation of the incident wave.

  18. Chaotic behavior of ionospheric turbulence from scintillation measurements

    SciTech Connect

    Bhattacharyya, A. )

    1990-05-01

    Ionospheric amplitude and phase scintillation data have been analyzed to estimate the information dimension associated with the attractor of the system. For weak scintillations, both amplitude and phase data yield identical results which demonstrate that spatial fluctuations of electron density in the ionosphere may be characterized by a few degrees of freedom. Stronger scintillations are attributed to steepened density irregularities which cause focusing of the incident radio wave. This results in the amplitude scintillations exhibiting higher dimensional chaos but spatial fluctuations in ionospheric density still involve low dimensional chaos.

  19. Cassini Radio and Plasma Wave Observations at Saturn

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Hospodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Ceccni, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.

    2005-01-01

    Results are presented from the Cassini radio and plasma wave instrument during the approach and first few orbits around Saturn. During the approach the intensity modulation of Saturn Kilometric Radiation (SKR) showed that the radio rotation period of Saturn has increased to 10 hr 45 min plus or minus 36 sec, about 6 min longer than measured by Voyager in 1980-81. Also, many intense impulsive radio signals called Saturn Electrostatic Discharges (SEDs) were detected from saturnian lightning, starting as far as 1.08 AU from Saturn, much farther than terrestrial lightning can be detected from Earth. Some of the SED episodes have been linked to cloud systems observed in Saturn s atmosphere by the Cassini imaging system. Within the magnetosphere plasma wave emissions have been used to construct an electron density profile through the inner region of the magnetosphere. With decreasing radial distance the electron density increases gradually to a peak of about 100 per cubic centimeter near the outer edge of the A ring, and then drops precipitously to values as low as .03 per cubic centimeter over the rings. Numerous nearly monochromatic whistler-mode emissions were observed as the spacecraft passed over the rings that are believed to be produced by meteoroid impacts on the rings. Whistlermode emissions, similar to terrestrial auroral hiss were also observed over the rings, indicating that an electrodynamic interaction, similar to auroral particle acceleration, may be occurring in or near the rings. During the Titan flybys Langmuir probe and plasma wave measurements provided observations of the density and temperature in Titan's ionosphere.

  20. Digital measurements of LF radio wave absorption in the lower ionosphere and inferred gravity wave activity

    NASA Astrophysics Data System (ADS)

    Lastovicka, J.; Boska, J.; Buresova, D.

    1993-10-01

    Low frequency (LF) radio wave absorption in the lower ionosphere has been measured at Pruhonice (approximately 50 deg N) since 1957. A new digital computer-controlled measuring-recording-processing system was introduced in 1988. The A3 method of radio wave absorption measurement, the measuring equipment used for the digital measurements at 270 kHz, is briefly described. The digital nighttime LF A3 measurements allow the use of absorption data for studying and monitoring the gravity wave activity in the upper middle atmosphere in the period range 10 min-3(2) hours. The resulting gravity wave spectra are as expected even though their shapes vary. Individual period bands sometimes exhibit a similar general pattern of variability in gravity wave activity (winter 1990), while in other intervals we observe a shift of gravity wave energy from one period band to another (winter 1991). No strong, pronounced and consistent response to strong geomagnetic storms and midwinter stratospheric warming is found. An apparent seasonal variation with winter minima observed in shorter-period gravity wave activity is an artefact of the changing length of the night. There is no significant seasonal variation of gravity wave activity in the analysed data. The method is very cheap -- the results are a by-product of measurements made for ionospheric purposes.

  1. Spectral broadening and phase scintillation measurements using interplanetary spacecraft radio links during the peak of solar cycle 23

    NASA Astrophysics Data System (ADS)

    Morabito, David D.

    2009-12-01

    When an interplanetary spacecraft is in a solar superior conjunction configuration, the received radio signals are degraded by several effects that generally increase in magnitude as the angle between the spacecraft and the Sun (Sun-Earth-Probe or SEP angle) decreases as viewed by a terrestrial tracking station. During periods of quiescent solar activity, phase scintillation and spectral broadening follow well-defined trends as a function of solar impact distance (SEP angle) and link frequency. During active solar periods, the magnitudes of these effects increase above background levels predicted by the quiet period models. Several such events were observed during the solar superior conjunction of the Cassini spacecraft during the peak of solar cycle 23 in May 2000. Pronounced features in the spectral broadening data above the quiet background appear to be associated with Coronal Mass Ejections (CMEs), and last for extended periods of time ranging from ˜30 min to ˜4 h. These features are coincident with periods of increased activity seen in the region of the spacecraft signal source on coronal white light images, and tend to be related or matched with EIT flare events and possibly long-duration flare events seen in satellite X-ray data. Several such features were captured in the May 2000 Cassini solar conjunction phase scintillation and spectral broadening data at X band (8.4 GHz) and Ka band (32 GHz) radio frequencies, and are presented here. Such characterizations are beneficial in understanding the impact of such events in future interplanetary communication scenarios during solar conjunction periods.

  2. Gyrokinetic simulation on the effect of radio frequency waves on ion-temperature-gradient-driven modes

    NASA Astrophysics Data System (ADS)

    Imadera, K.; Kishimoto, Y.; Sen, S.; Vahala, G.

    2016-02-01

    The ion-temperature-driven modes are studied in the presence of radio frequency waves by the use of the Gyro-Kinetic simulation Code. It is shown that the radio frequency waves through the ponderomotive force can stabilise the ion-temperature-gradient instabilities and contrary to the usual belief no radio frequency wave-induced flow generation hypothesis is required. This might be a major way to create a transport barrier in the fusion energy generation.

  3. Searching for Correlated Radio Transients & Gravitational Wave Bursts

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Shawhan, P. S.; Yancey, C.; Cutchin, S.; Simonetti, J. H.; Bear, B.; Tsai, J.

    2013-01-01

    We will discuss an ongoing multi-messenger search for transient radio pulses and gravitational wave bursts. This work is being conducted jointly by the Long Wavelength Array (LWA) and the LIGO Scientific Collaboration (LSC). A variety of astrophysical sources can produce simultaneous emission of gravitational waves and coherent low-frequency electromagnetic radiation. The primary common source motivating this work is the merger of neutron star binaries for which the LWA and LSC instruments have comparable sensitivity. Additional common sources include supernovae, long timescale GRBs and cosmic string cusp events. Data taken by both instruments can be compared to search for correlated signals. Identification of correlated signals can be used to increase the sensitivity of both instruments. We will summarize the coincident observations which have already been conducted and outline plans for future work. We will describe the process being used for synthesizing these data set and present preliminary results.

  4. Hertz and the Discovery of Radio Waves and the Photoelectric Effect.

    ERIC Educational Resources Information Center

    Spradley, Joseph L.

    1988-01-01

    Describes the discoveries by Hertz historically, such as photoelectric effect, radio waves, their impact on modern physics and some applications. Presents several diagrams and two chronological tables. (YP)

  5. Comparison of two phase scintillation estimators for GPS data obtained from High Latitudes.

    NASA Astrophysics Data System (ADS)

    Mushini, S. C.; Thayyil, J. P.; Langley, R. B.; MacDougall, J. W.

    2009-05-01

    Radio waves propagating through small scale plasma density irregularities produce fluctuations in both amplitude and phase of the signal. These fluctuations are called ionospheric scintillations. Due to their spatial diversity, GPS satellites allow scintillation measurement from different azimuthal sectors. Reliability of derived scintillation indices depend on the scintillation estimators used. Here we compare two different estimators for phase scintillations for data obtained from Canadian High Arctic Ionospheric Network (CHAIN) GPS receivers at high latitudes. These stations are specifically chosen to represent polar cap, near to the auroral boundary, and sub-auroral regions . Results of the comparison and its implications will be discussed.

  6. Radio Wave Propagation Handbook for Communication on and Around Mars

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser; Kliore, Arvydas

    2002-01-01

    This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.

  7. First tsunami gravity wave detection in ionospheric radio occultation data

    SciTech Connect

    Coïsson, Pierdavide; Lognonné, Philippe; Walwer, Damian; Rolland, Lucie M.

    2015-05-09

    After the 11 March 2011 earthquake and tsunami off the coast of Tohoku, the ionospheric signature of the displacements induced in the overlying atmosphere has been observed by ground stations in various regions of the Pacific Ocean. We analyze here the data of radio occultation satellites, detecting the tsunami-driven gravity wave for the first time using a fully space-based ionospheric observation system. One satellite of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) recorded an occultation in the region above the tsunami 2.5 h after the earthquake. The ionosphere was sounded from top to bottom, thus providing the vertical structure of the gravity wave excited by the tsunami propagation, observed as oscillations of the ionospheric Total Electron Content (TEC). The observed vertical wavelength was about 50 km, with maximum amplitude exceeding 1 total electron content unit when the occultation reached 200 km height. We compared the observations with synthetic data obtained by summation of the tsunami-coupled gravity normal modes of the Earth/Ocean/atmosphere system, which models the associated motion of the ionosphere plasma. These results provide experimental constraints on the attenuation of the gravity wave with altitude due to atmosphere viscosity, improving the understanding of the propagation of tsunami-driven gravity waves in the upper atmosphere. They demonstrate that the amplitude of the tsunami can be estimated to within 20% by the recorded ionospheric data.

  8. First tsunami gravity wave detection in ionospheric radio occultation data

    DOE PAGESBeta

    Coïsson, Pierdavide; Lognonné, Philippe; Walwer, Damian; Rolland, Lucie M.

    2015-05-09

    After the 11 March 2011 earthquake and tsunami off the coast of Tohoku, the ionospheric signature of the displacements induced in the overlying atmosphere has been observed by ground stations in various regions of the Pacific Ocean. We analyze here the data of radio occultation satellites, detecting the tsunami-driven gravity wave for the first time using a fully space-based ionospheric observation system. One satellite of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) recorded an occultation in the region above the tsunami 2.5 h after the earthquake. The ionosphere was sounded from top to bottom, thus providing themore » vertical structure of the gravity wave excited by the tsunami propagation, observed as oscillations of the ionospheric Total Electron Content (TEC). The observed vertical wavelength was about 50 km, with maximum amplitude exceeding 1 total electron content unit when the occultation reached 200 km height. We compared the observations with synthetic data obtained by summation of the tsunami-coupled gravity normal modes of the Earth/Ocean/atmosphere system, which models the associated motion of the ionosphere plasma. These results provide experimental constraints on the attenuation of the gravity wave with altitude due to atmosphere viscosity, improving the understanding of the propagation of tsunami-driven gravity waves in the upper atmosphere. They demonstrate that the amplitude of the tsunami can be estimated to within 20% by the recorded ionospheric data.« less

  9. Optical detection of radio waves through a nanomechanical transducer.

    PubMed

    Bagci, T; Simonsen, A; Schmid, S; Villanueva, L G; Zeuthen, E; Appel, J; Taylor, J M; Sørensen, A; Usami, K; Schliesser, A; Polzik, E S

    2014-03-01

    Low-loss transmission and sensitive recovery of weak radio-frequency and microwave signals is a ubiquitous challenge, crucial in radio astronomy, medical imaging, navigation, and classical and quantum communication. Efficient up-conversion of radio-frequency signals to an optical carrier would enable their transmission through optical fibres instead of through copper wires, drastically reducing losses, and would give access to the set of established quantum optical techniques that are routinely used in quantum-limited signal detection. Research in cavity optomechanics has shown that nanomechanical oscillators can couple strongly to either microwave or optical fields. Here we demonstrate a room-temperature optoelectromechanical transducer with both these functionalities, following a recent proposal using a high-quality nanomembrane. A voltage bias of less than 10 V is sufficient to induce strong coupling between the voltage fluctuations in a radio-frequency resonance circuit and the membrane's displacement, which is simultaneously coupled to light reflected off its surface. The radio-frequency signals are detected as an optical phase shift with quantum-limited sensitivity. The corresponding half-wave voltage is in the microvolt range, orders of magnitude less than that of standard optical modulators. The noise of the transducer--beyond the measured 800 pV Hz-1/2 Johnson noise of the resonant circuit--consists of the quantum noise of light and thermal fluctuations of the membrane, dominating the noise floor in potential applications in radio astronomy and nuclear magnetic imaging. Each of these contributions is inferred to be 60 pV Hz-1/2 when balanced by choosing an electromechanical cooperativity of ~150 with an optical power of 1 mW. The noise temperature of the membrane is divided by the cooperativity. For the highest observed cooperativity of 6,800, this leads to a projected noise temperature of 40 mK and a sensitivity limit of 5 pV Hz-1/2. Our approach to

  10. Solar Corona and plasma effects on Radio Frequency waves

    NASA Astrophysics Data System (ADS)

    Nkono, C.; Rosenblatt, P.; Dehant, V. M.

    2009-12-01

    Solar corona (plasma) effects on radio signal waves for three different frequency bands S (2.3 GHz), X (8.4 GHz), and Ka (32 GHz), currently used to track probes in the solar system, have been computed using different models of the total electron content (TEC) along the propagation path between the Earth and Mars. The Earth-Mars-Sun configuration has been obtained from the planetary ephemerides DE421 (using SPICE kernels) for the period from September 2004 to September 2006. This configuration is expressed as a function of the Sun-Earth-Probe (SEP) angles (the probe being in close orbit to Mars). We used the TEC values provided by the different models proposed in the literature in order to estimate the TEC along the propagation path (STEC, for Slant TEC). From these model-dependent STEC estimates, the time delay on the wave propagation as well as the associated frequency shift with a 10 seconds sampling time have been obtained for each of the three frequency bands. For the X-band mostly used in radio science, we have obtained estimates differing by up to several orders of magnitude due to the different STEC values derived from different models of TEC. For example, if the propagation path passes near the Sun such that SEP angle is 1.55° the STEC is ranging from 4.6x1020 electron/m2 to 6.07x1016 electron/m2, which corresponds to a time delay range between 0.87 μs and 1.15x10-4 μs, respectively. For SEP angles between 2° and 8°, the range of the different time delay values reduces to 2.8x10-1 μs and becomes as small as 1.6x10-2 μs for SEP angles larger than 8° (1x10-2 μs is about the order of magnitude of the radioscience instrument precision). These results show that the correction of the solar corona effect on radio frequency waves can be reliably done on usual X-band tracking data of spacecraft for SEP angles >12°, but should be use with caution for lower SEP angles, especially lower than 2°.

  11. Waves in the Martian Atmosphere: Results from MGS Radio Occultations

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Hinson, D. P.; Tyler, G. L.

    1999-01-01

    Temperatures retrieved from Mars Global Surveyor radio occultations have been searched for evidence of waves. Emphasis has been on the initial series of occultations between 29 deg N and 64 deg S, obtained during the early martian southern summer, L(sub s) = 264 deg - 308 deg. The profiles exhibit an undulatory behavior that is suggestive of vertically propagating waves. wavelengths approximately 10 km are often dominant, but structure on smaller scales is evident. The undulatory structure is most pronounced between latitudes 29 deg N and 10 deg S, usually in regions of "interesting" topography, e.g., in the Tharsis region and near the edge of Syrtis Major. Several temperature profiles, particularly within 30 deg of the equator, exhibit lapse rates that locally become superadiabatic near the 0.4-mbar level or at higher altitudes. This implies that the waves are "breaking" and depositing horizontal momentum into the atmosphere. Such a deposition may play an important role in modulating the atmospheric winds, and characterizing the spatial and temporal distribution of these momentum transfers can provide important clues to understanding how the global circulation is maintained.

  12. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  13. Grating formation by a high power radio wave in near-equator ionosphere

    SciTech Connect

    Singh, Rohtash; Sharma, A. K.; Tripathi, V. K.

    2011-11-15

    The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Such a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.

  14. Studies of the propagation of Low Frequency (LF) radio waves

    NASA Astrophysics Data System (ADS)

    Warrington, E. M.; Jones, T. B.

    1993-05-01

    Low frequency (30-300 kHz) radio waves can propagate to great distances with little attenuation in the cavity formed by the earth and the ionosphere. Because of the relatively high frequency at LF, many active propagation modes can occur between the transmitter and receiver. Changes in the ionospheric conductivity or reflection height can influence the phase and amplitude of these modes and, hence, produce mutual interference. Because of these interference effects, the propagation is less stable than at VLF and the received field strength becomes more difficult to predict. In the present investigation, the WAVEHOP program was employed in conjunction with a range of ionospheric models to estimate the receiver field strength over a number of experimental paths. The predicted values were compared with those measured in an attempt to validate the ionospheric models and the method of calculation.

  15. Radio Wave Scattering in the Outer Heliosphere: Preliminary Calculations

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    Detailed first estimates are presented of angular broadening in the outer heliosphere due to scattering of radio waves by density irregularities. The application is to the 2-3 kHz radiation observed by Voyager. Two plausible turbulence models, which account very well for scattering within 1 AU, are extrapolated beyond 10 AU. Both models predict significant angular broadening in the outer heliosphere, accounting semi- quantitatively alone for the source sizes inferred from roll modulation data. Predictions are presented for radial variations in the apparent source size if scattering is important. Comparisons with available data argue that scattering is important (and indeed is the dominant contributor to the apparent source size) and that the radiation source is located in the outer heliosphere. Other evidence that scattering is important, such as the fluctuations in apparent source direction and intensity, are also identified. The effects of scattering should be included in future analyses of the 2-3 kHz emissions.

  16. Annual report 1992/93, FOA 38. Radio systems and wave propagation

    NASA Astrophysics Data System (ADS)

    Mildh, I. M.

    1994-01-01

    The main objective of the division of Radio Systems and Wave Propagation is to carry out research and development in the field of secure and robust radio communications for Sweden's national defense. This is the Annual Report for fiscal year 1992/93 of the Division of Radio Systems and Wave Propagation. The division is responsible for research and development of secure radio communication for information transmission. We are also responsible for wave propagation research within a frequency range from LF to SHF. We carry out applied research in fields like antijamming systems, modulation, error correcting codes, wave propagation and digital signal processing. The wave propagation research is carried out by basic research so the demands from new techniques and new radio systems for accurate propagation models can be achieved.

  17. Worst-Case GPS Scintillations on the Ground Estimated from Radio Occultation Observations of FORMOSAT-3/COSMIC During 2007-2014

    NASA Astrophysics Data System (ADS)

    Liu, J. Y.; Chen, S. P.; Yeh, W. H.; Tsai, H. F.; Rajesh, P. K.

    2016-07-01

    The FORMOSAT-3/COSMIC (F3/C) satellite probes the S4 scintillation index profile of GPS signals by using the radio occultation (RO) technique. In this study, for practical use on the Earth's surface, a method is developed to convert and integrate the probed RO S4 index, so obtaining the scintillation on the ground. To estimate the worst case, the maximum value on each profile probed by F3/C, which is termed S4max, is isolated. The isolated data are further used to construct the global three-dimensional distributions of S4max for various local times, seasons, solar activities, and locations. The converted S4max for the first time estimates the global distribution of ionospheric scintillations in the GPS L1 band C/A code signal on the ground. The results show that the worst-case scintillations appear within the low-latitude region of ±30°N, peaking around ±20°N magnetic latitude; they begin at 1900 MLT, reach their maximum at 2100 MLT, and vanish by about 0200-0300 MLT. The most pronounced low-latitude scintillation occurs over the South American and African sectors.

  18. Worst-Case GPS Scintillations on the Ground Estimated from Radio Occultation Observations of FORMOSAT-3/COSMIC During 2007-2014

    NASA Astrophysics Data System (ADS)

    Liu, J. Y.; Chen, S. P.; Yeh, W. H.; Tsai, H. F.; Rajesh, P. K.

    2016-01-01

    The FORMOSAT-3/COSMIC (F3/C) satellite probes the S4 scintillation index profile of GPS signals by using the radio occultation (RO) technique. In this study, for practical use on the Earth's surface, a method is developed to convert and integrate the probed RO S4 index, so obtaining the scintillation on the ground. To estimate the worst case, the maximum value on each profile probed by F3/C, which is termed S4max, is isolated. The isolated data are further used to construct the global three-dimensional distributions of S4max for various local times, seasons, solar activities, and locations. The converted S4max for the first time estimates the global distribution of ionospheric scintillations in the GPS L1 band C/A code signal on the ground. The results show that the worst-case scintillations appear within the low-latitude region of ±30°N, peaking around ±20°N magnetic latitude; they begin at 1900 MLT, reach their maximum at 2100 MLT, and vanish by about 0200-0300 MLT. The most pronounced low-latitude scintillation occurs over the South American and African sectors.

  19. Upper limits on gravitational wave emission from 78 radio pulsars

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Ganezer, K. S.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Nocera, F.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; de La Jordana, L. Sancho; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Sazonov, A.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van Putten, M.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.; Kramer, M.; Lyne, A. G.

    2007-08-01

    We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO 600 gravitational wave detectors. The data from both runs have been combined coherently to maximize sensitivity. For the first time, pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits. Our upper limits are therefore the first measured for 56 of these pulsars. For the remaining 22, our results improve on previous upper limits by up to a factor of 10. For example, our tightest upper limit on the gravitational strain is 2.6×10-25 for PSR J1603-7202, and the equatorial ellipticity of PSR J2124 3358 is less than 10-6. Furthermore, our strain upper limit for the Crab pulsar is only 2.2 times greater than the fiducial spin-down limit.

  20. Nonextensivity effect on radio-wave transmission in plasma sheath

    NASA Astrophysics Data System (ADS)

    Mousavi, A.; Esfandiari-Kalejahi, A.; Akbari-Moghanjoughi, M.

    2016-04-01

    In this paper, new theoretical findings on the application of magnetic field in effective transmission of electromagnetic (EM) waves through a plasma sheath around a hypersonic vehicle are reported. The results are obtained by assuming the plasma sheath to consist of nonextensive electrons and thermal ions. The expressions for the electric field and effective collision frequency are derived analytically in the framework of nonextensive statistics. Examination of the reflection, transmission, and absorption coefficients regarding the strength of the ambient magnetic field shows the significance of q-nonextensive parameter effect on these entities. For small values of the magnetic field, the transmission coefficient increases to unity only in the range of - 1 < q < 1 . It is also found that the EM wave transmission through the nonextensive plasma sheath can take place using lower magnetic field strengths in the presence of superthermal electrons compared with that of Maxwellian ones. It is observed that superthermal electrons, with nonextensive parameter, q < 1, play a dominant role in overcoming the radio blackout for hypersonic flights.

  1. Combined X-Ray and mm-Wave Observations of Radio Quiet Active Galaxies

    NASA Astrophysics Data System (ADS)

    Behar, E.

    2016-06-01

    A connection between the X-ray and radio sources in radio quiet active galaxies (AGNs) will be demonstrated. High radio frequency, i.e., mm-wave observations are promising probes of the X-ray emitting inner regions of the accretion disks in radio quiet AGNs. An argument for simultaneous observations in X-rays and in mm waves will be made, in order to promote these as one of the future science goals of X-ray and AGN astronomy in the next decade. Preliminary results from an exploratory campaign with several space and ground based telescopes will be presented.

  2. Multipath propagation of low-frequency radio waves inferred from high-resolution array analysis

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Smith, Nathan; Mezentsev, Andrew; Watson, Robert; Astin, Ivan; Gaffet, Stéphane; Evans, Adrian; Rycroft, Michael

    2015-11-01

    The low-frequency radio sky shows the locations of electromagnetic radio sources with a characteristic dilution of precision. Here we report a thorough high-resolution analysis of radio waves from low-frequency (˜20-150 kHz) radio communication transmitters which are recorded with a small aperture array of radio receivers during the day. It is found that the observed dilution of precision results from the array geometry of the radio receivers, a birefringent wave propagation, and the correlated multipath propagation of low-frequency radio waves. The influence of the array geometry on the dilution of precision is reduced by taking into account the impulse response of the array. This procedure reveals for the very first time the splitting of one single radio source into two distinct source locations separated by ˜0.2°-1.9° which result from a birefringent wave propagation. The two locations are yet more clearly identified by using the polarity of the modulated wave number vectors of the radio waves. This polarity is also used to quantify the dilution of precision arising from correlated multipath propagation which is discriminated against wave number fluctuations arising from the timing accuracy of the radio receivers. It is found that ˜69% of the wave number variability is of natural origin and ˜31% originates from the timing accuracy of the receivers. The wave number variability from correlated multipath propagation results in a standard deviation ˜2-8% relative to the source location. This compact measurement of correlated multipath propagation is used to characterize the uncertainty of source locations in the radio sky. The identification of correlated multipath propagation strongly suggests the existence of very fast processes acting on time scales <1 ms in the D region ionosphere with physically meaningful effects on low-frequency radio wave propagation. This important result has implications for practical applications in that the observed multipath

  3. Low Frequency Radio-wave System for subsurface investigation

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Gennarelli, Gianluca; Kudelya, Anatoliy; Denisov, Alexander

    2015-04-01

    Low frequency radio-wave methods (RWM) allow subsurface investigations in terms of lithological structure characterization, detection of filtration flows of ground water, anthropogenic and natural cavities. In this contribution, we present a RWM that exploits two coils working at frequencies of few MHz as transmitting and receiving antennas. The basic principle of this inductive method is as follows. The primary alternating electromagnetic field radiated by the transmitting coil induces eddy currents in the subsurface mainly due to the conductivity anomalies. These eddy currents generate a secondary (scattered) magnetic field which overlaps to the incident magnetic field and is detected by the receiving coil. Despite the simple operation of the system, the complexity of the electromagnetic scattering phenomenon at hand must be properly modeled to achieve adequate performance. Therefore, an advanced data processing technique, belonging to the class of the inverse scattering approaches, has been developed by the authors in a full 3D geometry. The proposed method allows to deal with data collected on a scanning surface under a dipole inductive profiling (DIP) modality, where the transmitting/receiving coils are moved simultaneously with fixed offset (multi-bistatic configuration). The hardware, called Dipole Inductive Radio-wave System (DIRS), is composed by an electronic unit and transmitting and receiving loop antennas radiating at frequencies of few MHz (2-4 MHz), which are installed on theodolite supports. The compactness of DIRS and its robustness to external electromagnetic interference offers the possibility to perform geophysical research up to the depth of some tens of meters and under several types of ground and water surfaces, vegetation, and weather conditions. The light weight and small size of system (the single antenna with support weights about 5 kg and has a diameter of 0.5m) allows two operators to perform geophysical research without disturbing the

  4. Characteristics of coronal shock waves and solar type 2 radio bursts

    NASA Technical Reports Server (NTRS)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  5. Stratospheric gravity wave momentum fluxes from radio occultations

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten; Wickert, Jens; De la Torre, Alejandro; Alexander, Peter; Llamedo, Pablo; Ramezani Ziarani, Maryam

    2016-07-01

    Triples of GPS radio occultation (RO) temperature data are used to derive horizontal and vertical gravity wave (GW) parameters in the stratosphere between 20 km and 40 km from which the vertical flux of horizontal momentum is determined. Compared to previous studies using RO data better limiting values for the sampling distance (Δd<250 km) and the time interval (Δt<15 minutes) are used. For several latitude bands the mean momentum fluxes (MF) derived in this study are considerable larger than MF from other satellite missions based on horizontal wavelengths calculated between two adjacent temperature profiles along the satellite track. Error sources for the estimation of MF from RO data and the geometrical setup for the applied method is investigated. Another crucial issue discussed in the presentation is the influence of different background separation methods to the final MF. For GW analysis a measured temperature profile is divided into a fluctuation and a background and it is assumed that the fluctuation is caused by GWs only. For the background separation, i.e. the detrending of large-scale processes from the measured temperature profile, several methods exist. In this study we compare different detrending approaches including a new attempt by detrending RO data with ERA-Interim data from the European Centre for Medium-Range Weather Forecasts. We demonstrate that the horizontal detrending based on RO data and ERA-Interim gives more consistent results compared with a vertical detrending.

  6. Stratospheric gravity wave momentum flux from radio occultations

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Alexander, P.; Torre, A.

    2016-05-01

    Triples of GPS radio occultation (RO) temperature data are used to derive horizontal and vertical gravity wave (GW) parameters in the stratosphere between 20 km and 40 km from which the vertical flux of horizontal momentum is determined. Compared to previous studies using RO data, better limiting values for the sampling distance (Δd≤250 km) and the time interval (Δt≤15 min) are used. For several latitude bands the mean momentum fluxes (MFs) derived in this study are considerably larger than MF from other satellite missions based on horizontal wavelengths calculated between two adjacent temperature profiles along the satellite track. Error sources for the estimation of MF from RO data and the geometrical setup for the applied method are investigated. Another crucial issue discussed in this paper is the influence of different background separation methods to the final MF. For GW analysis a measured temperature profile is divided into a fluctuation and a background and it is assumed that the fluctuation is caused by GWs only. For the background separation, i.e., the detrending of large-scale processes from the measured temperature profile, several methods exist. In this study we compare different detrending approaches and for the first time an attempt is made to detrend RO data with ERA-Interim data from the European Centre for Medium-Range Weather Forecasts. We demonstrate that the horizontal detrending based on RO data and ERA-Interim gives more consistent results compared with a vertical detrending.

  7. The CERTO and CITRIS Instruments for Radio Scintillation and Electron Density Tomography from the C/NOFS, COSMIC, NPSAT1 and STPSAT1 Satellites

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.

    2004-05-01

    A new constellation of radio beacon and radio beacon receivers will be providing global measurements of radio scintillations and total electron content (TEC) for near real time measurements of the ionosphere. This constellation is comprised of the NRL Coherent Electromagnetic Radio Tomography (CERTO) beacons on the Communications/Navigation Forecast Outage System (C/NOFS) satellite, the six Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) satellites, and the Naval Postgraduate (NPSAT1) Satellite. These satellites will be launched in the time period of 2004 through 2006. The CERTO beacons operating at 150.012, 400.032, and 1066.752 MHz will be transmitting to ground receivers located in chains to acquire TEC data for computerized ionospheric tomography (CIT). In addition, in early 2006 a five frequency receiver will be placed in low earth orbit with the United States Air Force Space Test Program (STPSAT1) satellite. This CITRIS receiver will use radio beacon transmissions from the French DORIS network of ground beacons at 401.25 and 2036.25 MHz and space-based beacons at 150, 400 and 1067 MHz to measure the earth's ionosphere. On board tracking software will lock onto Doppler shifted frequencies to determine total electron content (TEC) and scintillation parameters. The STPSAT1 will be launched along with a companion satellite (NPSAT1) which carries the CERTO radio beacon and a Langmuir probe. All of the CERTO beacons as well as the ionospheric sensors on STPSAT1 and NPSAT1 are being constructed at the Naval Research Laboratory. The data obtained using the CITRIS instrument will provide a global description of the ionosphere from orbits with inclinations ranging from 15 degrees to 70 degrees and altitudes from 375 to 800 km. The tandem operations of the CITRIS and CERTO instruments will provide the fully low-earth-orbit based occultation measurements of the ionosphere. All of the data will be available for rapid assimilation

  8. SCINTILLATION SPECTROMETER

    DOEpatents

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  9. Jupiter: As a planet. [its physical characteristics and radio waves emitted from Jupiter

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The planet Jupiter, its planetary mass and atmosphere, radio waves emitted from Jupiter, thermal radiation, internal structure of Jupiter, and the possibility of life on Jupiter are discussed. Educational study projects are included.

  10. A Coincident Search for Radio and Gravitational Waves from Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Cardena, Brett

    2011-05-01

    The merger of neutron star-neutron star binary pairs may be accompanied by the prompt emission of a coherent low-frequency radio pulse. This radio transient is produced as synchrotron radiation caused by the spin and rotation of the surface charge density of a pulsar through the magnetosphere of a larger neutron star, usually referred to as a Magnetar . This type of merger event would also result in the release of a gravitational coalescence wave-form. We will discuss a coincident radio transient and gravitational wave search. This search is being conducted by two radio telescope arrays: The Long Wave Array (LWA) and the Eight-meter-wavelength Transient Array (ETA) in coordination with the Laser Interferometer Gravitational-Wave Observatory (LIGO). We will outline this ongoing coincident search and discuss some preliminary results.

  11. Put a Short-Wave Radio in Your Foreign Language Classroom

    ERIC Educational Resources Information Center

    Oksenholt, Svein

    1977-01-01

    Advantages of the short-wave radio as a supplement to foreign language instruction as well as practical hints on wavelength, antenna, and techniques for use are provided. Selective annotated bibliography. (STS)

  12. Energetic electrons and plasma waves associated with a solar type III radio burst

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Potter, D. W.; Gurnett, D. A.; Scarf, F. L.

    1981-01-01

    Detailed in situ observations from the ISEE 3 spacecraft of energetic electrons, plasma waves, and radio emission for the type II solar radio burst of February 17, 1979, are presented. The reduced, one-dimensional electron distribution function is constructed as a function of time. Since the faster electrons arrive before the slower ones, a bump on tail distribution forms which is unstable to the growth of Langmuir waves. The plasma wave growth computed from the distribution function agrees well with the observed onset of the Langmuir waves, and there is qualitative agreement between variations in the plasma wave levels and in the development of regions of positive slope in the function. The evolution of the function, however, predicts far higher plasma wave levels than those observed. The maximum levels observed are approximately equal to the threshold for nonlinear wave processes, such as oscillation two-stream instability and soliton collapse.

  13. Wave Normal and Poynting Vector Calculations using the Cassini Radio and Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Hospodarsky, G. B.; Averkamp, T. F.; Kurth, W. S.; Gurnett, D. A.; Dougherty, M.; Inan, Umran; Wood, Troy

    2001-01-01

    Wave normal and Poynting vector measurements from the Cassini radio and plasma wave instrument (RPWS) are used to examine the propagation characteristics of various plasma waves during the Earth flyby on August 18, 1999. Using the five-channel waveform receiver (WFR), the wave normal vector is determined using the Means method for a lightning-induced whistler, equatorial chorus, and a series of low-frequency emissions observed while Cassini was in the magnetosheath. The Poynting vector for these emissions is also calculated from the five components measured by the WFR. The propagation characteristics of the lightning-induced whistler were found to be consistent with the whistler wave mode of propagation, with propagation antiparallel to the magnetic field (southward) at Cassini. The sferic associated with this whistler was observed by both Cassini and the Stanford VLF group at the Palmer Station in Antarctica. Analysis of the arrival direction of the sferic at the Palmer Station suggests that the lightning stroke is in the same sector as Cassini. Chorus was observed very close (within a few degrees) to the magnetic equator during the flyby. The chorus was found to propagate primarily away from the magnetic equator and was observed to change direction as Cassini crossed the magnetic equator. This suggests that the source region of the chorus is very near the magnetic equator. The low-frequency emission in the magnetosheath has many of the characteristics of lion roars. The average value of the angle between the wave normal vector and the local magnetic field was found to be 16 degrees, and the emissions ranged in frequency from 0. 19 to 0.75 f(sub ce), where f(sub ce) is the electron cyclotron frequency. The wave normal vectors of these waves were primarily in one direction for each individual burst (either parallel or antiparallel to the local field) but varied in direction throughout the magnetosheath. This suggests that the sources of the emissions are far from

  14. An analysis of bending waves in Saturn's rings using Voyager radio occultation data

    NASA Technical Reports Server (NTRS)

    Gresh, Donna L.; Rosen, Paul A.; Tyler, G. Leonard; Lissauer, Jack J.

    1986-01-01

    Three oscillatory features in the Voyager 1 radio occultation map of Saturn's rings have been identified as the 5:3, 7:4, and 4:2 spiral bending waves excited by the satellite Mimas. The observations are presented and the wave properties are investigated. It is found that the Mimas 7:4 wave is consistent with the linear theory of bending waves, while the Mimas 5:3 wave may not be. A detailed analysis of the Mimas 4:2 bending wave was not possible due to the large optical depth in the region in which it propagates.

  15. Ulysses observations of wave activity at interplanetary shocks and implications for type II radio bursts

    SciTech Connect

    Lengyel-Frey, D. |; Thejappa, G.; MacDowall, R.J.; Stone, R.G.; Phillips, J.L. |

    1997-02-01

    We present the first quantitative investigation of interplanetary type II radio emission in which in situ waves measured at interplanetary shocks are used to compute radio wave intensities for comparison with type II observations. This study is based on in situ measurements of 42 in-ecliptic forward shocks as well as 10 intervals of type II emission observed by the Ulysses spacecraft between 1 AU and 5 AU. The analysis involves comparisons of statistical properties of type II bursts and in situ waves. Most of the 42 shocks are associated with the occurrence of electrostatic waves near the time of shock passage at Ulysses. These waves, which are identified as electron plasma waves and ion acoustic-like waves, are typically most intense several minutes before shock passage. This suggests that wave-wave interactions might be of importance in electromagnetic wave generation and that type II source regions are located immediately upstream of the shocks. We use the in situ wave measurements to compute type II brightness temperatures, assuming that emission at the fundamental of the electron plasma frequency is generated by the merging of electron plasma waves and ion acoustic waves or the decay of electron plasma waves into ion acoustic and transverse waves. Second harmonic emission is assumed to be produced by the merging of electron plasma waves. The latter mechanism requires that a portion of the electron plasma wave distribution is backscattered, presumably by density inhomogeneities in regions of observed ion acoustic wave activity. The computed type II brightness temperatures are found to be consistent with observed values for both fundamental and second harmonic emission, assuming that strong ({approx_equal}10{sup {minus}4}V/m) electron plasma waves and ion acoustic waves are coincident and that the electron plasma waves have phase velocities less than about 10 times the electron thermal velocity. (Abstract Truncated)

  16. Comparison of LaBr3:Ce and NaI(Tl) Scintillators for Radio-Isotope Identification Devices

    SciTech Connect

    Milbrath, Brian D.; Choate, Bethany J.; Fast, Jim E.; Hensley, Walter K.; Kouzes, Richard T.; Schweppe, John E.

    2006-07-31

    Lanthanum halide (LaBr3:Ce) scintillators offer significantly better resolution (<3 percent at 662 kilo-electron volt [keV]) relative to sodium iodide (NaI(Tl)) and have recently become commercially available in sizes large enough for the hand-held radio-isotope identification device (RIID) market. There are drawbacks to lanthanum halide detectors, however. These include internal radioactivity that contributes to spectral counts and a low-energy response that can cause detector resolution to be lower than that of NaI(Tl) below 100 keV. To study the potential of this new material for RIIDs, we performed a series of measurements comparing a 1.5?1.5 inch LaBr?3:Ce detector with an Exploranium GR 135 RIID, which contains a 1.5-2.2 inch NaI(Tl) detector. Measurements were taken for short time frames, as typifies RIID usage. Measurements included examples of naturally occurring radioactive material (NORM), typically found in cargo, and special nuclear materials. Some measurements were noncontact, involving short distances or cargo shielding scenarios. To facilitate direct comparison, spectra from the different detectors were analyzed with the same isotope identification software (ORTEC ScintiVision TM). In general, the LaBr3:Ce detector was able to find more peaks and find them faster than the NaI(Tl) detector. To the same level of significance, the LaBr3:Ce detector was usually two to three times faster. The notable exception was for 40K containing NORM where interfering internal contamination in the LaBr3:Ce detector exist. NaI(Tl) consistently outperformed LaBr3:Ce for this important isotope. LaBr3:Ce currently costs much more than NaI(Tl), though this cost-difference is expected to diminish (but not completely) with time. As is true of all detectors, LaBr3:Ce will need to be gain-stabilized for RIID applications. This could possibly be done using the internal contaminants themselves. It is the experience of the authors that peak finding software in RIIDs needs to be

  17. Approach warning system for snowplow using aerial-high-power ultrasonic wave with radio wave

    NASA Astrophysics Data System (ADS)

    Manabu, Aoyagi; Yuta, Amagi; Hiroaki, Miura; Okeya, Ryota; Hideki, Tamura; Takehiro, Takano

    2012-05-01

    An approach warning system for a snowplow and guide was developed by using aerial-high-power ultrasonic transducer. To be robust against some serious factors in winter, ultrasonic signal and radio one were combined on the system, and the flat face side of stepped circular vibrating plate was utilized as a radiation plate. The ultrasonic wave radiated from the flat face side still had a better directivity, and the flat face had advantage to prevent bad influences from water, snow or ice. From experiment results, when double transducers were set on both sides of roof of snowplow, this system was able to be measure distance between a guide and snowplow in whole of controlled area.

  18. Wave propagation and earth satellite radio emission studies

    NASA Technical Reports Server (NTRS)

    Yeh, K. C.; Liu, C. H.; Flaherty, B. J.

    1974-01-01

    Radio propagation studies of the ionosphere using satellite radio beacons are described. The ionosphere is known as a dispersive, inhomogeneous, irregular and sometimes even nonlinear medium. After traversing through the ionosphere the radio signal bears signatures of these characteristics. A study of these signatures will be helpful in two areas: (1) It will assist in learning the behavior of the medium, in this case the ionosphere. (2) It will provide information of the kind of signal characteristics and statistics to be expected for communication and navigational satellite systems that use the similar geometry.

  19. Density waves in Saturn's rings probed by radio and optical occultation - Observational tests of theory

    NASA Technical Reports Server (NTRS)

    Brophy, Thomas G.; Rosen, Paul A.

    1992-01-01

    A parallel examination is conducted of Voyager radio and photopolarimeter occultation observations of the Saturn A ring's density waves. The radio instrument waves exhibit an average -90 deg offset from the dynamical phase. A warping height of about 100-m amplitude can qualtitatively reproduce this phase shift, while preserving the overall model wave shape. These results may be profoundly relevant for satellite-ring torque calculations in Saturn's rings, given the deposition of all of the net torque of the standard model in the first wavelength.

  20. Cassini radio and plasma wave investigation: Data compression and scientific applications

    NASA Technical Reports Server (NTRS)

    Woolliscroft, L. J. C.; Farrell, W. M.; Alleyne, H. St. C.; Gurnett, D. A.; Kirchner, D. L.; Kurth, W. S.; Thompson, J. A.

    1993-01-01

    The Radio and Plasma Wave Science (RPWS) experiment being built for the Cassini spacecraft will study a wide range of plasma and radio wave phenomena in the magnetosphere of Saturn and will also make valuable measurements during the cruise phase and at other encounters. A feature of data from wave receivers is the capability of producing vastly more data than the spacecraft telemetry link is capable of transmitting back to the Earth. Thus, techniques of on-board data compression and data reduction are important. The RPWS instrument has one processor dedicated to data compression tasks.

  1. Cassini radio and plasma wave investigation - Data compression and scientific applications

    NASA Technical Reports Server (NTRS)

    Woolliscroft, L. J. C.; Farrell, W. M.; Alleyne, H. St. C.; Gurnett, D. A.; Kirchner, D. L.; Kurth, W. S.; Thompson, J. A.

    1993-01-01

    The Radio and Plasma Wave Science (RPWS) experiment being built for the Cassini spacecraft will study a wide range of plasma and radio wave phenomena in the magnetosphere of Saturn and will also make valuable measurements during the cruise phase and at other encounters. A feature of data from wave receivers is the capability of producing vastly more data than the spacecraft telemetry link is capable of transmitting back to the Earth. Thus, techniques of on-board data compression and data reduction are important. The RPWS instrument has one processor dedicated to data compression tasks.

  2. Commensal searches for microhertz gravitational waves and fast radio bursts: A pilot study

    NASA Astrophysics Data System (ADS)

    Shannon, Ryan; Hobbs, George; Ravi, Vikram

    2014-04-01

    In this pilot observing programme, we propose to observe at high cadence the transient gravitational-wave and radio-wave Universe. The goals of these observations are threefold: 1) To improve the timing precision of secondary pulsars in the Parkes Pulsar Timing Array (PPTA) to accelerate the detection of gravitational waves; 2) To characterise the gravitational wave universe in the hitherto unexplored microhertz frequency band; and 3) To develop methods and search for fast radio bursts (FRBs) while conducting precision time experiments. To achieve these goals, we request 120 hours of observations with the Parkes multibeam system, divided into 10 epochs comprising 12-hour LST days. This pilot project acts as a feasibility study for modifications to both the PPTA project and the International Pulsar Timing Array (IPTA), the consortium coordinating timing array observations in Australia, Europe, and North America, and assess the feasibility of searching for fast radio bursts while conduction precision timing observations.

  3. Turbulence-induced scintillation on Gaussian-beam waves: theoretical predictions and observations from a laser-illuminated satellite

    NASA Astrophysics Data System (ADS)

    Shelton, John D.

    1995-10-01

    Expressions for the variance and the power spectral density of turbulence-induced log-amplitude fluctuations are derived for Gaussian-beam waves in the regime of weak scattering. This formulation includes effects that are due to turbulence strength variations along the propagation path, offset of the observation point from the beam axis, and sensitivity to focus and beam diameter. Comparison of theoretical results with observed scintillation during experiments with a laser-illuminated satellite reveals good agreement. Copyright (c) 1995 Optical Society of America

  4. Double layers and plasma-wave resistivity in extragalactic jets - Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    Current driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur in extragalactic jets for estimated values of the carried currents. Strong plasma double layers, however, may exist within self-maintained density cavities. The relativistic double-layer-emitted electron and ion beams drive plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  5. Double layers and plasma-wave resistivity in extragalactic jets: Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    For estimated values of the currents carried by extragalactic jets, current-driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur. Strong plasma double layers, however, may exist within self-maintained density cavities, the relativistic double-layer-emitted electron, and ion beams driving plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  6. Verification of nonlinear particle simulation of radio frequency waves in tokamak

    SciTech Connect

    Kuley, A. Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.; Zhang, W.; Sun, G. Y.; Fisch, N. J.

    2015-10-15

    Nonlinear simulation model for radio frequency waves in fusion plasmas has been developed and verified using fully kinetic ion and drift kinetic electron. Ion cyclotron motion in the toroidal geometry is implemented using Boris push in the Boozer coordinates. Linear dispersion relation and nonlinear particle trapping are verified for the lower hybrid wave and ion Bernstein wave (IBW). Parametric decay instability is observed where a large amplitude pump wave decays into an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating, with a heating rate proportional to the pump wave intensity.

  7. GPS phase scintillation correlated with auroral forms

    NASA Astrophysics Data System (ADS)

    Hampton, D. L.; Azeem, S. I.; Crowley, G.; Santana, J.; Reynolds, A.

    2013-12-01

    The disruption of radio wave propagation due to rapid changes in electron density caused by auroral precipitation has been observed for several decades. In a few cases the disruption of GPS signals has been attributed to distinct auroral arcs [Kintner, 2007; Garner, 2011], but surprisingly there has been no systematic study of the characteristics of the auroral forms that cause GPS scintillation. In the Fall of 2012 ASTRA deployed four CASES GPS receivers at UAF observatories in Alaska (Kaktovik, Fort Yukon, Poker Flat and Gakona) specifically to address the effects of auroral activity on the high latitude ionosphere. We have initiated an analysis that compares the phase scintillation, recorded at high cadence, with filtered digital all-sky camera data to determine the auroral morphology and electron precipitation parameters that cause scintillation. From correlation studies from a single site (Poker Flat), we find that scintillation is well correlated with discrete arcs that have high particle energy flux (power per unit area), and not as well correlated with pulsating forms which typically have high characteristic energy, but lower energy flux . This indicates that the scintillation is correlated with the magnitude of the change in total electron density as expected. We will also report on ongoing work where we correlate the scintillation from the Fort Yukon receiver with the all-sky images at Poker Flat to determine the altitude that produces the greatest disturbance. These studies are aimed at a model that can predict the expected local disturbance to navigation due to auroral activity.

  8. The influence of polarization on millimeter wave propagation through rain. [radio signals

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.

    1973-01-01

    The measurement and analysis of the depolarization and attenuation that occur when millimeter wave radio signals propagate through rain are described. Progress was made in three major areas: the processing of recorded 1972 data, acquisition and processing of a large amount of 1973 data, and the development of a new theoretical model to predict rain cross polarization and attenuation. Each of these topics is described in detail along with radio frequency system design for cross polarization measurements.

  9. Variation of Langmuir wave polarization with electron beam speed in type III radio bursts

    SciTech Connect

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.

    2013-06-13

    Observations by the twin STEREO spacecraft of in-situ electric field waveforms and radio signatures associated with type III radio bursts have demonstrated that the polarization of electron beam-driven waves near the local plasma frequency depends strongly on the speed of the driving electron beam. We expand upon a previous study by including all radio bursts with in-situ waveforms observed by STEREO in 2011. The expanded data set contains five times more radio bursts (35 up from 7) and three times as many Langmuir waves (663 up from 168). While this expanded study supports the results of the original study, that faster (slower) beam electrons drive waves with strong (weak) electric fields perpendicular to the local magnetic field, the larger data set emphasizes that the observation of strong perpendicular electric fields at high electron beam speeds is probabilistic rather than definite. This property supports the interpretation of wave polarization dependence on beam speed as Langmuir/z-mode waves shifted to small wave number through interaction with turbulent solar wind density fluctuations.

  10. Influence of short gravity waves on thermal radio emission of water surface

    NASA Astrophysics Data System (ADS)

    Ilin, V. A.; Naumov, A. A.; Rayzer, V. Y.; Filonovich, S. R.; Etkin, V. S.

    1985-06-01

    An experimental study is presented of the thermal radio emission caused by short waves, accompanied by a quantitative interpretation of the data obtained. Emphasis is on an analysis of the variation in radio brightness contrast as a function of steepness of the short gravity waves, measured by means of a high-frequency radiometer operating in the lambda = 0.8 cm range. Waves were artificially generated in a small channel, wavelength 8 to 40 cm, height 0.6 to 3 cm. Due to the high sensitivity of the radiometric apparatus used, effects were recorded which were related to the influence of the profile and steepness of the short gravity waves. The possibility of using the geometrical optics approximation for quantitative interpretation of the experimental data is demonstrated. The model is based on essentially non-Gaussian statistics of slopes corresponding to quasimonochromatic waves of finite amplitude.

  11. Analytical study of nighttime scintillations using GPS at low latitude station Bhopal

    SciTech Connect

    Maski, Kalpana; Vijay, S. K.

    2015-07-31

    Sporadically structured ionosphere (i.e. in-homogeneities in refractive index) can cause fluctuations (due to refraction effects) on the radio signal that is passing through it. These fluctuations are called ionospheric scintillations. Low latitude region is suitable for studying these scintillations. The influence of the ionosphere on the propagation of the radio wave becomes very marked with reference to communication or navigational radio system at very low frequency (VLF) to a high frequency (HF), which operate over the distances of 1000 km or more. Radio wave communication at different frequencies depends on structure of the ionosphere. With the advent of the artificial satellites, they are used as a prime mode of radio wave communication. Some natural perturbation termed as irregularities, are present in the form of electron density of the ionosphere that cause disruption in the radio and satellite communications. Therefore the study of the ionospheric irregularities is of practical importance, if one wishes to understand the upper atmosphere completely. In order to make these communications uninterrupted the knowledge of irregularities, which are present in the ionosphere are very important. These irregularities can be located and estimated with the help of Ionospheric TEC and Scintillation. Scintillation is generally confined to nighttime hours, particularly around equatorial and low latitudes.

  12. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA. PMID:19257596

  13. Relations among low ionosphere parameters and high frequency radio wave absorption

    NASA Technical Reports Server (NTRS)

    Cipriano, J. P.

    1973-01-01

    Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.

  14. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    SciTech Connect

    Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  15. Application of surface acoustic wave devices to radio telemetry

    NASA Technical Reports Server (NTRS)

    Strasilla, U.

    1983-01-01

    Three experimental Surface Acoustic Wave Resonators (SAWR) are developed and evaluated. A desired center frequency is obtained by correct spacing of the Inter-Digital Transducers (IDT). Transmitting and receiving IDT's must be close for adequate coupling and a sufficient number of reflectors are required to create a high quality standing wave. A review of oscillator theory is given and current technology evaluated.

  16. Estimation of Electron Density profile Using the Propagation Characteristics of Radio Waves by S-520-29 Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Itaya, K.; Ishisaka, K.; Ashihara, Y.; Abe, T.; Kumamoto, A.; Kurihara, J.

    2015-12-01

    S-520-29 sounding rocket experiment was carried out at Uchinoura Space Center (USC) at 19:10 JST on 17 August, 2014. The purpose of this sounding rocket experiments is observation of sporadic E layer that appears in the lower ionosphere at near 100km. Three methods were used in order to observe the sporadic E layer. The first method is an optical method that observe the light of metal ion emitted by the resonance scattering in sporadic E layer using the imager. The second method is observation of characteristic of radio wave propagation that the LF/MF band radio waves transmitted from the ground. The third method is measuring the electron density in the vicinity of sounding rocket using the fast Langmuir probe and the impedance probe. We analyze the propagation characteristics of radio wave in sporadic E layer appeared from the results of the second method observation. This rocket was equipped with LF/MF band radio receiver for observe the LF/MF band radio waves in rocket flight. Antenna of LF/MF band radio receiver is composed of three axis loop antenna. LF/MF band radio receiver receives three radio waves of 873kHz (JOGB), 666kHz (JOBK), 60kHz (JJY) from the ground. 873kHz and 60kHz radio waves are transmitting from north side, and 666kHz radio waves are transmitting from the east side to the trajectory of the rocket. In the sounding rocket experiment, LF/MF band radio receiver was working properly. We have completed the observation of radio wave intensity. We analyze the observation results using a Doppler shift calculations by frequency analysis. Radio waves received by the sounding rocket include the influences of Doppler shift by polarization and the direction of rocket spin and the magnetic field of the Earth. So received radio waves that are separate into characteristics waves using frequency analysis. Then we calculate the Doppler shift from the separated data. As a result, 873kHz, 666kHz radio waves are reflected by the ionosphere. 60kHz wave was able to

  17. Propagation characteristics of the ionospheric transmission window relating to long wave radio location issues

    NASA Astrophysics Data System (ADS)

    Kossey, Paul A.; Lewis, Edward A.

    1992-11-01

    Most applications of long radio waves (ELF/VLF/LF/MF) are ground-based and exploit the fact that such signals can propagate to great distances via reflections from the lower ionosphere. It is known however that, owing to the influence of the earth's magnetic field, long wave signals can penetrate through the ionosphere as well; at times, the waves penetrate with relatively little loss, depending on ionospheric conditions and other propagation factors. This has prompted investigations of the long wave 'ionospheric transmission window' as part of efforts to assess the feasibility of deploying long wave emitters in space for terrestrial applications and/or for exploiting, in space, signals emanating from ground-based long wave transmitters. This paper outlines results of theoretical and experimental investigations of the ionospheric transmission window over the frequency range from about 100 Hz to 500 kHz, with emphasis on directional issues associated with long wave penetration of the ionosphere.

  18. Solar type III radio bursts modulated by homochromous Alfvén waves

    SciTech Connect

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2013-12-10

    Solar type III radio bursts and their production mechanisms have been intensively studied in both theory and observation and are believed to be the most important signatures of electron acceleration in active regions. Recently, Wu et al. proposed that the electron-cyclotron maser emission (ECME) driven by an energetic electron beam could be responsible for producing type III bursts and pointed out that turbulent Alfvén waves can greatly influence the basic process of ECME via the oscillation of these electrons in the wave fields. This paper investigates effects of homochromous Alfvén waves (HAWs) on ECME driven by electron beams. Our results show that the growth rate of the O-mode wave will be significantly modulated by HAWs. We also discuss possible application to the formation of fine structures in type III bursts, such as so-called solar type IIIb radio bursts.

  19. Research to Operations of Ionospheric Scintillation Detection and Forecasting

    NASA Astrophysics Data System (ADS)

    Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.

    Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of

  20. Radio Wave Generation by a Collision or Contact between Various Materials

    NASA Astrophysics Data System (ADS)

    Takano, T.; Hanawa, R.; Saegusa, K.; Ikeda, H.

    2014-12-01

    In fracture of rock, radio wave emission was found experimentally [1]. This phenomenon could be used to detect a rock fracture during an earthquake or a volcanic activity [2]. The cause of the radio wave is expected to be micro-discharges, which are generated by an inhomogeneous potential distribution around micro-cracks. In order to better understand the phenomena and clarify the cause of radio wave emission, we carried out experiments to detect the emission in the cases of a collision or contact between various materials. We used receiving systems with great sensitivities and sufficient frequency bandwidths at 1 MHz-, 300 MHz-, 2 GHz-, and 18 GHz-bands. The specimen materials are as follows: Steel (2) Brass (3) Copper (4)Small coin (5)Celluloid. We obtained the following results: The signal was detected for the specimen of (1) to (4), but not for (5). The signal is composed of intermittent spikes which include waves with a frequency close to the center frequency of each frequency band. The power is strongest at the lower frequencies among all frequency bands. The more details will be given in the presentation. The origin of radio wave emission from the metal is supposed to be discharges between materials in these experiments. It is surprising that even a small coin can generate a significant amount of radio wave. Accordingly, it is inferred that all amount of charges are discharged through a conductive metal. On the other hand, celluloid did not generate radio wave, though the specimen was sufficiently charged by brushing. It is inferred that a quite localized charge was discharged but the remaining charges were blocked due to poor conductivity. Extending this hypothesis, large-scale contact should have occurred between broken fragments for the radio wave generation in the aforementioned rock fracture experiments. Turbulence of the fragments is a candidate for the explanation. [1] K. Maki et al., "An experimental study of microwave emission from compression

  1. Results of refraction-angle measurement of radio waves in the Venus atmosphere on the basis of bistatic radar data

    NASA Astrophysics Data System (ADS)

    Salimzyanov, R. R.; Pavel'Ev, D. A.

    1993-08-01

    Improved measurements of refraction in the Venus atmosphere using bistatic radar data have been obtained. To describe the refraction effects, a theoretical model is developed that makes it possible to determine the parameters for calculating radio communication lines in the Venus troposphere from the height dependence of the refractive index. Expressions are obtained relating the phase path length of radio waves and the integral absorption of radio waves in the atmosphere to the parameters of the theoretical model.

  2. Dust Detection Using Radio and Plasma Wave Instruments in the Solar System

    NASA Astrophysics Data System (ADS)

    Ye, S.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, S.; Srama, R.; Grün, E.; Morooka, M. W.; Sakai, S.; Wahlund, J. E.

    2014-12-01

    Nanometer to micrometer sized dust particles pervade our solar system. The origins of these dust particles include asteroid collisions, cometary activity, and geothermal activity of the planetary moons, for example, the water dust cloud ejected from Saturn's moon Enceladus. Radio and plasma wave instruments have been used to detect such dust particles via voltage pulses induced by impacts on the spacecraft body and antennas. The first detection of such dust impacts occurred when Voyager 1 passed through Saturn's ring plane. Since then, dust impacts have been detected by radio and plasma wave instruments on many spacecraft, including ISEE-3, Cassini, and STEREO. In this presentation, we review the detection of dust particles in the solar system using radio and plasma wave instruments aboard various spacecraft since the Voyager era. We also show characteristics of the dust particles derived from recent observations by Cassini RPWS in Saturn's magnetosphere. The dust size distribution and density are consistent with those measured by the conventional dust detectors. A new method of measuring the electron density inside the Enceladus plume based on plasma oscillations observed after dust impacts will also be discussed. The dust measurement by radio and plasma wave instruments complements that by conventional dust detectors and provide important information about the spatial distribution of dust particles due to less pointing constraints and the larger detection area.

  3. A Simple Demonstration for Exploring the Radio Waves Generated by a Mobile Phone

    ERIC Educational Resources Information Center

    Hare, Jonathan

    2010-01-01

    Described is a simple low cost home-made device that converts the radio wave energy from a mobile phone signal into electricity for lighting an LED. No battery or complex circuitry is required. The device can form the basis of a range of interesting experiments on the physics and technology of mobile phones. (Contains 5 figures.)

  4. Forecasting characteristics of propagation of decameter radio waves using the global ionosphere and plasmasphere model

    NASA Astrophysics Data System (ADS)

    Ponomarchuk, Sergey; Kotovich, Galina; Romanova, Elena; Tashchilin, Anatoliy

    2015-09-01

    We present the results of forecasting maximum usable frequencies (MUF) on middle-latitude paths on the basis of complex algorithm including modules of the ionosphere and plasmasphere global model (IPGM) and the model of radio wave propagation. The computation of propagation characteristics for decameter radio waves is carried out within the framework of normal wave technique. IPGM developed in ISTP SB RAS enables to compute electron concentration profiles and effective frequency of collisions using minimum number of input data and taking into account physical processes in the Earth's upper atmosphere. To estimate the efficiency of using IPGM in long-term forecast of radio wave propagation we computed MUF for radio communication in various heliogeophysical conditions. To obtain precision characteristics of MUF forecast we used experimental data of oblique sounding on Magadan-Irkutsk, Khabarovsk-Irkutsk, Norilsk-Irkutsk paths. The paths are equipped with modern ionosphere diagnostic hardware for oblique sounding by continuous chirp signal. We also compared results of MUF forecast using IPGM with computations carried out according IRI model.

  5. Radio and plasma wave observations at Saturn from Cassini's approach and first orbit.

    PubMed

    Gurnett, D A; Kurth, W S; Hospodarsky, G B; Persoon, A M; Averkamp, T F; Cecconi, B; Lecacheux, A; Zarka, P; Canu, P; Cornilleau-Wehrlin, N; Galopeau, P; Roux, A; Harvey, C; Louarn, P; Bostrom, R; Gustafsson, G; Wahlund, J-E; Desch, M D; Farrell, W M; Kaiser, M L; Goetz, K; Kellogg, P J; Fischer, G; Ladreiter, H-P; Rucker, H; Alleyne, H; Pedersen, A

    2005-02-25

    We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 +/- 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings. PMID:15604362

  6. Radio wave emitted by an extensive air showers in 10KHz to 1MHz region

    NASA Technical Reports Server (NTRS)

    Nichimura, J.

    1985-01-01

    The importance of radio waves in a frequency range of less than 1MHz in an EAS shower is discussed. Estimates of radio intensities at 10KHz, 100KHz and 1MHz in EAS showers made on the basis of the Kahn-Lerche theory. Negative charge excess in a shower is the main source of low frequency radio emission, in spite of the importance of the contribution of transverse current in the geomagnetic field in a higher frequency range. An estimate is also made for radio intensity produced when the shower hits the ground. The contribution of this process seems to be important at a large distance, i.e., beyond 1km from the shower axis.

  7. Radio and Plasma Wave Observations at Saturn from Cassini's Approach and First Orbit

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Haspodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Cecconi, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.

    2005-01-01

    We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 k 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings.

  8. Radio wave propagation experiments to probe the ionosphere

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.

    1972-01-01

    Ionospheric bias corrections associated with radio tracking of spacecraft depend on the following measuring techniques for integrated electron content: (1) Faraday rotation measurements from an earth synchronous satellite; (2) ranging measurements at two frequencies; and (3) group and phase velocity measurements obtained from tracking data. The extraction of the integrated electron content directly from tracking data is achieved by comparison of range-rate measurements based on Doppler shift with differentiated range measurements based on tone delay. This method is most desirable because the measured corrections pertain directly to the spacecraft whose orbit is being determined and can be used in near earth as well as deep space tracking data.

  9. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain

    NASA Astrophysics Data System (ADS)

    Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Zhou, Xiaoxiao; Shi, Yan

    2016-03-01

    In this paper, a reflective metasurface is designed, fabricated, and experimentally demonstrated to generate an orbital angular momentum (OAM) vortex wave in radio frequency domain. Theoretical formula of phase-shift distribution is deduced and used to design the metasurface producing vortex radio waves. The prototype of a practical configuration is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that the vortex waves with different OAM mode numbers can be flexibly generated by using sub-wavelength reflective metasurfaces. The proposed method and metasurface pave a way to generate the OAM vortex waves for radio and microwave wireless communication applications.

  10. Radio-wave emission due to hypervelocity impacts and its correlation with optical observations

    NASA Astrophysics Data System (ADS)

    Takano, T.; Maki, K.; Yamori, A.

    This paper describes the most interesting phenomena of radio-wave emission due to hypervelocity impacts. A projectile of polycarbonate with 1.1 g weight was accelerated by a rail gun to 3.8 km/sec, and hit two targets which are a 2 mm thick aluminum plate upstream and a 45 mm diameter aluminum column downstream, respectively. The projectile first breaks wires to give a triggering signal to a data recorder, then penetrates the aluminum plate, and finally hit the column, The emitted radio-waves propagate through the chamber window, and are received by antennas at each frequency band. The receivers in 22 GHz- and 2 GHz-bands consist of a low noise amplifier, a mixer, a local oscillator and an IF amplifier , respectively. The receiver in 1 MHz-band is a simple RF amplifier. The outputs of all receivers are fed to a data recorder which is actually a high-speed digital oscilloscope with a large amount of memory. The radio-waves were successfully recorded in 22 GHz-band with 500 MHz bandwidth, in 2 GHz-band with 300 MHz bandwidth, and in 1MHz-band. The waveforms in 22 GHz- and 2 GHz-bands coincide well each other, and are composed of two groups of sharp impulses with a separation of about 20 micro seconds. The width of an impulse is less than 2 n sec. which is the resolution limit of the data recorder. We carried out optical observations using an ultra-high speed camera simultaneously through another window of the chamber. The time interval between scenes is 2 micro sec. We can see a faint light of the projectile before the first impact to the plate, and then a brilliant gas exploding backward from the plate and forward to the column. After hitting the column target, the brilliant gas flows to the chamber wall and is reflected back to make a mixture with dark gas in the chamber. Excellent correlation between radio-wave emission and the observed optical phenomena was obtained in the experiment. It is easily conceived that the radio-waves consist of quite a wide frequency

  11. Radio frequency wave experiments on the MST reversed field pinch

    SciTech Connect

    Forest, C. B.; Chattopadhyay, P. K.; Nornberg, M. D.; Prager, S. C.; Thomas, M. A.; Uchimoto, E.; Smirnov, A. P.; Harvey, R. W.; Ram, A. K.

    1999-09-20

    Whether there is a self-consistent path from poor confinement to greatly improved confinement through current profile modification is an issue for future experiments to address if and only if near term experiments can demonstrate: (1) coupling to and the propagation of rf waves in RFP plasmas, (2) efficient current drive, and (3) control of the power deposition which will make it possible to control the current profile. In this paper, modeling results and experimental plans are presented for two rf experiments which have the potential of satisfying these three goals: high-n{sub (parallel} {sub sign)} lower hybrid (LH) waves and electron Bernstein waves (EBWs). (c) 1999 American Institute of Physics.

  12. Reflection of radio waves by sporadic-E layers

    NASA Technical Reports Server (NTRS)

    Miller, K. L.; Smith, L. G.

    1977-01-01

    A full-wave analysis of the reflection coefficient is developed and applied to electron-density profiles of midlatitude sporadic-E layers observed by rocket-borne probes. It is shown that partial reflection from the large electron-density gradients at the upper and lower boundaries of sporadic-E layers does not account for the partial transparency observed by ionosondes.

  13. Inconsistency of Ulysses Millisecond Langmuir Spikes with Wave Collapse in Type 3 Radio Sources

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Recent Ulysses observations of millisecond spikes superposed on broader Langmuir wave packets in type 3 radio sources are compared quantitatively with constraints from the theory of wave collapse. It is found that both the millisecond spikes and the wave packets have fields at least 10 times too small to be consistent with collapse, contrary to previous interpretations in terms of this process. Several alternative explanations are considered and it is argued that the spikes should be interpreted as either non-collapse phenomena or observational artifacts. To the extent the observations are representative, this rules out theories for type 3 bursts at approx. 1 - 4 AU that rely on collapse.

  14. Kilometric radio waves generated along auroral field lines observed by ground facilities - A theoretical model

    NASA Technical Reports Server (NTRS)

    Ziebell, L. F.; Wu, C. S.; Yoon, Peter H.

    1991-01-01

    A theory of generation of radio waves observed by ground-based facilities in the frequency range 150-700 kHz is discussed. This work is a continuation of an earlier discussion (Wu et al., 1989) in which it was proposed that the trapped electrons along the auroral field lines can lead to a cyclotron instability which amplifies the whistler waves observed at ground level. The objective of the present study is to investigate the propagation effect on the wave amplification and to examine whether the proposed mechanism is indeed viable.

  15. NONLINEAR WAVE INTERACTIONS AS EMISSION PROCESS OF TYPE II RADIO BURSTS

    SciTech Connect

    Ganse, Urs; Kilian, Patrick; Spanier, Felix; Vainio, Rami

    2012-06-01

    The emission of fundamental and harmonic frequency radio waves of type II radio bursts are assumed to be products of three-wave interaction processes of beam-excited Langmuir waves. Using a particle-in-cell code, we have performed simulations of the assumed emission region, a coronal mass ejection foreshock with two counterstreaming electron beams. Analysis of wavemodes within the simulation shows self-consistent excitation of beam-driven modes, which yield interaction products at both fundamental and harmonic emission frequencies. Through variation of the beam strength, we have investigated the dependence of energy transfer into electrostatic and electromagnetic modes, confirming the quadratic dependence of electromagnetic emission on electron beam strength.

  16. Mapping Natural and Man-made Radio Interference at the Moon: Wind Waves RAD2 Data

    NASA Astrophysics Data System (ADS)

    MacDowall, R. J.; Hess, R. A.; Kaiser, M. L.; Farrell, W. M.

    2009-12-01

    The lunar surface is frequently identified as a preferred site for large, low-frequency (<50-100 MHz) interferometric radio observatories. Compared to ground-based facilities limited to above 10 MHz by ionospheric absorption, the Moon has essentially no ionosphere. Observations of radio sources at frequencies below 100 kHz would be possible. Compared to a free-flying spacecraft constellation, the lunar surface provides a surface for deploying antennas, after which the antenna metrology is not an issue. Also compared to the spacecraft constellation, the moon offers a “backstop” that can block unwanted radio emissions from the sun or, for a far-side array, from man-made transmitters on Earth as well as terrestrial auroral radio emissions. We present an analysis of the Wind Waves RAD2 radio data set for the frequency range 1-14 MHz. These data, acquired from November 1994 through the present, document the radio bursts and terrestrial emissions observed by Wind along a complex trajectory that included passes very close to the Moon. Thus, we can build a statistical “map” of terrestrial radio emissions as a function of local time of the Moon relative to earth, the inclination of the moon’s orbit, and frequency. These data demonstrate that successful radio observations of cosmological sources from anywhere near Earth will be best accomplished by an observatory on the far-side of the Moon. The data also provide statistics regarding interference from solar radio emissions, including variations as a function of the solar cycle, with any observations requiring high sensitivity.

  17. The seasonal variation of the D region as inferred from propagation characteristics of LF radio waves

    NASA Technical Reports Server (NTRS)

    Ishimine, T.; Ishii, T.; Echizenya, Y.

    1985-01-01

    The propagation data of JG2AS 40 kHz (Japanese Standard Frequency), Loran C 100 kHz radio waves, and meteorological data were analyzed to study the association of propagation characteristics of LF radio waves with the atmospheric circulation in the mesosphere. The monthly averaged electric fields were depicted on the complex plane for typical summer and winter months, June and November. The locus traced out by the electric field vector during daytime is nearly circular. This is because during daytime the amplitude of the sky wave remains nearly constant while its phase changes in accord with the height change of the reflection layer, and thus the electric field vector traces out a circular locus with its center at the tip of the supposed ground wave vector. The locus has a loop during the sunrise or sunset period, which seems to arise from interference of two waves reflected by two different layers. In June the amplitude of the sky wave decreases rapidly before the dawn or increases after the dusk. In November such rapid change is not observed. During nighttime, the sky wave phase changes in such a way as to suggest that the reflection height moves upwards with time before midnight or lowers after midnight in November. In June it changes similarly before midnight, but after midnight it varies erratically. These characteristics are closely related to the structure of the D region, which is clearly shown by simulating the loci traced out by electric fields.

  18. Tropospheric scintillation prediction models for a high elevation angle based on measured data from a tropical region

    NASA Astrophysics Data System (ADS)

    Abdul Rahim, Nadirah Binti; Islam, Md. Rafiqul; J. S., Mandeep; Dao, Hassan; Bashir, Saad Osman

    2013-12-01

    The recent rapid evolution of new satellite services, including VSAT for internet access, LAN interconnection and multimedia applications, has triggered an increasing demand for bandwidth usage by satellite communications. However, these systems are susceptible to propagation effects that become significant as the frequency increases. Scintillation is the rapid signal fluctuation of the amplitude and phase of a radio wave, which is significant in tropical climates. This paper presents the analysis of the tropospheric scintillation data for satellite to Earth links at the Ku-band. Twelve months of data (January-December 2011) were collected and analyzed to evaluate the effect of tropospheric scintillation. Statistics were then further analyzed to inspect the seasonal, worst-month, diurnal and rain-induced scintillation effects. By employing the measured scintillation data, a modification of the Karasawa model for scintillation fades and enhancements is proposed based on data measured in Malaysia.

  19. Radio frequency wave experiments on the MST reversed field pinch

    SciTech Connect

    Forest, C.B.; Chattopadhyay, P.K.; Nornberg, M.D.; Prager, S.C.; Thomas, M.A.; Uchimoto, E.; Smirnov, A.P.; Harvey, R.W.; Ram, A.K.

    1999-04-01

    Experiments, simulations, and theory all indicate that the magnetic fluctuations responsible for the poor confinement in the reversed field pinch (RFP) can be controlled by altering the radial profile of the current density. The magnetic fluctuations in the RFP are due to resistive MHD instabilities caused by current profile peaking; thus confinement in the RFP is ultimately the result of a misalignment between inductively driven current profiles and the stable current profiles characteristic of the Taylor state. If a technique such as rf current drive can be developed to non-inductively sustain a Taylor state (a current profile linearly stable to all tearing modes), the confinement of the RFP and its potential as a reactor concept are likely to increase. Whether there is a self-consistent path from poor confinement to greatly improved confinement through current profile modification is an issue for future experiments to address if and only if near term experiments can demonstrate: (1) coupling to and the propagation of rf waves in RFP plasmas, (2) efficient current drive, and (3) control of the power deposition which will make it possible to control the current profile. In this paper, modeling results and experimental plans are presented for two rf experiments which have the potential of satisfying these three goals: high-n{sub {parallel}} lower hybrid (LH) waves and electron Bernstein waves (EBWs).

  20. Determining the solar wind speed above active regions using remote radio-wave observations

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.; Bougeret, J.-L.

    1983-01-01

    A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.

  1. Ionospheric scintillation modeling for high- and mid-latitude using B-spline technique

    NASA Astrophysics Data System (ADS)

    Priyadarshi, S.

    2015-09-01

    Ionospheric scintillation is a significant component of space-weather studies and serves as an estimate for the level of perturbation in the satellite radio wave signal caused due to small-scale ionospheric irregularities. B-spline functions are used on the GPS ground based data collected during the year 2007-2012 for modeling high- and mid-latitude ionospheric scintillation. Proposed model is for Hornsund, Svalbard and Warsaw, Poland. The input data used in this model were recorded by GSV 4004b receivers. For validation, results of this model are compared with the observation and other existing models. Physical behavior of the ionospheric scintillation during different seasons and geomagnetic conditions are discussed well. Model is found in good coherence with the ionospheric scintillation theory as well as to the accepted scintillation mechanism for high- and mid-latitude.

  2. Evaluation of Coronal Shock Wave Velocities from the II Type Radio Bursts Parameters

    NASA Astrophysics Data System (ADS)

    Galanin, V. V.; Isaeva, E. A.; Kravetz, R. O.

    The work presents the results of research of connection between the coronal shock waves and the parameters of type II (mII) meter-decameter bursts in 25-180 MHz band for 66 solar proton events. The velocities of coronal shock waves for this two cases where determined. In the first case the velocities of the shock waves was evaluated according to the Newkirck model and in the second case - directly from the type II radio burst parameters. The calculated values of shock waves velocity was compared with the same velocity values that is published on NGDC site. The comparative analysis showed that precision of coronal shock waves velocity estimation which gets directly from type II radio bursts parameters was higher than the same one which used the Newkirck model. Research showed that there is exist the sufficiently strong connection between the shock wave velocity and the delay of type II burst intensity maximum on the second harmonica. Correlation coefficient between the studied parameters was equal to ≍ 0.65.

  3. Antenna Construction & Propagation of Radio Waves, 5-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Marine Corps, Washington, DC.

    These military-developed curriculum materials consist of five individualized, self-paced chapters dealing with antenna construction and propagation of radio waves. Covered in the individual lessons are the following topics: basic electricity; antenna transmission-line fundamentals; quarter-wave antennas, half-wave antennas, and associated radio…

  4. Generation and Upper Atmospheric Propagation of Acoustic Gravity Waves according to Numerical Modeling and Radio Tomography

    NASA Astrophysics Data System (ADS)

    Vorontsov, Artem; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Kurbatov, Grigory

    2016-04-01

    The acoustic-gravity waves (AGW) in the upper atmosphere and ionosphere can be generated by a variety of the phenomena in the near-Earth environment and atmosphere as well as by some perturbations of the Earth's ground or ocean surface. For instance, the role of the AGW sources can be played by the earthquakes, explosions, thermal heating, seisches, tsunami waves. We present the examples of AGWs excited by the tsunami waves traveling in the ocean, by seisches, and by ionospheric heating by the high-power radio wave. In the last case, the gravity waves are caused by the pulsed modulation of the heating wave. The AGW propagation in the upper atmosphere induces the variations and irregularities in the electron density distribution of the ionosphere, whose structure can be efficiently reconstructed by the method of the ionospheric radio tomography (RT) based on the data from the global navigational satellite systems (GNSS). The input data for RT diagnostics are composed of the 150/400 MHz radio signals from the low-orbiting (LO) satellites and 1.2-1.5 GHz radio signals from the high-orbiting (HO) satellites with their orbits at ~1000 and ~20000 km above the ground, respectively. These data enable ionospheric imaging on different spatiotemporal scales with different spatiotemporal resolution and coverage, which is suitable, inter alia, for tracking the waves and wave-like features in the ionosphere. In particular, we demonstrate the maps of the ionospheric responses to the tornado at Moore (Oklahoma, USA) of May 20, 2013, which are reconstructed from the HO data. We present the examples of LORT images containing the waves and wavelike disturbances associated with various sources (e.g., auroral precipitation and high-power heating of the ionosphere). We also discuss the results of modeling the AGW generation by the surface and volumetric sources. The millihertz AGW from these sources initiate the ionospheric perturbation with a typical scale of a few hundred km at the

  5. An investigation of methods for improving models of ionospheric plasma-density irregularities and radio-frequency scintillation

    NASA Astrophysics Data System (ADS)

    Secan, James A.; Bussey, Robert M.; Fremouw, Edward J.; Reinleitner, Lee A.

    1993-03-01

    Many modern military systems used for communications, command and control, navigation, and surveillance depend on reliable and relatively noise-free transmission of radiowave signals through the earth's ionosphere. Small-scale irregularities in the ionospheric density can cause severe distortion, known as radiowave scintillation, of both the amplitude and phase of these signals. The WBMOD computer program can be used to estimate these effects on a wide range of systems. The objective of this study is to investigate improvements to the WBMOD model based on extensive data sets covering both the equatorial and high-latitude regimes. This report summarizes the work completed during the first year, which includes construction of the modeling database, development of a new format for the internal representation of the irregularity strength, and development of new models for the diurnal, latitudinal, seasonal, and longitudinal variations in the equatorial region.

  6. Investigation of methods for improving models of ionospheric plasma-density irregularities and radio-frequency scintillation. Technical report

    SciTech Connect

    Secan, J.A.; Bussey, R.M.

    1993-11-01

    Many modern military systems used for communications, command and control, navigation, and surveillance depend on reliable and relatively noise-free transmission of radiowave signals through the earth's ionosphere. Small-scale irregularities in the ionospheric density can cause severe distortion, known as radiowave scintillation, of both the amplitude and phase of these signals. The WBMOD computer program can be used to estimate these effects on a wide range of systems. The objective of this study is to investigate improvements to the WBMOD model based on extensive data sets covering both the equatorial and high-latitude regimes. This report summarizes the work completed during the second year, which include completion of the new models for the equatorial region and initial development of models for the high latitude (auroral and polar cap) region.

  7. Gravitational-wave Constraints on the Progenitors of Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Callister, Thomas; Kanner, Jonah; Weinstein, Alan

    2016-07-01

    The nature of fast radio bursts (FRBs) remains enigmatic. Highly energetic radio pulses of millisecond duration, FRBs are observed with dispersion measures consistent with an extragalactic source. A variety of models have been proposed to explain their origin. One popular class of theorized FRB progenitor is the coalescence of compact binaries composed of neutron stars and/or black holes. Such coalescence events are strong gravitational-wave emitters. We demonstrate that measurements made by the LIGO and Virgo gravitational-wave observatories can be leveraged to severely constrain the validity of FRB binary coalescence models. Existing measurements constrain the binary black hole rate to approximately 5% of the FRB rate, and results from Advanced LIGO’s O1 and O2 observing runs may place similarly strong constraints on the fraction of FRBs due to binary neutron star and neutron star–black hole progenitors.

  8. Auto- and cross-correlation analysis of the QSOs radio wave intensity

    NASA Astrophysics Data System (ADS)

    Demin, S. A.; Panischev, O. Yu; Nefedyev, Yu A.

    2015-12-01

    We discuss here the Flicker-Noise Spectroscopy approach to studying astrophysical systems, for example the radio wave intensity of quasi-stellar object (QSO) 1641+399 and BL Lacertae (BL Lac) 0215+015 in different frequency ranges. The presented method allows to parameterize the study dynamics using a short set of characteristics. The considering sources have a significant differences in manifesting the non-stationary effects, dynamical intermittency and synchronization. The radio wave intensity dynamics of the BL Lac 0215+015 is characterized by well-defined set of natural frequencies, persistent behavior with low effects of non-stationarity and high level of frequency-phase synchronization. For dynamics of the QSO 1641+399 reverse occurs including the asymmetrical structure of cross-correlator. Our findings show that using the flicker-noise spectroscopy approach to studying astrophysical objects allows to carry out the more detail analysis of their behavior and evolution.

  9. An Overview of Observations by the Cassini Radio and Plasma Wave Investigation at Earth

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Hospodarsky, G. B.; Gurnett, D. A.; Kaiser, M. L.; Wahlund, J.-E.; Roux, A.; Canu, P.; Zarka, P.; Tokarev, Y.

    2001-01-01

    On August 18, 1999, the Cassini spacecraft flew by Earth at an altitude of 1186 km on its way to Saturn. Although the flyby was performed exclusively to provide the spacecraft with sufficient velocity to get to Saturn, the radio and plasma wave science (RPWS) instrument, along with several others, was operated to gain valuable calibration data and to validate the operation of a number of capabilities. In addition, an opportunity to study the terrestrial radio and plasma wave environment with a highly capable instrument on a swift fly-through of the magnetosphere was afforded by the encounter. This paper provides an overview of the RPWS observations, at Earth, including the identification of a number of magnetospheric plasma wave modes, an accurate measurement of the plasma density over a significant portion of the trajectory using the natural wave spectrum in addition to a relaxation sounder and Langmuir probe, the detection of natural and human-produced radio emissions, and the validation of the capability to measure the wave normal angle and Poynting flux of whistler-mode chorus emissions. The results include the observation of a double-banded structure at closest' approach including a band of Cerenkov emission bounded by electron plasma and upper hybrid frequencies and an electron cyclotron harmonic band just above the second harmonic of the electron cyclotron frequency. In the near-Earth plasma sheet, evidence for electron phase space holes is observed, similar to those first reported by Geotail in the magnetotail. The wave normal analysis confirms the Polar result that chorus is generated very close to the magnetic equator and propagates to higher latitudes. The integrated power flux of auroral kilometric radiation is also used to identify a series of substorms observed during the outbound passage through the magnetotail.

  10. Detectable radio flares following gravitational waves from mergers of binary neutron stars.

    PubMed

    Nakar, Ehud; Piran, Tsvi

    2011-10-01

    Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves. They can also launch subrelativistic and mildly relativistic outflows and are often assumed to be the sources of short γ-ray bursts. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled. PMID:21964342

  11. Evidence for four- and three-wave interactions in solar type III radio emissions

    NASA Astrophysics Data System (ADS)

    Thejappa, G.; MacDowall, R. J.; Bergamo, M.

    2013-08-01

    The high time resolution observations obtained by the STEREO/WAVES experiment show that in the source regions of solar type III radio bursts, Langmuir waves often occur as intense localized wave packets with short durations of only few ms. One of these wave packets shows that it is a three-dimensional field structure with WLneTe ~ 10-3, where WL is the peak energy density, and ne and Te are the electron density and temperature, respectively. For this wave packet, the conditions of the oscillating two-stream instability (OTSI) and supersonic collapse are satisfied within the error range of determination of main parameters. The density cavity, observed during this wave packet indicates that its depth, width and temporal coincidence are consistent with those of a caviton, generated by the ponderomotive force of the collapsing wave packet. The spectrum of each of the parallel and perpendicular components of the wave packet contains a primary peak at fpe, two secondary peaks at fpe ± fS and a low-frequency enhancement below fS, which, as indicated by the frequency and wave number resonance conditions, and the fast Fourier transform (FFT)-based tricoherence spectral peak at (fpe, fpe, fpe + fS, fpe - fS), are coupled to each other by the OTSI type of four-wave interaction (fpe is the local electron plasma frequency and fS is the frequency of ion sound waves). In addition to the primary peak at fpe, each of these spectra also contains a peak at 2fpe, which as indicated by the frequency and wave number resonance conditions, and the wavelet-based bicoherence spectral peak at (fpe, fpe), appears to correspond to the second harmonic electromagnetic waves generated as a result of coalescence of oppositely propagating sidebands excited by the OTSI. Thus, these observations for

  12. On the determination of gravity wave momentum flux from GPS radio occultation data

    NASA Astrophysics Data System (ADS)

    Faber, A.; Llamedo, P.; Schmidt, T.; de la Torre, A.; Wickert, J.

    2013-11-01

    Global Positioning System (GPS) radio occultation (RO) is a well-established technique for obtaining global gravity wave (GW) information. RO uses GPS signals received by low Earth-orbiting satellites for atmospheric limb sounding. Temperature profiles are derived with high vertical resolution and provide a global coverage under any weather conditions, offering the possibility of global monitoring of the vertical temperature structure and atmospheric wave parameters. The six-satellite constellation COSMIC/FORMOSAT-3 delivers approximately 2000 temperature profiles daily. In this study, we use a method to obtain global distributions of horizontal gravity wave wavelengths, to be applied in the determination of the vertical flux of horizontal momentum transported by gravity waves. Here, a method for the determination of the real horizontal wavelength from three vertical profiles is applied to the COSMIC data. The horizontal and vertical wavelength, the specific potential energy (Ep), and the vertical flux of horizontal momentum (MF) are calculated and their global distribution is discussed.

  13. Experimental comparison between centimeter- and millimeter-wave ultrawideband radio channels

    NASA Astrophysics Data System (ADS)

    Martinez-Ingles, Maria-Teresa; Molina-Garcia-Pardo, Jose-Maria; Rodríguez, José-Víctor; Pascual-García, Juan; Juan-Llácer, Leandro

    2014-06-01

    This paper analyzes radio wave propagation phenomena at two very different frequency bands: 2-10 GHz (centimeter wave) and 57-66 GHz (millimeter wave (mm-W)). The two frequency bands have been measured using the same equipment and under similar propagation conditions, such as path loss, root-mean-square delay spread, maximum excess delay, and Rician K factor, and their respective correlations compared. Obstructed line of sight situations have also been considered by using metal and cardboard obstructions. The statistical distributions, main specular reflections, and decay factors have been found similar for the two bands. However, the measured path loss, correlation in terms of electrical distances, and the K factor are higher for the millimeter-wave frequency band. Indeed, the importance of propagation mechanism changes from one band to the other, which must be considered in the design of future mm-W systems.

  14. Phase Coupling in Langmuir Wave Packets: Evidence for Four Wave Interactions in Solar Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Thejappa, G.; MacDowall, R. J.; Bergamo, M.

    2012-01-01

    The four wave interaction process, known as the oscillating two stream instability (OTSI) is considered as one of the mechanisms responsible for stabilizing the electron beams associated with solar type III radio bursts. It has been reported that (1) an intense localized Langmuir wave packet associated with a type III burst contains the spectral characteristics of the OTSI: (a) a resonant peak at the local electron plasma frequency, f(sub pe), (b) a Stokes peak at a frequency slightly lower than f(sub pe), (c) anti-Stokes peak at a frequency slightly higher than f(sub pe), and (d) a low frequency enhancement below a few hundred Hz, (2) the frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI, and (3) the peak intensity of the wave packet is well above the thresholds for the OTSI as well as spatial collapse of envelope solitons. Here, for the first time, applying the trispectral analysis on this wave packet, we show that the tricoherence, which measures the degree of coherent four-wave coupling amongst the observed spectral components exhibits a peak. This provides an additional evidence for the OTSI and related spatial collapse of Langmuir envelope solitons in type III burst sources.

  15. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    SciTech Connect

    Dhakal, Pashupati Ciovati, Gianluigi Myneni, Ganapati R.

    2015-12-04

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications.

  16. Radio wave refraction caused by artificial disturbances of the ionosphere - A numerical experiment

    NASA Astrophysics Data System (ADS)

    Ivanov, V. B.; Svistunov, K. V.

    The method of trajectory calculations is used to study short-wave propagation in the ionosphere, in the presence of large-scale inhomogeneities, due to plasma heating by means of high-power transmissions. It is shown that the refraction caused by the artificial disturbances can result in variations of the radio path distances, the occurrence of ricochet trajectories, and the focusing and defocusing of the radiation.

  17. Focus Adjustment System of Laser Probe for Radio Frequency Surface and Bulk Acoustic Wave Devices

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Kashiwa, Keisuke; Hashimoto, Ken-ya; Omori, Tatsuya; Yamaguchi, Masatsune; Kasai, Naoki

    2009-10-01

    In this paper, we describe a focus adjustment system designed especially for a fast-mechanical-scanning laser probe for radio-frequency surface and bulk acoustic wave devices. When high spatial resolution is necessary for the observation, one needs an objective lens of large magnifying power with extremely shallow focal depth. Then, a small inclination of a measurement device may cause severe defocus resulting in blurred images. We installed the focus adjustment system in the laser probe, and showed that even with inclination, high-quality information of the wave field can be acquired without reducing the scanning speed.

  18. A Minimal Radio and Plasma Wave Investigation For a Mercury Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    2001-01-01

    The primary thrust of the effort at The University of Iowa for the definition of an orbiter mission to Mercury is a minimum viable radio and plasma wave investigation. While it is simple to add sensors and capability to any payload, the challenge is to do reasonable science within limited resources; and viable missions to Mercury are especially limited in payload mass. For a wave investigation, this is a serious concern, as the sensor mass often makes up a significant fraction of the instrumentation mass.

  19. Search for non-thermal radio emission from Eta Carina's outer blast wave with ATCA

    NASA Astrophysics Data System (ADS)

    Ohm, Stefan; Urquhart, James; Skilton, Joanna Lucy; Hinton, Jim; Domainko, Wilfried

    2010-10-01

    Non-thermal hard X-ray and high-energy (HE; 1 MeV < E < 100 GeV) gamma-ray emission in the direction of Eta Carina has been recently detected using the INTEGRAL, AGILE and Fermi satellites. This emission can be either interpreted in the framework of particle acceleration in the colliding wind region between the two massive stars or in the very fast moving blast wave which originates in the historical 1843 "Great Eruption". The detection of a radio shell at the location of the shock would support the latter scenario and confirm Eta Carina as prime example of a new source type, namely, an LBV star whose massive ejecta accelerates electrons to non-thermal energies. While Fermi and INTEGRAL do not provide sufficient angular resolution to resolve the blast wave, high resolution radio observations using ATCA will be able to test non-thermal radio emission from this acceleration site. The current sensitivity of ATCA is such that a relatively modest observation time of 12 hours will be sufficient to image the synchrotron emission from the blast region down to magnetic field strengths well below typical ISM values and hence prove or reject our blast-wave hypothesis for the high energy emission.

  20. Influence of tropical F region in ionosphere on propagation of short radio waves

    NASA Astrophysics Data System (ADS)

    Kolomiytsev, O. P.; Savchenko, P. P.

    1985-05-01

    Tropical ionospheric waveguides in the presence of stratification of the electron concentration maximum were studied. Under these conditions a specific form of vertical electron concentration profile is formed which to a great extent determines the nature and conditions of propagation of short radio waves in the low latitudes. The phase trajectories were computed for a spherically stratified ionosphere. Three approaches for description of the ionospheric waveguide were used: comparative, temporal, latitudinal. Examples of computations are given which show that in a wide spatial-temporal range in the tropical ionosphere there is an additional ionospheric waveguide in which radio waves can be propagated along ricochetting trajectories. At identical time there can be three types of phases trajectories or three types of adjacent channels, each of which is characterized by a definite working frequency and definite conditions for the propagation of radio waves in it. The computations presented give a qualitative representation of the influence of stratification of the electron concentration on the formation, dynamics and degeneration of the additional ionospheric waveguides in the tropical latitudes.

  1. Fokker-Planck description of the scattering of radio frequency waves at the plasma edge

    SciTech Connect

    Hizanidis, Kyriakos; Kominis, Yannis; Tsironis, Christos; Ram, Abhay K.

    2010-02-15

    In magnetic fusion devices, radio frequency (rf) waves in the electron cyclotron (EC) and lower hybrid (LH) range of frequencies are being commonly used to modify the plasma current profile. In ITER, EC waves are expected to stabilize the neoclassical tearing mode (NTM) by providing current in the island region [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)]. The appearance of NTMs severely limits the plasma pressure and leads to the degradation of plasma confinement. LH waves could be used in ITER to modify the current profile closer to the edge of the plasma. These rf waves propagate from the excitation structures to the core of the plasma through an edge region, which is characterized by turbulence--in particular, density fluctuations. These fluctuations, in the form of blobs, can modify the propagation properties of the waves by refraction. In this paper, the effect on rf due to randomly distributed blobs in the edge region is studied. The waves are represented as geometric optics rays and the refractive scattering from a distribution of blobs is formulated as a Fokker-Planck equation. The scattering can have two diffusive effects--one in real space and the other in wave vector space. The scattering can modify the trajectory of rays into the plasma and it can affect the wave vector spectrum. The refraction of EC waves, for example, could make them miss the intended target region where the NTMs occur. The broadening of the wave vector spectrum could broaden the wave generated current profile. The Fokker-Planck formalism for diffusion in real space and wave vector space is used to study the effect of density blobs on EC and LH waves in an ITER type of plasma environment. For EC waves the refractive effects become important since the distance of propagation from the edge to the core in ITER is of the order of a meter. The diffusion in wave vector space is small. For LH waves the refractive effects are insignificant but the diffusion in wave vector space is

  2. Effect exerted by a radio wave electromagnetic field on the rheological properties of water and portland-cement systems

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.

    2013-09-01

    We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.

  3. An estimation of the LF-MF high latitude communication radio lines range on surface electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Bashkuev, Yu. B.; Dembelov, M. G.; Angarkhaeva, L. Kh.; Naguslaeva, I. B.; Khaptanov, V. B.; Buyanova, D. G.

    2015-11-01

    The paper is devoted to estimation of the LF-MF high latitude communication radio lines range on surface electromagnetic waves (SEW). A surface impedance of sea areas of water in summer and winter time is considered. An example of calculations of the ground wave field over inhomogeneous impedance paths including stratified inhomogeneous structure "ice-sea" is given. It is shown that due to the emergence of SEW the Arctic radio lines range increases significantly.

  4. Frequency correlation of probe waves backscattered from small scale ionospheric irregularities generated by high power HF radio waves

    NASA Astrophysics Data System (ADS)

    Puchkov, V. A.

    2016-09-01

    Aspect sensitive scattering of multi-frequency probe signals by artificial, magnetic field aligned density irregularities (with transverse size ∼ 1- 10 m) generated in the ionosphere by powerful radio waves is considered. Fluctuations of received signals depending on stochastic properties of the irregularities are calculated. It is shown that in the case of HF probe waves two mechanisms may contribute to the scattered signal fluctuations. The first one is due to the propagation of probe waves in the ionospheric plasma as in a randomly inhomogeneous medium. The second one lies in non-stationary stochastic behavior of irregularities which satisfy the Bragg conditions for the scattering geometry and therefore constitute centers of scattering. In the probe wave frequency band of the order of 10-100 MHz the second mechanism dominates which delivers opportunity to recover some properties of artificial irregularities from received signals. Correlation function of backscattered probe waves with close frequencies is calculated, and it is shown that detailed spatial distribution of irregularities along the scattering vector can be found experimentally from observations of this correlation function.

  5. Radial distribution of compressive waves in the solar corona revealed by Akatsuki radio occultation observations

    SciTech Connect

    Miyamoto, Mayu; Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato; Tokumaru, Munetoshi; Shiota, Daikou; Isobe, Hiroaki; Asai, Ayumi; Häusler, Bernd; Pätzold, Martin; Nabatov, Alexander

    2014-12-10

    Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R{sub S} (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches ∼30% around 5 R{sub S} , implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux on the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below ∼6 R{sub S} and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfvén waves. The compressive waves should eventually dissipate through shock generation to heat the corona.

  6. Estimated errors in a global gravity wave climatology from GPS radio occultation temperature profiles

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Llamedo, P.; Alexander, P.; Schmidt, T.; Wickert, J.

    2010-07-01

    In a previous paper by Schmidt et al. (2008), from CHAllenging Minisatellite Payload (CHAMP) Global Positioning System (GPS) radio occultation data, a comparison was made between a Gaussian filter applied to the "complete" temperature profile and to its "separate" tropospheric and stratospheric height intervals, for gravity wave analyses. It was found that the separate filtering method considerably reduces a wave activity artificial enhancement near the tropopause, presumably due to the isolation process of the wave component. We now propose a simple approach to estimate the uncertainty in the calculation of the mean specific wave potential energy content, due exclusively to the filtering process of vertical temperature profiles, independently of the experimental origin of the data. The approach is developed through a statistical simulation, built up from the superposition of synthetic wave perturbations. These are adjusted by a recent gravity wave (GW) climatology and temperature profiles from reanalyses. A systematic overestimation of the mean specific wave potential energy content is detected and its variability with latitude, altitude, season and averaging height interval is highlighted.

  7. Discovery of millimetre-wave excess emission in radio-quiet active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Baldi, Ranieri D.; Laor, Ari; Horesh, Assaf; Stevens, Jamie; Tzioumis, Tasso

    2015-07-01

    The physical origin of radio emission in radio-quiet active galactic nuclei (RQ AGN) remains unclear, whether it is a downscaled version of the relativistic jets typical of radio-loud (RL) AGN, or whether it originates from the accretion disc. The correlation between 5 GHz and X-ray luminosities of RQ AGN, which follows LR = 10-5LX observed also in stellar coronae, suggests an association of both X-ray and radio sources with the accretion disc corona. Observing RQ AGN at higher (mm-wave) frequencies, where synchrotron self-absorption is diminished, and smaller regions can be probed, is key to exploring this association. Eight RQ AGN, selected based on their high X-ray brightness and variability, were observed at 95 GHz with the CARMA (Combined Array for Research in Millimetre-wave Astronomy) and ATCA (the Australia Telescope Compact Array) telescopes. All targets were detected at the 1-10 mJy level. Emission excess at 95 GHz of up to ×7 is found with respect to archival low-frequency steep spectra, suggesting a compact, optically thick core superimposed on the more extended structures that dominate at low frequencies. Though unresolved, the 95 GHz fluxes imply optically thick source sizes of 10-4-10-3 pc, or ˜10-1000 gravitational radii. The present sources lie tightly along an LR (95 GHz) = 10-4LX (2-10 keV) correlation, analogous to that of stellar coronae and RQ AGN at 5 GHz, while RL AGN are shown to have higher LR/LX ratios. The present observations argue that simultaneous mm-wave and X-ray monitoring of RQ AGN features a promising method for understanding accretion disc coronal emission.

  8. Computational strategy for modeling radio wave propagation in lossy circular waveguides

    SciTech Connect

    Moses, Ronald; Cai, D Michael

    2008-01-01

    The propagation of radio waves in lossy waveguides and tunnels has been researched extensively for many years as can be seen in the detailed book by Wait. The mathematics used to model waveguides for communications is essentially the same as that needed to model radio frequency (RF) propagation in simple tunnels. The presence or lack of conductors inside a waveguide or tunnel is a key driver in the nature of the solutions one will find for a particular application, Delogne. When there are conductors passing through a waveguide or tunnel, the simplest modes of propagation are surface-guided waves following the conductor and typically enabling long-range transmission. A tunnel containing a core conductor can act rather like a coaxial cable, propagating waves at a nearly constant speed, regardless of frequency. Conversely, a tunnel or waveguide without internal conductors is subject to very different wave patterns, resulting in a much more complex propagation analysis. Holloway et al. presented an exhaustive study of RF propagation in circular structures embedded in lossy surroundings. The work of Holloway et al. is the basis for this paper, where we discuss application of their computational techniques and present refinements gleaned from our work on similar problems.

  9. Ion Acoustic Wave Frequencies and Onset Times During Type 3 Solar Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Conflicting interpretations exist for the low-frequency ion acoustic (S) waves often observed by ISEE 3 in association with intense Langmuir (L) waves in the source regions of type III solar radio bursts near 1 AU. Two indirect lines of observational evidence, as well as plasma theory, suggest they are produced by the electrostatic (ES) decay L yields L(PRIME) + S. However, contrary to theoretical predictions, an existing analysis of the wave frequencies instead favors the electromagnetic (EM) decays L yields T + S, where T denotes an EM wave near the plasma frequency. This conflict is addressed here by comparing the observed wave frequencies and onset times with theoretical predictions for the ES and EM decays, calculated using the time-variable electron beam and magnetic field orientation data, rather than the nominal values used previously. Field orientation effects and beam speed variations are shown analytically to produce factor-of-three effects, greater than the difference in wave frequencies predicted for the ES and EM decays; effects of similar magnitude occur in the events analyzed here. The S-wave signals are extracted by hand from a sawtooth noise background, greatly improving the association between S waves and intense L waves. Very good agreement exists between the time-varying predictions for the ES decay and the frequencies of most (but not all) wave bursts. The waves occur only after the ES decay becomes kinematically allowed, which is consistent with the ES decay proceeding and producing most of the observed signals. Good agreement exists between the EM decay's predictions and a significant fraction of the S-wave observations while the EM decay is kinematically allowed. The wave data are not consistent, however, with the EM decay being the dominant nonlinear process. Often the observed waves are sufficiently broadband to overlap simultaneously the frequency ranges predicted for the ES and EM decays. Coupling the dominance of the ES decay with this

  10. Long-term Measurements of Nighttime LF Radio Wave Reflection Heights over Central Europe

    NASA Astrophysics Data System (ADS)

    Jacobi, C.; Kürschner, D.

    2005-05-01

    The nighttime ionospheric absolute reflection height of low-frequency (LF) radio waves at oblique incidence has been measured continuously since late 1982 using 1.8kHz sideband phase comparisons between the sky wave and the ground wave of a commercial 177kHz LF transmitter. The dataset allows the analysis of long-term trends and other regular variations of the reflection height. Beside the clear signal of the 11-year solar cycle a quasi-biennial oscillation is visible in LF reflection heights, which is correlated to the equatorial stratospheric wind field. A long-term decreasing reflection height trend is found, confirming results from other measurements and theoretical estimations. The results can be interpreted as a long-term decrease of the height levels of fixed electron density in the lower E region, reflecting a long-term cooling trend of the middle atmosphere.

  11. Verification of particle simulation of radio frequency waves in fusion plasmas

    SciTech Connect

    Kuley, Animesh; Lin, Z.; Wang, Z. X.; Wessel, F.

    2013-10-15

    Radio frequency (RF) waves can provide heating, current and flow drive, as well as instability control for steady state operations of fusion experiments. A particle simulation model has been developed in this work to provide a first-principles tool for studying the RF nonlinear interactions with plasmas. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation. This model has been implemented in a global gyrokinetic toroidal code using real electron-to-ion mass ratio. To verify the model, linear simulations of ion plasma oscillation, ion Bernstein wave, and lower hybrid wave are carried out in cylindrical geometry and found to agree well with analytic predictions.

  12. High power water load for microwave and millimeter-wave radio frequency sources

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  13. An Experiment Study of the Propagation of Radio Waves in a Scaled Model of Long-Wall Coal Mining Tunnels

    SciTech Connect

    Han, G.R.; Zhang, W.M.; Zhang, Y.P.

    2009-07-01

    A long-wall coal mining tunnel is the most important working area in a coal mine. It has long been realized that radio communications can improve both productivity and safety in this dangerous area. Hence, many attempts to use radio communications in such an environment have been made. Unfortunately, no radio system has satisfactorily provided communication services there, which, we believe, is partially due to poor understanding of the propagation characteristics of radio waves in the long-wall mining tunnel. To have deeper physical insight into the propagation problem, a scaled model of the long-wall mining tunnel was built, and the propagation characteristics of UHF radio waves were measured. The experiment and the measured results are presented and discussed.

  14. Review of Ionospheric Scintillation Models and proposing a Novel Model for Characterizing High Latitude Irregularities

    NASA Astrophysics Data System (ADS)

    Deshpande, K.; Bust, G. S.; Clauer, C. R.

    2013-12-01

    The study of ionospheric scintillations of radio signal involves a problem of electromagnetic (EM) wave propagation in random media and has been a subject of interest for more than last 5 decades. Some of the representative works are by Booker et. al (1950), Ratcliffe (1956), Wernik and Liu (1975), Yeh and Liu (1982), Secan et. al (1995), Costa and Basu (2002), Rino and Carrano (2011). Many of the scintillation models employ a phase screen model introduced by Rino (1979). Beniguel and Hamel (2011) implemented a global ionospheric scintillation model for equatorial regions showing a good agreement of the model with measurements. Implementing these models in the study of ionospheric scintillations of radio signals at high latitudes could be challenging since the path of satellite signal to ground has a variable angle of incidence, in addition to the complicated geometry of magnetic field lines at high latitude and polar regions, and complex magnetosphere-ionosphere coupling mechanisms creating the irregularities. We have developed a high fidelity 3-dimensional Global Positioning System Ionospheric Scintillation Model (3D-GPSISM) which is a full 3D EM wave propagation model to simulate GPS scintillations in high latitude ionosphere. The results from this model can form a basic framework on the use of inverse method to understand the physics of high latitude irregularities using GPS scintillations. We are using our model and an inverse method for selected scintillation observations during 2010 - 2013 from GPS receivers at South Pole, McMurdo and remote stations on Antarctica in conjunction with ancillary observations from SuperDARN, magnetometers, All Sky Imagers etc. We believe that such inverse method can be used to derive certain characteristics of the irregularity causing the scintillations and further achieve an improved understanding of the physics of high latitude irregularities.

  15. Full-wave reflection of lightning long-wave radio pulses from the ionospheric D- region

    NASA Astrophysics Data System (ADS)

    Jacobson, A. R.; Shao, X.; Holzworth, R.

    2008-12-01

    A model is developed for calculating ionospheric reflection of electromagnetic pulses emitted by lightning, with most energy in the long-wave spectral region (f = 3 - 100 kHz). The building-block of the calculation is a differential-equation full-wave solution of Maxwell's Equations for the complex reflection of individual plane waves incident from below, by the anisotropic, dissipative, diffuse dielectric profile of the lower ionosphere. This full-wave solution is then put into a summation over plane waves in an angular Direct Fourier Transform to obtain the reflection properties of curved wavefronts. This step models also the diffraction effects of long- wave ionospheric reflections observed at short or medium range (200 - 500 km). The calculation can be done with any arbitrary but smooth dielectric profile versus altitude. For an initial test, we use the classic D- region exponential profiles of electron density and collision rate given by Wait. With even these simple profiles, our model of full-wave reflection of curved wavefronts captures some of the basic attributes of observed reflected waveforms recorded with the Los Alamos Sferic Array.

  16. Scintillation Monitoring Using Asymmetry Index

    NASA Astrophysics Data System (ADS)

    Shaikh, Muhammad Mubasshir; Mahrous, Ayman; Abdallah, Amr; Notarpietro, Riccardo

    station in Cairo, Egypt (lat= 29.8641 °, long= 31.3172 °). It was observed that the level of asymmetry was significantly increased during the main phase of the geomagnetic storm. This was due to the changes in ionization, which in turn produced large gradients along occulted ray path in the ionosphere. A very good correlation was found between the evaluated ionospheric asymmetry index and the S4 scintillation index. Additionally, the correlation between evaluated ionospheric asymmetry and errors related to the RO inversion products such as peak electron density (delta NmF2) and Vertical TEC (delta VTEC) estimates also showed promising results. This work is carried out under the framework of the TRANSMIT project (Training Research and Applications Network to Support the Mitigation of Ionospheric Threats - www.transmit-ionosphere.net). [1]Basu Sa. and Basu Su., (1981), ‘Equatorial Scintillation - A Review’, Journal of Atmospheric and Solar-Terrestrial Physics, 43, p. 473. [2]Davies K., (1990), ‘Ionospheric Radio’, IEEE Electromagnetic Waves Series 31, Peter Peregrinus Ltd. [3]Spencer, P., Mitchell, C.N., (2007) ‘Imaging of fast moving electron-density structures in the polar cap’, Annals of Geophysics, vol. 50, no. 3, pp. 427-434. [4]Shaikh, M.M., Notarpietro, R., Nava, B., (2013) ‘The Impact of Spherical Symmetry Assumption on Radio Occultation Data Inversion in the Ionosphere: An Assessment Study’, Advances in Space Research, doi: http://dx.doi.org/10.1016/j.asr.2013.10.025.

  17. Involuntary human hand movements due to FM radio waves in a moving van.

    PubMed

    Huttunen, P; Savinainen, A; Hänninen, Osmo; Myllylä, R

    2011-06-01

    Finland TRACT Involuntary movements of hands in a moving van on a public road were studied to clarify the possible role of frequency modulated radio waves on driving. The signals were measured in a direct 2 km test segment of an international road during repeated drives to both directions. Test subjects (n=4) had an ability to sense radio frequency field intensity variations of the environment. They were sitting in a minivan with arm movement detectors in their hands. A potentiometer was used to register the hand movements to a computer which simultaneously collected data on the amplitude of the RF signal of the local FM tower 30 km distance at a frequency of about 100 MHz. Involuntary hand movements of the test subjects correlated with electromagnetic field, i.e. FM radio wave intensity measured. They reacted also on the place of a geomagnetic anomaly crossing the road, which was found on the basis of these recordings and confirmed by the public geological maps of the area.In conclusion, RF irradiation seems to affect the human hand reflexes of sensitive persons in a moving van along a normal public road which may have significance in traffic safety. PMID:21616774

  18. Peculiarities of long-wave radio bursts from solar flares preceding strong geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Prokudina, V. S.; Kuril'Chik, V. N.; Yermolaev, Yu. I.; Kudela, K.; Slivka, M.

    2009-02-01

    Radio bursts in the frequency range of 100-1500 kHz, recorded in 1997-2000 on the INTERBALL-1 satellite during the solar flares preceding the strong geomagnetic storms with D st < -100 nT, are analyzed in this paper. The observed long-wave III-type radio bursts of solar origin at frequencies of 1460 and 780 kHz were characterized by large values of the flux S f = 10-15 -10-17 W/m2 Hz and duration longer than 10 min. The rapid frequency drift of a modulated radio burst continued up to a frequency of 250 kHz, which testified that the exciting agent (a beam of energetic electrons) propagated from the Sun to the Earth. All such flares were characterized by the appearance of halo coronal mass ejections, observed by the LASCO/ SOHO, and by the presence of a southward Bz-component of the IMF, measured on the ACE and WIND spacecraft. In addition, shortly after radio bursts, the INTERBALL-1 satellite has recorded the fluxes of energetic electrons with E > 40 keV.

  19. Estimation of electron density profile in ionospheric D and lower E region by Rocket observation and Full wave analysis of LF and MF radio waves

    NASA Astrophysics Data System (ADS)

    Ashihara, Y.; Ishisaka, K.; Okada, T.; Miyake, T.; Murayama, Y.; Nagano, I.

    Electrons in ionospheric D region are closely related to neutral dynamic meteorology and chemistry including such as hydrated ion and NOx though the electron density is very small about ten -- several thousand cc Therefore it has the possibility to find a new physical knowledge in mesosphere and lower ionosphere Radio wave propagation characteristics in ionospheric D and lower E region are affected by an electron density profile As a inverse problem the electron density profile can be estimated by radio wave propagation characteristics measured by a sounding rocket S-310-33 sounding rocket was launched at Uchinoura Space Center USC at 0 30 a m LT on January 18 2004 We observed magnetic field intensities of two radio waves transmitted from Kanoya air base 238kHz and NHK Kumamoto 2nd ch 873kHz by using radio wave receivers onboarded the rocket Both of the magnetic field intensities were absorbed suddenly at 89km altitude The propagation characteristics in the ionosphere are calculated by using Full wave method It needs the electron density profile previously to calculate the propagation characteristics by Full wave method The electron density profile is estimated by according the radio wave propagation characteristics calculated by Full wave analysis with the observed one This estimation technique is called radio wave absorption method We found the thin ionospheric layer of about 1km at the altitude of 89km The electron density in this region is 2 6 times10 3 cc The electron density compared with one at 88km it was large number

  20. Scattering of radio frequency waves by cylindrical density filaments in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Ram, Abhay K.; Hizanidis, Kyriakos

    2016-02-01

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on the properties of RF waves has not been quantified experimentally, it is of interest to carry out a theoretical study to determine if fluctuations can affect the propagation characteristics of RF waves. Usually, the difference between the plasma density inside the filament and the background plasma density is sizable, the ratio of the density difference to the background density being of order one. Generally, this precludes the use of geometrical optics in determining the effect of fluctuations, since the relevant ratio has to be much less than one, typically, of the order of 10% or less. In this paper, a full-wave, analytical model is developed for the scattering of a RF plane wave by a cylindrical plasma filament. It is assumed that the plasma inside and outside the filament is cold and uniform and that the major axis of the filament is aligned along the toroidal magnetic field. The ratio of the density inside the filament to the density of the background plasma is not restricted. The theoretical framework applies to the scattering of any cold plasma wave. In order to satisfy the boundary conditions at the interface between the filament and the background plasma, the electromagnetic fields inside and outside the filament need to have the same k∥ , the wave vector parallel to the ambient magnetic field, as the incident plane wave. Consequently, in contrast to the scattering of a RF wave by a spherical blob [Ram et al., Phys. Plasmas 20, 056110-1-056110-10 (2013)], the scattering by a field-aligned filament does not broaden the k∥ spectrum. However, the filament induces side-scattering leading to surface

  1. HF Radio Wave Propagation in the Ionosphere Observed with the ePOP RRI (Radio Receiver Instrument) -- SuperDARN Experiment

    NASA Astrophysics Data System (ADS)

    Hussey, G. C.; Gillies, R. G.; Ridley, C. G.; Yau, A. W.; McWilliams, K. A.; Sofko, G. J.

    2014-12-01

    The Radio Receiver Instrument (RRI) on the enhanced Polar Outflow Probe (ePOP) scientific payload of the recently launched CSA (Canadian Space Agency) CASSIOPE (Cascade Demonstrator Small-Sat and Ionospheric Polar Explorer) satellite mission and the Super Dual Auroral Radar Network (SuperDARN) of HF radars have successfully executed a number of experiments since the launch of ePOP in late September, 2013. This presentation investigates the propagation delays and timing associated with HF radio waves transversing the plasma in the terrestrial ionosphere. Both the relative and absolute timing of the co-ordinated SuperDARN-RRI experiments will be presented. This knowledge is essential for interpreting HF radio wave propagation effects such as range accuracy, mode-splitting and timing, Doppler shift, and delayed 'echo' signatures, for example.

  2. Beat-type Langmuir wave emissions associated with a type III solar radio burst: Evidence of parametric decay

    NASA Technical Reports Server (NTRS)

    Hospodarsky, G. B.; Gurnett, D. A.

    1995-01-01

    Recent measurements from the plasma wave instrument on the Galileo spacecraft have shown that Langmuir waves observed in conjunction with a type III solar radio burst contain many beat-type waveforms, with beat frequencies ranging from about 150 to 650 Hz. Strong evidence exists that the beat pattern is produced by two closely spaced narrowband components. The most likely candidates for these two waves are a beam-generated Langmuir wave and an oppositely propagating Langmuir wave produced by parametric decay. In the parametric decay process, nonlinear interactions cause the beam-driven Langmuir wave to decay into a Langmuir wave and a low-frequency ion sound wave. Comparisons of the observed beat frequency are in good agreement with theoretical predictions for a three-wave parametric decay process. Weak low-frequency emissions are also sometimes observed at the predicted frequency of the ion sound wave.

  3. Review of radio wave for power transmission in medical applications with safety

    NASA Astrophysics Data System (ADS)

    Day, John; Geddis, Demetris; Kim, Jaehwan; Choi, Sang H.; Yoon, Hargsoon; Song, Kyo D.

    2015-04-01

    The integration of biosensors with radio frequency (RF) wireless power transmission devices is becoming popular, but there are challenges for implantable devices in medical applications. Integration and at the same time miniaturization of medical devices in a single embodiment are not trivial. The research reported herein, seeks to review possible effects of RF signals ranging from 900 MHz to 100 GHz on the human tissues and environment. Preliminary evaluation shows that radio waves selected for test have substantial influence on human tissues based on their dielectric properties. In the advancement of RF based biosensors, it is imperative to set up necessary guidelines that specify how to use RF power safely. In this paper, the dielectric properties of various human tissues will be used for estimation of influence within the selected RF frequency ranges.

  4. Search for transient gravitational waves in coincidence with short-duration radio transients during 2007-2013

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stiles, D.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Archibald, A. M.; Banaszak, S.; Berndsen, A.; Boyles, J.; Cardoso, R. F.; Chawla, P.; Cherry, A.; Dartez, L. P.; Day, D.; Epstein, C. R.; Ford, A. J.; Flanigan, J.; Garcia, A.; Hessels, J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Keane, E. F.; Kondratiev, V. I.; Kramer, M.; Leake, S.; Lorimer, D.; Lunsford, G.; Lynch, R. S.; Martinez, J. G.; Mata, A.; McLaughlin, M. A.; McPhee, C. A.; Penucci, T.; Ransom, S.; Roberts, M. S. E.; Rohr, M. D. W.; Stairs, I. H.; Stovall, K.; van Leeuwen, J.; Walker, A. N.; Wells, B. L.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO, Virgo, and GEO interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include starquakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.

  5. Significantly high wave trains in cosmic rays and solar radio flux

    NASA Astrophysics Data System (ADS)

    Mishra, Rajesh Kumar; Agarwal, Rekha

    2016-07-01

    Magnetic field of the Sun disturbs the propagation of cosmic rays during their propagation through the Heliosphere, and introduces variations on time scales that range from hours to millennia. Changes in the heliosphere arising from fluctuations in the Sun's magnetic field mean that galactic cosmic rays are less able to reach the Earth when the Sun is more active so the cosmic ray flux is inversely related to solar activity. In the present work studies has been carried on the occurrence of a large number high amplitude wave train events in cosmic ray intensity and to identify a possible dependence on 10.7-cm solar radio flux (solar activity) using the hourly cosmic ray neutron monitor data for two different ground based neutron monitors. The phase for both high amplitude events as well as for all days is found to significantly deviate towards an earlier hour as compared to the corotational/azimuthal direction. The amplitude of first harmonic and 10.7-cm solar radio flux significantly deviates and reaches to its peak and phase remains in the corotational direction during the years close to solar activity maximum for these high amplitude events. The occurrence of high amplitude wave train events is dominant during solar activity minimum as well as maximum years. The amplitude as well as phase of the first harmonic of cosmic ray intensity during high amplitude events shows significant correlation with solar activity. However, the frequency of occurrence of high amplitude events shows a very nominal dependence on solar activity. Keywords: high amplitude wave trains, cosmic ray, solar activity, 10.7-cm solar radio flux, magnetic field.

  6. Radio Wave Propagation for Communication on and around Mars. Part 1; Highlights: Propagation Through Mars Environment

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser

    1999-01-01

    We recommend to use the dayside Martian ionosphere as a reflector for global communication, because the dayside ionosphere has stable density peak and usable critic frequency. This is very crucial for the future Mars ground to around communication. The dayside ionosphere has been well modeled as a Chapman layer. We suggest to perform the Martian nightside ionospheric modeling study. Because the nightside ionosphere has very little measurements available, we propose to drop a digital ionosond instrument into the Mars surface for data collection. Even though the Martian tropospheric radio refractivity has small value, it still can cause the ray bending and multipath effects. We recommend to perform an accurate calculation on excess phase and group delays (range and time delays). Other effects, such as range rate errors, appearance angle deviation, defocusing loss on Mars, etc. are also needed to be estimated. Ice depolarization effects due to Martian clouds on radio waves is unknown yet, which is expected to be small, because lower optical depth and thinner layer of cloud: Total Martian atmospheric gaseous attenuation is expected to be less than 1 dB on microwaves band, because the Martian atmosphere has very low concentration in uncondensed H2O and O2. An accurate calculation for zenith opacity requires the information about scale heights of H2O and O2 distribution. An accurate water vapor altitude profile at Mars is not available yet. Under the normal condition, CO2 and N2 gases do not have electric or magnetic dipoles and do not absorb electromagnetic energy from the waves. However, they may generate the dipoles through a collision and interact with waves under a high density condition and absorb electromagnetic waves in the infrared and visible band. Dust storm is most dominant factor to the radio wave attenuation. Large Martian dust storm can cause at least 3 dB or higher loss to Ka band wave. For a normal dust storm, the attenuation is about 1 dB. The

  7. Gravity waves above Andes detected from GPS radio occultation temperature profiles: Mountain forcing?

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Alexander, P.

    2005-09-01

    A significant wave activity in the upper troposphere and lower stratosphere at midlatitudes (30-40S) above the Andes Range was recently detected from Global Positioning System Radio Occultation (GPS RO) temperature profiles, retrieved from SAC-C (Satélite de Aplicaciones Cientficas-C) and CHAMP (CHAllenging Minisatellite Payload) satellites. Previously, large amplitude, long vertical wavelength structures have been reported in this region, as detected from other limb-sounding devices and have been identified as mountain waves (MWs). The capability of GPS RO observations to detect typical MWs with horizontal wavelengths shorter than 150 km, as well as the proper association of the observed wave activity to mountain forcing is put in doubt. Other three possible sources are discussed. In particular, the generation of inertio-gravity waves by geostrophic adjustment near to a permanent jet situated above the mountains, may constitute another important mechanism in this region. These waves may possess longer horizontal and perhaps shorter vertical wavelengths than those typically expected in MWs and could be more easily detected from limb-sounding profiles. The ``jet'' mechanism will be discussed in a second paper.

  8. Irregularities in ionospheric plasma clouds: their evolution and effect on radio communication. Technical report

    SciTech Connect

    Vesecky, J.F.; Chamberlain, J.W.; Cornwall, J.M.; Hammer, D.A.; Perkins, F.W.

    1980-09-01

    Both satellite radio communications, which travel through the Earth's ionosphere, and high frequency (HF) sky wave circuits, which use the ionosphere as a refracting medium, can be strongly affected by radio wave scintillation. High altitude nuclear explosions cause scintillation (by strongly disturbing the ionosphere) and thus severely degrade satellite radio communications over a large region. Since further atmospheric nuclear tests are banned, a thorough understanding of the physics involved in both the disturbed ionosphere and its interaction with radio waves is necessary in order to design radio communications systems which will operate satisfactorily in a nuclear environment. During the 1980 JASON Summer Study we addressed some aspects of the evolution of ionospheric irregularities following a high altitude nuclear explosion--the radio wave propagation theory being apparently well understood for the satellite link case. In particular, we have worked on irregularity evolution at late times (approx. hours) after an explosion and the impact of early time irregularity structure on late time evolution. We also raise the question of scintillation effects on HF sky wave communications.

  9. Monitoring, mapping and prediction of ionospheric scintillation over the Brazilian equatorial and low latitude regions

    NASA Astrophysics Data System (ADS)

    Becker-Guedes, Fabio; de Paula, E. R.; de Rezende, L. F. C.; Stephany, S.; Kantor, I. J.; Muella, M. T. A. H.; Siqueira, P. M.; Correa, K. S.; Dutra, A. P.; Guedes, C.; Takahashi, H.; Silva, J. D. S.

    It is well known, today, that equatorial ionospheric scintillations affect performance of GPS receivers. Scintillation occurs when a radio wave crosses the ionosphere and suffers distortion in phase and amplitude. It also contributes to loss of lock of GPS receivers, resulting decrease of the number of available satellites and consequently yielding poor satellite geometry. Therefore, the required accuracy and positioning precision for aerial navigation are affected. Among other activities, EMBRACE, the space weather program of INPE, is monitoring and mapping the ionospheric scintillation over the South American equatorial and low latitude region in real time. This mapping is available in the internet by means of computer programs that retrieve data from a network of GPS receivers distributed in Brazil. These data are also being used to survey and predict the occurrence of ionospheric scintillation through data mining techniques.

  10. High Power Radio Wave Interactions within the D-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Moore, R. C.

    2014-12-01

    This paper highlights the best results obtained during D-region modification experiments performed by the University of Florida at the High-frequency Active Auroral Research Program (HAARP) observatory between 2007 and 2014. Over this period, we have seen a tremendous improvement in ELF/VLF wave generation efficiency. We have identified methods to characterize ambient and modified ionospheric properties and to discern and quantify specific types of interactions. We have demonstrated several important implications of HF cross-modulation effects, including "Doppler Spoofing" on HF radio waves. Throughout this talk, observations are compared with the predictions of an ionospheric HF heating model to provide context and guidance for future D-region modification experiments.

  11. Global gravity wave activity in the tropopause region from CHAMP radio occultation data

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; de la Torre, A.; Wickert, J.

    2008-08-01

    We discuss the global gravity wave (GW) activity expressed by the specific potential energy in the altitude range from 5 km below to 10 km above the tropopause, derived from GPS radio occultation data from CHAMP (2001-2008). The GW analysis is based on vertical detrending of the individual measured temperature profiles by applying a Gaussian filter in two different ways: (i) filtering of the complete temperature profiles and (ii) separate filtering of the profiles for the tropospheric and lower stratospheric parts. The separate filtering method significantly reduces the usually observed wave activity enhancement in the tropopause region which highly depends on the performance of the complete filtering method to reproduce the change in the temperature gradient at the tropopause. We only consider vertical wavelengths less than 10 km. The global mean potential energy in the tropopause region deduced with these different background temperatures will be analyzed, differences will be emphasized and possible error sources of the new method will be considered.

  12. Thin film scintillators

    NASA Astrophysics Data System (ADS)

    McDonald, Warren; McKinney, George; Tzolov, Marian

    2015-03-01

    Scintillating materials convert energy flux (particles or electromagnetic waves) into light with spectral characteristic matching a subsequent light detector. Commercial scintillators such as yttrium aluminum garnet (YAG) and yttrium aluminum perovskite (YAP) are commonly used. These are inefficient at lower energies due to the conductive coating present on their top surface, which is needed to avoid charging. We hypothesize that nano-structured thin film scintillators will outperform the commercial scintillators at low electron energies. We have developed alternative thin film scintillators, zinc tungstate and zinc oxide, which show promise for higher sensitivity to lower energy electrons since they are inherently conductive. Zinc tungstate films exhibit photoluminescence quantum efficiency of 74%. Cathodoluminescence spectroscopy was applied in transmission and reflection geometries. The comparison between the thin films and the YAG and YAP commercial scintillators shows much higher light output from the zinc tungstate and zinc oxide at electron energies less than 5 keV. Our films were integrated in a backscattered electron detector. This detector delivers better images than an identical detector with commercial YAG scintillator at low electron energies. Dr. Nicholas Barbi from PulseTor LLC, Dr. Anura Goonewardene, NSF Grants: #0806660, #1058829, #0923047.

  13. Satellite radio occultation investigations of internal gravity waves in the planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander

    Internal gravity waves (IGWs) modulate the structure and circulation of the Earth’s atmosphere, producing quasi-periodic variations in the wind velocity, temperature and density. Similar effects are anticipated for the Venus and Mars since IGWs are a characteristic of stably stratified atmosphere. In this context, an original method for the determination of IGW parameters from a vertical temperature profile measurement in a planetary atmosphere has been developed [Gubenko et al., 2008, 2011, 2012]. This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, the analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitudes of the wave field and on the linear IGW saturation theory in which these amplitudes are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal wave reaches the shear instability threshold, energy is assumed to be dissipated in such a way that the IGW amplitude is maintained at the instability threshold level as the wave propagates upwards. We have extended the developed technique [Gubenko et al., 2008] in order to reconstruct the complete set of wave characteristics including such important parameters as the wave kinetic and potential energy per unit mass and IGW fluxes of the energy and horizontal momentum [Gubenko et al., 2011]. We propose also an alternative method to estimate the relative amplitudes and to extract IGW parameters from an analysis of perturbations of the Brunt-Vaislala frequency squared [Gubenko et al., 2011]. An application of the developed method to the radio occultation (RO) temperature data has given the possibility to identify the IGWs in the Earth's, Martian and Venusian atmospheres and

  14. Episodes of Ionospheric Disturbances caused by Solar Activity probed using Long Wave Terrestrial Radio Signals

    NASA Astrophysics Data System (ADS)

    Shanmugha Sundaram, GA; Shaik, Manoj

    2016-07-01

    The dynamic spectral record of long wave (LW) radio signals (kHz band) had registered a disturbed condition of the ionosphere region involved with propagation of these signals. The reason for such signatures in the dynamic spectrogram can be accredited to the impact of Solar Energetic Particles (SEP) on the ionosphere along the propagation path of terrestrial long wave radiation, studied using the Multi-Hop propagation model. Points of reflection in the ionosphere directly above specific locations above the Earth where determined. Total Electron Content (TEC) values for such regions were obtained from interpretation of the global positioning system (GPS) data. From a comparisons of such results during periods when the Sun was quiet and active, the magnitude of ionosphere disturbance contributed by the various active solar phenomenae has been determined. The work reported here is based on the impact of Geomagnetic storm (K_{p}=6) on the TEC, that occurred on 16 April 2015. LW radio signals from transmitter locations operated by the United States Navy near Lualualei, Hawaii (Geomagnetic lat 21°25'13.38"}N, Geomagnetic long 158°09'14.35"W) and by France at Rosnay (Geomagnetic lat 46°42'47"N, Geomagnetic long 1°14'39"E) were monitored closely to know the extent of ionospheric impact.

  15. Development of data communication system with ultra high frequency radio wave for implantable artificial hearts.

    PubMed

    Tsujimura, Shinichi; Yamagishi, Hiroto; Sankai, Yoshiyuki

    2009-01-01

    In order to minimize infection risks of patients with artificial hearts, wireless data transmission methods with electromagnetic induction or light have been developed. However, these methods tend to become difficult to transmit data if the external data transmission unit moves from its proper position. To resolve this serious problem, the purpose of this study is to develop a prototype wireless data communication system with ultra high frequency radio wave and confirm its performance. Due to its high-speed communication rate, low power consumption, high tolerance to electromagnetic disturbances, and secure wireless communication, we adopted Bluetooth radio wave technology for our system. The system consists of an internal data transmission unit and an external data transmission unit (53 by 64 by 16 mm, each), and each has a Bluetooth module (radio field intensity: 4 dBm, receiver sensitivity: -80 dBm). The internal unit also has a micro controller with an 8-channel 10-bit A/D converter, and the external unit also has a RS-232C converter. We experimented with the internal unit implanted into pig meat, and carried out data transmission tests to evaluate the performance of this system in tissue thickness of up to 3 mm. As a result, data transfer speeds of about 20 kbps were achieved within the communication distance of 10 m. In conclusion, we confirmed that the system can wirelessly transmit the data from the inside of the body to the outside, and it promises to resolve unstable data transmission due to accidental movements of an external data transmission unit. PMID:19964616

  16. Evaluation of uncertainty in gravity wave potential energy calculations through GPS radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Luna, D.; Alexander, P.; de la Torre, A.

    2013-09-01

    The application of the Global Positioning System (GPS) radio occultation (RO) method to the atmosphere enables the determination of height profiles of temperature, among other variables. From these measurements, gravity wave activity is usually quantified by calculating the potential energy through the integration of the ratio of perturbation and background temperatures between two given altitudes in each profile. The uncertainty in the estimation of wave activity depends on the systematic biases and random errors of the measured temperature, but also on additional factors like the selected vertical integration layer and the separation method between background and perturbation temperatures. In this study, the contributions of different parameters and variables to the uncertainty in the calculation of gravity wave potential energy in the lower stratosphere are investigated and quantified. In particular, a Monte Carlo method is used to evaluate the uncertainty that results from different GPS RO temperature error distributions. In addition, our analysis shows that RO data above 30 km height becomes dubious for gravity waves potential energy calculations.

  17. A new approach to global gravity wave momentum flux determination from GPS radio occultation data

    NASA Astrophysics Data System (ADS)

    Faber, A.; Llamedo, P.; Schmidt, T.; de la Torre, A.; Wickert, J.

    2013-03-01

    GPS Radio Occultation (RO) is a well-established technique for obtaining global gravity wave (GW) information. RO uses GPS signals received aboard low Earth orbiting satellites for atmospheric limb sounding. Temperature profiles are derived with high vertical resolution and provide a global coverage under any weather conditions offering the possibility for global monitoring of the vertical temperature structure and atmospheric wave parameters. The six satellites constellation COSMIC/FORMOSAT-3 delivers approximately 2000 temperature profiles daily. In this study, we use a method to obtain global distributions of horizontal gravity wave wavelengths, to be applied in the determination of the vertical flux of horizontal momentum transported by gravity waves. The horizontal wavenumber is derived by the ratio of the phase shift and the spatial distance between adjacent temperature fluctuation profiles at a given altitude, following the method by Ern et al. (2004). A new method for the determination of the real horizontal wavelength from triads of vertical profiles is presented and applied to the COSMIC data. The horizontal and vertical wavelength, the specific potential energy (Ep) and the vertical flux of horizontal momentum (MF) are calculated and their global distribution is discussed.

  18. Ionospheric disturbances during November 30-December 1, 1988. XI - Abnormal propagations of HF and VHF radio waves

    NASA Astrophysics Data System (ADS)

    Ichinose, Masaru; Kamata, Mitsuhiro

    1992-07-01

    Unusual propagations of HF and VHF radio waves associated with a geomagnetic storm during the period from November 30 to December 1, 1988 are investigated using ionospheric data collected from Japan, China, and Taiwan. The increased field strength of the Japanese frequency standard signals (JJY 2.5 MHz and 5 MHz) which were received at Akita Radio Wave Observatory on the night of November 30 seem to have been caused by increased MUFs and/or scattering due to the disturbed ionosphere. The VHF-TV radio waves propagated from China were received at Kokubunji in Tokyo. One of the most probable mechanisms explaining this unusual propagation of VHF is a one-hop-F2 mode of propagation created by an ionosphere with an anomalously high f0F2. It was found out that these unusual HF and VHF propagations were attributed to unusual ionospheric conditions associated with these geomagnetic disturbances.

  19. GNSS Phase Scintillation and Cycle Slips Occurrence at High Latitudes: Climatology and Forecasting

    NASA Astrophysics Data System (ADS)

    Prikryl, Paul; Jayachandran, Periyadan T.; Chadwick, Richard; Kelly, Todd D.

    2014-05-01

    Space weather impacts the operation of modern technology that relies on Global Navigation Satellite Systems (GNSS). Ionospheric scintillation (rapid fluctuation of radio wave amplitude and phase) degrades GPS positional accuracy and causes cycle slips leading to loss of lock that affects performance of radio communication and navigation systems. At high latitudes, GPS scintillation and total electron content has been monitored by the Canadian High Arctic Ionospheric Network (CHAIN). GPS phase scintillation and cycle slips, as a function of magnetic latitude and local time, occur on the dayside in the ionospheric cusp, in the nightside auroral oval, and in the polar cap. Interplanetary coronal mass ejections and corotating interaction regions on the leading edge of high-speed streams are closely correlated with the occurrence of scintillation at high latitudes. Results of a superposed epoch analysis of time series of phase scintillation and cycle slips occurrence keyed by arrival times of high speed solar wind streams and interplanetary coronal mass ejections are presented. Based on these results, a method of probabilistic forecasting of high-latitude phase scintillation occurrence is proposed.

  20. SDN based millimetre wave radio over fiber (RoF) network

    NASA Astrophysics Data System (ADS)

    Amate, Ahmed; Milosavljevic, Milos; Kourtessis, Pandelis; Robinson, Matthew; Senior, John M.

    2015-01-01

    This paper introduces software-defined, millimeter Wave (mm-Wave) networks with Radio over Fiber (RoF) for the delivery of gigabit connectivity required to develop fifth generation (5G) mobile. This network will enable an effective open access system allowing providers to manage and lease the infrastructure to service providers through unbundling new business models. Exploiting the inherited benefits of RoF, complete base station functionalities are centralized at the edges of the metro and aggregation network, leaving remote radio heads (RRHs) with only tunable filtering and amplification. A Software Defined Network (SDN) Central Controller (SCC) is responsible for managing the resource across several mm-Wave Radio Access Networks (RANs) providing a global view of the several network segments. This ensures flexible resource allocation for reduced overall latency and increased throughput. The SDN based mm-Wave RAN also allows for inter edge node communication. Therefore, certain packets can be routed between different RANs supported by the same edge node, reducing latency. System level simulations of the complete network have shown significant improvement of the overall throughput and SINR for wireless users by providing effective resource allocation and coordination among interfering cells. A new Coordinated Multipoint (CoMP) algorithm exploiting the benefits of the SCC global network view for reduced delay in control message exchange is presented, accounting for a minimum packet delay and limited Channel State Information (CSI) in a Long Term Evolution-Advanced (LTE-A), Cloud RAN (CRAN) configuration. The algorithm does not require detailed CSI feedback from UEs but it rather considers UE location (determined by the eNB) as the required parameter. UE throughput in the target sector is represented using a Cumulative Distributive Function (CDF). The drawn characteristics suggest that there is a significant 60% improvement in UE cell edge throughput following the

  1. Effect of electron-density gradients on propagation of radio waves in the mid-latitude trough. Master's thesis

    SciTech Connect

    Citrone, P.J.

    1991-01-01

    Partial contents of this thesis include: (1) Radio-wave propagation and the mid-latitude trough; (2) Ionospheric measurements; (3) Modification of time-dependent ionospheric model output with latitudinal electron-density profiles from digisonde trough depictions; (4) Ray-tracing simulations to examine ground range; and (5) Effects of three-dimensional gradients in electron density on radio-wave propagation in the trough region. Data is tabulated for geophysical conditions, solar activity level, geomagnetic activity level, conditions for vertical ray refraction to surface, and ray-tracing fixed-input conditions.

  2. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  3. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  4. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  5. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  6. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  7. Direct imaging of radio-frequency modes via traveling wave magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Tonyushkin, A.; Deelchand, D. K.; Van de Moortele, P.-F.; Adriany, G.; Kiruluta, A.

    2016-01-01

    We demonstrate an experimental method for direct 2D and 3D imaging of magnetic radio-frequency (rf) field distribution in metal-dielectric structures based on traveling wave (TW) magnetic resonance imaging (MRI) at ultra-high field (>7 T). The typical apparatus would include an ultra-high field whole body or small bore MRI scanner, waveguide elements filled with MRI active dielectrics with predefined electric and magnetic properties, and TW rf transmit-receive probes. We validated the technique by obtaining TW MR images of the magnetic field distribution of the rf modes of circular waveguide filled with deionized water in a 16.4 T small-bore MRI scanner and compared the MR images with numerical simulations. Our MRI technique opens up a practical non-perturbed way of imaging of previously inaccessible rf field distribution of modes inside various shapes metal waveguides with inserted dielectric objects, including waveguide mode converters and transformers.

  8. Thermal response of the F region ionosphere in artificial modification experiments by HF radio waves

    NASA Technical Reports Server (NTRS)

    Mantas, G. P.; Lahoz, C. H.; Carlson, H. C., Jr.

    1981-01-01

    The thermal response of the nighttime F region ionosphere to local heating by HF radio waves has been observed with the incoherent scatter radar at Arecibo, Puerto Rico. The observations consist of high-resolution space and time variation of the electron temperature as a high-power HF transmitter is switched on and off with a period 240 s. As soon as the HF transmitter is turned on, the electron temperature begins to rise rapidly in a narrow altitude region near 300 km, below the F2 layer peak. The electron temperature perturbation subsequently spreads over a broader altitude region. The observations are compared with the anticipated thermal response of the ionosphere based on numerical solutions of the coupled time-dependent heat conduction equations for the electron and composite ion gases and are found to be in good agreement over the entire altitude region covered by the observations.

  9. Radio-Wave Heating of Iron Oxide Nanoparticles Can Regulate Plasma Glucose in Mice

    PubMed Central

    Stanley, Sarah A.; Gagner, Jennifer E.; Damanpour, Shadi; Yoshida, Mitsukuni; Dordick, Jonathan S.; Friedman, Jeffrey M.

    2013-01-01

    Medical applications of nanotechnology typically focus on drug delivery and biosensors. Here, we combine nanotechnology and bioengineering to demonstrate that nanoparticles can be used to remotely regulate protein production in vivo. We decorated a modified temperature-sensitive channel, TRPV1, with antibody-coated iron oxide nanoparticles that are heated in a low-frequency magnetic field. When local temperature rises, TRPV1 gates calcium to stimulate synthesis and release of bioengineered insulin driven by a Ca2+-sensitive promoter. Studying tumor xenografts expressing the bioengineered insulin gene, we show that exposure to radio waves stimulates insulin release from the tumors and lowers blood glucose in mice. We further show that cells can be engineered to synthesize genetically encoded ferritin nanoparticles and inducibly release insulin. These approaches provide a platform for using nanotechnology to activate cells. PMID:22556257

  10. Blood-brain barrier disruption by continuous-wave radio frequency radiation.

    PubMed

    Sirav, Bahriye; Seyhan, Nesrin

    2009-01-01

    The increasing use of cellular phones and the increasing number of associated base stations are becoming a widespread source of non ionizing electromagnetic radiation. Some biological effects are likely to occur even at low-level EM fields. This study was designed to investigate the effects of 900 and 1,800 MHz Continuous Wave Radio Frequency Radiation (CW RFR) on the permeability of Blood Brain Barrier (BBB) of rats. Results have shown that 20 min RFR exposure of 900 and 1,800 MHz induces an effect and increases the permeability of BBB of male rats. There was no change in female rats. The scientific evidence on RFR safety or harm remains inconclusive. More studies are needed to demonstrate the effects of RFR on the permeability of BBB and the mechanisms of that breakdown. PMID:19811403

  11. Measurements of Antenna Surface for Millimeter-Wave Space Radio Telescope

    NASA Astrophysics Data System (ADS)

    Kamegai, Kazuhisa; Tsuboi, Masato; Doi, Akihiro; Sato, Eiichi

    2011-06-01

    In the construction of a space radio telescope, it is essential to use materials with a low noise factor and high mechanical robustness for the antenna surface. We present the results of measurements of the reflection performance of two candidates for antenna surface materials for use in a radio telescope installed in a new millimeter-wave astronomical satellite, ASTRO-G. To estimate the amount of degradation caused by fluctuations in the thermal environment in the projected orbit of the satellite, a thermal cycle test was carried out for two candidates, namely, copper foil carbon fiber reinforced plastic (CFRP) and aluminum-coated CFRP. At certain points during the thermal cycle test, the reflection loss of the surfaces was measured precisely by using a radiometer in the 41-45 GHz band. In both candidates, cracks appeared on the surface after the thermal cycle test, where the number density of the cracks increased as the thermal cycle progressed. The reflection loss also increased in proportion to the number density of the cracks. Nevertheless, the loss of the copper foil surface met the requirements of ASTRO-G at the end of the equivalent life, whereas that of the aluminum-coated surface exceeded the maximal value in the requirement even before the end of the cycle.

  12. Characteristics of small-scale ionospheric irregularities as deduced from scintillation observations of radio signals from satellites ETS-2 and Polar Bear 4 at Irkutsk

    NASA Astrophysics Data System (ADS)

    Afraimovich, E. L.; Zherebtsov, G. A.; Zvezdin, V. N.; Franke, S. J.

    1994-07-01

    This paper presents some new results on the small-scale inhomogeneous ionospheric structure obtained at a facility for spaced-antenna reception of transionospheric signals from ETS-2 and Polar Bear 4 near Irkutsk (Eastern Siberia, 52 deg N, 104 deg E). A technique based on transferring time spectra of scintillations to spatial spectra using measured horizontal irregularity drift velocities is used to obtain an estimate of the mean spatial spectrum of midlatitude scintillations. Two different methods were used to determine the inclination index of the scintillation spectrum, which was found to be equal to -2, in agreement with the value recently predicted for small-scale F region irregularities generated through mapping of small-scale, turbulent electric fields from the E region to the F region. Drift velocities of the diffraction pattern, and also the altitudes at which ionospheric irregularities are located, agree well with results obtained by other authors for midlatitudes. Using simultaneous measurements for a geostationary satellite and an orbiting satellite, the supposition about the existence of the southern boundary of the scintillation region has been confirmed. Finally, analysis of quasi-periodic (QP) scintillations and simultaneously determined diffraction pattern velocities is used to show that the height of isolated irregularities giving rise to QP scintillations corresponds to the maximum of the ionospheric F2 region.

  13. FDTD analysis of ELF radio waves propagating in the Earth-ionosphere waveguide

    NASA Astrophysics Data System (ADS)

    Marchenko, Volodymyr; Kulak, Andrzej; Mlynarczyk, Janusz

    2015-04-01

    We developed an FDTD model of electromagnetic wave propagation in the Earth-ionosphere cavity. We present the results of FDTD calculations assuming axisymmetric system with the source located at the north pole and with no dependence on azimuthal coordinate. Therefore we reduced the Maxwell equations to 2D spherical system of Maxwell equations. To model the conductivity profile of the Earth-ionosphere waveguide we used two models, namely one- and two-exponential profiles [Mushtak and Williams, 2002]. The day-night asymmetry was introduced by setting different model parameters for the north and south hemispheres. The ground was modeled as a perfect electric conductor. Also the upper boundary for the model was a perfect conductor but it was placed at a high enough altitude to make sure there is no reflection of the waves from this boundary. We obtained the results for the electric and magnetic field components of the propagating wave in the time and frequency domains and for various locations on Earth along the meridian. In the time domain we analyzed the evolution of the electric and magnetic field components of the radio wave generated by lighting for different probe position, the penetration of the ionosphere by the electromagnetic waves and the reflection of the waves on the terminator. In the frequency domain we analyzed the Schumann resonance spectra in different field components for different location in the computational space, the behavior of the Poynting vector and the wave impedance. We also calculated real and imaginary parts of the characteristic electric and magnetic altitudes for the daytime and nighttime ionosphere. The analysis in the frequency domain was performed up to 1 kHz. We compared the results of numerical calculations with our analytical model and found a reasonably good agreement between them. The results can be used in the analysis of global thunderstorm activity based on measurements of Schumann resonance spectra. Acknowledgements. This

  14. Modeling Ionospheric HF/VHF Radio-Wave Absorption due to Solar Energetic Proton Events

    NASA Astrophysics Data System (ADS)

    Sauer, H. H.; Wilkinson, D. C.

    2007-12-01

    Simple, one-parameter, algorithms have been applied to the observed energetic proton flux as provided by the GOES series of satellites to yield estimates of the high latitude HF and VHF radio-wave absorption for both day and night respectively. The twilight response is obtained as a bi-linear function of the solar zenith angle at the observation positions, and the latitude dependence of the absorption region near the edge of the absorbing region (the polar caps) are estimated from extant models of geomagnetic cut-offs and their dependence on geomagnetic activity. The approximate inverse square frequency dependence of ionospheric absorption is used to translate across the HF/VHF range and predictions of the minimum duration of events are determined. Calculations of the polar cap absorption of HF radio waves have been performed for eleven larger Solar Energetic Proton (SEP) events during the period from 1992 through 2002 and the results compared to observations of 30 MHz Riometers operated by the AFGL and located at Thule, Greenland. While discrepancies between the estimated and observed absorption using these procedures occur, especially at low absorption levels, this model has operational value in view of its simplicity and its being the only extant model, to our knowledge, which treats solar-illumination, geomagnetic cutoff variation, and frequency effects, at least to first order. Specimen graphical representations of the north and south polar caps illustrate the output of the model for the peak of the 12 December 2006 solar proton event. Given sufficient interest, improvements to the methodology used here are practicable and could be expected to achieve accuracies to the order of 25% or better.

  15. Radio-Frequency Downstream Plasma Production by Surface-Wave in a Very High-Permittivity Material Discharge Tube

    NASA Astrophysics Data System (ADS)

    Fujiwara, Kazuya; Endo, Masakatsu; Ikeda, Yasushi; Suzuki, Tsutomu; Yanagisawa, Michihiko; Shindo, Haruo

    2005-03-01

    A novel method of radio-frequency surface-wave plasma production is proposed, with a particular interest in use of a very high permittivity material discharge tube. A discharge tube of TiCa-TiMg composite, which has the permittivity of 140, is employed to produce SF6 plasma by the 13.56 MHz radio-frequency power. The axial distribution of optical emission lines of fluorine shows a rapid decay, more than 5 times faster than that in quartz tube. This is because the speed of the surface-wave is reduced in a condition of very high permittivity. It is concluded that the method is innovative in use of radio-frequency power to produce downstream plasma with a very high permittivity discharge tube.

  16. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    SciTech Connect

    Zhao, G. Q.; Chen, L.; Wu, D. J.; Yan, Y. H.

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  17. ASSESSMENT OF THE IMMUNE RESPONSIVENESS OF MICE IRRADIATED WITH CONTINUOUS WAVE OR PULSE-MODULATED 425-MHZ RADIO FREQUENCY RADIATION

    EPA Science Inventory

    Groups of female BALB/C mice were irradiated with 425-MHz radio frequency (RF) radiation either continuous wave (CW) or pulse modulated (PM, 1-ms pulse width, 250 pulses/s). Mice were irradiated in a rectangular strip-transmission line at average forward powers of 78, 17.7, or 5 ...

  18. Fungicidal Effects of Plasma and Radio-Wave Pre-treatments on Seeds of Grain Crops and Legumes

    NASA Astrophysics Data System (ADS)

    Filatova, Irina; Azharonok, Viktor; Shik, Alexander; Antoniuk, Alexandra; Terletskaya, Natalia

    An influence of RF plasma and RF electromagnetic field pre-treatments on level of fungal infection of some important agricultural plants has been studied. It is shown that pre-sowing plasma and radio-wave seeds treatments contribute to their germination enhancement and plant productivity improvement owing to stimulative and fungicidal effect of plasma and RF electromagnetic field irradiation.

  19. Simultaneous excitation of large-scale geomagnetic field fluctuations and plasma density irregularities by powerful radio waves

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kuo, S. P.

    1985-01-01

    The physical mechanism of thermal filamentation instability of radio waves whose frequencies can be as low as in the VLF band and as high as in the SHF band are investigated. This instability can excite large-scale magnetic and plasma density fluctuations simultaneously in the ionosphere and magnetosphere. Relevant experiments are reviewed in terms of this instability and other mechanisms.

  20. Long-term integrated radiophysical studies of the ionosphere, near space, and the propagation of radio waves from space objects

    NASA Technical Reports Server (NTRS)

    Misyura, V. A.

    1974-01-01

    The radiophysical studies reported consist of direct measurements of certain effects induced in the propagation of radio waves from space objects. From measured effects and from data on the motion and position of space objects, physical parameters of the medium and bodies are determined.

  1. Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism?

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Alexander, P.; Llamedo, P.; Menéndez, C.; Schmidt, T.; Wickert, J.

    2006-12-01

    A significant wave activity (WA) in the upper troposphere and lower stratosphere, mainly during winter, was detected at midlatitudes in the southern hemisphere (30-40S) above the Andes Range, from an analysis of Global Positioning System Radio Occultation (GPS RO) temperature profiles retrieved by CHAMP (CHAllenging Minisatellite Payload) and SAC-C (Satélite de Aplicaciones Científicas-C) Low Earth Orbit (LEO) satellites, between May 2001 and February 2006. The possible main gravity wave sources in this region are: i) orographic forcing, ii) geostrophic adjustment and iii) deep convection. The available vertical resolution of GPS RO soundings does not rule out any of these alternatives. Based on satellite imaginary, the WA enhancements cannot be attributed to deep convection events. Inertia-gravity waves (IGWs) could be generated after a geostrophic adjustment process, following a perturbation of the zonal jet situated above the Andes Mountains by mountain waves (MWs). The monthly WA intensity follows the zonal wind velocity strength according to its seasonal variability at jet altitudes. As the GPS-LEO lines of sight are roughly meridionally aligned and the morphology of the Andes at middle latitudes is predominantly north-south, it was possible to detect MWs as well as IGWs from GPS RO temperature profiles. This characteristic does not apply for other mountain range alignments. From the analysis of a numerical simulation at the time and location of a single RO event with very strong WA, two main modes of oscillation with horizontal wavelength around 40 and 200 km were identified. The first one is attributed to a MW and the second one to an IGW.

  2. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide.

    PubMed

    Giles, Kevin; Pringle, Steven D; Worthington, Kenneth R; Little, David; Wildgoose, Jason L; Bateman, Robert H

    2004-01-01

    The use of radio-frequency (RF)-only ion guides for efficient transport of ions through regions of a mass spectrometer where the background gas pressure is relatively high is widespread in present instrumentation. Whilst multiple collisions between ions and the background gas can be beneficial, for example in inducing fragmentation and/or decreasing the spread in ion energies, the resultant reduction of ion axial velocity can be detrimental in modes of operation where a rapidly changing influx of ions to the gas-filled ion guide needs to be reproduced at the exit. In general, the RF-only ion guides presently in use are based on multipole rod sets. Here we report investigations into a new mode of ion propulsion within an RF ion guide based on a stack of ring electrodes. Ion propulsion is produced by superimposing a voltage pulse on the confining RF of an electrode and then moving the pulse to an adjacent electrode and so on along the guide to provide a travelling voltage wave on which the ions can surf. Through appropriate choice of the travelling wave pulse height, velocity and gas pressure it will be shown that the stacked ring ion guide with the travelling wave is effective as a collision cell in a tandem mass spectrometer where fast mass scanning or switching is required, as an ion mobility separator at pressures around 0.2 mbar, as an ion delivery device for enhancement of duty cycle on an orthogonal acceleration time-of-flight (oa-TOF) mass analyser, and as an ion fragmentation device at higher wave velocities. PMID:15386629

  3. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  4. Radio wave propagation in the Martian polar deposits: models and implications for radar sounding.

    NASA Astrophysics Data System (ADS)

    Ilyushin, Ya. A.

    In the present study the propagation of electromagnetic waves in the northern polar ice sheet of Mars is considered Several different scenarios of the structure of the polar deposits and composition of the ice compatible with previously published observational data are proposed Both analytical and numerical simulations of ultra wide band chirp radar pulse propagating through the cap are performed Approximate approach based on the non-coherent theory of the radiative transfer in layered media has been applied to the problem of the propagation of radar pulses in the polar caps Both 1D and 2D and 3D geometry applicable to the orbital and landed radar instruments are studied The side clutter and phase distortions of the signal are also addressed analyzed The possibilities of retrieval of the geological information depending on transparency of the polar cap for radio waves are discussed If the polar cap is relatively transparent the echo from the base of the sheet should be clearly distinctive and interpretable in terms of basal topography of the cap In the case of moderate optical thickness coherent basal echo is corrupted by strong multiple scattering in the layered structure However some conclusions about basal conditions could be made from the signals for example the subglacial lakes may be detected Finally optically thick polar caps prevent any sounding of the base so only the medium itself can be characterized by GPR measurements e g the impurity content in the ice can be found Ilyushin Y A R Seu

  5. Study of Temperature Wave Propagation in Superfluid Helium Focusing on Radio-Frequency Cavity Cooling

    NASA Astrophysics Data System (ADS)

    Koettig, T.; Peters, B. J.; Avellino, S.; Junginger, T.; Bremer, J.

    2015-12-01

    Oscillating Superleak Transducers (OSTs) can be used to localize quenches of superconducting radio-frequency cavities. Local hot spots at the cavity surface initiate temperature waves in the surrounding superfluid helium that acts as cooling fluid at typical temperatures in the range of 1.6 K to 2 K. The temperature wave is characterised by the properties of superfluid helium such as the second sound velocity. For high heat load densities second sound velocities greater than the standard literature values are observed. This fast propagation has been verified in dedicated small scale experiments. Resistors were used to simulate the quench spots under controlled conditions. The three dimensional propagation of second sound is linked to OST signals. The aim of this study is to improve the understanding of the OST signal especially the incident angle dependency. The characterised OSTs are used as a tool for quench localisation on a real size cavity. Their sensitivity as well as the time resolution was proven to be superior to temperature sensors glued to the surface of the cavity.

  6. Radio frequency CD by LH waves in the reversed field experiment

    SciTech Connect

    Bilato, R.; Brambilla, M.

    1999-09-20

    We present a feasibility study for the active control of the poloidal current density profile in the RFX (reversed field pinch) experiment using radio frequency in the range of lower hybrid waves. The main goal of the rf current drive is to reduce the magnetic fluctuations and the magnetic stochasticity, so as to improve the energy confinement. The compelling constraints of accessibility and damping of the slow waves due to the present and extrapolated RFX plasma parameters are investigated; they have been used to fix the frequency ({approx_equal}1.3 GHz) and the best n{sub parallel} values ({approx_equal}8), and therefore the antenna size (Grill). A modified version of the FELICE code, which takes into account the strong shear of the magnetic field of the RFP plasmas, has been developed and used to estimate the antenna-plasma coupling: the reflected power for the proposed antenna is found to be less than 30% for a quite wide range of plasma parameters. In order to estimate the current drive profile and efficiency a one dimensional Fokker-Planck code has been used: an additional crucial contribution to the driven current is due to the enhancement of the plasma conductivity as consequence of the suprathermal electron population increase. Although the total estimated CD efficiency is promising, the rf-power required to drive the current necessary to produce a significant reduction of the magnetic fluctuations is found to be in the MW range.

  7. Radio-frequency sheath voltages and slow wave electric field spatial structure

    SciTech Connect

    Colas, Laurent Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan

    2015-12-10

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the RF parallel electric field emitted by Ion Cyclotron (IC) wave launchers, using a simple model of Slow Wave (SW) evanescence coupled with Direct Current (DC) plasma biasing via sheath boundary conditions in a plasma-filled 2-dimensional (parallel, radial) rectangle. Within a “wide sheaths” asymptotic regime, valid for large-amplitude near RF fields, our model becomes partly linear: the sheath oscillating voltage at open field line boundaries is a linear combination of elementary contributions by every source point of the radiated RF field map. These individual contributions are all the more intense as the SW emission point is toroidally nearer to the sheath walls. A limit formula is given for a source infinitely close to the sheaths. The decay of sheath RF voltages with the sheath/source parallel distance is quantified as a function of two characteristic SW evanescence lengths. Decay lengths are smaller than antenna parallel extensions. The sheath RF voltages at an IC antenna side limiter are therefore mainly sensitive to SW emission near this limiter, as recent observations suggest. Toroidal proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-symmetry of the radiated field map. They could also justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  8. Real-time dual-band wireless videos in millimeter-wave radio-over-fiber system

    NASA Astrophysics Data System (ADS)

    Cheng, Lin; Liu, Cheng; Dong, Ze; Wang, Jing; Zhu, Ming; Chang, Gee-Kung

    2013-12-01

    A dual-band converged radio-over-fiber (RoF) access system at 60-GHz and 100-GHz millimeter-wave (mm-wave) is proposed. Real-time end-to-end delivery of two channels of independent high-definition (HD) video services simultaneously carried on 60-GHz and 100-GHz radios is demonstrated for the first time. PRBS data transmission with equivalent data rate and format is also tested to characterize the system performance. The analysis of the spectrum from the beating signal indicates the entire 60-GHz band and the W-band can be retrieved without interference. The real-time HD video display and error-free (BER < 10-9) data transmission demonstrate the feasibility of the proposed wireless access system using converged fiber-optic and mm-wave RoF techniques.

  9. Multi-messenger Astronomy of Gravitational-wave Sources with Flexible Wide-area Radio Transient Surveys

    NASA Astrophysics Data System (ADS)

    Yancey, Cregg C.; Bear, Brandon E.; Akukwe, Bernadine; Chen, Kevin; Dowell, Jayce; Gough, Jonathan D.; Kanner, Jonah; Kavic, Michael; Obenberger, Kenneth; Shawhan, Peter; Simonetti, John H.; -Wei Tsai, Gregory B. Taylor, Jr.

    2015-10-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg2 sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.

  10. Multi-messenger astronomy of gravitational-wave sources with flexible wide-area radio transient surveys

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Cregg C. Yancey, Brandon E. Bear, Bernadine Akukwe, Kevin Chen, Jayce Dowell, Jonathan D. Gough, Jonah Kanner, Kenneth Obenberger, Peter Shawhan, John H. Simonetti , Gregory B. Taylor , Jr-Wei Tsai

    2016-01-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg(2) sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.

  11. EVIDENCE FOR THE OSCILLATING TWO STREAM INSTABILITY AND SPATIAL COLLAPSE OF LANGMUIR WAVES IN A SOLAR TYPE III RADIO BURST

    SciTech Connect

    Thejappa, G.; Bergamo, M.; Papadopoulos, K.; MacDowall, R. J. E-mail: mbergamo@umd.edu E-mail: Robert.MacDowall@nasa.gov

    2012-03-15

    We present observational evidence for the oscillating two stream instability (OTSI) and spatial collapse of Langmuir waves in the source region of a solar type III radio burst. High time resolution observations from the STEREO A spacecraft show that Langmuir waves excited by the electron beam occur as isolated field structures with short durations {approx}3.2 ms and with high intensities exceeding the strong turbulence thresholds. These short duration events are identified as the envelope solitons which have collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets contain an intense peak and two sidebands, corresponding to beam-resonant Langmuir waves, and down-shifted and up-shifted daughter Langmuir waves, respectively, and low-frequency enhancements below a few hundred Hz. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI. The observed high intensities, short scale lengths, sideband spectral structures, and low-frequency enhancements strongly suggest that the OTSI and spatial collapse of Langmuir waves probably control the nonlinear beam-plasma interactions in type III radio bursts.

  12. Energetic electrons from solar flares and associated type 3 radio bursts from metric to hectometric wave frequencies

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    Distinct Kev electron events as observed by satellites near the earth are, in general, associated with solar flares which are accompained by the emission of both metric and hectometric type 3 radio bursts. The positions of these flares are mainly on the western hemisphere of the sun. These results show that Kev electrons propagate under the control of the magnetic field in the interplanetary space and that, while propagating through this space, these electrons excite type 3 radio bursts from metric to hectometric wave frequencies. Emission characteristics of hectometric type 3 bursts are briefly considered in relation to the positions of associated flares.

  13. MHD Waves in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Ofman, L.

    2016-02-01

    This chapter focuses on reviewing several observational aspects of magnetohydrodynamic (MHD) waves in the solar wind, in particular on Alfvén waves, Alfvénic turbulent spectrum, and their role in heating and accelerating the solar wind. It also reviews computational models that incorporate Alfvén waves as the driving source of the wind in the lower corona (coronal holes) and in the inner heliosphere, with emphasis on multi-dimensional models. Evidence for MHD waves in the solar wind is obtained from interplanetary scintillation (IPS) observations using Earth-based radio telescope observations of distant (galactic) radio sources. The solar wind electron density variability in the line of sight affects the received radio signal. The propagating fluctuations and their correlations are used to estimate the solar wind velocity and the wave amplitude in the parallel and the perpendicular directions in line of sight.

  14. Ionosphere scintillations associated with features of equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Chandra, H.; Vats, H. O.; Sethia, G.; Deshpande, M. R.; Rastogi, R. G.; Sastri, J. H.; Murthy, B. S.

    1979-01-01

    Amplitude scintillations of radio beacons aboard the ATS-6 satellite on 40 MHz, 140 MHz and 360 MHz recorded during the ATS-6 phase II at an equatorial station Ootacamund (dip 4 deg N) and the ionograms at a nearby station Kodaikanal (dip 3.5 deg N) are examined for scintillation activity. Only sporadic E events, other than Es-q, Es-c or normal E are found to be associated with intense daytime scintillations. Scintillations are also observed during night Es conditions. The amplitude spread is associated with strong scintillations on all frequencies while frequency spread causes weaker scintillations and that mainly at 40 MHz.

  15. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  16. An analytical theory of radio-wave scattering from meteoric ionization - I. Basic equation

    NASA Astrophysics Data System (ADS)

    Pecina, P.

    2016-01-01

    We have developed an analytical theory of radio-wave scattering from ionization of meteoric origin. It is based on an integro-differential equation for the polarization vector, P, inside the meteor trail, representing an analytical solution of the set of Maxwell equations, in combination with a generalized radar equation involving an integral of the trail volume electron density, Ne, and P represented by an auxiliary vector, Q, taken over the whole trail volume. During the derivation of the final formulae, the following assumptions were applied: transversal as well as longitudinal dimensions of the meteor trail are small compared with the distances of the relevant trail point to both the transmitter and receiver and the ratio of these distances to the wavelength of the wave emitted by the radar is very large, so that the stationary-phase method can be employed for evaluation of the relevant integrals. Further, it is shown that in the case of sufficiently low electron density, Ne, corresponding to the case of underdense trails, the classical McKinley's radar equation results as a special case of the general theory. The same also applies regarding the Fresnel characteristics. Our approach is also capable of yielding solutions to the problems of the formation of Fresnel characteristics on trails having any electron density, forward scattering and scattering on trails immersed in the magnetic field. However, we have also shown that the geomagnetic field can be removed from consideration, due to its low strength. The full solution of the above integro-differential equation, valid for any electron volume densities, has been left to subsequent works dealing with this particular problem, due to its complexity.

  17. Horizontal Wave Analysis using COSMIC/FORMOSAT-3 Radio Occultation Data

    NASA Astrophysics Data System (ADS)

    Haser, A.; Schmidt, T.; de la Torre, A.; Fischer, J.

    2010-12-01

    We discuss vertical and horizontal gravity wave (GW) parameters in the lower stratosphere (20-30km) derived from GPS radio occultation (RO) data for selected case studies in different geographical regions. Available satellite data give global pictures of GW parameters, but each seen through an individual observational window depending on the used measurement characteristics. The RO technique is a limb sounding method sensitive to GWs with small ratios of vertical to horizontal wavelengths. Due to the horizontal averaging within the RO retrieval the measuring geometry between the Line-of-Sight (LOS) and the wave propagation direction get important for the interpretation of the results with respect to GWs.For our case studies we apply the method from Ern et al. (2004) to derive horizontal wavelengths between adjacent temperature profiles from the early COSMIC mission (April-October 2006) whereas only profiles measured within a time window of ten minutes and with the same LOS were considered. A cross-wavelet analysis was applied to pairs of temperature fluctuation profiles to detect phase shifts. Finally, the horizontal wavenumber in the direction of the connecting line between the pairs of profiles is the ratio of the phase shift and the distance between them. By using a combination of at least three occultation events the horizontal wavenumber (wavelength) can be determined. To validate the results we compare our findings with results from the mesoscale Weather Research and Forecasting Model. For a global analysis of the horizontal wavelength the prior discribed restrictions in time and space are loosened up. Results for August and December 2006 are displayed. Additionally the potential energy for the considerated profiles is shown. A first look negative correlation of those two variables can be found.

  18. Radio crickets: chirping jets from black hole binaries entering their gravitational wave inspiral

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Loeb, Abraham

    2016-03-01

    We study a novel electromagnetic signature of supermassive black hole (BH) binaries whose inspiral starts being dominated by gravitational wave (GW) emission. Recent simulations suggest that the binary's member BHs can continue to accrete gas from the circumbinary accretion disc in this phase of the binary's evolution, all the way until coalescence. If one of the binary members produces a radio jet as a result of accretion, the jet precesses along a biconical surface due to the binary's orbital motion. When the binary enters the GW phase of its evolution, the opening angle widens, the jet exhibits milliarcsecond-scale wiggles, and the conical surface of jet precession is twisted due to apparent superluminal motion. The rapidly increasing orbital velocity of the binary gives the jet an appearance of a `chirp'. This helical chirping morphology of the jet can be used to infer the binary parameters. For binaries with mass 107-1010 M⊙ at redshifts z < 0.5, monitoring these features in current and archival data will place a lower limit on sources that could be detected by Evolved Laser Interferometer Space Antenna and Pulsar Timing Arrays. In the future, microarcsecond interferometry with the Square Kilometre Array will increase the potential usefulness of this technique.

  19. The Minimum bandwidth of narrowband spikes in solar flare decimetric radio waves

    NASA Astrophysics Data System (ADS)

    Messmer, Peter; Benz, Arnold O.

    2000-02-01

    The minimum and the mean bandwidth of individual narrowband spikes in two events in decimetric radio waves is determined by means of multi-resolution analysis. Spikes of a few tens of millisecond duration occur at decimetric/microwave wavelength in the particle acceleration phase of solar flares. A first method determines the dominant spike bandwidth scale based on their scalegram, the mean squared wavelet coefficient at each frequency scale. This allows to measure the scale bandwidth independently of heuristic spike selection criteria, e.g. manual selection. The major drawback is a low resolution in the bandwidth. To overcome this uncertainty, a feature detection algorithm and a criterion for spike shape in the time-frequency plane is applied to locate the spikes. In that case, the bandwidth is measured by fitting an assumed spike profile into the denoised data. The smallest FWHM bandwidth of spikes was found at 0.17% and 0.41% of the center frequency in the two events. Knowing the shortest relevant bandwidth of spikes, the slope of the Fourier power spectrum of this two events was determined and no resemblance to a Kolmogorov spectrum detected. Additionally the correlation between spike peak flux and bandwidth was examined.

  20. The Cassini Radio & Plasma Wave Science (RPWS) view of the Enceladus Space Environment

    NASA Astrophysics Data System (ADS)

    Wahlund, Jan-Erik; Gurnett, Donald; Kurth, William; Andrews, David; Engelhardt, Ilka; Eriksson, Anders; Farrell, William; Holmberg, Mika; Hospodarsky, George; Morooka, Michiko; Sheng-Yi, Ye; Vigren, Erik

    2014-05-01

    A physical picture of the interaction between Saturn's magnetosphere and the moon Enceladus space environment is presented based on Radio and Plasma Wave Science (RPWS) observations. The space environment around Enceladus consists of several different regions with a diversity of active physical processes. Foremost, the southward exhaust plume reveals a cold, dense, conductive and dusty plasma environment where the magnetic field is piled-up. Plasma acceleration processes are active at the plume edges, and constitute an important part of the electrodynamic MHD dynamo, giving rise to Auroral hiss emissions as well as a magnetic footprint pattern in the high-latitude atmosphere of Saturn. The Enceladus wake is filled with negatively charged dust that depletes the region from electrons by water grain attachment. The grains around Enceladus can be picked-up by the magnetospheric co-rotation electric field. The charged water grains then populate the region in Enceladus orbit around Saturn and create the E-ring. Depending on the size of the grains, different grain evolutions occur and different dynamics of the grains are expected. The Enceladus plume as well as the plasma disc surrounding the E-ring constitutes complex natural laboratories for dust-plasma interaction, which has important implications also for the newly discovered Europa plume and associated plasma disk material around Jupiter to be investigated by the ESA JUICE and the NASA Europa Clipper missions. We present a detailed account of the Cassini RPWS observations around Enceladus with associated physical interpretations.

  1. Relativistic blast-wave model for the rapid flux variations of AO 0235+164 and other compact radio sources

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.

    1978-01-01

    A relativistic blast-wave version of a signal-screen model is developed which can adequately explain the details of the flux-density and structural variations of compact extragalactic radio sources. The relativistic motion implied by flux variations is analyzed with respect to the synchrotron spectrum of the BL Lac object AO 0235+164 observed during outbursts, and a signal-screen model for rapidly expanding shells produced by ultrarelativistic blast waves is examined. The approximate observed structure of the blast wave at three stages in its evolution is illustrated, each stage is described, and the model is applied to the flux density outburst in AO 0235+164 observed in late 1975. The results show that a relativistic blast-wave model can in general reproduce the main features of the observed flux variations in compact sources. Some problems with the proposed model are briefly discussed.

  2. Geomagnetic Pulsation Amplitude and Spectrum Variations Accompanying the Ionospheric Heating by High-Power Radio waves from the Sura Facility

    NASA Astrophysics Data System (ADS)

    Chernogor, L. F.; Frolov, V. L.

    2014-10-01

    Aperiodic and quasiperiodic variations in the geomagnetic pulsation amplitude in a range of periods from 40 to 1000 s, which accompany the quasicontinuous and periodic impact on the ionospheric plasma by high-power radio waves from the SURA facility near Nizhny Novgorod (Russia) were recorded near Kharkov (Ukraine) using a magnetometer-fluxmeter. The main parameters of aperiodic and quasiperiodic disturbances of the geomagnetic field are determined. The mechanisms for generation and propagation of detected disturbances are discussed.

  3. Generation of Acoustic Gravity Waves by Periodic Radio Transmissions from a High-Power Ionospheric Heater

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir; Chernogor, Leonid; Rozumenko, Victor

    The Radiophysical Research Institute (Nizhny Novgorod, Russia) and Kharkiv V. N. Karazin National University (Kharkiv, Ukraine) have studied opportunities for the effective generation of acoustic gravity waves (AGWs) in 3 - 180-min period range. The excitation of such waves was conducted for the last several years using the SURA heating facility (Nizhny Novgorod). The detection of the HF-induced AGWs was carried out in the Radiophysical Observatory located near Kharkiv City at a distance of about 960 km from the SURA. A coherent radar for vertical sounding, an ionosonde, and magnetometer chains were used in our measurements. The main results are the following (see [1-5]): 1. Infrasound oscillation trains with a period of 6 min are detected during periodic SURA heater turn-on and -off. Similar oscillation trains are detected after long time pumping, during periodic transmissions with a period of 20 s, as well as after pumping turn-off. The train recordings begin 28 - 54 min after the heater turn-on or -off, and the train propagation speeds are about 300 - 570 m/s, the value of which is close to the sound speed at upper atmospheric altitudes. The amplitude of the Doppler shift frequency is of 10 - 40 mHz, which fits to the 0.1 - 0.3% electron density disturbances at ionospheric altitudes. The amplitude of the infrasound oscillations depends on the SURA mode of operation and the state of the upper atmosphere and ionosphere. 2. High-power radio transmissions stimulate the generation (or enhancement) of waves at ionospheric altitudes in the range of internal gravity wave periods. The HF-induced waves propagate with speeds of 360 - 460 m/s and produce changes in electron density with amplitudes of 2 - 3%. The generation of such periodic perturbations is more preferable with periods of 10 - 60 minutes. Their features depend significantly on the heater mode of operation. It should be stressed that perturbation intensity increases when a pumping wave frequency approaches

  4. Global ionospheric effects of geomagnetic storm on May 2-3, 2010 and their influence on HF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Kotova, Daria; Klimenko, Maxim; Klimenko, Vladimir; Zakharov, Veniamin

    2013-04-01

    In this work we have investigated the global ionospheric response to geomagnetic storm on May 2-3, 2010 using GSM TIP (Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere) simulation results. In the GSM TIP storm time model runs, several input parameters such as cross-polar cap potential difference and R2 FAC (Region 2 Field-Aligned Currents) varied as a function of the geomagnetic activity AE-index. Current simulation also uses the empirical model of high-energy particle precipitation by Zhang and Paxton. In this model, the energy and energy flux of precipitating electrons depend on a 3 hour Kp-index. We also have included the 30 min time delay of R2 FAC variations with respect to the variations of cross-polar cap potential difference. In addition, we use the ground-based ionosonde data for comparison our model results with observations. We present an analysis of the physical mechanisms responsible for the ionospheric effects of geomagnetic storms. The obtained simulation results are used by us as a medium for HF radio wave propagation at different latitudes in quiet conditions, and during main and recovery phase of a geomagnetic storm. To solve the problem of the radio wave propagation we used Zakharov's (I. Kant BFU) model based on geometric optics. In this model the solution of the eikonal equation for each of the two normal modes is reduced using the method of characteristics to the integration of the six ray equation system for the coordinates and momentum. All model equations of this system are solved in spherical geomagnetic coordinate system by the Runge-Kutta method. This model was tested for a plane wave in a parabolic layer. In this study, the complex refractive indices of the ordinary and extraordinary waves at ionospheric heights was calculated for the first time using the global first-principal model of the thermosphere-ionosphere system that describes the parameters of an inhomogeneous anisotropic medium during a

  5. Stationary Planetary Waves in the Mars Winter Atmosphere as seen by the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Pätzold, Martin; Häusler, Bernd; Tyler, Leonard G.; Hinson, David P.

    2015-11-01

    Stationary (Rossby) Waves are excited by the interaction of the zonally varying topography with the strong eastward winter jets. They lead to distinctive longitudinal temperature variations which contribute significantly to the asymmetry of the seasonal polar CO2 ice caps and are also important for the dust redistribution in the planetary atmosphere.Radio Science profiles from the Mars Express Radio Science Experiment MaRS at northern and southern high latitudes are used to gain insight into winter stationary wave structures on both hemispheres.Mars Global Surveyor (MGS) radio occultation measurements from the same season and year with their exceptionally good longitudinal and temporal coverage can be used to estimate the influence of transient eddies. Transient waves are especially important in the northern winter hemisphere.Wave number 2 stationary waves, driven by topography, are dominant in the northern winter latitudes while the wave number 1 wave is the most significant wave number during southern winter. The wave amplitudes peak around winter solstice on both hemispheres.Radio occultation measurements provide the unique opportunity to determine simultaneous measurements of temperature and geopotential height structures. Assuming geostrophic balance, these measurements can be used to determine meridional winds and eddy heat fluxes which provide further insight into the contribution of stationary waves to the heat exchange between the poles and the lower latitudes.

  6. Plasma wave phenomena at interplanetary shocks observed by the Ulysses URAP experiment. [Unified Radio and Plasma Waves

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Macdowall, R. J.; Stone, R. G.; Hoang, S.; Pantellini, F.; Harvey, C.; Mangeney, A.; Kellogg, P.; Thiessen, J.; Canu, P.

    1992-01-01

    We present Ulysses URAP observations of plasma waves at seven interplanetary shocks detected between approximately 1 and 3 AU. The URAP data allows ready correlation of wave phenomena from .1 Hz to 1 MHz. Wave phenomena observed in the shock vicinity include abrupt changes in the quasi-thermal noise continuum, Langmuir wave activity, ion acoustic noise, whistler waves and low frequency electrostatic waves. We focus on the forward/reverse shock pair of May 27, 1991 to demonstrate the characteristics of the URAP data.

  7. High performance tunable slow wave elements enabled with nano-patterned permalloy thin film for compact radio frequency applications

    NASA Astrophysics Data System (ADS)

    Farid Rahman, B. M.; Divan, Ralu; Zhang, Hanqiao; Rosenmann, Daniel; Peng, Yujia; Wang, Xuehe; Wang, Guoan

    2014-05-01

    Slow wave elements are promising structures to design compact RF (radio frequency) and mmwave components. This paper reports a comparative study on different types of coplanar wave-guide (CPW) slow wave structures (SWS). New techniques including the use of defected ground structure and the different signal conductor shape have been implemented to achieve higher slow wave effect with comparative loss. Results show that over 42% and 35% reduction in length is reported in the expense of only 0.3 dB and 0.1 dB insertion loss, respectively, which can end up with 66% and 58% area reduction for the design of a branch line coupler. Implementation of the sub micrometer patterned Permalloy (Py) thin film on top of the simple SWS has been demonstrated for the first time to increase the slow wave effect. Comparing with the traditional slow wave structure, with 100 nm thick Py patterns, the inductance per unit length of the SWS has been increased from 879 nH/m to 963 nH/m. The slow wave effect of the designed structure is also tunable by applied DC current. Measured results have shown that the phase shift can be changed from 94° to 90.5° by applying 150 mA DC current. This provides a solution in designing RF passive components which can work in multiple frequency bands.

  8. A gravity waves study close to the Andes mountains in Patagonia and Antarctica with GPS radio occultation observations

    NASA Astrophysics Data System (ADS)

    Alexander, P.; Luna, D.; Llamedo, P.; de La Torre, A.

    2010-02-01

    We first study the seasonal and geographical behavior of gravity wave activity in the lower stratosphere over the southernmost Andes mountains and their prolongation in the Antarctic Peninsula by global positioning system (GPS) radio occultation (RO) temperature profiles, obtained between years 2002 and 2005 by the CHAllenging Minisatellite Payload (CHAMP) mission. The observed features complement observations in the same zone by other satellite passive remote sensing instruments, which are able to detect different height regions and other spectral intervals of the wave spectrum. Comparisons with previous GPS RO studies in smaller areas than the one covered in our analysis are also established. Significant seasonal variation of wave activity is observed in our work, in agreement with results from other instruments. The locations of significant cases indicate that topography is an important source. Some strong wave activity is also found over open ocean. Critical level filtering is shown to have an attenuation effect, implying that a large fraction of the observed activity can be considered to be an outcome of mountain waves. The studied region has a significant advantage as compared to other regions of our planet: it generates wavefronts nearly aligned with the North-South direction (almost parallel to the mountains), whereby this geometry favors the wave detection by the nearly meridional line of sight characterizing most of the GPS RO observations used. A distribution of the observed gravity waves in terms of amplitudes and wavelengths is also presented.

  9. Long-Range Transhorizon Lunar Surface Radio Wave Propagation in the Presence of a Regolith and a Sparse Exospheric Plasma

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2008-01-01

    Long-range, over-the-horizon (transhorizon) radio wave propagation is considered for the case of the Moon. In the event that relay satellites are not available or otherwise unwarranted for use, transhorizon communication provides for a contingency or backup option for non line-of-sight lunar surface exploration scenarios. Two potential low-frequency propagation mechanisms characteristic of the lunar landscape are the lunar regolith and the photoelectron induced plasma exosphere enveloping the Moon. Although it was hoped that the regolith would provide for a spherical waveguide which could support a trapped surface wave phenomena, it is found that, in most cases, the regolith is deleterious to long range radio wave propagation. However, the presence of the plasma of the lunar exosphere supports wave propagation and, in fact, surpasses the attenuation of the regolith. Given the models of the regolith and exosphere adopted here, it is recommended that a frequency of 1 MHz be considered for low rate data transmission along the lunar surface. It is also recommended that further research be done to capture the descriptive physics of the regolith and the exospheric plasma so that a more complete model can be obtained. This comprehensive theoretical study is based entirely on first principles and the mathematical techniques needed are developed as required; it is self-contained and should not require the use of outside resources for its understanding.

  10. Probe experiment characterizing 30-MHz radio wave scatter in the high-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Nishino, M.; Gorokhov, N.; Tanaka, Y.; Yamagishi, H.; Hansen, T.

    1999-07-01

    A probe experiment, consisting of radio links between a common 30-MHz transmitter located at Murmansk, Russia, and two receivers used as the imaging riometer (two-dimensional 64 multiple-beam antenna) located at Ny Ålesund, Svalbard, and Tjornes, Iceland, was carried out to characterize wave scatter in the high-latitude ionosphere. They are nearly aligned with and perpendicular to the geomagnetic meridian, respectively. In experiments conducted in March-April 1994, the 30-MHz probe signals were identified at nighttime more frequently than during the day at both receiver stations during periods of increased geomagnetic activity near the path midpoints, indicating that a relationship between the propagation path and the location of the auroral oval controls signal identification. For the nighttime propagation paths within or crossing through the auroral oval, duty cycles of the probe signals were roughly correlated with increases in geomagnetic activity. Their arrival directions showed a spread with a dominant power on the low elevation and a normal distribution in azimuth. These results indicate that the probe signals are characterized as nonmeteoric "auroral E" scatter caused by irregular, large-scale profiles of electron density enhancements at the lower edge of the ionosphere. However, on 2 days of weak geomagnetic activity, strong probe signals with bursty behavior were identified by an extremely high duty cycle (˜98%) for the nighttime meridian path only, and their arrival directions showed an isotropic spread in azimuth. Such nonmeteoric probe signals are characterized as "coherent" scatter caused by small-scale (˜5 m) field-aligned irregularities in electron density in the E region ionosphere, related to "sporadic E" occurrence.

  11. Making Radio Waves: Tune in to These Tips for Getting Your Campus News on the Air.

    ERIC Educational Resources Information Center

    Stubbee, Melinda

    1993-01-01

    Radio is a relatively simple and effective way to make campus news and information available to the public. Establishing a college radio news service is not difficult, and developing a sound-bite service requires little equipment or expertise, just careful attention to quality and technique. More sophisticated systems can be developed easily. (MSE)

  12. ON THE BRIGHTNESS AND WAITING-TIME DISTRIBUTIONS OF A TYPE III RADIO STORM OBSERVED BY STEREO/WAVES

    SciTech Connect

    Eastwood, J. P.; Hudson, H. S.; Krucker, S.; Bale, S. D.; Wheatland, M. S.; Maksimovic, M.; Bougeret, J.-L.; Goetz, K.

    2010-01-10

    Type III solar radio storms, observed at frequencies below {approx}16 MHz by space-borne radio experiments, correspond to the quasi-continuous, bursty emission of electron beams onto open field lines above active regions. The mechanisms by which a storm can persist in some cases for more than a solar rotation whilst exhibiting considerable radio activity are poorly understood. To address this issue, the statistical properties of a type III storm observed by the STEREO/WAVES radio experiment are presented, examining both the brightness distribution and (for the first time) the waiting-time distribution (WTD). Single power-law behavior is observed in the number distribution as a function of brightness; the power-law index is {approx}2.1 and is largely independent of frequency. The WTD is found to be consistent with a piecewise-constant Poisson process. This indicates that during the storm individual type III bursts occur independently and suggests that the storm dynamics are consistent with avalanche-type behavior in the underlying active region.

  13. Climatology of high-latitude ionospheric scintillation based on 38.2 MHz IRIS riometer measurements in Northern Finland

    NASA Astrophysics Data System (ADS)

    Szponarski, P.; Honary, F.; McKay-Bukowski, D.

    2015-12-01

    Dynamic electron density irregularities, ranging in scale sizes from hundreds of kilometres to a few centimetres, cause scintillation of radio-waves propagating through the ionosphere. They can significantly reduce performance of GNSS (Global Navigation Satellite System) receivers and other positioning systems of varying frequencies. The high latitude ionosphere becomes very disturbed during geomagnetic storms due to auroral precipitation and motion of polar patches. While the scintillation topic is researched heavily at GPS frequencies, relatively little work has been done at MHz frequencies. A rather unconventional approach has been taken, by using data from the IRIS riometer (Imaging Riometer for Ionospheric Studies), based in Kilspisjärvi, Finland (69.05° N 20.79° E). By observing the strong and homogeneous radio source Cassiopeia A, passing through multiple narrow beams, amplitude scintillations can be observed. The continuous dataset of approximately 14 years (1995 - 2009) was used to create climatological scintillation trends, presenting diurnal, seasonal and yearly variations of amplitude scintillation index, S­­­­4. The correlation between S4 index and geomagnetic indices (Kp, AE) was investigated and linear relationships were found.

  14. Applicability of radio astronomy techniques to the processing and interpretation of aperture synthesis passive millimetre-wave applications

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher T.; Wilkinson, Peter N.; Salmon, Neil A.; Cameron, Colin D.

    2012-06-01

    This PhD programme is contributing to the development of Passive Millimetre-Wave Imagers (PMMWI) using the principles of interferometric aperture synthesis and digital signal processing. The principal applications are security screening, all-weather flight aids and earth observation. To enhance the cost-effectiveness of PMMWI systems the number of collecting elements must be minimised whilst maintaining adequate image fidelity. A wide range of techniques have been developed by the radio astronomy community for improving the fidelity of sparse interferometric array imagery. This paper brings to the attention of readers these techniques and discusses how they may be applied to imaging using software packages publicly available from the radio astronomy community. The intention of future work is to adapt these algorithms to process experimental data from a range of realistic simulations and real-world targets.

  15. Measurement of radio wave reflection due to temperature rising from rock salt and ice irradiated by an electron beam for an ultra-high-energy neutrino detector

    SciTech Connect

    Tanikawa, Takahiro; Chiba, Masami; Kamijo, Toshio; Yabuki, Fumiaki; Yasuda, Osamu; Akiyama, Hidetoshi; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Utsumi, Michiaki; Fujii, Masatoshi

    2012-11-12

    An ultra-high-energy neutrino (UHE{nu}) gives temperature rise along the hadronic and electromagnetic shower when it enters into rock salt or ice. Permittivities of them arise with respect the temperatures at ionization processes of the UHE{nu} shower. It is expected by Fresnel's formula that radio wave reflects at the irregularity of the permittivity in the medium. We had found the radio wave reflection effect in rock salt. The reflection effect and long attenuation length of radio wave in rock salt and ice would yield a new UHE{nu} detection method. An experiment for ice was performed to study the reflection effect. A coaxial tube was filled with rock salt powder or ice. Open end of the coaxial tube was irradiated by a 2 MeV electron beam. Radio wave of 435 MHz was introduced to the coaxial tube. We measured the reflection wave from the open end. We found the radio wave reflection effect due to electron beam irradiation in ice as well as in rock salt.

  16. High Latitude Scintillation Monitoring at UHF with the COMMX Experiment on TACSat4

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.; Akins, K.; Nurnberger, M.

    2013-12-01

    UHF Beacon Transmissions at 253 MHz have provided high latitude scintillation monitoring from Gakona Alaska using the COMMX instrument on TACSat4. TACSat4 was constructed by the Naval Research Laboratory and was launched in September 2011 as an experimental communications satellite. Ground UHF transmissions are uplinked to TACSat4 using the 4 meter diameter antenna deployed to view the earth. These signals are coherently translated to other UHF frequency to be rebroadcast to the ground. Scintillation monitoring is achieved by taking the 401.25 MHz signals from ground DORIS beacons located in Cold Bay, Alaska; Yellowknife, Canada; Kauai, Hawaii; and Soccoro Island, Mexico. These signals are translated to 253 MHz and broadcast with the 4 meter antenna pointed to the UHF receiver located at Gakona, Alaska. The satellite antenna gain is 18 dB in this UHF band and the transmitter power is 2 Watts. The satellite is in an elliptical orbit with an inclination of 63 degrees and a perigee of 12,000 km. Doppler frequency shifts allow separation of each uplink from the ground DORIS beacons. This new scintillation monitoring system has been used to detect natural and artificial field aligned irregularity effects on the amplitude and phase of UHF carriers where typical scintillation amplitudes are 2dB or less. Using the HAARP transmitter in Alaska, TACSat4 was used to discover the artificial ionization clouds produce scintillation with as much as 16 dB and amplitude indices S4 greater than unity. This is the first demonstration of significant effects on radio scintillations using high power HF radio waves to disturb the ionosphere.

  17. Interferometric observation of Cygnus-A discrete radiosource scintillations at Irkutsk Incoherent Scatter radar

    NASA Astrophysics Data System (ADS)

    Globa, Mariya; Vasilev, Roman; Kushnaryov, Dmitriy; Medvedev, Andrey

    2016-03-01

    We propose a new method for analysis of data from Irkutsk Incoherent Scatter Radar. The method allows us to accomplish interferometric observation of discrete cosmic radio source characteristics. In this study, we analyzed ionospheric scintillations of the radio source Cygnus-A. Observations were made in 2013 during regular radar sessions within 5-15 days for different seasons, and the effective time of observation was 15-30 minutes per day. For interferometric analysis, the properties of correlation (coherence) coefficient of two independent recording channels were used. The statistical analysis of data from independent channels allows us to construct two-dimensional histograms of radio source brightness distribution with period of 18 s and to determine parameters (the maximum position and the histogram width) representing position and angular size of radio source for each histogram. It is shown that the change of statistical characteristics does not correlate with fluctuations in power (scintillations) of the signal caused by radio wave propagation through ionospheric irregularities.

  18. Multiple scattering of radio frequency waves by blobs: homogenization of a mixture of blobs and the Waterman-Truell approach

    NASA Astrophysics Data System (ADS)

    Hizanidis, K.; Bairaktaris, F.; Valvis, S. I.; Ram, A. K.

    2015-11-01

    Radio frequency waves are of particular importance for heating and current drive in magnetized fusion plasmas. The scattering of these waves by a multitude of density fluctuations, such as blobs in the edge region, is studied by homogenizing the edge region populated by an ensemble of ellipsoidal plasma blobs immersed in an ambient background plasma. The effective permittivity tensor is formulated on the basis of a depolarization dyadic. In general, the interface between the homogenized slab and the ambient plasma is not necessarily aligned with the magnetic field line. The misalignment leads to changes in the propagation characteristics of the RF waves. The scattering of an incident wave is treated by considering the reflection and transmission through a composite plasma slab. This study is a generalization of; it applies to RF waves in plasmas interacting with ellipsoidal blobs of arbitrary shapes and sizes. Supported in part by the Hellenic National Programme on Controlled Thermonuclear Fusion associated with the EUROfusion Consortium, and by DoE.

  19. Full-wave reflection of lightning long-wave radio pulses from the ionospheric D region: Numerical model

    NASA Astrophysics Data System (ADS)

    Jacobson, Abram R.; Shao, Xuan-Min; Holzworth, Robert

    2009-03-01

    A model is developed for calculating ionospheric reflection of electromagnetic pulses emitted by lightning, with most energy in the long-wave spectral region (f ~ 3-100 kHz). The building block of the calculation is a differential equation full-wave solution of Maxwell's equations for the complex reflection of individual plane waves incident from below, by the anisotropic, dissipative, diffuse dielectric profile of the lower ionosphere. This full-wave solution is then put into a summation over plane waves in an angular direct Fourier transform to obtain the reflection properties of curved wavefronts. This step models also the diffraction effects of long-wave ionospheric reflections observed at short or medium range (~200-500 km). The calculation can be done with any arbitrary but smooth dielectric profile versus altitude. For an initial test, this article uses the classic D region exponential profiles of electron density and collision rate given by Volland. With even these simple profiles, our model of full-wave reflection of curved wavefronts captures some of the basic attributes of observed reflected waveforms recorded with the Los Alamos Sferic Array. A follow-on article will present a detailed comparison with data in order to retrieve ionospheric parameters.

  20. Modification of the high-latitude ionosphere by high-power hf radio waves. 2. Results of coordinated satellite and ground-based observations

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Kornienko, V. A.; Rietveld, M. T.; Yeoman, T. K.; Wright, D. M.; Rother, M.; Lühr, H.; Mishin, E. V.; Roth, C.; Frolov, V. L.; Parrot, M.; Rauch, J. L.

    2011-07-01

    We present the results of coordinated satellite and ground-based observations of the high-latitude ionospheric phenomena induced by high-power high-frequency (HF) radio waves. The ion outflow phenomenon accompanied by a strong increase in the electron temperature and thermal expansion of plasma was observed in the evening hours, when the high-latitude ionospheric F region was heated by high-power O-mode HF radio waves. The DMSP F15 satellite recorded an increase in the ion number density O+ at an altitide of about 850 km in that period. Ultralow-frequency (ULF) radiation at the modulation frequency 3 Hz of the high-power HF radio waves, which was generated in the ionosphere irradiated by high-power O-mode HF radio waves and accompanied by a strong increase in the electron temperature and the generation of artificial small-scale ionospheric irregularities, was recorded by the CHAMP satellite during the heating experiment in Tromsø in November 5, 2009. The results of the DEMETER satellite observations of extremely low frequency (ELF) radiation at the modulation frequency 1178 Hz of the high-power radio waves in the heating experiments were analyzed using the event of March 3, 2009 as an example.

  1. Interplanetary phase scintillation and the search for very low frequency gravitational radiation

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Woo, R.; Estabrook, F. B.

    1979-01-01

    Observations of radio-wave phase scintillation are reported which used the Viking spacecraft having an earth-spacecraft link very similar to that which will be used in very low-frequency (VLF) gravitational-wave searches. The phase power-spectrum level varies by seven orders of magnitude as the sun-earth-spacecraft (elongation) angle changes from 1 to 175 deg. It is noteworthy that a broad minimum in the S-band (2.3 GHz) phase fluctuation occurs in the antisolar direction; the corresponding fractional frequency stability (square root Allan variance) is about 3 x 10 to the -14th for 1000-s integration times. A simultaneous two-frequency two-station observation indicates that the contribution to the phase fluctuation from the ionosphere is significant but dominated by the contribution from the interplanetary medium. Nondispersive tropospheric scintillation was not detected (upper limit to fractional frequency stability about 5 x 10 to the -14th). Evidently, even observations in the antisolar direction will require higher radio frequencies, phase scintillation calibration, and correlation techniques in the data processing, for detection of gravitational bursts at the anticipated strain amplitude levels of no more than 10 to the -15th.

  2. Results of Experimental and Theoretical Studies of the Atmospheric Turbulence, Internal Gravity Waves and Sporadic-E Layers by Resonant Scattering of Radio Waves on Artificial Periodic Irregularities

    NASA Astrophysics Data System (ADS)

    Bakhmetieva, Nataliya V.; Grigoriev; Tolmacheva, Ariadna V.

    Artificial periodic irregularities (API) formed by the powerful standing radio waves in the ionospheric plasma give the good chance for the lower ionosphere comprehensive studies. In this paper we present some applications of the API technique for experimental studies of sporadic E-layers (E _{s}), internal gravity waves and turbulent events in the lower ionosphere. API are formed in the field of the standing radio wave produced by interference of the incident wave and reflected one from the ionosphere (in more details about the API technique one can see in the book Belikovich et al., Ionospheric Research by Means of Artificial Periodic Irregularities - Katlenburg-Lindau, Germany. 2002. Copernicus GmbH. ISBN 3-936586-03-9). The spatial period of the irregular structure is equal to the standing wavelength Lambda or one-half the powerful wavelength lambda/2. API diagnostics are carried out at the API relaxation or decay stage by their sounding of probing radio pulses. Based on the measurement of an amplitude and a phase of the API scattered signal their relaxation time and regular vertical plasma velocity are measured. In the E-region of the ionosphere API are formed as a result of the diffusion redistribution of the non-uniformly heated plasma. The relaxation of the periodic structure is specified by the ambipolar diffusion process. The diffusion time is tau=(K (2) D _{a}) (-1) where K=2pi/Lambda and D _{a} is the ambipolar diffusion rate. The atmospheric turbulence causes reduction of the API relaxation time in comparison the diffusion time. Determination of the turbulent velocity is based on this fact. The vertical plasma velocity is determined by measuring the phase of the scattered signal. Atmospheric waves having the periods from 5-10 minutes to 5-6 hours give the contribution to temporal variations of the velocity. Parameters and effects of atmospheric waves and the turbulence on the API relaxation process are presented. Determination of the masses of the

  3. Structure of ionospheric irregularities from amplitude and phase scintillation observations

    SciTech Connect

    Bhattacharyya, A.; Rastogi, R.G. )

    1991-04-01

    The mutual coherence function Gamma 2, or the second moment of the complex amplitude of a radio wave which traverses through equatorial F region irregularities, is computed from amplitude and phase scintillation data. Theoretically, the equation satisfied by the coherence function has an analytic solution over the whole range of scintillation strength. This solution is directly related to the structure function for the phase fluctuations produced by the irregularities. Hence, the shape of the correlation function for variations in the total electron content along the signal path can be derived from the computed values of Gamma 2. With a suitable power-law model for the irregularities, an 'intermediate break scale', this scale, as well as the rms density fluctuation are deduced from a comparison of computed values for short-time lags with those expected from theory. During a postsunset scintillation event, this scale is found to increase with local time. In the context of the generalized Rayleigh-Taylor instability, which is the likely source of the irregularities, this increase may be attributed to a decline in the effective electric field prevailing in the region of the irregularities. 26 refs.

  4. Long-term statistics related to evaporation duct propagation of 2 GHz radio waves in the English Channel

    NASA Astrophysics Data System (ADS)

    Gunashekar, S. D.; Warrington, E. M.; Siddle, D. R.

    2010-12-01

    This paper presents long-term statistics additional to those previously published pertaining to evaporation duct propagation of UHF radio waves in the British Channel Islands, with particular focus on a completely over-sea 50 km transhorizon path. The importance of the evaporation duct as an anomalous propagation mechanism in marine and coastal regions is highlighted. In particular, the influence of various atmospheric parameters on the performance of a popular operational evaporation duct model is examined. The strengths and weaknesses of this model are evaluated under specific atmospheric conditions. The relationship between the continually varying evaporation duct height and transmitter-receiver antenna geometries is analyzed, and a range of statistics related to the implications of this relationship on the received signal strength is presented. The various issues under investigation are of direct relevance in the planning of long-range, over-sea radio systems operating in the UHF band, and have implications for the radio regulatory work carried out by organizations such as the International Telecommunication Union.

  5. Determination of sporadic E radio wave propagation parameters based on vertical and oblique sounding

    NASA Astrophysics Data System (ADS)

    Sherstyukov, O. N.; Akchurin, A. D.; Sherstyukov, R. O.

    2015-09-01

    Sporadic E layer is often determined for HF radio communication. We have to deal with oblique radiowave propagation in the radio practice. The limiting frequencies at oblique propagation depend heavily on the transmitter power and the receiver sensitivity. The reason for this, as in the case of vertical propagation, is the dependence of Es reflection coefficient, ρEs (reflection loss R(dB)), on Es operation frequencies. This paper describes the characteristics of HF Es propagation in relation to foEs obtained from ionospheric vertical observations. It was found that characteristics of Es propagation depend on the type and height of the Es layer. Also the foEs diurnal variation at definite R(dB) was detected. This investigation allows improving the prediction of limiting frequencies for HF radio propagation.

  6. Possible radio wave precursors associated with the comet Shoemaker-Levy 9/Jupiter impacts

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Kaiser, M. L.; Desch, M. D.; Macdowall, R. J.

    1994-01-01

    We suggest that prior to its impact with Jupiter, comet Shoemaker-Levy 9 will behave as an electrical generator in the Jovian magnetosphere, converting planetary rotational energy to electrical energy via a dust/plasma interaction. This electrical energy will then be deposited in the dayside auroral region where it may drive various auroral phenomena including cyclotron radio emission. Such emission could be detected by spacecraft like Ulysses and Galileo many hours prior to the actual comet impact with the upper atmosphere. We apply the theory originally developed to explain the spokes in Saturn's rings. This theory allows us to quantify the driving potential associated with the comet and, consequently, to determine the radio power created in the auroral region. We conclude that if enough fine dust is present in the cometary system, comet-induced auroral radio emissions will reach detectable levels. This emission should be observable in the dayside hemisphere about 12-24 hours prior to each fragment impact.

  7. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    SciTech Connect

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-07-15

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter.

  8. Decameter-wave radio observations of Jupiter during the 1977 apparition

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Kaiser, M. L.; Thieman, J. R.; Vaughan, S. S.

    1978-01-01

    A catalog of observations of Jupiter's sporadic decameter wavelength radio emissions obtained with the Goddard Space Flight Center Jupiter Monitor Network between June 1977 and May 1978 is presented. Data were collected using the Goddard Space Flight Center station in Greenbelt, MD. and at facilities installed at Orroral Valley (Canberra), Australia and the Nancay Radio Observatory in France. Observations were obtained daily at frequencies of 16.7 and 22.2 MHz using five-element Yagi antennas at each end of a two-element interferometer. Plots of the two dimensional emission occurrence probability distribution are given.

  9. Peculiarities of Excitation of Large-Scale Plasma Density Irregularities During Modification of the Ionospheric F 2 Region by High-Power HF Radio Waves

    NASA Astrophysics Data System (ADS)

    Frolov, V. L.; Schorokhova, E. A.; Kunitsyn, V. E.; Andreeva, E. S.; Padokhin, A. M.

    2016-03-01

    We present the experimental results concerning the features of large-scale artificial plasma-density irregularities excited in the ionospheric F2 region by high-power HF radio waves. The experiments were performed in recent years using the SURA heating facility. It is shown that at the altitude of the pump-wave reflection, these irregularities are most efficiently generated in the magnetic zenith region. The effect of enhancement of the large-scale irregularity generation at the edge of the pump-wave beam is revealed. The results of studying large-scale irregularities recorded at the altitudes of the topside ionosphere are presented. Experimental results concerning the features of the internal gravity waves generated at the ionospheric altitudes during periodic heating of the ionospheric plasma by high-power HF radio waves are summarized and their possible influence on generation of artificial ionospheric irregularities at a long distance from the heater is discussed.

  10. Investigation of radio astronomy image processing techniques for use in the passive millimetre-wave security screening environment

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher T.; Hutchinson, Simon; Salmon, Neil A.; Wilkinson, Peter N.; Cameron, Colin D.

    2014-06-01

    Image processing techniques can be used to improve the cost-effectiveness of future interferometric Passive MilliMetre Wave (PMMW) imagers. The implementation of such techniques will allow for a reduction in the number of collecting elements whilst ensuring adequate image fidelity is maintained. Various techniques have been developed by the radio astronomy community to enhance the imaging capability of sparse interferometric arrays. The most prominent are Multi- Frequency Synthesis (MFS) and non-linear deconvolution algorithms, such as the Maximum Entropy Method (MEM) and variations of the CLEAN algorithm. This investigation focuses on the implementation of these methods in the defacto standard for radio astronomy image processing, the Common Astronomy Software Applications (CASA) package, building upon the discussion presented in Taylor et al., SPIE 8362-0F. We describe the image conversion process into a CASA suitable format, followed by a series of simulations that exploit the highlighted deconvolution and MFS algorithms assuming far-field imagery. The primary target application used for this investigation is an outdoor security scanner for soft-sided Heavy Goods Vehicles. A quantitative analysis of the effectiveness of the aforementioned image processing techniques is presented, with thoughts on the potential cost-savings such an approach could yield. Consideration is also given to how the implementation of these techniques in CASA might be adapted to operate in a near-field target environment. This may enable a much wider usability by the imaging community outside of radio astronomy and thus would be directly relevant to portal screening security systems in the microwave and millimetre wave bands.

  11. Flare-generated Shock Wave Propagation through Solar Coronal Arcade Loops and an Associated Type II Radio Burst

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Innes, D. E.; Cho, Kyung-Suk

    2016-09-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ∼800 km s‑1 and it accelerated to ∼1490 km s‑1 after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (∼340 km s‑1) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.

  12. Flare-generated Shock Wave Propagation through Solar Coronal Arcade Loops and an Associated Type II Radio Burst

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Innes, D. E.; Cho, Kyung-Suk

    2016-09-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ˜800 km s‑1 and it accelerated to ˜1490 km s‑1 after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (˜340 km s‑1) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.

  13. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    PubMed Central

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  14. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    PubMed

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  15. Space-Borne Radio-Sounding Investigations Facilitated by the Virtual Wave Observatory (VWO)

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fung, Shing F.; Bilitza,Dieter; Garcia, Leonard N.; Shao, Xi; Galkin, Ivan A.

    2011-01-01

    The goal of the Virtual Wave Observatory (VWO) is to provide userfriendly access to heliophysics wave data. While the VWO initially emphasized the vast quantity of wave data obtained from passive receivers, the VWO infrastructure can also be used to access active sounder data sets. Here we use examples from some half-million Alouette-2, ISIS-1, and ISIS-2 digital topside-sounder ionograms to demonstrate the desirability of such access to the actual ionograms for investigations of both natural and sounder-stimulated plasma-wave phenomena. By this demonstration, we wish to encourage investigators to make other valuable space-borne sounder data sets accessible via the VWO.

  16. The Coherer: With Simple Demonstrations of the Generation, Propagation and Detection of Radio Waves

    ERIC Educational Resources Information Center

    Mills, Allan

    2010-01-01

    A coherer is a bistable device based on metal filings loosely confined between solid metal electrodes. This granular material normally exhibits a very high electrical resistance (tens of kilohms), but passage of the high-frequency current generated by reception of a radio signal causes it to "cohere" into a comparatively low resistance condition…

  17. The First Wave: The Beginnings of Radio in Canadian Distance Education

    ERIC Educational Resources Information Center

    Buck, George H.

    2006-01-01

    This article describes one of the first developments and deployment of radio for distance learning and education in Canada, beginning in the early 1920s. Anticipating a recent initiative of public-private partnerships, the impetus, infrastructure, and initial programs were provided by a large corporation. Description of the system, its purpose,…

  18. Revealing the Hidden Wave: Using the Very Small Radio Telescope to Teach High School Physics

    ERIC Educational Resources Information Center

    Doherty, Michael; Fish, Vincent L.; Needles, Madeleine

    2011-01-01

    Scientists and teachers have worked together to produce teaching materials for the Very Small Radio Telescope (VSRT), an easy-to-use, low-cost apparatus that can be used in multiple laboratory experiments in high school and university physics and astronomy classes. In this article, we describe the motivation for the VSRT and several of the…

  19. Very Low Frequency Radio Waves Produced by Electron Beam Injection in Space Plasmas.

    NASA Astrophysics Data System (ADS)

    Reeves, Geoffrey David

    On the Space Shuttle flights STS-3 in 1982, and Spacelab-2 in 1985, a 1 keV, 100 mA, square wave modulated electron beam was used to stimulate waves in the ionosphere. The resultant electric and magnetic AC fields were measured by the instruments on a Plasma Diagnostics Package (PDP). The PDP included a wideband wave receiver which probed the electric and magnetic wave response in the range 0-30 kHz. The STS-3 experiments provided qualitative information about the wave response to beam injection showing that (1) when the electron beam is operated broadband and narrowband waves are produced, (2) both electric and magnetic wave response is observed, (3) narrowband waves are produced at harmonics of the pulsing frequency, (4) the harmonic structure varies from one pulsing sequence to another, and (5) other narrowband beam-generated waves are also produced and these included 'satellite lines' and 'sub -harmonics'. The Spacelab-2 experiments used enhanced experimental and analytic techniques to continue this investigation. Over 300 separate electron beam experiments were performed. Two of the most important were the so-called 'Pulsed' and 'DC' flux tube connection sequences which provided information on the wave response at distances from the beam of ~5-250 m during a six hour free-flight of the PDP. The technique was developed to calibrate the wideband wave receiver data after the mission, allowing more quantitative analysis of the data from Spacelab-2. The primary results were (1) the amplitudes of the beam generated AC fields was determined, (2) an electromagnetic component of the broadband and narrowband radiation was observed, (3) the component was whistler mode radiation produced through the Cherenkov resonance, (4) features such as cut-off frequencies and spatial zones of wave amplitude could be understood in terms of the propagation of this radiation and the presence of near-field contributions, and (5) the levels of EMI and the dependance of the beam generated

  20. Dynamic of Langmuir and Ion-Sound Waves in Type 3 Solar Radio Sources

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Willes, A. J.; Cairns, I. H.

    1993-01-01

    The evolution of Langmuir and ion-sound waves in type 3 sources is investigated, incorporating linear growth, linear damping, and nonlinear electrostatic decay. Improved estimates are obtained for the wavenumber range of growing waves and the nonlinear coupling coefficient for the decay process. The resulting prediction for the electrostatic decay threshold is consistent with the observed high-field cutoff in the Langmuir field distribution. It is shown that the conditions in the solar wind do not allow a steady state to be attained; rather, bursty linear and nonlinear interactions take place, consistent with the highly inhomogeneous and impulsive waves actually observed. Nonlinear growth is found to be fast enough to saturate the growth of the parent Langmuir waves in the available interaction time. The resulting levels of product Langmuir and ion-sound waves are estimated theoretically and shown to be consistent with in situ ISEE 3 observations of type 3 events at 1 AU. Nonlinear interactions slave the growth and decay of product sound waves to that of the product Langmuir waves. The resulting probability distribution of ion-sound field strengths is predicted to have a flat tail extending to a high-field cutoff. This prediction is consistent with statistics derived here from ISEE 3 observations. Agreement is also found between the frequencies of the observed waves and predictions for the product S waves. The competing processes of nonlinear wave collapse and quasilinear relaxation are discussed, and it is concluded that neither is responsible for the saturation of Langmuir growth. When wave and beam inhomogeneities are accounted for, arguments from quasi-linear relaxation yield an upper bound on the Langmuir fields that is too high to be relevant. Nor are the criteria for direct wave collapse of the beam-driven waves met, consistent with earlier simulation results that imply that this process is not responsible for saturation of the beam instability. Indeed, even

  1. Radiowave Phase Scintillation and Precision Doppler Tracking of Spacecraft

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1997-01-01

    Phase scintillation cause by propagation through irregularities in the solar wind, ionosphere, and tropospher, introduces noise in spacecraft radio science experiments. The observations reported here are uses to refine the propagation noise model for Doppler tracking of deep space probes.

  2. Dynamics of Langmuir and ion-sound waves in type III solar radio sources

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Willes, A. J.; Cairns, I. H.

    1993-01-01

    The study traces the evolution of Langmuir and ion-sound waves in type III sources, incorporating linear growth, linear damping, and nonlinear electrostatic decay. Improved estimates are obtained for the wavenumber range of growing waves and the nonlinear coupling coefficient for the decay process. It is shown that the conditions in the solar wind do not allow a steady state to be attained; instead, bursty linear and nonlinear interactions take place, consistent with the highly inhomogeneous and impulsive waves actually observed. Nonlinear growth is found to be rapid enough to saturate the growth of the parent Langmuir waves in the available interaction time. The competing processes of nonlinear wave collapse and quasi-linear relaxation are discussed, and it is concluded that neither is responsible for the saturation of Langmuir growth.

  3. Estimate of a D region ionospheric electron density profile from MF radio wave observations by the S-310-37 rocket

    NASA Astrophysics Data System (ADS)

    Ashihara, Y.; Ishisaka, K.; Miyake, T.

    2016-01-01

    The S-310-37 rocket, launched at 11:20 (JST) on 16 January 2007, was equipped with a radio receiver to observe the medium-frequency (MF) radio wave propagation characteristics in the ionosphere. The radio receiver measured the intensity and the waveform of the radio wave at 873 kHz from the NHK Kumamoto broadcasting station. The polarized mode waves' intensity characteristics were obtained by analyzing the observed waveform. In this study, the S-310-37 rocket-observed polarized mode waves' propagation characteristics are analyzed in order to estimate the electron density profile in the ionospheric D region. These observations become better measurement approach because the electron density profile in the ionospheric D region is difficult to be observed by other equipment such as a Langmuir probe. A Langmuir probe can measure in the ionospheric D region; however, the absolute values may be off by the influence of wake effects around the sounding rocket. It is demonstrated that the propagation characteristics of the polarized mode waves can be successfully used to derive the electron density profile in the ionospheric D region.

  4. Internal wave activity in the polar atmospheric regions during 2006 - 2009 revealed by COSMIC radio occultation data

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander; Liou, Yuei-An

    The satellite mission Formosat-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) consists of six micro-satellites, and each of them has four GPS-antennas. It was launched in April 2006, orbiting around the Earth at approximately 800 km. The primary scientific goal of the mission is to demonstrate the value of near-real-time radio occultation (RO) observations in improving operational numerical weather predictions (NWP). The goal is readily shown by assimilating the measurements of atmospheric parameters into used NWP-models. These parameters include density, temperature, pressure and relative humidity fields in the atmosphere. An analysis of their geographic and seasonal distributions is necessary to the understanding of the energy and momentum transfer and the reaction of the polar atmosphere in response to global warming. This task is especially important as the Polar Regions are very sensitive to the change in global temperature and it may be a major cause of global sea level rising. In this work, a statistical analysis of the internal gravity wave (IGW) activity in polar atmospheric regions (latitudes more than 60º) using Formosat-3/COSMIC RO temperature data collected from July 2006 to March 2009 has been performed. Geographic and seasonal distributions of the IGW potential energy (wave activity indicator) in the altitude interval from 15 to 35 km have been determined and analyzed. The obtained results show that the wave activity in the polar atmosphere is strong in winter and spring. The potential energy of IGWs in spring is largest in Antarctic atmospheric region, while it is largest in winter in Arctic region. The wave potential energy increases with altitude up to 35 km in the atmosphere of both Earth’s hemispheres. In Antarctic region, internal waves with high potential energy occur in the atmosphere over the Antarctic Peninsula. In Arctic region, a high wave activity is mainly observed over North Atlantic Ocean (Iceland

  5. Trapping of sensing radio waves in an artificial large-scale ionospheric cavity

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, I. V.; Cherkashin, Yu. N.

    2016-03-01

    The results of phenomenological analysis of data from oblique chirp sounding of the ionosphere in a 2007 heating experiment with possible recording of the effect of trapping sounding-radiation in an artificial ionospheric cavity and spotlighting it in the near (over the Earth's surface) zone of the Sura facility are presented. The physical aspects of forming an additional trace on ionograms of oblique radio-sounding of the perturbed region of the ionosphere are discussed.

  6. Controlled stimulation of magnetospheric electrons by radio waves Experimental model for lightning effects

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Curtis, S. A.; Barcus, J. R.; Siefring, C. L.; Kelley, M. C.

    1983-01-01

    Magnetospheric electrons precipitated by ground-based coded very low frequency radio transmissions have been detected by rocket measurement of bremsstrahlung X-rays, caused by impact of the electrons with the upper atmosphere. The direct correlations obtained between the very low frequency signals and the X-rays demonstrate the limits of sensitivity required and indicate that this remote sensing technique would be useful for future study of very low frequency effects induced by single lightning strokes.

  7. Radio-wave trajectories in a linear layer with isomerous irregularities

    NASA Astrophysics Data System (ADS)

    Golynskii, S. M.; Khlybov, G. N.

    1983-12-01

    A numerical analysis is made of deviations of the most probable trajectory of rays in a linear ionospheric layer with isomerous irregularities from the undisturbed trajectory described by the Snellius law. It is shown that the presence of scattering irregularities in the medium leads to an increase in the length of the radio path and to a change in the inclination angle of the trajectory at the exit from the layer.

  8. Controlled stimulation of magnetospheric electrons by radio waves: experimental model for lightning effects.

    PubMed

    Goldberg, R A; Curtis, S A; Barcus, J R; Siefring, C L; Kelley, M C

    1983-03-18

    Magnetospheric electrons precipitated by ground-based coded very low frequency radio transmissions have been detected by rocket measurement of bremsstrahlung x-rays, caused by impact of the electrons with the upper atmosphere. The direct correlations obtained between the very low frequency signals and the x-rays demonstrate the limits of sensitivity required and indicate that this remote sensing technique would be useful for future study of very low frequency effects induced by single lightning strokes. PMID:17735612

  9. Interplanetary conditions during 3-kHz radio-wave detections in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Maclennan, C. G.; Gold, R. E.

    1985-01-01

    Plasma waves detected by the Voyager 1 and 2 spacecraft beyond about 12 AU that may be associated with the turbulence expected at the heliopause are interpreted in terms of the characteristics of the interplanetary medium at large heliocentric distances. The low-energy charged-particle environment in the outer heliosphere during the observations of the unusual plasma-wave signals is addressed. The particle data suggest that the outer heliosphere was unusually stable and free of transient shock and particle events for the roughly eight months during the wave observations.

  10. Numerical investigation of fast-wave propagation and radio-frequency sheath interaction with a shaped tokamak wall

    SciTech Connect

    Kohno, H.; Myra, J. R.; D'Ippolito, D. A.

    2015-07-15

    Interactions between propagating fast waves and radio-frequency (RF) sheaths in the ion cyclotron range of frequencies are numerically investigated based on a cold fluid plasma model coupled with a sheath boundary condition. In this two-dimensional study, the capability of the finite element code rfSOL, which was developed in previous numerical work, is extended to analyze self-consistent RF sheath-plasma interaction problems in a tokamak with a non-circular cross-section. It is found that a large sheath voltage is generated near the edges of the limiter-shaped deformation as a result of the conversion from fast to slow waves on the sheaths. The sheath voltage associated with this conversion is particularly significant in the localized region where the contact angle between the magnetic field line and the conducting wall varies rapidly along the curved sheath surface, which is consistent with the results in previous one-dimensional theoretical work. The dependences of the RF sheaths on various parameters in plasma such as the toroidal wavenumber, edge plasma density, and the degree of the RF wave absorption in the core region are also examined in detail.

  11. Coordinated Radio, Electron, and Waves Experiment (CREWE) for the NASA Comet Rendezvous and Asteroid Flyby (CRAF) instrument

    NASA Technical Reports Server (NTRS)

    Scudder, Jack D.

    1992-01-01

    The Coordinated Radio, Electron, and Waves Experiment (CREWE) was designed to determine density, bulk velocity and temperature of the electrons for the NASA Comet Rendezvous and Asteroid Flyby Spacecraft, to define the MHD-SW IMF flow configuration; to clarify the role of impact ionization processes, to comment on the importance of anomalous ionization phenomena (via wave particle processes), to quantify the importance of wave turbulence in the cometary interaction, to establish the importance of photoionization via the presence of characteristic lines in a structured energy spectrum, to infer the presence and grain size of significant ambient dust column density, to search for the theoretically suggested 'impenetrable' contact surface, and to quantify the flow of heat (in the likelihood that no surface exists) that will penetrate very deep into the atmosphere supplying a good deal of heat via impact and charge exchange ionization. This final report provides an instrument description, instrument test plans, list of deliverables/schedule, flight and support equipment and software schedule, CREWE accommodation issues, resource requirements, status of major contracts, an explanation of the non-NASA funded efforts, status of EIP and IM plan, descope options, and Brinton questions.

  12. Field strength variations of LF radio waves prior to earthquakes in central Italy

    NASA Astrophysics Data System (ADS)

    Bella, F.; Biagi, P. F.; Caputo, M.; Cozzi, E.; Della Monica, G.; Ermini, A.; Plastino, W.; Sgrigna, V.

    The electric field strength of the LF radio broadcasting RMC (Principality of Monaco) which operates at 216 kHz has been recorded since January 1991 by two receivers in central Italy. During the monitoring period we observed two evident attenuations of the field strength in one receiver, with durations of 6-10 days. The geomagnetic and ionospheric observations carried out in the same time interval do not seem able to explain the attenuation of the radio signal. An analysis of the seismic activity occurring in the area between transmitter and receiver has revealed that some days after the attenuations the energy released by earthquakes reaches a maximum. The observed attenuation might therefore be precursors of earthquakes. We also checked meteorological conditions and found that advections of warm air occurred during both the two anomalous periods. It seems possible that these conditions can help the action of preseismic effects in generating irregularities in the vertical gradient of the tropospheric radio refractivity able to produce defocusing of LF radiobroadcast propagation.

  13. Onboard Signal Processing: Wave of the Future for Planetary Radio Science?

    NASA Technical Reports Server (NTRS)

    Marouf, E. A.

    1993-01-01

    Future spacecraft-based radio observations of planetary surfaces, rings, and atmospheres could significantly benefit from recent technological advances in real-time digital signal processing (DSP) hardware. Traditionally, the radio observations have been carried out in a 'down link' configuration in which about 20-W spacecraft transmitted RF power illuminates the target of interest and the perturbed signal is collected at an Earth receiving station. The down link configuration was dictated by the large throughput of received data, corresponding to a relatively large recording band width (about 50 kHz) needed to capture the coherent and scattered signal components in the presence of trajectory, ephemeris, and measurement uncertainties. An alternative 'up link' configuration in which powerful Earth-based radio transmitters (20-200 kW) are used to illuminate the target and data are recorded on board a spacecraft could enhance the measurements' signal-to-noise ratio by a factor of about 1000, allowing a quantum leap in scientific capabilities. Various aspects of alternative signal processing technologies are discussed.

  14. Method of Transverse Displacements Formulation for Calculating the HF Radio Wave Propagation Paths. Statement of the Problem and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Nosikov, I. A.; Bessarab, P. F.; Klimenko, M. V.

    2016-06-01

    Fundamentals of the method of transverse displacements for calculating the HF radio-wave propagation paths are presented. The method is based on the direct variational principle for the optical path functional, but is not reduced to solving the Euler—Lagrange equations. Instead, the initial guess given by an ordered set of points is transformed successively into a ray path, while its endpoints corresponding to the positions of the transmitter and the receiver are kept fixed throughout the entire iteration process. The results of calculation by the method of transverse displacements are compared with known analytical solutions. The importance of using only transverse displacements of the ray path in the optimization procedure is also demonstrated.

  15. The incoherent scattering of radio waves in a non-Maxwellian plasma: The effects of Coulomb collisions

    SciTech Connect

    Tereshchenko, V.D.; Tereshchanko, E.D. ); Kohl, H. )

    1991-10-01

    In this paper the formulas for the ion distribution as well as the spectrum of radio waves scattered in a magnetized plasma with a strong electric field are derived. It is shown that the presence of the electric field in the ionosphere leads to an anisotropic ion velocity distribution and, therefore, to untypical incoherent scatter spectra for the F region of the polar ionosphere which are caused by ion-neutral together with ion-ion collisions. The effect of ion-ion collisions, which has not been taken into account so far, is to reduce the anisotropy of the ion velocity distribution. Estimates of the ion-ion collision frequency derived from EISCAT measurements show that this may happen above about 300 km.

  16. Modeling of high frequency radio wave absorption on oblique soundings during a solar X-ray flare

    NASA Astrophysics Data System (ADS)

    Rogov, D. D.; Moskaleva, E. V.; Zaalov, N. Y.

    2015-01-01

    High frequency radio wave absorption induced by Solar Ultra-Violet (UV) and X-ray flux is investigated. The influence of the solar flare observed on 11 April 2013 on the structure of oblique sounding ionograms in the Arctic region of Russia is considered. An adjustable model of the ionosphere developed for high frequency (HF) propagation problems was employed for this purpose. The simulation algorithm has been designed to accept a large variety of ionospheric conditions. On the basis of the SWPC D-region Absorption model the absorption effects in the ionosphere at sub-auroral latitudes of the Earth were calculated. This approach does not require knowledge of the electron density and electron collision frequency profiles of the D-region ionosphere. The oblique ionograms simulated with the absorption effect and ionograms provided by Russian network of ionospheric observations deployed in Arctic region exhibit quite a good resemblance.

  17. Radio-over-fiber system with tunable millimeter-wave generation and wavelength reuse for uplink connection

    NASA Astrophysics Data System (ADS)

    Zhang, Chan; Ning, Tigang; Li, Jing; Lin, Heng; Liu, Zhiming

    2016-03-01

    We propose and demonstrate a radio-over-fiber system to generate an optical millimeter wave (MMW) and realize wavelength reuse for an uplink connection. A tunable optical comb generated by a single Fabry-Perot laser serves as the optical source. The central carrier is separated by an optical circulator cascaded with a fiber Bragg grating. For the downlink, the unmodulated central carrier is coupled with one subcarrier, which has been modulated with 2.5-Gb/s data. Then, different MMWs can be generated by choosing different subcarriers. While for the uplink, the same central carrier is reused for an uplink connection with 1.25-Gb/s data. In the scheme, a 60-GHz MMW is obtained and the bidirectional data are simultaneously transmitted over 60-km transmission with <0.5-dB power penalty. This system shows a simple cost-efficient configuration and good performance over long-distance delivery.

  18. Detection of Transionospheric SuperDARN HF Waves by the Radio Receiver Instrument on the enhanced Polar Outflow Probe Satellite

    NASA Astrophysics Data System (ADS)

    Gillies, R. G.; Yau, A. W.; James, H. G.; Hussey, G. C.; McWilliams, K. A.

    2014-12-01

    The enhanced Polar Outflow Probe (ePOP) Canadian small-satellite was launched in September 2013. Included in this suite of eight scientific instruments is the Radio Receiver Instrument (RRI). The RRI has been used to measure VLF and HF radio waves from various ground and spontaneous ionospheric sources. The first dedicated ground transmission that was detected by RRI was from the Saskatoon Super Dual Auroral Radar Network (SuperDARN) radar on Nov. 7, 2013 at 14 MHz. Several other passes over the Saskatoon SuperDARN radar have been recorded since then. Ground transmissions have also been observed from other radars, such as the SPEAR, HAARP, and SURA ionospheric heaters. However, the focus of this study will be on the results obtained from the SuperDARN passes. An analysis of the signal recorded by the RRI provides estimates of signal power, Doppler shift, polarization, absolute time delay, differential mode delay, and angle of arrival. By comparing these parameters to similar parameters derived from ray tracing simulations, ionospheric electron density structures may be detected and measured. Further analysis of the results from the other ground transmitters and future SuperDARN passes will be used to refine these results.

  19. Cometary kilometric radio waves and plasma waves correlated with ion pick-up effect at Comet Halley

    NASA Technical Reports Server (NTRS)

    Oya, H.; Morioka, A.; Miyake, W.; Smith, E. J.; Tsurutani, B. T.

    1985-01-01

    Bow-shock movements at Comet Halley are inferred from the discrete spectra of the cometary kilometric radiation (30-195 kHz); the observed emissions can be interpreted as being generated and propagating from the moving shock. The shock motion is possibly associated with the time variation of the solar wind and cometary outgassing. It is concluded that these plasma wave phenomena are manifestations of ion pick-up processes, which occur even in a remote region 7 million to 10 million km from the cometary nucleus.

  20. Cometary kilometric radio waves and plasma waves correlated with ion pick-up effect at Comet Halley

    NASA Astrophysics Data System (ADS)

    Oya, H.; Morioka, A.; Miyake, W.; Smith, E. J.; Tsurutani, B. T.

    Bow-shock movements at Comet Halley are inferred from the discrete spectra of the cometary kilometric radiation (30-195 kHz); the observed emissions can be interpreted as being generated and propagating from the moving shock. The shock motion is possibly associated with the time variation of the solar wind and cometary outgassing. It is concluded that these plasma wave phenomena are manifestations of ion pick-up processes, which occur even in a remote region 7 million to 10 million km from the cometary nucleus.

  1. Simultaneous observation of VHF radio wave transmission anomaly propagated beyond line of site prior to earthquakes in multiple sites

    NASA Astrophysics Data System (ADS)

    Yamashita, H.; Mogi, T.; Moriya, T.; Takada, M.; Morisada, M.

    2010-12-01

    The VHF radio wave transmission anomalies propagated beyond line of site prior to earthquakes (M>4), (hereafter termed EQ-echo) have been observed more than 20 times from 2004 at the Erimo observatory (ERM) in Hokkaido, Northern Japan. A statistical relationship between magnitude of preceding earthquake and total duration time of the EQ-echo has been proposed (Moriya et al.2009). To confirm a region where the EQ-echo simultaneously observed for each earthquake, we installed another 3 observatory with approximately 5 km spacing in the surroundings of ERM. The EQ-echoes have been observed simultaneously at two observatories prior to four earthquakes since 2008. The initial time and duration of each EQ echo were same time in several cases but different at some minutes each other in other cases. The wave forms of the EQ-echoes were similar in both records. In the Fuyushima observatory (FYS, 10km away from ERM) , three-way antennas were installed at every 120 degree to detect an arrival direction of EQ-echoes. Simultaneous observations of EQ-echoes at ERM and FYS for the preceding EQ (M=4.7) that occurred in the Hidaka mountains revealed that this EQ-echo came from direction of the epicenter based on the FYS observation and this direction was consistent with that of EQ-echo observed simultaneously in ERM. Although some of simultaneous observed EQ-echoes were observed in same time completely at both observatories, but some of them were with time rag of duration of each EQ-echo between multiple observed sites. We discussed what these time rags mean by considering possibilities of moving of scattering objects, generation of a radio duct, and so on, as in response to this fact.

  2. Using IRI and GSM TIP model results as environment for HF radio wave propagation model during the geomagnetic storm occurred on September 26-29, 2011

    NASA Astrophysics Data System (ADS)

    Kotova, D. S.; Klimenko, M. V.; Klimenko, V. V.; Zakharov, V. E.; Ratovsky, K. G.; Nosikov, I. A.; Zhao, B.

    2015-11-01

    This paper analyses the geomagnetic storm on September 26-29, 2011. We compare the calculation results obtained using the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) and IRI-2012 (Bilitza et al., 2014) model with ground-based ionosonde data of stations at different latitudes and longitudes. We examined physical mechanisms responsible for the formation of ionospheric effects during the main phase of geomagnetic storm that occurred at the rising phase of the 24th solar cycle. We used numerical results obtained from IRI-2012 and GSM TIP models as propagation environment for HF signals from an equatorial transmitter during quiet and disturbed conditions. We used the model of HF radio wave propagation developed in I. Kant Baltic Federal University (BFU) that is based on the geometrical optics approximation. We compared the obtained radio paths in quiet conditions and during the main and recovery storm phases and evaluated radio wave attenuation in different media models.

  3. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 1

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1973-01-01

    An extensive set of ground-based measurements of the diurnal variation of medium frequency radio wave adsorption and virtual height is analyzed in terms of current understanding of the D- and lower E-region ion production and loss process. When this is done a gross discrepancy arises, the source of which is not known.

  4. An improvement of the sensitivity of GPS radio occultation data to detect gravity waves through observational and modeling factors

    NASA Astrophysics Data System (ADS)

    Alexander, P.; de la Torre, A.; Hierro, R.; Llamedo, P.

    2016-01-01

    There is a mid-latitude region to the East of the Andes Range in the Southern Hemisphere that exhibits ideal conditions for the generation of gravity waves (GW) by topography mainly during winter. The configuration favors the generation of wavefronts that are parallel to the North-South direction. Global Positioning System (GPS) radio occultation (RO) retrievals from the COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) mission exhibit in a large proportion of the soundings an orientation which should be favorable to the detection of these wavefronts. We try to verify if this GW activity surplus on the East with respect to the West in the studied zone in winter emerges clearly in the GPS RO data between years 2007 and 2012. We argue that the orientation of the soundings but also the mathematical model selected to represent the GW energy distribution can affect the possibility of detecting the signatures of the waves. In particular, we explore a new interpretation of the GW energy distribution observed by GPS RO at the lowest values, as they stay below the precision limit of the technique. We suggest to replace that part of the measured distribution by an exponential curve that in general suits the trend of all the other observed energies. In following this alternative it is shown that the calculated mountain wave activity in the studied sector is now even more clearly larger in the East than in the West during winter. Finally, we consider that energy distributions observed with any measurement technique should in general not be considered as the solely contribution from waves, as also other variable phenomena may be adding to the final outcome.

  5. Effect of gravity waves on the tropopause temperature, height and water vapor in Tibet from COSMIC GPS Radio Occultation observations

    NASA Astrophysics Data System (ADS)

    Khan, Attaullah; Jin, Shuanggen

    2016-02-01

    The tropopause plays an important role in climate change, particularly in Tibet with complex topography and climate change system. In this paper, the temperature and height of the Cold Point Tropopause (CPT) in Tibet are obtained and investigated from COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) GPS Radio Occultation (RO) during June 2006-Feb 2014, which are compared with Lapse Rate Tropopause (LRT) from Atmospheric Infrared Sounder (AIRS/NASA). Furthermore, the impact of Gravity waves (GW) potential energy (Ep) on the CPT-Temperature, CPT-Height, and the variation of stratospheric water vapor with GW Ep variations are presented. Generally the coldest CPT temperature is in June-July-August (JJA) with -76.5 °C, resulting less water vapor into the stratosphere above the cold points. The temperature of the cold point increases up to -69 °C during the winter over the Tibetan Plateau (25-40°N, 70-100°E) that leads to increase in water vapor above the cold points (10 hPa). Mean vertical fluctuations of temperature are calculated as well as the mean gravity wave potential energy Ep for each month from June 2006 to Feb 2014. Monthly Ep is calculated at 5°×5° grids between 17 km and 24 km in altitude for the Tibetan Plateau. The Ep raises from 1.83 J/Kg to 3.4 J/Kg from summer to winter with mean Ep of 2.5 J/Kg for the year. The results show that the gravity waves affect the CPT temperature and water vapor concentration in the stratosphere. Water vapor, CPT temperature and gravity wave (Ep) have good correlation with each other above the cold points, and water vapor increases with increasing Ep.

  6. Solar gravitational deflection of radio waves measured by very-long-baseline interferometry

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Kent, S. M.; Knight, C. A.; Shapiro, I. I.; Clark, T. A.; Hinteregger, H. F.; Rogers, A. E. E.; Whitney, A. R.

    1974-01-01

    Utilizing a four-antenna technique, simultaneous observations were made, at each end of an 845-km baseline, of the radio sources 3C279 and 3C273B, which are 10 deg apart in the sky. Differences in interferometric phases at 3.7-cm wavelength monitored near the time of the 1972 occultation of 3C279 by the sun, yielded a gravitational deflection of 0.99 plus or minus 0.03 times the value predicted by general relativity, corresponding to gamma = 0.98 plus or minus 0.06 (standard error).

  7. Climatology of GNSS ionospheric scintillation at high latitudes

    NASA Astrophysics Data System (ADS)

    Spogli, L.; Alfonsi, L.; de Franceschi, G.; Romano, V.; Aquino, M.; Dodson, A.; Mitchell, C. N.

    2009-12-01

    Under perturbed conditions caused by intense solar wind magnetosphere coupling, the ionosphere may become highly turbulent and irregularities, typically enhancements or depletions of the electron density embedded in the ambient ionosphere, can form. Such irregularities cause diffraction effects, mainly due to the random fluctuations of the refractive index of the ionosphere, on the satellites signals passing through them and consequent perturbations may cause GNSS navigation errors and outages, abruptly corrupting its performance. Due to the morphology of the geomagnetic field, whose lines are almost vertical at high latitude, polar areas are characterized by the presence of significant ionospheric irregularities having scale sizes ranging from hundreds of kilometers down to a few centimeters and with highly dynamic structures. The understanding of the effect of such phenomena is important, not only in preparation for the next solar cycle (24), whose maximum is expected in 2012, but also for a deeper comprehension of the dynamics of the high-latitude ionosphere. We analyze the fluctuations in the carrier frequency of the radio waves received on the ground, commonly referred to as ionospheric amplitude and phase scintillations, to investigate the physical processes causing them. The phase scintillations on GNSS signals are likely caused by ionospheric irregularities of scale size of hundreds of meters to few kilometers. The amplitude scintillations on GNSS signals are caused by ionospheric irregularities of scale size smaller than the Fresnel radius, which is of the order of hundreds of meters for GNSS signals, typically embedded into the patches. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Institute of Engineering Surveying and Space Geodesy (IESSG) of the University of Nottingham manage the same kind of GISTM (GPS Ionospheric Scintillation and TEC Monitor) receivers over the European high and mid latitude regions and over Antarctica. The

  8. The search for atmospheric waves below the clouds of Jupiter using radio wavelength observations

    NASA Astrophysics Data System (ADS)

    Cosentino, Rick; Butler, Bryan; Sault, Bob; Morales-Juberias, Raul; Simon, Amy

    2015-11-01

    We observed Jupiter at 2 cm wavelength with the VLA in early February 2015. This particular frequency is mostly sensitive to variations in ammonia opacity and probes a depth between 1 and 2 bars pressure; below the visible cloud deck at 0.7 bars. The data acquired was projected into a cartographic map of the planet following the technique of Sault et al. (2004). The horizontal resolution is ~1500 km and we have examined the map for atmospheric waves on these and larger scales. The map has revealed prominent features near 8N, in the North Equatorial Belt, where the 5 micron hotspot planetary wave feature also resides. The Great Red Spot is also prominent and has a noticeable meridional asymmetry. We will present our analysis of the spatial structure for the entire map and best fit of its wave feature spectrum.Our research is supported by NRAO and NMT.

  9. Intensity Scintillations in Planetary Ring Occultations: Simulations

    NASA Astrophysics Data System (ADS)

    Marouf, E.

    2003-12-01

    A combined analytical and numerical simulation approach is used to investigate the first, second, and fourth statistical averages of the signal observed during a ring occultation experiment. The rings are modeled as a randomly blocked diffraction screen. The field behind the screen (the rings) assumes binary values: zero if located in the shadow area cast by ring particles and the full incident field otherwise. The stochastic geometry of the union of shadow areas cast behind the rings defines a so-called Boolean model. Either the random wavefront formed behind the screen or it's statistical averages can be propagated to an observer (a detector) some distance away from the diffraction screen. The parabolic approximation of the wave equation is used to model near-forward diffraction effects over the free-space path from the ring plane to the observation plane. The first and second moments were previously shown to correspond to the well-known coherent and scattered signal components observed during radio occultation experiments. Of particular interest here is the fourth moment of the random field at the observer, which determines the intensity scintillation index. Numerical simulations are used to investigate its behavior as a function of relevant model parameters, in particular, the ring particle radius and the Fresnel scale of observation. A monodispersion of ring particles is assumed to keep the model as simple as possible so as to investigate conditions under which the particle size may be recoverable from the intensity scintillation measurements. The model is also idealized to one-dimensional diffraction screen in order to speed up the computations; however, simulations of the more realistic two-dimensional diffraction screen models are also carried out.

  10. Analysis of strong ionospheric scintillation events measured by means of GPS signals at low latitudes during disturbed conditions

    NASA Astrophysics Data System (ADS)

    Forte, B.

    2012-08-01

    Drifting structures characterized by inhomogeneities in the spatial electron density distribution at ionospheric heights cause the scintillation of radio waves propagating through. The fractional electron density fluctuations and the corresponding scintillation levels may reach extreme values at low latitudes during high solar activity. Different levels of scintillation were observed on experimental data collected in the Asian sector at low latitudes by means of a GPS dual frequency receiver under moderate solar activity (2005). The GPS receiver used in these campaigns was particularly modified in firmware in order to record power estimates on the C/A code as well as on the carriers L1 and L2. Strong scintillation activity was recorded in the post-sunset period (saturatingS4 and SI as high as 20 dB). Spectral modifications and broadening was observed during high levels of scintillation possibly indicating refractive scattering taking place instead of diffractive scattering. A possible interpretation of those events was attempted on the basis of the refractive scattering theory developed by Uscinski (1968) and Booker and MajidiAhi (1981).

  11. Scintillation noise power spectrum and its impact on high-redshift 21-cm observations

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.

    2016-05-01

    Visibility scintillation resulting from wave propagation through the turbulent ionosphere can be an important source of noise at low radio frequencies (ν ≲ 200 MHz). Many low-frequency experiments are underway to detect the power spectrum of brightness temperature fluctuations of the neutral-hydrogen 21-cm signal from the Epoch of Reionization (EoR: 12 ≳ z ≳ 7, 100 ≲ ν ≲ 175 MHz). In this paper, we derive scintillation noise power spectra in such experiments while taking into account the effects of typical data processing operations such as self-calibration and Fourier synthesis. We find that for minimally redundant arrays such as LOFAR and MWA, scintillation noise is of the same order of magnitude as thermal noise, has a spectral coherence dictated by stretching of the snapshot uv-coverage with frequency, and thus is confined to the well-known wedge-like structure in the cylindrical (two-dimensional) power spectrum space. Compact, fully redundant (dcore ≲ rF ≈ 300 m at 150 MHz) arrays such as HERA and SKA-LOW (core) will be scintillation noise dominated at all baselines, but the spatial and frequency coherence of this noise will allow it to be removed along with spectrally smooth foregrounds.

  12. The FORMOSAT-3/COSMIC equatorial spread-F and global scintillation model

    NASA Astrophysics Data System (ADS)

    Chen, S. P.; Bilitza, D.; Liu, J. Y. G.

    2014-12-01

    Radio scintillation of receiving signal is a sensitive detector of ionospheric density irregularity or Equatorial spread-F (ESF), it is been defined as a random modulation imported to propagating wave by density irregularity in the propagation medium. Thus, scintillation observations have been vice versa employed to identify irregular structure in highly varied propagation media. However, the limitation of ground-based receiver confines the research range and caused the shortage of oceanic data. Since the launch of FORMOSAT-3/COSMIC (F3/C) in 2006, the constellation formed by six LEO satellites continuing receiving L1-band (1.5 GHz) signal from GPS system. The occultation scintillation index S4 has already been calculated and recorded for 7 years, and 72° orbital inclination makes F3/C occultation profiles capable to establishing globally observation coverage. In this report, we'll display and discuss the result from both equatorial spread-F occurrence rate and global scintillation S4 index empirical model calculated from F3/C profile data. A comparison with IRI-2012 ESF occurrence rate is also provided as reference.

  13. Interstellar Turbulence: What Radio Astronomers Can Tell Plasma Theorists

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.

    1999-12-01

    A discussion is given of the results of radio wave propagation observations within the context of the multiphase structure of the interstellar medium. The observed phenomenon discussed is Interstellar Scintillations, or ISS. Results from similar radio studies of the solar wind help us interpret the data from the interstellar medium. Radio propagation observations can measure both the spectral form and the intensity of turbulence in the interstellar medium on spatial scales from tens of kilometers to 100 astronomical units. A number of major observational results from ISS are listed. Perhaps the primary is the evidence for a roughly power law spectrum of irregularities which extends over many decades of spatial scale. Outstanding goals for the future, as well as present paradoxes and inconsistencies are enumerated and discussed. The primary goal for work in the near term will be to improve on the presently inchoate understanding of the processes which generate the interstellar turbulence.

  14. Simultaneous observation of HF-enhanced plasma waves and HF-wave self-focusing

    SciTech Connect

    Frey, A.; Duncan, L.M.

    1984-07-01

    Intense HF-radiowaves of the ordinary mode transmitted from the ground enhance plasma waves near the reflection height. These have been extensively studied in the past by the use of Incohernt-Scatter-Radars. Intense HF-radiowaves propagating in the ionosphere also produce electron density irregularities with scale sizes much larger than the HF wavelength of approx.60 m. These have been observed by radio star intensity scintillations. For the past 2 years a new method was used at Arecibo, P.R. which allows radar- and scintillation-measurements at 430 MHz to be performed simultaneously along the same line of sight. The scale sizes deduced from the scintillation measurements are shorter than the scale sizes observed with the radar and are inconsistent with the HF-power density thresholds predicted by existing theories.

  15. The effect of plasma inhomogeneities on (i) radio emission generation by non-gyrotropic electron beams and (ii) particle acceleration by Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tsiklauri, D.

    2014-12-01

    Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refaction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph=ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011) [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013) [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012) [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014) [5] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 21, 012903 (2014)

  16. Observations of electron gyroharmonic waves and the structure of the Io torus. [jupiter 1 spacecraft radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Alexander, J. K.; Desch, M. D.; Hubbard, R. F.; Pedersen, B. M.

    1980-01-01

    Narrow-banded emissions were observed by the Planetary Radio Astronomy experiment on the Voyager 1 spacecraft as it traversed the Io plasma torus. These waves occur between harmonics of the electron gyrofrequency and are the Jovian analogue of electrostatic emissions observed and theoretically studied for the terrestrial magnetosphere. The observed frequencies always include the component near the upper hybrid resonant frequency, (fuhr) but the distribution of the other observed emissions varies in a systematic way with position in the torus. A refined model of the electron density variation, based on identification of the fuhr line, is included. Spectra of the observed waves are analyzed in terms of the linear instability of an electron distribution function consisting of isotropic cold electrons and hot losscone electrons. The positioning of the observed auxiliary harmonics with respect to fuhr is shown to be an indicator of the cold to hot temperature ratio. It is concluded that this ratio increases systematically by an overall factor of perhaps 4 or 5 between the inner and outer portions of the torus.

  17. Disks, Young Stars, and Radio Waves: The Quest for Forming Planetary Systems

    NASA Astrophysics Data System (ADS)

    Chandler, C. J.; Shepherd, D. S.

    2008-08-01

    Kant and Laplace suggested the Solar System formed from a rotating gaseous disk in the 18th century, but convincing evidence that young stars are indeed surrounded by such disks was not presented for another 200 years. As we move into the 21st century the emphasis is now on disk formation, the role of disks in star formation, and on how planets form in those disks. Radio wavelengths play a key role in these studies, currently providing some of the highest-spatial-resolution images of disks, along with evidence of the growth of dust grains into planetesimals. The future capabilities of EVLA and ALMA provide extremely exciting prospects for resolving disk structure and kinematics, studying disk chemistry, directly detecting protoplanets, and imaging disks in formation.

  18. Radio wave propagation in horizontally inhomogeneous environments by using the parabolic equation method

    NASA Astrophysics Data System (ADS)

    Barrios, A. E.

    1991-05-01

    The validity of a parabolic equation (PE) model for predicting radio field strengths in horizontally inhomogeneous environments was investigated by performing comparisons between the model and experimental data. Excellent agreements were found at VHF and UHF frequencies with good agreement in S- and X-bands. In some cases, the predicted curves for the S-band comparisons under-estimated that of the measured data at large ranges. This may be the result of phenomena such as surface roughness, backscatter, etc., not accounted for in the model. Discrepancies may also result from the presence of evaporation ducts not included in the environmental inputs to the model because of a lack of detailed measurements. This would account for lower predicted signal levels at higher frequencies.

  19. The thresholds of ionospheric plasma instabilities pumped by high-frequency radio waves at EISCAT

    NASA Astrophysics Data System (ADS)

    Bryers, C. J.; Kosch, M. J.; Senior, A.; Rietveld, M. T.; Yeoman, T. K.

    2013-11-01

    We test the existing theories regarding the thresholds for the parametric decay instability (PDI), the oscillating two-steam instability (OTSI), and the thermal parametric instability (TPI) using the European Incoherent Scatter (EISCAT) facility's ionospheric heater. In these processes, the pump wave can couple to various electrostatic waves in the F layer ionosphere, which can be observed using the EISCAT UHF radar (PDI and OTSI) or by HF radar (TPI). On 19 October 2012, the heater power was stepped from ˜0.5 MW to ˜100 MW effective radiated power in seven steps using a 1 min on, 1 min off cycle. We use an electric field model, taking into account D region absorption, to compare theory with our observations. In all three cases, we find good agreement. In addition, the growth of striations formed during the TPI causes anomalous absorption of the heater wave, which we observe as decreased UHF ion line and plasma line backscatter power. We show evidence that heating for a prolonged period of time reduces the UHF ion line intensity throughout the experiment.

  20. Self-consistent Powerful Radio-wave Absorption by Artificial Ionosphere Turbulence

    NASA Astrophysics Data System (ADS)

    Kochetov, Andrey; Menkova, Uliya; Grach, Savely

    The numerical simulations of non-linear Schrodinger equation in inhomogeneous plasma layer with pumping and damping are carried out to investigate the influence of self-consistent incident powerful electromagnetic wave absorption in the regions of plasma turbulence excitation to reflection index dynamics. The damping of electromagnetic wave is taking into account by including in the set of equations (Kochetov A.V., Mironov V. A., Terina G.I., Strong Turbulence Effects in Artificially Disturbed Ionosphere, Adv. Space.Res. 2002,vol.29, No.9, p.1369) imaginary part of plasma dielectric permitivity in the vicinity of wave reflection point in the regions with strong electromagnetic field. The large range of damping parameters: threshold, decrement; different amplitude dependence, including hysteretic one, is studied, in particular, in correlation to (V. D. Shapiro, V. I. Shevchenko, Handbook of Plasma Physics, Eds. A. A. Galeev, R N. Sudan, Elsevier, 1984, vol.2, p.119). It is obtained for some regimes that the calculated reflection index dynamics agrees qualitatively to the experimental results (B. Thide, E. N. Sergeev, S. M. Grach,T. B. Leyser, T. D. Carrozi, Competition between Langmuir and upper hybrid turbulence in an HF pumped ionosphere, Phys. Rev. Lett., 2005, vol. 95, no.25, p. 255002). The work is supported in part by Russian Foundation for Basic Research by the grant No. 06-02-17334.

  1. Are type III radio aurorae directly excited by electrostatic ion cyclotron waves

    SciTech Connect

    McDiarmid, D.R.; Watermann, J.; McNamara, A.G. ); Koehler, J.A.; Sofko, G.J. )

    1989-10-01

    In 1981, a network of three 50-MHz radar transmitters and two receivers were operated in the CW mode on the Canadian prairies. The echoes obtained from coherent ionospheric backscatter were divided into segments of 205 ms such that their FFT spectra yielded frequency resolution of 4.9 Hz. The spectra were subsequently averaged over 10 s. Type III spectra (narrow spectra with sub ion-acoustic Doppler shifts) were observed (often simultaneously) on radar links whose wave vector components perpendicular to the geomagnetic field were almost identical while their components parallel to the field were significantly different. From a statistical analysis of more than 300 type III spectra it is inferred that these are in general unlikely to arise from electrostatic ion cyclotron waves directly excited by an essentially linear process. Doppler shifts around 55 Hz were much more frequently observed than around 30 Hz, the occurrence of type III spectra increased with increasing magnetic aspect angle (deviation of the scatter wave vector from perpendicular to the geomagnetic field), and the mean Doppler shifts of type III spectra simultaneously on different radar links went through a minimum for aspect angles between 4{degree} and 7{degree} (depending on the assumed backscatter height). These three results disagree with theoretical expectations. The spectral width the type III echoes decreased linearly with magnetic aspect by about 2 Hz/deg.

  2. The effect of plasma density structure on HF radio wave propagation at auroral and polar latitudes measured by e-POP

    NASA Astrophysics Data System (ADS)

    Perry, G. W.; James, H. G.; Gillies, R.; McWilliams, K. A.; St-Maurice, J. P.; Yau, A. W.

    2015-12-01

    One of the scientific objectives of the enhanced Polar Outflow Probe (e-POP) Radio Receiver Instrument (RRI) is to study ionospheric density structure and its impact on High Frequency (HF) radio wave propagation. We present a survey of several ePOP RRI transits through isolated beams of the Super Dual Auroral Radar Network (SuperDARN) Saskatoon and Rankin Inlet radars. It reveals that the spreading of a SuperDARN beam beyond its nominal azimuthal beam width of 3.24° is a common occurrence at auroral and polar latitudes. Furthermore, on multiple occasions, lateral deviations of a beam's power peak by several beam widths was measured, indicating the presence of significant plasma density gradients along the ray path. The e-POP RRI measurements illustrate that our understanding and recognition of plasma density gradients and their influence on HF radio wave propagation is limited. We report on the results of employing HF ray tracing techniques to quantify the impact of ionospheric structuring on HF radio wave propagation, and consider the source of the gradients contributing to the spreading of the SuperDARN beams.

  3. Potential Spacecraft-to-Spacecraft Radio Observations with EJSM: Wave of the Future? (Invited)

    NASA Astrophysics Data System (ADS)

    Marouf, E. A.; Tortora, P.; Asmar, S. W.; Folkner, W. M.; Hinson, D.; Iess, L.; Linscott, I. R.; Lorenz, R. D.; Mueller-Wodarg, I. C.

    2010-12-01

    Future active radio observations of planetary and satellite atmospheres and surfaces could significantly benefit form the presence of two or more spacecraft in orbit around a target object. Traditionally, radio occultation and bistatic surface scattering experiments have been conducted using a single spacecraft operating in the Downlink (DL) configuration, with the spacecraft transmitting and at least one Earth-based station receiving. The configuration has the advantage of using powerful ground-based receivers for down-conversion, digitization, and digital recording of large bandwidth data for later off-line processing and analysis. It has the disadvantage of an available free-space signal-to-noise ratio (SNR) limited by the relatively small carrier power (10-20 W) a spacecraft can practically transmit. Recent technological advances in designing small-mass and small-power spacecraft-based digital receivers capable of on-board signal processing could open the door for significant performance improvement compared with the DL configuration. For example, with two spacecraft in orbit instead of one, the smaller distance D between the two spacecraft compared with the distance to Earth can boost achievable free-space SNR by one to three orders of magnitude, depending on D. In addition, richer variability in observation geometry can be captured using spacecraft-to-spacecraft (SC-to-SC) radio occultations and surface scattering. By their nature, traditional DL occultations are confined to the morning and evening terminators. Availability of on-board processing capability also opens the door for conducting Uplink (UL) occultation and bistatic observations, where very large power (> 20 kW) can be transmitted from an Earth-based station, potentially boasting achievable free-space SNR by orders of magnitude, comparable to the SC-to-SC case and much higher than the DL case. The Europa Jupiter System Mission (EJSM) will likely be the first planetary mission to benefit from the

  4. Modeling of long-path propagation characteristics of VLF radio waves as observed from Indian Antarctic station Maitri

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudipta; Palit, Sourav; Chakrabarti, Sandip K.

    2015-10-01

    Propagation of very low frequency (VLF) radio signal through the Earth-ionosphere waveguide depends strongly on the plasma properties of the ionospheric D layer. Solar extreme ultraviolet radiation plays the central role in controlling physical and chemical properties of the lower ionospheric layers and hence determining the propagation characteristics of a VLF signal. The nature of interference among different propagating modes varies widely with the length of the propagation path. For a very long path, exposure of solar radiation and thus the degree of ionization vary by a large amount along the path. This influences the VLF signal profile by modulating the sky wave propagation. To understand the propagation characteristics over such a long path, we need a thorough investigation of the chemical reactions of the lower ionosphere which is lacking in the literature. Study of radio signal characteristics in the Antarctic region during summer period in the Southern Hemisphere gives us a unique opportunity to explore such a possibility. In addition, there is an extra feature in this path—the presence of solar radiation and hence the D region for the whole day during summer in at least some sections of the path. In this paper, we present long-distance propagation characteristics of VLF signals transmitted from VTX (18.2 kHz) and NWC (19.8 kHz) transmitters recorded at the Indian permanent station Maitri (latitude 70°45'S, longitude 114°40'E) in 2007-2008. A very stable diurnal variation of the signal has been obtained with no signature of nighttime fluctuation due the presence of 24 h of sunlight. Using ion production and recombination profiles by solar irradiance and incorporating D region ion chemistry processes, we calculate the electron density profile at different heights. Using this profile in the Long Wavelength Propagation Capability code, we are able to reproduce the amplitude of VLF signal.

  5. Ionospheric scintillation studies

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Freemouw, E. J.

    1973-01-01

    The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.

  6. Observations of E region irregularities generated at auroral latitudes by a high-power radio wave

    NASA Technical Reports Server (NTRS)

    Djuth, F. T.; Jost, R. J.; Noble, S. T.; Gordon, W. E.; Stubbe, P.

    1985-01-01

    The initial results of a series of observations made with the high-power HF heating facility near Tromso, Norway are reported. During these experiments, attention was focused on the production of artificial geomagnetic field-aligned irregularities (AFAIs) in the auroral E region by HF waves. A mobile 46.9-MHz radar was used to diagnose the formation of AFAIs having spatial scales of 3.2 across geomagnetic field lines. The dynamic characteristics of the AFAIs are discussed within the context of current theoretical work dealing with the natural production of AFAIs in the ionosphere.

  7. Investigation of Radio Wave Propagation in the Martian Ionosphere Utilizing HF Sounding Techniques

    NASA Astrophysics Data System (ADS)

    Yowell, Robert J.

    1996-06-01

    This thesis presents a preliminary design of an ionospheric sounder to be carried aboard one or more of NASA's Mars Surveyor landers. Past Russian and American probes have indicated the existence of an ionosphere, but none of these missions remotely sensed this atmospheric layer from the surface. The rationale for utilizing a surface-based Martian ionospheric sounder is discussed. Based on NASA's choice of launch vehicle and power source, a low-weight, low-powered Chirp sounder using a horizontally-polarized dipole antenna is recommended for the sounder experiment. The sounder experiment should be conducted for at least one Martian year, in order to investigate significant changes in radio propagation during seasonal transitions. Specific data compression techniques are suggested in order to reduce the quantity of data transferred from each sounder. The Appendix presents an overview of Earth's ionospheric structure and solar cycle effects. Finally, a Matlab software model of a hypothetical ionogram as measured from the Martian surface is presented.

  8. Radiation hazards of radio frequency waves on the early embryonic development of Zebrafish

    NASA Astrophysics Data System (ADS)

    Harkless, Ryan; Al-Quraishi, Muntather; Vagula, Mary C.

    2014-06-01

    With the growing use of wireless devices in almost all day-to-day activities, exposure to radio-frequency radiation has become an immediate health concern. It is imperative that the effects of such radiation not only on humans, but also on other organisms be well understood. In particular, it is critical to understand if RF radiation has any bearing on the gene expression during embryonic development, as this is a crucial and delicate phase for any organism. Owing to possible effects that RF radiation may have on gene expression, it is essential to explore the carcinogenic or teratogenic properties that it may show. This study observed the effects of RF radiation emitted from a cellular telephone on the embryonic development of zebra fish. The expression of the gene shha plays a key role in the early development of the fish. This gene has homologs in humans as well as in other model organisms. Additionally, several biomarkers indicative of cell stress were examined: including lactate dehydrogenase (LDH), superoxide dismutase (SOD), and lipid peroxidation (LPO). Results show a significant decrease in the expression of shha, a significant decrease in LDH activity. There was no significant increase in SOD and LPO activity. No morphological abnormalities were observed in the developing embryos. At present, these results indicate that exposure to cell phone radiation may have a suppressive effect on expression of shha in D. rerio, though such exposure does not appear to cause morphological detriments. More trials are underway to corroborate these results.

  9. Millimetre-Wave Spectrum of Isotopologues of Ethanol for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Walters, Adam; Schäfer, Mirko; Ordu, Matthias H.; Lewen, Frank; Schlemmer, Stephan; Müller, Holger S. P.

    2015-06-01

    Complex molecules have been identified in star-forming regions and their formation is linked to the specific physical and chemical conditions there. They are suspected to form a role in the origins of life. Amongst these, ethanol is a fairly abundant molecule in warmer regions. For this reason, we have recently carried out laboratory measurements and analyses of the rotational spectra of the three mono-substituted deuterium isotopologues of ethanol (one of which, CH_2DCH_2OH, exists as two distinct conformers according to the position of the deuterium atom with respect to the molecular skeleton). Measurements were taken between 35-500 GHz, allowing accurate predictions in the range of radio telescopes. We have concentrated on the lowest energy anti conformers. The dataset was constrained for fitting with a standard Watson-S reduction Hamiltonian by rejecting transitions from high-lying states, which appear to be perturbed by the gauche states, and by averaging some small methyl torsional splits. This treatment is compatible with the needs for a first search in the interstellar medium, in particular in spectra taken by ALMA. For this purpose an appropriate set of predictions will be included on the Cologne Database for Molecular Spectroscopy. Previous results on the two mono-substituted 13C isotopologues which led to a tentative detection in Sgr B2(N) will be briefly summarized and compared with the latest measurements. The usefulness of studying different isotopologues in the interstellar medium will also be rapidly addressed. Bouchez et al, JQSRT 113 (11), pp. 1148-1154, 2012. Belloche et al. A&A 559, id.A47, 187pp., 2013.

  10. Sixty gigahertz indoor radio wave propagation prediction method based on full scattering model

    NASA Astrophysics Data System (ADS)

    Järveläinen, J.; Haneda, K.

    2014-04-01

    In radio system deployment, the main focus is on assuring sufficient coverage, which can be estimated with path loss models for specific scenarios. When more detailed performance metrics such as peak throughput are studied, the environment has to be modeled accurately in order to estimate multipath behavior. By means of laser scanning we can acquire very accurate data of indoor environments, but the format of the scanning data, a point cloud, cannot be used directly in available deterministic propagation prediction tools. Therefore, we propose to use a single-lobe directive model, which calculates the electromagnetic field scattering from a small surface and is applicable to the point cloud, and describe the overall field as fully diffuse backscattering from the point cloud. The focus of this paper is to validate the point cloud-based full diffuse propagation prediction method at 60 GHz. The performance is evaluated by comparing characteristics of measured and predicted power delay profiles in a small office room and an ultrasonic inspection room in a hospital. Also directional characteristics are investigated. It is shown that by considering single-bounce scattering only, the mean delay can be estimated with an average error of 2.6% and the RMS delay spread with an average error of 8.2%. The errors when calculating the azimuth and elevation spreads are 2.6° and 0.6°, respectively. Furthermore, the results demonstrate the applicability of a single parameter set to characterize the propagation channel in all transmit and receive antenna locations in the tested scenarios.

  11. Scintillators and applications thereof

    DOEpatents

    Williams, Richard T.

    2014-07-15

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  12. Scintillators and applications thereof

    SciTech Connect

    Williams, Richard T.

    2015-09-01

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  13. A High-Resolution Study of Quasiperiodic Radio Emissions Observed by the Galileo Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Christopher, I.; Granroth, L. J.

    2001-01-01

    We have conducted a study of quasiperiodic emission observed by the plasma wave instrument on board the Galileo spacecraft. These emissions appear as broadband bursts with dominant periods ranging from 10 min to over 40 min. For these emissions we have explicitly analyzed the high-resolution (waveform) data to determine the presence of impulsive, solitary signatures. Our investigations have indicated that the broadband bursts, as well as the background more narrowband continuum emission, are composed of a highly turbulent spectrum. Within the broadband burst, however, there are higher-frequency components present, but no impulsive electrostatic signatures. Also significantly, the broadband bursts show no low-frequency dispersion. We conclude that the bursts are consistent with a distant, electromagnetic source, probably in the near-Jupiter vicinity.

  14. Direct measurement of density oscillation induced by a radio-frequency wave.

    PubMed

    Yamada, T; Ejiri, A; Shimada, Y; Oosako, T; Tsujimura, J; Takase, Y; Kasahara, H

    2007-08-01

    An O-mode reflectometer at a frequency of 25.85 GHz was applied to plasmas heated by the high harmonic fast wave (21 MHz) in the TST-2 spherical tokamak. An oscillation in the phase of the reflected microwave in the rf range was observed directly for the first time. In TST-2, the rf (250 kW) induced density oscillation depends mainly on the poloidal rf electric field, which is estimated to be about 0.2 kV/m rms by the reflectometer measurement. Sideband peaks separated in frequency by ion cyclotron harmonics from 21 MHz, and peaks at ion cyclotron harmonics which are suggested to be quasimodes generated by parametric decay, were detected. PMID:17764321

  15. Scintillation Hole Observed by FORMOSAT-3/COSMIC

    NASA Astrophysics Data System (ADS)

    Chen, Shih Ping; Yenq Liu, Jann; Krishnanunni Rajesh, Panthalingal

    2013-04-01

    Ionospheric scintillations can significantly disturb satellite positioning, navigation, and communication. FORMOSAT-3/COSMIC provides the first 3-D global observation by solo instrument (radio occultation experiment, GOX). The GPS L-band amplitude fluctuation from 50Hz signal is received and recorded by F3/C GOX to calculate S4-index from 50-800km altitude. The global F3/C S4 index are subdivided and examined in various latitudes, longitudes, altitudes, and seasons during 2007-2012. The F-region scintillations in the equatorial and low-latitude ionosphere start around post-sunset period and often persist till post-midnight hours (0300 MLT, magnetic local time) during the March and September equinox as well as December Solstice seasons. The E-region scintillations reveal a clear solar zenith effect and yield pronounced intensities in mid-latitudes during the Summer Solstice seasons, which are well correlated with occurrences of the sporadic E-layer. It is interesting to find there is no scintillation, which is termed "scintillation hole", in the E region ranging from 80 to 130km altitude over the South Africa region, and become the most pronounced in November-January (December Solstice seasons or summer months). Other space-borne and ground based observations are use to confirm the existence of the scintillation hole.

  16. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  17. Scintillator materials for calorimetry

    SciTech Connect

    Weber, M.J.

    1994-09-01

    Requirements for fast, dense scintillator materials for calorimetry in high energy physics and approaches to satisfying these requirements are reviewed with respect to possible hosts and luminescent species. Special attention is given to cerium-activated crystals, core-valence luminescence, and glass scintillators. The present state of the art, limitations, and suggestions for possible new scintillator materials are presented.

  18. Scintillator manufacture at Fermilab

    SciTech Connect

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  19. Study of effects of radio-wave frequency radiation emitted from cellular telephones on embryonic development of danio rerio

    NASA Astrophysics Data System (ADS)

    Vagula, Mary; Harkless, Ryan

    2013-05-01

    Radio wave frequency (RF) radiation emitted from cellular telephones has become increasingly ubiquitous as a result of the popularity of these phones. With the increasing and unavoidable exposure to RF radiation a reality, it is imperative that the effects of such radiation on living tissue be well understood. In particular, it is critical to understand any effects that RF radiation may have as a carcinogen and on embryonic development, as pregnant women are not exempt from such exposure. As a model organism, zebrafish (Danio rerio) have been studied extensively, and their value in studies of gene expression cannot be overstated. This study observed the effects of RF radiation on the embryonic development of zebrafish. The expression of two genes, shha and hoxb9a, that are key to the early development of the fish was examined. Both genes have homologs in humans as well as in other model organisms. Preliminary results suggest that exposure to cell phone radiation might have an effect on the expression of shha in zebrafish embryos, causing under expression. More trials are necessary to validate these results.

  20. Advances in Composite Reflectors: From X-Ray to Radio Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Connell, S. J.; Abusafieh, A. A.; Mehle, G. V.; Sheikh, D. A.; Giles, D. C.

    2000-12-01

    In recent years, Composite Optics, Inc. (COI) has made significant advances in the use of graphite fiber reinforced composite (GFRC) materials for astronomical instrument applications. The inherent low density, high stiffness, and thermal stability makes GFRC a natural candidate for many astronomy applications. In order to reap these inherent benefits in astronomical applications, basic research has focused on material and process improvement. This has been accompanied by the design, fabrication, and test of several prototype reflectors that cover a broad wavelength spectrum of astronomical interests. The results of, and applications for, these efforts are summarized in the following list. X-Ray Carrier Shell: Innovative composite process yields accuracy and moisture stability. Demonstrated by vacuum optical test of 6" Wolter-I shell. Applicable to Con-X, etc. Lightweight Mirror Substrate for Visible Astronomy: Composite/glass hybrid design. Areal density < 15 kg/m2. Demonstrated by cryo-optical test (to 35K) of 1.6m NMSD mirror. Applicable to NGST, etc. Polishable Composite Facesheet: Glass-like coating applied to composite. Polishable by conventional methods. Multiple six-inch substrates polished to 20 angstroms. Technology will enable future 5 kg/m2 visible to UV optics. 10 kg/m2 Submillimeter Reflector: Apertures to 5m possible with economical, all-composite mirror design, diffraction limited at 80 microns. Demonstrated with cryo-optical test (to 70K) of FIRST 2-meter prototype mirror. Applicable to FIRST and other IR astronomy. Large, Ultra-Stable Optical Support Structure: Uniform and near-zero CTE over broad dimensions. Demonstrated with cryo-optical test of 2-meter FIRST prototype. Applicable to NGST, SIM, LISSA. Ground Based Radio Telescope Reflector: Low-cost, accurate, stable, durable all-composite design for support structure & reflective surface. Demonstrated via fab & test of 3m adjustable and 5m static prototypes. Applicable to LMT, ALMA, etc. These

  1. Design and multiphysics analysis of a 176Â MHz continuous-wave radio-frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Kutsaev, S. V.; Mustapha, B.; Ostroumov, P. N.; Barcikowski, A.; Schrage, D.; Rodnizki, J.; Berkovits, D.

    2014-07-01

    We have developed a new design for a 176 MHz cw radio-frequency quadrupole (RFQ) for the SARAF upgrade project. At this frequency, the proposed design is a conventional four-vane structure. The main design goals are to provide the highest possible shunt impedance while limiting the required rf power to about 120 kW for reliable cw operation, and the length to about 4 meters. If built as designed, the proposed RFQ will be the first four-vane cw RFQ built as a single cavity (no resonant coupling required) that does not require π-mode stabilizing loops or dipole rods. For this, we rely on very detailed 3D simulations of all aspects of the structure and the level of machining precision achieved on the recently developed ATLAS upgrade RFQ. A full 3D model of the structure including vane modulation was developed. The design was optimized using electromagnetic and multiphysics simulations. Following the choice of the vane type and geometry, the vane undercuts were optimized to produce a flat field along the structure. The final design has good mode separation and should not need dipole rods if built as designed, but their effect was studied in the case of manufacturing errors. The tuners were also designed and optimized to tune the main mode without affecting the field flatness. Following the electromagnetic (EM) design optimization, a multiphysics engineering analysis of the structure was performed. The multiphysics analysis is a coupled electromagnetic, thermal and mechanical analysis. The cooling channels, including their paths and sizes, were optimized based on the limiting temperature and deformation requirements. The frequency sensitivity to the RFQ body and vane cooling water temperatures was carefully studied in order to use it for frequency fine-tuning. Finally, an inductive rf power coupler design based on the ATLAS RFQ coupler was developed and simulated. The EM design optimization was performed using cst Microwave Studio and the results were verified using

  2. The standing wave phenomenon in radio telescopes. Frequency modulation of the WSRT primary beam

    NASA Astrophysics Data System (ADS)

    Popping, A.; Braun, R.

    2008-03-01

    Context: Inadequacies in the knowledge of the primary beam response of current interferometric arrays often form a limitation to the image fidelity, particularly when “mosaicing” over multiple telescope pointings. Aims: We hope to overcome these limitations by constructing a frequency-resolved, full-polarization empirical model for the primary beam of the Westerbork Synthesis Radio Telescope (WSRT). Methods: Holographic observations, sampling angular scales between about 5 arcmin and 11 degrees, were obtained of a bright compact source (3C 147). These permitted measurement of voltage response patterns for seven of the fourteen telescopes in the array and allowed calculation of the mean cross-correlated power beam. Good sampling of the main-lobe, near-in, and far-side-lobes out to a radius of more than 5 degrees was obtained. Results: A robust empirical beam model was detemined in all polarization products (XX, XY, YX and YY) and at frequencies between 1322 and 1457 MHz with 1 MHz resolution. Substantial departures from axi-symmetry are apparent in the main-lobe as well as systematic differences between the polarization properties. Surprisingly, many beam properties are modulated at the 5 to 10% level with changing frequency. These include: (1) the main beam area, (2) the side-lobe to main-lobe power ratio, and (3) the effective telescope aperture. These semi-sinusoidsal modulations have a basic period of about 17 MHz, consistent with the natural “standing wave” period of a 8.75 m focal distance. The deduced frequency modulations of the beam pattern were verified in an independent long duration observation using compact continuum sources at very large off-axis distances. Conclusions: Application of our frequency-resolved beam model should enable higher dynamic range and improved image fidelity for interferometric observations in complex fields, although at the expense of an increased computational load. The beam modulation with frequency can not be as easily

  3. Multi-PSPMT scintillation camera

    SciTech Connect

    Pani, R.; Pellegrini, R.; Trotta, G.; Scopinaro, F.; Soluri, A.; Vincentis, G. de; Scafe, R.; Pergola, A.

    1999-06-01

    Gamma ray imaging is usually accomplished by the use of a relatively large scintillating crystal coupled to either a number of photomultipliers (PMTs) (Anger Camera) or to a single large Position Sensitive PMT (PSPMT). Recently the development of new diagnostic techniques, such as scintimammography and radio-guided surgery, have highlighted a number of significant limitations of the Anger camera in such imaging procedures. In this paper a dedicated gamma camera is proposed for clinical applications with the aim of improving image quality by utilizing detectors with an appropriate size and shape for the part of the body under examination. This novel scintillation camera is based upon an array of PSPMTs (Hamamatsu R5900-C8). The basic concept of this camera is identical to the Anger Camera with the exception of the substitution of PSPMTs for the PMTs. In this configuration it is possible to use the high resolution of the PSPMTs and still correctly position events lying between PSPMTs. In this work the test configuration is a 2 by 2 array of PSPMTs. Some advantages of this camera are: spatial resolution less than 2 mm FWHM, good linearity, thickness less than 3 cm, light weight, lower cost than equivalent area PSPMT, large detection area when coupled to scintillating arrays, small dead boundary zone (< 3 mm) and flexibility in the shape of the camera.

  4. Channeling of high-power radio waves under conditions of strong anomalous absorption in the presence of an averaged electron heating source

    SciTech Connect

    Vas'kov, V. V.; Ryabova, N. A.

    2010-02-15

    Strong anomalous absorption of a high-power radio wave by small-scale plasma inhomogeneities in the Earth's ionosphere can lead to the formation of self-consistent channels (solitons) in which the wave propagates along the magnetic field, but has a soliton-like intensity distribution across the field. The structure of a cylindrical soliton as a function of the wave intensity at the soliton axis is analyzed. Averaged density perturbations leading to wave focusing were calculated using the model proposed earlier by Vas'kov and Gurevich (Geomagn. Aeron. 16, 1112 (1976)), in which an averaged electron heating source was used. It is shown that, under conditions of strong electron recombination, the radii of individual solitons do not exceed 650 m.

  5. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 2

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1975-01-01

    The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.

  6. European low-noise MMIC technologies for cryogenic millimetre wave radio astronomical applications

    NASA Astrophysics Data System (ADS)

    Cremonini, Andrea; Mariotti, Sergio; Valenziano, Luca

    2012-09-01

    The Low Noise technology has a paramount relevance on radiotelescopes and radiometers performances. Its influence on sensitivity and temporal stability has a deep impact on obtainable scientific results. As well known, front end active part of scientific instruments are cryocooled in order to drastically reduce the intrinsic thermal noise generated by its electronic parts and consequently increase the sensitivity. In this paper we will describe the obtained results by an Italian Space Agency funded activity. The aim is to validate European MMIC Low Noise technologies and designs for cryogenic environments in the range of millimetre wave. As active device, HEMT (High Electron Mobility Transistor) are considered the best device for high frequency and low noise cryo applications. But not all the semiconductor foundry process are suitable for applications in such environment. Two European Foundries has been selected and two different HEMT based Low Noise Amplifiers have been designed and produced. The main goal of this activity is identify an European technology basement for space and ground based low noise cryogenic applications. Designs, layout, architectures, foundry processes and results will be compared.

  7. Triggered Jovian radio emissions

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1985-01-01

    Certain Jovian radio emissions seem to be triggered from outside, by much weaker radio waves from the sun. Recently found in the Voyager observations near Jupiter, such triggering occurs at hectometric wavelengths during the arrival of solar radio bursts, with the triggered emissions lasting sometimes more than an hour as they slowly drifted toward higher frequencies. Like the previous discovery of similar triggered emissions at the earth, this suggests that Jupiter's emissions might also originate from natural radio lasers.

  8. Validating the use of scintillation proxies to study ionospheric scintillation over the Ugandan region

    NASA Astrophysics Data System (ADS)

    Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.

    2015-06-01

    In this study, we compare the standard scintillation indices (S4 and σΦ) from a SCINDA receiver with scintillation proxies (S4p and | sDPR |) derived from two IGS GPS receivers. Amplitude (S4) and phase (σΦ) scintillation data were obtained from the SCINDA installed at Makerere University (0.34°N, 32.57°E). The corresponding amplitude (S4p) and phase (| sDPR |) scintillation proxies were derived from data archived by IGS GPS receivers installed at Entebbe (0.04°N, 32.44°E) and Mbarara (0.60°S, 30.74°E). The results show that for most of the cases analysed in this study, σΦ and | sDPR | are in agreement. Amplitude scintillation occurrence estimated using the S4p are fairly consistent with the standard S4, mainly between 17:00 UT and 21:00 UT, despite a few cases of over and under estimation of scintillation levels by S4p. Correlation coefficients between σΦ and the | sDPR | proxy revealed positive correlation. Generally, S4p and S4 exhibits both moderate and strong positive correlation. TEC depletions associated with equatorial plasma bubbles are proposed as the cause of the observed scintillation over the region. These equatorial plasma bubbles were evident along the ray paths to satellites with PRN 2, 15, 27 and 11 as observed from MBAR and EBBE. In addition to equatorial plasma bubbles, atmospheric gravity waves with periods similar to those of large scale traveling ionospheric disturbances were also observed as one of the mechanisms for scintillation occurrence. The outcome of this study implies that GPS derived scintillation proxies can be used to quantify scintillation levels in the absence of standard scintillation data in the equatorial regions.

  9. Influence of an inhomogeneous structure of the high-latitude ionosphere on the long-distance propagation of high-frequency radio waves

    NASA Astrophysics Data System (ADS)

    Uryadov, V. P.; Vertogradov, G. G.; Vertogradova, E. G.

    2012-09-01

    We present the results of experimental studies of the features of long-distance propagation of high-frequency radio waves on the large-extent subauroral Magadan-Rostov-on-Don and midlatitude Khabarovsk-Rostov-on-Don and Irkutsk-Rostov-on-Don paths, which were obtained using the ionosonde-finder with a chirp output signal. Anomalous (lateral) signals with delays of about 1-2 ms with respect to a direct signal, which arrive from the azimuths 10°-20°, are observed on the Magadan-Rostov-on-Don path. The lateral signals were observed in the morning and antemeridian hours in the time interval 08:00-10:40 MSK. In the evening and night hours, the lateral signals were not observed. During magnetic activity, the amplitude of the lateral signals was greater than that observed prior to a magnetic storm by 5-10 dB. Location of the ionospheric-perturbation regions responsible for the appearance of the lateral signals was determined as φgeogr ≈ 69°-71°N (φmagn ≈ 65°-66°N), and λ ≈ 51°-58°E. The mechanisms of the lateral-signal propagation due to lateral refraction of radio waves on patches with enhanced electron number density and due to scattering of radio waves from small-scale irregularities are considered.

  10. Scintillator reflective layer coextrusion

    SciTech Connect

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  11. Two-Way Radio in Schools (or, The Loneliness of the Long Distance Learner). An Evaluation of a High Frequency Short Wave, Two-Way Radio Trial.

    ERIC Educational Resources Information Center

    Conboy, Ian

    The Country Education Project in Victoria, Australia, tested the use of two-way radios to bring educational resources to isolated children studying correspondence courses in small rural high schools and to increase interaction among rural schools. Eight rural Victoria schools and the Secondary Correspondence School in Melbourne used two-way…

  12. The effect of plasma inhomogeneities on (i) radio emission generation by non-gyrotropic electron beams and (ii) particle acceleration by Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2015-04-01

    Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refraction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph = ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011); http://dx.doi.org/10.1063/1.3590928 [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013); http://dx.doi.org/10.1063/1.4812453 [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012); http://dx.doi.org/10.1063/1.4768429 [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014); http://dx.doi.org/10.1063/1.4871723 [5] R. Pechhacker, D. Tsiklauri

  13. Pulsed and continuous wave acrylic acid radio frequency plasma deposits: plasma and surface chemistry.

    PubMed

    Voronin, Sergey A; Zelzer, Mischa; Fotea, Catalin; Alexander, Morgan R; Bradley, James W

    2007-04-01

    Plasma polymers have been formed from acrylic acid using a pulsed power source. An on-pulse duration of 100 micros was used with a range of discharge off-times between 0 (continuous wave) and 20,000 micros. X-ray photoelectron spectroscopy (XPS) has been used in combination with trifluoroethanol (TFE) derivatization to quantify the surface concentration of the carboxylic acid functionality in the deposit. Retention of this functionality from the monomer varied from 2% to 65%. When input power was expressed as the time-averaged energy per monomer molecule, E(mean), the deposit chemistry achieved could be described using a single relationship for all deposition conditions. Deposition rates were monitored using a quartz crystal microbalance, which revealed a range from 20 to 200 microg m(-2) s(-1), and these fell as COOH functional retention increased. The flow rate was found to be the major determinant of the deposition rate, rather than being uniquely defined by E(mean), connected to the rate at which fresh monomer enters the system in the monomer deficient regime. The neutral species were collected in a time-averaged manner. As the energy delivered per molecule in the system (E(mean)) decreased, the amount of intact monomer increased, with the average neutral mass approaching 72 amu as E(mean) tends to zero. No neutral oligomeric species were detected. Langmuir probes have been used to determine the temporal evolution of the density and temperature of the electrons in the plasma and the plasma potential adjacent to the depositing film. It has been found that even 500 micros into the afterglow period that ionic densities are still significant, 5-10% of the on-time density, and that ion accelerating sheath potentials fall from 40 V in the on-time to a few volts in the off-time. We have made the first detailed, time- and energy-resolved mass spectrometry measurements in depositing acrylic acid plasma. These have allowed us to identify and quantify the positive ion

  14. Observational study of ionospheric irregularities and GPS scintillations associated with the 2012 tropical cyclone Tembin passing Hong Kong

    NASA Astrophysics Data System (ADS)

    Yang, Zhe; Liu, Zhizhao

    2016-05-01

    This study presents the ionospheric responses observed in Hong Kong to a Typhoon, namely, Tembin, from the aspects of the occurrence of ionospheric irregularities and scintillations, using Global Positioning System (GPS) observations from a ground-based GPS scintillation monitoring station in Hong Kong and from GPS receivers on board the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. The ionospheric irregularities and scintillations are characterized by the rate of total electron content variation index (ROTI) and the amplitude scintillation index S4, respectively. The typhoon Tembin formed over the western North Pacific during 18-30 August 2012 and approached Hong Kong during 24-27 August 2012 with the closest distance 290 km from Hong Kong at around 17 universal time (UT) on 25 August 2012. The ground-based observations indicate that in the nighttime period of 20:00-02:00 local time (LT = UT + 8 h) on 26 August when Tembin passed closely to Hong Kong, the ionospheric irregularities and scintillations of GPS signals were observed in the south of Hong Kong, over the area of 13°N ~ 23°N in latitude and 110°E ~ 120°E in longitude. From the COSMIC observations, it shows that the number of radio occultation scintillation events peaks on 26 August 2012 during the passage of Tembin. Without the presence of strong geomagnetic or solar activity, it is suspected that gravity waves might be generated in the lower atmosphere and likely seed the formation of ionospheric plasma irregularities. This work for the first time from Hong Kong observes the sign of coupling between the lower atmosphere and ionosphere in a tropical cyclone event, combining both ground- and space-based GPS observation data.

  15. Testing Gravity Using Pulsar Scintillation Measurements

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Nishizawa, Atsushi; Pen, Ue-Li

    2016-03-01

    We propose to use pulsar scintillation measurements to test predictions of alternative theories of gravity. Comparing to single-path pulsar timing measurements, the scintillation measurements can achieve a factor of 104 ~105 improvement in timing accuracy, due to the effect of multi-path interference. The self-noise from pulsar also does not affect the interference pattern, where the data acquisition timescale is 103 seconds instead of years. Therefore it has unique advantages in measuring gravitational effect or other mechanisms (at mHz and above frequencies) on light propagation. We illustrate its application in constraining scalar gravitational-wave background and measuring gravitational-wave speed, in which cases the sensitivities are greatly improved with respect to previous limits. We expect much broader applications in testing gravity with existing and future pulsar scintillation observations.

  16. The polar-ionosphere phenomena induced by high-power radio waves from the spear heating facility

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Kornienko, V. A.; Janzhura, A. S.; Kalishin, A. S.; Robinson, T. R.; Yeoman, T. K.; Wright, D. M.; Baddeley, L. J.

    2008-11-01

    We present the results of experimental studies of specific features in the behavior of small-scale artificial field-aligned irregularities (AFAIs) and the DM component in the spectra of stimulated electromagnetic emission (SEE). Analysis of experimental data shows that AFAIs in the polar ionosphere are generated under different background geophysical conditions (season, local time, the presence of sporadic layers in the E region, etc.). It is shown that AFAIs can be excited not only in the F region, but also in “thick” sporadic E s layers of the polar ionosphere. The AFAIs were observed in some cycles of heating when the HF heater frequency exceeded the critical frequency by 0.3-0.5 MHz. Propagation paths of diagnostic HF radio waves scattered by AFAIs were modelled for geophysical conditions prevailing during the SPEAR heating experiments. Two components, namely, a narrow-banded one with a Doppler-spectrum width of up to 2 Hz and a broadband one observed in a band of up to 20 Hz, were found in the sporadic E s layer during the AFAI excitation. Analysis of the SEE spectra shows that the behavior of the DM component in time is irregular, which is possibly due to strong variations in the critical frequency of the F 2 layer from 3.5 to 4.6 MHz. An interesting feature observed in the SPEAR heating experiments is that the generation of the DM component was similar to the excitation of AFAIs when the heater frequency was up to 0.5 MHz higher than the critical frequency.

  17. Quasi-biennial and decadal variability obtained from long-term measurements of nighttime radio wave reflection heights over Central Europe

    NASA Astrophysics Data System (ADS)

    Kürschner, D.; Jacobi, Ch.

    The nighttime reflection height of low-frequency (LF) radio waves at oblique incidence over Central Europe is measured using 1.8 kHz sideband phase comparisons between the sky wave and the ground wave of a commercial 177 kHz LF transmitter. The measurements have been carried out continuously since September 1982, now justifying the analysis of trends and regular variations of the reflection height. In the time series is found a) a long-term negative trend and b) a solar cycle dependence, both confirming earlier measurements and theoretical estimations. Moreover, a significant oscillation of quasi-biennial period is visible in LF reflection heights, indicating a reaction of the midlatitude mesosphere/lower thermosphere region on the equatorial quasi-biennial oscillation.

  18. Quasi-Biennial and Decadal Variability obtained from Long-Term Measurements of Nighttime Radio Wave Reflection Heights over Central Europe

    NASA Astrophysics Data System (ADS)

    Kürschner, D.; Jacobi, C.

    The nighttime ionospheric absolut reflection height of low-frequency (LF) radio waves at oblique incidence is measured at Collm Observatory using 1.8 kHz sideband phase comparisons between the sky-wave and the ground wave of a commercial 177 kHz transmitter. The measurements have been carried out continuously since 1983, now allowing the analysis of trendlike and regular variations of the reflection height. In the time series a long-term decreasing trend and a solar cycle dependence are found, both confirming earlier measurements and theoretical estimations. Moreover, a nearly regular quasi-biennial oscillation is visible in LF reflection heights, indicating a possible reaction of the midlatitude mesosphere/lower thermosphere region on the equatorial QBO.

  19. Recent development in organic scintillators

    NASA Technical Reports Server (NTRS)

    Horrocks, D. L.; Wirth, H. O.

    1969-01-01

    Discussion on recent developments of organic scintillators includes studies of organic compounds that form glass-like masses which scintillate and are stable at room temperature, correlations between molecular structure of organic scintillators and self-quenching, recently developed fast scintillators, and applications of liquid-scintillation counters.

  20. Low/Mid-latitude Ionospheric irregularities and scintillation climatology

    NASA Astrophysics Data System (ADS)

    Abdallah, Amr; Groves, K. M.; Mahrous, Ayman; Hussein, Fayrouz

    Ionospheric scintillation occur when radio signals propagate through an irregular ionosphere (e.g., plasma bubbles). Since plasma bubbles are regions of depleted ion and electron densities, a plasma bubble located on the satellite-to-ground signal path will cause radio signals to fluctuate in phase and amplitude. Ionospheric scintillation data were analyzed in the magnetic latitudinal field-of-view 29° N -13.4° N, observed by a stand-alone SCINDA (Scintillation Network Decision Aid) - GPS receiver at Helwan, Egypt (29.86° N, 31.32° E). A minimum 20° elevation cut off angle has been set in order to minimize the multipath effect. During the enhancing phase of the current solar cycle 24 (years 2010, 2011, 2012 and 2013), the behaviour of the scintillation occurrence were characterized. The seasonal, annual and solar cycle variation of scintillation occurrence is investigated together with the Total Electron Content (TEC), to put in evidence the relation between the electron density gradients and the ionospheric irregularities causing scintillation. This study considers a first step to develop a scintillation climatology over Northern Africa.

  1. A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. II. CMEs, Shock Waves, and Drifting Radio Bursts

    NASA Astrophysics Data System (ADS)

    Grechnev, V. V.; Uralov, A. M.; Chertok, I. M.; Slemzin, V. A.; Filippov, B. P.; Egorov, Y. I.; Fainshtein, V. G.; Afanasyev, A. N.; Prestage, N. P.; Temmer, M.

    2014-04-01

    We continue our study (Grechnev et al., 2013, doi:10.1007/s11207-013-0316-6; Paper I) on the 18 November 2003 geoffective event. To understand possible impact on geospace of coronal transients observed on that day, we investigated their properties from solar near-surface manifestations in extreme ultraviolet, LASCO white-light images, and dynamic radio spectra. We reconcile near-surface activity with the expansion of coronal mass ejections (CMEs) and determine their orientation relative to the earthward direction. The kinematic measurements, dynamic radio spectra, and microwave and X-ray light curves all contribute to the overall picture of the complex event and confirm an additional eruption at 08:07 - 08:20 UT close to the solar disk center presumed in Paper I. Unusual characteristics of the ejection appear to match those expected for a source of the 20 November superstorm but make its detection in LASCO images hopeless. On the other hand, none of the CMEs observed by LASCO seem to be a promising candidate for a source of the superstorm being able to produce, at most, a glancing blow on the Earth's magnetosphere. Our analysis confirms free propagation of shock waves revealed in the event and reconciles their kinematics with "EUV waves" and dynamic radio spectra up to decameters.

  2. N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, tomorrow

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. D.

    2015-06-01

    This paper describes the basic and applied research rationale for the organization of IZMIRAN and provides insight into the 75 years of the Institute's activities and development. Historically, early magnetic measurements in Russia were developed largely to meet the Navy's navigation needs and were, more generally, stimulated by the Peter the Great decrees and by the foundation of the St. Petersburg Academy of Sciences in 1724. The paper examines the roles of the early Academicians in developing geomagnetism and making magnetic measurements a common practice in Russia. The need for stable radio communications prompted ionospheric and radio wave propagation research. The advent of the space era and the 1957-1958 International Geophysical Year Project greatly impacted the development of IZMIRAN and spurred the creation of a number of geophysical research institutes throughout the country. Currently, the research topics at IZMIRAN range widely from geomagnetism to solar-terrestrial physics to the ionosphere and radio wave propagation, and its primary application areas are the study and forecast of space weather, an increasingly important determining factor in ever-expanding ground- and space-based technologies (space navigation and communications, space activities, etc.).

  3. Shifting scintillator neutron detector

    SciTech Connect

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  4. Scintillator manufacture at Fermilab

    SciTech Connect

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-11-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested. {copyright} {ital 1998 American Institute of Physics.}

  5. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  6. Extruded plastic scintillation detectors

    SciTech Connect

    Anna Pla-Dalmau, Alan D. Bross and Kerry L. Mellott

    1999-04-16

    As a way to lower the cost of plastic scintillation detectors, commercially available polystyrene pellets have been used in the production of scintillating materials that can be extruded into different profiles. The selection of the raw materials is discussed. Two techniques to add wavelength shifting dopants to polystyrene pellets and to extrude plastic scintillating strips are described. Data on light yield and transmittance measurements are presented.

  7. Study of equatorial scintillations

    NASA Technical Reports Server (NTRS)

    Pomalaza, J.; Woodman, R.; Tisnado, G.; Nakasone, E.

    1972-01-01

    Observations of the amplitude scintillations produced by the F-region in equatorial areas are presented. The equipment used for conducting the observations is described. The use of transmissions from the ATS-1, ATS-3, and ATS-5 for obtaining data is described. The two principal subjects discussed are: (1) correlation between satellite and incoherent radar observations of scintillations and (2) simultaneous observations of scintillations at 136 MHz and 1550 MHz.

  8. The detection of coronal mass ejections in the interplanetary medium using scintillation observations

    NASA Astrophysics Data System (ADS)

    Glyantsev, A. V.; Tyul'bashev, S. A.; Chashei, I. V.; Shishov, V. I.

    2014-09-01

    Daily observations of scintillating radio sources obtained from July 2011 through June 2012 on the Big Scanning Antenna of the P.N. Lebedev Physical Institute at 111 MHz using a 16 beams system are analyzed. Variations in the observed scintillation indices are compared with data on solar X-ray flares and geomagnetic disturbances. Comparison of the observed scintillation indices on successive days enables the detection of most propagating disturbances associated with coronal events of class M5.0 and higher.

  9. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  10. A study of GPS ionospheric scintillations observed at Guilin

    NASA Astrophysics Data System (ADS)

    Zou, Yuhua; Wang, Dongli

    2009-12-01

    The occurrence of strong ionospheric scintillations with S4>=0.2 was studied using global positioning system (GPS) measurements at Guilin (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of equatorial anomaly in China. The results are presented for data collected from January 2007 to December 2008. The results show that amplitude scintillations occurred only during the first five months of the considered years. Nighttime amplitude scintillations, observed mainly in the south of Guilin, always occurred with phase scintillations, total electron content (TEC) depletions, and Rate Of change of TEC (ROT) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations usually occurred in most of the azimuth directions. GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively.

  11. Robust GPS carrier tracking under ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.

    2013-12-01

    Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance

  12. Scintillation index in strong oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Baykal, Yahya

    2016-09-01

    Scintillation index of spherical wave in strongly turbulent oceanic medium is evaluated. In the evaluation, modified Rytov solution and our recent formulation that expresses the oceanic turbulence parameters by the atmospheric turbulence structure constant, are employed. Variations of the scintillation index in strong oceanic turbulence are examined versus the oceanic turbulence parameters such as the rate of dissipation of kinetic energy per unit mass of fluid, the rate of dissipation of mean-squared temperature, viscosity, wavelength, the link length, and the ratio of temperature to salinity contributions to the refractive index spectrum.

  13. Investigation of the spatial structure and developmental dynamics of near-Earth plasma perturbations under the action of powerful HF radio waves

    SciTech Connect

    Belov, A. S.

    2015-10-15

    Results of numerical simulations of the near-Earth plasma perturbations induced by powerful HF radio waves from the SURA heating facility are presented. The simulations were performed using a modified version of the SAMI2 ionospheric model for the input parameters corresponding to the series of in-situ SURA–DEMETER experiments. The spatial structure and developmental dynamics of large-scale plasma temperature and density perturbations have been investigated. The characteristic formation and relaxation times of the induced large-scale plasma perturbations at the altitudes of the Earth’s outer ionosphere have been determined.

  14. The FIELDS Instrument Suite for Solar Probe Plus - Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Astrophysics Data System (ADS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J. F.; Farrell, W. M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S. E.; Hayes, L. M.; Hinze, J. J.; Hollweg, J. V.; Horbury, T. S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J. C.; Kellogg, P. J.; Kien, M.; Klimchuk, J. A.; Krasnoselskikh, V. V.; Krucker, S.; Lynch, J. J.; Maksimovic, M.; Malaspina, D. M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D. J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S. J.; Mozer, F. S.; Murphy, S. D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E. N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S. W.; Salem, C.; Seitz, D.; Sheppard, D. A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J. R.

    2016-03-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  15. A gravity wave analysis near to the Andes Range from GPS radio occultation data and mesoscale numerical simulations: Two case studies

    NASA Astrophysics Data System (ADS)

    Llamedo, P.; de la Torre, A.; Alexander, P.; Luna, D.; Schmidt, T.; Wickert, J.

    2009-08-01

    Global maps of potential wave energy per unit mass, recently performed with the Global Positioning System (GPS) Radio Occultation (RO) technique and different satellite missions (CHAMP and SAC-C since 2001, GRACE and COSMIC since 2006) revealed in Argentina, at the eastern side of the highest Andes Mountains, a considerable wave activity (WA) in comparison with other extra-tropical regions. The main gravity wave (GW) sources in this natural laboratory are deep convection (mainly during late Spring and Summer), topographic forcing and geostrophic adjustment. The mesoscale numerical WRF (Weather Research and Forecasting) 2.1.2 model was used to simulate the atmospheric parameters during two representative RO events showing apparent intense WA in this region. The significance of the relative position of the RO lines of sight, the line of tangent points and GW phase surfaces during each event is discussed in relation with the apparent WA detected. The GPS RO technique may not be by itself reliable enough to quantify and locate WA of single events. Nevertheless, it should be considered a useful tool to observe the global WA from statistical studies. We also discuss the relative contribution of high and medium intrinsic frequency mountain waves regularly observed, coexisting with inertio gravity waves, their origin and propagation characteristics.

  16. Locating Radio Noise from Sprites

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Mezentsev, A.; Watson, R.; Gaffet, S.; Astin, I.; Evans, A.

    2014-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into exponentially growing streamer tips (McHarg et al., 2010). The acceleration of the electrons to a few eV results in the radiation of a small amount of electromagnetic energy. The incoherent superposition of many streamers causes the low frequency radio noise from sprites near ~40 km height (Qin et al., 2012). The presence of this theoretically predicted radiation was recently confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). To locate the radio noise from sprites in the sky, an interferometric network of low frequency radio receivers was developed (Mezentsev and Fullekrug, JGR, 2013). The key parameter for the interferometric signal processing is the frequency dependent wave propagation velocity of the radio waves within the Earth's atmosphere. This wave propagation velocity is determined by the wave number vector which needs to be inferred from the measurements. Here we adapt and subsequently apply array analyses which have been developed for seismic and infrasound arrays to determine the horizontal wave number vectors of ~20-24 kHz radio waves measured with an array of ten radio receivers distributed over an area of ~1 km × 1 km. It is found that the horizontal slowness of ~20-24 kHz radio waves ranges from ~2.7 ns/m to ~4.1 ns/m depending on the arrival azimuth of the radio wave. For comparison, an electromagnetic wave in vacuum has a slowness of ~3.34 ns/m. A larger slowness indicates an apparent velocity which is smaller than the speed of light and a smaller slowness indicates that the radio wave arrives at the array from an elevation angle. The observed variability of the observed slowness almost certainly results from the distance dependent superposition of the transverse electric and magnetic TEn and TMn radio wave propagation modes.

  17. Gigabit radio-over-fiber link for converged baseband and millimeter-wave band signal transmission using cascaded injection-locked Fabry-Pérot laser diodes.

    PubMed

    Hong, Moon-Ki; Won, Yong-Yuk; Han, Sang-Kook

    2009-05-11

    A novel scheme, for both baseband and millimeter-wave band gigabit data transmission in radio-over-fiber system, is proposed and experimentally demonstrated by using cascaded injection-locked Fabry- Pérot laser diodes. It was able to improve suppression ratio of carrier suppressed signal using the cascaded injection-locking. The suppression ratio improvement of the optical carrier suppressed signal of 20 dB was verified. Applying this mechanism, 60-GHz millimeter-wave carrier of enhanced signal quality could be accomplished. Its peak power and phase noise were obtained as -40 dBm and -103.5 dBm/Hz respectively, which was suitable for 60-GHz data transmission. In addition, a successful bidirectional transmission of 1.25-Gbps wired and wireless data was achieved by adopting remodulation technique using a gain-saturated reflective semiconductor optical amplifier for uplink. PMID:19434116

  18. Full-duplex radio over fiber link with colorless source-free base station based on single sideband optical mm-wave signal with polarization rotated optical carrier

    NASA Astrophysics Data System (ADS)

    Ma, Jianxin

    2016-07-01

    A full-duplex radio-over fiber (RoF) link scheme based on single sideband (SSB) optical millimeter (mm)-wave signal with polarization-rotated optical carrier is proposed to realize the source-free colorless base station (BS), in which a polarization beam splitter (PBS) is used to abstract part of the optical carrier for conveying the uplink data. Since the optical carrier for the uplink does not bear the downlink signal, no cross-talk from the downlink contaminates the uplink signal. The simulation results demonstrate that both down- and up-links maintain good performance. The mm-wave signal distribution network based on the proposed full duplex fiber link scheme can use the uniform source-free colorless BSs, which makes the access system very simpler.

  19. Adaptive photonic-assisted M²-QAM millimeter-wave synthesis in multi-antenna radio-over-fiber system using M-ASK modulation.

    PubMed

    Zhang, Qi; Yu, Jianjun; Li, Xinying; Xin, Xiangjun

    2014-11-01

    A novel method for generating an adaptive photonic-assisted M2-quadrature amplitude modulation (M2-QAM) millimeter-wave signal in a multiantenna radio-over-fiber system using M-ray amplitude-shift keying (M-ASK) modulation is proposed and experimentally demonstrated. It takes full advantage of high-density small cells without introducing additional complexity into remote antenna units (RAUs) or mobile users. The 4, 8, and 12 Gb/s 4QAM millimeter-wave signals are obtained from two independent 2, 4, and 6 Gb/s on-off-keying 40 GHz channels, respectively. The experimental results show that a double bit rate can be received without additional digital signal processing in RAUs and mobile users. The results, including the constellation diagrams and bit error rate, show that the transmitted signals are received successfully. PMID:25361290

  20. A comparative and numerical study of effects of gravity waves in small miss-distance and miss-time GPS radio occultation temperature profiles

    NASA Astrophysics Data System (ADS)

    Alexander, P.; Luna, D.; de la Torre, A.; Llamedo, P.; Schmidt, T.; Wickert, J.

    2010-05-01

    The Global Positioning System (GPS) Radio Occultation (RO) technique has global coverage and is capable of generating high vertical resolution temperature profiles of the upper troposphere and lower stratosphere with sub-Kelvin accuracy and long-term stability, regardless of weather conditions. In this work, we take advantage of the anomalously high density of occultation events at the eastern side of the highest Andes Mountains during the initial mission months of COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate). This region is well-known for its high wave activity. We choose to study two pairs of GPS RO, both containing two occultations that occurred close in time and space. One pair shows significant differences between both temperature profiles. Numerical simulations with a mesoscale model were performed, in order to understand this discrepancy. It is attributed to the presence of a horizontal inhomogeneous structure caused by gravity waves.

  1. Signatures and Characteristics of Internal Gravity Waves in the Venus' and Mars' Atmospheres as Revealed by the Radio Occultation Temperature Data Analysis

    NASA Astrophysics Data System (ADS)

    Gubenko, Vladimir; Pavelyev, Alexander; Andreev, Vitali; Salimzyanov, Rishat; Pavelyev, Alexey

    2012-07-01

    It is well known that internal gravity waves (IGWs) affect the structure and mean circulation of the Earth' middle and upper atmosphere by transporting energy and horizontal momentum upward from the lower atmosphere. The IGWs modulate the background atmospheric structure, producing a periodic pattern of spatial and temporal variations in the wind velocity, temperature and density. Similar effects are anticipated for the Venus and Mars since IGWs are a characteristic of stably stratified atmosphere. For instance, Yakovlev et al. (1991) and Gubenko et al. (2008a) used the radio occultation (RO) data from Venera 15 and 16 missions to investigate the thermal structure and layering of the Venus' middle atmosphere. They noted that a wavelike periodic structure commonly appears in retrieved vertical profiles at altitudes above 60 km in the atmosphere where the static stability is large. Through comparisons between Magellan RO observations in the Venus' atmosphere, Hinson and Jenkins (1995) have demonstrated that small scale variations in retrieved temperature profiles at altitudes from 60 to 90 km are caused by a spectrum of vertical propagating IGWs. Temperature profiles from the Mars Global Surveyor (MGS) measurements reveal vertical wavelike structures assumed to be atmospheric IGWs in the Mars' lower atmosphere (Creasey et al., 2006). The very large IGW amplitudes inferred from MGS RO data imply a very significant role for IGWs in the atmospheric dynamics of Mars as well. There is one general problem inherent to all measurements of IGWs. Observed wavelike variations may alternatively be caused by the IGWs, turbulence or persistent layers in the atmosphere, and it is necessary to have an IGW identification criterion for the correct interpretation of obtained results. In this context, we have developed an original method for the determination of internal gravity wave parameters from a single vertical temperature profile measurement in a planetary atmosphere (Gubenko et

  2. Broadband meter-wavelength observations of ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Fallows, R. A.; Coles, W. A.; McKay-Bukowski, D.; Vierinen, J.; Virtanen, I. I.; Postila, M.; Ulich, Th.; Enell, C.-F.; Kero, A.; Iinatti, T.; Lehtinen, M.; Orispää, M.; Raita, T.; Roininen, L.; Turunen, E.; Brentjens, M.; Ebbendorf, N.; Gerbers, M.; Grit, T.; Gruppen, P.; Meulman, H.; Norden, M. J.; de Reijer, J.-P.; Schoenmakers, A.; Stuurwold, K.

    2014-12-01

    Intensity scintillations of cosmic radio sources are used to study astrophysical plasmas like the ionosphere, the solar wind, and the interstellar medium. Normally, these observations are relatively narrow band. With Low-Frequency Array (LOFAR) technology at the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) station in northern Finland we have observed scintillations over a three-octave bandwidth. "Parabolic arcs," which were discovered in interstellar scintillations of pulsars, can provide precise estimates of the distance and velocity of the scattering plasma. Here we report the first observations of such arcs in the ionosphere and the first broadband observations of arcs anywhere, raising hopes that study of the phenomenon may similarly improve the analysis of ionospheric scintillations. These observations were made of the strong natural radio source Cygnus-A and covered the entire 30-250 MHz band of KAIRA. Well-defined parabolic arcs were seen early in the observations, before transit, and disappeared after transit although scintillations continued to be obvious during the entire observation. We show that this can be attributed to the structure of Cygnus-A. Initial results from modeling these scintillation arcs are consistent with simultaneous ionospheric soundings taken with other instruments and indicate that scattering is most likely to be associated more with the topside ionosphere than the F region peak altitude. Further modeling and possible extension to interferometric observations, using international LOFAR stations, are discussed.

  3. Whistlers, helicons, and lower hybrid waves: The physics of radio frequency wave propagation and absorption for current drive via Landau damping

    SciTech Connect

    Pinsker, R. I.

    2015-09-15

    This introductory-level tutorial article describes the application of plasma waves in the lower hybrid range of frequencies (LHRF) for current drive in tokamaks. Wave damping mechanisms in a nearly collisionless hot magnetized plasma are briefly described, and the connections between the properties of the damping mechanisms and the optimal choices of wave properties (mode, frequency, wavelength) are explored. The two wave modes available for current drive in the LHRF are described and compared. The terms applied to these waves in different applications of plasma physics are elucidated. The character of the ray paths of these waves in the LHRF is illustrated in slab and toroidal geometries. Applications of these ideas to experiments in the DIII-D tokamak are discussed.

  4. The effects of modification of a high-latitude ionosphere by high-power HF radio waves. Part 1. Results of multi-instrument ground-based observations

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, f. T. D.; Yeoman, T. K.; Rietveld, M. T.

    2011-02-01

    We present the results of multi-instrument experiments related to studying the phenomena in the high-latitude ionosphere affected by high-power radio waves using the EISCAT technical facilities. It was found for the first time that strong small-scale artificial field-aligned irregularities (AFAIs) are excited when the ionospheric F region is heated by a high-power HF radio wave with X-mode polarization near the altitude at which the critical frequency {f_{x{F_2}}} of the F 2 layer is equal to the frequency f H of the heating accompanied by an up to 50% increase in the electron temperature. The spatial structure of the artificially perturbed ionospheric F region is examined in detail using an incoherent scatter radar operated in the regime of scanning over elevation angles from 92° to 74° with a 2° step. It is shown that the spatial size of the heated patch strongly depends on the angle of the HF pumping relative to the Earth's magnetic field. The phenomena occurring in the artificially modified ionospheric F region heated at frequencies near the third electron gyroharmonic, i.e., at f H = 3 f ce = f UH, where f UH is the upper-hybrid frequency, are explored on the basis of multi-instrument observation data.

  5. Modeling the variations of reflection coefficient of Earth's lower ionosphere using very low frequency radio wave data by artificial neural network

    NASA Astrophysics Data System (ADS)

    Ghanbari, Keyvan; Khakian Ghomi, Mehdi; Mohammadi, Mohammad; Marbouti, Marjan; Tan, Le Minh

    2016-08-01

    The ionized atmosphere lying from 50 to 600 km above surface, known as ionosphere, contains high amount of electrons and ions. Very Low Frequency (VLF) radio waves with frequencies between 3 and 30 kHz are reflected from the lower ionosphere specifically D-region. A lot of applications in long range communications and navigation systems have been inspired by this characteristic of ionosphere. There are several factors which affect the ionization rate in this region, such as: time of day (presence of sun in the sky), solar zenith angle (seasons) and solar activities. Due to nonlinear response of ionospheric reflection coefficient to these factors, finding an accurate relation between these parameters and reflection coefficient is an arduous task. In order to model these kinds of nonlinear functionalities, some numerical methods are employed. One of these methods is artificial neural network (ANN). In this paper, the VLF radio wave data of 4 sudden ionospheric disturbance (SID) stations are given to a multi-layer perceptron ANN in order to simulate the variations of reflection coefficient of D region ionosphere. After training, validation and testing the ANN, outputs of ANN and observed values are plotted together for 2 random cases of each station. By evaluating the results using 2 parameters of pearson correlation coefficient and root mean square error, a satisfying agreement was found between ANN outputs and real observed data.

  6. Global Analysis of Gravity Wave Potential Energy in the upper Troposphere and lower Stratosphere derived from 5 years of GPS Radio Occultation Data

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; de La Torre, A.; Beyerle, G.; Heise, S.; Wickert, J.; Rothacher, M.

    Global gravity wave GW potential energy distributions are retrieved from radio occultation RO data from the German CHAMP and the US-Argentinian SAC-C satellite missions for the period May 2001 to mid-2006 The RO technique uses GPS radio signals received aboard low orbiting satellites for atmospheric limb sounding Atmospheric temperature profiles are derived with high vertical resolution The investigated altitudes cover the range from the mid-troposphere up to 35 km The specific potential energy SPE as a measure of GW activity is deduced from the temperature profile for each occultation event for different altitude ranges For extracting background temperatures and temperature perturbations a band-pass filter associated to different vertical wave lengths is used We discuss mean SPE distributions with respect to different 1 geographical regions and seasons 2 altitude intervals and 3 background wind conditions In addition to the filter technique ECMWF temperature data along the occultation path were used to determine the background temperature The derived SPE values are about twice as high as those derived with the traditional filtering of the temperature profiles The use of ECMWF temperatures as background data delivers unrealistic high SPE values for the Antarctic region 60 r S during winter which can be clearly attributed to the ECMWF analyses

  7. Subionospheric VLF/LF radio waves propagation characteristics before, during and after the Sofia, Bulgaria Mw=5.6 earthquake occurred on 22 May 2012

    NASA Astrophysics Data System (ADS)

    Moldovan, Iren Adelina; Emilian Toader, Victorin; Nenovski, Petko; Biagi, Pier Francesco; Maggipinto, Tommaso; Septimiu Moldovan, Adrian; Ionescu, Constantin

    2013-04-01

    In 2009, INFREP, a network of VLF (20-60 kHz) and LF (150-300 kHz) radio receivers, was put into operation in Europe having as principal goal, the study of disturbances produced by the earthquakes on the propagation properties of these signals. On May 22nd, 2012 an earthquake with Mw=567 occurred in Bulgaria, near Sofia, inside the "sensitive" area of the INFREP VLF/LF electromagnetic network. The data collected on different frequencies, during April-May 2012 were studied using different methods of analysis: daily correlation methods, spectral approaches and terminator time techniques, in order to find out possible connections between the seismic activity and the subionospheric propagation properties of radio waves. The studies were performed with the help of a specially designed LabVIEW application, which accesses the VLF/LF receiver through internet. This program opens the receiver's web-page and automatically retrieves the list of data files to synchronize the user-side data with the receiver's data. Missing zipped files are also automatically downloaded. The application performs primary, statistical correlation and spectral analysis, appends daily files into monthly and annual files and performs 3D colour-coded maps with graphic representations of VLF and LF signals' intensities versus the minute-of-the-day and the day-of-the-month, facilitating a near real-time observation of VLF and LF electromagnetic waves' propagation. Another feature of the software is the correlation of the daily recorded files for the studied frequencies by overlaying the 24 hours radio activity and taking into account the sunrise and sunset. Data are individually processed (spectral power, correlations, differentiation, filtered using bandpass, lowpass, highpass). JTFA spectrograms (Cone-Shaped Distribution CSD, Gabor, Wavelet, short-time Fourier transform STFT, Wigner-Ville Distribution WVD, Choi-Williams Distribution CWD) are used, too.

  8. An alternative to the plasma emission model: Particle-in-cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts

    SciTech Connect

    Tsiklauri, David

    2011-05-15

    High-resolution (sub-Debye length grid size and 10 000 particle species per cell), 1.5D particle-in-cell, relativistic, fully electromagnetic simulations are used to model electromagnetic wave emission generation in the context of solar type III radio bursts. The model studies generation of electromagnetic waves by a super-thermal, hot beam of electrons injected into a plasma thread that contains uniform longitudinal magnetic field and a parabolic density gradient. In effect, a single magnetic line connecting Sun to Earth is considered, for which five cases are studied. (i) We find that the physical system without a beam is stable and only low amplitude level electromagnetic drift waves (noise) are excited. (ii) The beam injection direction is controlled by setting either longitudinal or oblique electron initial drift speed, i.e., by setting the beam pitch angle (the angle between the beam velocity vector and the direction of background magnetic field). In the case of zero pitch angle, i.e., when v-vector{sub b{center_dot}}E-vector{sub perpendicular}=0, the beam excites only electrostatic, standing waves, oscillating at local plasma frequency, in the beam injection spatial location, and only low level electromagnetic drift wave noise is also generated. (iii) In the case of oblique beam pitch angles, i.e., when v-vector{sub b{center_dot}}E-vector{sub perpendicular}=0, again electrostatic waves with same properties are excited. However, now the beam also generates the electromagnetic waves with the properties commensurate to type III radio bursts. The latter is evidenced by the wavelet analysis of transverse electric field component, which shows that as the beam moves to the regions of lower density and hence lower plasma frequency, frequency of the electromagnetic waves drops accordingly. (iv) When the density gradient is removed, an electron beam with an oblique pitch angle still generates the electromagnetic radiation. However, in the latter case no frequency

  9. Modification of the high latitude F region of the ionosphere by X-mode powerful HF radio waves: Experimental results from multi-instrument diagnostics

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, Nataly; Rietveld, Michael; Haggstrom, Ingemar; Borisova, Tatiana; Yeoman, Tim

    We present the experimental results for strong plasma modifications induced by the X-mode powerful HF radio waves injected towards the magnetic zenith into the high latitude F region of the ionosphere. A large number of experiments in the course of Russian EISCAT heating campaigns were conducted in 2009 - 2013 under different background conditions in a wide heater frequency range from 4 to 8 MHz. The EISCAT UHF incoherent scatter radar at Tromsø, the CUTLASS (SuperDARN) HF coherent radar in Finland, SEE receiver at Tromsø, the HF Doppler equipment near St. Petersburg, and the EISCAT ionosonde (dynasonde) were used as diagnostic instruments. The results show that the X-mode HF pump wave can generate: (1) strong small-scale artificial field aligned irregularities (AFAIs); (2) HF-induced plasma and HF-enhanced ion lines (HFPLs and HFILs) from UHF radar spectra; (3) strong electron density enhancements along magnetic field line in a wide altitude range; (4) spectral components (few tens of Hz) in the Doppler spectra of the heater signal measured at a distance of 1200 km from the Tromsø HF heating facility. The experimental results obtained points to the strong magnetic zenith effect due to self-focusing powerful HF radio wave with X-mode polarization. For heater frequencies in the range of about 4 - 6 MHz the mentioned above phenomena are generated when the heater frequency is equal or above the ordinary-mode critical frequency (foF2). Under high background electron density and the heater frequencies used of 6.5 - 8.0 MHz, the strong X-mode HF-induced phenomena were observed both when the heater frequency is equal or above the foF2 and the heater frequency is below the foF2.

  10. Excitation of guided ELF-VLF waves through modification of the F{sub 2} ionospheric layer by high-power radio waves

    SciTech Connect

    Markov, G. A.; Belov, A. S.; Komrakov, G. P.; Parrot, M.

    2012-03-15

    The possibility of controlled excitation of ELF-VLF electromagnetic waves through modification of the F{sub 2} ionospheric layer by high-power high-frequency emission is demonstrated in a natural experiment by using the Sura midlatitude heating facility. The excited low-frequency waves can be used to explore the near-Earth space and stimulate the excitation of a magnetospheric maser.

  11. Cryogenically cooled low-noise amplifier for radio-astronomical observations and centimeter-wave deep-space communications systems

    NASA Astrophysics Data System (ADS)

    Vdovin, V. F.; Grachev, V. G.; Dryagin, S. Yu.; Eliseev, A. I.; Kamaletdinov, R. K.; Korotaev, D. V.; Lesnov, I. V.; Mansfeld, M. A.; Pevzner, E. L.; Perminov, V. G.; Pilipenko, A. M.; Sapozhnikov, B. D.; Saurin, V. P.

    2016-01-01

    We report a design solution for a highly reliable, low-noise and extremely efficient cryogenically cooled transmit/receive unit for a large antenna system meant for radio-astronomical observations and deep-space communications in the X band. We describe our design solution and the results of a series of laboratory and antenna tests carried out in order to investigate the properties of the cryogenically cooled low-noise amplifier developed. The transmit/receive unit designed for deep-space communications (Mars missions, radio observatories located at Lagrangian point L2, etc.) was used in practice for communication with live satellites including "Radioastron" observatory, which moves in a highly elliptical orbit.

  12. e-POP Radio Science Using Amateur Radio Transmissions

    NASA Astrophysics Data System (ADS)

    Frissell, N. A.; Perry, G. W.; Miller, E. S.; Shovkoplyas, A.; Moses, M. L.; James, H. G.; Yau, A. W.

    2015-12-01

    A major component of the enhanced Polar Outflow Probe (e-POP) Radio Receiver Instrument (RRI) mission is to utilize artificially generated radio emissions to study High Frequency (HF) radio wave propagation in the ionosphere. In the North American and European sectors, communications between amateur radio operators are a persistent and abundant source source of HF transmissions. We present the results of HF radio wave propagation experiments using amateur radio transmissions as an HF source for e-POP RRI. We detail how a distributed and autonomously operated amateur radio network can be leveraged to study HF radio wave propagation as well as the structuring and dynamics of the ionosphere over a large geographic region. In one case, the sudden disappearance of nearly two-dozen amateur radio HF sources located in the midwestern United States was used to detect a enhancement in foF2 in that same region. We compare our results to those from other more conventional radio instruments and models of the ionosphere to demonstrate the scientific merit of incorporating amateur radio networks for radio science at HF.

  13. Detecting Pulsars with Interstellar Scintillation in Variance Images

    NASA Astrophysics Data System (ADS)

    Dai, S.; Johnston, S.; Bell, M. E.; Coles, W. A.; Hobbs, G.; Ekers, R. D.; Lenc, E.

    2016-08-01

    Pulsars are the only cosmic radio sources known to be sufficiently compact to show diffractive interstellar scintillations. Images of the variance of radio signals in both time and frequency can be used to detect pulsars in large-scale continuum surveys using the next generation of synthesis radio telescopes. This technique allows a search over the full field of view while avoiding the need for expensive pixel-by-pixel high time resolution searches. We investigate the sensitivity of detecting pulsars in variance images. We show that variance images are most sensitive to pulsars whose scintillation time-scales and bandwidths are close to the subintegration time and channel bandwidth. Therefore, in order to maximise the detection of pulsars for a given radio continuum survey, it is essential to retain a high time and frequency resolution, allowing us to make variance images sensitive to pulsars with different scintillation properties. We demonstrate the technique with Murchision Widefield Array data and show that variance images can indeed lead to the detection of pulsars by distinguishing them from other radio sources.

  14. EVIDENCE AGAINST THE OSCILLATING TWO-STREAM INSTABILITY AND SPATIAL COLLAPSE OF LANGMUIR WAVES IN SOLAR TYPE III RADIO BURSTS

    SciTech Connect

    Graham, D. B.; Cairns, Iver H.; Malaspina, D. M.; Ergun, R. E.

    2012-07-01

    Recently Thejappa et al. studied a specific Langmuir wave packet observed by STEREO A and argued based on the electric field from one of the three antennas that this packet satisfied the conditions for the oscillating two-stream instability (OTSI) and was undergoing wave collapse. We analyze the same event using all three electric components and show that, while the wave packet has structure consistent with collapse simulations and theory, the field strength is well below that required for collapse to proceed. Analyzing the three electric field components shows that the power spectrum and dominance of wave power perpendicular to the local magnetic field are inconsistent with OTSI. We show that this packet and other more intense packets are inconsistent with collapse and show no evidence of OTSI, but are likely trapped eigenmodes in density wells. Therefore, OTSI and collapse are unlikely explanations for intense Langmuir events observed in the solar wind.

  15. Radio wave scattering observations of the solar corona: First-order measurements of expansion velocity and turbulence spectrum using Viking and Mariner 10 spacecraft

    SciTech Connect

    Tyler, G.L.; Vesecky, J.F.; Plume, M.A.; Howard, H.T.; Barnes, A.

    1981-10-01

    Solar conjunction of Mars on 1976 November 25 occurred very near the beginning of solar cycle 21, about 4 months after the first Viking spacecraft arrived at the planet. Radio wave scattering data were collected at 3.6 and 13 cm wavelengths, using the radio link between the Viking orbiters and the Earth. These data allow measurements of solar wind properties over a range of heliocentric radial distance from approx.6 to 44 R/sub sun/ with solar latitudes ranging from -17/sup 0/ to +7/sup 0/. Observations with Mariner 10 during a period of moderate solar activity in 1974 cover from 6 to 24 R/sub sun/ and from approx.20/sup 0/ to near 90/sup 0/. We have found that the temporal frequency variance spectrum of amplitude fluctuations is useful for characterizing the bulk motion of the plasma. This spectrum has an approximately constant low frequency plateau and a power-law high frequency asymptote; the plateau-asymptote intersection frequency provides a measure of the solar wind velocity V. We also obtain the spectral index p of electron density turbulence, Phi/sub N/approx.kappa/sup -p/, where kappa is spatial wavenumber. These results apply to a cylindrical region oriented with its axis along the radio ray path and its center at the point of closest approach to the Sun. The measurements of V and p cover some 78/sup d/ for Viking and 49/sup 2/ for Mariner 10 and show the combined effects of changing heliocentric distance rho, solar latitude theta, and solar longitude Psi, as well as solar activity. The Viking results can be regarded as a function primary of rho and Psi since the observations are concentrated in the equatorial regions when solar activity was near minimum. For Mariner 10, rho, theta, and Psi variations were important. The Viking results show an abrupt change in V(rho) and the turbulence spectral index at approx.15 R/sub sun/.

  16. Features of solar wind acceleration according to radio occultation data

    NASA Technical Reports Server (NTRS)

    Efimov, A. I.

    1995-01-01

    In addressing one of the fundamental problems in solar physics establishing the mechanism(s) responsible for the solar wind acceleration and the corona heating - it is essential to have a reliable knowledge of the heliocentric radial dependence of the solar wind properties. Adequate data are available for small solar distances R less than 4 R(solar mass) from coronal white light and EUV observations and at distances R greater than 60 R(solar mass) from in situ measurements. One of the few methods available to fill in the gap between these boundaries is the radio scintillation technique. Taking the example of the solar wind velocity, the most reliable such measurements are obtained when phase fluctuation observations of scattered radio waves, which are not susceptible to saturation effects, are recorded at two or more widely-spaced ground stations. Two extensive observation campaigns of this type were carried out with the Venus-orbiting satellites Venera 10 in 1976 and Venera 15/16 in 1984. The observations were performed over the course of three months near superior conjunction at solar offset distances R approximately 6-80 R(solar mass). The main results from the subsequent analysis of these data are: (1) velocities vary between 250 and 380 km s(exp -1) for R greater than 20 R(solar mass), agreeing with similar measurements using natural sources (IPS); (2) velocities derived from two-station phase fluctuation observations varv between 70 and 120 km s(exp -1) for R less than 12 R(solar mass), i.e. values substantially lower than those derived from conventional IPS data; and (3) it is suggested that the different velocity profiles derived from the two data sets at small R may be due to the effects of magnetosonic and Alfvenic waves on radio wave scattering. Further analysis of additional radio sounding data should help resolve the apparent discrepancy.

  17. A Novel Cost-effective OFDM WDM-PON Radio Over Fiber System Employing FBG to Generate Optical mm-wave

    NASA Astrophysics Data System (ADS)

    Nguyen, HoangViet

    2015-03-01

    We have investigated and demonstrated a novel scheme to generate 2.5 Gbit/s 64 QAM orthogonal frequency division multiplexing (OFDM) signals for Radio Over Fiber (ROF) systems. We employ Fiber Bragg Grating (FBG) because the repetitive frequency of the RF source and the bandwidth of the optical modulator are largely reduced and the architecture of the ROF system is simpler. Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) has been considered as a promising solution for future broadband access networks. Principle of WDM-PON access network compatible with OFDM-ROF systems is investigated. This novel scheme which has multiple double-frequency technique to generate mm-wave signal to carry OFDM signals is a practical scheme to be applied for future broadband access networks.

  18. PRPSIM: A FORTRAN code to calculate properties of radio wave propagation in a structured ionized medium. Volume 2: Theory and models

    NASA Astrophysics Data System (ADS)

    Dodson, R. E.; Krueger, D. J.; Guigliano, F. W.

    1989-12-01

    This report describes the PRPSIM (Properties of Radio Wave Propagation in a Structured Ionized Medium) code, a FORTRAN computer program for use in evaluating electromagnetic propagation effects resulting from detonation of nuclear weapons on satellite communications and radar systems. The code uses nuclear environment data files created by the SCENARIO high altitude, multiburst nuclear phenomenology code. PRPSIM calculates propagation effects due to enhanced mean ionization levels (e.g., absorption, noise, refraction, phase shift, Doppler and time delay variations, etc.). The code is written in ANSI FORTRAN-77 and has been installed and run on VAX, CDC/CYBER, ELXSI/EMBOS, and CRAY-1 computer systems. Volume 1 of the report is a user's guide which describes code installation, input, output, structure, and application. Volume 2 describes the underlying propagation effects theory and computational models.

  19. The 27-day versus 13.5-day variations in the solar Lyman-alpha radiation and the radio wave absorption in the lower ionosphere over Europe

    NASA Technical Reports Server (NTRS)

    Delamorena, B. A.; Lastovicka, Jan; Rapoport, Z. TS.; Alberca, L.

    1989-01-01

    In order to clarify the question of solar periods in absorption, the pattern was studied of the solar Lyman-alpha radiation (the principal ionizing agent of the lower ionosphere) and of the radio wave absorption at five widely spaced places in Europe. When the solar Lyman-alpha flux variability is very well developed, then it dominates in the lower ionospheric variability. The most pronounced Lyman-alpha variation on time scale day-month is the solar rotation variation (about 27 days). When the Lyman-alpha variability is developed rather poorly, as it is typical for periods dominated by the 13.5 day variability, then the lower ionospheric variability appears to be dominated by variations of meteorological origin. The conclusions hold for all five widely spaced placed in Europe.

  20. Remote sensing and modeling of lightning caused long recovery events within the lower ionosphere using VLF/LF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Schmitter, E. D.

    2014-11-01

    On the 4 November 2012 at 3:04:27 UT a strong lightning in the midst of the North Sea affected the propagation conditions of VLF/LF transmitter radio signals from NRK (Iceland, 37.5 kHz) and GBZ (UK, 19.58 kHz) received at 5246° N 8° E (NW Germany). The amplitude and phase dips show a recovery time of 6-12 min pointing to a LOng Recovery Early VLF (LORE) event. Clear assignment of the causative return stroke in space and time was possible with data from the WWLLN (Worldwide Lightning Location Network). Based on a return stroke current model the electric field is calculated and an excess electron density distribution which decays over time in the lower ionosphere is derived. Ionization, attachment and recombination processes are modeled in detail. Entering the electron density distribution in VLF/LF radio wave propagation calculations using the LWPC (Long Wavelength Propagation Capability) code allows to model the VLF/LF amplitude and phase behavior by adjusting the return stroke current moment. The results endorse and quantify the conception of lower ionosphere EMP heating by strong - but not necessarily extremely strong - return strokes of both polarities.

  1. Remote sensing and modeling of energetic electron precipitation into the lower ionosphere using VLF/LF radio waves and field aligned current data

    NASA Astrophysics Data System (ADS)

    Schmitter, E. D.

    2015-11-01

    A model for the development of electron density height profiles based on space time distributed ionization sources and reaction rates in the lower ionosphere is described. Special attention is payed to the definition of an auroral oval distribution function for energetic electron energy input into the lower ionosphere based on a Maxwellian energy spectrum. The distribution function is controlled by an activity parameter which is defined proportional to radio signal amplitude disturbances of a VLF/LF transmitter. Adjusting the proportionality constant allows to model precipitation caused VLF/LF signal disturbances using radio wave propagation calculations and to scale the distribution function. Field aligned current (FAC) data from the new Swarm satellite mission are used to constrain the spatial extent of the distribution function. As an example electron precipitation bursts during a moderate substorm on the 12 April 2014 (midnight-dawn) are modeled along the subauroral propagation path from the NFR/TFK transmitter (37.5 kHz, Iceland) to a midlatitude site.

  2. All-optical frequency downconversion technique utilizing a four-wave mixing effect in a single semiconductor optical amplifier for wavelength division multiplexing radio-over-fiber applications.

    PubMed

    Kim, Hyoung-Jun; Song, Jong-In

    2012-03-26

    An all-optical frequency downconversion utilizing a four-wave mixing effect in a single semiconductor optical amplifier (SOA) was experimentally demonstrated for wavelength division multiplexing (WDM) radio-over-fiber (RoF) applications. Two WDM optical radio frequency (RF) signals having 155 Mbps differential phase shift keying (DPSK) data at 28.5 GHz were simultaneously down-converted to two WDM optical intermediate frequency (IF) signals having an IF frequency of 4.5 GHz by mixing with an optical local oscillator (LO) signal having a LO frequency of 24 GHz in the SOA. The bit-error-rate (BER) performance of the RoF up-links with different optical fiber lengths employing all-optical frequency downconversion was investigated. The receiver sensitivity of the RoF up-link with a 6 km single mode fiber and an optical IF signal in an optical double-sideband format was approximately -8.5 dBm and the power penalty for simultaneous frequency downconversion was approximately 0.63 dB. The BER performance showed a strong dependence on the fiber length due to the fiber dispersion. The receiver sensitivity of the RoF up-link with the optical IF signal in the optical single-sideband format was reduced to approximately -17.4 dBm and showed negligible dependence on the fiber length. PMID:22453476

  3. Milliarcsecond Images of the Ionized ISM From Pulsar Scintillation

    NASA Astrophysics Data System (ADS)

    Asplund, C. T.; Berwick, D. E.; Stinebring, D. R.; Walker, M. A.

    2004-12-01

    Recent scintillation observations of pulsars have revealed surprising features of the ionized ISM. Scattering of radio waves from pulsars by density inhomogeneities in the interstellar medium causes an interference pattern at the Earth. High sensitivity single-dish observations of this pattern contain a wealth of information about the ISM on AU-size scales. Furthermore, we have shown recently that discrete features can be tracked for more than 30 days as the pulsar scans past them. We report on an effort to obtain an image of the scattered signal with milliarcesecond resolution. The time development of the interference pattern can be used to resolve image ambiguities since the scattering material is seen from different perspectives. We will present preliminary results for an imaging event of the pulsar PSR B0834+06 obtained in 2004 January. This work was supported by a grant from the National Science Foundation (PI: DRS) and is based on observations obtained with the Arecibo Observatory, operated by Cornell University under cooperative agreement with the NSF.

  4. Laboratory studies on the removal of radon-born lead from KamLAND׳s organic liquid scintillator

    SciTech Connect

    Keefer, G.; Grant, C.; Piepke, A.; Ebihara, T.; Ikeda, H.; Kishimoto, Y.; Kibe, Y.; Koseki, Y.; Ogawa, M.; Shirai, J.; Takeuchi, S.; Mauger, C.; Zhang, C.; Schweitzer, G.; Berger, B. E.; Dazeley, S.; Decowski, M. P.; Detwiler, J. A.; Djurcic, Z.; Dwyer, D. A.; Efremenko, Y.; Enomoto, S.; Freedman, S. J.; Fujikawa, B. K.; Furuno, K.; Gando, A.; Gando, Y.; Gratta, G.; Hatakeyama, S.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Inoue, K.; Iwamoto, T.; Kamyshkov, Y.; Karwowski, H. J.; Koga, M.; Kozlov, A.; Lane, C. E.; Learned, J. G.; Maricic, J.; Markoff, D. M.; Matsuno, S.; McKee, D.; McKeown, R. D.; Miletic, T.; Mitsui, T.; Motoki, M.; Nakajima, Kyo; Nakajima, Kyohei; Nakamura, K.; O׳Donnell, T.; Ogawa, H.; Piquemal, F.; Ricol, J. -S.; Shimizu, I.; Suekane, F.; Suzuki, A.; Svoboda, R.; Tajima, O.; Takemoto, Y.; Tamae, K.; Tolich, K.; Tornow, W.; Watanabe, Hideki; Watanabe, Hiroko; Winslow, L. A.; Yoshida, S.

    2014-09-28

    We studied the removal of radioactivity from liquid scintillator in preparation of a low background phase of KamLAND. We describe the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. Lastly, we report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon daughters from liquid scintillator.

  5. Scintillator Measurements for SNO+

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, Tanner; SNO+ Collaboration

    2016-03-01

    SNO+ is a neutrino detector located 2km underground in the SNOLAB facility with the primary goal of searching for neutrinoless double beta decay. The detector will be filled with a liquid scintillator target primarily composed of linear alkyl benzene (LAB). As charged particles travel through the detector the LAB produces scintillation light which is detected by almost ten thousand PMTs. The LAB is loaded with Te130, an isotope known to undergo double beta decay. Additionally, the LAB is mixed with an additional fluor and wavelength shifter to improve the light output and shift the light to a wavelength regime in which the PMTs are maximally efficient. The precise scintillator optics drastically affect the ultimate sensitivity of SNO+. I will present work being done to measure the optical properties of the SNO+ scintillator cocktail. The measured properties are used as input to a scintillation model that allows us to extrapolate to the SNO+ scale and ultimately predict the sensitivity of the experiment. Additionally, I will present measurements done to characterize the R5912 PMT, a candidate PMT for the second phase of SNO+ that provides better light collection, improved charge resolution, and a narrower spread in timing.

  6. Analysis of radio wave propagation for ISM 2.4 GHz Wireless Sensor Networks in inhomogeneous vegetation environments.

    PubMed

    Azpilicueta, Leire; López-Iturri, Peio; Aguirre, Erik; Mateo, Ignacio; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2014-01-01

    The use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments. PMID:25513820

  7. Analysis of Radio Wave Propagation for ISM 2.4 GHz Wireless Sensor Networks in Inhomogeneous Vegetation Environments

    PubMed Central

    Azpilicueta, Leire; López-Iturri, Peio; Aguirre, Erik; Mateo, Ignacio; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2014-01-01

    The use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments. PMID:25513820

  8. Measurements of a solar flare-generated shock wave at 13.1 R/0/

    NASA Technical Reports Server (NTRS)

    Woo, R.; Armstrong, J. W.

    1981-01-01

    The first measurements of the structure of wind speed, electron density, and electron density fluctuations are reported for a shock wave propagating through the acceleration region of the solar wind. Radio scattering observations, consisting of spectral broadening, mean phase and amplitude scintillations, were made on August 18, 1979, 13.1 solar radii east of the sun near the ecliptic plane, using the 2.3 and 8.4 GHz radio signals of Voyager 1. The results show a shock wave speed of about 3,500 km/sec; which, when compared with average transit time speed to 1 AU, shows that substantial deceleration took place with outward propagation from the sun. This result is consistent with a blast wave.

  9. MILLISECOND PULSAR SCINTILLATION STUDIES WITH LOFAR: INITIAL RESULTS

    SciTech Connect

    Archibald, Anne M.; Kondratiev, Vladislav I.; Hessels, Jason W. T.; Stinebring, Daniel R. E-mail: kondratiev@astron.nl E-mail: dan.stinebring@oberlin.edu

    2014-08-01

    High-precision timing of millisecond pulsars (MSPs) over years to decades is a promising technique for direct detection of gravitational waves at nanohertz frequencies. Time-variable, multi-path scattering in the interstellar medium is a significant source of noise for this detector, particularly as timing precision approaches 10 ns or better for MSPs in the pulsar timing array. For many MSPs, the scattering delay above 1 GHz is at the limit of detectability; therefore, we study it at lower frequencies. Using the LOw-Frequency ARray (LOFAR) radio telescope, we have analyzed short (5-20 minutes) observations of 3 MSPs in order to estimate the scattering delay at 110-190 MHz, where the number of scintles is large and, hence, the statistical uncertainty in the scattering delay is small. We used cyclic spectroscopy, still relatively novel in radio astronomy, on baseband-sampled data to achieve unprecedented frequency resolution while retaining adequate pulse-phase resolution. We detected scintillation structure in the spectra of the MSPs PSR B1257+12, PSR J1810+1744, and PSR J2317+1439 with diffractive bandwidths of 6 ± 3, 2.0 ± 0.3, and ∼7 kHz, respectively, where the estimate for PSR J2317+1439 is reliable to about a factor of two. For the brightest of the three pulsars, PSR J1810+1744, we found that the diffractive bandwidth has a power-law behavior Δν{sub d}∝ν{sup α}, where ν is the observing frequency and α = 4.5 ± 0.5, consistent with a Kolmogorov inhomogeneity spectrum. We conclude that this technique holds promise for monitoring the scattering delay of MSPs with LOFAR and other high-sensitivity, low-frequency arrays like the low-frequency component of the Square Kilometre Array.

  10. Scintillator plate calorimetry

    SciTech Connect

    Price, L.E.

    1990-01-01

    Calorimetry using scintillator plates or tiles alternated with sheets of (usually heavy) passive absorber has been proven over multiple generations of collider detectors. Recent detectors including UA1, CDF, and ZEUS have shown good results from such calorimeters. The advantages offered by scintillator calorimetry for the SSC environment, in particular, are speed (<10 nsec), excellent energy resolution, low noise, and ease of achieving compensation and hence linearity. On the negative side of the ledger can be placed the historical sensitivity of plastic scintillators to radiation damage, the possibility of nonuniform response because of light attenuation, and the presence of cracks for light collection via wavelength shifting plastic (traditionally in sheet form). This approach to calorimetry is being investigated for SSC use by a collaboration of Ames Laboratory/Iowa State University, Argonne National Laboratory, Bicron Corporation, Florida State University, Louisiana State University, University of Mississippi, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, Westinghouse Electric Corporation, and University of Wisconsin.

  11. Coherence properties of wideband satellite signals caused by ionospheric scintillation

    NASA Technical Reports Server (NTRS)

    Rufenach, C. L.

    1975-01-01

    Radio scintillation on satellite signals caused by small-scale irregularities in F-region ionospheric electron density can be an important limitation on earth-satellite communication and navigation systems. Scintillation imposes distortion in both amplitude and phase on wideband signals. In the present work, the shallow-modulated phase screen theory is developed in terms of coherence bandwidth including a model based on a turbulent-like power-law description of the irregularities. The model results usually show a greater coherence bandwidth in the signal phase than in the signal amplitude. Therefore, systems that require phase coherence over a large bandwidth should be less affected than those requiring amplitude coherence.

  12. The space weather of the global ionosphere S4 scintillation

    NASA Astrophysics Data System (ADS)

    Liu, Jann-Yenq; Chen, Shih-Ping; Yeh, Wen-Hao

    2016-04-01

    In this paper, a method is introduced which converts S4 index observations by radio occultation of FORMOSAT-3/COSMIC (F3/C) to the scintillation on the ground. To carry out the conversion, three dimensional (3D) structures of S4max, the maximum value on each profile probed by F3/C, are constructed, which allows us to understand GPS scintillation variations at various local times, seasons, and solar activity conditions, as well as the geographical distribution from the space-based point of view. By applying the method to data of the 3D structure, maps of the worst case scenario on the ground as functions of geomagnetic local time and geographic coordinates are constructed and reported here. The converted S4max for the first time estimates the global distribution of ionospheric scintillations in the GPS L1 band C/A code signal on the ground. The results show that the worst-case scintillations appear within the low latitude region of ±30°N, peaking around ±20°N magnetic latitude; they begin at 1900 MLT, reach their maximum at 2100 MLT, and vanish by about 0200-0300 MLT. The most pronounced low-latitude scintillation occurs over the South American and African sectors. Finally, based on the above the above data, an empirical model is constructed. For a given time, location, and solar activity, the model forecasts the ionospheric S4 scintillation in the L1 band signal on the ground.

  13. Radio-frequency electromagnetic field measurements for direct detection of electron Bernstein waves in a torus plasma.

    PubMed

    Yatsuka, Eiichi; Kinjo, Kiyotake; Morikawa, Junji; Ogawa, Yuichi

    2009-02-01

    To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic. PMID:19256646

  14. Cosmology: Home of a fast radio burst

    NASA Astrophysics Data System (ADS)

    Lorimer, Duncan

    2016-02-01

    Our understanding of fast radio bursts -- intense pulses of radio waves -- and their use as cosmic probes promises to be transformed now that one burst has been associated with a galaxy of known distance from Earth. See Letter p.453

  15. Interplanetary plasma scintillation parameters measurements retrieved from the spacecraft observations.

    NASA Astrophysics Data System (ADS)

    Molera Calvés, Guifré; Pogrebenko, S. V.; Wagner, J.; Maccaferri, G.; Colucci, G.; Kronschnabl, G.; Scilliro, F.; Bianco, G.; Pérez Ayúcar, M.; Cosmovici, C. B.

    2010-05-01

    Measurement of the Interplanetary Scintillations (IPS) of radio signals propagating through the plasma in the Solar System by the radio astronomical instruments is a powerful tool to characterise and study the spatial and temporal variation of the electron density in the Solar wind. Several techniques based on the observation of natural and artificial radio sources have been developed during the last 50 years. Here we report our results of the IPS parameters measurement based on the multi-station observations of the planetary mission spacecraft. The ESA Venus Express spacecraft was observed at X-band (8.4 GHz) by several European VLBI stations - Metsähovi Radio Observatory (Aalto University , FI), Medicina (INAF-RA, IT), Matera (ASI, IT), Wettzell (BKG, DE), Noto (INAF-IRA, IT) and Yebes (OAN-IGN, ES) during a 2008-2010 campaign in a framework of the PRIDE (Planetary Radio Interferometry and Doppler Experiments) project as a preparatory stage for the European Radio Astronomy VLBI facilities participation in the planned ESA planetary missions (EJSM, TESM, EVE and others). Observational data were processed at Metsähovi Radio Observatory with the on-purpose developed high performance, ultra-high spectral resolution and spacecraft tracking capable software spectrometer-correlator and analysed at the Joint Institute for VLBI in Europe (JIVE, NL). High quality of acquired and analysed data enables us to study and define several parameters of the S/C signal and accompanying "ranging" tones with milli-Hz accuracy, among which the phase fluctuations of the spacecraft signal carrier line can be used to characterise the interplanetary plasma density fluctuations along the signal propagation line at different spatial and temporal scales at different Solar elongations and which exhibits a near-Kolmogorov spectrum. Such essential parameters as the phase scintillation index and bandwidth of scintillations and their dependence on the solar elongation, distance to the target

  16. Modification of the High-Latitude Ionospheric F Region By High-Power HF Radio Waves at Frequencies Near the fifth and Sixth Electron Gyroharmonics

    NASA Astrophysics Data System (ADS)

    Borisova, T. D.; Blagoveshchenskaya, N. F.; Kalishin, A. S.; Rietveld, M. T.; Yeoman, T. K.; Hägström, I.

    2016-01-01

    We study the modification effects of the high-latitude ionospheric F region induced by a highpower O-mode HF radio wave injected towards the magnetic zenith, at frequencies near the fifth and sixth electron gyroharmonics using the EISCAT/Heating facility. Multi-instrument diagnostics with the EISCAT incoherent scatter radar (930 MHz) at Tromsø, Norway, the CUTLASS coherent radar at Hankasalmi, Finland, and stimulated electromagnetic emission (SEE) receiver at Tromsø, has been used for analysis of the observed phenomena. The behavior of the ionospheric plasma parameters (electron's density and temperature), small-scale artificial field-aligned irregularities, plasma and ion-line spectra, and ionospheric SEE are analyzed in detail. Modification effects near the fifth and sixth electron gyroharmonics have been compared. The coexistence of the thermal (resonance) parametric instability, parametric decay (striction) instability, and/or oscillating two-stream instability was found at these frequencies. The excitation of instabilities occurred at altitudes close to the reflection altitude of the HF pump wave and at the altitudes of the upper-hybrid resonance.

  17. Effects of magnetic field on pulse wave forms in plasma immersion ion implantation in a radio-frequency, inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Tong, Honghui; Fu, Ricky K. Y.; Tang, Deli; Zeng, Xuchu; Chu, Paul K.

    2002-09-01

    The time-dependent current wave forms measured using a pulse biased planar electrode in hydrogen radio-frequency (rf), inductively coupled plasma, plasma immersion ion implantation experiments are observed to vary in the presence of an external magnetic field B. Results further indicate that the magnitude of the pulse current is related to the strength and direction of the magnetic field, rf power, and pressure, but the pulse current curves can be primarily correlated with B. The plasma discharges are enhanced in all cases due to magnetic confinement of the electrons, enlargement of the plasma generation volume, and increase in the rf power absorbing efficiency. The plasma density diagnosed by Langmuir probe diminishes in front of the sample chuck with B, whereas the plasma is confined nearby the sidewall of the vacuum chamber at high magnetic field. The high degree of plasma density nonuniformity at high B in front of the sample chuck is not desirable for the processing of planar samples such as silicon wafers and must be compensated. The reduction in the plasma density and plasma density gradient in the sheath can be accounted for by the changes in the pulse current wave forms.

  18. Radio-wave exposure of the human head: analytical study based on a versatile eccentric spheres model including a brain core and a pair of eyeballs.

    PubMed

    Moneda, Angela P; Ioannidou, Melina P; Chrissoulidis, Dimitris P

    2003-06-01

    A versatile eccentric-spheres model of the human head is used in this paper to investigate radio-wave absorption. Numerical results, obtained by use of an exact analytical solution, are presented for the total, percentage, and gram-specific absorption. Interest is mainly in the brain and in the eyes of an adult or an infant head. Our model comprises a host sphere and several spherical inclusions, all concentrically stratified with respect to their own center. Any number of inclusions and any number of concentric layers for the host sphere and each one of the inclusions can be considered. Excitation is provided either by a plane-wave or by a nearby electric dipole. The analytical solution is obtained by use of the indirect-mode matching method. The theory of this paper and the accompanying computer code constitute a versatile tool for analytical studies of cellular-phone interactions with the human head. Specific absorption rate maps in a horizontal cross section of the head model manifest the existence of hot spots in the eyes and near the center of the brain. PMID:12814233

  19. Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5G millimeter-wave radio-over-fiber link.

    PubMed

    Wang, Huai-Yung; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-08-01

    A novel millimeter-wave radio over fiber (MMW-RoF) link at carrier frequency of 35-GHz is proposed with the use of remotely beating MMW generation from reference master and injected slave colorless laser diode (LD) carriers at orthogonally polarized dual-wavelength injection-locking. The slave colorless LD supports lasing one of the dual-wavelength master modes with orthogonal polarizations, which facilitates the single-mode direct modulation of the quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data. Such an injected single-carrier encoding and coupled dual-carrier transmission with orthogonal polarization effectively suppresses the cross-heterodyne mode-beating intensity noise, the nonlinear modulation (NLM) and four-wave mixing (FWM) sidemodes during injection locking and fiber transmission. In 25-km single-mode fiber (SMF) based wireline system, the dual-carrier under single-mode encoding provides baseband 24-Gbit/s 64-QAM OFDM transmission with an error vector magnitude (EVM) of 8.8%, a bit error rate (BER) of 3.7 × 10-3, a power penalty of <1.5 dB. After remotely self-beating for wireless transmission, the beat MMW carrier at 35 GHz can deliver the passband 16-QAM OFDM at 4 Gbit/s to show corresponding EVM and BER of 15.5% and 1.4 × 10-3, respectively, after 25-km SMF and 1.6-m free-space transmission. PMID:27505734

  20. Determining source angular sizes from interplanetary-scintillation observations in the saturated regime

    NASA Astrophysics Data System (ADS)

    Glyantsev, A. V.; Tyul'bashev, S. A.; Chashei, I. V.; Shishov, V. I.

    2013-07-01

    Interplanetary-scintillation observations of the radio source B0531+194 (J0534+1927) obtained over a wide range of elongations at 111 MHz using the Big Scanning Antenna of the Lebedev Physical Institute are presented. Near the Sun, the temporal spectra of the scintillations have a two-component form, corresponding to the superposition of refractive and diffractive scintillations that is characteristic of the saturated regime. A method for estimating the angular size of the scintillating component based on measurement of the break frequency in the diffractive part of the scintillation spectrum is presented. The scintillating component as a fraction of the total flux can be determined using the maximum scintillation index. The angular size of the scintillating component in B0531+194 is found to be 0.24″ ± 0.05″, and the ratio of the fluxes in the core and halo to be roughly one-third. The flux density in the compact radio component is 5 Jy. The estimated parameters of the angular structure of the source are compared with observations at other frequencies.

  1. C/NOFS: a mission to forecast scintillations

    NASA Astrophysics Data System (ADS)

    de La Beaujardière, O.; the C/NOFS Science Definition Team

    2004-11-01

    This article describes the science to be pursued during the Communication/Navigation Outage Forecasting System (C/NOFS) Mission of the Air Force Research Laboratory. The primary purpose of C/NOFS is to forecast the presence of ionospheric irregularities that adversely impact communication and navigation systems. A satellite, scheduled for launch in May 2005 into a low inclination (13∘), elliptical (˜375×710 km) orbit, is the most significant component of the C/NOFS program. Complementary ground-based measurements are also critical to the success of the mission. C/NOFS science objectives may be organized into three categories: (1) to understand physical processes active in the background ionosphere and thermosphere in which plasma instabilities grow; (2) to identify mechanisms that trigger or quench the plasma irregularities responsible for signal degradation; and (3) to determine how the plasma irregularities affect the propagation of electro-magnetic waves. C/NOFS is the first satellite solely dedicated to forecasting ionospheric irregularities and radio wave scintillations. It will be equipped with sensors that measure the following parameters: ambient and fluctuating electron densities; ion and electron temperatures; AC and DC electric fields; magnetic fields; neutral winds; ionospheric scintillations; and electron content along the lines of sight between C/NOFS and the Global Positioning System (GPS). Thus, the sensor suite on C/NOFS is richer than on any previously flown equatorial satellite. A broad range of ground-based measurements will complement the space data. In addition, data from several other satellites and rocket experiments will augment the C/NOFS observations. Several campaigns are planned to validate operational forecasts, acquire data to achieve the science goals, and test the theoretical models. We anticipate that by the end of the C/NOFS mission, our understanding of the physics controlling the equatorial ionosphere will have advanced to

  2. Self consistent radio-frequency wave propagation and peripheral direct current plasma biasing: Simplified three dimensional non-linear treatment in the 'wide sheath' asymptotic regime

    SciTech Connect

    Colas, L.; Jacquot, J.; Hillairet, J.; Goniche, M.; Heuraux, S.; Faudot, E.; Crombe, K.; Kyrytsya, V.

    2012-09-15

    A minimal two-field fluid approach is followed to describe the radio-frequency (RF) wave propagation in the bounded scrape-off layer plasma of magnetic fusion devices self-consistently with direct current (DC) biasing of this plasma. The RF and DC parts are coupled by non-linear RF and DC sheath boundary conditions at both ends of open magnetic field lines. The physical model is studied within a simplified framework featuring slow wave (SW) only and lateral walls normal to the straight confinement magnetic field. The possibility is however kept to excite the system by any realistic 2D RF field map imposed at the outer boundary of the simulation domain. The self-consistent RF + DC system is solved explicitly in the asymptotic limit when the width of the sheaths gets very large, for several configurations of the RF excitation and of the target plasma. In the case of 3D parallelepipedic geometry, semi-analytical results are proposed in terms of asymptotic waveguide eigenmodes that can easily be implemented numerically. The validity of the asymptotic treatment is discussed and is illustrated by numerical tests against a quantitative criterion expressed from the simulation parameters. Iterative improvement of the solution from the asymptotic result is also outlined. Throughout the resolution, key physical properties of the solution are presented. The radial penetration of the RF sheath voltages along lateral walls at both ends of the open magnetic field lines can be far deeper than the skin depth characteristic of the SW evanescence. This is interpreted in terms of sheath-plasma wave excitation. Therefore, the proper choice of the inner boundary location is discussed as well as the appropriate boundary conditions to apply there. The asymptotic scaling of various quantities with the amplitude of the input RF excitation is established.

  3. A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Schmidt, T.; Wickert, J.

    2006-12-01

    This paper presents the first results of the global long-term potential energy and mean potential energy per unit mass associated to wave activity (WA) in the lower and middle stratosphere, obtained from Global Positioning System radio occultation (GPS-RO) temperature profiles, retrieved during the last 5 years from the CHAMP (CHAllenging Minisatellite Payload) satellite. We excluded temperature variations corresponding to the wavelike character of the Quasi Biennial oscillation (QBO). Possible limitations and distortions expected from our analysis are pointed out. Systematic annual and interannual features, clearly evidenced through 5 years of observations as a function of height, latitude and time are shown. We confirm some previously reported characteristics, in particular interannual requiring a sufficiently long period of observation, in addition to others not reported yet. In particular, a general stronger (weaker) wave activity is observed associated to apparent vertical wavelengths longer (shorter) than 4 km. The tropical/extratropical signatures decrease/increase with increasing altitude. At equatorial latitudes, WA interannual enhancements, related to QBO, are observed just below zonal wind zero contours corresponding to westerly shears. A significant decrease of WA is seen where the zonal wind is minimum. Both at equatorial and middle latitudes, an increased WA appears close above the TP, following its annual height oscillation and above 30 km height. At higher latitudes, a systematic annual variation of WA is observed, exhibiting stronger enhancements in winter SH respect to NH, but in SH, taking place during late winter and early spring. This enhanced WA, associated during 2002 to the stratospheric warming observed in that year, appears here as a systematic annual stratospheric feature. Its intensity increases with altitude, from 25 to 35 km. Inertio-gravity waves generated by geostrophic adjustment during the maximum of the southern polar vortex

  4. Scintillation characterization for multiple incoherent uplink Gaussian beams

    NASA Astrophysics Data System (ADS)

    Wu, Wu-Ming; Ning, Yu; Ma, Yan-Xing; Xi, Fen-Jie; Xu, Xiao-Jun

    2014-09-01

    By means of numerical simulations, we analyze the scintillation characterization for multiple incoherent uplink Gaussian beams under weak fluctuations cases. Because truly independent beams are difficult to create, we present a more general but approximate model for the multiple of beams traveling through partially correlated paths. This model compares with wave-optics simulations and highlights the reduced correlation coefficient as the beam separation is increased. The scintillation index of three and six incoherent uplink Gaussian beams is also induced. The result shows that the scintillation index decreases with the increase of beams amount and beam separation. When the beams amount and strength of atmospheric turbulence are fixed, the reduction of scintillation index is affected by the ratio of beams separation and the Fried length. The corresponding physical mechanisms for the results are discussed.

  5. Boron loaded scintillator

    SciTech Connect

    Bell, Zane William; Brown, Gilbert Morris; Maya, Leon; Sloop, Jr., Frederick Victor; Sloop, Jr., Frederick Victor

    2009-10-20

    A scintillating composition for detecting neutrons and other radiation comprises a phenyl containing silicone rubber with carborane units and at least one phosphor molecule. The carbonate units can either be a carborane molecule dispersed in the rubber with the aid of a compatibilization agent or can be covalently bound to the silicone.

  6. Polysiloxane scintillator composition

    DOEpatents

    Walker, J.K.

    1992-05-05

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  7. SCINTILLATION EXPOSURE RATE DETECTOR

    DOEpatents

    Spears, W.G.

    1960-11-01

    A radiation detector for gamma and x rays is described. The detector comprises a scintillation crystal disposed between a tantalum shield and the input of a photomultiplier tube, the crystal and the shield cooperating so that their combined response to a given quantity of radiation at various energy levels is substantially constant.

  8. Polysiloxane scintillator composition

    DOEpatents

    Walker, James K.

    1992-01-01

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  9. Planetary radio lasing

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1988-01-01

    Both the Earth's auroral kilometric radiation (AKR) and Jupiter's decametric radio S-bursts are attributed to natural radio lasing. Presumably consisting of self-excited, closed-loop wave feedback oscillations between local irregularities of the source plasma density, this radio lasing is comparable to that which occurs in man-made optical lasers, although at radio, rather than optical wavelengths. As a result, it should produce a multiple discrete emission spectrum and intense, coherent beams. Recent observations of the AKR's discreteness and coherence have clearly ruled out the previous open-loop amplifier model for such emissions, and recent observations of the Jovian S-bursts have shown the expected, regularly-spaced, longitudinal laser modes. These new observations thus confirm the proposed planetary cyclotron radio lasing at both planets.

  10. Scintillator requirements for medical imaging

    SciTech Connect

    Moses, William W.

    1999-09-01

    Scintillating materials are used in a variety of medical imaging devices. This paper presents a description of four medical imaging modalities that make extensive use of scintillators: planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT (single photon emission computed tomography) and PET (positron emission tomography). The discussion concentrates on a description of the underlying physical principles by which the four modalities operate. The scintillator requirements for these systems are enumerated and the compromises that are made in order to maximize imaging performance utilizing existing scintillating materials are discussed, as is the potential for improving imaging performance by improving scintillator properties.

  11. Scintillator Waveguide For Sensing Radiation

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder; Paul L.

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  12. Study of cosmic ray scintillations from 5-minute data of the scintillations telescope Izmran and world-wide network stations

    NASA Technical Reports Server (NTRS)

    Gulinsky, O. V.; Dorman, L. I.; Libin, I. Y.; Prilutsky, R. E.; Yudakhin, K. F.

    1985-01-01

    During cosmic ray propagation in interplanetary space there appear characteristic cosmic-ray intensity scintillations which are due to charged particle scattering on random inhomogeneities of the interplanetary magnetic field. The power spectra of cosmic ray scintillations on the Earth during some intervals from 1977 to 1982 (for quiet periods, for solar flares and Forbush decreases due to power shock waves) have been calculated from five-minute, one and two-hour values of the cosmic-ray intensity measured by the scintillator supertelescope IZMIRAN. The spectra were estimated by the methods of spectral analysis and by autoregressive methods which mutually control each other and make it possible not only to analyze scintillation powers at distinguished frequencies, but also to determine the behavior of spectrum slopes in some frequency ranges.

  13. Non-Thermal Radio and Gamma-Ray Emissions from a Supernova Remnant by Blast Wave Breaking Out of the Circumstellar Matter

    NASA Astrophysics Data System (ADS)

    Shimizu, Takafumi; Masai, Kuniaki; Koyama, Katsuji

    2013-06-01

    We calculated synchrotron radio emission and γ-ray emission due to bremsstrahlung, inverse-Compton scattering, and π0-decay from the remnant of supernova that exploded in the circumstellar matter (CSM) formed by the progenitor's stellar wind. This sort of situation is a possible origin of mixed-morphology supernova remnants (SNRs), like W 49B, which exhibit recombination-radiation spectra in X-ray emission. We assumed that the CSM of 1.5 M⊙ exists at 0.07-3 pc away from the supernova in the interstellar medium (ISM) of density 0.016 cm-3. When the blast wave breaks out of the CSM into the ISM, its velocity rapidly increases, and hence particle acceleration is enhanced. The maximum energy of protons reaches ˜1300 TeV just after the break-out with ˜0.5% of the explosion energy. We considered the non-thermal emission from the blast-shocked ISM shell after the break-out. Synchrotron radio flux at 1 GHz is tens of Jy, comparable to that observed from mixed-morphology SNRs. Because of low density, the γ-ray luminosity is dominated by inverse-Compton scattering, which is higher than the π0-decay luminosity by an order of magnitude. The total γ-ray luminosity, including bremsstrahlung, is on the order of 1033 erg s-1 lower than the typical value of 1035-1036 erg s-1 observed from mixed-morphology SNRs. However, if, e.g., ˜10% of accelerated protons interact with some matter of density of 100 cm-3, the π0-decay γ-ray luminosity would be enhanced to be comparable with the observed value.

  14. Gravitational-to-electromagnetic wave conversion and gamma-ray bursts calorimetry: The GRB980425/SN 1998bw ~1049 erg radio emission

    NASA Astrophysics Data System (ADS)

    Mosquera Cuesta, Herman J.

    2002-03-01

    The unusual features of supernova (SN) 1998bw and its apparent association with the gamma-ray burst (GRB) event GRB980425 were highlighted by Kulkarni et al. At its peak SN 1998bw was anomalously superluminous in radio wavelengths with an inferred fluence Eradio>=1049 erg [S. Kulkarni et al., Nature (London) 395, 663 (1998)], while the apparent expansion velocity of its ejecta (~10-5Msolar) suggests a shock wave moving relativistically (Vexp~2c). The unique properties of SN 1998bw strengthen the case for it being linked with GRB980425. I present a consistent, novel mechanism to explain the peculiar event SN 1998bw and similar phenomena in GRBs: Conversion of powerful, high frequency (~2 kHz) gravitational waves (GWs) into electromagnetic waves [M. Johnston, R. Ruffini, and F. Zerilli, Phys. Rev. Lett. 31, 1317 (1973)] might have taken place during SN 1998bw. Yet, conversion of GRB photons into GWs, as advanced by Johnston, Ruffini, and Zerilli [Phys. Lett. 49B, 185 (1974)], may also occur. These processes can produce GRBs depleted in γ rays but enhanced in x rays, for instance, or even more plausibly induce dark GRBs, those with no optical afterglow. The class of GWs needed to drive the calorimetric changes of these gamma-ray bursts may be generated by (a) the nonaxisymmetric dynamics of a torus surrounding the hypernova (or failed supernova) magnetized stellar-mass black hole (BH) remnant, as in van Putten's mechanism for driving long GRBs powered by the BH spin energy [Phys. Rev. Lett. 87, 091101 (2001)], or in the van Putten and Ostriker mechanism to account for the bimodal distribution in duration in GRBs [Astrophys. J. Lett. 552, L32 (2001)], where the torus magnetohydrodynamics may be dominated by either hyperaccretion onto a slowly spinning BH or suspended accretion onto a fast rotating BH, or (b) the just formed black hole with electromagnetic structure as in the GRB central engine mechanism of Ruffini et al. [Astrophys. J. Lett. 555, L107 (2001); 555, L

  15. Comparison of the effect of high-latitude and equatorial ionospheric scintillation on GPS signals during the maximum of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Jiao, Yu; Morton, Yu T.

    2015-09-01

    Radio signal scintillation caused by electron density irregularities in the ionosphere affects the accuracy and integrity of Global Navigation Satellite Systems, especially in the equatorial and high-latitude regions during solar maxima. Scintillation in these two regions, nevertheless, is usually influenced by different factors and thus has different characteristics that cause different effects on GNSS signals. This paper compares the characteristics of high-latitude and equatorial scintillation using multifrequency GPS scintillation data collected at Gakona, Alaska, Jicamarca, Peru, and Ascension Island during the 24th solar maximum. Several statistical distributions are established based on the data to characterize the intensity, duration, and occurrence frequency of scintillation. Results show that scintillation in the equatorial region is generally more severe and longer lasting, while high-latitude scintillation is, in general, more moderate and usually dominated by phase fluctuations. Results also reveal the different impacts of solar activity, geomagnetic activity, and seasons on scintillation in different geographic locations.

  16. Mergers of Charged Black Holes: Gravitational-wave Events, Short Gamma-Ray Bursts, and Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    2016-08-01

    The discoveries of GW150914, GW151226, and LVT151012 suggest that double black hole (BH–BH) mergers are common in the universe. If at least one of the two merging black holes (BHs) carries a certain amount of charge, possibly retained by a rotating magnetosphere, the inspiral of a BH–BH system would drive a global magnetic dipole normal to the orbital plane. The rapidly evolving magnetic moment during the merging process would drive a Poynting flux with an increasing wind power. The magnetospheric activities during the final phase of the merger would make a fast radio burst (FRB) if the BH charge can be as large as a factor of \\hat{q}∼ ({10}-9{--}{10}-8) of the critical charge Q c of the BH. At large radii, dissipation of the Poynting flux energy in the outflow would power a short-duration high-energy transient, which would appear as a detectable short-duration gamma-ray burst (GRB) if the charge can be as large as \\hat{q}∼ ({10}-5{--}{10}-4). The putative short GRB coincident with GW150914 recorded by Fermi GBM may be interpreted with this model. Future joint GW/GRB/FRB searches would lead to a measurement or place a constraint on the charges carried by isolate BHs.

  17. Mergers of Charged Black Holes: Gravitational-wave Events, Short Gamma-Ray Bursts, and Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    2016-08-01

    The discoveries of GW150914, GW151226, and LVT151012 suggest that double black hole (BH–BH) mergers are common in the universe. If at least one of the two merging black holes (BHs) carries a certain amount of charge, possibly retained by a rotating magnetosphere, the inspiral of a BH–BH system would drive a global magnetic dipole normal to the orbital plane. The rapidly evolving magnetic moment during the merging process would drive a Poynting flux with an increasing wind power. The magnetospheric activities during the final phase of the merger would make a fast radio burst (FRB) if the BH charge can be as large as a factor of \\hat{q}˜ ({10}-9{--}{10}-8) of the critical charge Q c of the BH. At large radii, dissipation of the Poynting flux energy in the outflow would power a short-duration high-energy transient, which would appear as a detectable short-duration gamma-ray burst (GRB) if the charge can be as large as \\hat{q}˜ ({10}-5{--}{10}-4). The putative short GRB coincident with GW150914 recorded by Fermi GBM may be interpreted with this model. Future joint GW/GRB/FRB searches would lead to a measurement or place a constraint on the charges carried by isolate BHs.

  18. Gravitational waves and red shifts - A space experiment for testing relativistic gravity using multiple time-correlated radio signals

    NASA Technical Reports Server (NTRS)

    Smarr, L. L.; Vessot, R. F. C.; Lundquist, C. A.; Decher, R.; Piran, T.

    1983-01-01

    A two-step satellite mission for improving the accuracy of gravitational wave detection and for observing actual gravity waveforms is proposed. The spacecraft would carry both a highly stable hydrogen maser, which would control a transmitter sending signals to earth, and a Doppler transponder operating in the two-way mode. The use of simultaneous one- and two-way Doppler transmissions offers four time records of frequency pulsations, which can reveal gravitational radiation at 1-10 MHz with an amplitude accuracy of a factor of six. The first mission phase would consist of a Shuttle launch into a highly eccentric orbit to obtain measurements of the gravitational redshift using gravitational potentials of different earth regions to establish that gravity is describable by a metric theory. Then, after a boost into a heliocentric orbit at 6 AU, the earth-satellite system could detect gravitational waves in the solar system, as well as bursts emitted by the collisions of supermassive black holes.

  19. Guided radio-wave propagation in the equatorial ionosphere according to the topside sounding onboard Interkosmos-19

    NASA Astrophysics Data System (ADS)

    Karpachev, A. T.; Zhbankov, G. A.; Kuleshova, V. P.; Telegin, V. A.

    2014-12-01

    In addition to normal vertical-incident ionogram traces, strongly remote (up to 2000 km) traces of HF-radio-signal reflections observed on topside-sounder ionograms of the Interkosmos-19 satellite obtained in the equatorial ionosphere are presented. Such traces are connected with waveguides (ducts). These waveguides are field-aligned irregularities of the ionospheric plasma with electron density depletions of a few percent and cross-field dimension of a few to several kilometers. Ray tracing confirms this supposition and allows an estimate of typical waveguide parameters: diameter ≤10-15 km and amplitude |ΔN/N|≥10%, where N is the electron density. The waveguide traces usually start at the cutoff frequencies of the main traces. However, sometimes they begin at much lower frequencies which indicates the satellite was transitioning through an equatorial plasma bubble during the recording of the ionogram. The X-mode of ducted echoes is more distinct then the O-mode. Only one ducted trace is usually observed on the Interkosmos-19 ionograms; a second conjugate trace is rarely recorded. The same is true for combination modes which is a combination of an oblique-incidence and guided propagation. Waveguides are observed at all heights of Interkosmos-19 (500-1000 km) inside the equatorial anomaly region (from -40° to +40° Dip). Waveguides are usually associated with other irregularities of various sizes in the equatorial ionosphere, some of which cause additional traces and spread F on the topside-sounding ionograms. Ducted-echo characteristics observed with Interkosmos-19 are different from those observed earlier with the Alouette and ISIS satellites. This difference is discussed. It is shown that the ionospheric plasma irregularities responsible for the waveguides are observed much more often during nighttime than during daytime.

  20. Unique Views of Scintillation and Density Structures from the CORISS GPS Sensor

    NASA Astrophysics Data System (ADS)

    Bishop, R. L.; Straus, P. R.

    2015-12-01

    After eight years in orbit the Communication/Navigation Outage Forecasting System (C/NOFS) satellite is scheduled to re-enter in the fall of 2015. During the last year of its life, the orbit often brought the satellite to altitudes below the F-peak. The C/NOFS Occultation Receiver for Ionospheric Sensing (CORISS) GPS sensor provided TEC and scintillation observations via GPS occultation for most of the C/NOFS mission. Once the C/NOFS orbit is lower than the F-peak, radio occultation observations cannot be used to probe the ionosphere. However, CORISS also tracks signals above the horizon that can provide TEC and scintillation observations. The low C/NOFS orbit provides a unique vantage point for CORISS to look up into regions of scintillation. This presentation explores scintillation as observed below the low F-region, its occurrence, intensity variations, and its distribution. We compare statistically the measurements to occulting scintillation measurements.

  1. GNSS-based Observations and Simulations of Spectral Scintillation Indices in the Arctic Ionosphere

    NASA Astrophysics Data System (ADS)

    Durgonics, T.; Hoeg, P.; von Benzon, H. H.; Komjathy, A.

    2015-12-01

    During disturbed times, ionospheric scintillations can be severe and adversely impact satellite-based positioning and radio transmissions. The scintillation occurs in the amplitude, phase, polarization, and angle of arrival of the signal. Precise observation, classification, modeling, forecasting, and development of data-driven methodologies to accurately localize ionospheric irregularities and simulate GNSS scintillation signals are highly desired. Ionospheric scintillations have traditionally been quantified by amplitude (S4) and phase scintillations (σφ). Our study focuses on the Arctic, where scintillations, especially phase scintillations, are prominent. We will present observations acquired from a network of Greenlandic GNSS stations, including 2D amplitude and phase scintillation index maps for representative calm and storm periods. In addition to the traditional indices described above, we are exploring a set of indices derived from the power spectra of the signals. The observed corner frequency of the power spectrum is a function of the Fresnel radius and the drift speed of the irregularities, while the slope of the power spectrum is related to the Fresnel oscillations. We will demonstrate how spectral characteristics of the scintillations act under large total electron content (TEC) gradients and how physical parameters can be extracted from the power spectra, and will present how these parameters of the corner frequencies and power spectra slopes vary during ionospheric storms. The observations will then be compared to properties of simulated GNSS signals computed by the Fast Scintillation Mode (FSM). The FSM was developed to simulate ionospheric scintillations under different geophysical conditions, and is used to simulate GNSS signals with known scintillation characteristics. This comparison could lead to a better understanding of the observed ionospheric state.

  2. Composite scintillator screen

    DOEpatents

    Zeman, Herbert D.

    1994-01-01

    A scintillator screen for an X-ray system includes a substrate of low-Z material and bodies of a high-Z material embedded within the substrate. By preselecting the size of the bodies embedded within the substrate, the spacial separation of the bodies and the thickness of the screen, the sensitivity of the screen to X-rays within a predetermined energy range can be predicted.

  3. High Efficiency Traveling-Wave Tube Power Amplifier for Ka-Band Software Defined Radio on International Space Station-A Platform for Communications Technology Development

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.

    2013-01-01

    The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.

  4. An analytical theory of a scattering of radio-waves on meteoric ionization. II. Solution of the integro-differential equation in case of backscatter

    NASA Astrophysics Data System (ADS)

    Pecina, P.

    2016-08-01

    The integro-differential equation for the polarization vector P inside the meteor trail, representing the analytical solution of the set of Maxwell equations, is solved for the case of backscattering of radio waves on meteoric ionization. The transversal and longitudinal dimensions of a typical meteor trail are small in comparison to the distances to both transmitter and receiver and so the phase factor appearing in the kernel of the integral equation is large and rapidly changing. This allows us to use the method of stationary phase to obtain an approximate solution of the integral equation for the scattered field and for the corresponding generalized radar equation. The final solution is obtained by expanding it into the complete set of Bessel functions, which results in solving a system of linear algebraic equations for the coefficients of the expansion. The time behaviour of the meteor echoes is then obtained using the generalized radar equation. Examples are given for values of the electron density spanning a range from underdense meteor echoes to overdense meteor echoes. We show that the time behaviour of overdense meteor echoes using this method is very different from the one obtained using purely numerical solutions of the Maxwell equations. Our results are in much better agreement with the observations performed e. g. by the Ondřejov radar.

  5. An all-optical frequency up-converter utilizing four-wave mixing in a semiconductor optical amplifier for sub-carrier multiplexed radio-over-fiber applications.

    PubMed

    Kim, Hyoung-Jun; Song, Jong-In; Song, Ho-Jin

    2007-03-19

    A novel all-optical frequency up-converter utilizing four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) was proposed and experimentally demonstrated. The frequency up-converter converted an optical intermediate frequency (IF) signal (f(IF) = 2.5 GHz) to an optical radio frequency (RF) signal (f(RF) = 35 and 40 GHz) through mixing with an optical local oscillator (LO) signal (f(LO) = 37.5 GHz). The up-converter showed positive conversion efficiency of 5.77 dB for the optical IF power of -22 dBm and the optical LO power of -13 dBm. This scheme showed broad bandwidths with respect to both LO and IF frequencies. The up-converter showed a phase noise of -84.5 dBc/Hz for the LO frequency of 37.5 GHz (f(LO)) and the offset frequency of 10 kHz after the frequency up-conversion. PMID:19532579

  6. Characterization of the Ionospheric Scintillations at High Latitude using GPS Signal

    NASA Astrophysics Data System (ADS)

    Mezaoui, H.; Hamza, A. M.; Jayachandran, P. T.

    2013-12-01

    Transionospheric radio signals experience both amplitude and phase variations as a result of propagation through a turbulent ionosphere; this phenomenon is known as ionospheric scintillations. As a result of these fluctuations, Global Positioning System (GPS) receivers lose track of signals and consequently induce position and navigational errors. Therefore, there is a need to study these scintillations and their causes in order to not only resolve the navigational problem but in addition develop analytical and numerical radio propagation models. In order to quantify and qualify these scintillations, we analyze the probability distribution functions (PDFs) of L1 GPS signals at 50 Hz sampling rate using the Canadian High arctic Ionospheric Network (CHAIN) measurements. The raw GPS signal is detrended using a wavelet-based technique and the detrended amplitude and phase of the signal are used to construct probability distribution functions (PDFs) of the scintillating signal. The resulting PDFs are non-Gaussian. From the PDF functional fits, the moments are estimated. The results reveal a general non-trivial parabolic relationship between the normalized fourth and third moments for both the phase and amplitude of the signal. The calculated higher-order moments of the amplitude and phase distribution functions will help quantify some of the scintillation characteristics and in the process provide a base for forecasting, i.e. develop a scintillation climatology model. This statistical analysis, including power spectra, along with a numerical simulation will constitute the backbone of a high latitude scintillation model.

  7. Exploring the Multi-Scale Statistical Analysis of Ionospheric Scintillation via Wavelets and Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Piersanti, Mirko; Materassi, Massimo; Spogli, Luca; Cicone, Antonio; Alberti, Tommaso

    2016-04-01

    Highly irregular fluctuations of the power of trans-ionospheric GNSS signals, namely radio power scintillation, are, at least to a large extent, the effect of ionospheric plasma turbulence, a by-product of the non-linear and non-stationary evolution of the plasma fields defining the Earth's upper atmosphere. One could expect the ionospheric turbulence characteristics of inter-scale coupling, local randomness and high time variability to be inherited by the scintillation on radio signals crossing the medium. On this basis, the remote sensing of local features of the turbulent plasma could be expected as feasible by studying radio scintillation. The dependence of the statistical properties of the medium fluctuations on the space- and time-scale is the distinctive character of intermittent turbulent media. In this paper, a multi-scale statistical analysis of some samples of GPS radio scintillation is presented: the idea is that assessing how the statistics of signal fluctuations vary with time scale under different Helio-Geophysical conditions will be of help in understanding the corresponding multi-scale statistics of the turbulent medium causing that scintillation. In particular, two techniques are tested as multi-scale decomposition schemes of the signals: the discrete wavelet analysis and the Empirical Mode Decomposition. The discussion of the results of the one analysis versus the other will be presented, trying to highlight benefits and limits of each scheme, also under suitably different helio-geophysical conditions.

  8. Strong scintillations of pulsed Laguerrian beams in a turbulent atmosphere.

    PubMed

    Banakh, Viktor A; Gerasimova, Liliya O

    2016-08-22

    Turbulent fluctuations of the energy density of broadband pulsed Laguerre-Gaussian beams are studied based on numerical solution of the parabolic wave equation for the complex spectral amplitude of the wave field by the split-step method. It is shown that in the regime of strong scintillations, the relative variance of energy density of the pulsed beams can take values smaller than unity, in contrast to the strong scintillation index of the continuous-wave beams, which tends to unity with increasing the turbulence strength. The level of residual spatial correlation of the energy density of pulsed beams exceeds that for the continuous-wave beams. It increases with shortening of the pulse duration and increasing of the refractive turbulence strength. PMID:27557206

  9. Radio tomography of the ionosphere

    SciTech Connect

    Kunitsyn, V.E.; Tereshchenko, E.D. RAN, Poliarnyi Geofizicheskii Inst., Murmansk )

    1992-10-01

    This paper provides on overview of tomographic approaches to ionospheric remote sensing in the radio-wave range. The ionosphere has a very complicated structure. Thus, it is reasonable to divide tomographic methods into deterministic and statistical ones. The deterministic tomography problems can be subdivided into ray radio tomography and diffraction radio tomography. The statistical radio tomography approach is used when it is necessary to reconstruct the statistical structure of a great number of inhomogeneities, on the basis of measurements of field statistics (instead of one realization of the reconstruction of an inhomogeneity). The methods of solving radio-tomography problems, and their connection with inverse-scattering problems, are considered. The results of some first experiments are described, which show the possibilities of the radio tomography approaches. In conclusion, we discuss perspectives, directions of the development of radio tomography, and problems which appear. 30 refs.

  10. New scintillator and waveshifter materials

    SciTech Connect

    Zheng, H.; Baumbaugh, B.; Gerig, A.; Marchant, J.; Reynolds, K.; Ruchti, R.; Warchol, J; Wayne, M. Hurlbut, C. Kauffman, J. Pla-Dalmau, A.

    1998-11-01

    Experimental applications requiring fast timing and/or high efficiency position and energy measurements typically use scintillation materials. Scintillators utilized for triggering, tracking, and calorimetry in colliding beam detectors are vulnerable to the high radiation fields associated with such experiments. We have begun an investigation of several fluorescent dyes which might lead to fast, efficient, and radiation resistant scintillators. Preliminary results of spectral analysis and efficiency are presented. {copyright} {ital 1998 American Institute of Physics.}

  11. Lunar components in Lunping scintillations

    SciTech Connect

    Koster, J.R.; Lue, H.Y.; Wu, Hsi-Shu; Huang, Yinn-Nien

    1993-08-01

    The authors report on an anlysis of a 14 year data set of ionospheric scintillation data for 136 MHz signals transmitted from a Japanese satellite. They use a lunar age superposition method to analyze this data, breaking the data into blocks by seasons of the year. They observe a number of different scintillation types in the record, as well as impacts of lunar tides on the time record. They attempt to provide an origin for the different scintillation types.

  12. Ganymede: A New Radio Source

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Roux, A.; Bolton, S. J.

    1997-01-01

    Observations by the Galileo plasma wave receiver during the first two flybys of Ganymede revealed that this Jovian moon is the source of narrowband electromagnetic radio waves, making it the only satellite in the solar system known to generate non-thermal radio emissions. The emissions are the result of mode-coupling from electrostatic electron cyclotron emissions mu the upper hybrid resonance frequency, similar to non-thermal continuum radiation found at the known magnetized planets.

  13. A plastic scintillation counter prototype.

    PubMed

    Furuta, Etsuko; Kawano, Takao

    2015-10-01

    A new prototype device for beta-ray measurement, a plastic scintillation counter, was assembled as an alternative device to liquid scintillation counters. This device uses plastic scintillation sheets (PS sheets) as a sample applicator without the use of a liquid scintillator. The performance was evaluated using tritium labeled compounds, and good linearity was observed between the activity and net count rate. The calculated detection limit of the device was 0.01 Bq mL(-1) after 10 h measurement for 2 mL sample. PMID:26164628

  14. Statistical analysis of scintillation data

    SciTech Connect

    Chua, S.; Noonan, J.P.; Basu, S.

    1981-09-01

    The Nakagami-m distribution has traditionally been used successfully to model the probability characteristics of ionospheric scintillations at UHF. This report investigates the distribution properties of scintillation data in the L-band range. Specifically, the appropriateness of the Nakagami-m and lognormal distributions is tested. Briefly the results confirm that the Nakagami-m is appropriate for UHF but not for L-band scintillations. The lognormal provides a better fit to the distribution of L-band scintillations and is an adequate model allowing for an error of + or - 0.1 or smaller in predicted probability with a sample size of 256.

  15. Packet Radio: An Alternative Way to Connect.

    ERIC Educational Resources Information Center

    Lucas, Larry W.

    1995-01-01

    Explains packet radio as a form of telecomputing in which digital data is transported via radio waves instead of telephone lines or other cabling, and describes how it can be used by students to access the Internet. Highlights include packet bulletin board systems and equipment needed for a packet radio station. (LRW)

  16. A multidisciplinary study of planetary, solar and astrophysical radio emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Calvert, W.; Fielder, R.; Goertz, C.; Grabbe, C.; Kurth, W.; Mutel, R.; Sheerin, J.; Mellott, M.; Spangler, S.

    1986-01-01

    Combination of the related fields of planetary, solar, and astrophysical radio emissions was attempted in order to more fully understand the radio emission processes. Topics addressed include: remote sensing of astrophysical plasma turbulence; Alfven waves; astrophysical shock waves; surface waves; very long base interferometry results; very large array observations; solar magnetic flux; and magnetohydrodynamic waves as a tool for solar corona diagnostics.

  17. Effects of stress and strain on scintillating and clear fibers

    SciTech Connect

    Chung, M.; Margulies, S.

    1995-08-01

    Among the improvements planned for the 1997--98 upgrade of the D0 detector at Fermilab are installation of a scintillating-fiber central tracker and a lead-scintillator central preshower counter read out with wave-shifting fibers. Because of space limitations, fibers in both systems may need to undergo bends with fairly small radii, and the resulting stresses and strains may cause light losses. This paper presents results of a study of the effects of deformation on fiber light transmission. Particular emphasis is placed on the new multiclad fibers developed by Kuraray.

  18. Assessment of the application of in situ ion-density data from DMSP to modeling of transionospheric scintillation. Final report, 15 September 1989-14 March 1990

    SciTech Connect

    Secan, J.A.; Reinleitner, L.A.; Bussey, R.M.

    1990-03-15

    Modern military communication, navigation, and surveillance systems depend on reliable, noise-free transionospheric radio-frequency channels. They can be severely impacted by small-scale electron-density irregularities in the ionosphere, which cause both phase and amplitude scintillation. Basic tools used in planning and mitigation schemes are climatological in nature and thus may greatly over- and under-estimate the effects of scintillation in a given scenario. This report summarizes the results of a three-year investigation into the feasibility of using in-situ observations of the ionosphere from the USAF DMSP satellite to calculate estimates of irregularity parameters that could be used to update scintillation models in near real-time. Estimates for the level of intensity and phase scintillation on a transionospheric UHF radio link in the early-evening auroral zone were calculated from DMSP Scintillation Meter (SM) data and compared to the levels actually observed. The intensity scintillation levels predicted and observed compared quite well, but the comparison with the phase scintillation data was complicated by low-frequency phase noise on the UHF radio link. Results are presented from analysis of DMSP SSIES data collected near Kwajalein Island in conjunction with a propagation-effects experiment. Preliminary conclusions to the assessment study are: (1) the DMSP SM data can be used to make quantitative estimates of the level of scintillation at auroral latitudes, and (2) it may be possible to use the data as a qualitative indicator of scintillation-activity levels at equatorial latitudes.

  19. Free liquid scintillation counting bibliography

    SciTech Connect

    1996-12-31

    Packard Instrument Company announces the availability of its newly updated Bibliography of Packard Tri-Carb Liquid Scintillation Analyzers. This unique new booklet lists 628 references in which Packard Tri-Carb{reg_sign} liquid scintillation analyzers have been used in life science, environmental, nuclear power and archaeological measurements. All listings are cross-referenced by radionuclide, specific field of study and author.

  20. Lithium-loaded liquid scintillators

    DOEpatents

    Dai, Sheng; Kesanli, Banu; Neal, John S.

    2012-05-15

    The invention is directed to a liquid scintillating composition containing (i) one or more non-polar organic solvents; (ii) (lithium-6)-containing nanoparticles having a size of up to 10 nm and surface-capped by hydrophobic molecules; and (iii) one or more fluorophores. The invention is also directed to a liquid scintillator containing the above composition.