Science.gov

Sample records for radio wave scintillations

  1. Radio wave scintillations at equatorial regions

    NASA Technical Reports Server (NTRS)

    Poularikas, A. D.

    1972-01-01

    Radio waves, passing through the atmosphere, experience amplitude and phase fluctuations know as scintillations. A characterization of equatorial scintillation, which has resulted from studies of data recorded primarily in South America and equatorial Africa, is presented. Equatorial scintillation phenomena are complex because they appear to vary with time of day (pre-and postmidnight), season (equinoxes), and magnetic activity. A wider and more systematic geographical coverage is needed for both scientific and engineering purposes; therefore, it is recommended that more observations should be made at earth stations (at low-geomagnetic latitudes) to record equatorial scintillation phenomena.

  2. Scintillation effects on radio wave propagation through solar corona

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Sue, M. K.; Bedrossian, A.; Sniffin, R. W.

    2002-01-01

    When RF waves pass through the solar corona and solar wind regions close to the Sun, strong scintillation effects appear at their amplitude, frequency and phase, especially in the regions very close to the Sun (less than 4 solar radius).

  3. Radio scintillations in Venus's atmosphere: application of a theory of gravity wave generation.

    NASA Astrophysics Data System (ADS)

    Leroy, S. S.; Ingersoll, A. P.

    1996-04-01

    Radio scintillations in Pioneer Venus radio occultation data are simulated assuming that the index of refraction fluctuations in Venus's atmosphere responsible for the scintillations are directly caused by gravity wave fluctuations. The gravity waves are created by a global convection layer between 50- and 55-km altitude in Venus's atmosphere and propagate vertically. The authors compare the simulated scintillations with data from Pioneer Venus. These gravity waves can explain the spectral shape and amplitude of the radio scintillations. The shape at high frequencies is controlled by wave breaking, which yields a saturated spectrum. The amplitude is subject to parameters such as the intensity of the convection, the angle between the zonal winds and the beam path, and the zonal wind profile at polar latitudes. To match the observed amplitude of the scintillations, the velocity variations of the energy-bearing eddies in the convection must be at least 2 m s-1. This value is consistent with the Venus balloon results of Sagdeev et al. (1986) and is in the middle of the range considered by Leroy and Ingersoll (1994) in their study of convectively generated gravity waves. The latter study, combined with the lower bound on velocity from the present study, then yields lower bounds on the vertical fluxes of momentum and energy in the Venus atmosphere.

  4. Modeling radio scattering and scintillation observations of the inner solar wind using oblique Alfvén/ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Harmon, John K.; Coles, William A.

    2005-03-01

    Radio scattering and scintillation observations of the near-Sun solar wind are shown to be dominated by effects associated with obliquely propagating Alfvén/ion cyclotron waves. We base this on a modeling of structure functions from angular/spectral broadening observations and velocity measurements from interplanetary scintillation (IPS) observations. A simple damped-WKB model was found inadequate, as Landau damping erodes the spectrum faster than is consistent with the observed inner scale. Invoking a turbulent cascade can counteract this damping and push the spectral cutoff back out to the observed inner scale near the ion inertial scale. Adjusting the spectrum amplitude and cascade rate to match observations gives an estimate of the wave dissipation power associated with electron Landau damping and proton cyclotron damping. The implied power levels are substantial, being comparable with levels typically invoked in extended wave heating models. Both the shape and the amplitude of the observed structure functions can be explained by a composite spectrum made up of a power law component of passive or non-Alfvénic density fluctuations and a local flattening associated with the enhanced linear Alfvén wave compressibility at small (ion cyclotron) scales. Since IPS is dominated by the enhanced small-scale density fluctuations, the scintillation velocity field should show a strong wave effect. Our modeling of IPS velocities does, in fact, show that the large parallel velocity spread and upward bias to the mean velocity observed near the Sun are a direct result of the density fluctuations associated with Alfvén waves along an extended line of sight.

  5. Some new results on the statistics of radio wave scintillation. I - Empirical evidence for Gaussian statistics

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Livingston, R. C.; Whitney, H. E.

    1976-01-01

    This paper presents an analysis of ionospheric scintillation data which shows that the underlying statistical structure of the signal can be accurately modeled by the additive complex Gaussian perturbation predicted by the Born approximation in conjunction with an application of the central limit theorem. By making use of this fact, it is possible to estimate the in-phase, phase quadrature, and cophased scattered power by curve fitting to measured intensity histograms. By using this procedure, it is found that typically more than 80% of the scattered power is in phase quadrature with the undeviated signal component. Thus, the signal is modeled by a Gaussian, but highly non-Rician process. From simultaneous UHF and VHF data, only a weak dependence of this statistical structure on changes in the Fresnel radius is deduced. The signal variance is found to have a nonquadratic wavelength dependence. It is hypothesized that this latter effect is a subtle manifestation of locally homogeneous irregularity structures, a mathematical model proposed by Kolmogorov (1941) in his early studies of incompressible fluid turbulence.

  6. Forecasting ionospheric space weather with applications to satellite drag and radio wave communications and scintillation

    NASA Astrophysics Data System (ADS)

    Mannucci, Anthony J.; Tsurutani, Bruce T.; Verkhoglyadova, Olga P.; Meng, Xing; Pi, Xiaoqing; Kuang, Da; Wang, Chunming; Rosen, Gary; Ridley, Aaron; Lynch, Erin; Sharma, Surja; Manchester, Ward B.; van der Holst, Bart

    2015-04-01

    The development of quantitative models that describe physical processes from the solar corona to the Earth’s upper atmosphere opens the possibility of numerical space weather prediction with a lead-time of a few days. Forecasting solar wind-driven variability in the ionosphere and thermosphere poses especially stringent tests of our scientific understanding and modeling capabilities, in particular of coupling processes to regions above and below. We will describe our work with community models to develop upper atmosphere forecasts starting with the solar wind driver. A number of phenomena are relevant, including high latitude energy deposition, its impact on global thermospheric circulation patterns and composition, and global electrodynamics. Improved scientific understanding of this sun to Earth interaction ultimately leads to practical benefits. We will focus on two ways the upper atmosphere affects life on Earth: by changing satellite orbits, and by interfering with long-range radio communications. Challenges in forecasting these impacts will be addressed, with a particular emphasis on the physical bases for the impacts, and how they connect upstream to the sun and the heliosphere.

  7. Scintillation noise in widefield radio interferometry

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.

    2015-10-01

    In this paper, we consider random phase fluctuations imposed during wave propagation through a turbulent plasma (e.g. ionosphere) as a source of additional noise in interferometric visibilities. We derive expressions for visibility variance for the wide field of view case (FOV ˜10°) by computing the statistics of Fresnel diffraction from a stochastic plasma, and provide an intuitive understanding. For typical ionospheric conditions (diffractive scale ˜5-20 km at 150 MHz), we show that the resulting ionospheric `scintillation noise' can be a dominant source of uncertainty at low frequencies (ν ≲ 200 MHz). Consequently, low-frequency widefield radio interferometers must take this source of uncertainty into account in their sensitivity analysis. We also discuss the spatial, temporal, and spectral coherence properties of scintillation noise that determine its magnitude in deep integrations, and influence prospects for its mitigation via calibration or filtering.

  8. A decametric wavelength radio telescope for interplanetary scintillation observations

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.

    1975-01-01

    A phased array, electrically steerable radio telescope (with a total collecting area of 18 acres), constructed for the purpose of remotely sensing electron density irregularity structure in the solar wind, is presented. The radio telescope is able to locate, map, and track large scale features of the solar wind, such as streams and blast waves, by monitoring a large grid of natural radio sources subject to rapid intensity fluctuation (interplanetary scintillation) caused by the irregularity structure. Observations verify the performance of the array, the receiver, and the scintillation signal processing circuitry of the telescope.

  9. Radio wave.

    PubMed

    Elkin, V

    1992-01-01

    In developing countries with high rates of poverty and illiteracy, radio is emerging as an excellent medium for delivering information on health issues, family planning, nutrition, and agricultural development. Since radio does not require wired electricity, it can reach remote rural populations. Surveys have found that between 50-75% of poor rural households in developing countries own radios, and the majority listen to educational radio at least once a week. A program that reaches the urban poor outside of Lima, Peru, has been instrumental in controlling the spread of cholera. A Bolivian station broadcasts 8 hours of literacy, health, agricultural, and cultural programming a day to an audience of more than 2 million Aymara Indians. Small village radio stations with a broadcast range of 15 miles can be established for under US$400 and can generally achieve sustainability through local fundraising events such as raffles. In many cases, listeners have become broadcasters at their local radio stations. PMID:12286181

  10. Radio scintillations observed during atmospheric occultations of Voyager: Internal gravity waves at Titan and magnetic field orientations at Jupiter and Saturn. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.

    1983-01-01

    The refractive index of planetary atmospheres at microwave frequencies is discussed. Physical models proposed for the refractive irregularities in the ionosphere and neutral atmosphere serve to characterize the atmospheric scattering structures, and are used subsequently to compute theoretical scintillation spectra for comparison with the Voyager occultation measurements. A technique for systematically analyzing and interpreting the signal fluctuations observed during planetary occultations is presented and applied to process the dual-wavelength data from the Voyager radio occultations by Jupiter, Saturn, and Titan. Results concerning the plasma irregularities in the upper ionospheres of Jupiter and Saturn are reported. The measured orientation of the irregularities is used to infer the magnetic field direction at several locations in the ionospheres of these two planets; the occultation measurements conflict with the predictions of Jovian magnetic field models, but generally confirm current models of Saturn's field. Wave parameters, including the vertical fluxes of energy and momentum, are estimated, and the source of the internal gravity waves discovered in Titan's upper atmosphere is considered.

  11. Planetary radio waves

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1986-01-01

    Three planets, the earth, Jupiter and Saturn are known to emit nonthermal radio waves which require coherent radiation processes. The characteristic features (frequency spectrum, polarization, occurrence probability, radiation pattern) are discussed. Radiation which is externally controlled by the solar wind is distinguished from internally controlled radiation which only originates from Jupiter. The efficiency of the externally controlled radiation is roughly the same at all three planets (5 x 10 to the -6th) suggesting that similar processes are active there. The maser radiation mechanism for the generation of the radio waves and general requirements for the mechanism which couples the power generator to the region where the radio waves are generated are briefly discussed.

  12. A method for analyzing a survey of scintillating radio sources

    NASA Astrophysics Data System (ADS)

    Artyukh, V. S.; Tyul'bashev, S. A.

    1996-09-01

    A method for an automated analysis of data from a survey of scintillating radio sources to be obtained using the Large Phased Array of the Lebedev Institute of Physics has been developed. Difference and median filters are used to remove effects interfering with the detection of scintillating sources. The parameters for these filters are chosen so as to maximize the signal-to-noise ratio, which is very important when searching for extremely weak scintillating sources. Model calculations are used to give the probability of missing a signal as a function of the signal-to-noise ratio for a given acceptable probability of false detection of 0.001. The analysis method presented will make it possible to obtain a scintillating source survey complete in radio sources having scintillation dispersions equal to the noise dispersion, with the expected number of false detections being one in 1000. Estimates of the errors of the measured coordinates of the scintillating radio sources and of the scintillation dispersions as functions of the signal-to-noise ratio are obtained.

  13. Interplanetary scintillation observations with the Cocoa Cross radio telescope

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Erskine, F. T.; Huneke, A. H.; Mitchell, D. G.

    1976-01-01

    Physical and electrical parameters for the 34.3-MHz Cocoa Cross radio telescope are given. The telescope is dedicated to the determination of solar-wind characteristics in and out of the ecliptic plane through measurement of electron-density irregularity structure as determined from IPS (interplanetary scintillation) of natural radio sources. The collecting area (72,000 sq m), angular resolution (0.4 deg EW by 0.6 deg NS), and spatial extent (1.3 km EW by 0.8 km NS) make the telescope well suited for measurements of IPS index and frequency scale for hundreds of weak radio sources without serious confusion effects.

  14. Outflow structure of the quiet sun corona probed by spacecraft radio scintillations in strong scattering

    SciTech Connect

    Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato; Tokumaru, Munetoshi; Shiota, Daikou; Isobe, Hiroaki; Asai, Ayumi; Miyamoto, Mayu; Häusler, Bernd; Pätzold, Martin; Nabatov, Alexander; Yaji, Kentaro; Yamada, Manabu

    2014-06-20

    Radio scintillation observations have been unable to probe flow speeds in the low corona where the scattering of radio waves is exceedingly strong. Here we estimate outflow speeds continuously from the vicinity of the Sun to the outer corona (heliocentric distances of 1.5-20.5 solar radii) by applying the strong scattering theory to radio scintillations for the first time, using the Akatsuki spacecraft as the radio source. Small, nonzero outflow speeds were observed over a wide latitudinal range in the quiet-Sun low corona, suggesting that the supply of plasma from closed loops to the solar wind occurs over an extended area. The existence of power-law density fluctuations down to the scale of 100 m was suggested, which is indicative of well-developed turbulence which can play a key role in heating the corona. At higher altitudes, a rapid acceleration typical of radial open fields is observed, and the temperatures derived from the speed profile show a distinct maximum in the outer corona. This study opened up a possibility of observing detailed flow structures near the Sun from a vast amount of existing interplanetary scintillation data.

  15. Scintillation of spacecraft radio signals on the interplanetary plasma

    NASA Astrophysics Data System (ADS)

    Molera Calves, Guifre; Pogrebenko, Sergei; Cimo, Giuseppe; Duev, Dmitry; Bocanegra, Tatiana

    2015-04-01

    Observations of planetary spacecraft radio signals within the solar system give a unique opportunity to study the temporal and spatial behaviour of the signal's phase fluctuations caused by its propagation through the interplanetary plasma and the Earth's ionosphere. The phase scintillation of the telemetry signal of the European Space Agency's (ESA) Venus Express (VEX) and Mars Express (MEX) spacecraft was observed at X-band with a number of radio telescopes of the European VLBI Network (EVN) in the period 2008-15, within the scope of Planetary Radio Interferometry and Doppler Experiment (PRIDE) project. It was found that the phase scintillation spectra follow a Kolmogorov distribution with nearly constant spectral index of -2.42 for a full range of Venus orbital phases, from superior to inferior conjunctions and back. The solar wind plasma dominates the scintillation index and Doppler noise along the orbit from superior conjunction to the greatest elongation. Here, I will present the latest results of these observations, while approaching the inferior conjunction, where the Earth ionosphere starts to dominate, and also at the superior conjunction. Empirical coefficients for both contributions were estimated and compared for VEX and MEX.

  16. Sources and Scintillations: Refraction and Scattering in Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Strom, Richard; Bo, Peng; Walker, Mark; Rendong, Nan.

    2002-01-01

    The topics covered in this book include: Theory of Scattering and Scintillation, Distribution of Scattering Material, Intra-day Variability, Pulsars and their Magnetospheric Structure, Polarization of AGN, Interplanetary Scintillation, and Future Highly-Sensitive Radio Telescopes. The introductory papers emphasize the essential properties of diffractive and refractive scattering, how they differ in temporal and frequency structure, and what they reveal about irregularities in the ISM. Pulsars can be examined in a number of different ways as a function of frequency: time variability (both short and long term), DM changes, pulse broadening, angular extent and Faraday rotation. Intra-day variable sources (IDVs) are another major topic of the book. Although many variable sources clearly exhibit intrinsic changes, IDVs are generally believed to result from scintillation effects. They require source sizes on the ten micro-arcsec scale, the most extreme cases having profound implications for source lifetimes and emission mechanisms. Finally, a dozen contributions describe future large radio telescope projects, especially the Chinese FAST effort to build a 500 m spherical reflector of innovative design. Link: http://www.wkap.nl/prod/b/1-4020-0048-0

  17. Application of refractive scintillation theory to radio transmission through the ionosphere and the solar wind, and to reflection from a rough ocean

    NASA Astrophysics Data System (ADS)

    Booker, H. G.

    1981-11-01

    The theory of diffractive scattering by small-scale irregularities is combined with the results of Booker and MajidiAhi (1981) concerning refractive scattering by large-scale irregularities in a phase-changing screen, in a study of three intensity scintillation phenomena: (1) the reflection of radio and optical waves from an ocean surface disturbed by a spectrum of water waves; (2) the scintillation of VHF, UHF and SHF radio waves traversing the ionospheric F-region; and (3) the scintillation of the radio waves mentioned while traversing the solar wind. Spectral diagrams are drawn to show how the outer, inner, Fresnel, focal, lens and peak scales vary with such relevant parameters as electromagnetic wave-frequency for the ocean, RMS fractional fluctuation of ionization density for the ionosphere, and distance of closest approach to the sun for the solar wind.

  18. Radio scintillations during occultations by turbulent planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Woo, R.; Ishimaru, A.; Yang, F.-C.

    The radio occultation experiment which uses the radio link between the earth and spacecraft passing behind planets has proven to be an important method for remote sensing turbulence in planetary atmospheres. The effects of defocusing and anisotropic irregularities on the turbulence-induced fluctuations of the radio occultation signal are examined. Rytov's method along with geometrical optics is employed to study the frequency spectra and coherences of the log amplitude and phase fluctuations of spherical waves operating at one as well as two frequencies. Comparison with the Mariner 5 2.3-GHz measurements shows good agreement with the theoretical results.

  19. MAPK activation by radio waves.

    PubMed

    Arthur, J Simon C

    2007-08-01

    In this issue of the Biochemical Journal, Freidman et al. report the findings of a study to look at the potential of mobile phones to activate intracellular signalling cascades. They found that radio waves corresponding to the frequency commonly used by mobile phones are able to activate ERK1/2 (extracellular-signal-regulated kinases 1 and 2). This effect was observed even at intensities lower than those emitted by mobile phones that are unable to cause any measurable heating effects. This study provides evidence that radio waves induce ERK1/2 activation downstream of the EGF (epidermal growth factor) receptor, which is in turn activated by the release of reactive oxygen species. PMID:17623008

  20. Equatorial radio scintillations of ATS-6 radio beacons. Phase II - Ootacamund 1975-76

    NASA Astrophysics Data System (ADS)

    Rastogi, R. G.; Chandra, H.; Deshpande, M. R.

    1982-12-01

    Temporal variations of the amplitude fluctuations of the radio beacon signals on 40, 140 and 360 MHz transmitted from the ATS-6 satellite (at 34 deg E longitude) received at Ootacamund (11.4 deg N, 76.7 deg E, magnetic dip 6 deg N) during the second phase of the ATS-6 programme (1975-76) are described. For 360 MHz beacon, the mean scintillations index had two minima of about 1 pct (about 0.1 dB) during the sunrise and sunset periods; a flat maximum of about 4 pct (0.4 dB) around midday and another maximum of about 13 pct (1.2 dB) around 2100-2200 hrs LT. The mean scintillation index on 140 MHz was minimum (0.6 dB) around sunrise and sunset hours and maxima of about 2 dB were at midday and nighttime. The magnitude of scintillations of 40 MHz was about 3 dB around sunrise and sunset periods and about 5 dB during midday and midnight hours. The nighttime scintillations were strongest in October 1975 (thus during equinoxes) while daytime scintillations did not indicate any definite seasonal variation.

  1. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  2. Antenna Construction and Propagation of Radio Waves.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  3. Ionospheric scintillations at Guilin detected by GPS ground-based and radio occultation observations

    NASA Astrophysics Data System (ADS)

    Zou, Yuhua

    2011-03-01

    The occurrence of ionospheric scintillations with S4 ⩾ 0.2 was studied using GPS measurements at Guilin, China (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of the equatorial anomaly. The results are presented for data collected from January 2009 to March 2010. The results show that nighttime amplitude scintillations only took place in February and March of the considered years, while daytime amplitude scintillations occurred in August and December of 2009. Nighttime amplitude scintillations, observed in the south of Guilin, always occurred with phase scintillations, TEC (Total Electron Content) depletions, and ROT (Rate Of change of TEC) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations always took place simultaneously for most of the GPS satellites which appeared over Guilin in different azimuth directions. Ground-based GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio (SNR) measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively. Moreover, strong daytime amplitude scintillations may be associated with the plasma density enhancements in ionospheric E region caused by the Perseid and Geminid meteor shower activities.

  4. Speckles in interstellar radio-wave scattering

    NASA Technical Reports Server (NTRS)

    Desai, K. M.; Gwinn, C. R.; Reynolds, J.; King, E. A.; Jauncey, D.; Nicholson, G.; Flanagan, C.; Preston, R. A.; Jones, D. L.

    1991-01-01

    Observations of speckles in the scattering disk of the Vela pulsar are presented and speckle techniques for studying and circumventing scattering of radio waves by the turbulent interstellar plasma are discussed. The speckle pattern contains, in a hologrammatic fashion, complete information on the structure of the radio source as well as the distribution of the scattering material. Speckle observations of interstellar scattering of radio waves are difficult because of their characteristically short timescales and narrow bandwidths. Here, first observations are presented, taken at 13 cm wavelength with elements of the SHEVE VLBI network, of speckles in interstellar scattering.

  5. Magellan radio occultation measurements of atmospheric waves on Venus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Jenkins, J. M.

    1995-01-01

    Radio occultation experiments were conducted at Venus on three consecutive orbits of the Magellan spacecraft in October 1991. Each occultation occurred over the same topography (67 deg N, 127 deg E) and at the same local time (22 hr 5 min), but the data are sensitive to zonal variations because the atmosphere rotates significantly during one orbit. Through comparisons between observations and predictions of standard wave theory, we have demonstrated that small-scale oscillations in retrieved temperature profiles as well as scintillations in received signal intensity are caused by a spectrum of vertically propagating internal gravity waves. There is a strong similarity between the intensity scintillations observed here and previous measurements, which pertain to a wide range of locations and experiment dates. This implies that the same basic phenomenon underlies all the observations and hence that gravity waves are a persistent, global feature of Venus' atmosphere. We obtained a fairly complete characterization of a gravity wave that appears above the middle cloud in temperature measurements on all three orbits. The amplitude and vertical wavelength are about 4 K and 2.5 km respectively, at 65 km. A model for radiative damping implies that the wave intrinsic frequency is approximately 2 x 10(exp 4) rad/sec, the corresponding ratio between horizontal and vertical wavelengths is approximately 100. The wave is nearly stationary relative to the surface or the Sun. Radiative attenuation limits the wave amplitude at altitudes above approximately 65 km, leading to wave drag on the mean zonal winds of about +0.4 m/sec per day (eastward). The sign, magnitude, and location of this forcing suggest a possible role in explaining the decrease with height in the zonal wind speed that is believed to occur above the cloud tops. Temperature oscillations with larger vertical wavelengths (5-10 km) were also observed on all three orbits, but we are able unable to interpret these unambiguously.

  6. Information Content in Radio Waves: Student Investigations in Radio Science

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  7. Theory of thin screen scintillations for a spherical wave

    NASA Technical Reports Server (NTRS)

    Lee, L. C.

    1976-01-01

    A thin screen scintillation theory for a spherical wave is presented under the 'quasi-optical' approximation. We calculate the 'scattering angle', the 'observed angle', the intensity correlation function and the temporal pulse broadening for the random wave. It is found that as the wave propagates outward away from the phase screen, the correlation scale of the intensity fluctuation increases linearly while the 'observed angle' decreases linearly. The calculations are carried out for both Gaussian and power-law spectra of the turbulent medium.

  8. Wave-wave interactions in solar type III radio bursts

    SciTech Connect

    Thejappa, G.; MacDowall, R. J.

    2014-02-11

    The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

  9. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Sjogren, William L.; Kliore, Arvydas J.; Luhmann, Janet G.; Brace, Larry H.

    1989-01-01

    The observation of S-band (2.3 GHz) radio scintillations in the ionosphere of Venus by the Pioneer Venus Orbiter is reported. In situ plasma measurements and propagation calculations show that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. It is suggested that these topside plasma irregularities are associated with the penetration of large-scale magnetic fields in the ionosphere. It is found that the disturbed plasma and the scintillations are a manifestation of high-dynamic solar wind interaction with the ionosphere.

  10. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    SciTech Connect

    Woo, R.; Sjogren, W.L.; Kliore, A.J. ); Luhmann, J.G. ); Brace, L.H. )

    1989-02-01

    This paper presents the first S-band (2.3 GHz) radio scintillations observed in the ionosphere of Venus and discovered when the Pioneer Venus Orbiter spacecraft traversed the ionosphere of Venus. In situ plasma measurements as well as propagation calculations confirm that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. While these topside plasma irregularities have not been studied before, simultaneous magnetic field measurements presented here reveal that they are associated with the penetration of large-scale magnetic fields in the ionosphere. Previous studies based on extensive magnetic field measurements have shown that the presence of large-scale magnetic fields occurs in the subsolar region when the solar wind dynamic pressure exceeds the ionospheric plasma pressure. As with the large-scale magnetic fields, the disturbed plasma and resulting scintillations are therefore a manifestation of high-dynamic solar wind interaction with the ionosphere. Since the scintillations only occur in the subsolar region of Venus, the global morphology of ionospheric scintillations at Venus is different from that of the terrestrial ionosphere, where scintillations are observed in both polar and equatorial regions, with peaks occurring during nighttime. This difference apparently stems from the fact that Venus is not a magnetic planet. The authors also demonstrate that the disturbed plasma produced by the high-dynamic solar wind interaction can be remotely sensed by scintillations during radio occultation measurements, that is, when the spacecraft is outside the ionosphere.

  11. HF Radio Wave Production of Artificial Ionospheres

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert

    In 1993 it was predicted that artificial ionospheres would be produced by high power HF radio waves, once HF transmitters approached a GWatt ERP. When that threshold was very recently achieved, such production was indeed detected and published at two high latitude high power HF facilities. Here we review: the first-principles logic behind that prediction, which aspects of such production are critically dependent on magnetic latitude, and which aspects of such production depend only on physical parameters independent of latitude. These distinctions follow directly from decomposition of the problem of ionization production into its components of: radio-wave propagation, wave-particle interactions, electron transport, and quantitative elastic/inelastic cross-sections. We outline this analysis to show that, within the context of early observations, the production of ionization is inevitable, and only a question of competing instability thresholds, and scale of ionization production. This illustrates complimentary aeronomy and plasma physics to advance understanding of both.

  12. CONSTRAINING THE VELA PULSAR'S RADIO EMISSION REGION USING NYQUIST-LIMITED SCINTILLATION STATISTICS

    SciTech Connect

    Johnson, M. D.; Gwinn, C. R.; Demorest, P. E-mail: cgwinn@physics.ucsb.edu

    2012-10-10

    Using a novel technique, we achieve {approx}100 picoarcsec resolution and set an upper bound of less than 4 km for the characteristic size of the Vela pulsar's emission region. Specifically, we analyze flux-density statistics of the Vela pulsar at 760 MHz. Because the pulsar exhibits strong diffractive scintillation, these statistics convey information about the spatial extent of the radio emission region. We measure both a characteristic size of the emission region and the emission sizes for individual pulses. Our results imply that the radio emission altitude for the Vela pulsar at this frequency is less than 340 km.

  13. Strong scintillations during atmospheric occultations Theoretical intensity spectra. [radio scattering during spacecraft occultations by planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.

    1986-01-01

    Each of the two Voyager spacecraft launched in 1977 has completed a reconnaissance of the Jovian and Saturnian systems. In connection with occultation experiments, strong scintillations were observed. Further theoretical work is required before these scintillations can be interpreted. The present study is, therefore, concerned with the derivation of a theory for strong scattering during atmospheric occultation experiments, taking into account as fundamental quantity of interest the spatial spectrum (or spectral density) of intensity fluctuations. Attention is given to a theory for intensity spectra, and numerical calculations. The new formula derived for Phi-i accounts for strong scattering of electromagnetic waves during atmospheric occultations.

  14. Detection Of Cosmic Rays Air Showers Using Radio Antenna Arrays And Scintillation Counters

    NASA Astrophysics Data System (ADS)

    Papageorgiou, K.; Tzamarias, S.; Gkialas, I.; Tsirigotis, A.; Bourlis, G.; Manthos, I.; Avgitas, G.

    2014-06-01

    In this progress report we describe a test bench developed in order to evaluate the performance of radio antennas and other gaseous detectors in detecting air showers initiating by cosmic rays. This test bench is based on an array of HELYCON scintillation counters and is used to operate a digital radio telescope. The results of this research and development activity will be applied in developing a sea top calibration array of an underwater neutrino telescope. We also describe the performance of a single HELYCON station in detecting and reconstructing showers as well as on the pilot operation of a single low frequency radio antenna in order to develop techniques to suppress the contribution of the anthropogenic RF background originated from human activities.

  15. Radio wave heating of the lower ionosphere

    SciTech Connect

    Freeman, M.J.

    1993-01-01

    The interaction of high power, high frequency radio waves with the lower ionosphere is becoming an area of considerable theoretical and experimental interest. In particular, significant ohmic heating of the collisional, weakly ionized ionospheric plasma is possible, which can change the absorptive and conductive properties of the plasma in a nonlinear fashion. Precisely controlled heating may have applications to the production of ELF/VLF waves in the ionosphere by the stimulation when inferring the physical parameters of the sources. The necessary generalizations to the standard synchrotron self-Compton theory are presented. Relativistic induced Compton scattering is very sensitive to the number of mildly relativistic electrons in the source, and so may be a useful probe to this portion of the electron energy distribution.

  16. Near-Sun solar wind consequences of solar structure and dynamic phenomena observed by radio scintillation measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1994-01-01

    Since radio propagation measurements using either natural or spacecraft radio signals are used for probing the solar wind in the vicinity of the sun, they represent a key tool for studying the interplanetary consequences of solar structure and dynamic phenomena. New information on the near sun consequences was obtained from radio scintillation observations of coherent spacecraft signals. The results covering density fluctuations, fractional density fluctuations, coronal streamers, heliospheric current sheets, coronal mass ejections and interplanetary shocks are reviewed. A joint ICE S-band (13 cm wavelength) Doppler scintillation measurement with the SOHO white-light coronograph (LASCO) is described.

  17. Anomalous absorption of a radio wave in the ionosphere

    NASA Astrophysics Data System (ADS)

    Tripathi, V. K.; Sawhney, B. K.; Singh, S. V.

    1993-12-01

    A radio wave transmitted into the ionosphere in the presence of a lower-hybrid drift wave excites a Langmuir wave, which is then damped by electrons, thereby heating them. This constitutes an important absorption mechanism. We evaluate the potential of the Langmuir wave and obtain an expression for the ratio Pr of the power of the Langmuir wave to that of the incident radio wave in the inhomogeneous ionosphere. It is found that the radio wave suffers an absorption of about 8% for a density fluctuation n1/n0 = 5%, but the electric field of the Langmuir wave becomes about 11.7 times that of the radio wave, which can lead to the excitation of parametric instabilities in the ionosphere.

  18. Effects of D region ionization on radio wave propagation

    NASA Technical Reports Server (NTRS)

    Larsen, T. R.

    1979-01-01

    The effects of anomalous D region ionization upon radio wave propagation are described for the main types of disturbances: sudden ionospheric disturbances, relativistic electron events, magnetic storms, auroral disturbances, polar cap events, and stratospheric warmings. Examples of radio wave characteristics for such conditions are given for the frequencies between the extremely low (3-3000 Hz) and high (3-30 MHz) frequency domains. Statistics on the disturbance effects and radio wave data are given in order to contribute towards the evaluation of possibilities for predicting the radio effects.

  19. Radio-wave propagation for space communications systems

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1981-01-01

    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  20. Magnetospheric radio and plasma wave research - 1987-1990

    SciTech Connect

    Kurth, W.S. )

    1991-01-01

    This review covers research performed in the area of magnetospheric plasma waves and wave-particle interactions as well as magnetospheric radio emissions. The report focuses on the near-completion of the discovery phase of radio and plasma wave phenomena in the planetary magnetospheres with the successful completion of the Voyager 2 encounters of Neptune and Uranus. Consideration is given to the advances made in detailed studies and theoretical investigations of radio and plasma wave phenomena in the terrestrial magnetosphere or in magnetospheric plasmas in general.

  1. The Scintillation and TEC Radio Instrument in Space (SCITRIS) Program at the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Bernhardt, P.; Siefring, C.; Huba, J.; Galysh, I.

    SCITRIS, a new space-based system to monitor total electron content (TEC) and ionospheric scintillations (IS), is scheduled for launch in late 2006. Two satellites, the Air Force S ace Test Program STPSAT1 and the Naval Postgraduate Schoolp NPSAT1, will host the SCITRIS instruments. The satellites will orbit at 560 km altitude with an inclination of 35 degrees. The CITRIS receiver on STPSAT1 will record signals from radio beacons o erating near 150, 400, 1067 and 2036 MHz.p The frequency pair 401.25 and 2036.25 MHz will be transmitted from the 50 ground transmitters that comprise the Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) system maintained by CNES in France. The frequencies 150.012, 400.032, and 1066.752 MHz will be transmitted using the Naval Research Laboratories' Coherent Electromagnetic Radio Tomography (CERTO) beacon from the NPSAT1 satellite. The NRL Langmuir probe will also be located on NPSAT1 to provide in situ electron density. The CITRIS receiver will process the measurements of complex amplitude from the multifrequency beacons to yield TEC and scintillation indices (S 4, ). Global maps of electron density and ionospheric irregularities will be produced using the SCITRIS instruments.

  2. Coronal Radio Sounding Experiments with Mars Express: Scintillation Spectra during Low Solar Activity

    SciTech Connect

    Efimov, A. I.; Lukanina, L. A.; Samoznaev, L. N.; Rudash, V. K.; Chashei, I. V.; Bird, M. K.; Paetzold, M.; Tellmann, S.

    2010-03-25

    Coronal radio sounding observations were carried out with the radio science experiment MaRS on the ESA spacecraft Mars Express during the period from 25 August to 22 October 2004. Differential frequency and log-amplitude fluctuations of the dual-frequency signals were recorded during a period of low solar activity. The data are applicable to low heliographic latitudes, i.e. to slow solar wind. The mean frequency fluctuation and power law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The radial dependence of the frequency fluctuation spectral index alpha reflects the previously documented flattening of the scintillation power spectra in the solar wind acceleration region. Temporal spectra of S-band and X-band normalized log-amplitude fluctuations were investigated over the range of fluctuation frequencies 0.01 Hzscintillation data. Evidence for a weak increase in the fractional electron density turbulence level is obtained in the range 10-40 solar radii.

  3. Plasma distribution of Comet ISON (C/2012 S1) observed using the radio scintillation method

    NASA Astrophysics Data System (ADS)

    Iju, Tomoya; Abe, Shinsuke; Tokumaru, Munetoshi; Fujiki, Ken'ichi

    2015-05-01

    We report the electron density in a plasma tail of Comet ISON (C/2012 S1) derived from interplanetary scintillation (IPS) observations during November 1-28, 2013. Comet ISON showed a well-developed plasma tail (longer than 2.98 ×107 km) before its perihelion passage on November 28. We identified a radio source whose line-of-sight approached the ISON's plasma tail in the above period and obtained its IPS data using the Solar Wind Imaging Facility at 327 MHz. We used the Heliospheric Imager onboard the Solar-Terrestrial Relation Observatory to distinguish between the cometary tail and solar eruption origins of their enhanced scintillation. From our examinations, we confirmed three IPS enhancements of a radio source 1148-00 on November 13, 16, and 17, which could be attributed to the disturbance in the cometary tail. Power spectra of 1148-00 had the steeper slope than normal ones during its occultation by the plasma tail. We estimated the electron density in the ISON's plasma tail and found 84 cm-3 around the tail axis at a distance of 3.74 ×107 km from the cometary nucleus and an unexpected variation of the electron density in the vicinity of the tail boundary.

  4. Absorption and reflection of radio waves in the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Morgan, D. D.; Kirchner, D. L.; Plaut, J.; Picardi, G.

    2007-05-01

    Radio wave absorption in the Martian ionosphere has been predicted and tested against MARSIS radar observations. Models of the ionosphere densities and of absorption in a CO2 neutral atmosphere were used. The appearance of ground reflections in the MARSIS observations is shown to be consistent with predictions of reflection and absorption of radio waves in the ionosphere. It is concluded that the secondary density maximum, known to be typically present below the primary density peak, contributes considerably to the absorption and thus to the appearance of ground reflections. It is the first time predicted radio wave absorption in a CO2 planetary atmosphere has been tested against actual observations.

  5. Making Waves: Pirate Radio and Popular Music.

    ERIC Educational Resources Information Center

    Jones, Steve

    The history of pirate radio--radio broadcasts offered by unlicensed broadcasters as alternatives to licensed, commercial radio programming--is difficult to trace, both in America and the United Kingdom (UK) since mention of pirate broadcasts of a less-then-thrilling nature are rarely found. Also, until 1927, the U.S. government did not formally…

  6. Radio wave scattering in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    Current models for the 2-3 kHz emissions observed by the Voyager spacecraft in the outer heliosphere involve 2f(p) radiation generated near the termination shock or the heliopause. Radio wave scattering by solar wind density irregularities strongly affects observed sources of f(p) and 2f(p) emission in the inner heliosphere and the characteristics of astrophysical sources. In particular, the angular size, brightness temperature, and time variability of the source are strongly affected by scattering, thereby having major implications for the inferred size, energy budget, time variability, location, and nature of the source if scattering is ignored. This paper addresses whether scattering is important for interpreting the Voyager 2-3 kHz emissions. Quantitative calculations (with and without diffraction) are performed for the angular broadening of an outer heliospheric source as a function of path length, radiation frequency relative to f(p) and the spectrum of density irregularities. The effects of scattering in both the solar wind and the heliosheath are considered. Predictions for radial gradients in the source's apparent angular size and in the source's modulation index are presented. The calculations are compared with observations and the results discussed. First estimates suggest that scattering plausibly dominates the observed source size. The observed trend in modulation index with heliocentric distance is consistent with scattering being important and the source being in the outer heliosphere. Additional arguments for scattering being important are summarized.

  7. Role of radio wave reflection during radio occultation by the solar corona

    SciTech Connect

    Kucheryauenkov, A.I.; Pavel'ev, A.G.; Rubtsov, S.N.; Yakoulev, O.I.

    1986-01-01

    The authors present a theoretical analysis of reflection of radio waves by the sun when the plasma around the sun occults a spacecraft. The frequency difference is calculated between direct and reflected waves, smearing of the energy spectra, and absorption and refractive attenuation of the radio waves. It is shown that in the decimeter range, it may be possible to detect the reflected ray by the methods of frequency and time selection. The authors show that it is possible to perform bistatic radio location of the sun.

  8. Plasma and radio waves from Neptune: Source mechamisms and propagation

    NASA Technical Reports Server (NTRS)

    Menietti, J. Douglas

    1994-01-01

    The purpose of this project was to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as it flew by Neptune. The study has included data analysis, theoretical and numerical calculations, and ray tracing to determine the possible source mechanisms and locations of the radiation, including the narrowband bursty and smooth components of the Neptune radio emission.

  9. Radio Observations of the Onset of an EIT Wave

    NASA Astrophysics Data System (ADS)

    White, S. M.; Thompson, B. J.

    2002-05-01

    We present observations of the early development of an ``EIT wave'' made with the Nobeyama Radio Heliograph at 17 GHz. EIT waves are propagating disturbances generated in conjunction with solar flares. They have most easily been seen to date as emission enhancements in full-disk EUV images taken in spectral lines sensitive to 1-2 million degree material. We demonstrate that they can also be seen in high dynamic range radio observations as well. The high cadence of the radio data allows us to show that the EIT wave is not visible until after the onset of the impulsive phase of the flare. A radio movie of the event will be shown. We discuss the implications of this result for the nature of EIT waves and their relationship with other phenomena such as CMEs.

  10. Polycrystalline para-terphenyl scintillator adopted in a β- detecting probe for radio-guided surgery

    NASA Astrophysics Data System (ADS)

    Solfaroli Camillocci, E.; Bellini, F.; Bocci, V.; Collamati, F.; De Lucia, E.; Faccini, R.; Marafini, M.; Mattei, I.; Morganti, S.; Paramatti, R.; Patera, V.; Pinci, D.; Recchia, L.; Russomando, A.; Sarti, A.; Sciubba, A.; Senzacqua, M.; Voena, C.

    2015-06-01

    A radio-guided surgery technique exploiting β- emitters is under development. It aims at a higher target-to-background activity ratio implying both a smaller radiopharmaceutical activity and the possibility of extending the technique to cases with a large uptake of surrounding healthy organs. Such technique requires a dedicated intraoperative probe detecting β- radiation. A first prototype has been developed relying on the low density and high light yield of the diphenylbutadiene doped para-therphenyl organic scintillator. The scintillation light produced in a cylindrical crystal, 5 mm in diameter and 3 mm in height, is guided to a photo-multiplier tube by optical fibres. The custom readout electronics is designed to optimize its usage in terms of feedback to the surgeon, portability and remote monitoring of the signal. Tests show that with a radiotracer activity comparable to those administered for diagnostic purposes the developed probe can detect a 0.1 ml cancerous residual of meningioma in a few seconds.

  11. New methods for calculating short-wave radio paths

    NASA Astrophysics Data System (ADS)

    Popov, A. V.; Tsedilina, E. E.; Cherkashin, Iu. N.

    Recent research on the calculation of short-wave paths at IZMIRAN (the Soviet Institute for the Study of Terrestrial Magnetism, the Ionosphere, and the Propagation of Radio Waves) is reviewed. Particular attention is given to: (1) the development of approximate analytical methods for ray-tracing calculations and for determining the geometrical-optics characteristics of a radio signal in a horizontally irregular ionosphere; (2) investigations of the long-range and short-wave propagation of decametric waves; and (3) the development of a parabolic-equation method for considering diffraction and scattering in a medium with regular and random irregularities.

  12. The ISPM unified radio and plasma wave experiment

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Caldwell, J.; Deconchy, Y.; Deschanciaux, C.; Ebbett, R.; Epstein, G.; Groetz, K.; Harvey, C. C.; Hoang, S.; Howard, R.

    1983-01-01

    Hardware for the International Solar Polar Mission (ISPM) Unified Radio and Plasma (URAP) wave experiment is presented. The URAP determines direction and polarization of distant radio sources for remote sensing of the heliosphere, and studies local wave phenomena which determine the transport coefficients of the ambient plasma. Electric and magnetic field antennas and preamplifiers; the electromagnetic compatibility plan and grounding; radio astronomy and plasma frequency receivers; a fast Fourier transformation data processing unit waveform analyzer; dc voltage measurements; a fast envelope sampler for the solar wind, and plasmas near Jupiter; a sounder; and a power converter are described.

  13. Plasma and radio waves from Neptune: Source mechanisms and propagation

    NASA Technical Reports Server (NTRS)

    Wong, H. K.

    1994-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.

  14. Advances in magnetospheric radio wave analysis and tomography

    NASA Astrophysics Data System (ADS)

    Cummer, S. A.; Green, J. L.; Reinisch, B. W.; Fung, S. F.; Kaiser, M. L.; Pickett, J. S.; Christopher, I.; Mutel, R.; Gurnett, D. A.; Escoubet, C. P.

    Initial theoretical studies of multi-spacecraft radio tomographic imaging of the magnetosphere have shown the potential scientific value of the technique. We report a series of multistatic radio propagation experiments with the goal of testing and verifying the capabilities of radio tomography. These experiments focused specifically on measuring the plasma-induced rotation of the wave polarization (Faraday rotation), from which the path integrated product of magnetospheric electron density and magnetic field can be directly inferred. These experiments used the Radio Plasma Imager (RPI) on the IMAGE satellite as the transmitter. The receiving instruments were the WAVES instrument on WIND and the WBD instrument on CLUSTER. These experiments showed that Faraday rotation can be measured on relatively long (>10 RE) magnetospheric propagation paths with existing transmitter and receiver technology. We conclude that radio tomographic imaging of magnetospheric electron density and magnetic field is a powerful technique with unique, large-scale measurement capabilities that can effectively address important questions in magnetospheric physics.

  15. Radio-frequency helicon-wave devices

    NASA Astrophysics Data System (ADS)

    Bokrinskaia, A. A.; Vuntesmeri, V. S.; Krasilich, G. P.

    The properties of devices based on the propagation of helicon waves in semiconductor plasmas are analyzed. Particular attention is given to the excitation of helicon waves, and to the occurrence of helicon-wave resonances in circuits with lumped parameters (induction coils) coupled with solid-state plasmas. Recommendations on the practical use of helicon-wave devices are given: meter-wave gates and circulators and microwave devices are considered.

  16. Variations in the radio-wave absorption in the ionosphere due to internal gravity waves

    NASA Astrophysics Data System (ADS)

    Grigor'ev, G. I.

    2006-03-01

    We estimate the influence of internal gravity waves on the radio-wave absorption in the Earth’s atmosphere. It is shown that the internal gravity waves can lead to significant spatio-temporal variations in the absorption. We conclude that riometric measurements can be used for the diagnostics of internal gravity waves in the Earth’s atmosphere.

  17. Optical and millimeter-wave radio seamless MIMO transmission based on a radio over fiber technology.

    PubMed

    Kanno, Atsushi; Kuri, Toshiaki; Hosako, Iwao; Kawanishi, Tetsuya; Yoshida, Yuki; Yasumura, Yoshihiro; Kitayama, Ken-ichi

    2012-12-31

    Multi-input multi-output (MIMO) transmission of two millimeter-wave radio signals seamlessly converted from polarization-division-multiplexed quadrature-phase-shift-keying optical signals is successfully demonstrated, where a radio access unit basically consisting of only optical-to-electrical converters and a radio receiver performs total signal equalization of both the optical and the radio paths and demodulation with digital signal processing (DSP). Orthogonally polarized optical components that are directly converted to two-channel radio components can be demultiplexed and demodulated with high-speed DSP as in optical digital coherent detection. 20-Gbaud optical and radio seamless MIMO transmission provides a total capacity of 74.4 Gb/s with a forward error correction overhead of 7%. PMID:23388767

  18. Roles Played by Electrostatic Waves in Producing Radio Emissions

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    2000-01-01

    Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.

  19. Evidence for nonlinear wave-wave interactions in solar type III radio bursts

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Levedahl, W. K.; Lotko, W.; Gurnett, D. A.; Scarf, F. L.

    1986-01-01

    Evidence is presented that nonlinear wave-wave interactions occur in type III solar radio bursts. Intense, spiky Langmuir waves are observed to be driven by electron beams associated with type III solar radio bursts in the interplanetary medium. Bursts of 30-300 Hz (in the spacecraft frame) waves are often observed coincident in time with the most intense spikes of the Langmuir waves. These low-frequency waves appear to be long-wavelength ion acoustic waves, with wavenumber approximately equal to the beam resonant Langmuir wavenumber. Three possible interpretations of these observations are considered: modulational instability, parametric decay of the parent Langmuir waves to daughter ion acoustic and Langmuir waves, and decay to daughter electromagnetic waves and ion acoustic waves.

  20. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Mahoney, M. J.; Jacobson, A. R.; Knowles, S. H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities.

  1. Coincidently Searching for Gravitational Waves and Low Frequency Radio Transients

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Yancey, C.; Shawhan, P. S.; Cutchin, S.; Simonetti, J. H.; Bear, B.; Tsai, J.

    2014-01-01

    The transient sky has become an important area of astrophysical study, especially with the appearance of recent fast transients, but little is known about the sources of these transients. One possible approach which can shed light on this area is multi-messenger astronomy using gravitational waves and prompt emission meter-wavelength radio to observe fast transients. This is made possible with gravitational-wave detectors such as LIGO, VIRGO, and GEO (IndIGO and KAGRA proposed or under construction) and phased-array radio-telescopes such LWA, LOFAR, LoFASM, and MWA. This talk presents a method for coincidence of gravitational wave and meter-wavelength radio observations to enable multi-messenger astronomy and discusses the optimization of gravitational-wave and radio sensitivities to attain effective combined observational sensitivities. It is shown that coincidence provides a 52.9% increase to the sensitivity distance for LIGO and a 200% increase to the SNR of radio arrays for particular cases.

  2. Observation of local radio emission associated with type III radio bursts and Langmuir waves

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.; Fainberg, J.

    1992-01-01

    The first clear detection of fundamental and harmonic radiation from the type III radio source region is presented. This radiation is characterized by its lack of frequency drift, its short rise and decay times, its relative weakness compared to the remotely observed radiation and its temporal coincidence with observed Langmuir waves. The observations were made with the radio and plasma frequency (URAP) receivers on the Ulysses spacecraft between about 1 and 2 AU from the Sun.

  3. Low and Mid-Latitude Ionospheric Irregularities Studies Using TEC and Radio Scintillation Data from the CITRIS Radio Beacon Receiver in Low-Earth-Orbit

    NASA Astrophysics Data System (ADS)

    Siefring, C. L.; Bernhardt, P. A.; Huba, J.; Krall, J.; Roddy, P. A.

    2009-12-01

    Unique data on ionospheric plasma irregularities from the Naval Research Laboratory (NRL) CITRIS (Scintillation and TEC Receiver in Space) instrument will be presented. CITRIS is a multi-band receiver that recorded TEC (Total Electron Content) and radio scintillations from Low-Earth Orbit (LEO) on STPSat1. The 555+/5 km altitude 35 inclination orbit covers low and mid-latitudes. The measurements require propagation from a transmitter to a receiver through the F-region plasma. CITRIS used both 1) satellite beacons in LEO, such as the NRL CERTO (Coherent Electromagnetic Radio TOmography) beacons and 2) the global network of ground-based DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) beacons. The TEC measurements allow for tracking of ionospheric disturbances and irregularities while the measurements of scintillations can simultaneously characterize their effects. CITRIS was operated in a complementary fashion with the C/NOFS (Communication/Navigations Outages Forecasting System) satellite during most of its first year of operations. C/NOFS carries a three-frequency 150/400/1067 MHz CERTO beacon and is dedicated to the study of Spread-F. In the case of Spread-F, ionospheric irregularities start with large scale size density gradients (100s of km) and cascade through complex processes to short scale sizes (10s of meters). It is typically the 100m-1km scale features that harm communication and navigation systems through scintillations. A multi-sensor approach is needed to completely understand this complex system, such as, the combination of CITRIS remote radio sensing and C/NOFS in-situ data. Several types of irregularities have been studied including Spread-F and the newly discovered dawn-side depletions. Comparisons with the physics based SAMI3 model are being performed to help our understanding of the morphology of the irregularities.

  4. Embracing the Wave: Using the Very Small Radio Telescope to Teach Students about Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Fish, Vincent L.; Needles, M. M.; Rogers, A. E. E.; Doherty, M.; Minnigh, S.; Arndt, M. B.; Pratap, P.

    2010-01-01

    The Very Small Radio Telescope (VSRT) is a low-cost educational tool appropriate for laboratory demonstrations of the nature of radio waves and the principles of interferometry for use in both high school and undergraduate physics/astronomy classes. The system consists of small direct broadcast antenna dishes and other commercially available parts and can be assembled for under $500. Complete teaching units have been developed and tested by high school physics teachers to demonstrate radio wave transmission and exponential absorption though materials (Beer's law), the polarization of electromagnetic waves (Malus' law), the inverse square law, and interferometry. These units can be used to explore the properties of electromagnetic waves, including similarities and differences between radio and visible light, while challenging students' misconceptions about a wavelength regime that is important to both astronomy and everyday life. In addition, the VSRT can be used as a radio astronomical interferometer to measure the diameter of the Sun at 12 GHz. Full details, including a parts list, comprehensive assembly instructions, informational memos, teaching units, software, and conformance to national and Massachusetts educational standards, are available on the web at http://www.haystack.mit.edu/edu/undergrad/VSRT/index.html . Development of the VSRT at MIT Haystack Observatory is made possible through funding provided by the National Science Foundation.

  5. Excitation of parametric instabilities by radio waves in the ionosphere.

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.; Leer, E.

    1972-01-01

    The excitation of parametric instabilities by radio waves in a magnetoplasma is discussed. A uniform medium is assumed and linear approximations are used. Excitation by a pump wave of ordinary polarization is hardly affected by the magnetic field. Low or zero frequency ion waves and high frequency Langmuir waves are excited simultaneously. For an extraordinary pump wave, the excited high frequency electrostatic waves are in the Bernstein mode. The threshold is slightly higher and excitation can occur only within certain 'allowed' frequency bands. A new type of parametric instability in which the excited waves are electromagnetic in nature and which is more strongly affected by the inhomogeneous nature of the medium is discussed qualitatively.

  6. Type II Radio Bursts Observed by STEREO/Waves and Wind/Waves instruments

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Magdalenic, J.; Zhukov, A.; Rodriguez, L.; Mierla, M.; Maksimovic, M.; Cecconi, B.; Santolik, O.

    2013-12-01

    Type II radio bursts are slow-drift emissions triggered by suprathermal electrons accelerated on shock fronts of propagating CMEs. We present several events at kilometric wavelengths observed by radio instruments onboard the STEREO and Wind spacecraft. The STEREO/Waves and Wind/Waves have goniopolarimetric (GP, also referred to as direction finding) capabilities that allow us to triangulate radio sources when an emission is observed by two or more spacecraft. As the GP inversion has high requirements on the signal-to-noise ratio we only have a few type II radio bursts with sufficient intensity for this analysis. We have compared obtained radio sources with white-light observations of STEREO/COR and STEREO/HI instruments. Our preliminary results indicate that radio sources are located at flanks of propagating CMEs.

  7. Effect of small ionospheric irregularities on radio wave absorption

    NASA Technical Reports Server (NTRS)

    Chen, H. C.; Fejer, J. A.

    1975-01-01

    The ionospheric absorption of a radio wave caused by small-scale irregularities with a gaussian autocorrelation function is calculated for various values of the linear scale height, the radio frequency, the scale size of the irregularities, and the mean-square fractional electron density fluctuations. The absorption is due to scattering of the radio wave into plasma oscillations by the irregularities. It is concluded that the absorption due to such irregularities with a mean-square fractional electron density deviation greater than about 0.000001 exceeds the normal collisional height-integrated absorption. Absorption of this type could play a significant part in heating experiments or in an ionosphere containing naturally occurring irregularities.

  8. Short-Wave Radio: An Aid to Language Learning.

    ERIC Educational Resources Information Center

    Lutcavage, Charles P.

    1982-01-01

    Discusses use of short-wave radio broadcasts as method for expanding students' appreciation of practical advantages of language learning. Suggests use of news broadcasts and gives guidelines for using broadcasts such as level of aural comprehension in class. (Author/BK)

  9. Radio wave propagation at frequencies exceeding MUF-F2 in the short wave band

    NASA Technical Reports Server (NTRS)

    Ashkaliyev, Y. F.; Bocharov, V. I.

    1972-01-01

    The results of measurements of field strength and signal/noise ratio on experimental ionospheric-scattering short wave radio links are presented. It is shown that the seasonal and diurnal variations of field strength are determined by features of solar and meteoric activity. The role of the sporadic E-layer in propagation of short radio waves at frequencies exceeding MUF-F2 is noted.

  10. Improved spacecraft radio science using an on-board atomic clock: Application to gravitational wave searches

    SciTech Connect

    Tinto, Massimo; Dick, George J.; Prestage, John D.; Armstrong, J. W.

    2009-05-15

    Recent advances in space-qualified atomic clocks (low-mass, low power-consumption, frequency stability comparable to that of ground-based clocks) can enable interplanetary spacecraft radio science experiments at unprecedented Doppler sensitivities. The addition of an on-board digital receiver would allow the up- and down-link Doppler frequencies to be measured separately. Such separate, high-quality measurements allow optimal data combinations that suppress the currently leading noise sources: phase scintillation noise from the Earth's atmosphere and Doppler noise caused by mechanical vibrations of the ground antenna. Here we provide a general expression for the optimal combination of ground and on-board Doppler data and compute the sensitivity such a system would have to low-frequency gravitational waves (GWs). Assuming a plasma scintillation noise calibration comparable to that already demonstrated with the multilink CASSINI radio system, the space-clock/digital-receiver instrumentation enhancements would give GW strain sensitivity of 3.7x10{sup -14} Hz{sup -1/2} for randomly polarized, monochromatic GW signals isotropically distributed over the celestial sphere, over a two-decade ({approx}0.0001-0.01 Hz) region of the low-frequency band. This is about an order of magnitude better than currently achieved with traditional two-way coherent Doppler experiments. The utility of optimally combining simultaneous up- and down-link observations is not limited to GW searches. The Doppler tracking technique discussed here could be performed at minimal incremental cost to improve also other radio science experiments (i.e., tests of relativistic gravity, planetary and satellite gravity field measurements, atmospheric and ring occultations) on future interplanetary missions.

  11. Tracking the CME-driven Shock Wave on 2012 March 5 and Radio Triangulation of Associated Radio Emission

    NASA Astrophysics Data System (ADS)

    Magdalenić, J.; Marqué, C.; Krupar, V.; Mierla, M.; Zhukov, A. N.; Rodriguez, L.; Maksimović, M.; Cecconi, B.

    2014-08-01

    We present a multiwavelength study of the 2012 March 5 solar eruptive event, with an emphasis on the radio triangulation of the associated radio bursts. The main points of the study are reconstruction of the propagation of shock waves driven by coronal mass ejections (CMEs) using radio observations and finding the relative positions of the CME, the CME-driven shock wave, and its radio signatures. For the first time, radio triangulation is applied to different types of radio bursts in the same event and performed in a detailed way using goniopolarimetric observations from STEREO/Waves and WIND/Waves spacecraft. The event on 2012 March 5 was associated with a X1.1 flare from the NOAA AR 1429 situated near the northeast limb, accompanied by a full halo CME and a radio event comprising long-lasting interplanetary type II radio bursts. The results of the three-dimensional reconstruction of the CME (using SOHO/LASCO, STEREO COR, and HI observations), and modeling with the ENLIL cone model suggest that the CME-driven shock wave arrived at 1 AU at about 12:00 UT on March 7 (as observed by SOHO/CELIAS). The results of radio triangulation show that the source of the type II radio burst was situated on the southern flank of the CME. We suggest that the interaction of the shock wave and a nearby coronal streamer resulted in the interplanetary type II radio emission.

  12. Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission

    SciTech Connect

    Magdalenić, J.; Marqué, C.; Mierla, M.; Zhukov, A. N.; Rodriguez, L.; Krupar, V.; Maksimović, M.; Cecconi, B.

    2014-08-20

    We present a multiwavelength study of the 2012 March 5 solar eruptive event, with an emphasis on the radio triangulation of the associated radio bursts. The main points of the study are reconstruction of the propagation of shock waves driven by coronal mass ejections (CMEs) using radio observations and finding the relative positions of the CME, the CME-driven shock wave, and its radio signatures. For the first time, radio triangulation is applied to different types of radio bursts in the same event and performed in a detailed way using goniopolarimetric observations from STEREO/Waves and WIND/Waves spacecraft. The event on 2012 March 5 was associated with a X1.1 flare from the NOAA AR 1429 situated near the northeast limb, accompanied by a full halo CME and a radio event comprising long-lasting interplanetary type II radio bursts. The results of the three-dimensional reconstruction of the CME (using SOHO/LASCO, STEREO COR, and HI observations), and modeling with the ENLIL cone model suggest that the CME-driven shock wave arrived at 1 AU at about 12:00 UT on March 7 (as observed by SOHO/CELIAS). The results of radio triangulation show that the source of the type II radio burst was situated on the southern flank of the CME. We suggest that the interaction of the shock wave and a nearby coronal streamer resulted in the interplanetary type II radio emission.

  13. Characteristics of layers, waves and turbulence in the atmosphere and ionosphere as estimated by GPS space radio-holography

    NASA Astrophysics Data System (ADS)

    Pavelyev, Alexander; Gubenko, Vladimir; Matyugov, Stanislav; Pavelyev, Alexey

    The spatial, seasonal and geographical distrubutions of the intensity of layers, turbulence and internal waves at different altitudes in the atmosphere and ionosphere of the Earth are presented. The results have been obtained on the base of locality principle using a new phase acceleration-intensity method for analysis of the GPS radio occultation signals. This methodology has been applied to mesearements of the inclination and altitude of ionospheric layers. Obtained information has been used for estimation of the front orientation, internal frequency and phase speed of the internal waves in the ionosphere and neutral atmosphere. A new index of the ionospheric activity as measured from the phase of radio waves passed through the ionosphere is introduced and its high correlation with S4 scintillation index is established. This correlation indicates the significant influence of ionospheric layers on variations of characteristics of radio waves in transionospheric communication links. Specially for the troposphere the geographical distribution of the weak total absorption (about of 1-2 db) of the radio waves at GPS frequencies in the Earth atmosphere corresponding to influence of the oxygen and water vapor in the troposphere is measured with accuracy better than 0.1 db. Obtained results expanded the applicable domain of the GPS space radio-holography for global investigation of the natural processes in the atmosphere and ionosphere as function of solar activity and space weather effects. The new phase acceleration-intensity method is also a basic tool which can be applied for data analysis of future planetary radio occultation missions

  14. Ulysses radio and plasma wave observations in the Jupiter environment

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Pedersen, B. M.; Harvey, C. C.; Canu, P.; Cornilleau-Wehrlin, N.; Desch, M. D.; De Villedary, C.; Fainberg, J.; Farrell, W. M.; Goetz, K.

    1992-01-01

    The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of auroral-like hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the Io plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the Io torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.

  15. Resonance scattering of radio waves in the acoustically disturbed ionosphere

    SciTech Connect

    Plotkin, V.V.; Izraileva, N.I.

    1987-11-01

    It is known that acoustic waves are excited in the atmosphere for a variety of reasons, including seismic oscillations of the earth's surface as a result of earthquakes, volcanic eruptions, explosions, and in the operation of other powerful sources of natural or artificial origin. When sound waves are sufficiently intense, they can create disturbances in the electron density at ionospheric heights. In this paper, we consider the properties of radio wave scattering off such disturbances created by infrasound waves, i.e., we consider Mandel'shtam-Brillouin scattering in the ionosphere. The authors discuss the possibility of a radiophysical enhancement of the effect connected with the phenomenon of resonance scattering of the radiowaves off the disturbances created in the medium by the acoustic wave.

  16. Electron Acceleration by High Power Radio Waves in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul

    2012-10-01

    At the highest ERP of the High Altitude Auroral Research Program (HAARP) facility in Alaska, high frequency (HF) electromagnetic (EM) waves in the ionosphere produce artificial aurora and electron-ion plasma layers. Using HAARP, electrons are accelerated by high power electrostatic (ES) waves to energies >100 times the thermal temperature of the ambient plasma. These ES waves are driven by decay of the pump EM wave tuned to plasma resonances. The most efficient acceleration process occurs near the harmonics of the electron cyclotron frequency in earth's magnetic field. Mode conversion plays a role in transforming the ES waves into EM signals that are recorded with ground receivers. These diagnostic waves, called stimulated EM emissions (SEE), show unique resonant signatures of the strongest electron acceleration. This SEE also provides clues about the ES waves responsible for electron acceleration. The electron gas is accelerated by high frequency modes including Langmuir (electron plasma), upper hybrid, and electron Bernstein waves. All of these waves have been identified in the scattered EM spectra as downshifted sidebands of the EM pump frequency. Parametric decay is responsible low frequency companion modes such as ion acoustic, lower hybrid, and ion Bernstein waves. The temporal evolution of the scattered EM spectrum indicates development of field aligned irregularities that aid the mode conversion process. The onset of certain spectral features is strongly correlated with glow plasma discharge structures that are both visible with the unaided eye and detectable using radio backscatter techniques at HF and UHF frequencies. The primary goals are to understand natural plasma layers, to study basic plasma physics in a unique ``laboratory with walls,'' and to create artificial plasma structures that can aid radio communications.

  17. Cassini Radio Science Observations of Density Waves in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    McGhee, C. A.; French, R. G.; Rappaport, N. J.; Marouf, E. A.; Dawson, R.; Stack, K.

    2006-08-01

    Saturn's ring system is an elegant celestial mechanical laboratory for studying the interactions between a host of small and large moons, and the rings themselves. Resonances between the satellites and the ring particles result in spiral density waves whose detailed characteristics can be used to determine the physical properties of the rings. Over the past year, the Cassini Radio Science Team has obtained nearly a dozen exquisite radial profiles of the structure of Saturn's rings from occultations at three radio wavelengths (0.9 cm, 3 cm, and 12 cm), at sub-km resolution, after correction for the effects of diffraction. The optical depth profiles of the rings are replete with density waves produced by Mimas, Janus, Epimetheus, Prometheus, Pandora, and even smaller moons. Using wavelet decomposition as well as direct model fitting, we have determined the surface mass density and viscosity of the ring particles from weak (linear) density waves, primarily in the A ring. These are essential ingredients for dynamical models of the rings that include the effects of self-gravity and inelastic particle collisions. Future radio science occultation experiments throughout the Cassini orbital tour of Saturn will probe the rings at a range of ring opening angles, providing both additional measurements of density waves and other ring features.

  18. Waves in Saturn's rings probed by radio occultation

    SciTech Connect

    Rosen, P.A.

    1989-01-01

    Thirty wave features, observed in 3.6 and 13 cm-wavelength optical depth profiles of Saturn's rings obtained by Voyager 1 radio occultation, are analyzed individually and comparatively. Many are the signature of spiral density waves and bending waves excited by gravitational resonances with Saturn's satellites. A new technique for locating waveform extrema, which fits a sinusoid to each half cycle of wave data, quantifies the wavelength variation across a feature. Fitting dispersion models to the derived wavelengths provides new estimates of ambient surface mass density {sigma} in each wave region. For fourteen weak density waves in Ring A, modelling of the waveform near resonance with linear density wave theory gives independent estimates of {sigma}, as well as reliable estimates of resonance location. Measurements of wave amplitude damping give an upper bound for ring thickness 2H, where H is the ring scale height. In the wave regions studied, Rings A, B, and C have 30 {approx lt} {sigma} {approx lt} 70, {sigma} {approx gt} 65, and {sigma} {approximately} 1 g/cm{sup 2}, respectively. Mass loading estimates from waveform modelling are 20 to 40% larger than dispersion-derived values, suggesting accumulation of mass in the wave regions. The average offset of derived wave location from theoretical resonance is about 1 km. Model waveforms of overlapping waves excited by the satellites Janus and Epimethenus agree well with observed morphologies in the linear region near resonance. In Ring C, dispersion analysis indicates that the most prominent wave feature, previously unidentified, is a one-armed spiral wave.

  19. Electron Transport by Radio Frequency Waves in Tokamak Plasmas

    SciTech Connect

    Ram, A. K.; Kominis, Y.; Hizanidis, K.

    2009-11-26

    A relativistic kinetic description for momentum and spatial diffusion of electrons by radio frequency (RF) waves and non-axisymmetric magnetic field perturbations in a tokamak is formulated. The Lie perturbation technique is used to obtain a non-singular, time dependent evolution equation for resonant and non-resonant electron diffusion in momentum space and diffusion in configuration space. The kinetic equation for the electron distribution function is different from the usual quasilinear equations as it includes interactions that are non-Markovian. It is suitable for studying wave-particle interaction in present tokamaks and in ITER. A primary goal of RF waves, and, in particular, of electron cyclotron waves, in ITER is to control instabilities like the neoclassical tearing mode (NTM). Non-axisymmetric effects due to NTMs are included in the kinetic formalism.

  20. Electron Transport by Radio Frequency Waves in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Ram, A. K.; Kominis, Y.; Hizanidis, K.

    2009-11-01

    A relativistic kinetic description for momentum and spatial diffusion of electrons by radio frequency (RF) waves and non-axisymmetric magnetic field perturbations in a tokamak is formulated. The Lie perturbation technique is used to obtain a non-singular, time dependent evolution equation for resonant and non-resonant electron diffusion in momentum space and diffusion in configuration space. The kinetic equation for the electron distribution function is different from the usual quasilinear equations as it includes interactions that are non-Markovian. It is suitable for studying wave-particle interaction in present tokamaks and in ITER. A primary goal of RF waves, and, in particular, of electron cyclotron waves, in ITER is to control instabilities like the neoclassical tearing mode (NTM). Non-axisymmetric effects due to NTMs are included in the kinetic formalism.

  1. Data compression for the Cassini radio and plasma wave instrument

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Gurnett, D. A.; Kirchner, D. L.; Kurth, W. S.; Woolliscroft, L. J. C.

    1993-01-01

    The Cassini Radio and Plasma Wave Science experiment will employ data compression to make effective use of the available data telemetry bandwidth. Some compression will be achieved by use of a lossless data compression chip and some by software in a dedicated 80C85 processor. A description of the instrument and data compression system are included in this report. Also, the selection of data compression systems and acceptability of data degradation is addressed.

  2. Theories of radio emissions and plasma waves. [in Jupiter magnetosphere

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Goertz, C. K.

    1983-01-01

    The complex region of Jupiter's radio emissions at decameter wavelengths, the so-called DAM, is considered, taking into account the basic theoretical ideas which underly both the older and newer theories and models. Linear theories are examined, giving attention to direct emission mechanisms, parallel propagation, perpendicular propagation, and indirect emission mechanisms. An investigation of nonlinear theories is also conducted. Three-wave interactions are discussed along with decay instabilities, and three-wave up-conversio. Aspects of the Io and plasma torus interaction are studied, and a mechanism by which Io can accelerate electrons is reviewed.

  3. Experimental observations of the spatial structure of wave-like disturbances generated in midlatitude ionosphere by high power radio waves

    NASA Astrophysics Data System (ADS)

    Kunitsyn, V.; Andreeva, E.; Padokhin, A. M.; Nazarenko, M.; Frolov, V.; Komrakov, G.; Bolotin, I.

    2012-12-01

    We present the results of the experiments carried out in 2009-2012 on the Sura heating facility (Radio Physical Research Institute, N. Novgorod, Russia) on modification of the midlatitude ionosphere by powerful HF radiowaves. The experiments were conducted using O-mode radiowaves at frequencies lower than critical frequency of the ionospheric F2 layer both in daytime and nighttime ionosphere. Various schemes of the radiation of the heating wave were used including square wave modulation of the effective radiated power (ERP) at various frequencies and power stepping. Radio transmissions of the low- (Parus/Tsikada) and high-orbital (GPS/GLONASS) navigational satellites received at the mobile network of receiving sites were used for the remote sensing of the heated area of the ionosphere. The variations in the slant total electron content (TEC), which are proportional to the reduced phase of navigational signals, were studied for the satellite passes for which ionospheric penetration points crossed the disturbed area during HF heating. The variations in TEC caused by HF heating are identified in a number of examples. It is shown that the GNSS TEC spectra contain frequency components corresponding to the modulation periods of the ERP of the heating wave. The manifestations of the heating-induced variations in TEC are most prominent in the area of magnetic zenith of the pumping wave. Different behavior of TEC variations was observed during nighttime and daytime heating experiments. In daytime conditions the pump wave switched ON causes the increase of TEC while in the nighttime it causes a decrease in TEC. This can be explained by the different contribution of the processes responsible for the increase and decrease of TEC in daytime in nighttime conditions. In this work we also present the first time radiotomographic reconstructions of the spatial structure of the wave-like disturbances, generated in the ionosphere by high-power radio waves radiated by the Sura heater with a square wave modulation of the ERP at a frequency lower than or of the order of the Brunt-Vaisala frequency of the neutral atmosphere. The observed wavelike structures, which are possibly AGWs, diverge from the heated area of the ionosphere (observed like a narrow trough with dimensions corresponding to the diagram pattern of the Sura heater), the spatial period of these disturbances is 200-250 km and they are easily traced up to a distance of 700-800 km from the heated region. These observations are in good agreement with complimentary GPS/GLONASS data. We also present the examples of amplitude scintillations of the signals of low-orbital radio beacons corresponding to small-scale field-aligned irregularities in the heated area of ionosphere. The possibility of generation of electromagnetic waves by moving wave-like structures in ionosphere (like AGWs induced by HF-heating observed in our experiments) is also addressed in this work. The authors are grateful to the staff of the Sura facility for their help in conducting the experiments and acknowledge the support of the Russian Foundation for Basic Research (grants 10-05-01126, 11-02-00374, 11-05-01157, 12-02-31839, 12-05-33065, 12-05-10068), grant of the President of Russian Federation MK-2544.2012.5 and Lomonosov Moscow State University Program of Development.

  4. Radio observations of atmospheric gravity waves with Callisto

    NASA Astrophysics Data System (ADS)

    Monstein, C.

    2013-12-01

    On December 12th 2013 NOAA reported between 08:04 and 12:08 only radio noise at 245 MHz observed in San Vito. But some European observatories of the e-Callisto network (Germany, UK and Ireland) observed very strange reverse drifting and v-type bursts which was never recognized by the author before. Private communication with P. Zucca from TCD showed that these strange structures are due to focusing effects in the ionosphere. Interestingly it is possible to observe complex ionospheric behavior with cheap and simple radio-telescopes like Callisto. People who are interested in such kind of observations to study ionospheric gravity waves should generate observing programs for frequencies below 100 MHz, ideally with an additional up-converter for frequencies from 15 MHz - 100 MHz. Callisto again proved to be a powerful tool for solar science and radio-monitoring. Below are shown recent observations from Bir castle in Ireland, Essen in Germany and Glasgow in Scotland. For comparison I added an observation from a LOFAR node from Chibolton in UK which was provided by Richard Fallows from Astron NL. And finally a plot from Nançay radio heliograph, provided by Karl-Heinz Gansel, Dingden Amateur Radio- Astronomy Observatory DARO, Germany. Although Callisto instruments are almost identical, the spectra look completely different, depending on their geographical longitude and latitude.

  5. On Microwave Radio Scintillation Effects and Space Weather Impacts on Electric Power Supply Systems in Middle Latitudes

    NASA Astrophysics Data System (ADS)

    Babayev, E. S.; Hashimov, A. M.; Asgarov, A. B.; Yusifbeyli, N. A.; Shustarev, P. N.

    2006-12-01

    In this paper results of morphological studies and investigations on revealing of main characteristics of ionospheric scintillation effects experienced for microwave radio signals for the Space-Earth path, its impacts on navigation and communication systems, dependence on the solar and geomagnetic activity, geophysical and other processes/factors are briefly provided to help system designers who are involved in the activities related to the development and functioning of systems, particularly, for consumers in middle geographical latitudes. Ionospheric propagation model computer code was applied for studying of scintillation effects on microwave radio signals used in the area of Azerbaijan for worst case scenario of main space weather and ionosphere parameters. Part of main results of the complex investigations on possible impact of geomagnetic disturbances of various strengths on electric power supply systems in middle latitudes is described. Daily data on power failures and breakdowns that occurred in Baku capital city (Azerbaijan) and surrounded big urban area in years of descending phase of solar 11-year activity cycle was investigated and analyzed.

  6. The CME-driven shock wave on 2012 March 05 and radio triangulation of associated radio emission

    NASA Astrophysics Data System (ADS)

    Magdalenic, Jasmina; Rodriguez, Luciano; Zhukov, Andrei; Krupar, Vratislav; Marque, Christophe; Cecconi, Baptiste; Mierla, Marilena; Maksimovic, Milan

    We present a multiwavelength study of the 2012 March 05 solar eruptive event, with the emphasis on the radio triangulation of the associated radio bursts. The main scopes of the study are the reconstruction of the propagation of the CME-driven shock wave using radio observations, and finding the relative positions of the CME, CME-driven shock wave and its radio signatures. For the first time radio triangulation is applied for different types of radio bursts in the same event and performed in a detailed way using goniopolarimetric observations of STEREO and WIND spacecraft. The event on the 2012 March 05 was associated with a X1.1 flare, a full halo CME and long-lasting interplanetary type II radio burst. The results of the three dimensional reconstruction of the CME (using SOHO/LASCO, STEREO COR and HI observations), and modelling with the ENLIL cone model suggest that the CME-driven shock wave arrived at 1 AU at about 12:00 UT on March 07 (as observed by SOHO/CELIAS). The results of radio triangulation show that the source of the type II radio burst was situated at the southern flank of the CME. This gives indication that the interaction of the shock wave and a nearby coronal streamer resulted in the enhanced emission of the interplanetary type II radio burst.

  7. Interpretation of gravity wave signatures in GPS radio occultations

    NASA Astrophysics Data System (ADS)

    Alexander, P.; de la Torre, A.; Llamedo, P.

    2008-08-01

    The horizontal averaging of global positioning system radio occultation retrievals produces an amplitude attenuation and phase shift in any plane gravity wave, which may lead to significant discrepancies with respect to the original values. In addition, wavelengths cannot be straightforwardly inferred due to the observational characteristics. If the waves produce small departures from spherical symmetry in the background atmosphere and under the assumption that the refractivity kernel may be represented by a delta function, an analytical expression may be derived in order to find how the retrieved amplitudes become weakened (against the original ones). In particular, we study the range of waves that may be detected and the consequent reduction in variance calculation, which is found to be around 19%. A larger discrepancy was obtained when comparing an occultation variance with the one computed from a numerical simulation of that case. Wave amplitudes can be better resolved when the fronts are nearly horizontal or when the angle between the occultation line of sight and the horizontal component of the wave vector approaches π/2. Short horizontal scale waves have a high probability of becoming attenuated or of not being detected at all. We then find geometrical relations in terms of the relative orientation between waves and sounding, so as to appropriately interpret wavelengths extracted from the acquired data. Only inertio-gravity waves, which exhibit nearly horizontal fronts, will show small differences between detected and original vertical wavelengths. Last, we analyze the retrieval effect on wave phase and find a shift between original and detected wave that generally is nonzero and approaches π/4 for the largest horizontal wavelengths.

  8. Scattering of radio frequency waves by blobs in tokamak plasmas

    SciTech Connect

    Ram, Abhay K.; Hizanidis, Kyriakos; Kominis, Yannis

    2013-05-15

    The density fluctuations and blobs present in the edge region of magnetic fusion devices can scatter radio frequency (RF) waves through refraction, reflection, diffraction, and coupling to other plasma waves. This, in turn, affects the spectrum of the RF waves and the electromagnetic power that reaches the core of the plasma. The usual geometric optics analysis of RF scattering by density blobs accounts for only refractive effects. It is valid when the amplitude of the fluctuations is small, of the order of 10%, compared to the background density. In experiments, density fluctuations with much larger amplitudes are routinely observed, so that a more general treatment of the scattering process is needed. In this paper, a full-wave model for the scattering of RF waves by a blob is developed. The full-wave approach extends the range of validity well beyond that of geometric optics; however, it is theoretically and computationally much more challenging. The theoretical procedure, although similar to that followed for the Mie solution of Maxwell's equations, is generalized to plasmas in a magnetic field. Besides diffraction and reflection, the model includes coupling to a different plasma wave than the one imposed by the external antenna structure. In the model, it is assumed that the RF waves interact with a spherical blob. The plasma inside and around the blob is cold, homogeneous, and imbedded in a uniform magnetic field. After formulating the complete analytical theory, the effect of the blob on short wavelength electron cyclotron waves and longer wavelength lower hybrid waves is studied numerically.

  9. Propagation of radio frequency waves through density filaments

    NASA Astrophysics Data System (ADS)

    Ram, Abhay K.; Hizanidis, Kyriakos

    2015-12-01

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. In this paper we develop an analytical formalism for the scattering of radio frequency waves by filaments which are cylindrical with their major axis aligned along the toroidal magnetic field lines. Since the magnitude of the ratio of the density inside the filaments to the background density is generally of order 1, the geometric optics approximation cannot be used to describe the scattering. A full-wave model is formulated which assumes that the plasma is cold and that the plasma in the cylindrical filament has uniform density. The background plasma, in which the filament is present, is also assumed to be cold and uniform. The theoretical framework applies to the scattering of any plasma wave.

  10. Scattering of radio frequency waves by blob-filaments

    SciTech Connect

    Myra, J. R.; D'Ippolito, D. A.

    2010-10-15

    Radio frequency waves used for heating and current drive in magnetic confinement experiments must traverse the scrape-off-layer (SOL) and edge plasma before reaching the core. The edge and SOL plasmas are strongly turbulent and intermittent in both space and time. As a first approximation, the SOL can be treated as a tenuous background plasma upon which denser filamentary field-aligned blobs of plasma are superimposed. The blobs are approximately stationary on the rf time scale. The scattering of plane waves in the ion-cyclotron to lower-hybrid frequency range from a cylindrical blob is treated here in the cold plasma fluid model. Scattering widths are derived for incident fast and slow waves, and the scattered power fraction is estimated. Processes such as scattering-induced mode conversion, scattering resonances, and shadowing are investigated.

  11. Propagation of Radio Frequency Waves in a Weakly Ionized Gas

    NASA Astrophysics Data System (ADS)

    Lockwood, Nathaniel P.; Bailey, Wm. F.

    2000-10-01

    Long distance communication and diagnostics of the space environment rely on an understanding of the refraction, phase alteration and attenuation of electromagnetic waves in the ionosphere and plasmasphere. The nature of wave propagation in a spatially inhomogeneous plasma was explored using a numerical implementation of the eikonal approach(L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media), (Pergamon Press 1960), pp. 269-279. . The calculation was validated by comparing numerical results with analytic solutions( K. G. Budden, Radio Waves In the Ionosphere), (Cambridge University Press, 1966), pp. 179-182. for a horizontally stratified plasma with linear and exponential variations in the density. The treatment was extended to treat arbitrary plasma distributions. Ray trajectories and attentuation are presented for typical ionospheric profiles, exhibiting non-monotonic density variations, and profiles associated with a plasma generated by injection of a relativistic electron beam. USE ONLY)

  12. Climatic variations of the ionospheric absorption of radio waves in the short-wave range

    NASA Astrophysics Data System (ADS)

    Nestorov, G.; Pancheva, D.; Danilov, A. D.

    1991-12-01

    Variations of radio-wave absorption were measured with the A3 method on a France-Bulgaria path during 1959-1986, and a systematic increase of this absorption was found. It is shown that the most probable cause of this increase is a decrease of atmospheric temperature in the mesopause region by 5 K over the time period considered.

  13. Cassini Radio and Plasma Wave Observations at Saturn

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Hospodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Ceccni, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.

    2005-01-01

    Results are presented from the Cassini radio and plasma wave instrument during the approach and first few orbits around Saturn. During the approach the intensity modulation of Saturn Kilometric Radiation (SKR) showed that the radio rotation period of Saturn has increased to 10 hr 45 min plus or minus 36 sec, about 6 min longer than measured by Voyager in 1980-81. Also, many intense impulsive radio signals called Saturn Electrostatic Discharges (SEDs) were detected from saturnian lightning, starting as far as 1.08 AU from Saturn, much farther than terrestrial lightning can be detected from Earth. Some of the SED episodes have been linked to cloud systems observed in Saturn s atmosphere by the Cassini imaging system. Within the magnetosphere plasma wave emissions have been used to construct an electron density profile through the inner region of the magnetosphere. With decreasing radial distance the electron density increases gradually to a peak of about 100 per cubic centimeter near the outer edge of the A ring, and then drops precipitously to values as low as .03 per cubic centimeter over the rings. Numerous nearly monochromatic whistler-mode emissions were observed as the spacecraft passed over the rings that are believed to be produced by meteoroid impacts on the rings. Whistlermode emissions, similar to terrestrial auroral hiss were also observed over the rings, indicating that an electrodynamic interaction, similar to auroral particle acceleration, may be occurring in or near the rings. During the Titan flybys Langmuir probe and plasma wave measurements provided observations of the density and temperature in Titan's ionosphere.

  14. Interstellar scintillation as the origin of the rapid radio variability of the quasar J1819+3845.

    PubMed

    Dennett-Thorpe, J; de Bruyn, A G

    2002-01-01

    The liberation of gravitational energy as matter falls onto a supermassive black hole at the centre of a galaxy is believed to explain the high luminosity of quasars. The variability of this emission from quasars and other types of active galactic nuclei can provide information on the size of the emitting regions and the physical process of fuelling the black hole. Some active galactic nuclei are variable at optical (and shorter) wavelengths, and display radio outbursts over years and decades. These active galactic nuclei often also show faster intraday variability at radio wavelengths. The origin of this rapid variability has been extensively debated, but a correlation between optical and radio variations in some sources suggests that both are intrinsic. This would, however, require radiation brightness temperatures that seem physically implausible, leading to the suggestion that the rapid variations are caused by scattering of the emission by the interstellar medium inside our Galaxy. Here we show that the rapid variations in the extreme case of quasar J1819+3845 (ref. 10) indeed arise from interstellar scintillation. The transverse velocity of the scattering material reveals the presence of plasma with a surprisingly high velocity close to the Solar System. PMID:11780113

  15. Digital measurements of LF radio wave absorption in the lower ionosphere and inferred gravity wave activity

    NASA Astrophysics Data System (ADS)

    Lastovicka, J.; Boska, J.; Buresova, D.

    1993-10-01

    Low frequency (LF) radio wave absorption in the lower ionosphere has been measured at Pruhonice (approximately 50 deg N) since 1957. A new digital computer-controlled measuring-recording-processing system was introduced in 1988. The A3 method of radio wave absorption measurement, the measuring equipment used for the digital measurements at 270 kHz, is briefly described. The digital nighttime LF A3 measurements allow the use of absorption data for studying and monitoring the gravity wave activity in the upper middle atmosphere in the period range 10 min-3(2) hours. The resulting gravity wave spectra are as expected even though their shapes vary. Individual period bands sometimes exhibit a similar general pattern of variability in gravity wave activity (winter 1990), while in other intervals we observe a shift of gravity wave energy from one period band to another (winter 1991). No strong, pronounced and consistent response to strong geomagnetic storms and midwinter stratospheric warming is found. An apparent seasonal variation with winter minima observed in shorter-period gravity wave activity is an artefact of the changing length of the night. There is no significant seasonal variation of gravity wave activity in the analysed data. The method is very cheap -- the results are a by-product of measurements made for ionospheric purposes.

  16. Hertz and the Discovery of Radio Waves and the Photoelectric Effect.

    ERIC Educational Resources Information Center

    Spradley, Joseph L.

    1988-01-01

    Describes the discoveries by Hertz historically, such as photoelectric effect, radio waves, their impact on modern physics and some applications. Presents several diagrams and two chronological tables. (YP)

  17. Spectral broadening and phase scintillation measurements using interplanetary spacecraft radio links during the peak of solar cycle 23

    NASA Astrophysics Data System (ADS)

    Morabito, David D.

    2009-12-01

    When an interplanetary spacecraft is in a solar superior conjunction configuration, the received radio signals are degraded by several effects that generally increase in magnitude as the angle between the spacecraft and the Sun (Sun-Earth-Probe or SEP angle) decreases as viewed by a terrestrial tracking station. During periods of quiescent solar activity, phase scintillation and spectral broadening follow well-defined trends as a function of solar impact distance (SEP angle) and link frequency. During active solar periods, the magnitudes of these effects increase above background levels predicted by the quiet period models. Several such events were observed during the solar superior conjunction of the Cassini spacecraft during the peak of solar cycle 23 in May 2000. Pronounced features in the spectral broadening data above the quiet background appear to be associated with Coronal Mass Ejections (CMEs), and last for extended periods of time ranging from ˜30 min to ˜4 h. These features are coincident with periods of increased activity seen in the region of the spacecraft signal source on coronal white light images, and tend to be related or matched with EIT flare events and possibly long-duration flare events seen in satellite X-ray data. Several such features were captured in the May 2000 Cassini solar conjunction phase scintillation and spectral broadening data at X band (8.4 GHz) and Ka band (32 GHz) radio frequencies, and are presented here. Such characterizations are beneficial in understanding the impact of such events in future interplanetary communication scenarios during solar conjunction periods.

  18. Radio Wave Propagation Handbook for Communication on and Around Mars

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser; Kliore, Arvydas

    2002-01-01

    This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.

  19. First tsunami gravity wave detection in ionospheric radio occultation data

    SciTech Connect

    Coïsson, Pierdavide; Lognonné, Philippe; Walwer, Damian; Rolland, Lucie M.

    2015-05-09

    After the 11 March 2011 earthquake and tsunami off the coast of Tohoku, the ionospheric signature of the displacements induced in the overlying atmosphere has been observed by ground stations in various regions of the Pacific Ocean. We analyze here the data of radio occultation satellites, detecting the tsunami-driven gravity wave for the first time using a fully space-based ionospheric observation system. One satellite of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) recorded an occultation in the region above the tsunami 2.5 h after the earthquake. The ionosphere was sounded from top to bottom, thus providing the vertical structure of the gravity wave excited by the tsunami propagation, observed as oscillations of the ionospheric Total Electron Content (TEC). The observed vertical wavelength was about 50 km, with maximum amplitude exceeding 1 total electron content unit when the occultation reached 200 km height. We compared the observations with synthetic data obtained by summation of the tsunami-coupled gravity normal modes of the Earth/Ocean/atmosphere system, which models the associated motion of the ionosphere plasma. These results provide experimental constraints on the attenuation of the gravity wave with altitude due to atmosphere viscosity, improving the understanding of the propagation of tsunami-driven gravity waves in the upper atmosphere. They demonstrate that the amplitude of the tsunami can be estimated to within 20% by the recorded ionospheric data.

  20. First tsunami gravity wave detection in ionospheric radio occultation data

    DOE PAGESBeta

    Coïsson, Pierdavide; Lognonné, Philippe; Walwer, Damian; Rolland, Lucie M.

    2015-05-09

    After the 11 March 2011 earthquake and tsunami off the coast of Tohoku, the ionospheric signature of the displacements induced in the overlying atmosphere has been observed by ground stations in various regions of the Pacific Ocean. We analyze here the data of radio occultation satellites, detecting the tsunami-driven gravity wave for the first time using a fully space-based ionospheric observation system. One satellite of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) recorded an occultation in the region above the tsunami 2.5 h after the earthquake. The ionosphere was sounded from top to bottom, thus providing themore » vertical structure of the gravity wave excited by the tsunami propagation, observed as oscillations of the ionospheric Total Electron Content (TEC). The observed vertical wavelength was about 50 km, with maximum amplitude exceeding 1 total electron content unit when the occultation reached 200 km height. We compared the observations with synthetic data obtained by summation of the tsunami-coupled gravity normal modes of the Earth/Ocean/atmosphere system, which models the associated motion of the ionosphere plasma. These results provide experimental constraints on the attenuation of the gravity wave with altitude due to atmosphere viscosity, improving the understanding of the propagation of tsunami-driven gravity waves in the upper atmosphere. They demonstrate that the amplitude of the tsunami can be estimated to within 20% by the recorded ionospheric data.« less

  1. Optical detection of radio waves through a nanomechanical transducer.

    PubMed

    Bagci, T; Simonsen, A; Schmid, S; Villanueva, L G; Zeuthen, E; Appel, J; Taylor, J M; Sørensen, A; Usami, K; Schliesser, A; Polzik, E S

    2014-03-01

    Low-loss transmission and sensitive recovery of weak radio-frequency and microwave signals is a ubiquitous challenge, crucial in radio astronomy, medical imaging, navigation, and classical and quantum communication. Efficient up-conversion of radio-frequency signals to an optical carrier would enable their transmission through optical fibres instead of through copper wires, drastically reducing losses, and would give access to the set of established quantum optical techniques that are routinely used in quantum-limited signal detection. Research in cavity optomechanics has shown that nanomechanical oscillators can couple strongly to either microwave or optical fields. Here we demonstrate a room-temperature optoelectromechanical transducer with both these functionalities, following a recent proposal using a high-quality nanomembrane. A voltage bias of less than 10 V is sufficient to induce strong coupling between the voltage fluctuations in a radio-frequency resonance circuit and the membrane's displacement, which is simultaneously coupled to light reflected off its surface. The radio-frequency signals are detected as an optical phase shift with quantum-limited sensitivity. The corresponding half-wave voltage is in the microvolt range, orders of magnitude less than that of standard optical modulators. The noise of the transducer--beyond the measured 800 pV Hz-1/2 Johnson noise of the resonant circuit--consists of the quantum noise of light and thermal fluctuations of the membrane, dominating the noise floor in potential applications in radio astronomy and nuclear magnetic imaging. Each of these contributions is inferred to be 60 pV Hz-1/2 when balanced by choosing an electromechanical cooperativity of ~150 with an optical power of 1 mW. The noise temperature of the membrane is divided by the cooperativity. For the highest observed cooperativity of 6,800, this leads to a projected noise temperature of 40 mK and a sensitivity limit of 5 pV Hz-1/2. Our approach to all-optical, ultralow-noise detection of classical electronic signals sets the stage for coherent up-conversion of low-frequency quantum signals to the optical domain. PMID:24598636

  2. Solar and geomagnetic activity control on equatorial VHF Scintillations in the Indian region

    NASA Astrophysics Data System (ADS)

    Banola, S.; Maurya, R. N.; Prasad, D. S. V.; Rama Rao, P. S. V.

    The ionospheric plasma density irregularities are responsible for scintillation of trans-equatorial radio signals. VHF radio wave Scintillation technique is extensively used to study plasma density irregularities of sub-km size. A ground network of 14 stations were operated by Indian Institute of Geomagnetism (and one station at Waltair) under All India coordinated Programme of Ionospheric and Thermospheric Studies (AICPITS), monitoring amplitude scintillations of 244/250 MHz signal from FLEETSAT (73° E) in India for more than a solar cycle. Effect of solar and geomagnetic activity on scintillation is studied in detail. Using long series of simultaneous amplitude scintillation data at different stations for the period 1989-2000, solar cycle association of scintillation is studied. Boundary of the equatorial belt of scintillation is determined using the entire network data. Geomagnetic control on the width of the scintillation belt is studied from the latitudinal variations of scintillation occurrence separately for geomagnetic quiet and disturbed days and also for the groups of days with low, medium and high Kp values. Kp and Ap indices, characterizing the geomagnetic activity which are shown extensively related to the dynamic properties of the plasma from the sun, are examined for their association with the scintillations. It is noticed that with increase in geomagnetic activity at low and equatorial regions scintillation occurrence is inhibited. Scintillation activity under different magnetic storm conditions is studied using Dst index and classification of the various geomagnetic storms into 3 types of Aaron's criteria (Radio Science,1991), satisfying in about 70 % of cases.

  3. Rapid Radio Followups of LIGO Gravitational Wave Events

    NASA Astrophysics Data System (ADS)

    Jenet, Rick; Stevens, Jamie; Wieringa, Mark; Creighton, Teviet

    2010-10-01

    We propose real time follow-up observations with the ATCA to search for radio counterparts to candidate gravitational-wave events detected by the LIGO and Virgo detectors. Electromagnetic and gravitational radiation provide complementary views of the Universe: the former being generated by the microphysical processes of charged particles, the latter by coherent bulk motion of masses. A complete picture of the most violent events in nature, such as supernovae and mergers of stellar remnants, will require both types of observation: Gravitational waves (GWs) to uncover the mechanics of the underlying (gravitational) energy source, and electromagnetic waves to reveal how that energy is then dissipated in matter. The search for GWs is entering an exciting phase with kilometer-scale interferometric detectors LIGO and Virgo achieving sensitivities for which detection of GWs is plausible. Since the sensitivity of these instruments improves incrementally, it is likely that the first verifiable detections of GWs will have signal-to-noise ratios that are just barely statistically significant. Observations in the electromagnetic spectrum will help confirm the first GW detections.

  4. Waves in the Martian Atmosphere: Results from MGS Radio Occultations

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Hinson, D. P.; Tyler, G. L.

    1999-01-01

    Temperatures retrieved from Mars Global Surveyor radio occultations have been searched for evidence of waves. Emphasis has been on the initial series of occultations between 29 deg N and 64 deg S, obtained during the early martian southern summer, L(sub s) = 264 deg - 308 deg. The profiles exhibit an undulatory behavior that is suggestive of vertically propagating waves. wavelengths approximately 10 km are often dominant, but structure on smaller scales is evident. The undulatory structure is most pronounced between latitudes 29 deg N and 10 deg S, usually in regions of "interesting" topography, e.g., in the Tharsis region and near the edge of Syrtis Major. Several temperature profiles, particularly within 30 deg of the equator, exhibit lapse rates that locally become superadiabatic near the 0.4-mbar level or at higher altitudes. This implies that the waves are "breaking" and depositing horizontal momentum into the atmosphere. Such a deposition may play an important role in modulating the atmospheric winds, and characterizing the spatial and temporal distribution of these momentum transfers can provide important clues to understanding how the global circulation is maintained.

  5. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  6. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate

  7. Grating formation by a high power radio wave in near-equator ionosphere

    SciTech Connect

    Singh, Rohtash; Sharma, A. K.; Tripathi, V. K.

    2011-11-15

    The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Such a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.

  8. Radio Wave Scattering in the Outer Heliosphere: Preliminary Calculations

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    Detailed first estimates are presented of angular broadening in the outer heliosphere due to scattering of radio waves by density irregularities. The application is to the 2-3 kHz radiation observed by Voyager. Two plausible turbulence models, which account very well for scattering within 1 AU, are extrapolated beyond 10 AU. Both models predict significant angular broadening in the outer heliosphere, accounting semi- quantitatively alone for the source sizes inferred from roll modulation data. Predictions are presented for radial variations in the apparent source size if scattering is important. Comparisons with available data argue that scattering is important (and indeed is the dominant contributor to the apparent source size) and that the radiation source is located in the outer heliosphere. Other evidence that scattering is important, such as the fluctuations in apparent source direction and intensity, are also identified. The effects of scattering should be included in future analyses of the 2-3 kHz emissions.

  9. Measurements of turbulence in the venus atmosphere deduced from pioneer venus multiprobe radio scintillations.

    PubMed

    Woo, R; Armstrong, J W; Kendall, W B

    1979-07-01

    The 2.3-gigahertz log-amplitude fluctuations observed in the radio links of the Pioneer Venus entry probes during Venus encounter have been used to study turbulence in the Venus atmosphere. The deduced estimates of the upper bound of structure constant c(n) of the refractive index fluctuations (c(n) less, similar 4 x 10(-8) cm(-(1/3))) are inconsistent with similar entry probe measurements by Veneras 4 to 8 but are consistent with the radio occultation measurements by flyby (Mariners 5 and 10) and orbiting (Venerat 9) spacecraft. The Pioneer Venus measurements therefore provide a resolution of the long-standing order of magnitude discrepancy between these earlier measurements of c(n). PMID:17778912

  10. Upper limits on gravitational wave emission from 78 radio pulsars

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Ganezer, K. S.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Nocera, F.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; de La Jordana, L. Sancho; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Sazonov, A.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van Putten, M.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.; Kramer, M.; Lyne, A. G.

    2007-08-01

    We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO 600 gravitational wave detectors. The data from both runs have been combined coherently to maximize sensitivity. For the first time, pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits. Our upper limits are therefore the first measured for 56 of these pulsars. For the remaining 22, our results improve on previous upper limits by up to a factor of 10. For example, our tightest upper limit on the gravitational strain is 2.6×10-25 for PSR J1603-7202, and the equatorial ellipticity of PSR J2124 3358 is less than 10-6. Furthermore, our strain upper limit for the Crab pulsar is only 2.2 times greater than the fiducial spin-down limit.

  11. Upper limits on gravitational wave emission from 78 radio pulsars

    SciTech Connect

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Anderson, S. B.; Araya, M.; Armandula, H.; Ballmer, S.; Barish, B. C.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bork, R.; Boschi, V.; Busby, D.; Cardenas, L.; Cepeda, C.; Chatterji, S.; Coyne, D.

    2007-08-15

    We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO 600 gravitational wave detectors. The data from both runs have been combined coherently to maximize sensitivity. For the first time, pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits. Our upper limits are therefore the first measured for 56 of these pulsars. For the remaining 22, our results improve on previous upper limits by up to a factor of 10. For example, our tightest upper limit on the gravitational strain is 2.6x10{sup -25} for PSR J1603-7202, and the equatorial ellipticity of PSR J2124-3358 is less than 10{sup -6}. Furthermore, our strain upper limit for the Crab pulsar is only 2.2 times greater than the fiducial spin-down limit.

  12. Nonextensivity effect on radio-wave transmission in plasma sheath

    NASA Astrophysics Data System (ADS)

    Mousavi, A.; Esfandiari-Kalejahi, A.; Akbari-Moghanjoughi, M.

    2016-04-01

    In this paper, new theoretical findings on the application of magnetic field in effective transmission of electromagnetic (EM) waves through a plasma sheath around a hypersonic vehicle are reported. The results are obtained by assuming the plasma sheath to consist of nonextensive electrons and thermal ions. The expressions for the electric field and effective collision frequency are derived analytically in the framework of nonextensive statistics. Examination of the reflection, transmission, and absorption coefficients regarding the strength of the ambient magnetic field shows the significance of q-nonextensive parameter effect on these entities. For small values of the magnetic field, the transmission coefficient increases to unity only in the range of - 1 < q < 1 . It is also found that the EM wave transmission through the nonextensive plasma sheath can take place using lower magnetic field strengths in the presence of superthermal electrons compared with that of Maxwellian ones. It is observed that superthermal electrons, with nonextensive parameter, q < 1, play a dominant role in overcoming the radio blackout for hypersonic flights.

  13. Kinetic Analysis of Radio Frequency Wave Induced Momentum Transport

    NASA Astrophysics Data System (ADS)

    Berry, L. A.; Jaeger, E. F.; Batchelor, D. B.

    1998-11-01

    The use of radio frequency (RF) waves to drive the sheared plasma flows needed for enhanced confinement has been examined by several authors. Some of the more promising approaches are based on FLR modes such as IBW. However, these analyses use the Reynolds-stress approximation for the RF pressure and, as was needed for energy, we might expect that a kinetic model for momentum transport is needed. To address this issue, we have derived the 2^nd order distribution function and its velocity moments for a homogeneous plasma that is valid for all k_??. Our derivation parallels that of Vaclavik(J. Vaclavik and K. Appert,Plasma Phys. Contr. Fusion) 29, 257 (1986). with the objective of obtaining the distribution function rather than just the energy moment. The evaluation of velocity moments is complicated by a portion of the distribution function that is proportional to time that contains information regarding rates of change. The result is an RF pressure that also depends on time. Our approach is to neglect the time-dependent component as representing the plasma response to the RF, rather than the RF interaction itself.(T. H. Stix, Waves in Plasmas) (AIP, New York, 1992), pp. 451, 455.

  14. Wave propagation simulation of radio occultations based on ECMWF refractivity profiles

    NASA Astrophysics Data System (ADS)

    Benzon, Hans-Henrik; Høeg, Per

    2015-08-01

    This paper describes a complete radio occultation simulation environment, including realistic refractivity profiles, wave propagation modeling, instrument modeling, and bending angle retrieval. The wave propagator is used to simulate radio occultation measurements. The radio waves are propagated through a refractivity field which has been calculated with the use of numerical weather prediction models. The numerical weather prediction model used in this paper is a model from the European Centre for Medium-Range Weather Forecasts (ECMWF). The wave propagator has been used to simulate a number of radio occultations. The output from the wave propagator simulator is used as input to a Full Spectrum Inversion retrieval module which calculates geophysical parameters. These parameters can be compared to the ECMWF atmospheric profiles. The comparison can be used to reveal system errors and get a better understanding of the physics. The wave propagation simulations will in this paper also be compared to real measurements. These radio occultations have been exposed to the same atmospheric conditions as the radio occultations simulated by the wave propagator. This comparison reveals that precise radio occultations can be simulated when the simulations are based on wave propagation and refractivity field inputs from a numerical weather prediction model.

  15. Worst-Case GPS Scintillations on the Ground Estimated from Radio Occultation Observations of FORMOSAT-3/COSMIC During 2007-2014

    NASA Astrophysics Data System (ADS)

    Liu, J. Y.; Chen, S. P.; Yeh, W. H.; Tsai, H. F.; Rajesh, P. K.

    2016-01-01

    The FORMOSAT-3/COSMIC (F3/C) satellite probes the S4 scintillation index profile of GPS signals by using the radio occultation (RO) technique. In this study, for practical use on the Earth's surface, a method is developed to convert and integrate the probed RO S4 index, so obtaining the scintillation on the ground. To estimate the worst case, the maximum value on each profile probed by F3/C, which is termed S4max, is isolated. The isolated data are further used to construct the global three-dimensional distributions of S4max for various local times, seasons, solar activities, and locations. The converted S4max for the first time estimates the global distribution of ionospheric scintillations in the GPS L1 band C/A code signal on the ground. The results show that the worst-case scintillations appear within the low-latitude region of ±30°N, peaking around ±20°N magnetic latitude; they begin at 1900 MLT, reach their maximum at 2100 MLT, and vanish by about 0200-0300 MLT. The most pronounced low-latitude scintillation occurs over the South American and African sectors.

  16. Low Frequency Radio-wave System for subsurface investigation

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Gennarelli, Gianluca; Kudelya, Anatoliy; Denisov, Alexander

    2015-04-01

    Low frequency radio-wave methods (RWM) allow subsurface investigations in terms of lithological structure characterization, detection of filtration flows of ground water, anthropogenic and natural cavities. In this contribution, we present a RWM that exploits two coils working at frequencies of few MHz as transmitting and receiving antennas. The basic principle of this inductive method is as follows. The primary alternating electromagnetic field radiated by the transmitting coil induces eddy currents in the subsurface mainly due to the conductivity anomalies. These eddy currents generate a secondary (scattered) magnetic field which overlaps to the incident magnetic field and is detected by the receiving coil. Despite the simple operation of the system, the complexity of the electromagnetic scattering phenomenon at hand must be properly modeled to achieve adequate performance. Therefore, an advanced data processing technique, belonging to the class of the inverse scattering approaches, has been developed by the authors in a full 3D geometry. The proposed method allows to deal with data collected on a scanning surface under a dipole inductive profiling (DIP) modality, where the transmitting/receiving coils are moved simultaneously with fixed offset (multi-bistatic configuration). The hardware, called Dipole Inductive Radio-wave System (DIRS), is composed by an electronic unit and transmitting and receiving loop antennas radiating at frequencies of few MHz (2-4 MHz), which are installed on theodolite supports. The compactness of DIRS and its robustness to external electromagnetic interference offers the possibility to perform geophysical research up to the depth of some tens of meters and under several types of ground and water surfaces, vegetation, and weather conditions. The light weight and small size of system (the single antenna with support weights about 5 kg and has a diameter of 0.5m) allows two operators to perform geophysical research without disturbing the surface integrity of investigated ground massif. The value of base and the value of voltage induced on the digital voltmeter of the receiver are stored in memory on a SD-card for a subsequent visualization and processing. Realistic cases of application of the DIRS system enhanced by the inverse scattering approach will be presented at the conference with regard to the geological characterization of a mine shaft and an archaeological site.

  17. Multipath propagation of low-frequency radio waves inferred from high-resolution array analysis

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Smith, Nathan; Mezentsev, Andrew; Watson, Robert; Astin, Ivan; Gaffet, Stéphane; Evans, Adrian; Rycroft, Michael

    2015-11-01

    The low-frequency radio sky shows the locations of electromagnetic radio sources with a characteristic dilution of precision. Here we report a thorough high-resolution analysis of radio waves from low-frequency (˜20-150 kHz) radio communication transmitters which are recorded with a small aperture array of radio receivers during the day. It is found that the observed dilution of precision results from the array geometry of the radio receivers, a birefringent wave propagation, and the correlated multipath propagation of low-frequency radio waves. The influence of the array geometry on the dilution of precision is reduced by taking into account the impulse response of the array. This procedure reveals for the very first time the splitting of one single radio source into two distinct source locations separated by ˜0.2°-1.9° which result from a birefringent wave propagation. The two locations are yet more clearly identified by using the polarity of the modulated wave number vectors of the radio waves. This polarity is also used to quantify the dilution of precision arising from correlated multipath propagation which is discriminated against wave number fluctuations arising from the timing accuracy of the radio receivers. It is found that ˜69% of the wave number variability is of natural origin and ˜31% originates from the timing accuracy of the receivers. The wave number variability from correlated multipath propagation results in a standard deviation ˜2-8% relative to the source location. This compact measurement of correlated multipath propagation is used to characterize the uncertainty of source locations in the radio sky. The identification of correlated multipath propagation strongly suggests the existence of very fast processes acting on time scales <1 ms in the D region ionosphere with physically meaningful effects on low-frequency radio wave propagation. This important result has implications for practical applications in that the observed multipath propagation enables the determination of natural limits for the accuracy of navigation and lightning location methods using low-frequency radio waves.

  18. Radio wave remote sensing by Cluster and Regatta

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1990-01-01

    A coordinated Cluster/Regatta mission provides unique opportunities for remote sensing studies of terrestrial radio emissions. The scientific questions that can be addressed by remote radio measurements from Cluster and Regatta are described and the technical issues involved are discussed. The radio emission of primary interest is Auroral Kilometric Radiation (AKR) which is a powerful radio emission generated over the Earth's auroral zones at frequencies from 100 to 500 kHz.

  19. Relations among low ionosphere parameters and A3 radio wave absorption

    NASA Technical Reports Server (NTRS)

    Cipriano, J. P.; Hale, L. C.; Mitchell, J. D.

    1974-01-01

    Charged particle conductivities measured in the very low ionosphere are compared with atmospheric parameters and high-frequency radio wave absorption measurements. Between 33 and 58 km, positive conductivity is well correlated with neutral atmospheric temperature. Good correlations are found also between high-frequency radio wave absorption and negative conductivity at altitudes as low as 53 km, this fact suggesting that day-to-day variations in absorption may be principally due to variations in electron loss rate. These correlations do not apply to some days of very low or very high radio wave absorption, for which the effects of transport on nitric oxide appear to be important.

  20. Characteristics of coronal shock waves and solar type 2 radio bursts

    NASA Technical Reports Server (NTRS)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  1. Put a Short-Wave Radio in Your Foreign Language Classroom

    ERIC Educational Resources Information Center

    Oksenholt, Svein

    1977-01-01

    Advantages of the short-wave radio as a supplement to foreign language instruction as well as practical hints on wavelength, antenna, and techniques for use are provided. Selective annotated bibliography. (STS)

  2. Jupiter: As a planet. [its physical characteristics and radio waves emitted from Jupiter

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The planet Jupiter, its planetary mass and atmosphere, radio waves emitted from Jupiter, thermal radiation, internal structure of Jupiter, and the possibility of life on Jupiter are discussed. Educational study projects are included.

  3. New theoretical aspects of potential radio wave emission from Jupiter like exoplanets

    NASA Astrophysics Data System (ADS)

    Weber, Christof; Rucker, Helmut; Vocks, Christian

    2015-04-01

    The UTR-2 (Ukrainian T-shaped Radio Telescope 2nd generation), LOFAR (Low Frequency Array) or the upgrade of LOFAR in Nancay (the NENUFAR project) are promising facilities with sensitivities sufficiently low to be able to detect radio emission from exoplanets, especially from so-called Hot Jupiters. These are Jovian like planets very close to their host star (about 0.045 AU) and their radio emission is expected to be up to 10E5 times higher than the emission from Jupiter in our solar system. Also recent investigations of the possibility of moons around a Jovian exoplanet (an analog of the Io-Jupiter system) are promising candidates amongst the exoplanets for a future detection of exoplanetary radio emission. As is well known Io triggers radio emission up to 40 MHz in the Jovian case, a frequency which lies well above the ionospheric cutoff of 10 MHz and thus can be measured with ground-based facilities on Earth. We present simulation results for wave growth rates at Jupiter-like exoplanets orbiting at distances smaller than 0.1 AU from their parent star. Under sophisticated assumptions for the plasma environment at these exoplanets we find that the cyclotron maser instability (CMI), the process which is very likely responsible for the generation of radio waves in our solar system, produces radio waves which can propagate away from the planet. Furthermore we check the influence of a magnetodisc at Hot Jupiters on the possible power of the emitted radio waves.

  4. Radio wave turbulent 'absorption' due to electron beam injections in the ionosphere

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.; Atamaniuk, B.

    1995-02-01

    Considered is the collisionless damping of high-frequency radio waves in the ionospheric plasma perturbed by electron beams. Special attention is paid to the attenuation of telemetric signals, observed in the ARAKS active rocket experiment with intense electron beam injections, and to the 'spike' ionospheric absorption events. It is shown that these phenomena may be explained in terms of the nonlinear scattering of radio waves by plasma turbulence driven by electron beams and accompanied field-aligned currents.

  5. The CERTO and CITRIS Instruments for Radio Scintillation and Electron Density Tomography from the C/NOFS, COSMIC, NPSAT1 and STPSAT1 Satellites

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.

    2004-05-01

    A new constellation of radio beacon and radio beacon receivers will be providing global measurements of radio scintillations and total electron content (TEC) for near real time measurements of the ionosphere. This constellation is comprised of the NRL Coherent Electromagnetic Radio Tomography (CERTO) beacons on the Communications/Navigation Forecast Outage System (C/NOFS) satellite, the six Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) satellites, and the Naval Postgraduate (NPSAT1) Satellite. These satellites will be launched in the time period of 2004 through 2006. The CERTO beacons operating at 150.012, 400.032, and 1066.752 MHz will be transmitting to ground receivers located in chains to acquire TEC data for computerized ionospheric tomography (CIT). In addition, in early 2006 a five frequency receiver will be placed in low earth orbit with the United States Air Force Space Test Program (STPSAT1) satellite. This CITRIS receiver will use radio beacon transmissions from the French DORIS network of ground beacons at 401.25 and 2036.25 MHz and space-based beacons at 150, 400 and 1067 MHz to measure the earth's ionosphere. On board tracking software will lock onto Doppler shifted frequencies to determine total electron content (TEC) and scintillation parameters. The STPSAT1 will be launched along with a companion satellite (NPSAT1) which carries the CERTO radio beacon and a Langmuir probe. All of the CERTO beacons as well as the ionospheric sensors on STPSAT1 and NPSAT1 are being constructed at the Naval Research Laboratory. The data obtained using the CITRIS instrument will provide a global description of the ionosphere from orbits with inclinations ranging from 15 degrees to 70 degrees and altitudes from 375 to 800 km. The tandem operations of the CITRIS and CERTO instruments will provide the fully low-earth-orbit based occultation measurements of the ionosphere. All of the data will be available for rapid assimilation ionospheric, space-weather models.

  6. Anomalous absorption of powerful radio waves on the striations developed during ionospheric modification

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Lukyanov, A. V.; Zybin, K. P.

    1996-02-01

    A nonlinear theory of anomalous absorption of powerful radio waves on small scale irregularities in the ionosphere is constructed. Peculiarities of the absorption near the third electron gyrofrequency are investigated and discussed. The theory is shown to be in agreement with observations. The existence of a maximum in the probe wave absorption is predicted. Its dependence on the shift between the probe wave frequency and the pump wave frequency is determined.

  7. Interplanetary energetic ions and polar radio wave absorption

    SciTech Connect

    Armstrong, T.P.; Laird, C.M. ); Venkatesan, D. ); Krishnaswamy, S.; Rosenberg, T.J. )

    1989-04-01

    This is a study of the ionization input of interplanetary (including solar flare) energetic protons and alpha particles into the south polar ionosphere over the interval 1982-1985. It is well known that interplanetary ions have full and prompt access to the polar ionosphere. The incremental ionization produced at 20-120 km. altitudes causes enhanced radio wave absorption which is observed by riometers operated by the University of Maryland, at South Pole, Antarctica. The authors compute the expected absorption from the vertical structure of the ionization deposited by these energetic particles and compare the computed values with the observations. The contribution of the alpha particles is found to be quite small as a percentage of the absorption except at the peak of the day 35, 1983, event, when their contribution to the absorption is about 0.6 dB out of a total of 3.4 dB. The dominant contribution to absorption at 30 MHz usually arises from protons below 10 MeV, specifically in the 2- to 4-MeV interval. They have propagated the observed fluxes and energy spectra of protons and alpha particles through a seasonally adjusted slab model of the polar atmosphere. The atmospheric ionization resulting from the slowing and stopping of protons and alpha particles is used to estimate an equilibrium vertical ionization profile which is then convolved with an absorption efficiency profile to yield a calculated absorption. There is good agreement between the computed and observed absorption when the daily averaged absorption is above 0.1 dB; this shows that the interplanetary ions are the dominant contributors on those days.

  8. Wave Normal and Poynting Vector Calculations using the Cassini Radio and Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Hospodarsky, G. B.; Averkamp, T. F.; Kurth, W. S.; Gurnett, D. A.; Dougherty, M.; Inan, Umran; Wood, Troy

    2001-01-01

    Wave normal and Poynting vector measurements from the Cassini radio and plasma wave instrument (RPWS) are used to examine the propagation characteristics of various plasma waves during the Earth flyby on August 18, 1999. Using the five-channel waveform receiver (WFR), the wave normal vector is determined using the Means method for a lightning-induced whistler, equatorial chorus, and a series of low-frequency emissions observed while Cassini was in the magnetosheath. The Poynting vector for these emissions is also calculated from the five components measured by the WFR. The propagation characteristics of the lightning-induced whistler were found to be consistent with the whistler wave mode of propagation, with propagation antiparallel to the magnetic field (southward) at Cassini. The sferic associated with this whistler was observed by both Cassini and the Stanford VLF group at the Palmer Station in Antarctica. Analysis of the arrival direction of the sferic at the Palmer Station suggests that the lightning stroke is in the same sector as Cassini. Chorus was observed very close (within a few degrees) to the magnetic equator during the flyby. The chorus was found to propagate primarily away from the magnetic equator and was observed to change direction as Cassini crossed the magnetic equator. This suggests that the source region of the chorus is very near the magnetic equator. The low-frequency emission in the magnetosheath has many of the characteristics of lion roars. The average value of the angle between the wave normal vector and the local magnetic field was found to be 16 degrees, and the emissions ranged in frequency from 0. 19 to 0.75 f(sub ce), where f(sub ce) is the electron cyclotron frequency. The wave normal vectors of these waves were primarily in one direction for each individual burst (either parallel or antiparallel to the local field) but varied in direction throughout the magnetosheath. This suggests that the sources of the emissions are far from the spacecraft and that there are multiple source regions.

  9. SCINTILLATION SPECTROMETER

    DOEpatents

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  10. Sensory illusions: Common mistakes in physics regarding sound, light and radio waves

    NASA Astrophysics Data System (ADS)

    Briles, T. M.; Tabor-Morris, A. E.

    2013-03-01

    Optical illusions are well known as effects that we see that are not representative of reality. Sensory illusions are similar but can involve other senses than sight, such as hearing or touch. One mistake commonly noted among instructors is that students often mis-identify radio signals as sound waves and not as part of the electromagnetic spectrum. A survey of physics students from multiple high schools highlights the frequency of this common misconception, as well as other nuances on this misunderstanding. Many students appear to conclude that, since they experience radio broadcasts as sound, then sound waves are the actual transmission of radio signals and not, as is actually true, a representation of those waves as produced by the translator box, the radio. Steps to help students identify and correct sensory illusion misconceptions are discussed. School of Education

  11. Ulysses observations of wave activity at interplanetary shocks and implications for type II radio bursts

    SciTech Connect

    Lengyel-Frey, D.; Thejappa, G.; MacDowall, R.J.; Stone, R.G.; Phillips, J.L.

    1997-02-01

    We present the first quantitative investigation of interplanetary type II radio emission in which in situ waves measured at interplanetary shocks are used to compute radio wave intensities for comparison with type II observations. This study is based on in situ measurements of 42 in-ecliptic forward shocks as well as 10 intervals of type II emission observed by the Ulysses spacecraft between 1 AU and 5 AU. The analysis involves comparisons of statistical properties of type II bursts and in situ waves. Most of the 42 shocks are associated with the occurrence of electrostatic waves near the time of shock passage at Ulysses. These waves, which are identified as electron plasma waves and ion acoustic-like waves, are typically most intense several minutes before shock passage. This suggests that wave-wave interactions might be of importance in electromagnetic wave generation and that type II source regions are located immediately upstream of the shocks. We use the in situ wave measurements to compute type II brightness temperatures, assuming that emission at the fundamental of the electron plasma frequency is generated by the merging of electron plasma waves and ion acoustic waves or the decay of electron plasma waves into ion acoustic and transverse waves. Second harmonic emission is assumed to be produced by the merging of electron plasma waves. The latter mechanism requires that a portion of the electron plasma wave distribution is backscattered, presumably by density inhomogeneities in regions of observed ion acoustic wave activity. The computed type II brightness temperatures are found to be consistent with observed values for both fundamental and second harmonic emission, assuming that strong ({approx_equal}10{sup {minus}4}V/m) electron plasma waves and ion acoustic waves are coincident and that the electron plasma waves have phase velocities less than about 10 times the electron thermal velocity. (Abstract Truncated)

  12. Wave propagation and earth satellite radio emission studies

    NASA Technical Reports Server (NTRS)

    Yeh, K. C.; Liu, C. H.; Flaherty, B. J.

    1974-01-01

    Radio propagation studies of the ionosphere using satellite radio beacons are described. The ionosphere is known as a dispersive, inhomogeneous, irregular and sometimes even nonlinear medium. After traversing through the ionosphere the radio signal bears signatures of these characteristics. A study of these signatures will be helpful in two areas: (1) It will assist in learning the behavior of the medium, in this case the ionosphere. (2) It will provide information of the kind of signal characteristics and statistics to be expected for communication and navigational satellite systems that use the similar geometry.

  13. Approach warning system for snowplow using aerial-high-power ultrasonic wave with radio wave

    NASA Astrophysics Data System (ADS)

    Manabu, Aoyagi; Yuta, Amagi; Hiroaki, Miura; Okeya, Ryota; Hideki, Tamura; Takehiro, Takano

    2012-05-01

    An approach warning system for a snowplow and guide was developed by using aerial-high-power ultrasonic transducer. To be robust against some serious factors in winter, ultrasonic signal and radio one were combined on the system, and the flat face side of stepped circular vibrating plate was utilized as a radiation plate. The ultrasonic wave radiated from the flat face side still had a better directivity, and the flat face had advantage to prevent bad influences from water, snow or ice. From experiment results, when double transducers were set on both sides of roof of snowplow, this system was able to be measure distance between a guide and snowplow in whole of controlled area.

  14. Cassini radio and plasma wave investigation - Data compression and scientific applications

    NASA Technical Reports Server (NTRS)

    Woolliscroft, L. J. C.; Farrell, W. M.; Alleyne, H. St. C.; Gurnett, D. A.; Kirchner, D. L.; Kurth, W. S.; Thompson, J. A.

    1993-01-01

    The Radio and Plasma Wave Science (RPWS) experiment being built for the Cassini spacecraft will study a wide range of plasma and radio wave phenomena in the magnetosphere of Saturn and will also make valuable measurements during the cruise phase and at other encounters. A feature of data from wave receivers is the capability of producing vastly more data than the spacecraft telemetry link is capable of transmitting back to the Earth. Thus, techniques of on-board data compression and data reduction are important. The RPWS instrument has one processor dedicated to data compression tasks.

  15. Cassini radio and plasma wave investigation: Data compression and scientific applications

    NASA Technical Reports Server (NTRS)

    Woolliscroft, L. J. C.; Farrell, W. M.; Alleyne, H. St. C.; Gurnett, D. A.; Kirchner, D. L.; Kurth, W. S.; Thompson, J. A.

    1993-01-01

    The Radio and Plasma Wave Science (RPWS) experiment being built for the Cassini spacecraft will study a wide range of plasma and radio wave phenomena in the magnetosphere of Saturn and will also make valuable measurements during the cruise phase and at other encounters. A feature of data from wave receivers is the capability of producing vastly more data than the spacecraft telemetry link is capable of transmitting back to the Earth. Thus, techniques of on-board data compression and data reduction are important. The RPWS instrument has one processor dedicated to data compression tasks.

  16. Density waves in Saturn's rings probed by radio and optical occultation - Observational tests of theory

    NASA Technical Reports Server (NTRS)

    Brophy, Thomas G.; Rosen, Paul A.

    1992-01-01

    A parallel examination is conducted of Voyager radio and photopolarimeter occultation observations of the Saturn A ring's density waves. The radio instrument waves exhibit an average -90 deg offset from the dynamical phase. A warping height of about 100-m amplitude can qualtitatively reproduce this phase shift, while preserving the overall model wave shape. These results may be profoundly relevant for satellite-ring torque calculations in Saturn's rings, given the deposition of all of the net torque of the standard model in the first wavelength.

  17. Broadband Ionospheric Scintillation Measurements from Space

    NASA Astrophysics Data System (ADS)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2014-12-01

    The U.S. Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 825 - 1100 MHz. In this paper, we present an overview of the RFProp on-orbit research and analysis effort with particular focus on an equatorial scintillation experiment called ESCINT. The 3-year ESCINT project is designed to characterize equatorial ionospheric scintillation in the upper HF and lower VHF portions of the radio spectrum (20 - 150 MHz). Both a 40 MHz continuous wave (CW) signal and 30 - 42 MHz swept frequency signal are transmitted to the satellite receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in four separate campaigns centered on the 2014 and 2015 equinoxes. Results from the first campaign conducted from April 22 - May 15, 2014 will be presented including (a) coherence bandwidth measurements over a full range of transmission frequencies and scintillation activity levels, (b) spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities, and (c) supporting ray-trace simulations. The broadband nature of the measurements is found to offer unique insight into both the structure of ionospheric irregularities and their impact on HF/VHF trans-ionospheric radio wave propagation.

  18. Centimeter-wave Research with the Morehead State University 21 M Radio Telescope: Involving Undergraduate Students in Radio Astronomy Research

    NASA Astrophysics Data System (ADS)

    Malphrus, Benjamin K.; Pannuti, T. G.; Atwood, J. W.; Ennis, M. E.

    2007-12-01

    The Space Science Center at Morehead State University has developed a medium aperture cm-wave radio telescope, the 21 M Space Tracking Antenna and Radio Telescope. Located in the radio-frequency quiet, mountainous region of eastern Kentucky, the telescope serves as an Earth Station for satellite mission support and provides telemetry, tracking, and control services with an emphasis on university cubesat missions. In addition, the telescope is engaged in research programs in radio astronomy and features receivers operating in the Ku-band (11.2 to 12.7 GHz, including a well-known methanol line) and the L-band (1.4 to 1.7 GHz, including lines of atomic hydrogen and molecular hydroxyl). At these bands, the telescope is capable of supporting a wide variety of niche astronomical research programs, including longitudinal studies (e.g., active galactic nuclei (AGN) monitoring), observations of transient phenomena (e.g., gamma-ray bursts and supernovae), and surveys (e.g., kinematic studies of Galactic HI). A description of the space tracking antenna system and radio telescope, its capabilities and research projects planned for or currently underway with the telescope (namely monitoring AGNs and surveying the Galactic supernova remnant population) will be presented and discussed. Funding for the 21m telescope has been provided by NASA, the SBA, the Kentucky Science and Engineering Foundation and Kentucky NSF EPSCoR.

  19. Simultaneous observations of periodic non-Io decametric radio emission by ground radio telescope URAN-2 and STEREO/WAVES

    NASA Astrophysics Data System (ADS)

    Panchenko, M.; Brazhenko, A. I.; Rucker, H. O.; Frantzusenko, A.; Shaposhnikov, V. E.; Konovalenko, A. A.

    2013-09-01

    Periodic bursts of the non-Io component of Jovian decametric radio emission (non-Io DAM) is observed as (1) series of arc-like radio bursts with negative frequency drift which reoccur with 1.5% longer period than the Jovian magnetosphere rotation rate, (2) series of bursts with positive frequency drift which reoccur with Jupiter's rotation period and (3) periodic non-arc like radio features [1, 2]. These bursts are typically detected during several Jupiter rotations in decametric frequency range from 4 MHz to 12 - 16 MHz between 300° and 60° of CML. We present simultaneous observations of the periodic non-Io controlled DAM performed by the WAVES radio experiment onboard the two STEREO spacecraft and the groundbased radio telescope URAN-2 (Poltava, Ukraine) operated in the decametric frequency range. URAN-2 with an effective area of about 30000 m2 consists of 512 broadband crossed dipoles and equipped with the high performance digital radio spectrometer with polarization measurement capability. During the observation campaign Sep., 2012 - Apr., 2013 URAN-2 recorded a large amount of Jovian DAM events with the high time-frequency resolution (4 kHz - 100 ms) in a frequency range 8-32 MHz. In the same time the two spatially separated STEREO spacecraft was able to observe DAM in the frequency range up to 16 MHz. The first analysis of the acquired stereoscopic observations is presented. In particular, we show one episode when the periodic non-arc DAM was recorded together with long lasting Jovian narrow band (NB) emissions. These NB emission was observed at the high frequency cutoff of DAM and can be interpreted as propagation of the decametric radiation in the Jovian ionosphere [3]. We discuss the possible relations between the observed NB events and the periodic non-Io controlled Jovian decametric radio emission.

  20. Double layers and plasma-wave resistivity in extragalactic jets - Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    Current driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur in extragalactic jets for estimated values of the carried currents. Strong plasma double layers, however, may exist within self-maintained density cavities. The relativistic double-layer-emitted electron and ion beams drive plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  1. Double layers and plasma-wave resistivity in extragalactic jets: Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    For estimated values of the currents carried by extragalactic jets, current-driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur. Strong plasma double layers, however, may exist within self-maintained density cavities, the relativistic double-layer-emitted electron, and ion beams driving plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  2. Comparison of LaBr3:Ce and NaI(Tl) Scintillators for Radio-Isotope Identification Devices

    SciTech Connect

    Milbrath, Brian D.; Choate, Bethany J.; Fast, Jim E.; Hensley, Walter K.; Kouzes, Richard T.; Schweppe, John E.

    2006-07-31

    Lanthanum halide (LaBr3:Ce) scintillators offer significantly better resolution (<3 percent at 662 kilo-electron volt [keV]) relative to sodium iodide (NaI(Tl)) and have recently become commercially available in sizes large enough for the hand-held radio-isotope identification device (RIID) market. There are drawbacks to lanthanum halide detectors, however. These include internal radioactivity that contributes to spectral counts and a low-energy response that can cause detector resolution to be lower than that of NaI(Tl) below 100 keV. To study the potential of this new material for RIIDs, we performed a series of measurements comparing a 1.5?1.5 inch LaBr?3:Ce detector with an Exploranium GR 135 RIID, which contains a 1.5-2.2 inch NaI(Tl) detector. Measurements were taken for short time frames, as typifies RIID usage. Measurements included examples of naturally occurring radioactive material (NORM), typically found in cargo, and special nuclear materials. Some measurements were noncontact, involving short distances or cargo shielding scenarios. To facilitate direct comparison, spectra from the different detectors were analyzed with the same isotope identification software (ORTEC ScintiVision TM). In general, the LaBr3:Ce detector was able to find more peaks and find them faster than the NaI(Tl) detector. To the same level of significance, the LaBr3:Ce detector was usually two to three times faster. The notable exception was for 40K containing NORM where interfering internal contamination in the LaBr3:Ce detector exist. NaI(Tl) consistently outperformed LaBr3:Ce for this important isotope. LaBr3:Ce currently costs much more than NaI(Tl), though this cost-difference is expected to diminish (but not completely) with time. As is true of all detectors, LaBr3:Ce will need to be gain-stabilized for RIID applications. This could possibly be done using the internal contaminants themselves. It is the experience of the authors that peak finding software in RIIDs needs to be improved, regardless of the detector material.

  3. Simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    NASA Astrophysics Data System (ADS)

    Fllekrug, M.; Hanuise, C.; Parrot, M.

    2010-10-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz radio waves from fifty terrestrial Long Range Aid to Navigation (LORAN) transmitters. Their mean luminosity patch in the plasmasphere is a circular area with a radius of 300 km and a power density of 22 ?W/Hz as observed at 660km height above the ground. The luminosity patches exhibit a southward displacement of 450 km with respect to the locations of the LORAN transmitters. The displacement is reduced to 150 km when an upward propagation of the radio waves along the geomagnetic field line is assumed. This residual displacement indicates that the radio waves undergo 150 km sub-ionospheric propagation prior to entering a magnetospheric duct and escaping into near-Earth space. The residual displacement at low (L<2.14) and high (L>2.14) geomagnetic latitudes ranges from 100 km to 200 km which suggests that the smaller inclination of the geomagnetic field lines at low latitudes helps to trap the radio waves and to keep them in the magnetospheric duct. Diffuse luminosity areas are observed northward of the magnetic conjugate locations of LORAN transmitters at extremely low geomagnetic latitudes (L<1.36) in Southeast Asia. This result suggests that the propagation along the geomagnetic field lines results in a spatial spreading of the radio wave energy over distances of 1 Mm. The summative assessment of the electric field intensities measured in space show that nadir observations of terrestrial 100 kHz radio waves, e.g., from relativistic electron beams above thunderclouds, are attenuated by at least 50 dB when taking into account a transionospheric attenuation of 40 dB.

  4. Verification of nonlinear particle simulation of radio frequency waves in tokamak

    SciTech Connect

    Kuley, A. Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.; Zhang, W.; Sun, G. Y.; Fisch, N. J.

    2015-10-15

    Nonlinear simulation model for radio frequency waves in fusion plasmas has been developed and verified using fully kinetic ion and drift kinetic electron. Ion cyclotron motion in the toroidal geometry is implemented using Boris push in the Boozer coordinates. Linear dispersion relation and nonlinear particle trapping are verified for the lower hybrid wave and ion Bernstein wave (IBW). Parametric decay instability is observed where a large amplitude pump wave decays into an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating, with a heating rate proportional to the pump wave intensity.

  5. The influence of polarization on millimeter wave propagation through rain. [radio signals

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.

    1973-01-01

    The measurement and analysis of the depolarization and attenuation that occur when millimeter wave radio signals propagate through rain are described. Progress was made in three major areas: the processing of recorded 1972 data, acquisition and processing of a large amount of 1973 data, and the development of a new theoretical model to predict rain cross polarization and attenuation. Each of these topics is described in detail along with radio frequency system design for cross polarization measurements.

  6. Variation of Langmuir wave polarization with electron beam speed in type III radio bursts

    SciTech Connect

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.

    2013-06-13

    Observations by the twin STEREO spacecraft of in-situ electric field waveforms and radio signatures associated with type III radio bursts have demonstrated that the polarization of electron beam-driven waves near the local plasma frequency depends strongly on the speed of the driving electron beam. We expand upon a previous study by including all radio bursts with in-situ waveforms observed by STEREO in 2011. The expanded data set contains five times more radio bursts (35 up from 7) and three times as many Langmuir waves (663 up from 168). While this expanded study supports the results of the original study, that faster (slower) beam electrons drive waves with strong (weak) electric fields perpendicular to the local magnetic field, the larger data set emphasizes that the observation of strong perpendicular electric fields at high electron beam speeds is probabilistic rather than definite. This property supports the interpretation of wave polarization dependence on beam speed as Langmuir/z-mode waves shifted to small wave number through interaction with turbulent solar wind density fluctuations.

  7. Variation of Langmuir wave polarization with electron beam speed in type III radio bursts

    NASA Astrophysics Data System (ADS)

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.

    2013-06-01

    Observations by the twin STEREO spacecraft of in-situ electric field waveforms and radio signatures associated with type III radio bursts have demonstrated that the polarization of electron beam-driven waves near the local plasma frequency depends strongly on the speed of the driving electron beam. We expand upon a previous study by including all radio bursts with in-situ waveforms observed by STEREO in 2011. The expanded data set contains five times more radio bursts (35 up from 7) and three times as many Langmuir waves (663 up from 168). While this expanded study supports the results of the original study, that faster (slower) beam electrons drive waves with strong (weak) electric fields perpendicular to the local magnetic field, the larger data set emphasizes that the observation of strong perpendicular electric fields at high electron beam speeds is probabilistic rather than definite. This property supports the interpretation of wave polarization dependence on beam speed as Langmuir/z-mode waves shifted to small wave number through interaction with turbulent solar wind density fluctuations.

  8. Ulysses radio and plasma wave observations at high southern heliographic latitudes.

    PubMed

    Stone, R G; Macdowall, R J; Fainberg, J; Kaiser, M L; Desch, M D; Goldstein, M L; Hoang, S; Bougeret, J L; Harvey, C C; Manning, R; Steinberg, J L; Kellogg, P J; Lin, N; Goetz, K; Osherovich, V A; Reiner, M J; Canu, P; Cornilleau-Wehrlin, N; Lengyel-Frey, D; Thejappa, G

    1995-05-19

    Ulysses spacecraft radio and plasma wave observations indicate that some variations in the intensity and occurrence rate of electric and magnetic wave events are functions of heliographic latitude, distance from the sun, and phase of the solar cycle. At high heliographic latitudes, solartype Ill radio emissions did not descend to the local plasma frequency, in contrast to the emission frequencies of some bursts observed in the ecliptic. Short-duration bursts of electrostatic and electromagnetic waves were often found in association with depressions in magnetic field amplitude, known as magnetic holes. Extensive wave activity observed in magnetic clouds may exist because of unusually large electron-ion temperature ratios. The lower number of intense in situ wave events at high latitudes was likely due to the decreased variability of the high- latitude solar wind. PMID:17774230

  9. Application of surface acoustic wave devices to radio telemetry

    NASA Technical Reports Server (NTRS)

    Strasilla, U.

    1983-01-01

    Three experimental Surface Acoustic Wave Resonators (SAWR) are developed and evaluated. A desired center frequency is obtained by correct spacing of the Inter-Digital Transducers (IDT). Transmitting and receiving IDT's must be close for adequate coupling and a sufficient number of reflectors are required to create a high quality standing wave. A review of oscillator theory is given and current technology evaluated.

  10. Relations among low ionosphere parameters and high frequency radio wave absorption

    NASA Technical Reports Server (NTRS)

    Cipriano, J. P.

    1973-01-01

    Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.

  11. Study of the Radio-Wave Absorbing Properties of a Lithium-Zinc Ferrite Based Composite

    NASA Astrophysics Data System (ADS)

    Surzhikov, A. P.; Lysenko, E. N.; Malyshev, A. V.; Vlasov, V. A.; Suslyaev, V. I.; Zhuravlev, V. A.; Korovin, E. Yu.; Dotsenko, O. A.

    2014-09-01

    Results are presented of a study of the radio-wave absorbing properties of a composite material based on lithium-zinc ferrite with composition Li0.4Fe2.4Zn0.2O4, synthesized by heating a mechanically activated mixture of the initial reagents Li2CO3-ZnO-Fe2O3 in a high-energy electron beam. It has been shown that a composite based on this material is promising as a radio-wave absorbing coating in the frequency range up to 12 GHz.

  12. The modeling of HF radio wave propagation characteristics during the periods of solar flares

    NASA Astrophysics Data System (ADS)

    Ponomarchuk, S. N.; Kurkin, V. I.; Lyakhov, A. N.; Romanova, E. B.; Tashchilin, A. V.

    2015-11-01

    The results for modeling of HF radio waves propagation characteristics are given for the periods of solar flares 25.02.2014, 25.10.2013, 13-14.05.2013. The distance-frequency and amplitude-frequency propagation characteristics are calculated on the base of the complex algorithm which includes modules of ionosphere and plasmasphere global models and radio waves propagation model. The results of calculations were compared with experimental data of oblique ionosphere sounding obtained by chirp ionosonde on paths Magadan - Irkutsk, Khabarovsk - Irkutsk and Norilsk - Irkutsk.

  13. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA. PMID:19257596

  14. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    SciTech Connect

    Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  15. GPS phase scintillation correlated with auroral forms

    NASA Astrophysics Data System (ADS)

    Hampton, D. L.; Azeem, S. I.; Crowley, G.; Santana, J.; Reynolds, A.

    2013-12-01

    The disruption of radio wave propagation due to rapid changes in electron density caused by auroral precipitation has been observed for several decades. In a few cases the disruption of GPS signals has been attributed to distinct auroral arcs [Kintner, 2007; Garner, 2011], but surprisingly there has been no systematic study of the characteristics of the auroral forms that cause GPS scintillation. In the Fall of 2012 ASTRA deployed four CASES GPS receivers at UAF observatories in Alaska (Kaktovik, Fort Yukon, Poker Flat and Gakona) specifically to address the effects of auroral activity on the high latitude ionosphere. We have initiated an analysis that compares the phase scintillation, recorded at high cadence, with filtered digital all-sky camera data to determine the auroral morphology and electron precipitation parameters that cause scintillation. From correlation studies from a single site (Poker Flat), we find that scintillation is well correlated with discrete arcs that have high particle energy flux (power per unit area), and not as well correlated with pulsating forms which typically have high characteristic energy, but lower energy flux . This indicates that the scintillation is correlated with the magnitude of the change in total electron density as expected. We will also report on ongoing work where we correlate the scintillation from the Fort Yukon receiver with the all-sky images at Poker Flat to determine the altitude that produces the greatest disturbance. These studies are aimed at a model that can predict the expected local disturbance to navigation due to auroral activity.

  16. Solar type III radio bursts modulated by homochromous Alfvén waves

    SciTech Connect

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2013-12-10

    Solar type III radio bursts and their production mechanisms have been intensively studied in both theory and observation and are believed to be the most important signatures of electron acceleration in active regions. Recently, Wu et al. proposed that the electron-cyclotron maser emission (ECME) driven by an energetic electron beam could be responsible for producing type III bursts and pointed out that turbulent Alfvén waves can greatly influence the basic process of ECME via the oscillation of these electrons in the wave fields. This paper investigates effects of homochromous Alfvén waves (HAWs) on ECME driven by electron beams. Our results show that the growth rate of the O-mode wave will be significantly modulated by HAWs. We also discuss possible application to the formation of fine structures in type III bursts, such as so-called solar type IIIb radio bursts.

  17. Remote Sensing of Low and Mid-Latitude Ionospheric Disturbances During Solar Minimum Using CITRIS and CERTO Measurements of TEC and Radio Scintillation

    NASA Astrophysics Data System (ADS)

    Siefring, C. L.; Bernhardt, P. A.

    2010-12-01

    Unique data on ionospheric plasma disturbances from the Naval Research Laboratory CITRIS (Scintillation and TEC Receiver in Space) instrument will be presented. CITRIS is a multi-band receiver that recorded TEC (Total Electron Content) and radio scintillations from Low-Earth Orbit (LEO) on STPSat1. The 555+/5 km altitude 35 inclination orbit covers low and mid-latitudes. The measurements require propagation from a transmitter to a receiver through the F-region plasma. CITRIS used both 1) satellite beacons in LEO, such as the NRL CERTO (Coherent Electromagnetic Radio TOmography) three-frequency beacons transmitting at 150/400/1067 MHz and 2) the French global network of ground-based DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) beacons transmitting at 401.25 and 2036.25 MHz. CITRIS was operated in a complementary fashion with the C/NOFS satellite during most of its first year of operations; C/NOFS carries CERTO beacon along with in-situ diagnostics. CITRIS and ground receivers can simultaneously measure TEC and scintillations on different paths using CERTO on C/NOFS. When C/NOFS is not in view, CITRIS makes measurements from DORIS beacons and other LEO satellites. Because of the orbits CITRIS will always make measurements at the same longitude within 48 min of C/NOFS. The ability to look at multiple paths is unique and useful for studying the spatial extent and time duration of disturbances. The combination of TEC and scintillation measurements provides information on a range of scale-sizes from >1 km to about 100 m. The joint data set on plasma structures at low-latitudes is a focus of our presentation, with the addition of comparisons to CITRIS data taken at mid-latitude. Several types of irregularities have been studied including Spread-F and the newly discovered dawn-side depletions. The data covers large portions of the Earth (including the Pacific, African and South American sectors) during an unusually quite portion of the most recent solar minimum.

  18. Analytical study of nighttime scintillations using GPS at low latitude station Bhopal

    NASA Astrophysics Data System (ADS)

    Maski, Kalpana; Vijay, S. K.

    2015-07-01

    Sporadically structured ionosphere (i.e. in-homogeneities in refractive index) can cause fluctuations (due to refraction effects) on the radio signal that is passing through it. These fluctuations are called ionospheric scintillations. Low latitude region is suitable for studying these scintillations. The influence of the ionosphere on the propagation of the radio wave becomes very marked with reference to communication or navigational radio system at very low frequency (VLF) to a high frequency (HF), which operate over the distances of 1000 km or more. Radio wave communication at different frequencies depends on structure of the ionosphere. With the advent of the artificial satellites, they are used as a prime mode of radio wave communication. Some natural perturbation termed as irregularities, are present in the form of electron density of the ionosphere that cause disruption in the radio and satellite communications. Therefore the study of the ionospheric irregularities is of practical importance, if one wishes to understand the upper atmosphere completely. In order to make these communications uninterrupted the knowledge of irregularities, which are present in the ionosphere are very important. These irregularities can be located and estimated with the help of Ionospheric TEC and Scintillation. Scintillation is generally confined to nighttime hours, particularly around equatorial and low latitudes

  19. Analytical study of nighttime scintillations using GPS at low latitude station Bhopal

    SciTech Connect

    Maski, Kalpana; Vijay, S. K.

    2015-07-31

    Sporadically structured ionosphere (i.e. in-homogeneities in refractive index) can cause fluctuations (due to refraction effects) on the radio signal that is passing through it. These fluctuations are called ionospheric scintillations. Low latitude region is suitable for studying these scintillations. The influence of the ionosphere on the propagation of the radio wave becomes very marked with reference to communication or navigational radio system at very low frequency (VLF) to a high frequency (HF), which operate over the distances of 1000 km or more. Radio wave communication at different frequencies depends on structure of the ionosphere. With the advent of the artificial satellites, they are used as a prime mode of radio wave communication. Some natural perturbation termed as irregularities, are present in the form of electron density of the ionosphere that cause disruption in the radio and satellite communications. Therefore the study of the ionospheric irregularities is of practical importance, if one wishes to understand the upper atmosphere completely. In order to make these communications uninterrupted the knowledge of irregularities, which are present in the ionosphere are very important. These irregularities can be located and estimated with the help of Ionospheric TEC and Scintillation. Scintillation is generally confined to nighttime hours, particularly around equatorial and low latitudes.

  20. Radio Wave Generation by a Collision or Contact between Various Materials

    NASA Astrophysics Data System (ADS)

    Takano, T.; Hanawa, R.; Saegusa, K.; Ikeda, H.

    2014-12-01

    In fracture of rock, radio wave emission was found experimentally [1]. This phenomenon could be used to detect a rock fracture during an earthquake or a volcanic activity [2]. The cause of the radio wave is expected to be micro-discharges, which are generated by an inhomogeneous potential distribution around micro-cracks. In order to better understand the phenomena and clarify the cause of radio wave emission, we carried out experiments to detect the emission in the cases of a collision or contact between various materials. We used receiving systems with great sensitivities and sufficient frequency bandwidths at 1 MHz-, 300 MHz-, 2 GHz-, and 18 GHz-bands. The specimen materials are as follows: Steel (2) Brass (3) Copper (4)Small coin (5)Celluloid. We obtained the following results: The signal was detected for the specimen of (1) to (4), but not for (5). The signal is composed of intermittent spikes which include waves with a frequency close to the center frequency of each frequency band. The power is strongest at the lower frequencies among all frequency bands. The more details will be given in the presentation. The origin of radio wave emission from the metal is supposed to be discharges between materials in these experiments. It is surprising that even a small coin can generate a significant amount of radio wave. Accordingly, it is inferred that all amount of charges are discharged through a conductive metal. On the other hand, celluloid did not generate radio wave, though the specimen was sufficiently charged by brushing. It is inferred that a quite localized charge was discharged but the remaining charges were blocked due to poor conductivity. Extending this hypothesis, large-scale contact should have occurred between broken fragments for the radio wave generation in the aforementioned rock fracture experiments. Turbulence of the fragments is a candidate for the explanation. [1] K. Maki et al., "An experimental study of microwave emission from compression failure of rocks" (in Japanese), Jour. of the Seismological Society of Japan, vol.58, no.4, pp.375-384, 2006.[2] T. Takano al., "Detection of microwave emission due to rock fracture as a new tool for geophysics: A field test at a volcano in Miyake Island, Japan", Journal of Applied Geophysics, 94, pp.1-14, 2013.

  1. Radio wave propagation experiments to probe the ionosphere

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.

    1972-01-01

    Ionospheric bias corrections associated with radio tracking of spacecraft depend on the following measuring techniques for integrated electron content: (1) Faraday rotation measurements from an earth synchronous satellite; (2) ranging measurements at two frequencies; and (3) group and phase velocity measurements obtained from tracking data. The extraction of the integrated electron content directly from tracking data is achieved by comparison of range-rate measurements based on Doppler shift with differentiated range measurements based on tone delay. This method is most desirable because the measured corrections pertain directly to the spacecraft whose orbit is being determined and can be used in near earth as well as deep space tracking data.

  2. Observations of the anomalous absorption of diagnostic radio waves during ionospheric modification at Arecibo

    NASA Astrophysics Data System (ADS)

    Stocker, A. J.; Robinson, T. R.; Jones, Tudor B.

    1990-10-01

    The theory indicates that the anomalous absorption produced during modification of the ionosphere by means of high power radio waves is a dependent on the magnetic dip angle. Recent measurements of the anomalous absorption at Arecibo, Puerto Rico, are found to be considerably smaller in magnitude than those previously reported for the high latitude site at Tromso, Norway.

  3. Dust Detection Using Radio and Plasma Wave Instruments in the Solar System

    NASA Astrophysics Data System (ADS)

    Ye, S.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, S.; Srama, R.; Grün, E.; Morooka, M. W.; Sakai, S.; Wahlund, J. E.

    2014-12-01

    Nanometer to micrometer sized dust particles pervade our solar system. The origins of these dust particles include asteroid collisions, cometary activity, and geothermal activity of the planetary moons, for example, the water dust cloud ejected from Saturn's moon Enceladus. Radio and plasma wave instruments have been used to detect such dust particles via voltage pulses induced by impacts on the spacecraft body and antennas. The first detection of such dust impacts occurred when Voyager 1 passed through Saturn's ring plane. Since then, dust impacts have been detected by radio and plasma wave instruments on many spacecraft, including ISEE-3, Cassini, and STEREO. In this presentation, we review the detection of dust particles in the solar system using radio and plasma wave instruments aboard various spacecraft since the Voyager era. We also show characteristics of the dust particles derived from recent observations by Cassini RPWS in Saturn's magnetosphere. The dust size distribution and density are consistent with those measured by the conventional dust detectors. A new method of measuring the electron density inside the Enceladus plume based on plasma oscillations observed after dust impacts will also be discussed. The dust measurement by radio and plasma wave instruments complements that by conventional dust detectors and provide important information about the spatial distribution of dust particles due to less pointing constraints and the larger detection area.

  4. A Simple Demonstration for Exploring the Radio Waves Generated by a Mobile Phone

    ERIC Educational Resources Information Center

    Hare, Jonathan

    2010-01-01

    Described is a simple low cost home-made device that converts the radio wave energy from a mobile phone signal into electricity for lighting an LED. No battery or complex circuitry is required. The device can form the basis of a range of interesting experiments on the physics and technology of mobile phones. (Contains 5 figures.)

  5. Radio and Plasma Wave Observations at Saturn from Cassini's Approach and First Orbit

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Haspodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Cecconi, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.

    2005-01-01

    We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 k 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings.

  6. Radio and plasma wave observations at Saturn from Cassini's approach and first orbit.

    PubMed

    Gurnett, D A; Kurth, W S; Hospodarsky, G B; Persoon, A M; Averkamp, T F; Cecconi, B; Lecacheux, A; Zarka, P; Canu, P; Cornilleau-Wehrlin, N; Galopeau, P; Roux, A; Harvey, C; Louarn, P; Bostrom, R; Gustafsson, G; Wahlund, J-E; Desch, M D; Farrell, W M; Kaiser, M L; Goetz, K; Kellogg, P J; Fischer, G; Ladreiter, H-P; Rucker, H; Alleyne, H; Pedersen, A

    2005-02-25

    We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 +/- 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings. PMID:15604362

  7. Radio wave emitted by an extensive air showers in 10KHz to 1MHz region

    NASA Technical Reports Server (NTRS)

    Nichimura, J.

    1985-01-01

    The importance of radio waves in a frequency range of less than 1MHz in an EAS shower is discussed. Estimates of radio intensities at 10KHz, 100KHz and 1MHz in EAS showers made on the basis of the Kahn-Lerche theory. Negative charge excess in a shower is the main source of low frequency radio emission, in spite of the importance of the contribution of transverse current in the geomagnetic field in a higher frequency range. An estimate is also made for radio intensity produced when the shower hits the ground. The contribution of this process seems to be important at a large distance, i.e., beyond 1km from the shower axis.

  8. Motion of metric type 4 radio sources and its relation to shock waves responsible for type 2 radio bursts

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1973-01-01

    The relation of the motion of type 4mA sources with shock waves responsible for type 2 bursts were considered using the observed data for these two radio sources. The difference of the emission mechanism between type 2 and type 4mA bursts suggest that the moving speed of the shock waves mentioned above is not necessarily equal to the metric type 4 sources. By analyzing the observed data on the speeds for both type 2 and type 4 sources., it was found that type 4 bursts decelerate and often cease to move in the solar envelop and that type 2 sources move at higher speeds than type 4 sources.

  9. The dispersion of radio waves in the solar corona.

    NASA Astrophysics Data System (ADS)

    Benz, A. O.; Pianezzi, P.

    1997-07-01

    Different arrival times of the two magnetoionic modes in solar radio bursts have been detected. The bursts are from four decimetric radio events showing narrowband millisecond spikes. They have been observed with 2ms and 0.5ms time resolution, respectively, by the Ikarus and Phoenix spectrometers of ETH Zurich. The four events have been selected because of their low polarization. The arrival times of the left and right circularly polarized modes have been compared by cross-correlation. In all cases the weaker mode is delayed by a fraction of a millisecond. Several tests have been carried out to ensure the significance of the delay. The delay is interpreted by the difference in group velocity of the two modes due to dispersion in the coronal plasma. Simple models show that the observed difference in travel time is consistent with this interpretation. It suggests that the radiation is polarized in the ordinary mode at the location where the polarization originates. If the polarization originates in the original source region, the possible emission processes are limited to the ones radiating in ordinary mode. More likely, the polarization seems to originate at higher altitude e.g. in a quasi-transverse region. In both cases the delay is proportional to the longitudinal component of the magnetic field in the medium of propagation.

  10. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain

    NASA Astrophysics Data System (ADS)

    Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Zhou, Xiaoxiao; Shi, Yan

    2016-03-01

    In this paper, a reflective metasurface is designed, fabricated, and experimentally demonstrated to generate an orbital angular momentum (OAM) vortex wave in radio frequency domain. Theoretical formula of phase-shift distribution is deduced and used to design the metasurface producing vortex radio waves. The prototype of a practical configuration is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that the vortex waves with different OAM mode numbers can be flexibly generated by using sub-wavelength reflective metasurfaces. The proposed method and metasurface pave a way to generate the OAM vortex waves for radio and microwave wireless communication applications.

  11. Reflection of radio waves by sporadic-E layers

    NASA Technical Reports Server (NTRS)

    Miller, K. L.; Smith, L. G.

    1977-01-01

    A full-wave analysis of the reflection coefficient is developed and applied to electron-density profiles of midlatitude sporadic-E layers observed by rocket-borne probes. It is shown that partial reflection from the large electron-density gradients at the upper and lower boundaries of sporadic-E layers does not account for the partial transparency observed by ionosondes.

  12. PHASE AND AMPLITUDE CONTROL OF THE RADIO FREQUENCY WAVE IN THE TWO-BEAM ACCELERATOR

    SciTech Connect

    Kuenning, R.W.; Sessler, A.M.

    1985-07-01

    The sensitivity of the radio frequency (rf) wave generated by the free electron laser portion of a Two-Beam Accelerator (TBA) is analyzed, both analytically and numerically in a 'resonant particle' approximation. It is shown that the phase of the rf wave is strongly dependent upon errors in the wiggler strength and wavelength and upon the electron beam characteristics of energy and current. The resulting phase error is shown to be unacceptable for a TBA, given reasonable errors in various components. A feedback system is proposed which will keep the rf wave phase within acceptable bounds. However, the feedback system is, at best, cumbersome and a simpler system would be desirable.

  13. Inconsistency of Ulysses Millisecond Langmuir Spikes with Wave Collapse in Type 3 Radio Sources

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Recent Ulysses observations of millisecond spikes superposed on broader Langmuir wave packets in type 3 radio sources are compared quantitatively with constraints from the theory of wave collapse. It is found that both the millisecond spikes and the wave packets have fields at least 10 times too small to be consistent with collapse, contrary to previous interpretations in terms of this process. Several alternative explanations are considered and it is argued that the spikes should be interpreted as either non-collapse phenomena or observational artifacts. To the extent the observations are representative, this rules out theories for type 3 bursts at approx. 1 - 4 AU that rely on collapse.

  14. Kilometric radio waves generated along auroral field lines observed by ground facilities - A theoretical model

    NASA Technical Reports Server (NTRS)

    Ziebell, L. F.; Wu, C. S.; Yoon, Peter H.

    1991-01-01

    A theory of generation of radio waves observed by ground-based facilities in the frequency range 150-700 kHz is discussed. This work is a continuation of an earlier discussion (Wu et al., 1989) in which it was proposed that the trapped electrons along the auroral field lines can lead to a cyclotron instability which amplifies the whistler waves observed at ground level. The objective of the present study is to investigate the propagation effect on the wave amplification and to examine whether the proposed mechanism is indeed viable.

  15. NONLINEAR WAVE INTERACTIONS AS EMISSION PROCESS OF TYPE II RADIO BURSTS

    SciTech Connect

    Ganse, Urs; Kilian, Patrick; Spanier, Felix; Vainio, Rami

    2012-06-01

    The emission of fundamental and harmonic frequency radio waves of type II radio bursts are assumed to be products of three-wave interaction processes of beam-excited Langmuir waves. Using a particle-in-cell code, we have performed simulations of the assumed emission region, a coronal mass ejection foreshock with two counterstreaming electron beams. Analysis of wavemodes within the simulation shows self-consistent excitation of beam-driven modes, which yield interaction products at both fundamental and harmonic emission frequencies. Through variation of the beam strength, we have investigated the dependence of energy transfer into electrostatic and electromagnetic modes, confirming the quadratic dependence of electromagnetic emission on electron beam strength.

  16. Research to Operations of Ionospheric Scintillation Detection and Forecasting

    NASA Astrophysics Data System (ADS)

    Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.

    Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of operational integration are discussed as well as lessons learned to improve performance on future projects.

  17. Nonlinear nonresonant forces by radio-frequency waves in plasmas

    SciTech Connect

    Gao Zhe; Fisch, Nathaniel J.; Qin, Hong; Myra, J. R.

    2007-08-15

    Nonresonant forces by applied rf waves in plasmas are analyzed. Along the background dc magnetic field, the force arises from the gradient of the ponderomotive potential. Only when the dc magnetic field is straight, however, is this parallel force completely consistent with that from the single particle picture, where the ponderomotive force depends on the gradients of rf fields only. Across the dc magnetic field, besides the ponderomotive force from the particle picture, additional Reynolds stress and polarization stress contribute to the total force. For waves with frequency much lower than the cyclotron frequency, the perpendicular forces from the particle and fluid pictures can have opposite signs. In plasmas with a symmetry angle (e.g., toroidal systems), nonresonant forces cannot drive net flow or current in the flux surface, but the radial force may influence macroscopic behavior of plasma. Moreover, nonresonant forces may drive flow or current in linear plasmas or in a localized region of toroidal plasmas.

  18. Artificial airglow excited by high-power radio waves.

    PubMed

    Bernhardt, P A; Duncan, L M; Tepley, C A

    1988-11-18

    High-power electromagnetic waves beamed into the ionosphere from ground-based transmitters illuminate the night sky with enhanced airglow. The recent development of a new intensified, charge coupled-device imager made it possible to record optical emissions during ionospheric heating. Clouds of enhanced airglow are associated with large-scale plasma density cavities that are generated by the heater beam. Trapping and focusing of electromagnetic waves in these cavities produces accelerated electrons that collisionally excite oxygen atoms, which emit light at visible wavelengths. Convection of plasma across magnetic field lines is the primary source for horizontal motion of the cavities and the airglow enhancements. During ionospheric heating experiments, quasi-cyclic formation, convection, dissipation and reappearance of the cavites comprise a major source of long-term variability in plasma densities during ionospheric heating experiments. PMID:17834046

  19. The seasonal variation of the D region as inferred from propagation characteristics of LF radio waves

    NASA Technical Reports Server (NTRS)

    Ishimine, T.; Ishii, T.; Echizenya, Y.

    1985-01-01

    The propagation data of JG2AS 40 kHz (Japanese Standard Frequency), Loran C 100 kHz radio waves, and meteorological data were analyzed to study the association of propagation characteristics of LF radio waves with the atmospheric circulation in the mesosphere. The monthly averaged electric fields were depicted on the complex plane for typical summer and winter months, June and November. The locus traced out by the electric field vector during daytime is nearly circular. This is because during daytime the amplitude of the sky wave remains nearly constant while its phase changes in accord with the height change of the reflection layer, and thus the electric field vector traces out a circular locus with its center at the tip of the supposed ground wave vector. The locus has a loop during the sunrise or sunset period, which seems to arise from interference of two waves reflected by two different layers. In June the amplitude of the sky wave decreases rapidly before the dawn or increases after the dusk. In November such rapid change is not observed. During nighttime, the sky wave phase changes in such a way as to suggest that the reflection height moves upwards with time before midnight or lowers after midnight in November. In June it changes similarly before midnight, but after midnight it varies erratically. These characteristics are closely related to the structure of the D region, which is clearly shown by simulating the loci traced out by electric fields.

  20. Determining the solar wind speed above active regions using remote radio-wave observations

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.; Bougeret, J.-L.

    1983-01-01

    A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.

  1. Newly Discovered Parametric Instabilities Excited by High Power Radio Waves in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul

    2010-11-01

    A powerful electromagnetic wave can decay into a large number of low frequency electrostatic waves and a scattered electromagnetic wave by generalized stimulated Brillouin scatter (GSBS). The generalization occurs in the F-layer ionosphere because of the presence of the magnetic field supporting a large number of plasma waves not present in an unmagnetized plasma. Stimulated Brillouin scatter excites the ion acoustic mode. In addition, GSBS can excite slow MHD, Alfven, fast MHD, ion cyclotron, whistler, lower hybrid, ion Bernstein waves. The first detection of this process during ionospheric modification with high power radio waves was demonstrated using the HAARP transmitter in Alaska in 2009. Subsequent experiments have provided additional verification of the GSBS process with quantitative measurements of the scattered electromagnetic waves with low frequency offsets from the pump wave. Relative to ground-based laboratory experiments with laser plasma interactions, the ionospheric HF wave interactions experiments are more completely diagnosed into terms of understanding the basic decay process of the magnetized plasma. Applications of the GSBS observations included remote sensing of the plasma state and launching propagating wave modes.

  2. Excitation of small-scale waves in the F region of the ionosphere by powerful HF radio waves

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Chernyshev, M. Y.; Kornienko, V. A.

    1998-01-01

    Ionospheric small-scale waves in the F region, initiated by heating facilities in Nizhniy Novgorod, have been studied by the method of field-aligned scattering of diagnostic HF radio signals. Experimental data have been obtained on the radio path Kiev-N. Novgorod-St. Petersburg during heating campaigns with heater radiated power ERP = 20 MW and 100 MW. Observations of scattered HF signals have been made by a Doppler spectrum device with high temporal resolution. Analysis of the experimental data shows a relation between the heater power level and the parameters of ionospheric small-scale oscillations falling within the range of Pc 3-4 magnetic pulsations. It is found that the periods of wave processes in the F region of the ionosphere, induced by the heating facility, decrease with increasing heating power. The level of heating power also has an impact on the horizontal east-west component of the electric field E, the vertical component of the Doppler velocity Vd and the amplitude of the vertical displacements M of the heated region. Typical magnitudes of these parameters are the following: E = 1.25 mVm, Vd = 6 ms, M = 600-1500 m for ERP = 20 MW and E = 2.5-4.5 mVm, Vd = 11-25 ms, M = 1000-5000 m for ERP = 100 MW. The results obtained confirm the hypothesis of excitation of the Alfvén resonator by powerful HF radio waves which leads to the generation of magnetic field oscillations in the heated region giving rise to artificial Pc 3-4 magnetic pulsations and ionospheric small-scale wave processes. In this situation an increase of the heater power would lead to a growth of the electric field of hydromagnetic waves propagating in the ionosphere as well as the amplitude of the vertical displacements of the heated region.

  3. Thunderstorms, Lightning, Sprites and Magnetospheric Whistler-Mode Radio Waves

    NASA Astrophysics Data System (ADS)

    Siingh, Devendraa; Singh, A. K.; Patel, R. P.; Singh, Rajesh; Singh, R. P.; Veenadhari, B.; Mukherjee, Madhuparna

    2008-12-01

    Thunderstorms and the lightning that they produce are inherently interesting phenomena that have intrigued scientists and mankind in general for many years. The study of thunderstorms has rapidly advanced during the past century and many efforts have been made towards understanding lightning, thunderstorms and their consequences. Recent observations of optical phenomena above an active lightning discharge along with the availability of modern technology both for data collection and data analysis have renewed interest in the field of thunderstorms and their consequences in the biosphere. In this paper, we review the electrification processes of a thunderstorm, lightning processes and their association with global electric circuit and climate. The upward lightning discharge can cause sprites, elves, jets, etc. which are together called transient luminous events. Their morphological features and effects in the mesosphere are reviewed. The wide spectrum of electromagnetic waves generated during lightning discharges couple the lower atmosphere with the ionosphere/magnetosphere. Hence various features of these waves from ULF to VHF are reviewed with reference to recent results and their consequences are also briefly discussed.

  4. Antenna Construction & Propagation of Radio Waves, 5-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Marine Corps, Washington, DC.

    These military-developed curriculum materials consist of five individualized, self-paced chapters dealing with antenna construction and propagation of radio waves. Covered in the individual lessons are the following topics: basic electricity; antenna transmission-line fundamentals; quarter-wave antennas, half-wave antennas, and associated radio…

  5. Tropospheric scintillation prediction models for a high elevation angle based on measured data from a tropical region

    NASA Astrophysics Data System (ADS)

    Abdul Rahim, Nadirah Binti; Islam, Md. Rafiqul; J. S., Mandeep; Dao, Hassan; Bashir, Saad Osman

    2013-12-01

    The recent rapid evolution of new satellite services, including VSAT for internet access, LAN interconnection and multimedia applications, has triggered an increasing demand for bandwidth usage by satellite communications. However, these systems are susceptible to propagation effects that become significant as the frequency increases. Scintillation is the rapid signal fluctuation of the amplitude and phase of a radio wave, which is significant in tropical climates. This paper presents the analysis of the tropospheric scintillation data for satellite to Earth links at the Ku-band. Twelve months of data (January-December 2011) were collected and analyzed to evaluate the effect of tropospheric scintillation. Statistics were then further analyzed to inspect the seasonal, worst-month, diurnal and rain-induced scintillation effects. By employing the measured scintillation data, a modification of the Karasawa model for scintillation fades and enhancements is proposed based on data measured in Malaysia.

  6. Investigations of ionospheric radio wave absorption processes using imaging riometer techniques

    NASA Astrophysics Data System (ADS)

    Stauning, Peter

    The recent development of imaging riometer techniques has enabled a range of new, interesting observations of the complex dynamics of auroral and polar radio wave absorption events. These events mostly relate to the precipitation of energetic particles, creating enhanced ionization in the D-region. However, E-region heating by large electric fields and F-region electron density enhancements may also—at times—be responsible for observable absorption effects. Observations of ionospheric radio wave absorption processes using imaging riometer techniques may provide detailed characteristics of the spatial and temporal structures of small-scale disturbance events, velocity vectors for drifting features and frequency spectra for modulated events. This presentation will give a brief summary of imaging riometer techniques and a survey of existing and planned imaging riometer installations. Furthermore, the characteristics of frequently occurring absorption event types are summarized. In a companion paper imaging riometer observations are presented for some selected absorption events.

  7. Global mapping of ionospheric HF/VHF radio wave absorption due to solar energetic protons

    NASA Astrophysics Data System (ADS)

    Sauer, Herbert H.; Wilkinson, Daniel C.

    2008-12-01

    Simple, one-parameter algorithms are applied to the observed energetic proton flux as provided by instruments aboard the GOES series of satellites to yield estimates of the high-latitude HF and VHF radio wave absorption for day and night, respectively. These results are extended to full daily coverage by treating the effects of solar illumination, geomagnetic cutoff variation, and frequency dependence over the entire earth. Validation calculations of the polar cap absorption of HF radio waves have been performed for 11 larger solar energetic particle events during the period from 1992 to 2002 and the results are compared to observations of 30 MHz riometers operated by the Air Force Geophysics Laboratory and located at Thule, Greenland. Prediction of the minimum event duration from current flux level is also obtained, and a specimen presentation of the north and south polar caps illustrates the graphical output of the model for the peak of the 6 December 2006 solar proton event.

  8. An Overview of Observations by the Cassini Radio and Plasma Wave Investigation at Earth

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Hospodarsky, G. B.; Gurnett, D. A.; Kaiser, M. L.; Wahlund, J.-E.; Roux, A.; Canu, P.; Zarka, P.; Tokarev, Y.

    2001-01-01

    On August 18, 1999, the Cassini spacecraft flew by Earth at an altitude of 1186 km on its way to Saturn. Although the flyby was performed exclusively to provide the spacecraft with sufficient velocity to get to Saturn, the radio and plasma wave science (RPWS) instrument, along with several others, was operated to gain valuable calibration data and to validate the operation of a number of capabilities. In addition, an opportunity to study the terrestrial radio and plasma wave environment with a highly capable instrument on a swift fly-through of the magnetosphere was afforded by the encounter. This paper provides an overview of the RPWS observations, at Earth, including the identification of a number of magnetospheric plasma wave modes, an accurate measurement of the plasma density over a significant portion of the trajectory using the natural wave spectrum in addition to a relaxation sounder and Langmuir probe, the detection of natural and human-produced radio emissions, and the validation of the capability to measure the wave normal angle and Poynting flux of whistler-mode chorus emissions. The results include the observation of a double-banded structure at closest' approach including a band of Cerenkov emission bounded by electron plasma and upper hybrid frequencies and an electron cyclotron harmonic band just above the second harmonic of the electron cyclotron frequency. In the near-Earth plasma sheet, evidence for electron phase space holes is observed, similar to those first reported by Geotail in the magnetotail. The wave normal analysis confirms the Polar result that chorus is generated very close to the magnetic equator and propagates to higher latitudes. The integrated power flux of auroral kilometric radiation is also used to identify a series of substorms observed during the outbound passage through the magnetotail.

  9. Detectable radio flares following gravitational waves from mergers of binary neutron stars.

    PubMed

    Nakar, Ehud; Piran, Tsvi

    2011-10-01

    Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves. They can also launch subrelativistic and mildly relativistic outflows and are often assumed to be the sources of short γ-ray bursts. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled. PMID:21964342

  10. Detection of fundamental and harmonic type III radio emission and the associated Langmuir waves at the source region

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.; Fainberg, J.

    1992-01-01

    Type III radio emission generated in the vicinity of the Ulysses spacecraft has been detected at both the fundamental and harmonic of the local plasma frequency. The observations represent the first clear evidence of locally generated type III radio emission. This local emission shows no evidence of frequency drift, exhibits a relatively short rise time, is less intense than the observed remotely generated radio emission, and is temporally correlated with observed in situ Langmuir waves. The observations were made with the unified radio astronomy and wave (URAP) experiment on the Ulysses spacecraft between 1990 November 4 and 1991 April 30, as it traveled from 1 to 3 AU from the sun. During this time period many thousands of bursts were observed. However, only three examples of local emission and associated Langmuir waves were identified. This supports previous suggestions that type III radio emission is generated in localized regions of the interplanetary medium, rather than uniformly along the extent of the electron exciter beam.

  11. On the determination of gravity wave momentum flux from GPS radio occultation data

    NASA Astrophysics Data System (ADS)

    Faber, A.; Llamedo, P.; Schmidt, T.; de la Torre, A.; Wickert, J.

    2013-11-01

    Global Positioning System (GPS) radio occultation (RO) is a well-established technique for obtaining global gravity wave (GW) information. RO uses GPS signals received by low Earth-orbiting satellites for atmospheric limb sounding. Temperature profiles are derived with high vertical resolution and provide a global coverage under any weather conditions, offering the possibility of global monitoring of the vertical temperature structure and atmospheric wave parameters. The six-satellite constellation COSMIC/FORMOSAT-3 delivers approximately 2000 temperature profiles daily. In this study, we use a method to obtain global distributions of horizontal gravity wave wavelengths, to be applied in the determination of the vertical flux of horizontal momentum transported by gravity waves. Here, a method for the determination of the real horizontal wavelength from three vertical profiles is applied to the COSMIC data. The horizontal and vertical wavelength, the specific potential energy (Ep), and the vertical flux of horizontal momentum (MF) are calculated and their global distribution is discussed.

  12. Coronal Alfven waves detected by radio sounding during the solar occultations of the Helios spacecraft

    NASA Technical Reports Server (NTRS)

    Bird, M. K.; Volland, H.; Efimov, A. I.; Levy, G. S.; Seidel, B. L.; Stelzried, C. T.

    1992-01-01

    The two Helios spacecraft underwent regular solar occultations during their extended missions from Dec 1974-Feb 1986 (Helios 1) and Jan 1976-Mar 1980 (Helios 2) thereby providing many opportunities for radio propagation experiments in the solar corona. On certain rare occasions over the course of these investigations, Faraday rotation measurements of the linearly polarized Helios signals could be recorded simultaneously at two widely-spaced ground stations. Many of these two-station measurement intervals display clear evidence of wave-like structures with quasi-periods of the order of a few minutes to a few hours. These structures are attributed to coronal Alfven waves. The radial propagation direction and velocity of these waves are estimated from a cross-correlation analysis of the data between the two stations. The majority of the waves appear to propagate away from the Sun, but about 30 percent of the cases indicate a propagation direction toward the Sun.

  13. Absorption of radio waves and the effective electron collision frequency in the midlatitude ionosphere

    NASA Astrophysics Data System (ADS)

    Vodolazkin, V. I.; Denisenko, P. F.; Rzhanitsyn, V. P.; Sotskij, V. V.; Faer, Yu. N.

    1993-06-01

    An empirical model of the effective electron collision frequency is presented for the 100-200-km height range in the midlatitude ionosphere. The model is based on multifrequency measurements of the absorption of ordinary and extraordinary radio waves as studied via vertical sounding near Rostov (47 deg 13 min N, 39 deg 14 min E). The model reflects seasonal variations for daytime periods and two levels of solar activity.

  14. Beam characterization of a new continuous wave radio frequency quadrupole accelerator

    NASA Astrophysics Data System (ADS)

    Perry, A.; Dickerson, C.; Ostroumov, P. N.; Zinkann, G.

    2014-01-01

    A new Continuous Wave (CW) Radio Frequency Quadrupole (RFQ) for the ATLAS (Argonne Tandem Linac Accelerator System) Intensity Upgrade was developed, built and tested at Argonne National Laboratory. We present here a characterization of the RFQ output beam in the longitudinal phase space, as well as a measurement of the transverse beam halo. Measurement results are compared to simulations performed using the beam dynamics code TRACK.

  15. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    NASA Astrophysics Data System (ADS)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati R.

    2015-12-01

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications.

  16. A Minimal Radio and Plasma Wave Investigation For a Mercury Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    2001-01-01

    The primary thrust of the effort at The University of Iowa for the definition of an orbiter mission to Mercury is a minimum viable radio and plasma wave investigation. While it is simple to add sensors and capability to any payload, the challenge is to do reasonable science within limited resources; and viable missions to Mercury are especially limited in payload mass. For a wave investigation, this is a serious concern, as the sensor mass often makes up a significant fraction of the instrumentation mass.

  17. Focus Adjustment System of Laser Probe for Radio Frequency Surface and Bulk Acoustic Wave Devices

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Kashiwa, Keisuke; Hashimoto, Ken-ya; Omori, Tatsuya; Yamaguchi, Masatsune; Kasai, Naoki

    2009-10-01

    In this paper, we describe a focus adjustment system designed especially for a fast-mechanical-scanning laser probe for radio-frequency surface and bulk acoustic wave devices. When high spatial resolution is necessary for the observation, one needs an objective lens of large magnifying power with extremely shallow focal depth. Then, a small inclination of a measurement device may cause severe defocus resulting in blurred images. We installed the focus adjustment system in the laser probe, and showed that even with inclination, high-quality information of the wave field can be acquired without reducing the scanning speed.

  18. Phase Coupling in Langmuir Wave Packets: Evidence for Four Wave Interactions in Solar Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Thejappa, G.; MacDowall, R. J.; Bergamo, M.

    2012-01-01

    The four wave interaction process, known as the oscillating two stream instability (OTSI) is considered as one of the mechanisms responsible for stabilizing the electron beams associated with solar type III radio bursts. It has been reported that (1) an intense localized Langmuir wave packet associated with a type III burst contains the spectral characteristics of the OTSI: (a) a resonant peak at the local electron plasma frequency, f(sub pe), (b) a Stokes peak at a frequency slightly lower than f(sub pe), (c) anti-Stokes peak at a frequency slightly higher than f(sub pe), and (d) a low frequency enhancement below a few hundred Hz, (2) the frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI, and (3) the peak intensity of the wave packet is well above the thresholds for the OTSI as well as spatial collapse of envelope solitons. Here, for the first time, applying the trispectral analysis on this wave packet, we show that the tricoherence, which measures the degree of coherent four-wave coupling amongst the observed spectral components exhibits a peak. This provides an additional evidence for the OTSI and related spatial collapse of Langmuir envelope solitons in type III burst sources.

  19. The Abundance of X-shaped Radio Sources: Implications for the Gravitational Wave Background

    NASA Astrophysics Data System (ADS)

    Roberts, David H.; Saripalli, Lakshmi; Subrahmanyan, Ravi

    2015-09-01

    Coalescence of supermassive black holes (SMBHs) in galaxy mergers is potentially the dominant contributor to the low frequency gravitational wave background (GWB). It was proposed by Merritt & Ekers that X-shaped radio galaxies are signposts of such coalescences and that their abundance might be used to predict the magnitude of the GWB. In Roberts et al. we presented radio images of all 52 X-shaped radio source candidates out of the sample of 100 selected by Cheung for which archival VLA data were available. These images indicate that at most 21% of the candidates might be genuine X-shaped radio sources that were formed by a restarting of beams in a new direction following a major merger. This suggests that fewer than 1.3% of extended radio sources appear to be candidates for genuine axis reorientations (“spin flips”), much smaller than the 7% suggested by Leahy & Parma. Thus, the associated GWB may be substantially smaller than previous estimates. These results can be used to normalize detailed calculations of the SMBH coalescence rate and the GWB.

  20. Search for non-thermal radio emission from Eta Carina's outer blast wave with ATCA

    NASA Astrophysics Data System (ADS)

    Ohm, Stefan; Urquhart, James; Skilton, Joanna Lucy; Hinton, Jim; Domainko, Wilfried

    2010-10-01

    Non-thermal hard X-ray and high-energy (HE; 1 MeV < E < 100 GeV) gamma-ray emission in the direction of Eta Carina has been recently detected using the INTEGRAL, AGILE and Fermi satellites. This emission can be either interpreted in the framework of particle acceleration in the colliding wind region between the two massive stars or in the very fast moving blast wave which originates in the historical 1843 "Great Eruption". The detection of a radio shell at the location of the shock would support the latter scenario and confirm Eta Carina as prime example of a new source type, namely, an LBV star whose massive ejecta accelerates electrons to non-thermal energies. While Fermi and INTEGRAL do not provide sufficient angular resolution to resolve the blast wave, high resolution radio observations using ATCA will be able to test non-thermal radio emission from this acceleration site. The current sensitivity of ATCA is such that a relatively modest observation time of 12 hours will be sufficient to image the synchrotron emission from the blast region down to magnetic field strengths well below typical ISM values and hence prove or reject our blast-wave hypothesis for the high energy emission.

  1. Fokker-Planck description of the scattering of radio frequency waves at the plasma edge

    SciTech Connect

    Hizanidis, Kyriakos; Kominis, Yannis; Tsironis, Christos; Ram, Abhay K.

    2010-02-15

    In magnetic fusion devices, radio frequency (rf) waves in the electron cyclotron (EC) and lower hybrid (LH) range of frequencies are being commonly used to modify the plasma current profile. In ITER, EC waves are expected to stabilize the neoclassical tearing mode (NTM) by providing current in the island region [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)]. The appearance of NTMs severely limits the plasma pressure and leads to the degradation of plasma confinement. LH waves could be used in ITER to modify the current profile closer to the edge of the plasma. These rf waves propagate from the excitation structures to the core of the plasma through an edge region, which is characterized by turbulence--in particular, density fluctuations. These fluctuations, in the form of blobs, can modify the propagation properties of the waves by refraction. In this paper, the effect on rf due to randomly distributed blobs in the edge region is studied. The waves are represented as geometric optics rays and the refractive scattering from a distribution of blobs is formulated as a Fokker-Planck equation. The scattering can have two diffusive effects--one in real space and the other in wave vector space. The scattering can modify the trajectory of rays into the plasma and it can affect the wave vector spectrum. The refraction of EC waves, for example, could make them miss the intended target region where the NTMs occur. The broadening of the wave vector spectrum could broaden the wave generated current profile. The Fokker-Planck formalism for diffusion in real space and wave vector space is used to study the effect of density blobs on EC and LH waves in an ITER type of plasma environment. For EC waves the refractive effects become important since the distance of propagation from the edge to the core in ITER is of the order of a meter. The diffusion in wave vector space is small. For LH waves the refractive effects are insignificant but the diffusion in wave vector space is important. The theoretical model is general enough to study the effect of density blobs on all propagating cold plasma waves.

  2. Fokker-Planck description of the scattering of radio frequency waves at the plasma edge

    NASA Astrophysics Data System (ADS)

    Hizanidis, Kyriakos; Ram, Abhay K.; Kominis, Yannis; Tsironis, Christos

    2010-02-01

    In magnetic fusion devices, radio frequency (rf) waves in the electron cyclotron (EC) and lower hybrid (LH) range of frequencies are being commonly used to modify the plasma current profile. In ITER, EC waves are expected to stabilize the neoclassical tearing mode (NTM) by providing current in the island region [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)]. The appearance of NTMs severely limits the plasma pressure and leads to the degradation of plasma confinement. LH waves could be used in ITER to modify the current profile closer to the edge of the plasma. These rf waves propagate from the excitation structures to the core of the plasma through an edge region, which is characterized by turbulence—in particular, density fluctuations. These fluctuations, in the form of blobs, can modify the propagation properties of the waves by refraction. In this paper, the effect on rf due to randomly distributed blobs in the edge region is studied. The waves are represented as geometric optics rays and the refractive scattering from a distribution of blobs is formulated as a Fokker-Planck equation. The scattering can have two diffusive effects—one in real space and the other in wave vector space. The scattering can modify the trajectory of rays into the plasma and it can affect the wave vector spectrum. The refraction of EC waves, for example, could make them miss the intended target region where the NTMs occur. The broadening of the wave vector spectrum could broaden the wave generated current profile. The Fokker-Planck formalism for diffusion in real space and wave vector space is used to study the effect of density blobs on EC and LH waves in an ITER type of plasma environment. For EC waves the refractive effects become important since the distance of propagation from the edge to the core in ITER is of the order of a meter. The diffusion in wave vector space is small. For LH waves the refractive effects are insignificant but the diffusion in wave vector space is important. The theoretical model is general enough to study the effect of density blobs on all propagating cold plasma waves.

  3. Effect exerted by a radio wave electromagnetic field on the rheological properties of water and portland-cement systems

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.

    2013-09-01

    We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.

  4. Dynamical evidence for nonlinear Langmuir wave processes in type III solar radio bursts

    NASA Astrophysics Data System (ADS)

    Graham, D. B.; Cairns, Iver H.

    2014-04-01

    The nonlinear processes and evolution of Langmuir waves in the source regions of type III solar radio bursts are explored in detail. Langmuir waves recorded by the Time Domain Sampler of the STEREO/WAVES instrument can be roughly classified into six groups based on the waveform, power spectra, and field strength perpendicular to the local magnetic field. It is argued that these groups correspond to either different stages of the evolution of Langmuir waves generated by electron beams or differ due to the direction of the magnetic field relative to the solar wind velocity. Approximately half of the observed Langmuir waves have strong perpendicular fields, meaning that understanding how these fields are produced is crucial for understanding type III sources. Most events recorded are either localized waveforms consistent with Langmuir eigenmodes or have two or more spectral peaks consistent with electrostatic (ES) decay of Langmuir/z mode waves. The remaining events appear to correspond to either earlier or later stages of Langmuir wave evolution or are decay events for which the Doppler shift is insufficient to distinguish the beam-driven and product Langmuir waves. This is supported by the fact that most events exceed the threshold for ES decay even though their spectra show no evidence for decay and some of the events are observed when the solar wind flow is approximately perpendicular to the magnetic field, minimizing Doppler shifting. Low-frequency fields produced by intense Langmuir waves are quantitatively consistent with density perturbations produced by the ponderomotive force, ion-acoustic waves produced by ES decay, or sheath rectification. Above the observed nonlinear threshold, quantitative analysis suggests that the observed low-frequency signals are consistent with perturbations produced by ponderomotive effects and ion-acoustic waves produced by ES decay, but effects of sheath rectification may also contribute.

  5. Analysis and simulation of standing wave pattern of powerful HF radio waves in ionospheric reflection region

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhou, Chen; Zhao, Zheng-Yu; Yang, Xu-Bo

    2015-12-01

    For the study of the various non-linear effects generated in ionospheric modulation experiments, accurate calculation of the field intensity variation in the whole reflection region for an electromagnetic wave vertically impinging upon the ionosphere is meaningful. In this paper, mathematical expressions of the electric field components of the characteristic heating waves are derived, by coupling the equation describing a wave initially impinging vertically upon the ionosphere with the Forsterling equation. The variation of each component of the electric field and the total electric field intensity of the standing wave pattern under a specific density profile are calculated by means of a uniform approximation, which is applied throughout the region near the reflection point. The numerical calculation results demonstrate that the total electric field intensity of the ordinary (O)-mode wave varies rapidly in space and reaches several maxima below the reflection point. Evident swelling phenomena of the electric field intensity are found. Our results also indicate that this effect is more pronounced at higher latitudes and that the geomagnetic field is important for wave pattern variation. The electric field intensity of the standing wave pattern of the extraordinary (X)-mode wave exhibits some growth below the reflection point, but its swelling effect is significantly weaker than that of the O-mode wave.

  6. Gravity waves in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Friedson, A. James

    1994-01-01

    Scintillations (high frequency variations) observed in the radio signal during the occultation of Voyager 1 by Titan (Hinson and Tyler, 1983) provide information concerning neutral atmospheric density fluctuations on scales on hundreds of meters to a few kilometers. Those seen at altitudes higher than 25 km above the surface were interpreted by Hinson and Tyler as being caused by linear, freely propagating (energy-conserving) gravity waves, but this interpretation was found to be inconsistent with the scintillation data below the 25-km altitude level. Here an attempt is made to interpret the entire scintillation profile between the surface and the 90-km altitude level in terms of gravity waves generated at the surface. Numerical calculations of the density fluctuations caused by two-dimensional, nonhydrostatic, finite-amplitude gravity waves propagating vertically through Titan's atmosphere are performed to produce synthetic scintillation profiles for comparison with the observations. The numerical model accurately treats the effects of wave transience, nonlinearity, and breakdown due to convective instability in the overturned part of the wave. The high-altitude scintillation data were accurately recovered with a freely propagating wave solution, confirming the analytic model of Hinson and Tyler. It is found that the low-altitude scintillation data can be fit by a model where a component of the gravity waves becomes convectively unstable and breaks near the 15 km level. The large-scale structure of the observed scintillation profile in the entire altitude range between 5 and 85 km can be simulated by a model where the freely propagating and breaking waves are forced at the surface simultaneously. Further analysis of the Voyager 1 Titan low-altitude scintillation data, using inversion theory appropriate for strong scattering, could potentially remove some of the ambiguities remaining in this analysis and allow a better determination of the strength and source of the waves.

  7. Estimated errors in a global gravity wave climatology from GPS radio occultation temperature profiles

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Llamedo, P.; Alexander, P.; Schmidt, T.; Wickert, J.

    2010-07-01

    In a previous paper by Schmidt et al. (2008), from CHAllenging Minisatellite Payload (CHAMP) Global Positioning System (GPS) radio occultation data, a comparison was made between a Gaussian filter applied to the "complete" temperature profile and to its "separate" tropospheric and stratospheric height intervals, for gravity wave analyses. It was found that the separate filtering method considerably reduces a wave activity artificial enhancement near the tropopause, presumably due to the isolation process of the wave component. We now propose a simple approach to estimate the uncertainty in the calculation of the mean specific wave potential energy content, due exclusively to the filtering process of vertical temperature profiles, independently of the experimental origin of the data. The approach is developed through a statistical simulation, built up from the superposition of synthetic wave perturbations. These are adjusted by a recent gravity wave (GW) climatology and temperature profiles from reanalyses. A systematic overestimation of the mean specific wave potential energy content is detected and its variability with latitude, altitude, season and averaging height interval is highlighted.

  8. Radial distribution of compressive waves in the solar corona revealed by Akatsuki radio occultation observations

    SciTech Connect

    Miyamoto, Mayu; Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato; Tokumaru, Munetoshi; Shiota, Daikou; Isobe, Hiroaki; Asai, Ayumi; Häusler, Bernd; Pätzold, Martin; Nabatov, Alexander

    2014-12-10

    Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R{sub S} (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches ∼30% around 5 R{sub S} , implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux on the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below ∼6 R{sub S} and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfvén waves. The compressive waves should eventually dissipate through shock generation to heat the corona.

  9. Discovery of millimetre-wave excess emission in radio-quiet active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Baldi, Ranieri D.; Laor, Ari; Horesh, Assaf; Stevens, Jamie; Tzioumis, Tasso

    2015-07-01

    The physical origin of radio emission in radio-quiet active galactic nuclei (RQ AGN) remains unclear, whether it is a downscaled version of the relativistic jets typical of radio-loud (RL) AGN, or whether it originates from the accretion disc. The correlation between 5 GHz and X-ray luminosities of RQ AGN, which follows LR = 10-5LX observed also in stellar coronae, suggests an association of both X-ray and radio sources with the accretion disc corona. Observing RQ AGN at higher (mm-wave) frequencies, where synchrotron self-absorption is diminished, and smaller regions can be probed, is key to exploring this association. Eight RQ AGN, selected based on their high X-ray brightness and variability, were observed at 95 GHz with the CARMA (Combined Array for Research in Millimetre-wave Astronomy) and ATCA (the Australia Telescope Compact Array) telescopes. All targets were detected at the 1-10 mJy level. Emission excess at 95 GHz of up to ×7 is found with respect to archival low-frequency steep spectra, suggesting a compact, optically thick core superimposed on the more extended structures that dominate at low frequencies. Though unresolved, the 95 GHz fluxes imply optically thick source sizes of 10-4-10-3 pc, or ˜10-1000 gravitational radii. The present sources lie tightly along an LR (95 GHz) = 10-4LX (2-10 keV) correlation, analogous to that of stellar coronae and RQ AGN at 5 GHz, while RL AGN are shown to have higher LR/LX ratios. The present observations argue that simultaneous mm-wave and X-ray monitoring of RQ AGN features a promising method for understanding accretion disc coronal emission.

  10. Computational strategy for modeling radio wave propagation in lossy circular waveguides

    SciTech Connect

    Moses, Ronald; Cai, D Michael

    2008-01-01

    The propagation of radio waves in lossy waveguides and tunnels has been researched extensively for many years as can be seen in the detailed book by Wait. The mathematics used to model waveguides for communications is essentially the same as that needed to model radio frequency (RF) propagation in simple tunnels. The presence or lack of conductors inside a waveguide or tunnel is a key driver in the nature of the solutions one will find for a particular application, Delogne. When there are conductors passing through a waveguide or tunnel, the simplest modes of propagation are surface-guided waves following the conductor and typically enabling long-range transmission. A tunnel containing a core conductor can act rather like a coaxial cable, propagating waves at a nearly constant speed, regardless of frequency. Conversely, a tunnel or waveguide without internal conductors is subject to very different wave patterns, resulting in a much more complex propagation analysis. Holloway et al. presented an exhaustive study of RF propagation in circular structures embedded in lossy surroundings. The work of Holloway et al. is the basis for this paper, where we discuss application of their computational techniques and present refinements gleaned from our work on similar problems.

  11. Ion Acoustic Wave Frequencies and Onset Times During Type 3 Solar Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Conflicting interpretations exist for the low-frequency ion acoustic (S) waves often observed by ISEE 3 in association with intense Langmuir (L) waves in the source regions of type III solar radio bursts near 1 AU. Two indirect lines of observational evidence, as well as plasma theory, suggest they are produced by the electrostatic (ES) decay L yields L(PRIME) + S. However, contrary to theoretical predictions, an existing analysis of the wave frequencies instead favors the electromagnetic (EM) decays L yields T + S, where T denotes an EM wave near the plasma frequency. This conflict is addressed here by comparing the observed wave frequencies and onset times with theoretical predictions for the ES and EM decays, calculated using the time-variable electron beam and magnetic field orientation data, rather than the nominal values used previously. Field orientation effects and beam speed variations are shown analytically to produce factor-of-three effects, greater than the difference in wave frequencies predicted for the ES and EM decays; effects of similar magnitude occur in the events analyzed here. The S-wave signals are extracted by hand from a sawtooth noise background, greatly improving the association between S waves and intense L waves. Very good agreement exists between the time-varying predictions for the ES decay and the frequencies of most (but not all) wave bursts. The waves occur only after the ES decay becomes kinematically allowed, which is consistent with the ES decay proceeding and producing most of the observed signals. Good agreement exists between the EM decay's predictions and a significant fraction of the S-wave observations while the EM decay is kinematically allowed. The wave data are not consistent, however, with the EM decay being the dominant nonlinear process. Often the observed waves are sufficiently broadband to overlap simultaneously the frequency ranges predicted for the ES and EM decays. Coupling the dominance of the ES decay with this frequency overlap provides support for a previous suggestion that fundamental emission occurs when the EM decay is stimulated by the ES decay product waves. The periods in which the ES and EM decays produce observable S waves are consistent with the observed and (independently) predicted times of fundamental and harmonic radio emission. This supports interpretation of fundamental emission as stimulated EM decay and harmonic emission as the coalescence L + L(prime) yields T of beam-generated L waves and L(prime) waves produced by the ES decay, where T denotes an electromagnetic wave at twice the plasma frequency. Analysis of the electron beam data reveals that the time-varying beam speed is consistent with ballistic beam propagation with minimal energy loss, implying that the beam propagates in a state close to time- and volume-averaged marginal stability. This confirms a central tenet of the stochastic growth theory for type III bursts.

  12. Verification of particle simulation of radio frequency waves in fusion plasmas

    SciTech Connect

    Kuley, Animesh; Lin, Z.; Fusion Simulation Center, Peking University, Beijing 100871 ; Wang, Z. X.; Wessel, F.

    2013-10-15

    Radio frequency (RF) waves can provide heating, current and flow drive, as well as instability control for steady state operations of fusion experiments. A particle simulation model has been developed in this work to provide a first-principles tool for studying the RF nonlinear interactions with plasmas. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation. This model has been implemented in a global gyrokinetic toroidal code using real electron-to-ion mass ratio. To verify the model, linear simulations of ion plasma oscillation, ion Bernstein wave, and lower hybrid wave are carried out in cylindrical geometry and found to agree well with analytic predictions.

  13. High power water load for microwave and millimeter-wave radio frequency sources

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  14. Involuntary human hand movements due to FM radio waves in a moving van.

    PubMed

    Huttunen, P; Savinainen, A; Hänninen, Osmo; Myllylä, R

    2011-06-01

    Finland TRACT Involuntary movements of hands in a moving van on a public road were studied to clarify the possible role of frequency modulated radio waves on driving. The signals were measured in a direct 2 km test segment of an international road during repeated drives to both directions. Test subjects (n=4) had an ability to sense radio frequency field intensity variations of the environment. They were sitting in a minivan with arm movement detectors in their hands. A potentiometer was used to register the hand movements to a computer which simultaneously collected data on the amplitude of the RF signal of the local FM tower 30 km distance at a frequency of about 100 MHz. Involuntary hand movements of the test subjects correlated with electromagnetic field, i.e. FM radio wave intensity measured. They reacted also on the place of a geomagnetic anomaly crossing the road, which was found on the basis of these recordings and confirmed by the public geological maps of the area.In conclusion, RF irradiation seems to affect the human hand reflexes of sensitive persons in a moving van along a normal public road which may have significance in traffic safety. PMID:21616774

  15. Surface-wave data acquisition and dissemination by VHF packet radio and computer networking

    NASA Astrophysics Data System (ADS)

    Briscoe, M.; Denton, E.; Frye, D.; Hunt, M.; Montgomery, E.

    1988-04-01

    Waverider buoy data are normally transmitted on a 27 MHz analog radio link to a shore station a few miles away, where the buoy data are plotted on a paper strip-chart recorder or logged digitally for later computer processing. Instead, we have constructed a relay station on Martha's Vineyard island that retransmits the received Waverider data over a digital, 148 MHz packet-radio link a personal computer in our laboratory on Cape Cod, where the data are edited, processed, spectrally analyzed, and then sent over an Ethernet line to our Institution mainframe computer for archiving. Telephone modem access of a special wave-data file on the mainframe permits unattended data dissemination to the public. The report describes the entire system, including Waverider buoy mooring hardware, computer programs, and equipment. The purpose of the project was to learn what difficulties are involved in the automated acquisition and dissemination of telemetered oceanographic data, and to gain experience with packet radio techniques. Although secondary to these purposes, the long-term surface-wave monitoring off the southwest shore of Martha's Vineyard has its own scientific, engineering, and environmental benefits.

  16. Creation of visible artificial optical emissions in the aurora by high-power radio waves.

    PubMed

    Pedersen, Todd R; Gerken, Elizabeth A

    2005-02-01

    Generation of artificial light in the sky by means of high-power radio waves interacting with the ionospheric plasma has been envisaged since the early days of radio exploration of the upper atmosphere, with proposed applications ranging from regional night-time street lighting to atmospheric measurements. Weak optical emissions have been produced for decades in such ionospheric 'heating' experiments, where they serve as key indicators of electron acceleration, thermal heating, and other effects of incompletely understood wave-particle interactions in the plasma under conditions difficult to replicate in the laboratory. The extremely low intensities produced previously have, however, required sensitive instrumentation for detection, preventing applications beyond scientific research. Here we report observations of radio-induced optical emissions bright enough to be seen by the naked eye, and produced not in the quiet mid-latitude ionosphere, but in the midst of a pulsating natural aurora. This may open the door to visual applications of ionospheric heating technology or provide a way to probe the dynamics of the natural aurora and magnetosphere. PMID:15690034

  17. An Experiment Study of the Propagation of Radio Waves in a Scaled Model of Long-Wall Coal Mining Tunnels

    SciTech Connect

    Han, G.R.; Zhang, W.M.; Zhang, Y.P.

    2009-07-01

    A long-wall coal mining tunnel is the most important working area in a coal mine. It has long been realized that radio communications can improve both productivity and safety in this dangerous area. Hence, many attempts to use radio communications in such an environment have been made. Unfortunately, no radio system has satisfactorily provided communication services there, which, we believe, is partially due to poor understanding of the propagation characteristics of radio waves in the long-wall mining tunnel. To have deeper physical insight into the propagation problem, a scaled model of the long-wall mining tunnel was built, and the propagation characteristics of UHF radio waves were measured. The experiment and the measured results are presented and discussed.

  18. Scattering of radio frequency waves by cylindrical density filaments in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Ram, Abhay K.; Hizanidis, Kyriakos

    2016-02-01

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on the properties of RF waves has not been quantified experimentally, it is of interest to carry out a theoretical study to determine if fluctuations can affect the propagation characteristics of RF waves. Usually, the difference between the plasma density inside the filament and the background plasma density is sizable, the ratio of the density difference to the background density being of order one. Generally, this precludes the use of geometrical optics in determining the effect of fluctuations, since the relevant ratio has to be much less than one, typically, of the order of 10% or less. In this paper, a full-wave, analytical model is developed for the scattering of a RF plane wave by a cylindrical plasma filament. It is assumed that the plasma inside and outside the filament is cold and uniform and that the major axis of the filament is aligned along the toroidal magnetic field. The ratio of the density inside the filament to the density of the background plasma is not restricted. The theoretical framework applies to the scattering of any cold plasma wave. In order to satisfy the boundary conditions at the interface between the filament and the background plasma, the electromagnetic fields inside and outside the filament need to have the same k∥ , the wave vector parallel to the ambient magnetic field, as the incident plane wave. Consequently, in contrast to the scattering of a RF wave by a spherical blob [Ram et al., Phys. Plasmas 20, 056110-1-056110-10 (2013)], the scattering by a field-aligned filament does not broaden the k∥ spectrum. However, the filament induces side-scattering leading to surface waves and can also couple some power to the cold plasma wave different from the incident wave. The changes induced by a filament in the propagation of electron cyclotron waves and lower hybrid waves are illustrated by numerical results displaying the properties of the Poynting vector. The Poynting flux in the wake of the filament, and directed towards the core of the plasma, develops a spatial structure due to diffraction and shadowing. Thus, the fluctuations affect the uniformity of power flow into the plasma.

  19. Solar type II radio bursts associated with CME expansions as shown by EUV waves

    NASA Astrophysics Data System (ADS)

    Cunha-Silva, R. D.; Fernandes, F. C. R.; Selhorst, C. L.

    2015-06-01

    Aims: We investigate the physical conditions of the sources of two metric type II bursts associated with coronal mass ejection (CME) expansions with the aim of verifying the relationship between the shocks and the CMEs by comparing the heights of the radio sources and of the extreme-ultraviolet (EUV) waves associated with the CMEs. Methods: The heights of the EUV waves associated with the events were determined in relation to the wave fronts. The heights of the shocks were estimated by applying two different density models to the frequencies of the type II emissions and compared with the heights of the EUV waves. For the event on 13 June 2010 that included band-splitting, the shock speed was estimated from the frequency drifts of the upper and lower frequency branches of the harmonic lane, taking into account the H/F frequency ratio fH/fF = 2. Exponential fits on the intensity maxima of the frequency branches were more consistent with the morphology of the spectrum of this event. For the event on 6 June 2012 that did not include band-splitting and showed a clear fundamental lane on the spectrum, the shock speed was directly estimated from the frequency drift of the fundamental emission, determined by linear fit on the intensity maxima of the lane. For each event, the most appropriate density model was adopted to estimate the physical parameters of the radio source. Results: The event on 13 June 2010 had a shock speed of 590-810 km s-1, consistent with the average speed of the EUV wave fronts of 610 km s-1. The event on 6 June 2012 had a shock speed of 250-550 km s-1, also consistent with the average speed of the EUV wave fronts of 420 km s-1. For both events, the heights of the EUV wave revealed to be compatible with the heights of the radio source, assuming a radial propagation of the type-II-emitting shock segment.

  20. HF Radio Wave Propagation in the Ionosphere Observed with the ePOP RRI (Radio Receiver Instrument) -- SuperDARN Experiment

    NASA Astrophysics Data System (ADS)

    Hussey, G. C.; Gillies, R. G.; Ridley, C. G.; Yau, A. W.; McWilliams, K. A.; Sofko, G. J.

    2014-12-01

    The Radio Receiver Instrument (RRI) on the enhanced Polar Outflow Probe (ePOP) scientific payload of the recently launched CSA (Canadian Space Agency) CASSIOPE (Cascade Demonstrator Small-Sat and Ionospheric Polar Explorer) satellite mission and the Super Dual Auroral Radar Network (SuperDARN) of HF radars have successfully executed a number of experiments since the launch of ePOP in late September, 2013. This presentation investigates the propagation delays and timing associated with HF radio waves transversing the plasma in the terrestrial ionosphere. Both the relative and absolute timing of the co-ordinated SuperDARN-RRI experiments will be presented. This knowledge is essential for interpreting HF radio wave propagation effects such as range accuracy, mode-splitting and timing, Doppler shift, and delayed 'echo' signatures, for example.

  1. Review of radio wave for power transmission in medical applications with safety

    NASA Astrophysics Data System (ADS)

    Day, John; Geddis, Demetris; Kim, Jaehwan; Choi, Sang H.; Yoon, Hargsoon; Song, Kyo D.

    2015-04-01

    The integration of biosensors with radio frequency (RF) wireless power transmission devices is becoming popular, but there are challenges for implantable devices in medical applications. Integration and at the same time miniaturization of medical devices in a single embodiment are not trivial. The research reported herein, seeks to review possible effects of RF signals ranging from 900 MHz to 100 GHz on the human tissues and environment. Preliminary evaluation shows that radio waves selected for test have substantial influence on human tissues based on their dielectric properties. In the advancement of RF based biosensors, it is imperative to set up necessary guidelines that specify how to use RF power safely. In this paper, the dielectric properties of various human tissues will be used for estimation of influence within the selected RF frequency ranges.

  2. The coherer: with simple demonstrations of the generation, propagation and detection of radio waves

    NASA Astrophysics Data System (ADS)

    Mills, Allan

    2010-03-01

    A coherer is a bistable device based on metal filings loosely confined between solid metal electrodes. This granular material normally exhibits a very high electrical resistance (tens of kilohms), but passage of the high-frequency current generated by reception of a radio signal causes it to 'cohere' into a comparatively low resistance condition (tens of ohms). This state persists until the device is mechanically disturbed, whereupon the high resistance state is restored. This characteristic was employed by scientists in the 1890s to detect radio waves, and applied commercially by Marconi in his 'wireless' telegraph. It is easy to make a working coherer and directions are given for operating it from a distance with a spark transmitter based on a piezoelectric gas igniter. Incorporation of an 'aerial' and 'earth' enable a range of 7 m to be achieved and simple signals may be transmitted.

  3. Beat-type Langmuir wave emissions associated with a type III solar radio burst: Evidence of parametric decay

    NASA Technical Reports Server (NTRS)

    Hospodarsky, G. B.; Gurnett, D. A.

    1995-01-01

    Recent measurements from the plasma wave instrument on the Galileo spacecraft have shown that Langmuir waves observed in conjunction with a type III solar radio burst contain many beat-type waveforms, with beat frequencies ranging from about 150 to 650 Hz. Strong evidence exists that the beat pattern is produced by two closely spaced narrowband components. The most likely candidates for these two waves are a beam-generated Langmuir wave and an oppositely propagating Langmuir wave produced by parametric decay. In the parametric decay process, nonlinear interactions cause the beam-driven Langmuir wave to decay into a Langmuir wave and a low-frequency ion sound wave. Comparisons of the observed beat frequency are in good agreement with theoretical predictions for a three-wave parametric decay process. Weak low-frequency emissions are also sometimes observed at the predicted frequency of the ion sound wave.

  4. Electron Density Profiles in the Ionospheric D-Region Estimated from MF Radio Wave Absorption

    NASA Astrophysics Data System (ADS)

    Nagano, I.; Okada, T.

    Electron density measurements in the lower ionosphere were carried out more than 6 times during the period from 1975 to 1992 by using sounding rockets launched at KSC (Kagoshima Space Center in Japan). Low electron densities were estimated from the absorption of the characteristic mode of ground-based radio signals (17.4 kHz and 873 kHz) in the lower ionosphere measured by onboard receivers. Two kind of methods, i.e., VLF mode absorption and MF absorption methods were developed to estimate the D-region electron density by comparing the observed wave intensity with that calculated by a full wave treatment. In this paper, both absorption methods are introduced paying attention to the capability of low electron density measurement. In particular the S-310-18 rocket experiment is discussed in detail, in which the D-region electron density profile derived from the altitude variation of MF radio wave intensity is presented. Finally the lower ionospheric electron density profiles so far measured by those method at mid-latitude in Japan are compared with those of the IRI-95 model

  5. Infrasound oscillations in the ionosphere affected by high-power radio waves

    NASA Astrophysics Data System (ADS)

    Chernogor, L. F.; Frolov, V. L.; Pushin, V. F.

    2012-10-01

    We present the results of filtering in the range of periods 5.6-6.7 min of temporal variations in the Doppler frequency shift of the ionosphere-reflected radio signals from the high-frequency vertical ionospheric-sounding radar located near the city of Kharkov during ionospheric plasma modification by high-power periodic (with 6-min period) radio waves of the Sura facility. It is found that switching on and off a series of pulses with 3-min duration and the same pause launched a damped wave process with 6-min period, a delay time of about 30-50 min, and an apparent propagation velocity of about 320-530 m/s. The quasi-periodic variation amplitude of the Doppler frequency shift was 10-40 MHz. The corresponding relative-perturbation amplitude of the electron number density was about 0.1-0.3%. Detected oscillations is evidence that damped infrasound density waves can be generated in the upper atmosphere.

  6. Radio Wave Propagation for Communication on and around Mars. Part 1; Highlights: Propagation Through Mars Environment

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser

    1999-01-01

    We recommend to use the dayside Martian ionosphere as a reflector for global communication, because the dayside ionosphere has stable density peak and usable critic frequency. This is very crucial for the future Mars ground to around communication. The dayside ionosphere has been well modeled as a Chapman layer. We suggest to perform the Martian nightside ionospheric modeling study. Because the nightside ionosphere has very little measurements available, we propose to drop a digital ionosond instrument into the Mars surface for data collection. Even though the Martian tropospheric radio refractivity has small value, it still can cause the ray bending and multipath effects. We recommend to perform an accurate calculation on excess phase and group delays (range and time delays). Other effects, such as range rate errors, appearance angle deviation, defocusing loss on Mars, etc. are also needed to be estimated. Ice depolarization effects due to Martian clouds on radio waves is unknown yet, which is expected to be small, because lower optical depth and thinner layer of cloud: Total Martian atmospheric gaseous attenuation is expected to be less than 1 dB on microwaves band, because the Martian atmosphere has very low concentration in uncondensed H2O and O2. An accurate calculation for zenith opacity requires the information about scale heights of H2O and O2 distribution. An accurate water vapor altitude profile at Mars is not available yet. Under the normal condition, CO2 and N2 gases do not have electric or magnetic dipoles and do not absorb electromagnetic energy from the waves. However, they may generate the dipoles through a collision and interact with waves under a high density condition and absorb electromagnetic waves in the infrared and visible band. Dust storm is most dominant factor to the radio wave attenuation. Large Martian dust storm can cause at least 3 dB or higher loss to Ka band wave. For a normal dust storm, the attenuation is about 1 dB. The attenuation much depends on dust mass loading, dust size distribution, etc. Most large dust storm occur in the southern hemisphere during later spring and early summer when the southern hemisphere become suddenly hot.

  7. Application of four wave mixing in precise radio frequency dissemination via optical fiber link

    NASA Astrophysics Data System (ADS)

    Lu, Xing; Lv, Zhiqiang; Chen, Xing; Gong, Zibo; Shi, Kebin

    2014-09-01

    We report on a new phase noise detection technique for radio frequency (RF) dissemination based on transferring mode locked laser pulses via optical fiber. The proposed approach is insusceptible to optical fiber interconnection reflection by combining optical frequency comb (OFC) expansion generated by four wave mixing (FWM) in dispersion shifted fiber (DSF) and wavelength division multiplexing (WDM) technique. An experimental system based on a fiber link of 100km was demonstrated. The measured fractional stability was 1.510-13 at 1s and 1.710-16 at 1000s.

  8. Gravity waves above Andes detected from GPS radio occultation temperature profiles: Mountain forcing?

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Alexander, P.

    2005-09-01

    A significant wave activity in the upper troposphere and lower stratosphere at midlatitudes (30-40S) above the Andes Range was recently detected from Global Positioning System Radio Occultation (GPS RO) temperature profiles, retrieved from SAC-C (Satélite de Aplicaciones Cientficas-C) and CHAMP (CHAllenging Minisatellite Payload) satellites. Previously, large amplitude, long vertical wavelength structures have been reported in this region, as detected from other limb-sounding devices and have been identified as mountain waves (MWs). The capability of GPS RO observations to detect typical MWs with horizontal wavelengths shorter than 150 km, as well as the proper association of the observed wave activity to mountain forcing is put in doubt. Other three possible sources are discussed. In particular, the generation of inertio-gravity waves by geostrophic adjustment near to a permanent jet situated above the mountains, may constitute another important mechanism in this region. These waves may possess longer horizontal and perhaps shorter vertical wavelengths than those typically expected in MWs and could be more easily detected from limb-sounding profiles. The ``jet'' mechanism will be discussed in a second paper.

  9. Effect of the deformation of a regular ionospheric plasma profile on the anomalous absorption of a high-power radio wave in the resonance region

    NASA Astrophysics Data System (ADS)

    Vas'kov, V. V.; Dimant, Ia. S.

    1989-06-01

    It is shown that localized distortions of ionospheric plasma density profile due to the intense excitation of plasma oscillations near the upper-hybrid resonance of a high-power radio wave can lead to a change in the anomalous absorption of the disturbing wave. The profile deformation stabilizes the amplitude of a high-power radio wave reflected from the ionosphere and leads to an asymmetry in sounding waves with frequencies above and below that of the high-power wave.

  10. Scintillation Monitoring Using Asymmetry Index

    NASA Astrophysics Data System (ADS)

    Shaikh, Muhammad Mubasshir; Mahrous, Ayman; Abdallah, Amr; Notarpietro, Riccardo

    Variation in electron density can have significant effect on GNSS signals in terms of propagation delay. Ionospheric scintillation can be caused by rapid change of such delay, specifically, when they last for a longer period of time. Ionospheric irregularities that account for scintillation may vary significantly in spatial range and drift with the background plasma at speeds of 45 to 130 m/sec. These patchy irregularities may occur several times during night, e.g. in equatorial region, with the patches move through the ray paths of the GNSS satellite signals. These irregularities are often characterized as either ‘large scale’ (which can be as large as several hundred km in East-West direction and many times that in the North-South direction) or ‘small scale’ (which can be as small as 1m). These small scale irregularities are regarded as the main cause of scintillation [1,2]. In normal solar activity conditions, the mid-latitude ionosphere is not much disturbed. However, during severe magnetic storms, the aurora oval extends towards the equator and the equator anomaly region may stretched towards poles extending the scintillation phenomena more typically associated with those regions into mid-latitudes. In such stormy conditions, the predicted TEC may deviate largely from the true value of the TEC both at low and mid-latitudes due to which GNSS applications may be strongly degraded. This work is an attempt to analyze ionospheric scintillation (S4 index) using ionospheric asymmetry index [3]. The asymmetry index is based on trans-ionospheric propagation between GPS and LEO satellites in a radio occultation (RO) scenario, using background ionospheric data provided by MIDAS [4]. We attempted to simulate one of the recent geomagnetic storms (NOAA scale G4) occurred over low/mid-latitudes. The storm started on 26 September 2011 at UT 18:00 and lasted until early hours of 27 September 2011. The scintillation data for the storm was taken from an ionospheric station in Cairo, Egypt (lat= 29.8641 °, long= 31.3172 °). It was observed that the level of asymmetry was significantly increased during the main phase of the geomagnetic storm. This was due to the changes in ionization, which in turn produced large gradients along occulted ray path in the ionosphere. A very good correlation was found between the evaluated ionospheric asymmetry index and the S4 scintillation index. Additionally, the correlation between evaluated ionospheric asymmetry and errors related to the RO inversion products such as peak electron density (delta NmF2) and Vertical TEC (delta VTEC) estimates also showed promising results. This work is carried out under the framework of the TRANSMIT project (Training Research and Applications Network to Support the Mitigation of Ionospheric Threats - www.transmit-ionosphere.net). [1]Basu Sa. and Basu Su., (1981), ‘Equatorial Scintillation - A Review’, Journal of Atmospheric and Solar-Terrestrial Physics, 43, p. 473. [2]Davies K., (1990), ‘Ionospheric Radio’, IEEE Electromagnetic Waves Series 31, Peter Peregrinus Ltd. [3]Spencer, P., Mitchell, C.N., (2007) ‘Imaging of fast moving electron-density structures in the polar cap’, Annals of Geophysics, vol. 50, no. 3, pp. 427-434. [4]Shaikh, M.M., Notarpietro, R., Nava, B., (2013) ‘The Impact of Spherical Symmetry Assumption on Radio Occultation Data Inversion in the Ionosphere: An Assessment Study’, Advances in Space Research, doi: http://dx.doi.org/10.1016/j.asr.2013.10.025.

  11. Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    NASA Astrophysics Data System (ADS)

    Fllekrug, M.; Hanuise, C.; Parrot, M.

    2011-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz radio waves from fifty terrestrial Long Range Aid to Navigation (LORAN) transmitters. Their mean luminosity patch in the plasmasphere is a circular area with a radius of 300 km and a power density of 22 ?W/Hz as observed at 660 km height above the ground. The luminosity patches exhibit a southward displacement of 450 km with respect to the locations of the LORAN transmitters. The displacement is reduced to 150 km when an upward propagation of the radio waves along the geomagnetic field line is assumed. This residual displacement indicates that the radio waves undergo 150 km sub-ionospheric propagation prior to entering a magnetospheric duct and escaping into near-Earth space. The residual displacement at low (L < 2.14) and high (L > 2.14) geomagnetic latitudes ranges from 100 km to 200 km which suggests that the smaller inclination of the geomagnetic field lines at low latitudes helps to trap the radio waves and to keep them in the magnetospheric duct. Diffuse luminosity areas are observed northward of the magnetic conjugate locations of LORAN transmitters at extremely low geomagnetic latitudes (L < 1.36) in Southeast Asia. This result suggests that the propagation along the geomagnetic field lines results in a spatial spreading of the radio wave energy over distances of 1 Mm. The summative assessment of the electric field intensities measured in space show that nadir observations of terrestrial 100 kHz radio waves, e.g., from relativistic electron beams above thunderclouds, are attenuated by at least 50 dB when taking into account a transionospheric attenuation of 40 dB.

  12. Global gravity wave activity in the tropopause region from CHAMP radio occultation data

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; de la Torre, A.; Wickert, J.

    2008-08-01

    We discuss the global gravity wave (GW) activity expressed by the specific potential energy in the altitude range from 5 km below to 10 km above the tropopause, derived from GPS radio occultation data from CHAMP (2001-2008). The GW analysis is based on vertical detrending of the individual measured temperature profiles by applying a Gaussian filter in two different ways: (i) filtering of the complete temperature profiles and (ii) separate filtering of the profiles for the tropospheric and lower stratospheric parts. The separate filtering method significantly reduces the usually observed wave activity enhancement in the tropopause region which highly depends on the performance of the complete filtering method to reproduce the change in the temperature gradient at the tropopause. We only consider vertical wavelengths less than 10 km. The global mean potential energy in the tropopause region deduced with these different background temperatures will be analyzed, differences will be emphasized and possible error sources of the new method will be considered.

  13. High Power Radio Wave Interactions within the D-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Moore, R. C.

    2014-12-01

    This paper highlights the best results obtained during D-region modification experiments performed by the University of Florida at the High-frequency Active Auroral Research Program (HAARP) observatory between 2007 and 2014. Over this period, we have seen a tremendous improvement in ELF/VLF wave generation efficiency. We have identified methods to characterize ambient and modified ionospheric properties and to discern and quantify specific types of interactions. We have demonstrated several important implications of HF cross-modulation effects, including "Doppler Spoofing" on HF radio waves. Throughout this talk, observations are compared with the predictions of an ionospheric HF heating model to provide context and guidance for future D-region modification experiments.

  14. On seeding, large-scale wave structure, equatorial spread F, and scintillations over Vietnam

    NASA Astrophysics Data System (ADS)

    Tsunoda, Roland T.; Yamamoto, Mamoru; Tsugawa, Takuya; Hoang, Thai Lan; Tulasi Ram, S.; Thampi, Smitha V.; Chau, Ha Duyen; Nagatsuma, Tsutomu

    2011-10-01

    Understanding the day-to-day variability in occurrence of equatorial spread F (ESF) remains as a high-priority objective in space weather research. A major difficulty has been an inability to resolve the roles being played by large-scale wave structure (LSWS) and the post-sunset rise (PSSR) of the equatorial F layer, in the production of ESF. In this paper, we show conclusively that total electron content (TEC), measured as a function of latitude and longitude, provides clear, routine descriptions of LSWS. Then, together with ionosonde data, we show, for the first time, that while a seed for LSWS can occur in the late afternoon, its amplification takes place mostly during the PSSR. Implications of these findings are discussed in light of existing theories.

  15. Satellite radio occultation investigations of internal gravity waves in the planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander

    Internal gravity waves (IGWs) modulate the structure and circulation of the Earth’s atmosphere, producing quasi-periodic variations in the wind velocity, temperature and density. Similar effects are anticipated for the Venus and Mars since IGWs are a characteristic of stably stratified atmosphere. In this context, an original method for the determination of IGW parameters from a vertical temperature profile measurement in a planetary atmosphere has been developed [Gubenko et al., 2008, 2011, 2012]. This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, the analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitudes of the wave field and on the linear IGW saturation theory in which these amplitudes are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal wave reaches the shear instability threshold, energy is assumed to be dissipated in such a way that the IGW amplitude is maintained at the instability threshold level as the wave propagates upwards. We have extended the developed technique [Gubenko et al., 2008] in order to reconstruct the complete set of wave characteristics including such important parameters as the wave kinetic and potential energy per unit mass and IGW fluxes of the energy and horizontal momentum [Gubenko et al., 2011]. We propose also an alternative method to estimate the relative amplitudes and to extract IGW parameters from an analysis of perturbations of the Brunt-Vaislala frequency squared [Gubenko et al., 2011]. An application of the developed method to the radio occultation (RO) temperature data has given the possibility to identify the IGWs in the Earth's, Martian and Venusian atmospheres and to determine the magnitudes of key wave parameters such as the intrinsic frequency, amplitudes of vertical and horizontal wind velocity perturbations, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase (and group) speeds, kinetic and potential energy per unit mass, vertical fluxes of the wave energy and horizontal momentum. Vertical profiles of temperature retrieved from RO measurements of the CHAMP (Earth), Mars Global Surveyor (Mars), Magellan and Venus Express (Venus) missions are used and analyzed to identify discrete or “narrow spectral” wave events and to determine IGW characteristics in the Earth’s, Martian and Venusian atmospheres. This work was partially supported by the RFBR grant 13-02-00526-а and Program 22 of the RAS Presidium. References. Gubenko V.N., Pavelyev A.G., Andreev V.E. Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement // J. Geophys. Res. 2008. V. 113. No.D08109, doi:10.1029/2007JD008920. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Pavelyev A.A. Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the Earth’s atmosphere // Atmos. Meas. Tech. 2011. V. 4. No.10. P. 2153-2162, doi:10.5194/amt-4-2153-2011. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Andreev V.E. A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth’s atmosphere // Cosmic Res. 2012. V. 50. No.1. P. 21-31, doi: 10.1134/S0010952512010029.

  16. Development of data communication system with ultra high frequency radio wave for implantable artificial hearts.

    PubMed

    Tsujimura, Shinichi; Yamagishi, Hiroto; Sankai, Yoshiyuki

    2009-01-01

    In order to minimize infection risks of patients with artificial hearts, wireless data transmission methods with electromagnetic induction or light have been developed. However, these methods tend to become difficult to transmit data if the external data transmission unit moves from its proper position. To resolve this serious problem, the purpose of this study is to develop a prototype wireless data communication system with ultra high frequency radio wave and confirm its performance. Due to its high-speed communication rate, low power consumption, high tolerance to electromagnetic disturbances, and secure wireless communication, we adopted Bluetooth radio wave technology for our system. The system consists of an internal data transmission unit and an external data transmission unit (53 by 64 by 16 mm, each), and each has a Bluetooth module (radio field intensity: 4 dBm, receiver sensitivity: -80 dBm). The internal unit also has a micro controller with an 8-channel 10-bit A/D converter, and the external unit also has a RS-232C converter. We experimented with the internal unit implanted into pig meat, and carried out data transmission tests to evaluate the performance of this system in tissue thickness of up to 3 mm. As a result, data transfer speeds of about 20 kbps were achieved within the communication distance of 10 m. In conclusion, we confirmed that the system can wirelessly transmit the data from the inside of the body to the outside, and it promises to resolve unstable data transmission due to accidental movements of an external data transmission unit. PMID:19964616

  17. Evaluation of uncertainty in gravity wave potential energy calculations through GPS radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Luna, D.; Alexander, P.; de la Torre, A.

    2013-09-01

    The application of the Global Positioning System (GPS) radio occultation (RO) method to the atmosphere enables the determination of height profiles of temperature, among other variables. From these measurements, gravity wave activity is usually quantified by calculating the potential energy through the integration of the ratio of perturbation and background temperatures between two given altitudes in each profile. The uncertainty in the estimation of wave activity depends on the systematic biases and random errors of the measured temperature, but also on additional factors like the selected vertical integration layer and the separation method between background and perturbation temperatures. In this study, the contributions of different parameters and variables to the uncertainty in the calculation of gravity wave potential energy in the lower stratosphere are investigated and quantified. In particular, a Monte Carlo method is used to evaluate the uncertainty that results from different GPS RO temperature error distributions. In addition, our analysis shows that RO data above 30 km height becomes dubious for gravity waves potential energy calculations.

  18. A new approach to global gravity wave momentum flux determination from GPS radio occultation data

    NASA Astrophysics Data System (ADS)

    Faber, A.; Llamedo, P.; Schmidt, T.; de la Torre, A.; Wickert, J.

    2013-03-01

    GPS Radio Occultation (RO) is a well-established technique for obtaining global gravity wave (GW) information. RO uses GPS signals received aboard low Earth orbiting satellites for atmospheric limb sounding. Temperature profiles are derived with high vertical resolution and provide a global coverage under any weather conditions offering the possibility for global monitoring of the vertical temperature structure and atmospheric wave parameters. The six satellites constellation COSMIC/FORMOSAT-3 delivers approximately 2000 temperature profiles daily. In this study, we use a method to obtain global distributions of horizontal gravity wave wavelengths, to be applied in the determination of the vertical flux of horizontal momentum transported by gravity waves. The horizontal wavenumber is derived by the ratio of the phase shift and the spatial distance between adjacent temperature fluctuation profiles at a given altitude, following the method by Ern et al. (2004). A new method for the determination of the real horizontal wavelength from triads of vertical profiles is presented and applied to the COSMIC data. The horizontal and vertical wavelength, the specific potential energy (Ep) and the vertical flux of horizontal momentum (MF) are calculated and their global distribution is discussed.

  19. Simulation study of the interaction between large-amplitude HF radio waves and the ionosphere

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Thidé, B.

    2007-03-01

    The time evolution of a large-amplitude electromagnetic (EM) wave injected vertically into the overhead ionosphere is studied numerically. The EM wave has a carrier frequency of 5 MHz and is modulated as a Gaussian pulse with a width of approximately 0.1 milliseconds and a vacuum amplitude of 1.5 V/m at 50 km. This is a fair representation of a modulated radio wave transmitted from a typical high-power HF broadcast station on the ground. The pulse is propagated through the neutral atmosphere to the critical points of the ionosphere, where the L-O and R-X modes are reflected, and back to the neutral atmosphere. We observe mode conversion of the L-O mode to electrostatic waves, as well as harmonic generation at the turning points of both the R-X and L-O modes, where their amplitudes rise to several times the original ones. The study has relevance for ionospheric interaction experiments in combination with ground-based and satellite or rocket observations.

  20. A novel idea of purposefully affecting radio wave propagation by coherent acoustic source-induced atmospheric refractivity fluctuation

    NASA Astrophysics Data System (ADS)

    Gong, Shuhong; Yan, Daopu; Wang, Xuan

    2015-10-01

    The mechanism generating the array-distributed atmospheric refractivity fluctuation by a coherent acoustic source is analyzed. The theoretical model is established, which is used to quantifiably analyze the array structure of the artificial dielectric irregularities. It is qualitatively validated that the array-distributed artificial dielectric irregularities really exist and that the array structure of the artificial dielectric irregularities and the scattering effect of the artificial dielectric irregularities on a radio wave can be controlled by adjusting and selecting the optimized parameters of the transmitted acoustic wave and the adopted acoustic antenna array. It can be concluded that the array-distributed artificial dielectric irregularities can be used to purposefully affect radio wave propagation. After radio acoustic sounding system, the idea of this paper is a novel development in the field of the tropospheric atmospheric refractivity artificial abnormality technique and its applications.

  1. SDN based millimetre wave radio over fiber (RoF) network

    NASA Astrophysics Data System (ADS)

    Amate, Ahmed; Milosavljevic, Milos; Kourtessis, Pandelis; Robinson, Matthew; Senior, John M.

    2015-01-01

    This paper introduces software-defined, millimeter Wave (mm-Wave) networks with Radio over Fiber (RoF) for the delivery of gigabit connectivity required to develop fifth generation (5G) mobile. This network will enable an effective open access system allowing providers to manage and lease the infrastructure to service providers through unbundling new business models. Exploiting the inherited benefits of RoF, complete base station functionalities are centralized at the edges of the metro and aggregation network, leaving remote radio heads (RRHs) with only tunable filtering and amplification. A Software Defined Network (SDN) Central Controller (SCC) is responsible for managing the resource across several mm-Wave Radio Access Networks (RANs) providing a global view of the several network segments. This ensures flexible resource allocation for reduced overall latency and increased throughput. The SDN based mm-Wave RAN also allows for inter edge node communication. Therefore, certain packets can be routed between different RANs supported by the same edge node, reducing latency. System level simulations of the complete network have shown significant improvement of the overall throughput and SINR for wireless users by providing effective resource allocation and coordination among interfering cells. A new Coordinated Multipoint (CoMP) algorithm exploiting the benefits of the SCC global network view for reduced delay in control message exchange is presented, accounting for a minimum packet delay and limited Channel State Information (CSI) in a Long Term Evolution-Advanced (LTE-A), Cloud RAN (CRAN) configuration. The algorithm does not require detailed CSI feedback from UEs but it rather considers UE location (determined by the eNB) as the required parameter. UE throughput in the target sector is represented using a Cumulative Distributive Function (CDF). The drawn characteristics suggest that there is a significant 60% improvement in UE cell edge throughput following the application, in the coordinating cells, of the new CoMP algorithm. Results also show a further improvement of 36% in cell edge UE throughput when eNBs are centralized in a CRAN backhaul architecture. The SINR distribution of UEs in the cooperating cells has also been evaluated using a box plot. As expected, UEs with CoMP perform better demonstrating an increase of over 2 dB at the median between the transmission scenarios.

  2. Effect of electron-density gradients on propagation of radio waves in the mid-latitude trough. Master's thesis

    SciTech Connect

    Citrone, P.J.

    1991-01-01

    Partial contents of this thesis include: (1) Radio-wave propagation and the mid-latitude trough; (2) Ionospheric measurements; (3) Modification of time-dependent ionospheric model output with latitudinal electron-density profiles from digisonde trough depictions; (4) Ray-tracing simulations to examine ground range; and (5) Effects of three-dimensional gradients in electron density on radio-wave propagation in the trough region. Data is tabulated for geophysical conditions, solar activity level, geomagnetic activity level, conditions for vertical ray refraction to surface, and ray-tracing fixed-input conditions.

  3. The radio waves & thermal electrostatic noise spectroscopy (SORBET) experiment on BepiColombo/MMO/PWI and the importance of radio HF measurements at Mercury

    NASA Astrophysics Data System (ADS)

    Moncuquet, M.; Matsumoto, H.; Bougeret, J.-L.; Issautier, K.; Kojima, H.; Maksimovic, M.; Meyer-Vernet, N.; Zarka, P.

    SORBET (Spectroscopie des Ondes Radio & du Bruit Electrostatique Thermique) is a radio HF spectrometer designed for the radio and Plasma Waves Instrument (PWI) onboard BepiColombo/Mercury Magnetospheric Orbiter (MMO), which performs remote and in-situ measurements of waves (electromagnetic and electrostatic). Technically, SORBET includes a plasma wave spectrometer, with two E-field inputs from the two perpendicular electric antennas and one B-field input from a search coil, in the range 2.5 kHz - 640 kHz. This frequency band includes the local gyrofrequency and plasma frequency expected on most part of the MMO orbits. SORBET also includes a higher frequency radio receiver for remote sensing in the range 500kHz-10.2MHz. Owing to its capabilities, SORBET will be able to address the following scientific objectives: High resolution mapping (˜ 30 km) of electron density and temperature in the solar wind and Hermean magnetosphere and exo-ionosphere, via the technique of Quasi-Thermal Noise (QTN) spectroscopy. It is noteworthy that the QTN technique is weakly sensitive to spacecraft potential and photoelectron perturbations, a point highly in favour of this technique at Mercury. These QTN measurements will be determinant for the dynamic modeling of the magnetosphere and will provide a fundamental input for the chemistry of cold ionized species (Na, K, O ...) in Mercury's environment. Detection and study of Hermean radio emissions, including possible cyclotron emissions (up to ˜ 10-20 kHz) from mildly energetic electrons in highly magnetized (polar?) regions, and possible synchrotron radiation (up to a few MHz?) from more energetic electrons. Monitoring of solar radio emissions up to ~10 MHz, in order to create a solar activity index from the view point of Mercury, allowing to correlate it with the Hermean magnetospheric response. We propose to further discuss these scientific objectives and to underline that such radio HF measurements are a clue for understanding the structure and dynamics (regions, boundaries, acceleration, dissipation processes ...) of the Hermean magnetosphere/exo-ionosphere system and its interaction with the solar wind.

  4. Effect of the quasi-biennial oscillation on radio-wave absorption variations in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Lastovicka, J.; Kniazev, A. K.

    1990-08-01

    An analysis of a 19-year series of regular variations on radio-wave absorption in Central Europe demonstrates that the quasi-biennial oscillation (QBO) has a significant effect on the amplitude of the semiannual harmonic in the lower-ionospheric absorption. This amplitude is higher for the western phase of the QBO than for the eastern phase. The effect of the QBO on the semiannual wave is primarily connected with variations of the difference between the spring and summer absorption levels.

  5. Investigation of Total Absorption of Radio Waves in High Latitude Ionosphere

    NASA Astrophysics Data System (ADS)

    Shi, Jiankui; Wang, Zheng; Tao, Wei; A. Zherebtsov, G.; B. Romanova, E.; G. Ratovsky, K.

    2014-09-01

    Using the digisonde data observed at ionospheric station Norilsk (Dip lat. 60°N) in 2006, a statistical study on the characteristics of the ionospheric plasma total absorption of radio waves (IPTAR) was performed. In the winter and some months of equinox, the IPTAR mainly occurred in the nighttime and the highest occurrence rate could be up to 90%. In the summer, the occurrence was relatively low and the differences between nighttime and daytime occurrence reduced. The total duration of IPTAR seemed longer around the winter than that around the summer. The occurrence of IPTAR events ascended as the Kp index increased. The frequent precipitation of energetic particles into the ionospheric plasma in the auroral belt may be the main cause of the IPTAR events.

  6. A test for the solar cycle variability of ionospheric radio wave absorption by A_1 technique

    NASA Astrophysics Data System (ADS)

    Nath, N.; Abraham, S.

    1996-01-01

    The quiet time solar cycle variability of ionospheric radio wave absorption of 2.132 MHz at Delhi is compared with the absorption calculated by using the well known aeronomical (six-ion) and empirical (IRI-1990) models of electron density profiles and standard collision frequency distributions. It is found that the observed increase of absorption in solar cycle 21/22 is by a factor of 2.5 greater than values computed with IRI. These latter are almost satisfactory for low and moderate values of the 1-8 Angstroms solar X-ray flux. Absorption and X-ray flux are well correlated for low and moderate, not so for high flux values.

  7. Association of corotating magnetic sector structure with Jupiters decameter-wave radio emissions

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.

    1979-01-01

    Chree (superposed epoch) analyses of Jupiter's decameter-wave radio emission taken from the new Thieman (1979) catalog show highly significant correlation with solar activity indicated by the geomagnetic Ap index. The correlation effects can be explained in terms of corotating interplanetary magnetic sector features. At times when the solar wind velocity is relatively low, about 300 to 350 km/s, a sector boundary can encounter the Earth and Jupiter almost simultaneously during the period immediately before opposition. After opposition this will not normally occur as the solar wind velocities necessary are too low. The correlation effects are much enhanced for the three apparitions of 1962-1964 during which a relatively stable and long-lived sector pattern was present. Chree analyses for this period indicate periodicities, approximately equal to half the solar rotation period, in the Jupiter data.

  8. Thermal response of the F region ionosphere in artificial modification experiments by HF radio waves

    NASA Technical Reports Server (NTRS)

    Mantas, G. P.; Lahoz, C. H.; Carlson, H. C., Jr.

    1981-01-01

    The thermal response of the nighttime F region ionosphere to local heating by HF radio waves has been observed with the incoherent scatter radar at Arecibo, Puerto Rico. The observations consist of high-resolution space and time variation of the electron temperature as a high-power HF transmitter is switched on and off with a period 240 s. As soon as the HF transmitter is turned on, the electron temperature begins to rise rapidly in a narrow altitude region near 300 km, below the F2 layer peak. The electron temperature perturbation subsequently spreads over a broader altitude region. The observations are compared with the anticipated thermal response of the ionosphere based on numerical solutions of the coupled time-dependent heat conduction equations for the electron and composite ion gases and are found to be in good agreement over the entire altitude region covered by the observations.

  9. Wavelength dependence in radio-wave scattering and specular-point theory

    NASA Technical Reports Server (NTRS)

    Tyler, G. L.

    1976-01-01

    Radio-wave scattering from natural surfaces contains a strong quasispecular component that at fixed wavelengths is consistent with specular-point theory, but often has a strong wavelength dependence that is not predicted by physical optics calculations under the usual limitations of specular-point models. Wavelength dependence can be introduced by a physical approximation that preserves the specular-point assumptions with respect to the radii of curvature of a fictitious, effective scattering surface obtained by smoothing the actual surface. A uniform low-pass filter model of the scattering process yields explicit results for the effective surface roughness versus wavelength. Interpretation of experimental results from planetary surfaces indicates that the asymptotic surface height spectral densities fall at least as fast as an inverse cube of spatial frequency. Asymptotic spectral densities for Mars and portions of the lunar surface evidently decrease more rapidly.

  10. Direct imaging of radio-frequency modes via traveling wave magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Tonyushkin, A.; Deelchand, D. K.; Van de Moortele, P.-F.; Adriany, G.; Kiruluta, A.

    2016-01-01

    We demonstrate an experimental method for direct 2D and 3D imaging of magnetic radio-frequency (rf) field distribution in metal-dielectric structures based on traveling wave (TW) magnetic resonance imaging (MRI) at ultra-high field (>7 T). The typical apparatus would include an ultra-high field whole body or small bore MRI scanner, waveguide elements filled with MRI active dielectrics with predefined electric and magnetic properties, and TW rf transmit-receive probes. We validated the technique by obtaining TW MR images of the magnetic field distribution of the rf modes of circular waveguide filled with deionized water in a 16.4 T small-bore MRI scanner and compared the MR images with numerical simulations. Our MRI technique opens up a practical non-perturbed way of imaging of previously inaccessible rf field distribution of modes inside various shapes metal waveguides with inserted dielectric objects, including waveguide mode converters and transformers.

  11. Quasilinear theory of electron transport by radio frequency waves and nonaxisymmetric perturbations in toroidal plasmas

    SciTech Connect

    Kominis, Y.; Hizanidis, K.; Ram, A. K.

    2008-12-15

    The use of radio frequency waves to generate plasma current and to modify the current profile in magnetically confined fusion devices is well documented. The current is generated by the interaction of electrons with an appropriately tailored spectrum of externally launched rf waves. In theoretical and computational studies, the interaction of rf waves with electrons is represented by a quasilinear diffusion operator. The balance, in steady state, between the quasilinear operator and the collision operator gives the modified electron distribution from which the generated current can be calculated. In this paper the relativistic operator for momentum and spatial diffusion of electrons due to rf waves and nonaxisymmetric magnetic field perturbations is derived. Relativistic treatment is necessary for the interaction of electrons with waves in the electron cyclotron range of frequencies. The spatial profile of the rf waves is treated in general so that diffusion due to localized beams is included. The nonaxisymmetric magnetic field perturbations can be due to magnetic islands as in neoclassical tearing modes. The plasma equilibrium is expressed in terms of the magnetic flux coordinates of an axisymmetric toroidal plasma. The electron motion is described by guiding center coordinates using the action-angle variables of motion in an axisymmetric toroidal equilibrium. The Lie perturbation technique is used to derive a diffusion operator which is nonsingular and time dependent. The resulting action diffusion equation describes resonant and nonresonant momentum and spatial diffusion. Momentum space diffusion leads to current generation in the plasma and spatial diffusion describes the effect of rf waves and magnetic perturbations on spatial evolution of the current profile. Depending on the symmetry of the equilibrium and the corresponding relation of the action variables to the configuration space variables, in addition to diffusion along the radial direction, poloidal, and toroidal electron diffusion, is also described. In deriving the diffusion operator, no statistical assumption, such as, the Markovian assumption, for the underlying electron dynamics, is imposed. Consequently, the operator is time dependent and valid for a dynamical phase space that is a mix of correlated regular orbits and decorrelated chaotic orbits. The diffusion operator is expressed in a form suitable for implementation in a numerical code.

  12. FDTD analysis of ELF radio waves propagating in the Earth-ionosphere waveguide

    NASA Astrophysics Data System (ADS)

    Marchenko, Volodymyr; Kulak, Andrzej; Mlynarczyk, Janusz

    2015-04-01

    We developed an FDTD model of electromagnetic wave propagation in the Earth-ionosphere cavity. We present the results of FDTD calculations assuming axisymmetric system with the source located at the north pole and with no dependence on azimuthal coordinate. Therefore we reduced the Maxwell equations to 2D spherical system of Maxwell equations. To model the conductivity profile of the Earth-ionosphere waveguide we used two models, namely one- and two-exponential profiles [Mushtak and Williams, 2002]. The day-night asymmetry was introduced by setting different model parameters for the north and south hemispheres. The ground was modeled as a perfect electric conductor. Also the upper boundary for the model was a perfect conductor but it was placed at a high enough altitude to make sure there is no reflection of the waves from this boundary. We obtained the results for the electric and magnetic field components of the propagating wave in the time and frequency domains and for various locations on Earth along the meridian. In the time domain we analyzed the evolution of the electric and magnetic field components of the radio wave generated by lighting for different probe position, the penetration of the ionosphere by the electromagnetic waves and the reflection of the waves on the terminator. In the frequency domain we analyzed the Schumann resonance spectra in different field components for different location in the computational space, the behavior of the Poynting vector and the wave impedance. We also calculated real and imaginary parts of the characteristic electric and magnetic altitudes for the daytime and nighttime ionosphere. The analysis in the frequency domain was performed up to 1 kHz. We compared the results of numerical calculations with our analytical model and found a reasonably good agreement between them. The results can be used in the analysis of global thunderstorm activity based on measurements of Schumann resonance spectra. Acknowledgements. This work has been supported by the National Science Centre grant 2012/04/M/ST10/00565. The numerical computations were done using the PL-Grid infrastructure.

  13. Modeling Ionospheric HF/VHF Radio-Wave Absorption due to Solar Energetic Proton Events

    NASA Astrophysics Data System (ADS)

    Sauer, H. H.; Wilkinson, D. C.

    2007-12-01

    Simple, one-parameter, algorithms have been applied to the observed energetic proton flux as provided by the GOES series of satellites to yield estimates of the high latitude HF and VHF radio-wave absorption for both day and night respectively. The twilight response is obtained as a bi-linear function of the solar zenith angle at the observation positions, and the latitude dependence of the absorption region near the edge of the absorbing region (the polar caps) are estimated from extant models of geomagnetic cut-offs and their dependence on geomagnetic activity. The approximate inverse square frequency dependence of ionospheric absorption is used to translate across the HF/VHF range and predictions of the minimum duration of events are determined. Calculations of the polar cap absorption of HF radio waves have been performed for eleven larger Solar Energetic Proton (SEP) events during the period from 1992 through 2002 and the results compared to observations of 30 MHz Riometers operated by the AFGL and located at Thule, Greenland. While discrepancies between the estimated and observed absorption using these procedures occur, especially at low absorption levels, this model has operational value in view of its simplicity and its being the only extant model, to our knowledge, which treats solar-illumination, geomagnetic cutoff variation, and frequency effects, at least to first order. Specimen graphical representations of the north and south polar caps illustrate the output of the model for the peak of the 12 December 2006 solar proton event. Given sufficient interest, improvements to the methodology used here are practicable and could be expected to achieve accuracies to the order of 25% or better.

  14. Modeling Ionospheric Radio-Wave Absorption due to Solar Energetic Proton Events

    NASA Astrophysics Data System (ADS)

    Sauer, H. H.

    2007-05-01

    Simple, one-parameter, algorithms have been applied to the observed energetic proton flux as provided by the GOES series of satellites to yield estimates of the high latitude HF and VHF radio-wave absorption for both day and night respectively. The twilight response is obtained as a bi-linear function of the solar zenith angle at the observation positions, and the latitude dependence of the absorption region near the edge of the absorbing region (the polar caps) are estimated from extant models of geomagnetic cut-offs and their dependence on geomagnetic activity. The approximate inverse square frequency dependence of ionospheric absorption is used to translate across the HF/VHF range and predictions of the minimum duration of events are determined. Calculations of the polar cap absorption of HF radio waves have been performed for eleven larger Solar Energetic Proton (SEP) events during the period from 1992 through 2002 and the results compared to observations of 30 MHz Riometers operated by the AFGL and located at Thule, Greenland. While discrepancies between the estimated and observed absorption using these procedures occur, especially at low absorption levels, this model has operational value in view of its simplicity and its being the only extant model which treats solar- illumination, geomagnetic cutoff variation, and frequency effects, at least to first order. A specimen presentation of the northern and southern polar caps illustrates the output of the model for the peak of the 6 December 2006 solar proton event. Given motivation, improvements to the methodology used here are practicable and could be expected to achieve accuracies to the order of 25%.

  15. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    SciTech Connect

    Zhao, G. Q.; Chen, L.; Wu, D. J.; Yan, Y. H.

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  16. Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism?

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Alexander, P.; Llamedo, P.; Menéndez, C.; Schmidt, T.; Wickert, J.

    2006-12-01

    A significant wave activity (WA) in the upper troposphere and lower stratosphere, mainly during winter, was detected at midlatitudes in the southern hemisphere (30-40S) above the Andes Range, from an analysis of Global Positioning System Radio Occultation (GPS RO) temperature profiles retrieved by CHAMP (CHAllenging Minisatellite Payload) and SAC-C (Satélite de Aplicaciones Científicas-C) Low Earth Orbit (LEO) satellites, between May 2001 and February 2006. The possible main gravity wave sources in this region are: i) orographic forcing, ii) geostrophic adjustment and iii) deep convection. The available vertical resolution of GPS RO soundings does not rule out any of these alternatives. Based on satellite imaginary, the WA enhancements cannot be attributed to deep convection events. Inertia-gravity waves (IGWs) could be generated after a geostrophic adjustment process, following a perturbation of the zonal jet situated above the Andes Mountains by mountain waves (MWs). The monthly WA intensity follows the zonal wind velocity strength according to its seasonal variability at jet altitudes. As the GPS-LEO lines of sight are roughly meridionally aligned and the morphology of the Andes at middle latitudes is predominantly north-south, it was possible to detect MWs as well as IGWs from GPS RO temperature profiles. This characteristic does not apply for other mountain range alignments. From the analysis of a numerical simulation at the time and location of a single RO event with very strong WA, two main modes of oscillation with horizontal wavelength around 40 and 200 km were identified. The first one is attributed to a MW and the second one to an IGW.

  17. ASSESSMENT OF THE IMMUNE RESPONSIVENESS OF MICE IRRADIATED WITH CONTINUOUS WAVE OR PULSE-MODULATED 425-MHZ RADIO FREQUENCY RADIATION

    EPA Science Inventory

    Groups of female BALB/C mice were irradiated with 425-MHz radio frequency (RF) radiation either continuous wave (CW) or pulse modulated (PM, 1-ms pulse width, 250 pulses/s). Mice were irradiated in a rectangular strip-transmission line at average forward powers of 78, 17.7, or 5 ...

  18. Simultaneous excitation of large-scale geomagnetic field fluctuations and plasma density irregularities by powerful radio waves

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kuo, S. P.

    1985-01-01

    The physical mechanism of thermal filamentation instability of radio waves whose frequencies can be as low as in the VLF band and as high as in the SHF band are investigated. This instability can excite large-scale magnetic and plasma density fluctuations simultaneously in the ionosphere and magnetosphere. Relevant experiments are reviewed in terms of this instability and other mechanisms.

  19. Long-term integrated radiophysical studies of the ionosphere, near space, and the propagation of radio waves from space objects

    NASA Technical Reports Server (NTRS)

    Misyura, V. A.

    1974-01-01

    The radiophysical studies reported consist of direct measurements of certain effects induced in the propagation of radio waves from space objects. From measured effects and from data on the motion and position of space objects, physical parameters of the medium and bodies are determined.

  20. Fungicidal Effects of Plasma and Radio-Wave Pre-treatments on Seeds of Grain Crops and Legumes

    NASA Astrophysics Data System (ADS)

    Filatova, Irina; Azharonok, Viktor; Shik, Alexander; Antoniuk, Alexandra; Terletskaya, Natalia

    An influence of RF plasma and RF electromagnetic field pre-treatments on level of fungal infection of some important agricultural plants has been studied. It is shown that pre-sowing plasma and radio-wave seeds treatments contribute to their germination enhancement and plant productivity improvement owing to stimulative and fungicidal effect of plasma and RF electromagnetic field irradiation.

  1. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  2. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  3. Results of a study of the effect of high-power short-wave emissions on the propagation of radio waves on the Kiev-Ioshkar-Ola path

    NASA Astrophysics Data System (ADS)

    Boguta, N. M.; Ivanov, V. A.; Katkov, E. V.; Maksimenko, O. I.; Mitiakova, E. E.; Uriadov, V. P.; Frolov, V. A.; Erm, R..

    Experiments were performed during March-April 1982 and April-June 1983 to study the effect of ionospheric disturbances caused by high-power radio transmissions on the propagation of decameter waves on the Kiev-Ioshkar-Ola path. Sounding waves were emitted at four fixed frequencies: 10.8, 16.6, 18.2, and 19.85 MHz; and high-power (50 MW) heating waves were emitted at 5.8-9.3 MHz. An analysis of the data shows that the degree of the effect of high-power radio emissions on the decameter-signal characteristics depends on ionospheric conditions, e.g., the effect was strongest when the critical frequencies on the path were highest, the effect being observed most frequently at 10.8 MHz.

  4. Radio frequency CD by LH waves in the reversed field experiment

    SciTech Connect

    Bilato, R.; Brambilla, M.

    1999-09-20

    We present a feasibility study for the active control of the poloidal current density profile in the RFX (reversed field pinch) experiment using radio frequency in the range of lower hybrid waves. The main goal of the rf current drive is to reduce the magnetic fluctuations and the magnetic stochasticity, so as to improve the energy confinement. The compelling constraints of accessibility and damping of the slow waves due to the present and extrapolated RFX plasma parameters are investigated; they have been used to fix the frequency ({approx_equal}1.3 GHz) and the best n{sub parallel} values ({approx_equal}8), and therefore the antenna size (Grill). A modified version of the FELICE code, which takes into account the strong shear of the magnetic field of the RFP plasmas, has been developed and used to estimate the antenna-plasma coupling: the reflected power for the proposed antenna is found to be less than 30% for a quite wide range of plasma parameters. In order to estimate the current drive profile and efficiency a one dimensional Fokker-Planck code has been used: an additional crucial contribution to the driven current is due to the enhancement of the plasma conductivity as consequence of the suprathermal electron population increase. Although the total estimated CD efficiency is promising, the rf-power required to drive the current necessary to produce a significant reduction of the magnetic fluctuations is found to be in the MW range.

  5. Study of Temperature Wave Propagation in Superfluid Helium Focusing on Radio-Frequency Cavity Cooling

    NASA Astrophysics Data System (ADS)

    Koettig, T.; Peters, B. J.; Avellino, S.; Junginger, T.; Bremer, J.

    2015-12-01

    Oscillating Superleak Transducers (OSTs) can be used to localize quenches of superconducting radio-frequency cavities. Local hot spots at the cavity surface initiate temperature waves in the surrounding superfluid helium that acts as cooling fluid at typical temperatures in the range of 1.6 K to 2 K. The temperature wave is characterised by the properties of superfluid helium such as the second sound velocity. For high heat load densities second sound velocities greater than the standard literature values are observed. This fast propagation has been verified in dedicated small scale experiments. Resistors were used to simulate the quench spots under controlled conditions. The three dimensional propagation of second sound is linked to OST signals. The aim of this study is to improve the understanding of the OST signal especially the incident angle dependency. The characterised OSTs are used as a tool for quench localisation on a real size cavity. Their sensitivity as well as the time resolution was proven to be superior to temperature sensors glued to the surface of the cavity.

  6. Radio-frequency sheath voltages and slow wave electric field spatial structure

    NASA Astrophysics Data System (ADS)

    Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan

    2015-12-01

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the RF parallel electric field emitted by Ion Cyclotron (IC) wave launchers, using a simple model of Slow Wave (SW) evanescence coupled with Direct Current (DC) plasma biasing via sheath boundary conditions in a plasma-filled 2-dimensional (parallel, radial) rectangle. Within a "wide sheaths" asymptotic regime, valid for large-amplitude near RF fields, our model becomes partly linear: the sheath oscillating voltage at open field line boundaries is a linear combination of elementary contributions by every source point of the radiated RF field map. These individual contributions are all the more intense as the SW emission point is toroidally nearer to the sheath walls. A limit formula is given for a source infinitely close to the sheaths. The decay of sheath RF voltages with the sheath/source parallel distance is quantified as a function of two characteristic SW evanescence lengths. Decay lengths are smaller than antenna parallel extensions. The sheath RF voltages at an IC antenna side limiter are therefore mainly sensitive to SW emission near this limiter, as recent observations suggest. Toroidal proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-symmetry of the radiated field map. They could also justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  7. Nanodust detection near 1 AU from spectral analysis of Cassini/Radio and Plasma Wave Science data

    NASA Astrophysics Data System (ADS)

    Schippers, P.; Meyer-Vernet, N.; Lecacheux, A.; Kurth, W. S.; Mitchell, D. G.; André, N.

    2014-08-01

    Nanodust grains of a few nanometers in size are produced near the Sun by collisional breakup of larger grains and picked up by the magnetized solar wind. They have so far been detected at 1 AU by only the two STEREO spacecraft. Here we analyze the spectra measured by the radio and plasma wave instrument onboard Cassini during the cruise phase close to Earth orbit; they exhibit bursty signatures similar to those observed by the same instrument in association with nanodust stream impacts on Cassini near Jupiter. The observed wave level and spectral shape reveal impacts of nanoparticles at about 300 km/s, with an average flux compatible with that observed by the radio and plasma wave instrument onboard STEREO and with the interplanetary flux models.

  8. Multi-messenger astronomy of gravitational-wave sources with flexible wide-area radio transient surveys

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Cregg C. Yancey, Brandon E. Bear, Bernadine Akukwe, Kevin Chen, Jayce Dowell, Jonathan D. Gough, Jonah Kanner, Kenneth Obenberger, Peter Shawhan, John H. Simonetti , Gregory B. Taylor , Jr-Wei Tsai

    2016-01-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg(2) sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.

  9. Multi-messenger Astronomy of Gravitational-wave Sources with Flexible Wide-area Radio Transient Surveys

    NASA Astrophysics Data System (ADS)

    Yancey, Cregg C.; Bear, Brandon E.; Akukwe, Bernadine; Chen, Kevin; Dowell, Jayce; Gough, Jonathan D.; Kanner, Jonah; Kavic, Michael; Obenberger, Kenneth; Shawhan, Peter; Simonetti, John H.; -Wei Tsai, Gregory B. Taylor, Jr.

    2015-10-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg2 sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.

  10. EVIDENCE FOR THE OSCILLATING TWO STREAM INSTABILITY AND SPATIAL COLLAPSE OF LANGMUIR WAVES IN A SOLAR TYPE III RADIO BURST

    SciTech Connect

    Thejappa, G.; Bergamo, M.; Papadopoulos, K.; MacDowall, R. J. E-mail: mbergamo@umd.edu E-mail: Robert.MacDowall@nasa.gov

    2012-03-15

    We present observational evidence for the oscillating two stream instability (OTSI) and spatial collapse of Langmuir waves in the source region of a solar type III radio burst. High time resolution observations from the STEREO A spacecraft show that Langmuir waves excited by the electron beam occur as isolated field structures with short durations {approx}3.2 ms and with high intensities exceeding the strong turbulence thresholds. These short duration events are identified as the envelope solitons which have collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets contain an intense peak and two sidebands, corresponding to beam-resonant Langmuir waves, and down-shifted and up-shifted daughter Langmuir waves, respectively, and low-frequency enhancements below a few hundred Hz. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI. The observed high intensities, short scale lengths, sideband spectral structures, and low-frequency enhancements strongly suggest that the OTSI and spatial collapse of Langmuir waves probably control the nonlinear beam-plasma interactions in type III radio bursts.

  11. GPS scintillation effects associated with polar cap patches, auroral arcs and blobs in European Arctic sector

    NASA Astrophysics Data System (ADS)

    Jin, Yaqi; Moen, Jøran; Miloch, Wojciech

    2014-05-01

    Both polar cap patches and auroral arcs are associated with irregularities that can affect the propagation of radio waves and thus disrupt the navigation system in the high latitudes. But which is the worst case remains unanswered. This study focuses on the direct comparison of the relative scintillation effects associated with different phenomena in high latitudes. The All Sky Camera located at Ny-Alesund, Svalbard observed six polar cap patches on January 13, 2013. The patches exited into the nightside auroral region in response to the ongoing substorms and then they are termed blobs. The collocated GPS scintillation monitor is used to study the scintillations produced by these different phenomena which are frequently observed at high latitudes. The amplitude scintillation index (S_4) was very low during this period, while the phase scintillation index (sigma_phi) indicated a disturbed ionospheric condition but responded differently to these three types of phenomena. Comparisons of the associated scintillation effects indicate that the blobs are the most violent scintillation source. Moreover, polar cap patches produce scintillation more effectively than auroral arcs do. Five of the six polar cap patches were observed to produce significant scintillations either on the edges or on the center of the patches, which imply most of the polar cap patches are associated with strong small scale irregularities. All of the scintillations produced by the pure auroral arcs were below 0.2 rad in this period. This study highlights the compound effects of the particle precipitations (auroral arcs) and high density plasma islands (patches) in developing the small scale irregularities. From the space weather forecasting perspective, particular attention is to be paid to polar cap patches exiting the polar cap at night in the European sector.

  12. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  13. Scintillator material

    DOEpatents

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  14. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  15. Scintillator material

    DOEpatents

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  16. Observation of Beat Oscillation Generation by Coupled Waves Associated with Parametric Decay during Radio Frequency Wave Heating of a Spherical Tokamak Plasma

    SciTech Connect

    Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hanashima, Kentaro; Sakamoto, Takuya; Tojo, Hiroshi; An, Byung Il; Hiratsuka, Junichi; Kakuda, Hidetoshi; Wakatsuki, Takuma; Kasahara, Hiroshi

    2010-06-18

    We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.

  17. The radio waves and thermal electrostatic noise spectroscopy (SORBET) experiment on BEPICOLOMBO/MMO/PWI: Scientific objectives and performance

    NASA Astrophysics Data System (ADS)

    Moncuquet, M.; Matsumoto, H.; Bougeret, J.-L.; Blomberg, L. G.; Issautier, K.; Kasaba, Y.; Kojima, H.; Maksimovic, M.; Meyer-Vernet, N.; Zarka, P.

    2006-01-01

    SORBET ( Spectroscopie des Ondes Radio and du Bruit Electrostatique Thermique) is a radio HF spectrometer designed for the radio and Plasma Waves Instrument onboard BepiColombo/Mercury Magnetospheric Orbiter (MMO), which performs remote and in situ measurements of waves (electromagnetic and electrostatic). Technically, SORBET includes a plasma wave spectrometer, with two E-field inputs from the two perpendicular electric antennas and one B-field input from a search coil, in the range 2.5-640 kHz. This frequency band includes the local gyrofrequency and plasma frequency expected on most part of the MMO orbits. SORBET also includes a higher frequency radio receiver for remote sensing in the range 500 kHz-10.2 MHz. Owing to its capabilities, SORBET will be able to address the following scientific objectives: High resolution mapping (˜30 km) of electron density and temperature in the solar wind and in the Hermean magnetosphere and exo-ionosphere, via the technique of Quasi-Thermal Noise (QTN) spectroscopy. These QTN measurements will be determinant for the dynamic modeling of the magnetosphere and will provide a fundamental input for the chemistry of cold ionized species (Na, K, O, …) in Mercury's environment. Detection and study of Hermean radio emissions, including possible cyclotron emissions (up to ˜10-20 kHz) from mildly energetic electrons in most highly magnetized (polar?) regions, and possible synchrotron radiation (up to a few MHz?) from more energetic electrons. Monitoring of solar radio emissions up to ˜10 MHz in order to create a solar activity index from the view point of Mercury, allowing to correlate it with the Hermean magnetospheric response. We especially discuss the capabilities of SORBET for performing the QTN spectroscopy in Mercury's magnetosphere, using the two electric dipole antennas equipping MMO, called MEFISTO and WPT.

  18. Energetic electrons from solar flares and associated type 3 radio bursts from metric to hectometric wave frequencies

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    Distinct Kev electron events as observed by satellites near the earth are, in general, associated with solar flares which are accompained by the emission of both metric and hectometric type 3 radio bursts. The positions of these flares are mainly on the western hemisphere of the sun. These results show that Kev electrons propagate under the control of the magnetic field in the interplanetary space and that, while propagating through this space, these electrons excite type 3 radio bursts from metric to hectometric wave frequencies. Emission characteristics of hectometric type 3 bursts are briefly considered in relation to the positions of associated flares.

  19. Hydromagnetic wave heating of low density interstellar gas

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.; Ferriere, Katia M.; Shull, J. Michael

    1988-01-01

    The origin of the observed wave spectrum for hot gas in the ISM is considered theoretically. The governing equations for the generation, propagation, and dissipation of compressive waves are reviewed, and particular attention is given to the heating of warm neutral gas and the implications for radio-wave scattering. It is shown that little power from interactions between SN shocks and hot coronal gas reaches short wavelengths, and that scintillation probably does not originate in a warm weakly ionized gas.

  20. Global estimates of gravity wave parameters from GPS radio occultation temperature data

    NASA Astrophysics Data System (ADS)

    Wang, L.; Alexander, M. J.

    2010-11-01

    Gravity waves (GWs) play critical roles in the global circulation and the temperature and constituent structures in the middle atmosphere. They also play significant roles in the dynamics and transport and mixing processes in the upper troposphere and lower stratosphere and can affect tropospheric weather. Despite significant advances in our understanding of GWS and their effects in different regions of the atmosphere in the past few decades, observational constraints on GW parameters including momentum flux and propagation direction are still sorely lacking. Global Positioning System (GPS) radio occultation (RO) technique provides global, all-weather, high vertical resolution temperature profiles in the stratosphere and troposphere. The unprecedentedly large number of combined temperature soundings from the Constellation Observing System for Meteorology, Ionosphere, and Climate and Challenging Minisatellite Payload GPS RO missions allows us to obtain GW perturbations by removing the gravest zonal modes using the wavelet method for each day. We extended the GW analysis method of Alexander et al. (2008) to three dimensions to estimate the complete set of GW parameters (including momentum flux and horizontal propagation direction) from the GW temperature perturbations thus derived. To demonstrate the effectiveness of the analysis, we showed global estimates of GW temperature amplitudes, vertical and horizontal wavelengths, intrinsic frequency, and vertical flux of horizontal momentum in the altitude range of 17.5-22.5 km during December 2006 to February 2007. Consistent with many previous studies, GW temperature amplitudes are a maximum in the tropics and are generally larger over land, likely reflecting convection and topography as main GW sources. GW vertical wavelengths are a minimum at equator, likely due to wave refraction, whereas GW horizontal wavelengths are generally longer in the tropics. Most of the waves captured in the analysis of the GPS data are low-intrinsic frequency inertia-GWs, and the estimated intrinsic frequencies scaled by the Coriolis parameter also show a strong maximum at equator. Enhanced wave fluxes are linked to convection, topography, and storm tracks, among others. As preliminary tests of the analysis in deriving horizontal propagation directions, we compared the GPS estimates with the corresponding estimates from the U.S. high vertical resolution radiosonde data using the conventional Stokes parameters method and we also conducted a separate analysis of the GPS data over the southern Andes in South America. We also showed the first global estimates of GW propagation directions from the GPS data. Finally, the sensitivity of the analysis to the temporal and spatial dimensions of the longitude × latitude × time cells and the uncertainties of the analysis and possible ways to reduce these uncertainties are discussed.

  1. Scintillation Counters

    NASA Astrophysics Data System (ADS)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  2. Horizontal Wave Analysis using COSMIC/FORMOSAT-3 Radio Occultation Data

    NASA Astrophysics Data System (ADS)

    Haser, A.; Schmidt, T.; de la Torre, A.; Fischer, J.

    2010-12-01

    We discuss vertical and horizontal gravity wave (GW) parameters in the lower stratosphere (20-30km) derived from GPS radio occultation (RO) data for selected case studies in different geographical regions. Available satellite data give global pictures of GW parameters, but each seen through an individual observational window depending on the used measurement characteristics. The RO technique is a limb sounding method sensitive to GWs with small ratios of vertical to horizontal wavelengths. Due to the horizontal averaging within the RO retrieval the measuring geometry between the Line-of-Sight (LOS) and the wave propagation direction get important for the interpretation of the results with respect to GWs.For our case studies we apply the method from Ern et al. (2004) to derive horizontal wavelengths between adjacent temperature profiles from the early COSMIC mission (April-October 2006) whereas only profiles measured within a time window of ten minutes and with the same LOS were considered. A cross-wavelet analysis was applied to pairs of temperature fluctuation profiles to detect phase shifts. Finally, the horizontal wavenumber in the direction of the connecting line between the pairs of profiles is the ratio of the phase shift and the distance between them. By using a combination of at least three occultation events the horizontal wavenumber (wavelength) can be determined. To validate the results we compare our findings with results from the mesoscale Weather Research and Forecasting Model. For a global analysis of the horizontal wavelength the prior discribed restrictions in time and space are loosened up. Results for August and December 2006 are displayed. Additionally the potential energy for the considerated profiles is shown. A first look negative correlation of those two variables can be found.

  3. An analytical theory of radio-wave scattering from meteoric ionization - I. Basic equation

    NASA Astrophysics Data System (ADS)

    Pecina, P.

    2016-01-01

    We have developed an analytical theory of radio-wave scattering from ionization of meteoric origin. It is based on an integro-differential equation for the polarization vector, P, inside the meteor trail, representing an analytical solution of the set of Maxwell equations, in combination with a generalized radar equation involving an integral of the trail volume electron density, Ne, and P represented by an auxiliary vector, Q, taken over the whole trail volume. During the derivation of the final formulae, the following assumptions were applied: transversal as well as longitudinal dimensions of the meteor trail are small compared with the distances of the relevant trail point to both the transmitter and receiver and the ratio of these distances to the wavelength of the wave emitted by the radar is very large, so that the stationary-phase method can be employed for evaluation of the relevant integrals. Further, it is shown that in the case of sufficiently low electron density, Ne, corresponding to the case of underdense trails, the classical McKinley's radar equation results as a special case of the general theory. The same also applies regarding the Fresnel characteristics. Our approach is also capable of yielding solutions to the problems of the formation of Fresnel characteristics on trails having any electron density, forward scattering and scattering on trails immersed in the magnetic field. However, we have also shown that the geomagnetic field can be removed from consideration, due to its low strength. The full solution of the above integro-differential equation, valid for any electron volume densities, has been left to subsequent works dealing with this particular problem, due to its complexity.

  4. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  5. Radio crickets: chirping jets from black hole binaries entering their gravitational wave inspiral

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Loeb, Abraham

    2016-03-01

    We study a novel electromagnetic signature of supermassive black hole (BH) binaries whose inspiral starts being dominated by gravitational wave (GW) emission. Recent simulations suggest that the binary's member BHs can continue to accrete gas from the circumbinary accretion disc in this phase of the binary's evolution, all the way until coalescence. If one of the binary members produces a radio jet as a result of accretion, the jet precesses along a biconical surface due to the binary's orbital motion. When the binary enters the GW phase of its evolution, the opening angle widens, the jet exhibits milliarcsecond-scale wiggles, and the conical surface of jet precession is twisted due to apparent superluminal motion. The rapidly increasing orbital velocity of the binary gives the jet an appearance of a `chirp'. This helical chirping morphology of the jet can be used to infer the binary parameters. For binaries with mass 107-1010 M⊙ at redshifts z < 0.5, monitoring these features in current and archival data will place a lower limit on sources that could be detected by Evolved Laser Interferometer Space Antenna and Pulsar Timing Arrays. In the future, microarcsecond interferometry with the Square Kilometre Array will increase the potential usefulness of this technique.

  6. Day-fo-day Monitoring of the Comparisons Between UHF Scintillation Forecasts and GNSS Observations

    NASA Astrophysics Data System (ADS)

    Anderson, D. N.; Morton, Y.; Jiao, Y.; Redmon, R. J.

    2013-12-01

    When trans-ionospheric radio waves propagate through an irregular ionosphere with plasma depletions or 'bubbles', they are subject to sporadic enhancement and fading which is referred to as scintillation. Communication and navigation systems may be subject to these detrimental effects if the scintillation is strong enough. It is critical to have knowledge of the current ionospheric conditions so that system operators can distinguish between the natural radio environment and system-induced failures. In this paper, we present and describe a proven technique for forecasting UHF scintillation activity in the equatorial region after sunset and compare these forecasts with observed global navigation satellite systems (GNSS) L-band scintillation activity at Jicamarca, Peru, on a night-to-night basis. The UHF scintillation forecasting technique is described in a paper by Redmon et al. (Space Weather, Vol 8, 2010) entitled 'A Forecasting Ionospheric Real-time Scintillation Tool (FIRST).' The technique utilizes the observed characteristic parameter h'F from a ground-based, ionospheric sounder near the magnetic equator. This paper demonstrated that there exists an excellent correlation (R2 ~ 0.91) between h'F (1930LT) and the pre-reversal enhancement in vertical ExB drift velocity after sunset which is the prime driver for creating plasma depletions and bubbles. In addition, there exists a 'threshold' in the h'F value at 1930 LT, h'Fthr, such that, on any given evening if h'F is significantly above h'Fthr then scintillation activity is likely to occur and if it is below h'Fthr, scintillation activity is unlikely to occur. The digital sounder at Jicamarca, Peru provides the h'F values between 1830 and 2000 LT. A multi-constellation GNSS receiver at Jicamarca provides 50Hz navigation signal observables continuously since December 2012. S4 index and detrended carrier phase standard deviation, two commonly used amplitude and phase scintillation indices are computed from these observables during the equinox months in 2013. An unprecedented number of open signals from GPS, GLONASS, Galileo, Beidou, and SBAS satellites are included in the observations, providing high spatial and temporal resolution of scintillation indices measurements. In addition to the statistical analysis between the UHF scintillation forecast and observed GNSS receiver S4 index values, detailed quantitative relationships between the vertical ExB drift velocity, prompt penetration magnetic storm disturbances, and the intensity, duration, and spatial distributions of amplitude and phase scintillation will be presented.

  7. MHD Waves in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Ofman, L.

    2016-02-01

    This chapter focuses on reviewing several observational aspects of magnetohydrodynamic (MHD) waves in the solar wind, in particular on Alfvén waves, Alfvénic turbulent spectrum, and their role in heating and accelerating the solar wind. It also reviews computational models that incorporate Alfvén waves as the driving source of the wind in the lower corona (coronal holes) and in the inner heliosphere, with emphasis on multi-dimensional models. Evidence for MHD waves in the solar wind is obtained from interplanetary scintillation (IPS) observations using Earth-based radio telescope observations of distant (galactic) radio sources. The solar wind electron density variability in the line of sight affects the received radio signal. The propagating fluctuations and their correlations are used to estimate the solar wind velocity and the wave amplitude in the parallel and the perpendicular directions in line of sight.

  8. Geomagnetic Pulsation Amplitude and Spectrum Variations Accompanying the Ionospheric Heating by High-Power Radio waves from the Sura Facility

    NASA Astrophysics Data System (ADS)

    Chernogor, L. F.; Frolov, V. L.

    2014-10-01

    Aperiodic and quasiperiodic variations in the geomagnetic pulsation amplitude in a range of periods from 40 to 1000 s, which accompany the quasicontinuous and periodic impact on the ionospheric plasma by high-power radio waves from the SURA facility near Nizhny Novgorod (Russia) were recorded near Kharkov (Ukraine) using a magnetometer-fluxmeter. The main parameters of aperiodic and quasiperiodic disturbances of the geomagnetic field are determined. The mechanisms for generation and propagation of detected disturbances are discussed.

  9. Observation of the gravity waves from GPS/MET radio occultation data

    NASA Astrophysics Data System (ADS)

    Liou, Y. A.; Pavelyev, A. G.; Wickert, J.

    2005-02-01

    We show that the amplitude of the Global Positioning System (GPS) signals in the radio occultation (RO) experiments is sensitive to the atmospheric wave structures. Earlier the phase of the GPS occultation signals have been used for statistical investigation of the gravity waves (GW) activity in the height interval 10 40 km on a global scale. Analysis of the RO amplitude data revealed wave clusters (quasi-regular structures) with the vertical size of about 10 km and interior vertical period ˜0.8 2 km in the tropopause and lower stratosphere. The amplitude RO data may be utilized to determine the temperature vertical profiles and its vertical gradient in the upper troposphere and stratosphere. In the considered RO events variations of the vertical temperature gradient dT(h)/dh corresponding to the amplitude clusters are in the range from -9 K/km to 6 K/km with vertical scales ˜1 3 km. We show that these variations can be linked to the GW propagation in the atmosphere. We use the polarization and dispersion relationships and Hilbert transform to find the 1-D GW image in the atmosphere by analyzing the vertical temperature gradient dT(h)/dh. The GW image consists of the phase and amplitude of the GW as functions of height. The GW amplitude is non-uniformly distributed with main contribution associated with the tropopause and the secondary maximums in height interval 18 35 km. Using our method we find vertical profiles of the horizontal wind perturbations and their vertical gradient associated with the GW influence. The horizontal wind perturbations are changing in the interval v˜2 12 m/s with vertical gradients dv/dh˜4 25 m s-1 km-1) in the tropopause area and v˜ 3 9 m/s, dv/dh ˜ 2 15 m/(s km) in the stratosphere for the considered events. For one RO event we compared the estimated values of the horizontal wind perturbations with aero-logical data and found fairly good agreement. The height dependence of the GW vertical wavelength was inferred through the differentiation of the GW phase. Analysis of this dependence using the dispersion relationship for the GW gives estimation of the GW intrinsic phase speed. For the considered events the magnitude of the intrinsic phase speed changes between 1.5 15 m/s at heights 10 40 km. We conclude that the amplitude of the GPS occultation signals contain important information about the GW propagation in the atmosphere on a global scale.

  10. A novel millimetre-wave band radio-over-fiber system with dense wavelength division multiplexing star architecture

    NASA Astrophysics Data System (ADS)

    Zhang, Xiupu; Liu, Baozhu; Yao, Jianping; Wu, Ke; Kashyap, Raman

    2005-09-01

    In this paper, we propose a novel millimeter-wave (mm-wave) band radio over fiber (RoF) system with dense wavelength division multiplexing (DWDM) star architecture. Two lasers with a small wavelength difference, phase locked and polarization-aligned, are allocated at a central station (CS) for connecting the CS and each base station (BS); one laser is used for transmitting light and the other for the remote local oscillator. For the conceptual illustration, we consider a DWDM RoF system with a channel spacing of 12.5 GHz and radio frequency (RF) of ~30-GHz mm-wave band. In the downlink system, a single-side band (SSB) subcarrier is used with low RF imposed onto an optical carrier at the CS, and an mm-wave band RF signal is obtained at each BS using direct photo-detection by the SSB subcarrier beat with the remote oscillator. In the uplink system, the received mm-wave band RF signal at each BS is imposed onto the two optical carriers simultaneously, one optical carrier with the closest SSB subcarrier is optically filtered out and fed into in the uplink transmission fiber without frequency interleaving; the electrical signal with a low intermediate frequency can be photo-detected directly at the CS. Such a RoF system has simple, cost-effective and maintenance reduced BS's, and is immune to laser phase noise in principle.

  11. Generation of Acoustic Gravity Waves by Periodic Radio Transmissions from a High-Power Ionospheric Heater

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir; Chernogor, Leonid; Rozumenko, Victor

    The Radiophysical Research Institute (Nizhny Novgorod, Russia) and Kharkiv V. N. Karazin National University (Kharkiv, Ukraine) have studied opportunities for the effective generation of acoustic gravity waves (AGWs) in 3 - 180-min period range. The excitation of such waves was conducted for the last several years using the SURA heating facility (Nizhny Novgorod). The detection of the HF-induced AGWs was carried out in the Radiophysical Observatory located near Kharkiv City at a distance of about 960 km from the SURA. A coherent radar for vertical sounding, an ionosonde, and magnetometer chains were used in our measurements. The main results are the following (see [1-5]): 1. Infrasound oscillation trains with a period of 6 min are detected during periodic SURA heater turn-on and -off. Similar oscillation trains are detected after long time pumping, during periodic transmissions with a period of 20 s, as well as after pumping turn-off. The train recordings begin 28 - 54 min after the heater turn-on or -off, and the train propagation speeds are about 300 - 570 m/s, the value of which is close to the sound speed at upper atmospheric altitudes. The amplitude of the Doppler shift frequency is of 10 - 40 mHz, which fits to the 0.1 - 0.3% electron density disturbances at ionospheric altitudes. The amplitude of the infrasound oscillations depends on the SURA mode of operation and the state of the upper atmosphere and ionosphere. 2. High-power radio transmissions stimulate the generation (or enhancement) of waves at ionospheric altitudes in the range of internal gravity wave periods. The HF-induced waves propagate with speeds of 360 - 460 m/s and produce changes in electron density with amplitudes of 2 - 3%. The generation of such periodic perturbations is more preferable with periods of 10 - 60 minutes. Their features depend significantly on the heater mode of operation. It should be stressed that perturbation intensity increases when a pumping wave frequency approaches the F _{_2} layer critical frequency. High-power periodic radio transmissions are capable of enhancing/damping natural wave perturbations generated by the solar terminator. 3. The study has demonstrated that the generation and propagation of AGWs with periods close to the natural oscillation periods of the atmosphere is possible. The duration of AGW oscillation trains does not dependent on the duration of turn-on/-off trains, but it is determined by changes in the current state of the atmosphere-ionosphere-magnetosphere system in general. The period of the AGW oscillation trains is determined by the period or semi-period of the pumping. It means that the mechanism of AGW generation in this case is distinct from the agreed-upon mechanism developed earlier. The AGWs, whose periods are 5 - 10% greater than the Brunt-Vaisala period, exhibit group velocities less than the speed of sound that is of about 80 - 160 m/s. They induce electron density perturbations of about 1.1 - 1.5%. The AGW generation has the following features. When the effective radiated power (ERP) is 50 MW or less, AGWs are not detected; they are reliably observed when the ERP is equal or larger than about 100 MW. Geomagnetic storms play a dual role in the AGW generation because they: (i) increase amplitudes of AGWs with 4 - 6-min and 8 - 12-min periods and (ii) yet enhance background oscillations. The latter hampers the identification of the HF-induced oscillations. Moderate magnetic storms do not markedly exert an influence on the amplitudes of oscillations with 13 - 17-min periods. 4. The quasi-periodic variations in the horizontal components of the geomagnetic field with 8 - 12-min periods become observable near Kharkiv 35 - 45 min after the beginning of pumping. Their speeds are 355 - 460 m/s, and they form trains 40 - 90 min in duration when the [5-min on, 5-min off] or [10-min on, 10-min off] heater timing is used. The 12 - 18-min period variations become observable 35 - 45 min after the beginning of pumping. Their speeds are 355 - 460 m/s, and they form trains 55 - 90 min in duration when the [15-min on, 15-min off] heater timing is used. The revealed HF-induced geomagnetic pulsations are associated with the modulation of the ionospheric dynamo current system over Kharkiv by the AGWs produced by the periodic HF pumping of the ionosphere. References: 1. Chernogor L.F. and Frolov V.L. // Radiophys. Quant. Electron., Engl. Transl., 2012. Vol. 55(1-2), p.14. 2. Chernogor L.F., Frolov, and Pushin V.F. // Radiophys. Quant. Electron., Engl. Transl., 2012. Vol. 55(5), p.327. 3. Chernogor L.F. and Frolov V.L. // Radiophys. Quant. Electron., Engl. Transl., 2013. Vol. 56(4), p.219. 4. Chernogor L.F. and Frolov V.L. // Radiophys. Quant. Electron., Engl. Transl., 2013. Vol. 56(5), p.307. 5. Chernogor L.F. and Frolov V.L. // Radiophys. Quant. Electron., Engl. Transl., 2014. Vol. 57 (submitted for publication).

  12. Global ionospheric effects of geomagnetic storm on May 2-3, 2010 and their influence on HF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Kotova, Daria; Klimenko, Maxim; Klimenko, Vladimir; Zakharov, Veniamin

    2013-04-01

    In this work we have investigated the global ionospheric response to geomagnetic storm on May 2-3, 2010 using GSM TIP (Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere) simulation results. In the GSM TIP storm time model runs, several input parameters such as cross-polar cap potential difference and R2 FAC (Region 2 Field-Aligned Currents) varied as a function of the geomagnetic activity AE-index. Current simulation also uses the empirical model of high-energy particle precipitation by Zhang and Paxton. In this model, the energy and energy flux of precipitating electrons depend on a 3 hour Kp-index. We also have included the 30 min time delay of R2 FAC variations with respect to the variations of cross-polar cap potential difference. In addition, we use the ground-based ionosonde data for comparison our model results with observations. We present an analysis of the physical mechanisms responsible for the ionospheric effects of geomagnetic storms. The obtained simulation results are used by us as a medium for HF radio wave propagation at different latitudes in quiet conditions, and during main and recovery phase of a geomagnetic storm. To solve the problem of the radio wave propagation we used Zakharov's (I. Kant BFU) model based on geometric optics. In this model the solution of the eikonal equation for each of the two normal modes is reduced using the method of characteristics to the integration of the six ray equation system for the coordinates and momentum. All model equations of this system are solved in spherical geomagnetic coordinate system by the Runge-Kutta method. This model was tested for a plane wave in a parabolic layer. In this study, the complex refractive indices of the ordinary and extraordinary waves at ionospheric heights was calculated for the first time using the global first-principal model of the thermosphere-ionosphere system that describes the parameters of an inhomogeneous anisotropic medium during a geomagnetic storm. A comparison of the ordinary and extraordinary modes of HF radio ray paths in quiet and disturbed conditions has been done. We considered in more detail the features of the radio ray paths in the presence of F3 layer in the equatorial ionosphere, the main ionospheric trough and tongue of ionization at high latitudes. It is shown that the results obtained with use of radio propagation and GSM TIP models adequately describe HF radio ray paths in the Earth's ionosphere and can be used in applications. These investigations were carried out at financial support of Russian Foundation for Basic Research (RFBR) - Grant # 12-05-31217 and RAS Program 22.

  13. Stationary Planetary Waves in the Mars Winter Atmosphere as seen by the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Pätzold, Martin; Häusler, Bernd; Tyler, Leonard G.; Hinson, David P.

    2015-11-01

    Stationary (Rossby) Waves are excited by the interaction of the zonally varying topography with the strong eastward winter jets. They lead to distinctive longitudinal temperature variations which contribute significantly to the asymmetry of the seasonal polar CO2 ice caps and are also important for the dust redistribution in the planetary atmosphere.Radio Science profiles from the Mars Express Radio Science Experiment MaRS at northern and southern high latitudes are used to gain insight into winter stationary wave structures on both hemispheres.Mars Global Surveyor (MGS) radio occultation measurements from the same season and year with their exceptionally good longitudinal and temporal coverage can be used to estimate the influence of transient eddies. Transient waves are especially important in the northern winter hemisphere.Wave number 2 stationary waves, driven by topography, are dominant in the northern winter latitudes while the wave number 1 wave is the most significant wave number during southern winter. The wave amplitudes peak around winter solstice on both hemispheres.Radio occultation measurements provide the unique opportunity to determine simultaneous measurements of temperature and geopotential height structures. Assuming geostrophic balance, these measurements can be used to determine meridional winds and eddy heat fluxes which provide further insight into the contribution of stationary waves to the heat exchange between the poles and the lower latitudes.

  14. Plasma wave phenomena at interplanetary shocks observed by the Ulysses URAP experiment. [Unified Radio and Plasma Waves

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Macdowall, R. J.; Stone, R. G.; Hoang, S.; Pantellini, F.; Harvey, C.; Mangeney, A.; Kellogg, P.; Thiessen, J.; Canu, P.

    1992-01-01

    We present Ulysses URAP observations of plasma waves at seven interplanetary shocks detected between approximately 1 and 3 AU. The URAP data allows ready correlation of wave phenomena from .1 Hz to 1 MHz. Wave phenomena observed in the shock vicinity include abrupt changes in the quasi-thermal noise continuum, Langmuir wave activity, ion acoustic noise, whistler waves and low frequency electrostatic waves. We focus on the forward/reverse shock pair of May 27, 1991 to demonstrate the characteristics of the URAP data.

  15. Waves in the Mesosphere of Venus as seen by the Venus Express Radio Science Experiment VeRa

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Häusler, B.; Hinson, D. P.; Tyler, G.; Andert, T. P.; Bird, M. K.; Imamura, T.; Pätzold, M.; Remus, S.

    2013-10-01

    The Venus Express Radio Science Experiment (VeRa) has retrieved more than 700 profiles of the mesosphere and troposphere of Venus. These profiles cover a wide range of latitudes and local times, enabling study of atmospheric wave phenomena over a range spatial scales at altitudes of 40-90 km. In addition to quasi-horizontal waves and eddies on near planetary scales, diurnally forced eddies and thermal tides, small-scale gravity waves, and turbulence play a significant role in the development and maintenance of atmospheric super-rotation. Small-scale temperature variations with vertical wavelengths of 4 km or less have wave amplitudes reaching TBD km in the stable atmosphere above the tropopause, in contrast with much weaker temperature perturbations observed in the middle cloud layer below. The strength of gravity waves increases with latitude in both hemispheres. The results suggest that convection at low latitudes and topographical forcing at high northern latitudes—possibly in combination with convection and/or Kelvin-Helmholtz instabilities—play key roles in the genesis of gravity waves. Further, thermal tides also play an important role in the mesosphere. Diurnal and semi-diurnal wave modes are observed at different latitudes and altitudes. The latitudinal and height dependence of the thermal tide modes will be investigated.

  16. A gravity waves study close to the Andes mountains in Patagonia and Antarctica with GPS radio occultation observations

    NASA Astrophysics Data System (ADS)

    Alexander, P.; Luna, D.; Llamedo, P.; de La Torre, A.

    2010-02-01

    We first study the seasonal and geographical behavior of gravity wave activity in the lower stratosphere over the southernmost Andes mountains and their prolongation in the Antarctic Peninsula by global positioning system (GPS) radio occultation (RO) temperature profiles, obtained between years 2002 and 2005 by the CHAllenging Minisatellite Payload (CHAMP) mission. The observed features complement observations in the same zone by other satellite passive remote sensing instruments, which are able to detect different height regions and other spectral intervals of the wave spectrum. Comparisons with previous GPS RO studies in smaller areas than the one covered in our analysis are also established. Significant seasonal variation of wave activity is observed in our work, in agreement with results from other instruments. The locations of significant cases indicate that topography is an important source. Some strong wave activity is also found over open ocean. Critical level filtering is shown to have an attenuation effect, implying that a large fraction of the observed activity can be considered to be an outcome of mountain waves. The studied region has a significant advantage as compared to other regions of our planet: it generates wavefronts nearly aligned with the North-South direction (almost parallel to the mountains), whereby this geometry favors the wave detection by the nearly meridional line of sight characterizing most of the GPS RO observations used. A distribution of the observed gravity waves in terms of amplitudes and wavelengths is also presented.

  17. Long-Range Transhorizon Lunar Surface Radio Wave Propagation in the Presence of a Regolith and a Sparse Exospheric Plasma

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2008-01-01

    Long-range, over-the-horizon (transhorizon) radio wave propagation is considered for the case of the Moon. In the event that relay satellites are not available or otherwise unwarranted for use, transhorizon communication provides for a contingency or backup option for non line-of-sight lunar surface exploration scenarios. Two potential low-frequency propagation mechanisms characteristic of the lunar landscape are the lunar regolith and the photoelectron induced plasma exosphere enveloping the Moon. Although it was hoped that the regolith would provide for a spherical waveguide which could support a trapped surface wave phenomena, it is found that, in most cases, the regolith is deleterious to long range radio wave propagation. However, the presence of the plasma of the lunar exosphere supports wave propagation and, in fact, surpasses the attenuation of the regolith. Given the models of the regolith and exosphere adopted here, it is recommended that a frequency of 1 MHz be considered for low rate data transmission along the lunar surface. It is also recommended that further research be done to capture the descriptive physics of the regolith and the exospheric plasma so that a more complete model can be obtained. This comprehensive theoretical study is based entirely on first principles and the mathematical techniques needed are developed as required; it is self-contained and should not require the use of outside resources for its understanding.

  18. Time-resolved photo and radio-luminescence studies demonstrate the possibility of using InGaN/GaN quantum wells as fast scintillators.

    PubMed

    Balakrishnan, G

    2015-03-01

    In the recent publication by Hospodková et al, the authors investigate III-N quantum well structures as potential fast scintillators (Hospodková et al 2014 Nanotechnology 25 455501). The InGaN/GaN quantum well structures are grown using metal organic vapour phase epitaxy on a sapphire substrate and the fast carrier decay times are characterized by time resolved photo and radioluminescence. PMID:25670071

  19. Identification and radio vision of the vertical structure of the layers and wave activity in the atmoshere

    NASA Astrophysics Data System (ADS)

    Alexander, Pavelyev; Kefei, Zhang; Vladimir, Gubenko; Erjiang, Fu; Chuan-Sheng, Wang; Yuei-An, Liou; Yuriy, Kuleshov

    2010-05-01

    Identification and radio vision of the vertical structure of the layers and wave activity in the atmosphere Alexander Pavelyev, Vladimir Gubenko Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Russia Kefei Zhang, Erjiang Fu and Chuan-Sheng Wang School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Australia Yuei-An Liou Center for Space and Remote Sensing Research (CSRSR), National Central University, Jhongli, Taiwan Yuriy Kuleshov National Climate Centre, Bureau of Meteorology, Melbourne, Australia From an analysis of the CHAMP (Challenging Minisatellite Payload, Germany) and the FORMOSAT-3/COSMIC (FORMOSA Satellite Constellation Observing Systems for Meteorology, Ionosphere, and Climate mission, USA -Taiwan) satellite data it follows that the second-order time derivative of the eikonal (eikonal acceleration) and the Doppler frequency shift are two most important parameters indispensable for the radio vision of layers in the atmosphere and the ionosphere. Measurements of the temporal evolution of the Doppler shift permit one to study the vertical structure of the atmosphere under the condition of its spherical symmetry. Analysis of the amplitude and phase of interrelated variations in the eikonal acceleration and radio-wave intensity permits one to detect and identify the layers in the atmosphere and ionosphere. Therefore the eikonal acceleration/intensity technique can be applied to separate the influence of layered structures from contributions of irregularities and turbulence in the atmosphere. In many cases the layered structures in the atmosphere indicate quasi-periodical altitude dependence that reveals their wave origin. The altitude profile of the vertical gradient of refractivity in the layered structures can be used to find the main characteristics of the internal wave activity with a global coverage. When the type of internal waves are not known, the height dependence of the vertical gradient of refractivity can be applied for monitoring the temporal and spatial distributions of wave activity at different levels in the atmosphere. In the case of the internal gravity waves one can measure their important parameters by use of the vertical profile of the refractivity: the intrinsic phase speed, the horizontal wind perturbations and, under some assumptions, the intrinsic frequency as functions of height in the atmosphere. Advantages of the eikonal acceleration/intensity technique are validated by means of analysis of the CHAMP and FORMOSAT-3/COSMIC RO data. Eikonal variations may be converted into refraction attenuation variations, which allows the integral absorption to be determined with the refraction effect on the radio-wave intensity cancelled out. This is necessary for measurements of the water-vapor density and gas minorities during multifrequency radio-occultation sounding along the satellite-to-satellite paths. The obtained results can be of common value for other remote-sounding paths, as well.

  20. Making Radio Waves: Tune in to These Tips for Getting Your Campus News on the Air.

    ERIC Educational Resources Information Center

    Stubbee, Melinda

    1993-01-01

    Radio is a relatively simple and effective way to make campus news and information available to the public. Establishing a college radio news service is not difficult, and developing a sound-bite service requires little equipment or expertise, just careful attention to quality and technique. More sophisticated systems can be developed easily. (MSE)

  1. ON THE BRIGHTNESS AND WAITING-TIME DISTRIBUTIONS OF A TYPE III RADIO STORM OBSERVED BY STEREO/WAVES

    SciTech Connect

    Eastwood, J. P.; Hudson, H. S.; Krucker, S.; Bale, S. D.; Wheatland, M. S.; Maksimovic, M.; Bougeret, J.-L.; Goetz, K.

    2010-01-10

    Type III solar radio storms, observed at frequencies below {approx}16 MHz by space-borne radio experiments, correspond to the quasi-continuous, bursty emission of electron beams onto open field lines above active regions. The mechanisms by which a storm can persist in some cases for more than a solar rotation whilst exhibiting considerable radio activity are poorly understood. To address this issue, the statistical properties of a type III storm observed by the STEREO/WAVES radio experiment are presented, examining both the brightness distribution and (for the first time) the waiting-time distribution (WTD). Single power-law behavior is observed in the number distribution as a function of brightness; the power-law index is {approx}2.1 and is largely independent of frequency. The WTD is found to be consistent with a piecewise-constant Poisson process. This indicates that during the storm individual type III bursts occur independently and suggests that the storm dynamics are consistent with avalanche-type behavior in the underlying active region.

  2. Measurement of radio wave reflection due to temperature rising from rock salt and ice irradiated by an electron beam for an ultra-high-energy neutrino detector

    SciTech Connect

    Tanikawa, Takahiro; Chiba, Masami; Kamijo, Toshio; Yabuki, Fumiaki; Yasuda, Osamu; Akiyama, Hidetoshi; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Utsumi, Michiaki; Fujii, Masatoshi

    2012-11-12

    An ultra-high-energy neutrino (UHE{nu}) gives temperature rise along the hadronic and electromagnetic shower when it enters into rock salt or ice. Permittivities of them arise with respect the temperatures at ionization processes of the UHE{nu} shower. It is expected by Fresnel's formula that radio wave reflects at the irregularity of the permittivity in the medium. We had found the radio wave reflection effect in rock salt. The reflection effect and long attenuation length of radio wave in rock salt and ice would yield a new UHE{nu} detection method. An experiment for ice was performed to study the reflection effect. A coaxial tube was filled with rock salt powder or ice. Open end of the coaxial tube was irradiated by a 2 MeV electron beam. Radio wave of 435 MHz was introduced to the coaxial tube. We measured the reflection wave from the open end. We found the radio wave reflection effect due to electron beam irradiation in ice as well as in rock salt.

  3. National Radio Astronomy Observatory Announces Closure of Millimeter-Wave Telescope

    NASA Astrophysics Data System (ADS)

    2000-02-01

    The National Radio Astronomy Observatory (NRAO) will close down its millimeter-wavelength telescope on Kitt Peak, Arizona, in July 2000, Director Paul Vanden Bout announced today. The closure will affect the activities of 24 NRAO employees. The Arizona telescope, known as the 12 Meter Telescope because of the diameter of its dish antenna, is the only millimeter-wavelength instrument in the U.S. that is operated full-time as a national facility, open to all scientists. The action was made necessary by the current and anticipated budget for the Observatory, Vanden Bout said. "We are forced to reduce the scope of our activities," Vanden Bout said. The NRAO also operates the Very Large Array and Very Long Baseline Array from its facilities in New Mexico and is completing construction of the Green Bank Telescope in West Virginia. The 12 Meter Telescope is used to observe electromagnetic radiation with wavelengths of a few millimeters down to one millimeter, a region that lies between what is traditionally considered radio waves and infrared radiation. The NRAO is currently participating in an international partnership to develop the Atacama Large Millimeter Array (ALMA), an array of 64 antennas to observe at millimeter wavelengths from a 16,500-foot-high location in northern Chile. "We understood that ALMA eventually would replace the 12 Meter Telescope, but we had hoped to continue operating the 12 Meter until ALMA began interim operations, probably sometime in 2005. That is not possible, and we are forced to close the 12 Meter this year," Vanden Bout said. More than 150 scientists use the 12 Meter Telescope for their research every year. The NRAO's Tucson-based employees have been notified of the Observatory's decision. Some of the NRAO employees in Tucson already are working on the ALMA project. Over the next few months, the NRAO will seek to transfer 12 Meter staff to the ALMA project or to other positions within the Observatory, where that is possible. Where necessary, the Observatory will assist staff members in finding other employment, Vanden Bout said. "In the next few weeks, the Observatory will complete plans for disposing of the 12 Meter Telescope and its associated equipment. In addition, the NRAO will consult with the operators of other millimeter wavelength telescopes in an attempt to ensure that astronomers whose research depends upon such observations can obtain observing time elsewhere. We want to mitigate the effect of this closure upon the scientific community as much as possible," Vanden Bout said. The 12 Meter Telescope has a long and distinguished history of scientific achievement. Built in 1967, it was first known as the 36 Foot Telescope. It was responsible for the birth of millimeter-wavelength molecular astronomy, a field of research in which scientists seek to detect the characteristic "fingerprints" of molecules in space. Dozens of the different molecular species comprising the tenuous material between the stars were first detected by the 36 Foot Telescope. The most significant of these molecular discoveries was carbon monoxide, whose spectral lines are the primary signpost of the formation of new stars in galaxies. In 1984, the telescope was refurbished with a new reflecting surface and support structure. At that time, it was re-christened the 12 Meter Telescope. It continued to make landmark studies of the composition of the interstellar gas clouds and of star formation. In addition, the research program was expanded to include studies of celestial objects such as comets, evolved stars, and external galaxies. Throughout its history, the NRAO Tucson staff has continued to improve the technical capabilities of the 12 Meter Telescope, making it a more useful tool for a wider range of scientific studies. "When ALMA becomes operational, it will produce dramatic advancements in astronomy, and we look forward to those discoveries. However, the success of ALMA will be built in large part on a foundation of millimeter-wavelength expertise and achievement that came from the 12 Meter Telescope and the dedicated people who worked on it for many years. We are sorry that the 12 Meter has to be closed now, but its place in astronomical history is secure and all those who built, maintained, operated, and observed with it can be proud of their accomplishments," Vanden Bout said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  4. Trends in the characteristics of the annual and semiannual variations observed in the radio wave absorption in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Lastovicka, J.; Pancheva, D.

    1999-10-01

    The continuous increase in concentration of greenhouse gases in the atmosphere is expected to cool higher levels of the atmosphere. There is some direct and indirect experimental evidence of long-term trends in temperature and other parameters in the mesosphere and lower thermosphere (MLT). Here we look for long-term trends in the annual and semiannual variations of the radio wave absorption in the lower ionosphere, which corresponds to the MLT region heights. Data from central and southeastern Europe are used. A consistent tendency to a positive trend in the amplitude of the semiannual wave appears to be observed. The reality of a similar tendency in the amplitude of the annual wave is questionable in the sense that the trend in the amplitude of the annual wave is probably induced by the trend in the yearly average values of absorption. The phases of both the annual and semiannual waves display a forward tendency, i.e. shift to an earlier time in the year. A tentative interpretation of these results in terms of changes of the seasonal variation of temperature and wind at MLT heights does not contradict the trends observed in those parameters.

  5. Multiple scattering of radio frequency waves by blobs: homogenization of a mixture of blobs and the Waterman-Truell approach

    NASA Astrophysics Data System (ADS)

    Hizanidis, K.; Bairaktaris, F.; Valvis, S. I.; Ram, A. K.

    2015-11-01

    Radio frequency waves are of particular importance for heating and current drive in magnetized fusion plasmas. The scattering of these waves by a multitude of density fluctuations, such as blobs in the edge region, is studied by homogenizing the edge region populated by an ensemble of ellipsoidal plasma blobs immersed in an ambient background plasma. The effective permittivity tensor is formulated on the basis of a depolarization dyadic. In general, the interface between the homogenized slab and the ambient plasma is not necessarily aligned with the magnetic field line. The misalignment leads to changes in the propagation characteristics of the RF waves. The scattering of an incident wave is treated by considering the reflection and transmission through a composite plasma slab. This study is a generalization of; it applies to RF waves in plasmas interacting with ellipsoidal blobs of arbitrary shapes and sizes. Supported in part by the Hellenic National Programme on Controlled Thermonuclear Fusion associated with the EUROfusion Consortium, and by DoE.

  6. Radio science

    NASA Astrophysics Data System (ADS)

    1984-10-01

    Radio science experiments use electromagnetic waves to probe or study the solar system. Three major research areas were identified within this discipline: radio astronomy, radar astronomy, and celestial mechanics. Radio astronomy (or radiometry) is the detection and measurement of naturally produced radio frequency emissions. Sources include surfaces, atmospheres, rings, and plasmas. Radar astronomy is the observation of man-made signals after their interaction with a target. Both imaging and non-imaging results. Celestial mechanics includes all studies related to the motions of (and gravity fields of) bodies within the solar system. These should not be considered rigid separations, but aid in the discussion of the data sets.

  7. Connection between ambient density fluctuations and clumpy Langmuir waves in type III radio sources

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, I. H.; Gurnett, D. A.

    1992-01-01

    A recent stochastic-growth theory of clumpy Langmuir waves in type III sources is shown to imply that the clumps will have the same size distribution as the ambient low-frequency density fluctuations in the solar wind. Spectral analysis of Langmuir-wave time series from the ISEE 3 plasma wave instrument confirms this prediction to within the uncertainties in the spectra. The smallest Langmuir clump size is inferred to be in the range 0.4-30 km in general, and 2-30 km for beam-resonant waves, and it is concluded that the diffusion of waves in the source is anomalous.

  8. The role of natural E-region plasma turbulence in the enhanced absorption of HF radio waves in the auroral ionosphere:Implications for RF heating of the auroral electrojet

    NASA Astrophysics Data System (ADS)

    Robinson, T. R.

    1994-04-01

    Physical processes which affect the absorption of radio waves passing through the auroral E-region when Farley-Buneman irregularities are present are examined. In particular, the question of whether or not it is legitimate to include the anomalous wave-enhanced collision frequency, which has been used successfully to account for the heating effects of Farley-Buneman waves in the auroral E-region, in the usual expression for the radio-wave absorption coefficient is addressed. Effects also considered are those due to wave coupling between electromagnetic waves and high-frequency electrostatic waves in the presence of Farley-Buneman irregularities. The implications for radio-wave heating of the auroral electrojet of these processes are also discussed. In particular, a new theoretical model for calculating the effects of high-power radio-wave heating on the electron temperature in an electrojet containing Farley-Buneman turbulence is presented.

  9. Possible radio wave precursors associated with the comet Shoemaker-Levy 9/Jupiter impacts

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Kaiser, M. L.; Desch, M. D.; Macdowall, R. J.

    1994-01-01

    We suggest that prior to its impact with Jupiter, comet Shoemaker-Levy 9 will behave as an electrical generator in the Jovian magnetosphere, converting planetary rotational energy to electrical energy via a dust/plasma interaction. This electrical energy will then be deposited in the dayside auroral region where it may drive various auroral phenomena including cyclotron radio emission. Such emission could be detected by spacecraft like Ulysses and Galileo many hours prior to the actual comet impact with the upper atmosphere. We apply the theory originally developed to explain the spokes in Saturn's rings. This theory allows us to quantify the driving potential associated with the comet and, consequently, to determine the radio power created in the auroral region. We conclude that if enough fine dust is present in the cometary system, comet-induced auroral radio emissions will reach detectable levels. This emission should be observable in the dayside hemisphere about 12-24 hours prior to each fragment impact.

  10. Determination of sporadic E radio wave propagation parameters based on vertical and oblique sounding

    NASA Astrophysics Data System (ADS)

    Sherstyukov, O. N.; Akchurin, A. D.; Sherstyukov, R. O.

    2015-09-01

    Sporadic E layer is often determined for HF radio communication. We have to deal with oblique radiowave propagation in the radio practice. The limiting frequencies at oblique propagation depend heavily on the transmitter power and the receiver sensitivity. The reason for this, as in the case of vertical propagation, is the dependence of Es reflection coefficient, ρEs (reflection loss R(dB)), on Es operation frequencies. This paper describes the characteristics of HF Es propagation in relation to foEs obtained from ionospheric vertical observations. It was found that characteristics of Es propagation depend on the type and height of the Es layer. Also the foEs diurnal variation at definite R(dB) was detected. This investigation allows improving the prediction of limiting frequencies for HF radio propagation.

  11. Decameter-wave radio observations of Jupiter during the 1977 apparition

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Kaiser, M. L.; Thieman, J. R.; Vaughan, S. S.

    1978-01-01

    A catalog of observations of Jupiter's sporadic decameter wavelength radio emissions obtained with the Goddard Space Flight Center Jupiter Monitor Network between June 1977 and May 1978 is presented. Data were collected using the Goddard Space Flight Center station in Greenbelt, MD. and at facilities installed at Orroral Valley (Canberra), Australia and the Nancay Radio Observatory in France. Observations were obtained daily at frequencies of 16.7 and 22.2 MHz using five-element Yagi antennas at each end of a two-element interferometer. Plots of the two dimensional emission occurrence probability distribution are given.

  12. High Latitude Scintillation Monitoring at UHF with the COMMX Experiment on TACSat4

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.; Akins, K.; Nurnberger, M.

    2013-12-01

    UHF Beacon Transmissions at 253 MHz have provided high latitude scintillation monitoring from Gakona Alaska using the COMMX instrument on TACSat4. TACSat4 was constructed by the Naval Research Laboratory and was launched in September 2011 as an experimental communications satellite. Ground UHF transmissions are uplinked to TACSat4 using the 4 meter diameter antenna deployed to view the earth. These signals are coherently translated to other UHF frequency to be rebroadcast to the ground. Scintillation monitoring is achieved by taking the 401.25 MHz signals from ground DORIS beacons located in Cold Bay, Alaska; Yellowknife, Canada; Kauai, Hawaii; and Soccoro Island, Mexico. These signals are translated to 253 MHz and broadcast with the 4 meter antenna pointed to the UHF receiver located at Gakona, Alaska. The satellite antenna gain is 18 dB in this UHF band and the transmitter power is 2 Watts. The satellite is in an elliptical orbit with an inclination of 63 degrees and a perigee of 12,000 km. Doppler frequency shifts allow separation of each uplink from the ground DORIS beacons. This new scintillation monitoring system has been used to detect natural and artificial field aligned irregularity effects on the amplitude and phase of UHF carriers where typical scintillation amplitudes are 2dB or less. Using the HAARP transmitter in Alaska, TACSat4 was used to discover the artificial ionization clouds produce scintillation with as much as 16 dB and amplitude indices S4 greater than unity. This is the first demonstration of significant effects on radio scintillations using high power HF radio waves to disturb the ionosphere.

  13. Investigation of radio astronomy image processing techniques for use in the passive millimetre-wave security screening environment

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher T.; Hutchinson, Simon; Salmon, Neil A.; Wilkinson, Peter N.; Cameron, Colin D.

    2014-06-01

    Image processing techniques can be used to improve the cost-effectiveness of future interferometric Passive MilliMetre Wave (PMMW) imagers. The implementation of such techniques will allow for a reduction in the number of collecting elements whilst ensuring adequate image fidelity is maintained. Various techniques have been developed by the radio astronomy community to enhance the imaging capability of sparse interferometric arrays. The most prominent are Multi- Frequency Synthesis (MFS) and non-linear deconvolution algorithms, such as the Maximum Entropy Method (MEM) and variations of the CLEAN algorithm. This investigation focuses on the implementation of these methods in the defacto standard for radio astronomy image processing, the Common Astronomy Software Applications (CASA) package, building upon the discussion presented in Taylor et al., SPIE 8362-0F. We describe the image conversion process into a CASA suitable format, followed by a series of simulations that exploit the highlighted deconvolution and MFS algorithms assuming far-field imagery. The primary target application used for this investigation is an outdoor security scanner for soft-sided Heavy Goods Vehicles. A quantitative analysis of the effectiveness of the aforementioned image processing techniques is presented, with thoughts on the potential cost-savings such an approach could yield. Consideration is also given to how the implementation of these techniques in CASA might be adapted to operate in a near-field target environment. This may enable a much wider usability by the imaging community outside of radio astronomy and thus would be directly relevant to portal screening security systems in the microwave and millimetre wave bands.

  14. Peculiarities of Excitation of Large-Scale Plasma Density Irregularities During Modification of the Ionospheric F 2 Region by High-Power HF Radio Waves

    NASA Astrophysics Data System (ADS)

    Frolov, V. L.; Schorokhova, E. A.; Kunitsyn, V. E.; Andreeva, E. S.; Padokhin, A. M.

    2016-03-01

    We present the experimental results concerning the features of large-scale artificial plasma-density irregularities excited in the ionospheric F2 region by high-power HF radio waves. The experiments were performed in recent years using the SURA heating facility. It is shown that at the altitude of the pump-wave reflection, these irregularities are most efficiently generated in the magnetic zenith region. The effect of enhancement of the large-scale irregularity generation at the edge of the pump-wave beam is revealed. The results of studying large-scale irregularities recorded at the altitudes of the topside ionosphere are presented. Experimental results concerning the features of the internal gravity waves generated at the ionospheric altitudes during periodic heating of the ionospheric plasma by high-power HF radio waves are summarized and their possible influence on generation of artificial ionospheric irregularities at a long distance from the heater is discussed.

  15. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    PubMed Central

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  16. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    PubMed

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  17. Space-Borne Radio-Sounding Investigations Facilitated by the Virtual Wave Observatory (VWO)

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fung, Shing F.; Bilitza,Dieter; Garcia, Leonard N.; Shao, Xi; Galkin, Ivan A.

    2011-01-01

    The goal of the Virtual Wave Observatory (VWO) is to provide userfriendly access to heliophysics wave data. While the VWO initially emphasized the vast quantity of wave data obtained from passive receivers, the VWO infrastructure can also be used to access active sounder data sets. Here we use examples from some half-million Alouette-2, ISIS-1, and ISIS-2 digital topside-sounder ionograms to demonstrate the desirability of such access to the actual ionograms for investigations of both natural and sounder-stimulated plasma-wave phenomena. By this demonstration, we wish to encourage investigators to make other valuable space-borne sounder data sets accessible via the VWO.

  18. The First Wave: The Beginnings of Radio in Canadian Distance Education

    ERIC Educational Resources Information Center

    Buck, George H.

    2006-01-01

    This article describes one of the first developments and deployment of radio for distance learning and education in Canada, beginning in the early 1920s. Anticipating a recent initiative of public-private partnerships, the impetus, infrastructure, and initial programs were provided by a large corporation. Description of the system, its purpose,…

  19. Revealing the Hidden Wave: Using the Very Small Radio Telescope to Teach High School Physics

    ERIC Educational Resources Information Center

    Doherty, Michael; Fish, Vincent L.; Needles, Madeleine

    2011-01-01

    Scientists and teachers have worked together to produce teaching materials for the Very Small Radio Telescope (VSRT), an easy-to-use, low-cost apparatus that can be used in multiple laboratory experiments in high school and university physics and astronomy classes. In this article, we describe the motivation for the VSRT and several of the

  20. The Coherer: With Simple Demonstrations of the Generation, Propagation and Detection of Radio Waves

    ERIC Educational Resources Information Center

    Mills, Allan

    2010-01-01

    A coherer is a bistable device based on metal filings loosely confined between solid metal electrodes. This granular material normally exhibits a very high electrical resistance (tens of kilohms), but passage of the high-frequency current generated by reception of a radio signal causes it to "cohere" into a comparatively low resistance condition

  1. Revealing the Hidden Wave: Using the Very Small Radio Telescope to Teach High School Physics

    ERIC Educational Resources Information Center

    Doherty, Michael; Fish, Vincent L.; Needles, Madeleine

    2011-01-01

    Scientists and teachers have worked together to produce teaching materials for the Very Small Radio Telescope (VSRT), an easy-to-use, low-cost apparatus that can be used in multiple laboratory experiments in high school and university physics and astronomy classes. In this article, we describe the motivation for the VSRT and several of the…

  2. The Coherer: With Simple Demonstrations of the Generation, Propagation and Detection of Radio Waves

    ERIC Educational Resources Information Center

    Mills, Allan

    2010-01-01

    A coherer is a bistable device based on metal filings loosely confined between solid metal electrodes. This granular material normally exhibits a very high electrical resistance (tens of kilohms), but passage of the high-frequency current generated by reception of a radio signal causes it to "cohere" into a comparatively low resistance condition…

  3. Dynamic of Langmuir and Ion-Sound Waves in Type 3 Solar Radio Sources

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Willes, A. J.; Cairns, I. H.

    1993-01-01

    The evolution of Langmuir and ion-sound waves in type 3 sources is investigated, incorporating linear growth, linear damping, and nonlinear electrostatic decay. Improved estimates are obtained for the wavenumber range of growing waves and the nonlinear coupling coefficient for the decay process. The resulting prediction for the electrostatic decay threshold is consistent with the observed high-field cutoff in the Langmuir field distribution. It is shown that the conditions in the solar wind do not allow a steady state to be attained; rather, bursty linear and nonlinear interactions take place, consistent with the highly inhomogeneous and impulsive waves actually observed. Nonlinear growth is found to be fast enough to saturate the growth of the parent Langmuir waves in the available interaction time. The resulting levels of product Langmuir and ion-sound waves are estimated theoretically and shown to be consistent with in situ ISEE 3 observations of type 3 events at 1 AU. Nonlinear interactions slave the growth and decay of product sound waves to that of the product Langmuir waves. The resulting probability distribution of ion-sound field strengths is predicted to have a flat tail extending to a high-field cutoff. This prediction is consistent with statistics derived here from ISEE 3 observations. Agreement is also found between the frequencies of the observed waves and predictions for the product S waves. The competing processes of nonlinear wave collapse and quasilinear relaxation are discussed, and it is concluded that neither is responsible for the saturation of Langmuir growth. When wave and beam inhomogeneities are accounted for, arguments from quasi-linear relaxation yield an upper bound on the Langmuir fields that is too high to be relevant. Nor are the criteria for direct wave collapse of the beam-driven waves met, consistent with earlier simulation results that imply that this process is not responsible for saturation of the beam instability. Indeed, even if the highest observed Langmuir fields are assumed to he part of a long-wavelength 'condensate' produced via electrostatic decay, they still fall short of the relevant requirements for wave collapse. The most stringent requirement for collapse is that collapsing wave packets not be disrupted by ambient density fluctuations in the solar wind. Fields of several mV m(exp -1) extending over several hundred km would be needed to satisfy this requirement; at 1 AU such fields are rare at best.

  4. Dynamics of Langmuir and ion-sound waves in type III solar radio sources

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Willes, A. J.; Cairns, I. H.

    1993-01-01

    The study traces the evolution of Langmuir and ion-sound waves in type III sources, incorporating linear growth, linear damping, and nonlinear electrostatic decay. Improved estimates are obtained for the wavenumber range of growing waves and the nonlinear coupling coefficient for the decay process. It is shown that the conditions in the solar wind do not allow a steady state to be attained; instead, bursty linear and nonlinear interactions take place, consistent with the highly inhomogeneous and impulsive waves actually observed. Nonlinear growth is found to be rapid enough to saturate the growth of the parent Langmuir waves in the available interaction time. The competing processes of nonlinear wave collapse and quasi-linear relaxation are discussed, and it is concluded that neither is responsible for the saturation of Langmuir growth.

  5. Solar Electron Beams Detected in Hard X-Rays and Radio Waves

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Benz, Arnold O.; Dennis, Brian R.; Schwartz, Richard A.

    1995-12-01

    We present a statistical survey of electron beam signatures that are detected simultaneously at hard X-ray (HXR) and radio wavelengths during solar flares. For the identification of a simultaneous event we require a type III (normal-drifting or reverse-slope-drifting) radio burst that coincides (within ± 1 s) with a significant (≥ 3 σ HXR pulse of similar duration (≥ 1 s). Our survey covers all HXRBS/SMM and BATSE/CGRO flares that were simultaneously observed with the 0.1-1 GHz spectrometer Ikarus or the 0.1-3 GHz spectrometer Phoenix of ETH Zurich during 1980-1993. The major results and conclusions are as follows: 1. We identified 233 HXR pulses (out of 882) to be correlated with type III-like radio bursts: 77% with normal-drifting type III bursts, 34% with reverse-slope (RS)-drifting bursts, and 13% with oppositely drifting (III + RS) burst pairs. The majority of these cases provide evidence for acceleration of bidirectional electron beams. 2. The detailed correlation with type III-like radio bursts suggests that most of the subsecond fluctuations detectable in ≥ 25 keV HXR emission are related to discrete electron injections. This is also supported by the proportionality of the HXR pulse duration with the radio burst duration. The distribution of HXR pulse durations WX is found to have an exponential distribution, i.e., N(WX) ∝ exp (-WX/0.25 s) in the measured range of WX ≍ 0.5-1.5 s. 3. From oppositely drifting radio burst pairs we infer electron densities of ne = 109-1010 cm-3 at the acceleration site. From the absence of a frequency gap between the simultaneous start frequencies of upward and downward drifting radio bursts, we infer an upper limit of L ≤ 2000 km for the extent of the acceleration site and an acceleration time of Δt ≤ 3 ms for the (≥ 5 keV) radio-emitting electrons (in the case of parallel electric fields). 4. The relative timing between HXR pulses and radio bursts is best at the start frequency (of earliest radio detection), with a coincidence of ≲0.1 s in the statistical average, while the radio bursts are delayed at all other frequencies (in the statistical average). The timing is consistent with the scenario of electron injection at a mean coronal height of h ≍ 104 km. The radio-emitting electrons are found to have lower energies (≳ 5 keV) than the ≥ 25 keV HXR-emitting electrons. 5. The modulated HXR flux that correlates with electron beam signatures in radio amounts to 2%-6% of the total HXR count rate (for BATSE flares). The associated kinetic energy in electrons is estimated to be E = 4 × 1022-1027 ergs per beam, or Ne = 4 × 1028-1033 electrons per beam, considering the spread from the smallest to the largest flare detected by HXRBS. 6. The average drift rate of propagating electron beams is found here to be [dv/dt] = 0.10ν1.4 MHz km s-1 in the frequency range of ν = 200-3000 MHz, which is lower than expected from the Alvarez & Haddock relation for frequencies ≤ 550 MHz. 7. The frequency distributions of HXR fluxes (Fx) and radio type III burst fluxes (FR), which both can be characterized by a power law, are found to have a significantly different slope, i.e., N(Fx) ∝ Fx-1.87 versus N(FR) ∝ FR-1.28. The difference in the slope is attributed to the fundamental difference between incoherent and coherent emission processes. In summary, these findings suggest a flare scenario in which bidirectional streams of electrons are accelerated during solar flares at heights of 10 km above the photosphere in rather compact regions (L ≲ 2000 km). The acceleration site is likely to be located near the top of flare loops (defined by HXR double footpoints) or in the cusp above, where electrons have also access to open field lines or larger arches. The observed bidirectionality of electron beams favors acceleration mechanisms with oppositely directed electric fields or stochastic acceleration in an X-type reconnection geometry.

  6. Estimate of a D region ionospheric electron density profile from MF radio wave observations by the S-310-37 rocket

    NASA Astrophysics Data System (ADS)

    Ashihara, Y.; Ishisaka, K.; Miyake, T.

    2016-01-01

    The S-310-37 rocket, launched at 11:20 (JST) on 16 January 2007, was equipped with a radio receiver to observe the medium-frequency (MF) radio wave propagation characteristics in the ionosphere. The radio receiver measured the intensity and the waveform of the radio wave at 873 kHz from the NHK Kumamoto broadcasting station. The polarized mode waves' intensity characteristics were obtained by analyzing the observed waveform. In this study, the S-310-37 rocket-observed polarized mode waves' propagation characteristics are analyzed in order to estimate the electron density profile in the ionospheric D region. These observations become better measurement approach because the electron density profile in the ionospheric D region is difficult to be observed by other equipment such as a Langmuir probe. A Langmuir probe can measure in the ionospheric D region; however, the absolute values may be off by the influence of wake effects around the sounding rocket. It is demonstrated that the propagation characteristics of the polarized mode waves can be successfully used to derive the electron density profile in the ionospheric D region.

  7. Trapping of sensing radio waves in an artificial large-scale ionospheric cavity

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, I. V.; Cherkashin, Yu. N.

    2016-03-01

    The results of phenomenological analysis of data from oblique chirp sounding of the ionosphere in a 2007 heating experiment with possible recording of the effect of trapping sounding-radiation in an artificial ionospheric cavity and spotlighting it in the near (over the Earth's surface) zone of the Sura facility are presented. The physical aspects of forming an additional trace on ionograms of oblique radio-sounding of the perturbed region of the ionosphere are discussed.

  8. Controlled stimulation of magnetospheric electrons by radio waves: experimental model for lightning effects.

    PubMed

    Goldberg, R A; Curtis, S A; Barcus, J R; Siefring, C L; Kelley, M C

    1983-03-18

    Magnetospheric electrons precipitated by ground-based coded very low frequency radio transmissions have been detected by rocket measurement of bremsstrahlung x-rays, caused by impact of the electrons with the upper atmosphere. The direct correlations obtained between the very low frequency signals and the x-rays demonstrate the limits of sensitivity required and indicate that this remote sensing technique would be useful for future study of very low frequency effects induced by single lightning strokes. PMID:17735612

  9. Controlled stimulation of magnetospheric electrons by radio waves Experimental model for lightning effects

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Curtis, S. A.; Barcus, J. R.; Siefring, C. L.; Kelley, M. C.

    1983-01-01

    Magnetospheric electrons precipitated by ground-based coded very low frequency radio transmissions have been detected by rocket measurement of bremsstrahlung X-rays, caused by impact of the electrons with the upper atmosphere. The direct correlations obtained between the very low frequency signals and the X-rays demonstrate the limits of sensitivity required and indicate that this remote sensing technique would be useful for future study of very low frequency effects induced by single lightning strokes.

  10. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    SciTech Connect

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-07-15

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter.

  11. Internal wave activity in the polar atmospheric regions during 2006 - 2009 revealed by COSMIC radio occultation data

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander; Liou, Yuei-An

    The satellite mission Formosat-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) consists of six micro-satellites, and each of them has four GPS-antennas. It was launched in April 2006, orbiting around the Earth at approximately 800 km. The primary scientific goal of the mission is to demonstrate the value of near-real-time radio occultation (RO) observations in improving operational numerical weather predictions (NWP). The goal is readily shown by assimilating the measurements of atmospheric parameters into used NWP-models. These parameters include density, temperature, pressure and relative humidity fields in the atmosphere. An analysis of their geographic and seasonal distributions is necessary to the understanding of the energy and momentum transfer and the reaction of the polar atmosphere in response to global warming. This task is especially important as the Polar Regions are very sensitive to the change in global temperature and it may be a major cause of global sea level rising. In this work, a statistical analysis of the internal gravity wave (IGW) activity in polar atmospheric regions (latitudes more than 60º) using Formosat-3/COSMIC RO temperature data collected from July 2006 to March 2009 has been performed. Geographic and seasonal distributions of the IGW potential energy (wave activity indicator) in the altitude interval from 15 to 35 km have been determined and analyzed. The obtained results show that the wave activity in the polar atmosphere is strong in winter and spring. The potential energy of IGWs in spring is largest in Antarctic atmospheric region, while it is largest in winter in Arctic region. The wave potential energy increases with altitude up to 35 km in the atmosphere of both Earth’s hemispheres. In Antarctic region, internal waves with high potential energy occur in the atmosphere over the Antarctic Peninsula. In Arctic region, a high wave activity is mainly observed over North Atlantic Ocean (Iceland) and Scandinavian Peninsula. In this work, the results of an analysis of the wave activity and factors influencing upon it in the polar stratosphere of Arctic and Antarctic have been presented and discussed. A statistical analysis of the IGW activity in Polar Regions (latitudes more than 60º) of the Earth’s atmosphere using Formosat-3/COSMIC RO temperature data collected from July 2006 to March 2009 is performed. Geographic and seasonal distributions of the IGW potential energy per unit mass (wave activity indicator) in the altitude interval from 15 to 35 km are determined and analyzed. This work was partially supported by the RFBR grant 13-02-00526-а and Program 22 of the RAS Presidium.

  12. Interplanetary conditions during 3-kHz radio-wave detections in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Maclennan, C. G.; Gold, R. E.

    1985-01-01

    Plasma waves detected by the Voyager 1 and 2 spacecraft beyond about 12 AU that may be associated with the turbulence expected at the heliopause are interpreted in terms of the characteristics of the interplanetary medium at large heliocentric distances. The low-energy charged-particle environment in the outer heliosphere during the observations of the unusual plasma-wave signals is addressed. The particle data suggest that the outer heliosphere was unusually stable and free of transient shock and particle events for the roughly eight months during the wave observations.

  13. Onboard Signal Processing: Wave of the Future for Planetary Radio Science?

    NASA Technical Reports Server (NTRS)

    Marouf, E. A.

    1993-01-01

    Future spacecraft-based radio observations of planetary surfaces, rings, and atmospheres could significantly benefit from recent technological advances in real-time digital signal processing (DSP) hardware. Traditionally, the radio observations have been carried out in a 'down link' configuration in which about 20-W spacecraft transmitted RF power illuminates the target of interest and the perturbed signal is collected at an Earth receiving station. The down link configuration was dictated by the large throughput of received data, corresponding to a relatively large recording band width (about 50 kHz) needed to capture the coherent and scattered signal components in the presence of trajectory, ephemeris, and measurement uncertainties. An alternative 'up link' configuration in which powerful Earth-based radio transmitters (20-200 kW) are used to illuminate the target and data are recorded on board a spacecraft could enhance the measurements' signal-to-noise ratio by a factor of about 1000, allowing a quantum leap in scientific capabilities. Various aspects of alternative signal processing technologies are discussed.

  14. Coordinated Radio, Electron, and Waves Experiment (CREWE) for the NASA Comet Rendezvous and Asteroid Flyby (CRAF) instrument

    NASA Technical Reports Server (NTRS)

    Scudder, Jack D.

    1992-01-01

    The Coordinated Radio, Electron, and Waves Experiment (CREWE) was designed to determine density, bulk velocity and temperature of the electrons for the NASA Comet Rendezvous and Asteroid Flyby Spacecraft, to define the MHD-SW IMF flow configuration; to clarify the role of impact ionization processes, to comment on the importance of anomalous ionization phenomena (via wave particle processes), to quantify the importance of wave turbulence in the cometary interaction, to establish the importance of photoionization via the presence of characteristic lines in a structured energy spectrum, to infer the presence and grain size of significant ambient dust column density, to search for the theoretically suggested 'impenetrable' contact surface, and to quantify the flow of heat (in the likelihood that no surface exists) that will penetrate very deep into the atmosphere supplying a good deal of heat via impact and charge exchange ionization. This final report provides an instrument description, instrument test plans, list of deliverables/schedule, flight and support equipment and software schedule, CREWE accommodation issues, resource requirements, status of major contracts, an explanation of the non-NASA funded efforts, status of EIP and IM plan, descope options, and Brinton questions.

  15. Numerical investigation of fast-wave propagation and radio-frequency sheath interaction with a shaped tokamak wall

    NASA Astrophysics Data System (ADS)

    Kohno, H.; Myra, J. R.; D'Ippolito, D. A.

    2015-07-01

    Interactions between propagating fast waves and radio-frequency (RF) sheaths in the ion cyclotron range of frequencies are numerically investigated based on a cold fluid plasma model coupled with a sheath boundary condition. In this two-dimensional study, the capability of the finite element code rfSOL, which was developed in previous numerical work, is extended to analyze self-consistent RF sheath-plasma interaction problems in a tokamak with a non-circular cross-section. It is found that a large sheath voltage is generated near the edges of the limiter-shaped deformation as a result of the conversion from fast to slow waves on the sheaths. The sheath voltage associated with this conversion is particularly significant in the localized region where the contact angle between the magnetic field line and the conducting wall varies rapidly along the curved sheath surface, which is consistent with the results in previous one-dimensional theoretical work. The dependences of the RF sheaths on various parameters in plasma such as the toroidal wavenumber, edge plasma density, and the degree of the RF wave absorption in the core region are also examined in detail.

  16. Ionospheric Phenomena and Low-Frequency Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Herne, D.; Kennewell, J.; Lynch, M.; Carrano, C.

    2014-05-01

    The Murchison Widefield Array radio telescope (MWA), situated on the Murchison Radio Observatory (MRO) in Western Australia, has recently commenced operations. This instrument operates over the frequency range 80-300 MHz. Further, the MRO is also the site chosen to host the low-frequency component of the Square Kilometre Array, radio telescope (SKA). Each instrument is susceptible to scintillation caused by fluctuations in ionospheric plasma density and Faraday rotation of incoming signals caused by the interaction of low-frequency radio waves with dissociated electrons in the ionosphere. Observations of these parameters over several years, across periods of both subdued and elevated solar activity have demonstrated markedly differing regimes. High-precision GPS systems, combined with purpose-written data acquisition software (SCINDA), have enabled investigation of various phenomena including the effect of solar storms on the ionosphere at highly resolved time-scales. We report on aspects of phenomena observed and their significance to low-frequency radio astronomy and note that conditions of very low scintillation encountered support the decision to site world-leading instruments on the MRO.

  17. Radio-over-fiber system with tunable millimeter-wave generation and wavelength reuse for uplink connection

    NASA Astrophysics Data System (ADS)

    Zhang, Chan; Ning, Tigang; Li, Jing; Lin, Heng; Liu, Zhiming

    2016-03-01

    We propose and demonstrate a radio-over-fiber system to generate an optical millimeter wave (MMW) and realize wavelength reuse for an uplink connection. A tunable optical comb generated by a single Fabry-Perot laser serves as the optical source. The central carrier is separated by an optical circulator cascaded with a fiber Bragg grating. For the downlink, the unmodulated central carrier is coupled with one subcarrier, which has been modulated with 2.5-Gb/s data. Then, different MMWs can be generated by choosing different subcarriers. While for the uplink, the same central carrier is reused for an uplink connection with 1.25-Gb/s data. In the scheme, a 60-GHz MMW is obtained and the bidirectional data are simultaneously transmitted over 60-km transmission with <0.5-dB power penalty. This system shows a simple cost-efficient configuration and good performance over long-distance delivery.

  18. Modeling of high frequency radio wave absorption on oblique soundings during a solar X-ray flare

    NASA Astrophysics Data System (ADS)

    Rogov, D. D.; Moskaleva, E. V.; Zaalov, N. Y.

    2015-01-01

    High frequency radio wave absorption induced by Solar Ultra-Violet (UV) and X-ray flux is investigated. The influence of the solar flare observed on 11 April 2013 on the structure of oblique sounding ionograms in the Arctic region of Russia is considered. An adjustable model of the ionosphere developed for high frequency (HF) propagation problems was employed for this purpose. The simulation algorithm has been designed to accept a large variety of ionospheric conditions. On the basis of the SWPC D-region Absorption model the absorption effects in the ionosphere at sub-auroral latitudes of the Earth were calculated. This approach does not require knowledge of the electron density and electron collision frequency profiles of the D-region ionosphere. The oblique ionograms simulated with the absorption effect and ionograms provided by Russian network of ionospheric observations deployed in Arctic region exhibit quite a good resemblance.

  19. Dynamics of plasma density perturbations in the upper ionosphere and the magnetosphere under the action of powerful HF radio waves

    NASA Astrophysics Data System (ADS)

    Borisov, N.; Ryabova, N.; Ruzhin, Yu.

    2015-11-01

    Dynamics of the density perturbations of the main plasma components (electrons, oxygen and hydrogen ions) in the upper ionosphere and the magnetosphere under the action of powerful HF radio waves is discussed theoretically and numerically. For finite heating pulse and different effective powers the variations of the density perturbations in time at various heights are investigated. We argue that due to collisionless damping the magnetospheric duct along the whole field line is not formed. Instead positive and negative perturbations of the main plasma components propagating with the attenuation in the magnetosphere with two different speeds are predicted. Utilization of pulsed heating provides significant information concerning plasma perturbations in the upper ionosphere and the magnetosphere.

  20. Detection of Transionospheric SuperDARN HF Waves by the Radio Receiver Instrument on the enhanced Polar Outflow Probe Satellite

    NASA Astrophysics Data System (ADS)

    Gillies, R. G.; Yau, A. W.; James, H. G.; Hussey, G. C.; McWilliams, K. A.

    2014-12-01

    The enhanced Polar Outflow Probe (ePOP) Canadian small-satellite was launched in September 2013. Included in this suite of eight scientific instruments is the Radio Receiver Instrument (RRI). The RRI has been used to measure VLF and HF radio waves from various ground and spontaneous ionospheric sources. The first dedicated ground transmission that was detected by RRI was from the Saskatoon Super Dual Auroral Radar Network (SuperDARN) radar on Nov. 7, 2013 at 14 MHz. Several other passes over the Saskatoon SuperDARN radar have been recorded since then. Ground transmissions have also been observed from other radars, such as the SPEAR, HAARP, and SURA ionospheric heaters. However, the focus of this study will be on the results obtained from the SuperDARN passes. An analysis of the signal recorded by the RRI provides estimates of signal power, Doppler shift, polarization, absolute time delay, differential mode delay, and angle of arrival. By comparing these parameters to similar parameters derived from ray tracing simulations, ionospheric electron density structures may be detected and measured. Further analysis of the results from the other ground transmitters and future SuperDARN passes will be used to refine these results.

  1. Cometary kilometric radio waves and plasma waves correlated with ion pick-up effect at Comet Halley

    NASA Technical Reports Server (NTRS)

    Oya, H.; Morioka, A.; Miyake, W.; Smith, E. J.; Tsurutani, B. T.

    1985-01-01

    Bow-shock movements at Comet Halley are inferred from the discrete spectra of the cometary kilometric radiation (30-195 kHz); the observed emissions can be interpreted as being generated and propagating from the moving shock. The shock motion is possibly associated with the time variation of the solar wind and cometary outgassing. It is concluded that these plasma wave phenomena are manifestations of ion pick-up processes, which occur even in a remote region 7 million to 10 million km from the cometary nucleus.

  2. Simultaneous observation of VHF radio wave transmission anomaly propagated beyond line of site prior to earthquakes in multiple sites

    NASA Astrophysics Data System (ADS)

    Yamashita, H.; Mogi, T.; Moriya, T.; Takada, M.; Morisada, M.

    2010-12-01

    The VHF radio wave transmission anomalies propagated beyond line of site prior to earthquakes (M>4), (hereafter termed EQ-echo) have been observed more than 20 times from 2004 at the Erimo observatory (ERM) in Hokkaido, Northern Japan. A statistical relationship between magnitude of preceding earthquake and total duration time of the EQ-echo has been proposed (Moriya et al.2009). To confirm a region where the EQ-echo simultaneously observed for each earthquake, we installed another 3 observatory with approximately 5 km spacing in the surroundings of ERM. The EQ-echoes have been observed simultaneously at two observatories prior to four earthquakes since 2008. The initial time and duration of each EQ echo were same time in several cases but different at some minutes each other in other cases. The wave forms of the EQ-echoes were similar in both records. In the Fuyushima observatory (FYS, 10km away from ERM) , three-way antennas were installed at every 120 degree to detect an arrival direction of EQ-echoes. Simultaneous observations of EQ-echoes at ERM and FYS for the preceding EQ (M=4.7) that occurred in the Hidaka mountains revealed that this EQ-echo came from direction of the epicenter based on the FYS observation and this direction was consistent with that of EQ-echo observed simultaneously in ERM. Although some of simultaneous observed EQ-echoes were observed in same time completely at both observatories, but some of them were with time rag of duration of each EQ-echo between multiple observed sites. We discussed what these time rags mean by considering possibilities of moving of scattering objects, generation of a radio duct, and so on, as in response to this fact.

  3. Radio Variability of the Quasar 3C 273 on the Centimetric Waves -Wavelet-Analysis

    NASA Astrophysics Data System (ADS)

    Ryabov, M. I.; Sukharev, A. L.; Sych, R. A.; Aller, M. F.

    3C 273- has been intensively investigated for many years, since opening of quasars in 1963. Since 1965 on radio telescope RT-26 of Michigan University on frequencies 14.5, 8 and 4.8 GHz long monitoring of this radio source have been carried out. Flux variability of a radio emission on studied frequencies consists a trend on which fast flux changes with characteristic time from 1 to 5 years are imposed. Fourier's methods and the wavelet-analysis that allowed investigating in details changes harmonious component of signals over time are applied. On a trend component the main period makes 8 years. With Fourier filtration have been received data, for allocation high-frequency component in studied signals. By the results of calculations of wavelet-spectrums the periods of 3.5 and 2.3 years are revealed. On the basis of calculation of integrated wavelet-spectrums in a frequency range on this characterizing main phases of activity of a source are defined. On the basis of the program written on IDL, supplementing the wavelet-analysis, delay change between fluxes on separate studied frequencies for each of periodic components has been defined eventually. The average delay for the 8 years periodic component in the range of frequencies of 4.8-8 GHz is about 1 year. In the range of frequencies 8 - to 14.5 GHz the average size of a delay was about 0.5 years. The average delay for all intervals of frequencies for the 3 years periodic components has appeared equal 0.3 years.

  4. Solar gravitational deflection of radio waves measured by very-long-baseline interferometry

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Kent, S. M.; Knight, C. A.; Shapiro, I. I.; Clark, T. A.; Hinteregger, H. F.; Rogers, A. E. E.; Whitney, A. R.

    1974-01-01

    Utilizing a four-antenna technique, simultaneous observations were made, at each end of an 845-km baseline, of the radio sources 3C279 and 3C273B, which are 10 deg apart in the sky. Differences in interferometric phases at 3.7-cm wavelength monitored near the time of the 1972 occultation of 3C279 by the sun, yielded a gravitational deflection of 0.99 plus or minus 0.03 times the value predicted by general relativity, corresponding to gamma = 0.98 plus or minus 0.06 (standard error).

  5. Using IRI and GSM TIP model results as environment for HF radio wave propagation model during the geomagnetic storm occurred on September 26-29, 2011

    NASA Astrophysics Data System (ADS)

    Kotova, D. S.; Klimenko, M. V.; Klimenko, V. V.; Zakharov, V. E.; Ratovsky, K. G.; Nosikov, I. A.; Zhao, B.

    2015-11-01

    This paper analyses the geomagnetic storm on September 26-29, 2011. We compare the calculation results obtained using the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) and IRI-2012 (Bilitza et al., 2014) model with ground-based ionosonde data of stations at different latitudes and longitudes. We examined physical mechanisms responsible for the formation of ionospheric effects during the main phase of geomagnetic storm that occurred at the rising phase of the 24th solar cycle. We used numerical results obtained from IRI-2012 and GSM TIP models as propagation environment for HF signals from an equatorial transmitter during quiet and disturbed conditions. We used the model of HF radio wave propagation developed in I. Kant Baltic Federal University (BFU) that is based on the geometrical optics approximation. We compared the obtained radio paths in quiet conditions and during the main and recovery storm phases and evaluated radio wave attenuation in different media models.

  6. Optical multiple millimeter-wave signal generation using frequency quadrupling for radio-over-fiber systems

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohmoud; Zhang, Xiupu; Kuwairi, Salah

    2012-10-01

    In this work, we propose and investigate a novel modulation technique for the generation of multiple millimeter wave (mm-wave) signals using high-order harmonic generation with a dual-electrode Mach-Zehnder modulator (MZM). The laser output is split into two branches by the use of a polarization beam splitter. We use polarization multiplexing to avoid the inter-symbol interference between multiple mm-wave signals. The proposed technique is comprised of two parallel MZMs. As an example, we consider an RF1 at 7.5 GHz and RF2 at 8.125 GHz, each of which carries its own data signal and drives each MZM, respectively; and mm-wave signals at 30 GHz and 32.5 GHz, i.e. a frequency quadrupler, are obtained after photomixing. The performance of the system is evaluated in terms of Q-factor. Simulation results show that data signal at 625 Mb/s is successfully transmitted over 50 km of single mode fiber. The generated mm-wave signal is robust to chromatic dispersion.

  7. An improvement of the sensitivity of GPS radio occultation data to detect gravity waves through observational and modeling factors

    NASA Astrophysics Data System (ADS)

    Alexander, P.; de la Torre, A.; Hierro, R.; Llamedo, P.

    2016-01-01

    There is a mid-latitude region to the East of the Andes Range in the Southern Hemisphere that exhibits ideal conditions for the generation of gravity waves (GW) by topography mainly during winter. The configuration favors the generation of wavefronts that are parallel to the North-South direction. Global Positioning System (GPS) radio occultation (RO) retrievals from the COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) mission exhibit in a large proportion of the soundings an orientation which should be favorable to the detection of these wavefronts. We try to verify if this GW activity surplus on the East with respect to the West in the studied zone in winter emerges clearly in the GPS RO data between years 2007 and 2012. We argue that the orientation of the soundings but also the mathematical model selected to represent the GW energy distribution can affect the possibility of detecting the signatures of the waves. In particular, we explore a new interpretation of the GW energy distribution observed by GPS RO at the lowest values, as they stay below the precision limit of the technique. We suggest to replace that part of the measured distribution by an exponential curve that in general suits the trend of all the other observed energies. In following this alternative it is shown that the calculated mountain wave activity in the studied sector is now even more clearly larger in the East than in the West during winter. Finally, we consider that energy distributions observed with any measurement technique should in general not be considered as the solely contribution from waves, as also other variable phenomena may be adding to the final outcome.

  8. Effect of gravity waves on the tropopause temperature, height and water vapor in Tibet from COSMIC GPS Radio Occultation observations

    NASA Astrophysics Data System (ADS)

    Khan, Attaullah; Jin, Shuanggen

    2016-02-01

    The tropopause plays an important role in climate change, particularly in Tibet with complex topography and climate change system. In this paper, the temperature and height of the Cold Point Tropopause (CPT) in Tibet are obtained and investigated from COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) GPS Radio Occultation (RO) during June 2006-Feb 2014, which are compared with Lapse Rate Tropopause (LRT) from Atmospheric Infrared Sounder (AIRS/NASA). Furthermore, the impact of Gravity waves (GW) potential energy (Ep) on the CPT-Temperature, CPT-Height, and the variation of stratospheric water vapor with GW Ep variations are presented. Generally the coldest CPT temperature is in June-July-August (JJA) with -76.5 °C, resulting less water vapor into the stratosphere above the cold points. The temperature of the cold point increases up to -69 °C during the winter over the Tibetan Plateau (25-40°N, 70-100°E) that leads to increase in water vapor above the cold points (10 hPa). Mean vertical fluctuations of temperature are calculated as well as the mean gravity wave potential energy Ep for each month from June 2006 to Feb 2014. Monthly Ep is calculated at 5°×5° grids between 17 km and 24 km in altitude for the Tibetan Plateau. The Ep raises from 1.83 J/Kg to 3.4 J/Kg from summer to winter with mean Ep of 2.5 J/Kg for the year. The results show that the gravity waves affect the CPT temperature and water vapor concentration in the stratosphere. Water vapor, CPT temperature and gravity wave (Ep) have good correlation with each other above the cold points, and water vapor increases with increasing Ep.

  9. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 1

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1973-01-01

    An extensive set of ground-based measurements of the diurnal variation of medium frequency radio wave adsorption and virtual height is analyzed in terms of current understanding of the D- and lower E-region ion production and loss process. When this is done a gross discrepancy arises, the source of which is not known.

  10. Clumpy Langmuir waves in type III radio sources - Comparison of stochastic-growth theory with observations

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, I. H.; Gurnett, D. A.

    1993-01-01

    Detailed comparisons are made between the Langmuir-wave properties predicted by the recently developed stochastic-growth theory of type III sources and those observed by the plasma wave experiment on ISEE 3, after correcting for the main instrumental and selection effects. Analysis of the observed field-strength distribution confirms the theoretically predicted form and implies that wave growth fluctuates both spatially and temporally in sign and magnitude, leading to an extremely clumpy distribution of fields. A cutoff in the field-strength distribution is seen at a few mV/m, corresponding to saturation via nonlinear effects. Analysis of the size distribution of Langmuir clumps yields results in accord with those obtained in earlier work and with the size distribution of ambient density fluctuations in the solar wind. This confirms that the inhomogeneities in the Langmuir growth rate are determined by the density fluctuations and that these fluctuations persist during type III events.

  11. Plasma ionization through wave-particle interaction in a capacitively coupled radio-frequency discharge

    SciTech Connect

    O'Connell, D.; Gans, T.; Vender, D.; Czarnetzki, U.; Boswell, R.

    2007-03-15

    Phase resolved optical emission spectroscopy, with high temporal resolution, shows that wave-particle interactions play a fundamental role in sustaining capacitively coupled rf plasmas. The measurements are in excellent agreement with a simple particle-in-cell simulation. Excitation and ionization mechanisms are dominated by beam-like electrons, energized through the advancing and retreating electric fields of the rf sheath. The associated large-amplitude electron waves, driven by a form of two-stream instability, result in power dissipation through electron trapping and phase mixing.

  12. A catalog of jovian decameter-wave radio observations from 1957 - 1978

    NASA Technical Reports Server (NTRS)

    Thieman, J. R.

    1979-01-01

    Data from over 200,000 hours of observation of Jupiter radio emission in the decameter-wavelength band, were collected from 13 observing sites and are available on magnetic tape. Observations were made at 14 fixed frequencies from 5 to 30 MHz. The characteristics of the tape recording technique and the data format are described. The combination of overlapping data from observing sites scattered world-wide lessens the effect of the earth's daily interruption of the ground-received signal. A power spectral analysis of the data shows no evidence of periodicities within the data other than the well-known influences of Jupiter, Io, and the earth. The dependence of the occurrence probability of emission on System 3 longitude and the phase of Io varies smoothly with frequency down to 15 MHz and then appears quite different at 10 MHz. The morphology of the radio sources is both complex and stable for periods of at least months and probably much longer.

  13. Nonaxisymmetrical beaming cone of radio waves produced by cyclotron maser instability in inhomogeneous medium

    NASA Astrophysics Data System (ADS)

    Galopeau, Patrick; Boudjada, Mohammed; Rucker, Helmut

    2015-04-01

    The results we have recently obtained about the beaming of the Io-controlled decameter Jovian radio emission allow us to conclude that this radiation is emitted in a hollow cone flattened in a particular direction linked to the local magnetic field. The existence of such an emission cone leads us to understand the location of the Io-controlled sources (Io-A, Io-B, Io-C, and Io-D) in the CML-Io phase diagram and to interpret their dependence on the longitude as the manifestation of a Jovian active longitude sector, where the emission mechanism is the most efficient. We study the origin of the flattening of the emission cone in the framework of a radio emission produced by the cyclotron maser instability in an inhomogeneous medium where the local magnetic field B and the gradient of its modulus downtriangleB are not parallel, i.e., in a geometry without axial symmetry. We consider that the radiation propagates in the source region in the X-mode near its cutoff frequency.

  14. A study of precursors to equatorial spread F using the Giant Meterwave Radio Telescope

    NASA Astrophysics Data System (ADS)

    DasGupta, A.; Paul, A.; Ray, S.; Das, A.; Ananthakrishnan, S.

    2008-09-01

    This paper reports the results of an experiment to identify a possible precursor to equatorial spread F (ESF) with the Giant Meterwave Radio Telescope (GMRT) (latitude: 19.10°N, longitude: 74.05°E geographic; dip: 23°N magnetic) near Pune by simultaneously recording the amplitude and phase of the signal from the radio source 3C218 (RA:09h15m, Declination:-11°) at 235, 327, 610, and 1420 MHz in the postsunset-premidnight period 18.5-22.5 LT on 26, 29, and 31 March 2004. Patches of scintillations both in amplitude and phase were observed on 26 and 29 March 2004 at 235, 327, and 610 MHz frequencies starting around 20 LT (LT = UT + 05:00) and extending until 22 LT while the records for 31 March 2004 do not show any scintillations. Significant amplitude scintillations were not observed at 1420 MHz. The most remarkable feature was the presence of large-scale periodic structures in phase prior to onset of amplitude scintillations. The Total Electron Content (TEC) as observed on a GPS link also looking through the same ionospheric volume showed periodic variation of carrier phase prior to onset of scintillations and bite-outs in TEC, which implies that before the onset of ESF, the large-scale wave structures propagate to the height of maximum ionization and beyond.

  15. Observations of electron gyroharmonic waves and the structure of the Io torus. [jupiter 1 spacecraft radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Alexander, J. K.; Desch, M. D.; Hubbard, R. F.; Pedersen, B. M.

    1980-01-01

    Narrow-banded emissions were observed by the Planetary Radio Astronomy experiment on the Voyager 1 spacecraft as it traversed the Io plasma torus. These waves occur between harmonics of the electron gyrofrequency and are the Jovian analogue of electrostatic emissions observed and theoretically studied for the terrestrial magnetosphere. The observed frequencies always include the component near the upper hybrid resonant frequency, (fuhr) but the distribution of the other observed emissions varies in a systematic way with position in the torus. A refined model of the electron density variation, based on identification of the fuhr line, is included. Spectra of the observed waves are analyzed in terms of the linear instability of an electron distribution function consisting of isotropic cold electrons and hot losscone electrons. The positioning of the observed auxiliary harmonics with respect to fuhr is shown to be an indicator of the cold to hot temperature ratio. It is concluded that this ratio increases systematically by an overall factor of perhaps 4 or 5 between the inner and outer portions of the torus.

  16. Effect of radio frequency waves of electromagnetic field on the tubulin.

    PubMed

    Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi

    2013-09-01

    Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject. PMID:23470160

  17. Disks, Young Stars, and Radio Waves: The Quest for Forming Planetary Systems

    NASA Astrophysics Data System (ADS)

    Chandler, C. J.; Shepherd, D. S.

    2008-08-01

    Kant and Laplace suggested the Solar System formed from a rotating gaseous disk in the 18th century, but convincing evidence that young stars are indeed surrounded by such disks was not presented for another 200 years. As we move into the 21st century the emphasis is now on disk formation, the role of disks in star formation, and on how planets form in those disks. Radio wavelengths play a key role in these studies, currently providing some of the highest-spatial-resolution images of disks, along with evidence of the growth of dust grains into planetesimals. The future capabilities of EVLA and ALMA provide extremely exciting prospects for resolving disk structure and kinematics, studying disk chemistry, directly detecting protoplanets, and imaging disks in formation.

  18. Electromagnetic modelling with wave tilt and reflection coefficient: an application to stratified earth media using low and radio frequencies

    NASA Astrophysics Data System (ADS)

    Olowofela, J. A.; Ozebo, V. C.

    2006-06-01

    Many models using electromagnetic sounding techniques have been formulated for use in exploration activities. In deriving the governing equations for the models, Maxwell's equations are used and the earth is taken as a layered medium. Using these boundary conditions, the Sommerfeld integrals are obtained for several models. However, the difficulties and limitations posed by the iterations of the functions, especially the strong oscillations and slow convergence of the Bessel function, call for a search for new methods. This work aims to formulate models, with the advantage of bypassing the problems highlighted above, and to discover new response parameters not considered by the older models due to the limitations of time. Three measurable field parameters, (1) amplitude of the correction factor to the wave tilt, (2) phase of the amplitude of the correction factor to the wave tilt and (3) reflection coefficient, were calculated from this model with various conductivity contrasts over a two-layered earth. Two cases of a top layer overlying a more conductive basement and a more conductive top layer overlying a resistive basement were considered with a radio frequency of 125 kHz and a low frequency of 10 Hz. The model was tested using data from existing models and was then applied to a homogeneous and a layered earth. Results revealed that the phase of the amplitude of the correction to the wave tilt was found to be most diagnostic of the changes in layer parameters. Also, depths of 20 m and 2000 m were achieved with the two respective frequency values. The reflection coefficient was discovered to be an important parameter for detecting layered earth structures, in addition to other parameters. Furthermore, an inverse relationship between the transverse electric and transverse magnetic modes of the reflection coefficient is established.

  19. Dynamics of decametric radio-sources and standing Alfvén waves in jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Arkhypov, Oleksiy V.; Rucker, Helmut O.

    2011-04-01

    Short (S-) bursts and narrow-band events (NB) of jovian decametric emission (DAM) form oscillating bands near certain frequencies in dynamical spectra. This paper is focused on the S/NB-structure with time-scales longer than 0.03 s. It is shown that there is a clear resemblance between S/NB spectral features and trajectories of electrons in the parallel electric field of the standing Alfvén wave.

  20. Simulation of Self-consistent Radio Wave Artificial Ionospheric Turbulence Pumping and Damping

    NASA Astrophysics Data System (ADS)

    Kochetov, Andrey

    The numerical simulations of the action of self-consistent incident powerful electromagnetic wave absorption arising in the regions of artificial plasma turbulence excitation at formation, saturation and relaxation stages of turbulent structures (Kochetov, A.V., Mironov, V.A., Te-rina, G.I., Bubukina V. N, Physica D, Nonlinear phenomena, 2001, 152-153, 723) to reflection index dynamics are carried out. The nonlinear Schrüdinger equation in inhomogeneous plasma layer with incident electromagnetic wave pumping and backscattered radiation damping (Ko-chetov, et al, Adv. Space Res., 2002, 29, 1369 and 2006, 38, 2490) is extended with the imagi-nary part of plasma dielectric constant (volume damping), which is should be taken into account in strong electromagnetic field plasma regions and results the energy transformation from elec-tromagnetic waves to plasma ones at resonance interaction (D.V. Shapiro, V.I. Shevchenko, in Handbook of Plasma Physics 2, eds. A.A Galeev, R.N. Sudan. Elsevier, Amsterdam, 1984). The volume damping reproduces the basic energy transformation peculiarities: hard excitation, nonlinearity, hysteresis (A.V. Kochetov, E. Mjoelhus, Proc. of IV Intern. Workshop "SMP", Ed. A.G. Litvak, Vol.2, N. Novgorod, 2000, 491). Computer modeling demonstrates that the amplitude and period of reflection index oscillations at the formation stage slowly depend on damping parameters of turbulent plasma regions. The transformation from complicated: quasi-periodic and chaotic dynamics, to quasi-stationary regimes is shown at the saturation stage. Transient processes time becomes longer if the incident wave amplitude and nonlinear plasma response increase, but damping decreases. It is obtained that the calculated reflection and absorption index dynamics at the beginning of the saturation stage agrees qualitatively to the experimental results for ionosphere plasma modification study (Thide B., E.N. Sergeev, S.M. Grach, et. al., Phys. Rev. Lett., 2005, 95, 255002). The work was supported in part by RFBR grant 09-02-01150-a.

  1. Scattering of elf radio waves on global inhomogeneities of the earth-ionosphere cavity

    SciTech Connect

    Nikolaenko, A.P.

    1986-07-01

    Using the Born approximation in the Stratton-Chu equation, a solution was obtained for the vertical electric component of an elf wave in the earth-ionosphere cavity with day-night and polar inhomogeneities. Calculations were made at a 62-GHz frequency using three models of a cavity inhomogeneity for different orientations of the beam path relative to the inhomgeneity. Relative perturbations of the field and diurnal variations in the observed elf field are obtained for a cavity with an inhomogeneity.

  2. Self-consistent Powerful Radio-wave Absorption by Artificial Ionosphere Turbulence

    NASA Astrophysics Data System (ADS)

    Kochetov, Andrey; Menkova, Uliya; Grach, Savely

    The numerical simulations of non-linear Schrodinger equation in inhomogeneous plasma layer with pumping and damping are carried out to investigate the influence of self-consistent incident powerful electromagnetic wave absorption in the regions of plasma turbulence excitation to reflection index dynamics. The damping of electromagnetic wave is taking into account by including in the set of equations (Kochetov A.V., Mironov V. A., Terina G.I., Strong Turbulence Effects in Artificially Disturbed Ionosphere, Adv. Space.Res. 2002,vol.29, No.9, p.1369) imaginary part of plasma dielectric permitivity in the vicinity of wave reflection point in the regions with strong electromagnetic field. The large range of damping parameters: threshold, decrement; different amplitude dependence, including hysteretic one, is studied, in particular, in correlation to (V. D. Shapiro, V. I. Shevchenko, Handbook of Plasma Physics, Eds. A. A. Galeev, R N. Sudan, Elsevier, 1984, vol.2, p.119). It is obtained for some regimes that the calculated reflection index dynamics agrees qualitatively to the experimental results (B. Thide, E. N. Sergeev, S. M. Grach,T. B. Leyser, T. D. Carrozi, Competition between Langmuir and upper hybrid turbulence in an HF pumped ionosphere, Phys. Rev. Lett., 2005, vol. 95, no.25, p. 255002). The work is supported in part by Russian Foundation for Basic Research by the grant No. 06-02-17334.

  3. Modeling of long-path propagation characteristics of VLF radio waves as observed from Indian Antarctic station Maitri

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudipta; Palit, Sourav; Chakrabarti, Sandip K.

    2015-10-01

    Propagation of very low frequency (VLF) radio signal through the Earth-ionosphere waveguide depends strongly on the plasma properties of the ionospheric D layer. Solar extreme ultraviolet radiation plays the central role in controlling physical and chemical properties of the lower ionospheric layers and hence determining the propagation characteristics of a VLF signal. The nature of interference among different propagating modes varies widely with the length of the propagation path. For a very long path, exposure of solar radiation and thus the degree of ionization vary by a large amount along the path. This influences the VLF signal profile by modulating the sky wave propagation. To understand the propagation characteristics over such a long path, we need a thorough investigation of the chemical reactions of the lower ionosphere which is lacking in the literature. Study of radio signal characteristics in the Antarctic region during summer period in the Southern Hemisphere gives us a unique opportunity to explore such a possibility. In addition, there is an extra feature in this path—the presence of solar radiation and hence the D region for the whole day during summer in at least some sections of the path. In this paper, we present long-distance propagation characteristics of VLF signals transmitted from VTX (18.2 kHz) and NWC (19.8 kHz) transmitters recorded at the Indian permanent station Maitri (latitude 70°45'S, longitude 114°40'E) in 2007-2008. A very stable diurnal variation of the signal has been obtained with no signature of nighttime fluctuation due the presence of 24 h of sunlight. Using ion production and recombination profiles by solar irradiance and incorporating D region ion chemistry processes, we calculate the electron density profile at different heights. Using this profile in the Long Wavelength Propagation Capability code, we are able to reproduce the amplitude of VLF signal.

  4. Scintillation noise power spectrum and its impact on high redshift 21-cm observations

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.

    2016-02-01

    Visibility scintillation resulting from wave propagation through the turbulent ionosphere can be an important source of noise at low radio frequencies (ν ≲ 200 MHz). Many low frequency experiments are underway to detect the power spectrum of brightness temperature fluctuations of the neutral-hydrogen 21-cm signal from the Epoch of Reionization (EOR: 12 ≳ z ≳ 7, 100 ≲ ν ≲ 175 MHz). In this paper, we derive scintillation noise power-spectra in such experiments while taking into account the effects of typical data processing operations such as self-calibration and Fourier synthesis. We find that for minimally redundant arrays such as LOFAR and MWA, scintillation noise is of the same order of magnitude as thermal noise, has a spectral coherence dictated by stretching of the snapshot uv-coverage with frequency, and thus is confined to the well known wedge-like structure in the cylindrical (2-dimensional) power spectrum space. Compact, fully redundant (dcore ≲ rF ≈ 300 m at 150 MHz) arrays such as HERA and SKA-LOW (core) will be scintillation noise dominated at all baselines, but the spatial and frequency coherence of this noise will allow it to be removed along with spectrally smooth foregrounds.

  5. The FORMOSAT-3/COSMIC equatorial spread-F and global scintillation model

    NASA Astrophysics Data System (ADS)

    Chen, S. P.; Bilitza, D.; Liu, J. Y. G.

    2014-12-01

    Radio scintillation of receiving signal is a sensitive detector of ionospheric density irregularity or Equatorial spread-F (ESF), it is been defined as a random modulation imported to propagating wave by density irregularity in the propagation medium. Thus, scintillation observations have been vice versa employed to identify irregular structure in highly varied propagation media. However, the limitation of ground-based receiver confines the research range and caused the shortage of oceanic data. Since the launch of FORMOSAT-3/COSMIC (F3/C) in 2006, the constellation formed by six LEO satellites continuing receiving L1-band (1.5 GHz) signal from GPS system. The occultation scintillation index S4 has already been calculated and recorded for 7 years, and 72° orbital inclination makes F3/C occultation profiles capable to establishing globally observation coverage. In this report, we'll display and discuss the result from both equatorial spread-F occurrence rate and global scintillation S4 index empirical model calculated from F3/C profile data. A comparison with IRI-2012 ESF occurrence rate is also provided as reference.

  6. Scintillation noise power spectrum and its impact on high-redshift 21-cm observations

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.

    2016-05-01

    Visibility scintillation resulting from wave propagation through the turbulent ionosphere can be an important source of noise at low radio frequencies (ν ≲ 200 MHz). Many low-frequency experiments are underway to detect the power spectrum of brightness temperature fluctuations of the neutral-hydrogen 21-cm signal from the Epoch of Reionization (EoR: 12 ≳ z ≳ 7, 100 ≲ ν ≲ 175 MHz). In this paper, we derive scintillation noise power spectra in such experiments while taking into account the effects of typical data processing operations such as self-calibration and Fourier synthesis. We find that for minimally redundant arrays such as LOFAR and MWA, scintillation noise is of the same order of magnitude as thermal noise, has a spectral coherence dictated by stretching of the snapshot uv-coverage with frequency, and thus is confined to the well-known wedge-like structure in the cylindrical (two-dimensional) power spectrum space. Compact, fully redundant (dcore ≲ rF ≈ 300 m at 150 MHz) arrays such as HERA and SKA-LOW (core) will be scintillation noise dominated at all baselines, but the spatial and frequency coherence of this noise will allow it to be removed along with spectrally smooth foregrounds.

  7. Observations of E region irregularities generated at auroral latitudes by a high-power radio wave

    NASA Technical Reports Server (NTRS)

    Djuth, F. T.; Jost, R. J.; Noble, S. T.; Gordon, W. E.; Stubbe, P.

    1985-01-01

    The initial results of a series of observations made with the high-power HF heating facility near Tromso, Norway are reported. During these experiments, attention was focused on the production of artificial geomagnetic field-aligned irregularities (AFAIs) in the auroral E region by HF waves. A mobile 46.9-MHz radar was used to diagnose the formation of AFAIs having spatial scales of 3.2 across geomagnetic field lines. The dynamic characteristics of the AFAIs are discussed within the context of current theoretical work dealing with the natural production of AFAIs in the ionosphere.

  8. Radiation hazards of radio frequency waves on the early embryonic development of Zebrafish

    NASA Astrophysics Data System (ADS)

    Harkless, Ryan; Al-Quraishi, Muntather; Vagula, Mary C.

    2014-06-01

    With the growing use of wireless devices in almost all day-to-day activities, exposure to radio-frequency radiation has become an immediate health concern. It is imperative that the effects of such radiation not only on humans, but also on other organisms be well understood. In particular, it is critical to understand if RF radiation has any bearing on the gene expression during embryonic development, as this is a crucial and delicate phase for any organism. Owing to possible effects that RF radiation may have on gene expression, it is essential to explore the carcinogenic or teratogenic properties that it may show. This study observed the effects of RF radiation emitted from a cellular telephone on the embryonic development of zebra fish. The expression of the gene shha plays a key role in the early development of the fish. This gene has homologs in humans as well as in other model organisms. Additionally, several biomarkers indicative of cell stress were examined: including lactate dehydrogenase (LDH), superoxide dismutase (SOD), and lipid peroxidation (LPO). Results show a significant decrease in the expression of shha, a significant decrease in LDH activity. There was no significant increase in SOD and LPO activity. No morphological abnormalities were observed in the developing embryos. At present, these results indicate that exposure to cell phone radiation may have a suppressive effect on expression of shha in D. rerio, though such exposure does not appear to cause morphological detriments. More trials are underway to corroborate these results.

  9. Comparison of different mechanisms of low-frequency radio wave ionospheric generation by powerful RF facilities

    NASA Astrophysics Data System (ADS)

    Ryabov, A.; Kotik, D.

    2011-12-01

    Generation of ELF/VLF waves in the ionosphere using powerful RF facilities were studied both theoretically and experimentally since the 70th. During this time, it was suggested a several different physical mechanisms for explaining the processes occurring in the plasma, which caused the low-frequency radiation from the ionosphere. The firstly discovered phenomena of generation the VLF signals in experiments with 100kW facility in Russia (Radiophysical Research Institute) was attribute to modulation of ionospheric currents based on thermal nonlinearity. This mechanism was confirmed by numerous experiments at powerful instruments like SURA, Arecibo, EISCAT/Tromso heater, HAARP. It was shown in experiments at SURA facility in the end of 80th the possibility of generation the VLF signals at frequency bands 10-20 kHz which was caused by cubic nonlinearity and possibility of formation of the ionospheric traveling VLF wave antenna. The last experiments at HAARP displayed the effectiveness of ponderomotive mechanisms for generation both VLF and ELF signals (Popadopoulos, Kuo). The results of numerical simulation of nonlinear currents caused by different mechanisms of ULF/VLF ionospheric generations are presented in this report. The comparison of different mechanisms in low and upper ionosphere under daytime and night conditions is presented. This work was supported by a RFBR grant 11-02-00419-a.

  10. Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Ekers, Ron; Wilson, Thomas L.

    ``Radio Telescopes" starts with a brief historical introduction from Jansky's1931 discovery of radio emission from the Milky Way through the development ofradio telescope dishes and arrays to aperture synthesis imaging. It includessufficient basics of electromagnetic radiation to provide some understanding of thedesign and operation of radio telescopes. The criteria such as frequencyrange, sensitivity, survey speed, angular resolution, and field of view thatdetermine the design of radio telescopes are introduced. Because it is soeasy to manipulate the electromagnetic waves at radio frequencies, radiotelescopes have evolved into many different forms, sometimes with "wire"structures tuned to specific wavelengths, which look very different from anykind of classical telescope. To assist astronomers more familiar with otherwavelength domains, the appendix A.1. includes a comparison of radioand optical terminology. Some of the different types of radio telescopesincluding the filled aperture dishes, electronically steered phased arrays, andaperture synthesis radio telescopes are discussed, and there is a sectioncomparing the differences between dishes and arrays. Some of the morerecent developments including hierarchical beam forming, phased arrayfeeds, mosaicing, rotation measure synthesis, digital receivers, and longbaseline interferometers are included. The problem of increasing radiofrequency interference is discussed, and some possible mitigation strategies areoutlined.

  11. Millimetre-Wave Spectrum of Isotopologues of Ethanol for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Walters, Adam; Schäfer, Mirko; Ordu, Matthias H.; Lewen, Frank; Schlemmer, Stephan; Müller, Holger S. P.

    2015-06-01

    Complex molecules have been identified in star-forming regions and their formation is linked to the specific physical and chemical conditions there. They are suspected to form a role in the origins of life. Amongst these, ethanol is a fairly abundant molecule in warmer regions. For this reason, we have recently carried out laboratory measurements and analyses of the rotational spectra of the three mono-substituted deuterium isotopologues of ethanol (one of which, CH_2DCH_2OH, exists as two distinct conformers according to the position of the deuterium atom with respect to the molecular skeleton). Measurements were taken between 35-500 GHz, allowing accurate predictions in the range of radio telescopes. We have concentrated on the lowest energy anti conformers. The dataset was constrained for fitting with a standard Watson-S reduction Hamiltonian by rejecting transitions from high-lying states, which appear to be perturbed by the gauche states, and by averaging some small methyl torsional splits. This treatment is compatible with the needs for a first search in the interstellar medium, in particular in spectra taken by ALMA. For this purpose an appropriate set of predictions will be included on the Cologne Database for Molecular Spectroscopy. Previous results on the two mono-substituted 13C isotopologues which led to a tentative detection in Sgr B2(N) will be briefly summarized and compared with the latest measurements. The usefulness of studying different isotopologues in the interstellar medium will also be rapidly addressed. Bouchez et al, JQSRT 113 (11), pp. 1148-1154, 2012. Belloche et al. A&A 559, id.A47, 187pp., 2013.

  12. A High-Resolution Study of Quasiperiodic Radio Emissions Observed by the Galileo Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Christopher, I.; Granroth, L. J.

    2001-01-01

    We have conducted a study of quasiperiodic emission observed by the plasma wave instrument on board the Galileo spacecraft. These emissions appear as broadband bursts with dominant periods ranging from 10 min to over 40 min. For these emissions we have explicitly analyzed the high-resolution (waveform) data to determine the presence of impulsive, solitary signatures. Our investigations have indicated that the broadband bursts, as well as the background more narrowband continuum emission, are composed of a highly turbulent spectrum. Within the broadband burst, however, there are higher-frequency components present, but no impulsive electrostatic signatures. Also significantly, the broadband bursts show no low-frequency dispersion. We conclude that the bursts are consistent with a distant, electromagnetic source, probably in the near-Jupiter vicinity.

  13. Scintillator based beta batteries

    NASA Astrophysics Data System (ADS)

    Rensing, Noa M.; Tiernan, Timothy C.; Shirwadkar, Urmila; O'Dougherty, Patrick; Freed, Sara; Hawrami, Rastgo; Squillante, Michael R.

    2013-05-01

    Some long-term, remote applications do not have access to conventional harvestable energy in the form of solar radiation (or other ambient light), wind, environmental vibration, or wave motion. Radiation Monitoring Devices, Inc. (RMD) is carrying out research to address the most challenging applications that need power for many months or years and which have undependable or no access to environmental energy. Radioisotopes are an attractive candidate for this energy source, as they can offer a very high energy density combined with a long lifetime. Both large scale nuclear power plants and radiothermal generators are based on converting nuclear energy to heat, but do not scale well to small sizes. Furthermore, thermo-mechanical power plants depend on moving parts, and RTG's suffer from low efficiency. To address the need for compact nuclear power devices, RMD is developing a novel beta battery, in which the beta emissions from a radioisotope are converted to visible light in a scintillator and then the visible light is converted to electrical power in a photodiode. By incorporating 90Sr into the scintillator SrI2 and coupling the material to a wavelength-matched solar cell, we will create a scalable, compact power source capable of supplying milliwatts to several watts of power over a period of up to 30 years. We will present the latest results of radiation damage studies and materials processing development efforts, and discuss how these factors interact to set the operating life and energy density of the device.

  14. Design and multiphysics analysis of a 176Â MHz continuous-wave radio-frequency quadrupole

    NASA Astrophysics Data System (ADS)

    Kutsaev, S. V.; Mustapha, B.; Ostroumov, P. N.; Barcikowski, A.; Schrage, D.; Rodnizki, J.; Berkovits, D.

    2014-07-01

    We have developed a new design for a 176 MHz cw radio-frequency quadrupole (RFQ) for the SARAF upgrade project. At this frequency, the proposed design is a conventional four-vane structure. The main design goals are to provide the highest possible shunt impedance while limiting the required rf power to about 120 kW for reliable cw operation, and the length to about 4 meters. If built as designed, the proposed RFQ will be the first four-vane cw RFQ built as a single cavity (no resonant coupling required) that does not require π-mode stabilizing loops or dipole rods. For this, we rely on very detailed 3D simulations of all aspects of the structure and the level of machining precision achieved on the recently developed ATLAS upgrade RFQ. A full 3D model of the structure including vane modulation was developed. The design was optimized using electromagnetic and multiphysics simulations. Following the choice of the vane type and geometry, the vane undercuts were optimized to produce a flat field along the structure. The final design has good mode separation and should not need dipole rods if built as designed, but their effect was studied in the case of manufacturing errors. The tuners were also designed and optimized to tune the main mode without affecting the field flatness. Following the electromagnetic (EM) design optimization, a multiphysics engineering analysis of the structure was performed. The multiphysics analysis is a coupled electromagnetic, thermal and mechanical analysis. The cooling channels, including their paths and sizes, were optimized based on the limiting temperature and deformation requirements. The frequency sensitivity to the RFQ body and vane cooling water temperatures was carefully studied in order to use it for frequency fine-tuning. Finally, an inductive rf power coupler design based on the ATLAS RFQ coupler was developed and simulated. The EM design optimization was performed using cst Microwave Studio and the results were verified using both hfss and ansys. The engineering analysis was performed using hfss and ansys and most of the results were verified using the newly developed cst Multiphysics package.

  15. Advances in Composite Reflectors: From X-Ray to Radio Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Connell, S. J.; Abusafieh, A. A.; Mehle, G. V.; Sheikh, D. A.; Giles, D. C.

    2000-12-01

    In recent years, Composite Optics, Inc. (COI) has made significant advances in the use of graphite fiber reinforced composite (GFRC) materials for astronomical instrument applications. The inherent low density, high stiffness, and thermal stability makes GFRC a natural candidate for many astronomy applications. In order to reap these inherent benefits in astronomical applications, basic research has focused on material and process improvement. This has been accompanied by the design, fabrication, and test of several prototype reflectors that cover a broad wavelength spectrum of astronomical interests. The results of, and applications for, these efforts are summarized in the following list. X-Ray Carrier Shell: Innovative composite process yields accuracy and moisture stability. Demonstrated by vacuum optical test of 6" Wolter-I shell. Applicable to Con-X, etc. Lightweight Mirror Substrate for Visible Astronomy: Composite/glass hybrid design. Areal density < 15 kg/m2. Demonstrated by cryo-optical test (to 35K) of 1.6m NMSD mirror. Applicable to NGST, etc. Polishable Composite Facesheet: Glass-like coating applied to composite. Polishable by conventional methods. Multiple six-inch substrates polished to 20 angstroms. Technology will enable future 5 kg/m2 visible to UV optics. 10 kg/m2 Submillimeter Reflector: Apertures to 5m possible with economical, all-composite mirror design, diffraction limited at 80 microns. Demonstrated with cryo-optical test (to 70K) of FIRST 2-meter prototype mirror. Applicable to FIRST and other IR astronomy. Large, Ultra-Stable Optical Support Structure: Uniform and near-zero CTE over broad dimensions. Demonstrated with cryo-optical test of 2-meter FIRST prototype. Applicable to NGST, SIM, LISSA. Ground Based Radio Telescope Reflector: Low-cost, accurate, stable, durable all-composite design for support structure & reflective surface. Demonstrated via fab & test of 3m adjustable and 5m static prototypes. Applicable to LMT, ALMA, etc. These recent accomplishments represent new enabling technologies to meet the needs of numerous astronomical instrument concepts. COI will soon transition two of these technologies to production (FIRST and LMT), while continuing to further the capability of composites with on-going research. COI gratefully acknowledges the financial and technical support of NASA and the NSF for these projects.

  16. Study of effects of radio-wave frequency radiation emitted from cellular telephones on embryonic development of danio rerio

    NASA Astrophysics Data System (ADS)

    Vagula, Mary; Harkless, Ryan

    2013-05-01

    Radio wave frequency (RF) radiation emitted from cellular telephones has become increasingly ubiquitous as a result of the popularity of these phones. With the increasing and unavoidable exposure to RF radiation a reality, it is imperative that the effects of such radiation on living tissue be well understood. In particular, it is critical to understand any effects that RF radiation may have as a carcinogen and on embryonic development, as pregnant women are not exempt from such exposure. As a model organism, zebrafish (Danio rerio) have been studied extensively, and their value in studies of gene expression cannot be overstated. This study observed the effects of RF radiation on the embryonic development of zebrafish. The expression of two genes, shha and hoxb9a, that are key to the early development of the fish was examined. Both genes have homologs in humans as well as in other model organisms. Preliminary results suggest that exposure to cell phone radiation might have an effect on the expression of shha in zebrafish embryos, causing under expression. More trials are necessary to validate these results.

  17. Uncertainty propagation through wave optics retrieval of bending angles from GPS radio occultation: Theory and simulation results

    NASA Astrophysics Data System (ADS)

    Gorbunov, Michael E.; Kirchengast, Gottfried

    2015-10-01

    The wave optical technique for bending angle retrieval in processing radio occultation observations is nowadays widely used by different data processing and assimilation groups and centers. This technique uses Fourier Integral Operators that map the observed records of the amplitude and phase into the impact parameter representation, which allows for the retrieval of bending angle as a function of impact parameter. We investigate the propagation of uncertainty in the observed amplitude and excess phase to the retrieved bending angle. We construct a simple linear approximation, where the excess phase uncertainty is mapped into the bending angle uncertainty. This results in a simple analytical expression for the final uncertainty. To verify our approximation, we perform numerical Monte Carlo simulations for three example occultation events (tropical, middle, and polar latitude profiles from an atmospheric analysis). We demonstrate that our approximation basically gives good results in all cases over the entire troposphere. Exception is the narrow area near the top of the sharp boundary layer, especially in tropics, where, due to nonlinear effects, a significant systematic error arises accompanied by increased uncertainty.

  18. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 2

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1975-01-01

    The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.

  19. Triggered Jovian radio emissions

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1985-01-01

    Certain Jovian radio emissions seem to be triggered from outside, by much weaker radio waves from the sun. Recently found in the Voyager observations near Jupiter, such triggering occurs at hectometric wavelengths during the arrival of solar radio bursts, with the triggered emissions lasting sometimes more than an hour as they slowly drifted toward higher frequencies. Like the previous discovery of similar triggered emissions at the earth, this suggests that Jupiter's emissions might also originate from natural radio lasers.

  20. Ionospheric scintillation studies

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Freemouw, E. J.

    1973-01-01

    The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.

  1. Large scale atmospheric waves in the Venus mesosphere as seen by the VeRa Radio Science instrument on Venus Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Häusler, Bernd; Hinson, David P.; Tyler, G. Leonard; Andert, Thomas P.; Bird, Michael K.; Imamura, Takeshi; Pätzold, Martin; Remus, Stefan

    2015-04-01

    Atmospheric waves on all spatial scales play a crucial role in the redistribution of energy, momentum, and atmospheric constituent in planetary atmosphere and are thought to be involved in the development and maintenance of the atmospheric superrotation on Venus. The Venus Express Radio-Science Experiment VeRa sounded the Venus neutral atmosphere and ionosphere in Earth occultation geometry using the spacecraft radio subsystem at two coherent frequencies. Radial profiles of neutral number density, covering the altitude range 40-90 km, are then converted to vertical profiles of temperature and pressure, assuming hydrostatic equilibrium. The extensive VeRa data set enables us to study global scale atmospheric wave phenomena like thermal tides in the mesosphere and troposphere. A pronounced local time dependency of the temperature is found in the mesosphere at different altitude levels. Wave-2 structures dominate the low latitude range in the upper mesosphere while the higher latitudes show a strong wave-1 structure at the top of the cloud layer. The investigation of these wave structures provides valuable information about the energy transport in the atmosphere.

  2. Influence of an inhomogeneous structure of the high-latitude ionosphere on the long-distance propagation of high-frequency radio waves

    NASA Astrophysics Data System (ADS)

    Uryadov, V. P.; Vertogradov, G. G.; Vertogradova, E. G.

    2012-09-01

    We present the results of experimental studies of the features of long-distance propagation of high-frequency radio waves on the large-extent subauroral Magadan-Rostov-on-Don and midlatitude Khabarovsk-Rostov-on-Don and Irkutsk-Rostov-on-Don paths, which were obtained using the ionosonde-finder with a chirp output signal. Anomalous (lateral) signals with delays of about 1-2 ms with respect to a direct signal, which arrive from the azimuths 10°-20°, are observed on the Magadan-Rostov-on-Don path. The lateral signals were observed in the morning and antemeridian hours in the time interval 08:00-10:40 MSK. In the evening and night hours, the lateral signals were not observed. During magnetic activity, the amplitude of the lateral signals was greater than that observed prior to a magnetic storm by 5-10 dB. Location of the ionospheric-perturbation regions responsible for the appearance of the lateral signals was determined as φgeogr ≈ 69°-71°N (φmagn ≈ 65°-66°N), and λ ≈ 51°-58°E. The mechanisms of the lateral-signal propagation due to lateral refraction of radio waves on patches with enhanced electron number density and due to scattering of radio waves from small-scale irregularities are considered.

  3. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN

    PubMed Central

    Şen, Alper; Gümüşay, M. Ümit; Kavas, Aktül; Bulucu, Umut

    2008-01-01

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN.

  4. Two-Way Radio in Schools (or, The Loneliness of the Long Distance Learner). An Evaluation of a High Frequency Short Wave, Two-Way Radio Trial.

    ERIC Educational Resources Information Center

    Conboy, Ian

    The Country Education Project in Victoria, Australia, tested the use of two-way radios to bring educational resources to isolated children studying correspondence courses in small rural high schools and to increase interaction among rural schools. Eight rural Victoria schools and the Secondary Correspondence School in Melbourne used two-way…

  5. Scintillators and applications thereof

    SciTech Connect

    Williams, Richard T.

    2015-09-01

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  6. Scintillators and applications thereof

    SciTech Connect

    Williams, Richard T.

    2014-07-15

    Scintillators of various constructions and methods of making and using the same are provided. In some embodiments, a scintillator comprises at least one radiation absorption region and at least one spatially discrete radiative exciton recombination region.

  7. Pulsed and continuous wave acrylic acid radio frequency plasma deposits: plasma and surface chemistry.

    PubMed

    Voronin, Sergey A; Zelzer, Mischa; Fotea, Catalin; Alexander, Morgan R; Bradley, James W

    2007-04-01

    Plasma polymers have been formed from acrylic acid using a pulsed power source. An on-pulse duration of 100 micros was used with a range of discharge off-times between 0 (continuous wave) and 20,000 micros. X-ray photoelectron spectroscopy (XPS) has been used in combination with trifluoroethanol (TFE) derivatization to quantify the surface concentration of the carboxylic acid functionality in the deposit. Retention of this functionality from the monomer varied from 2% to 65%. When input power was expressed as the time-averaged energy per monomer molecule, E(mean), the deposit chemistry achieved could be described using a single relationship for all deposition conditions. Deposition rates were monitored using a quartz crystal microbalance, which revealed a range from 20 to 200 microg m(-2) s(-1), and these fell as COOH functional retention increased. The flow rate was found to be the major determinant of the deposition rate, rather than being uniquely defined by E(mean), connected to the rate at which fresh monomer enters the system in the monomer deficient regime. The neutral species were collected in a time-averaged manner. As the energy delivered per molecule in the system (E(mean)) decreased, the amount of intact monomer increased, with the average neutral mass approaching 72 amu as E(mean) tends to zero. No neutral oligomeric species were detected. Langmuir probes have been used to determine the temporal evolution of the density and temperature of the electrons in the plasma and the plasma potential adjacent to the depositing film. It has been found that even 500 micros into the afterglow period that ionic densities are still significant, 5-10% of the on-time density, and that ion accelerating sheath potentials fall from 40 V in the on-time to a few volts in the off-time. We have made the first detailed, time- and energy-resolved mass spectrometry measurements in depositing acrylic acid plasma. These have allowed us to identify and quantify the positive ion species in the acrylic acid plasma during both the on- and the off- periods. The relative intensities of oligomeric species of the type [nM + H]+ as large as n = 3 were observed to increase in the off-time suggesting vapor phase polymerization after power input to the plasma was ceased. The energy distribution functions of these ions demonstrated that they were produced in the plasma in both the on- and the off-times. This remarkable observation contradicts the assumptions usually made when speculating on pulsed plasma that ions have very short lifetimes, although it is anticipated that radicals still have significantly longer lifetimes, estimated from calculation to be in excess of 1 ms. The increase in average positive ion mass during the off-period can be related to the lower mobility of the heavier components, reducing their relative loss to surfaces, and the polymer chain growth in the gas phase due to the ion-neutral collisions. The implications of these observations are discussed in light of polymerization mechanisms proposed from continuous acrylic acid and millisecond pulsing plasmas. PMID:17388498

  8. High latitude scintillations

    NASA Astrophysics Data System (ADS)

    Basu, Santimay; Basu, Sunanda

    High-latitude phase and amplitude scintillations have been observed with quasi-geostationary polar beacon satellites, high-altitude orbiting GPS satellites, and low-altitude orbiting HiLat and Polar Bear satellites. The scintillation behavior observed in the polar cap, cusp, and nightside auroral oval is described. Consideration is given to the possible mechanisms for the generation of irregularities that cause scintillations. The importance of coordinated multitechnique measurements for scintillation studies is stressed.

  9. The effect of plasma inhomogeneities on (i) radio emission generation by non-gyrotropic electron beams and (ii) particle acceleration by Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2015-04-01

    Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refraction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph = ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011); http://dx.doi.org/10.1063/1.3590928 [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013); http://dx.doi.org/10.1063/1.4812453 [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012); http://dx.doi.org/10.1063/1.4768429 [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014); http://dx.doi.org/10.1063/1.4871723 [5] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 21, 012903 (2014); http://dx.doi.org/10.1063/1.4863494 This research is funded by the Leverhulme Trust Research Project Grant RPG-311

  10. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  11. Scintillator materials for calorimetry

    SciTech Connect

    Weber, M.J.

    1994-09-01

    Requirements for fast, dense scintillator materials for calorimetry in high energy physics and approaches to satisfying these requirements are reviewed with respect to possible hosts and luminescent species. Special attention is given to cerium-activated crystals, core-valence luminescence, and glass scintillators. The present state of the art, limitations, and suggestions for possible new scintillator materials are presented.

  12. Scintillator manufacture at Fermilab

    SciTech Connect

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  13. Multi-PSPMT scintillation camera

    SciTech Connect

    Pani, R.; Pellegrini, R.; Trotta, G.; Scopinaro, F.; Soluri, A.; Vincentis, G. de; Scafe, R.; Pergola, A.

    1999-06-01

    Gamma ray imaging is usually accomplished by the use of a relatively large scintillating crystal coupled to either a number of photomultipliers (PMTs) (Anger Camera) or to a single large Position Sensitive PMT (PSPMT). Recently the development of new diagnostic techniques, such as scintimammography and radio-guided surgery, have highlighted a number of significant limitations of the Anger camera in such imaging procedures. In this paper a dedicated gamma camera is proposed for clinical applications with the aim of improving image quality by utilizing detectors with an appropriate size and shape for the part of the body under examination. This novel scintillation camera is based upon an array of PSPMTs (Hamamatsu R5900-C8). The basic concept of this camera is identical to the Anger Camera with the exception of the substitution of PSPMTs for the PMTs. In this configuration it is possible to use the high resolution of the PSPMTs and still correctly position events lying between PSPMTs. In this work the test configuration is a 2 by 2 array of PSPMTs. Some advantages of this camera are: spatial resolution less than 2 mm FWHM, good linearity, thickness less than 3 cm, light weight, lower cost than equivalent area PSPMT, large detection area when coupled to scintillating arrays, small dead boundary zone (< 3 mm) and flexibility in the shape of the camera.

  14. Validating the use of scintillation proxies to study ionospheric scintillation over the Ugandan region

    NASA Astrophysics Data System (ADS)

    Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.

    2015-06-01

    In this study, we compare the standard scintillation indices (S4 and σΦ) from a SCINDA receiver with scintillation proxies (S4p and | sDPR |) derived from two IGS GPS receivers. Amplitude (S4) and phase (σΦ) scintillation data were obtained from the SCINDA installed at Makerere University (0.34°N, 32.57°E). The corresponding amplitude (S4p) and phase (| sDPR |) scintillation proxies were derived from data archived by IGS GPS receivers installed at Entebbe (0.04°N, 32.44°E) and Mbarara (0.60°S, 30.74°E). The results show that for most of the cases analysed in this study, σΦ and | sDPR | are in agreement. Amplitude scintillation occurrence estimated using the S4p are fairly consistent with the standard S4, mainly between 17:00 UT and 21:00 UT, despite a few cases of over and under estimation of scintillation levels by S4p. Correlation coefficients between σΦ and the | sDPR | proxy revealed positive correlation. Generally, S4p and S4 exhibits both moderate and strong positive correlation. TEC depletions associated with equatorial plasma bubbles are proposed as the cause of the observed scintillation over the region. These equatorial plasma bubbles were evident along the ray paths to satellites with PRN 2, 15, 27 and 11 as observed from MBAR and EBBE. In addition to equatorial plasma bubbles, atmospheric gravity waves with periods similar to those of large scale traveling ionospheric disturbances were also observed as one of the mechanisms for scintillation occurrence. The outcome of this study implies that GPS derived scintillation proxies can be used to quantify scintillation levels in the absence of standard scintillation data in the equatorial regions.

  15. Monitoring and Forecasting Ionospheric Scintillation at High Latitudes (Invited)

    NASA Astrophysics Data System (ADS)

    Prikryl, P.; Jayachandran, P. T.; Chadwick, R.; Kelly, T.

    2013-12-01

    Ionospheric scintillation (rapid signal amplitude fading and phase fluctuation) poses a threat to reliable and safe operation of modern technology that relies on Global Navigation Satellite Systems (GNSS). Ionospheric scintillation of GNSS signal severely degrades positional accuracy, causes cycle slips leading to loss of lock that affects performance of radio communication and navigation systems. At high latitudes, the scintillation is caused by ionospheric irregularities produced through coupling between solar wind plasma and the magnetosphere. Climatology of GPS scintillation at high latitudes in both hemispheres shows that phase scintillation occurs predominantly on the dayside in the cusp and in the nightside auroral oval. Solar wind disturbances, in particular the co-rotating interaction regions (CIR) on the leading edge of high-speed streams (HSS) and interplanetary coronal mass ejections (ICME), have been closely correlated with the occurrence of scintillation at high latitudes. These results demonstrated a technique of probabilistic forecast of high-latitude phase scintillation occurrence relative to arrival times of HSS and ICME. The Canadian High Arctic Ionospheric Network (CHAIN) has been monitoring GPS ionospheric scintillation and total electron content (TEC) since November 2007. One-minute amplitude and phase scintillation indices from L1 GPS signals and TEC from L1 and L2 GPS signals are computed from amplitude and phase data sampled at 50 Hz. Since 2012, significant expansion of CHAIN has begun with installation of new receivers, each capable of tracking up to 30 satellites including GLONASS and Galileo. The receivers log the raw phase and amplitude of the signal up to a 100-Hz rate for scintillation measurements. We briefly review observations of ionospheric scintillation and highlight new results from CHAIN, including the climatology of scintillation occurrence, collocation with aurora and HF radar backscatter, correlation with CIRs and ICMEs, and the method of probabilistic forecasting of phase scintillation at high latitudes.

  16. Scintillator reflective layer coextrusion

    DOEpatents

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  17. Experimental demonstration of 24-Gb/s CAP-64QAM radio-over-fiber system over 40-GHz mm-wave fiber-wireless transmission.

    PubMed

    Zhang, Junwen; Yu, Jianjun; Chi, Nan; Li, Fan; Li, Xinying

    2013-11-01

    We propose and demonstrate a novel CAP-ROF system based on multi-level carrier-less amplitude and phase modulation (CAP) 64QAM with high spectrum efficiency for mm-wave fiber-wireless transmission. The performance of novel CAP modulation with high order QAM, for the first time, is investigated in the mm-wave fiber-wireless transmission system. One I/Q modulator is used for mm-wave generation and base-band signal modulation based on optical carrier suppression (OCS) and intensity modulation. Finally, we demonstrated a 24-Gb/s CAP-64QAM radio-over-fiber (ROF) system over 40-km stand single-mode-fiber (SMMF) and 1.5-m 38-GHz wireless transmission. The system operation factors are also experimentally investigated. PMID:24216910

  18. N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, tomorrow

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. D.

    2015-06-01

    This paper describes the basic and applied research rationale for the organization of IZMIRAN and provides insight into the 75 years of the Institute's activities and development. Historically, early magnetic measurements in Russia were developed largely to meet the Navy's navigation needs and were, more generally, stimulated by the Peter the Great decrees and by the foundation of the St. Petersburg Academy of Sciences in 1724. The paper examines the roles of the early Academicians in developing geomagnetism and making magnetic measurements a common practice in Russia. The need for stable radio communications prompted ionospheric and radio wave propagation research. The advent of the space era and the 1957-1958 International Geophysical Year Project greatly impacted the development of IZMIRAN and spurred the creation of a number of geophysical research institutes throughout the country. Currently, the research topics at IZMIRAN range widely from geomagnetism to solar-terrestrial physics to the ionosphere and radio wave propagation, and its primary application areas are the study and forecast of space weather, an increasingly important determining factor in ever-expanding ground- and space-based technologies (space navigation and communications, space activities, etc.).

  19. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  20. Observations of interplanetary scintillation in China

    NASA Astrophysics Data System (ADS)

    Liu, Li-Jia; Peng, Bo

    2013-07-01

    The Sun affects the Earth in multiple ways. In particular, the material in interplanetary space comes from coronal expansion in the form of solar wind, which is the primary source of the interplanetary medium. Ground-based Interplanetary Scintillation (IPS) observations are an important and effective method for measuring solar wind speed and the structures of small diameter radio sources. In this paper we will discuss the IPS observations in China.

  1. Investigation of the spatial structure and developmental dynamics of near-Earth plasma perturbations under the action of powerful HF radio waves

    SciTech Connect

    Belov, A. S.

    2015-10-15

    Results of numerical simulations of the near-Earth plasma perturbations induced by powerful HF radio waves from the SURA heating facility are presented. The simulations were performed using a modified version of the SAMI2 ionospheric model for the input parameters corresponding to the series of in-situ SURA–DEMETER experiments. The spatial structure and developmental dynamics of large-scale plasma temperature and density perturbations have been investigated. The characteristic formation and relaxation times of the induced large-scale plasma perturbations at the altitudes of the Earth’s outer ionosphere have been determined.

  2. The FIELDS Instrument Suite for Solar Probe Plus - Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Astrophysics Data System (ADS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J. F.; Farrell, W. M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S. E.; Hayes, L. M.; Hinze, J. J.; Hollweg, J. V.; Horbury, T. S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J. C.; Kellogg, P. J.; Kien, M.; Klimchuk, J. A.; Krasnoselskikh, V. V.; Krucker, S.; Lynch, J. J.; Maksimovic, M.; Malaspina, D. M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D. J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S. J.; Mozer, F. S.; Murphy, S. D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E. N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S. W.; Salem, C.; Seitz, D.; Sheppard, D. A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J. R.

    2016-03-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  3. A gravity wave analysis near to the Andes Range from GPS radio occultation data and mesoscale numerical simulations: Two case studies

    NASA Astrophysics Data System (ADS)

    Llamedo, P.; de la Torre, A.; Alexander, P.; Luna, D.; Schmidt, T.; Wickert, J.

    2009-08-01

    Global maps of potential wave energy per unit mass, recently performed with the Global Positioning System (GPS) Radio Occultation (RO) technique and different satellite missions (CHAMP and SAC-C since 2001, GRACE and COSMIC since 2006) revealed in Argentina, at the eastern side of the highest Andes Mountains, a considerable wave activity (WA) in comparison with other extra-tropical regions. The main gravity wave (GW) sources in this natural laboratory are deep convection (mainly during late Spring and Summer), topographic forcing and geostrophic adjustment. The mesoscale numerical WRF (Weather Research and Forecasting) 2.1.2 model was used to simulate the atmospheric parameters during two representative RO events showing apparent intense WA in this region. The significance of the relative position of the RO lines of sight, the line of tangent points and GW phase surfaces during each event is discussed in relation with the apparent WA detected. The GPS RO technique may not be by itself reliable enough to quantify and locate WA of single events. Nevertheless, it should be considered a useful tool to observe the global WA from statistical studies. We also discuss the relative contribution of high and medium intrinsic frequency mountain waves regularly observed, coexisting with inertio gravity waves, their origin and propagation characteristics.

  4. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  5. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  6. Locating Radio Noise from Sprites

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Mezentsev, A.; Watson, R.; Gaffet, S.; Astin, I.; Evans, A.

    2014-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into exponentially growing streamer tips (McHarg et al., 2010). The acceleration of the electrons to a few eV results in the radiation of a small amount of electromagnetic energy. The incoherent superposition of many streamers causes the low frequency radio noise from sprites near ~40 km height (Qin et al., 2012). The presence of this theoretically predicted radiation was recently confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). To locate the radio noise from sprites in the sky, an interferometric network of low frequency radio receivers was developed (Mezentsev and Fullekrug, JGR, 2013). The key parameter for the interferometric signal processing is the frequency dependent wave propagation velocity of the radio waves within the Earth's atmosphere. This wave propagation velocity is determined by the wave number vector which needs to be inferred from the measurements. Here we adapt and subsequently apply array analyses which have been developed for seismic and infrasound arrays to determine the horizontal wave number vectors of ~20-24 kHz radio waves measured with an array of ten radio receivers distributed over an area of ~1 km × 1 km. It is found that the horizontal slowness of ~20-24 kHz radio waves ranges from ~2.7 ns/m to ~4.1 ns/m depending on the arrival azimuth of the radio wave. For comparison, an electromagnetic wave in vacuum has a slowness of ~3.34 ns/m. A larger slowness indicates an apparent velocity which is smaller than the speed of light and a smaller slowness indicates that the radio wave arrives at the array from an elevation angle. The observed variability of the observed slowness almost certainly results from the distance dependent superposition of the transverse electric and magnetic TEn and TMn radio wave propagation modes.

  7. A comparative and numerical study of effects of gravity waves in small miss-distance and miss-time GPS radio occultation temperature profiles

    NASA Astrophysics Data System (ADS)

    Alexander, P.; Luna, D.; de la Torre, A.; Llamedo, P.; Schmidt, T.; Wickert, J.

    2010-05-01

    The Global Positioning System (GPS) Radio Occultation (RO) technique has global coverage and is capable of generating high vertical resolution temperature profiles of the upper troposphere and lower stratosphere with sub-Kelvin accuracy and long-term stability, regardless of weather conditions. In this work, we take advantage of the anomalously high density of occultation events at the eastern side of the highest Andes Mountains during the initial mission months of COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate). This region is well-known for its high wave activity. We choose to study two pairs of GPS RO, both containing two occultations that occurred close in time and space. One pair shows significant differences between both temperature profiles. Numerical simulations with a mesoscale model were performed, in order to understand this discrepancy. It is attributed to the presence of a horizontal inhomogeneous structure caused by gravity waves.

  8. Adaptive photonic-assisted M²-QAM millimeter-wave synthesis in multi-antenna radio-over-fiber system using M-ASK modulation.

    PubMed

    Zhang, Qi; Yu, Jianjun; Li, Xinying; Xin, Xiangjun

    2014-11-01

    A novel method for generating an adaptive photonic-assisted M2-quadrature amplitude modulation (M2-QAM) millimeter-wave signal in a multiantenna radio-over-fiber system using M-ray amplitude-shift keying (M-ASK) modulation is proposed and experimentally demonstrated. It takes full advantage of high-density small cells without introducing additional complexity into remote antenna units (RAUs) or mobile users. The 4, 8, and 12 Gb/s 4QAM millimeter-wave signals are obtained from two independent 2, 4, and 6 Gb/s on-off-keying 40 GHz channels, respectively. The experimental results show that a double bit rate can be received without additional digital signal processing in RAUs and mobile users. The results, including the constellation diagrams and bit error rate, show that the transmitted signals are received successfully. PMID:25361290

  9. Global Analysis of Gravity Wave Potential Energy in the upper Troposphere and lower Stratosphere derived from 5 years of GPS Radio Occultation Data

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; de La Torre, A.; Beyerle, G.; Heise, S.; Wickert, J.; Rothacher, M.

    Global gravity wave GW potential energy distributions are retrieved from radio occultation RO data from the German CHAMP and the US-Argentinian SAC-C satellite missions for the period May 2001 to mid-2006 The RO technique uses GPS radio signals received aboard low orbiting satellites for atmospheric limb sounding Atmospheric temperature profiles are derived with high vertical resolution The investigated altitudes cover the range from the mid-troposphere up to 35 km The specific potential energy SPE as a measure of GW activity is deduced from the temperature profile for each occultation event for different altitude ranges For extracting background temperatures and temperature perturbations a band-pass filter associated to different vertical wave lengths is used We discuss mean SPE distributions with respect to different 1 geographical regions and seasons 2 altitude intervals and 3 background wind conditions In addition to the filter technique ECMWF temperature data along the occultation path were used to determine the background temperature The derived SPE values are about twice as high as those derived with the traditional filtering of the temperature profiles The use of ECMWF temperatures as background data delivers unrealistic high SPE values for the Antarctic region 60 r S during winter which can be clearly attributed to the ECMWF analyses

  10. Robust GPS carrier tracking under ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.

    2013-12-01

    Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance of the proposed tracking scheme is assessed by using both simulated and real data. Real data have been collected in Vietnam by using a USRP (Universal Software Radio Peripheral) N210 front end connected to a rubidium oscillator. Selected events are exploited in order to challenge the algorithm with strong phase and amplitude variations. Moreover, simulated data have been collected by using the prototype of a digital front end developed by Novatel, namely the 'Firehose'. Since the latter includes a TCXO oscillator, the proposed tracking scheme is also opportunely modified to take in account the clock error contribution. References 1. R.S., Conker, M. B. El-Arini, C. J. Hegarty, and T. Hsiao, Modelling the effects of ionospheric scintillation on GPS/satellite-based augmentation system availability. Radio Sci., 38, 1, 1001, doi: 10.1029/2000RS002604, 2003. 2. B. Bougard et al, 'CIGALA: Challenging the Solar Maximum in Brazil with PolaRxS,' ION GNSS, Portland, Sept. 2011.

  11. Subionospheric VLF/LF radio waves propagation characteristics before, during and after the Sofia, Bulgaria Mw=5.6 earthquake occurred on 22 May 2012

    NASA Astrophysics Data System (ADS)

    Moldovan, Iren Adelina; Emilian Toader, Victorin; Nenovski, Petko; Biagi, Pier Francesco; Maggipinto, Tommaso; Septimiu Moldovan, Adrian; Ionescu, Constantin

    2013-04-01

    In 2009, INFREP, a network of VLF (20-60 kHz) and LF (150-300 kHz) radio receivers, was put into operation in Europe having as principal goal, the study of disturbances produced by the earthquakes on the propagation properties of these signals. On May 22nd, 2012 an earthquake with Mw=567 occurred in Bulgaria, near Sofia, inside the "sensitive" area of the INFREP VLF/LF electromagnetic network. The data collected on different frequencies, during April-May 2012 were studied using different methods of analysis: daily correlation methods, spectral approaches and terminator time techniques, in order to find out possible connections between the seismic activity and the subionospheric propagation properties of radio waves. The studies were performed with the help of a specially designed LabVIEW application, which accesses the VLF/LF receiver through internet. This program opens the receiver's web-page and automatically retrieves the list of data files to synchronize the user-side data with the receiver's data. Missing zipped files are also automatically downloaded. The application performs primary, statistical correlation and spectral analysis, appends daily files into monthly and annual files and performs 3D colour-coded maps with graphic representations of VLF and LF signals' intensities versus the minute-of-the-day and the day-of-the-month, facilitating a near real-time observation of VLF and LF electromagnetic waves' propagation. Another feature of the software is the correlation of the daily recorded files for the studied frequencies by overlaying the 24 hours radio activity and taking into account the sunrise and sunset. Data are individually processed (spectral power, correlations, differentiation, filtered using bandpass, lowpass, highpass). JTFA spectrograms (Cone-Shaped Distribution CSD, Gabor, Wavelet, short-time Fourier transform STFT, Wigner-Ville Distribution WVD, Choi-Williams Distribution CWD) are used, too.

  12. Experimental investigation of ULF/VLF radio wave generation and propagation in the upper atmosphere and ionosphere during EISCAT heating experiment in 2012

    NASA Astrophysics Data System (ADS)

    Ryakhovskiy, Iliya; Gavrilov, Boris; Zetzer, Julius; Rietveld, Michael; Poklad, Yuriy; Blagoveshchenskaya, Nataly

    Powerful high frequency radio waves transmitted from high-power HF heating facilities modify the ionospheric plasma. The X-mode HF pump wave generates strong small-scale artificial field aligned irregularities in the F region of the ionosphere when the heater frequency is near or above the critical frequency of F2 layer [Blagoveshchenskaya et al]. One of the tasks of the Russian EISCAT heating campaign in February 2012 was an investigation of the generation and propagation of ULF/VLF signals generated as the result of HF radiation modulation. Despite the numerous attempts of long-range detection of such signals, there are a few successful results. The most reliable and important results were obtained by [Barr et al.] more than 20 years ago. They measured the VLF radio waves in Lindau, Germany at the distance of about 2000 km from EISCAT Heater. We present the results of the ULF/VLF registrations at the same distance during heating campaign of February 2012. The measurements were conducted at Mikhnevo Geohysical Observatory located in 80 km to the south of Moscow and at the distance of about 1900 km from Tromsø. For measurements were used a sensitive receivers with crossed air-coil loop antennas in the frequency range from 800 Hz to 30 kHz in the femtotesla amplitude range. We recorded the radial and azimuthal magnetic component of the signals and from their ratio obtained the mode polarization. The radiated heater frequency was modulated by 517, 1017, 2017, 3017, 4017 and 6017 Hz. It was shown the signals with frequency less than 2 kHz propagate in the QTEM mode, and signals at the frequency from 2 to 4 kHz are in the QTE mode. Observed magnetic field strengths and waveguide polarizations are found to be in line with the predictions of simple waveguide models. Qualitative coincidence of the signals polarization character and its dependence on the frequency specifies adequacy of numerical models and reliability of the data received in campaign 2012. Blagoveshchenskaya N. F., M. T. Rietveld et al. Artificial field-aligned irregularities in the high-latitude F region of the ionosphere induced by an X-mode HF heater wave. // Geophys. Res. Lett. - 2011. V. 38, doi: 10.1029/2011GL046724. Barr, R., P. Stubbe, and H. Kopka, 1991, Long-range detection of VLF radiation produced by heating the auroral electrojet. Radio Science, Volume 26, Number 4, Pages 871-879, July-August 1991

  13. An alternative to the plasma emission model: Particle-in-cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts

    SciTech Connect

    Tsiklauri, David

    2011-05-15

    High-resolution (sub-Debye length grid size and 10 000 particle species per cell), 1.5D particle-in-cell, relativistic, fully electromagnetic simulations are used to model electromagnetic wave emission generation in the context of solar type III radio bursts. The model studies generation of electromagnetic waves by a super-thermal, hot beam of electrons injected into a plasma thread that contains uniform longitudinal magnetic field and a parabolic density gradient. In effect, a single magnetic line connecting Sun to Earth is considered, for which five cases are studied. (i) We find that the physical system without a beam is stable and only low amplitude level electromagnetic drift waves (noise) are excited. (ii) The beam injection direction is controlled by setting either longitudinal or oblique electron initial drift speed, i.e., by setting the beam pitch angle (the angle between the beam velocity vector and the direction of background magnetic field). In the case of zero pitch angle, i.e., when v-vector{sub b{center_dot}}E-vector{sub perpendicular}=0, the beam excites only electrostatic, standing waves, oscillating at local plasma frequency, in the beam injection spatial location, and only low level electromagnetic drift wave noise is also generated. (iii) In the case of oblique beam pitch angles, i.e., when v-vector{sub b{center_dot}}E-vector{sub perpendicular}=0, again electrostatic waves with same properties are excited. However, now the beam also generates the electromagnetic waves with the properties commensurate to type III radio bursts. The latter is evidenced by the wavelet analysis of transverse electric field component, which shows that as the beam moves to the regions of lower density and hence lower plasma frequency, frequency of the electromagnetic waves drops accordingly. (iv) When the density gradient is removed, an electron beam with an oblique pitch angle still generates the electromagnetic radiation. However, in the latter case no frequency decrease is seen. (v) Since in most of the presented results, the ratio of electron plasma and cyclotron frequencies is close to unity near the beam injection location, in order to prove that the electromagnetic emission, generated by the non-zero pitch angle beam, oscillates at the plasma frequency, we also consider a case when the magnetic field (and the cyclotron frequency) is ten times smaller. Within the limitations of the model, the study presents the first attempt to produce synthetic (simulated) dynamical spectrum of the type III radio bursts in the fully kinetic plasma model. The latter is based on 1.5D non-zero pitch angle (non-gyrotropic) electron beam that is an alternative to the plasma emission classical mechanism for which two spatial dimensions are needed.

  14. The detection of the ionospheric irregularities by GNSS signal and the incoherent scatter radio measurements

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Shagimuratov, Irk; Krankowski, Andrzej; Sieradsky, Rafal; Zakharenkova, Irina; Rietveld, Michael; Kapcia, Jacek

    2013-04-01

    The high-latitude ionosphere has a very complicated structure and high dynamics. The ionospheric irregularities can produce scintillations of radio waves that occur predominantly in the ionosphere F-layer. The strong fluctuations can influence on the performance of the different space communication and navigation radio systems. The fluctuations of GPS/GLONASS signals are caused by the ionospheric irregularities with spatial dimensions more than 10 km. These structures can be detected by high potential incoherent scatter radars. It was proposed and carried out at the beginning of June 2012 experiment for a detailed study of the nature of the ionospheric irregularities, influencing on GPS/GLONASS signals parameters, by incoherent scatter and trans-ionospheric radio measurements simultaneously. The EISCAT facilities position provides the unique opportunity to study the ionospheric irregularities' parameters associated with TEC fluctuations and GPS/GLONASS signals scintillations. The EISCAT heating facility provides unique possibility to generate the artificial ionospheric irregularities and to estimate the impact factor of these irregularities on GPS/GLONASS signals transionospheric propagation. In order to detect the ionosphere irregularities it is used the IS radar measurements (electron density and plasma temperatures profiles) and simultaneously registered on EISCAT site amplitude and phase fluctuations in GPS/GLONASS signals by use of the Javad multi-constellation GPS/GLONASS receiver with high samples rate (100 Hz) and special scintillation GPS receiver PolaRxS PRO that dedicated to ionospheric monitoring and space weather applications and provides TEC and S4 scintillation index measurements. The low frequency fluctuations can be directly measured due to the electron density changes along the radio ray path between a GPS/GLONASS satellite and a ground-based receiver on EISCAT site. The raw data (under scintillating conditions) obtained by use of the high samples rate GPS/GLONASS receiver are processed in order to derive the scintillation parameters. The practical aspect of this investigation is a detailed study of nature and impact level of the ionospheric irregularities that can influence on the GPS/GLONASS performance especially at high latitudes and during geomagnetically disturbed period and to obtain new knowledge that may improve the reliability of the global navigation systems in Arctic and Antarctic regions. The authors are grateful to the EISCAT Scientific Association for observing time on the EISCAT facilities within the framework of Peer-reviewed Program.

  15. On orbit performance of radio spectrometers of Superconducting Submillimeter-Wave Limb-Emission Sounder (JEM/SMILES)

    NASA Astrophysics Data System (ADS)

    Ozeki, Hiroyuki; Mizobuchi, Satoko; Tamaki, Kenta; Kikuchi, Ken-ichi; Nishibori, Toshiyuki; Ochiai, Satoshi; Shiotani, Masato; Mitsuda, Chihiro

    2011-11-01

    On-orbit performance of the radio spectrometer of SMILES is discussed. We focused on the telemetry data of photodiode current, laser diode current, and laser diode operating temperature. The data showed degradation trend as the mission went on. This is due to a wear-out phenomenon of commercially available laser diode, which is used as the light source of the radio spectrometer. Since the laser diodes have a certain lifetime, both screening procedure and operating condition for them must be properly defined and implemented for ensuring a good performance of the spectrometer throughout designed mission life. For these purposes, we conducted several kinds of qualification tests including an accelerated life time test during design phase, and expected life time of the laser diode was derived on the basis of these test results. In this paper, the results from the qualification tests at ground and the actual performance on orbit with the telemetry and mission data will be presented.

  16. Cryogenically cooled low-noise amplifier for radio-astronomical observations and centimeter-wave deep-space communications systems

    NASA Astrophysics Data System (ADS)

    Vdovin, V. F.; Grachev, V. G.; Dryagin, S. Yu.; Eliseev, A. I.; Kamaletdinov, R. K.; Korotaev, D. V.; Lesnov, I. V.; Mansfeld, M. A.; Pevzner, E. L.; Perminov, V. G.; Pilipenko, A. M.; Sapozhnikov, B. D.; Saurin, V. P.

    2016-01-01

    We report a design solution for a highly reliable, low-noise and extremely efficient cryogenically cooled transmit/receive unit for a large antenna system meant for radio-astronomical observations and deep-space communications in the X band. We describe our design solution and the results of a series of laboratory and antenna tests carried out in order to investigate the properties of the cryogenically cooled low-noise amplifier developed. The transmit/receive unit designed for deep-space communications (Mars missions, radio observatories located at Lagrangian point L2, etc.) was used in practice for communication with live satellites including "Radioastron" observatory, which moves in a highly elliptical orbit.

  17. Excitation of guided ELF-VLF waves through modification of the F{sub 2} ionospheric layer by high-power radio waves

    SciTech Connect

    Markov, G. A.; Belov, A. S.; Komrakov, G. P.; Parrot, M.

    2012-03-15

    The possibility of controlled excitation of ELF-VLF electromagnetic waves through modification of the F{sub 2} ionospheric layer by high-power high-frequency emission is demonstrated in a natural experiment by using the Sura midlatitude heating facility. The excited low-frequency waves can be used to explore the near-Earth space and stimulate the excitation of a magnetospheric maser.

  18. Conditioning Matrices of Liquid Scintillation Cocktails Contaminated with Tritium

    SciTech Connect

    Dianu, Magdalena

    2005-07-15

    This paper describes a viable solidification technology to convert the liquid scintillation cocktail into a stable form which minimizes the probability to release tritium in the environment.This radioactive waste type is generated by the radio-chemical analysis lab of a CANDU nuclear power plant.

  19. EVIDENCE AGAINST THE OSCILLATING TWO-STREAM INSTABILITY AND SPATIAL COLLAPSE OF LANGMUIR WAVES IN SOLAR TYPE III RADIO BURSTS

    SciTech Connect

    Graham, D. B.; Cairns, Iver H.; Malaspina, D. M.; Ergun, R. E.

    2012-07-01

    Recently Thejappa et al. studied a specific Langmuir wave packet observed by STEREO A and argued based on the electric field from one of the three antennas that this packet satisfied the conditions for the oscillating two-stream instability (OTSI) and was undergoing wave collapse. We analyze the same event using all three electric components and show that, while the wave packet has structure consistent with collapse simulations and theory, the field strength is well below that required for collapse to proceed. Analyzing the three electric field components shows that the power spectrum and dominance of wave power perpendicular to the local magnetic field are inconsistent with OTSI. We show that this packet and other more intense packets are inconsistent with collapse and show no evidence of OTSI, but are likely trapped eigenmodes in density wells. Therefore, OTSI and collapse are unlikely explanations for intense Langmuir events observed in the solar wind.

  20. The 27-day versus 13.5-day variations in the solar Lyman-alpha radiation and the radio wave absorption in the lower ionosphere over Europe

    NASA Astrophysics Data System (ADS)

    Delamorena, B. A.; Lastovicka, Jan; Rapoport, Z. Ts.; Alberca, L.

    1989-09-01

    In order to clarify the question of solar periods in absorption, the pattern was studied of the solar Lyman-alpha radiation (the principal ionizing agent of the lower ionosphere) and of the radio wave absorption at five widely spaced places in Europe. When the solar Lyman-alpha flux variability is very well developed, then it dominates in the lower ionospheric variability. The most pronounced Lyman-alpha variation on time scale day-month is the solar rotation variation (about 27 days). When the Lyman-alpha variability is developed rather poorly, as it is typical for periods dominated by the 13.5 day variability, then the lower ionospheric variability appears to be dominated by variations of meteorological origin. The conclusions hold for all five widely spaced placed in Europe.

  1. The 27-day versus 13.5-day variations in the solar Lyman-alpha radiation and the radio wave absorption in the lower ionosphere over Europe

    NASA Technical Reports Server (NTRS)

    Delamorena, B. A.; Lastovicka, Jan; Rapoport, Z. TS.; Alberca, L.

    1989-01-01

    In order to clarify the question of solar periods in absorption, the pattern was studied of the solar Lyman-alpha radiation (the principal ionizing agent of the lower ionosphere) and of the radio wave absorption at five widely spaced places in Europe. When the solar Lyman-alpha flux variability is very well developed, then it dominates in the lower ionospheric variability. The most pronounced Lyman-alpha variation on time scale day-month is the solar rotation variation (about 27 days). When the Lyman-alpha variability is developed rather poorly, as it is typical for periods dominated by the 13.5 day variability, then the lower ionospheric variability appears to be dominated by variations of meteorological origin. The conclusions hold for all five widely spaced placed in Europe.

  2. A Novel Cost-effective OFDM WDM-PON Radio Over Fiber System Employing FBG to Generate Optical mm-wave

    NASA Astrophysics Data System (ADS)

    Nguyen, HoangViet

    2015-03-01

    We have investigated and demonstrated a novel scheme to generate 2.5 Gbit/s 64 QAM orthogonal frequency division multiplexing (OFDM) signals for Radio Over Fiber (ROF) systems. We employ Fiber Bragg Grating (FBG) because the repetitive frequency of the RF source and the bandwidth of the optical modulator are largely reduced and the architecture of the ROF system is simpler. Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) has been considered as a promising solution for future broadband access networks. Principle of WDM-PON access network compatible with OFDM-ROF systems is investigated. This novel scheme which has multiple double-frequency technique to generate mm-wave signal to carry OFDM signals is a practical scheme to be applied for future broadband access networks.

  3. Remote sensing and modeling of energetic electron precipitation into the lower ionosphere using VLF/LF radio waves and field aligned current data

    NASA Astrophysics Data System (ADS)

    Schmitter, E. D.

    2015-11-01

    A model for the development of electron density height profiles based on space time distributed ionization sources and reaction rates in the lower ionosphere is described. Special attention is payed to the definition of an auroral oval distribution function for energetic electron energy input into the lower ionosphere based on a Maxwellian energy spectrum. The distribution function is controlled by an activity parameter which is defined proportional to radio signal amplitude disturbances of a VLF/LF transmitter. Adjusting the proportionality constant allows to model precipitation caused VLF/LF signal disturbances using radio wave propagation calculations and to scale the distribution function. Field aligned current (FAC) data from the new Swarm satellite mission are used to constrain the spatial extent of the distribution function. As an example electron precipitation bursts during a moderate substorm on the 12 April 2014 (midnight-dawn) are modeled along the subauroral propagation path from the NFR/TFK transmitter (37.5 kHz, Iceland) to a midlatitude site.

  4. Remote sensing and modeling of lightning caused long recovery events within the lower ionosphere using VLF/LF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Schmitter, E. D.

    2014-11-01

    On the 4 November 2012 at 3:04:27 UT a strong lightning in the midst of the North Sea affected the propagation conditions of VLF/LF transmitter radio signals from NRK (Iceland, 37.5 kHz) and GBZ (UK, 19.58 kHz) received at 5246° N 8° E (NW Germany). The amplitude and phase dips show a recovery time of 6-12 min pointing to a LOng Recovery Early VLF (LORE) event. Clear assignment of the causative return stroke in space and time was possible with data from the WWLLN (Worldwide Lightning Location Network). Based on a return stroke current model the electric field is calculated and an excess electron density distribution which decays over time in the lower ionosphere is derived. Ionization, attachment and recombination processes are modeled in detail. Entering the electron density distribution in VLF/LF radio wave propagation calculations using the LWPC (Long Wavelength Propagation Capability) code allows to model the VLF/LF amplitude and phase behavior by adjusting the return stroke current moment. The results endorse and quantify the conception of lower ionosphere EMP heating by strong - but not necessarily extremely strong - return strokes of both polarities.

  5. All-optical frequency downconversion technique utilizing a four-wave mixing effect in a single semiconductor optical amplifier for wavelength division multiplexing radio-over-fiber applications.

    PubMed

    Kim, Hyoung-Jun; Song, Jong-In

    2012-03-26

    An all-optical frequency downconversion utilizing a four-wave mixing effect in a single semiconductor optical amplifier (SOA) was experimentally demonstrated for wavelength division multiplexing (WDM) radio-over-fiber (RoF) applications. Two WDM optical radio frequency (RF) signals having 155 Mbps differential phase shift keying (DPSK) data at 28.5 GHz were simultaneously down-converted to two WDM optical intermediate frequency (IF) signals having an IF frequency of 4.5 GHz by mixing with an optical local oscillator (LO) signal having a LO frequency of 24 GHz in the SOA. The bit-error-rate (BER) performance of the RoF up-links with different optical fiber lengths employing all-optical frequency downconversion was investigated. The receiver sensitivity of the RoF up-link with a 6 km single mode fiber and an optical IF signal in an optical double-sideband format was approximately -8.5 dBm and the power penalty for simultaneous frequency downconversion was approximately 0.63 dB. The BER performance showed a strong dependence on the fiber length due to the fiber dispersion. The receiver sensitivity of the RoF up-link with the optical IF signal in the optical single-sideband format was reduced to approximately -17.4 dBm and showed negligible dependence on the fiber length. PMID:22453476

  6. Characterization of ionospheric amplitude scintillations using wavelet entropy detrended GNSS data

    NASA Astrophysics Data System (ADS)

    Su, Yongqing; Liu, Hao; Yue, Jiguang; Yang, Yunfan

    2014-12-01

    The extensive monitoring networks of Global Navigation Satellite System (GNSS) ionospheric scintillation have been established to continuously log observation data. Further, the amplitude scintillation index and the phase scintillation index, which are derived from scintillation observations, are anticipated to accommodate the accuracy requirement of both the user level and the monitoring station level. However, raw scintillation observations essentially measure superposed waveform impairments of GNSS signals propagating through ionosphere and troposphere. It implies that fluctuations of raw scintillation observations are caused by multiple factors from the entire radio propagation environment. Hence, it is crucial to characterize ionospheric scintillations from GNSS observation data. And the characterization is implemented through extracting fluctuations of raw observations merely induced by ionospheric scintillations. Designed to address this problem by means of Fourier filtering detrending, the present work investigates the influence of varying detrending cutoff frequencies on wavelet statistical energy and wavelet entropy distributions of scintillation data. It consequently derives criteria on the optimum detrending cutoff frequency for three types of raw amplitude scintillation data, which are classified by their wavelet energy distributions. Results of the present work verify that detrending with specific optimum cutoff frequencies rather than the fixed and universally applicable one renders the validity and credibility of characterizing ionospheric scintillations as the part of GNSS observation fluctuations purely induced by ionosphere electron density irregularities whose scale sizes are comparable with or smaller than the Fresnel scale.

  7. The effect of different background separation methods on gravity wave parameters in the upper troposphere and lower stratosphere region derived from GPS radio occultation data

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten; Wickert, Jens; De la Torre, Alejandro; Alexander, Peter; Faber, Antonia; Llamedo, Pablo; Heise, Stefan

    2012-07-01

    When vertical temperature profiles are used for the detection of gravity wave (GW) parameters a separation between a GW induced fluctuation and the background temperature field has to be performed. According the linear theory of GWs the measured temperature profile is expanded into a background temperature and a perturbation. The background is assumed to be steady, the fluctuations are much smaller than the background and the fluctuations should not affect the background. Usually, the fluctuations are addressed to GWs, but this depends strongly on the measuring method (observational filter) and the background separation approach. One possibility to separate GWs from the measurement is the application of band-pass filter associated to different vertical wavelengths to the measured temperature profiles. But, this analysis technique introduces an artificial enhancement of wave activity at the tropopause, mainly in the tropics, depending on the ability of the used filter to reproduce the tropopause kink. One possible method to solve this problem in the tropopause region is the separation of the profile into a tropospheric and a stratospheric part and the application of the filter for each region. A more appropriate approach is the double filtering method previously introduced. Alternatively to vertical detrending, a temperature background can be separated by horizontal detrending. For it temperature climatologies based on a sufficient temporal and spatial data density and averaging intervals must be present. In this study we demonstrate and discuss global GW temperature variances, and vertical wavelengths and amplitudes retrieved from GPS radio occultation (RO) data from COSMIC (2009 and 2010) between 10 and 40 km based on the different vertical and horizontal detrending approaches. The RO technique uses GPS radio signals received aboard low orbiting satellites for atmospheric limb sounding. Atmospheric temperature profiles are derived with high vertical resolution. The GPS RO technique is sensitive to GWs with small ratios of vertical to horizontal wavelengths.

  8. Scintillating fiber tracking techniques

    SciTech Connect

    Ruchti, R.

    1986-02-01

    The current status of the field of scintillating fiber detection and tracking is briefly reviewed, and avenues for further work are suggested. Attention is given to the core material, cladding material, and extra-mural absorber to be used in the scintillating fibers, as well as to the properties of attenuation length, radiation resistance, and fiber profile. Some examples are given of successful recording of tracks and interactions. Current developments are mentioned in relation to plastic and glass fibers and liquid capillaries. (LEW)

  9. Analysis of Radio Wave Propagation for ISM 2.4 GHz Wireless Sensor Networks in Inhomogeneous Vegetation Environments

    PubMed Central

    Azpilicueta, Leire; López-Iturri, Peio; Aguirre, Erik; Mateo, Ignacio; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2014-01-01

    The use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments. PMID:25513820

  10. Analysis of radio wave propagation for ISM 2.4 GHz Wireless Sensor Networks in inhomogeneous vegetation environments.

    PubMed

    Azpilicueta, Leire; López-Iturri, Peio; Aguirre, Erik; Mateo, Ignacio; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2014-01-01

    The use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments. PMID:25513820

  11. Features of solar wind acceleration according to radio occultation data

    NASA Technical Reports Server (NTRS)

    Efimov, A. I.

    1995-01-01

    In addressing one of the fundamental problems in solar physics establishing the mechanism(s) responsible for the solar wind acceleration and the corona heating - it is essential to have a reliable knowledge of the heliocentric radial dependence of the solar wind properties. Adequate data are available for small solar distances R less than 4 R(solar mass) from coronal white light and EUV observations and at distances R greater than 60 R(solar mass) from in situ measurements. One of the few methods available to fill in the gap between these boundaries is the radio scintillation technique. Taking the example of the solar wind velocity, the most reliable such measurements are obtained when phase fluctuation observations of scattered radio waves, which are not susceptible to saturation effects, are recorded at two or more widely-spaced ground stations. Two extensive observation campaigns of this type were carried out with the Venus-orbiting satellites Venera 10 in 1976 and Venera 15/16 in 1984. The observations were performed over the course of three months near superior conjunction at solar offset distances R approximately 6-80 R(solar mass). The main results from the subsequent analysis of these data are: (1) velocities vary between 250 and 380 km s(exp -1) for R greater than 20 R(solar mass), agreeing with similar measurements using natural sources (IPS); (2) velocities derived from two-station phase fluctuation observations varv between 70 and 120 km s(exp -1) for R less than 12 R(solar mass), i.e. values substantially lower than those derived from conventional IPS data; and (3) it is suggested that the different velocity profiles derived from the two data sets at small R may be due to the effects of magnetosonic and Alfvenic waves on radio wave scattering. Further analysis of additional radio sounding data should help resolve the apparent discrepancy.

  12. The wavelet transform function to analyze interplanetary scintillation observations

    NASA Astrophysics Data System (ADS)

    Aguilar-Rodriguez, E.; Rodriguez-Martinez, M.; Romero-Hernandez, E.; Mejia-Ambriz, J. C.; Gonzalez-Esparza, J. A.; Tokumaru, M.

    2014-05-01

    Interplanetary scintillation (IPS) observations are useful to remotely sense the inner heliosphere. We present a new technique to analyze IPS observations using a wavelet transform (WT) function. This technique allows us to derive, in a straightforward way, a simple method to obtain the scintillation index (m). We tested this WT technique to analyze IPS observations obtained by the Solar-Terrestrial Environment Laboratory (STEL) radio telescope. The analysis of the m index of the radio source 3C48 detected by STEL over the year 2012 shows the expected decrease with solar elongation reported in previous studies. The WT technique has a great potential for future solar wind studies using IPS observations from contemporary radio telescopes.

  13. Radio-frequency electromagnetic field measurements for direct detection of electron Bernstein waves in a torus plasma

    SciTech Connect

    Yatsuka, Eiichi; Kinjo, Kiyotake; Morikawa, Junji; Ogawa, Yuichi

    2009-02-15

    To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic.

  14. Cosmology: Home of a fast radio burst

    NASA Astrophysics Data System (ADS)

    Lorimer, Duncan

    2016-02-01

    Our understanding of fast radio bursts -- intense pulses of radio waves -- and their use as cosmic probes promises to be transformed now that one burst has been associated with a galaxy of known distance from Earth. See Letter p.453

  15. Laboratory studies on the removal of radon-born lead from KamLAND׳s organic liquid scintillator

    DOE PAGESBeta

    Keefer, G.; Grant, C.; Piepke, A.; Ebihara, T.; Ikeda, H.; Kishimoto, Y.; Kibe, Y.; Koseki, Y.; Ogawa, M.; Shirai, J.; et al

    2014-09-28

    We studied the removal of radioactivity from liquid scintillator in preparation of a low background phase of KamLAND. We describe the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. Lastly, we report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon daughters from liquid scintillator.

  16. A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Schmidt, T.; Wickert, J.

    2006-12-01

    This paper presents the first results of the global long-term potential energy and mean potential energy per unit mass associated to wave activity (WA) in the lower and middle stratosphere, obtained from Global Positioning System radio occultation (GPS-RO) temperature profiles, retrieved during the last 5 years from the CHAMP (CHAllenging Minisatellite Payload) satellite. We excluded temperature variations corresponding to the wavelike character of the Quasi Biennial oscillation (QBO). Possible limitations and distortions expected from our analysis are pointed out. Systematic annual and interannual features, clearly evidenced through 5 years of observations as a function of height, latitude and time are shown. We confirm some previously reported characteristics, in particular interannual requiring a sufficiently long period of observation, in addition to others not reported yet. In particular, a general stronger (weaker) wave activity is observed associated to apparent vertical wavelengths longer (shorter) than 4 km. The tropical/extratropical signatures decrease/increase with increasing altitude. At equatorial latitudes, WA interannual enhancements, related to QBO, are observed just below zonal wind zero contours corresponding to westerly shears. A significant decrease of WA is seen where the zonal wind is minimum. Both at equatorial and middle latitudes, an increased WA appears close above the TP, following its annual height oscillation and above 30 km height. At higher latitudes, a systematic annual variation of WA is observed, exhibiting stronger enhancements in winter SH respect to NH, but in SH, taking place during late winter and early spring. This enhanced WA, associated during 2002 to the stratospheric warming observed in that year, appears here as a systematic annual stratospheric feature. Its intensity increases with altitude, from 25 to 35 km. Inertio-gravity waves generated by geostrophic adjustment during the maximum of the southern polar vortex (polar night jet) between late August and mid- September, could constitute a main source of this WA enhancement.

  17. MILLISECOND PULSAR SCINTILLATION STUDIES WITH LOFAR: INITIAL RESULTS

    SciTech Connect

    Archibald, Anne M.; Kondratiev, Vladislav I.; Hessels, Jason W. T.; Stinebring, Daniel R. E-mail: kondratiev@astron.nl E-mail: dan.stinebring@oberlin.edu

    2014-08-01

    High-precision timing of millisecond pulsars (MSPs) over years to decades is a promising technique for direct detection of gravitational waves at nanohertz frequencies. Time-variable, multi-path scattering in the interstellar medium is a significant source of noise for this detector, particularly as timing precision approaches 10 ns or better for MSPs in the pulsar timing array. For many MSPs, the scattering delay above 1 GHz is at the limit of detectability; therefore, we study it at lower frequencies. Using the LOw-Frequency ARray (LOFAR) radio telescope, we have analyzed short (5-20 minutes) observations of 3 MSPs in order to estimate the scattering delay at 110-190 MHz, where the number of scintles is large and, hence, the statistical uncertainty in the scattering delay is small. We used cyclic spectroscopy, still relatively novel in radio astronomy, on baseband-sampled data to achieve unprecedented frequency resolution while retaining adequate pulse-phase resolution. We detected scintillation structure in the spectra of the MSPs PSR B1257+12, PSR J1810+1744, and PSR J2317+1439 with diffractive bandwidths of 6 ± 3, 2.0 ± 0.3, and ∼7 kHz, respectively, where the estimate for PSR J2317+1439 is reliable to about a factor of two. For the brightest of the three pulsars, PSR J1810+1744, we found that the diffractive bandwidth has a power-law behavior Δν{sub d}∝ν{sup α}, where ν is the observing frequency and α = 4.5 ± 0.5, consistent with a Kolmogorov inhomogeneity spectrum. We conclude that this technique holds promise for monitoring the scattering delay of MSPs with LOFAR and other high-sensitivity, low-frequency arrays like the low-frequency component of the Square Kilometre Array.

  18. Planetary radio lasing

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1988-01-01

    Both the Earth's auroral kilometric radiation (AKR) and Jupiter's decametric radio S-bursts are attributed to natural radio lasing. Presumably consisting of self-excited, closed-loop wave feedback oscillations between local irregularities of the source plasma density, this radio lasing is comparable to that which occurs in man-made optical lasers, although at radio, rather than optical wavelengths. As a result, it should produce a multiple discrete emission spectrum and intense, coherent beams. Recent observations of the AKR's discreteness and coherence have clearly ruled out the previous open-loop amplifier model for such emissions, and recent observations of the Jovian S-bursts have shown the expected, regularly-spaced, longitudinal laser modes. These new observations thus confirm the proposed planetary cyclotron radio lasing at both planets.

  19. Gravitational-to-electromagnetic wave conversion and gamma-ray bursts calorimetry: The GRB980425/SN 1998bw ~1049 erg radio emission

    NASA Astrophysics Data System (ADS)

    Mosquera Cuesta, Herman J.

    2002-03-01

    The unusual features of supernova (SN) 1998bw and its apparent association with the gamma-ray burst (GRB) event GRB980425 were highlighted by Kulkarni et al. At its peak SN 1998bw was anomalously superluminous in radio wavelengths with an inferred fluence Eradio>=1049 erg [S. Kulkarni et al., Nature (London) 395, 663 (1998)], while the apparent expansion velocity of its ejecta (~10-5Msolar) suggests a shock wave moving relativistically (Vexp~2c). The unique properties of SN 1998bw strengthen the case for it being linked with GRB980425. I present a consistent, novel mechanism to explain the peculiar event SN 1998bw and similar phenomena in GRBs: Conversion of powerful, high frequency (~2 kHz) gravitational waves (GWs) into electromagnetic waves [M. Johnston, R. Ruffini, and F. Zerilli, Phys. Rev. Lett. 31, 1317 (1973)] might have taken place during SN 1998bw. Yet, conversion of GRB photons into GWs, as advanced by Johnston, Ruffini, and Zerilli [Phys. Lett. 49B, 185 (1974)], may also occur. These processes can produce GRBs depleted in γ rays but enhanced in x rays, for instance, or even more plausibly induce dark GRBs, those with no optical afterglow. The class of GWs needed to drive the calorimetric changes of these gamma-ray bursts may be generated by (a) the nonaxisymmetric dynamics of a torus surrounding the hypernova (or failed supernova) magnetized stellar-mass black hole (BH) remnant, as in van Putten's mechanism for driving long GRBs powered by the BH spin energy [Phys. Rev. Lett. 87, 091101 (2001)], or in the van Putten and Ostriker mechanism to account for the bimodal distribution in duration in GRBs [Astrophys. J. Lett. 552, L32 (2001)], where the torus magnetohydrodynamics may be dominated by either hyperaccretion onto a slowly spinning BH or suspended accretion onto a fast rotating BH, or (b) the just formed black hole with electromagnetic structure as in the GRB central engine mechanism of Ruffini et al. [Astrophys. J. Lett. 555, L107 (2001); 555, L113 (2001)], provided the issue concerning the origin of the black hole charge can be suitably clarified. In both of these mechanisms the total energy radiated as GWs is about ΔEGW~1053 erg×(M/10Msolar), which for the conversion efficiency estimated here turns out to be enough to explain the superluminous radio wavelength emission from SN 1998bw. Thus, I argue this process could have induced the enhancement in the radio luminosity of SN 1998bw as evidenced in its light curve [Fig. 2, in S. Kulkarni et al., Nature (London) 395, 663 (1998)] and optical light curves of GRB980326 [J. Bloom et al., Nature (London) 401, 453 (1998)] and GRB990712 [G. Björnsson et al., Astrophys. J. Lett. 552, L121 (2001)]. Moreover, GW-driven plasma density perturbations moving at the speed of light may up- (or down-) convert fireball photons, which could cause further substantial modifications of the gamma-ray burst or supernova calorimetry.

  20. Interplanetary plasma scintillation parameters measurements retrieved from the spacecraft observations.

    NASA Astrophysics Data System (ADS)

    Molera Calvés, Guifré; Pogrebenko, S. V.; Wagner, J.; Maccaferri, G.; Colucci, G.; Kronschnabl, G.; Scilliro, F.; Bianco, G.; Pérez Ayúcar, M.; Cosmovici, C. B.

    2010-05-01

    Measurement of the Interplanetary Scintillations (IPS) of radio signals propagating through the plasma in the Solar System by the radio astronomical instruments is a powerful tool to characterise and study the spatial and temporal variation of the electron density in the Solar wind. Several techniques based on the observation of natural and artificial radio sources have been developed during the last 50 years. Here we report our results of the IPS parameters measurement based on the multi-station observations of the planetary mission spacecraft. The ESA Venus Express spacecraft was observed at X-band (8.4 GHz) by several European VLBI stations - Metsähovi Radio Observatory (Aalto University , FI), Medicina (INAF-RA, IT), Matera (ASI, IT), Wettzell (BKG, DE), Noto (INAF-IRA, IT) and Yebes (OAN-IGN, ES) during a 2008-2010 campaign in a framework of the PRIDE (Planetary Radio Interferometry and Doppler Experiments) project as a preparatory stage for the European Radio Astronomy VLBI facilities participation in the planned ESA planetary missions (EJSM, TESM, EVE and others). Observational data were processed at Metsähovi Radio Observatory with the on-purpose developed high performance, ultra-high spectral resolution and spacecraft tracking capable software spectrometer-correlator and analysed at the Joint Institute for VLBI in Europe (JIVE, NL). High quality of acquired and analysed data enables us to study and define several parameters of the S/C signal and accompanying "ranging" tones with milli-Hz accuracy, among which the phase fluctuations of the spacecraft signal carrier line can be used to characterise the interplanetary plasma density fluctuations along the signal propagation line at different spatial and temporal scales at different Solar elongations and which exhibits a near-Kolmogorov spectrum. Such essential parameters as the phase scintillation index and bandwidth of scintillations and their dependence on the solar elongation, distance to the target, positions of the source in the Solar system and Solar activity index were retrieved from our measurements and are reported. This study is focused on the technique of the measurements and data analysis, leaving the physical interpretation of the measurement results to the upcoming studies when more observational data is collected. Our measurements of the phase scintillations from the sources within the Solar system are complementary to the classical measurements of the power level scintillations of signals from the natural radio sources. The results presented in this paper are promising and observations will continue during 2010.

  1. Gravitational waves and red shifts - A space experiment for testing relativistic gravity using multiple time-correlated radio signals

    NASA Technical Reports Server (NTRS)

    Smarr, L. L.; Vessot, R. F. C.; Lundquist, C. A.; Decher, R.; Piran, T.

    1983-01-01

    A two-step satellite mission for improving the accuracy of gravitational wave detection and for observing actual gravity waveforms is proposed. The spacecraft would carry both a highly stable hydrogen maser, which would control a transmitter sending signals to earth, and a Doppler transponder operating in the two-way mode. The use of simultaneous one- and two-way Doppler transmissions offers four time records of frequency pulsations, which can reveal gravitational radiation at 1-10 MHz with an amplitude accuracy of a factor of six. The first mission phase would consist of a Shuttle launch into a highly eccentric orbit to obtain measurements of the gravitational redshift using gravitational potentials of different earth regions to establish that gravity is describable by a metric theory. Then, after a boost into a heliocentric orbit at 6 AU, the earth-satellite system could detect gravitational waves in the solar system, as well as bursts emitted by the collisions of supermassive black holes.

  2. Radio Journalism.

    ERIC Educational Resources Information Center

    Bittner, John R.; Bittner, Denise A.

    This book, a how-to-do-it guide for the novice and the professional alike, deals with several aspects of radio journalism: producing documentaries, preparing and announcing radio news, ethics and responsibility, regulation of radio journalism, and careers. It traces the history and growth of radio news, shows its impact on the public, and…

  3. Location, spatial scale and motion of radio wave absorption in the cusp-latitude ionosphere observed by imaging riometers

    NASA Astrophysics Data System (ADS)

    Nishino, M.; Yamagishi, H.; Stauning, P.; Rosenberg, T. J.; Holtet, J. A.

    1997-05-01

    Characteristic examples of the location, spatial scale and motion of radio were absorption events in the cusp-latitude ionosphere are obtained from daytime observations on 18 September and 17 October, 1992, by imaging riometers in the Arctic region. One case observed near local magnetic noon at Ny-Ålesund, Svalbard (invariant lat. = 76.1°) displays small-scale absorption events of 100-200 km in extent superposed on large-scale absorption features extending at least 700 km in longitude toward the prenoon sector. Many of the small-scale absorption events show quasi-periodic variations with repetition periods of 3-5 min which correlate well with local magnetic variations. Short-lived, impulsive absorption events (1-3 min duration) found among the quasi-periodic variations corresponded to impulsive magnetic variations observed over a wide range of magnetometer stations. Some of these impulsive events showed northward or northeastward motions. This case is interpreted in terms of the variable precipitation of high-energy substorm electrons. Another characteristic case observed in the noon sector at cusp-latitudes is an event of slowly varying absorption intensities associated with magnetic bays in the cusp and polar cap regions during conditions of strongly negative IMF-By component (Bz ~ 0). An interesting feature of this event is the observed antisunward motion of the front-like absorption features extending over 700 km in longitude. From these characteristics the slowly varying absorption intensities are interpreted in terms of E-region ionospheric disturbances related to the east-west oriented DPY currents in the cusp and polar cap.

  4. Guided radio-wave propagation in the equatorial ionosphere according to the topside sounding onboard Interkosmos-19

    NASA Astrophysics Data System (ADS)

    Karpachev, A. T.; Zhbankov, G. A.; Kuleshova, V. P.; Telegin, V. A.

    2014-12-01

    In addition to normal vertical-incident ionogram traces, strongly remote (up to 2000 km) traces of HF-radio-signal reflections observed on topside-sounder ionograms of the Interkosmos-19 satellite obtained in the equatorial ionosphere are presented. Such traces are connected with waveguides (ducts). These waveguides are field-aligned irregularities of the ionospheric plasma with electron density depletions of a few percent and cross-field dimension of a few to several kilometers. Ray tracing confirms this supposition and allows an estimate of typical waveguide parameters: diameter ≤10-15 km and amplitude |ΔN/N|≥10%, where N is the electron density. The waveguide traces usually start at the cutoff frequencies of the main traces. However, sometimes they begin at much lower frequencies which indicates the satellite was transitioning through an equatorial plasma bubble during the recording of the ionogram. The X-mode of ducted echoes is more distinct then the O-mode. Only one ducted trace is usually observed on the Interkosmos-19 ionograms; a second conjugate trace is rarely recorded. The same is true for combination modes which is a combination of an oblique-incidence and guided propagation. Waveguides are observed at all heights of Interkosmos-19 (500-1000 km) inside the equatorial anomaly region (from -40° to +40° Dip). Waveguides are usually associated with other irregularities of various sizes in the equatorial ionosphere, some of which cause additional traces and spread F on the topside-sounding ionograms. Ducted-echo characteristics observed with Interkosmos-19 are different from those observed earlier with the Alouette and ISIS satellites. This difference is discussed. It is shown that the ionospheric plasma irregularities responsible for the waveguides are observed much more often during nighttime than during daytime.

  5. Polysiloxane scintillator composition

    DOEpatents

    Walker, J.K.

    1992-05-05

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  6. Polysiloxane scintillator composition

    DOEpatents

    Walker, James K.

    1992-01-01

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  7. SCINTILLATION EXPOSURE RATE DETECTOR

    DOEpatents

    Spears, W.G.

    1960-11-01

    A radiation detector for gamma and x rays is described. The detector comprises a scintillation crystal disposed between a tantalum shield and the input of a photomultiplier tube, the crystal and the shield cooperating so that their combined response to a given quantity of radiation at various energy levels is substantially constant.

  8. Boron loaded scintillator

    SciTech Connect

    Bell, Zane William; Brown, Gilbert Morris; Maya, Leon; Sloop, Jr., Frederick Victor; Sloop, Jr., Frederick Victor

    2009-10-20

    A scintillating composition for detecting neutrons and other radiation comprises a phenyl containing silicone rubber with carborane units and at least one phosphor molecule. The carbonate units can either be a carborane molecule dispersed in the rubber with the aid of a compatibilization agent or can be covalently bound to the silicone.

  9. Scintillator Waveguide For Sensing Radiation

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder; Paul L.

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  10. High Efficiency Traveling-Wave Tube Power Amplifier for Ka-Band Software Defined Radio on International Space Station-A Platform for Communications Technology Development

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.

    2013-01-01

    The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.

  11. Fast scintillation counter system and performance

    NASA Technical Reports Server (NTRS)

    Sasaki, H.; Nishioka, A.; Ohmori, N.; Kusumose, M.; Nakatsuka, T.; Horiki, T.; Hatano, Y.

    1985-01-01

    An experimental study of the fast scintillation counter (FS) system to observe a shower disk structure at Mt. Norikura is described, especially the system performance and a pulse wave-form by a single charge particles. The photomultiplier tube (PT) pulse appears at the leading edge of the main pulse. To remove this PT-pulse from the main pulse, the frame of the scintillator vessel was changed. The fast triggering system was made to decrease the dead time which came from the use of the function of the self triggering of the storage oscilloscope (OSC). To provide a new field on the multi-parameter study of the cosmic ray showers, the system response of the FS system also improved as a result of many considerations.

  12. Comparison of the effect of high-latitude and equatorial ionospheric scintillation on GPS signals during the maximum of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Jiao, Yu; Morton, Yu T.

    2015-09-01

    Radio signal scintillation caused by electron density irregularities in the ionosphere affects the accuracy and integrity of Global Navigation Satellite Systems, especially in the equatorial and high-latitude regions during solar maxima. Scintillation in these two regions, nevertheless, is usually influenced by different factors and thus has different characteristics that cause different effects on GNSS signals. This paper compares the characteristics of high-latitude and equatorial scintillation using multifrequency GPS scintillation data collected at Gakona, Alaska, Jicamarca, Peru, and Ascension Island during the 24th solar maximum. Several statistical distributions are established based on the data to characterize the intensity, duration, and occurrence frequency of scintillation. Results show that scintillation in the equatorial region is generally more severe and longer lasting, while high-latitude scintillation is, in general, more moderate and usually dominated by phase fluctuations. Results also reveal the different impacts of solar activity, geomagnetic activity, and seasons on scintillation in different geographic locations.

  13. Sudden Stratospheric Warming Effects over L1 Scintillation at Low Latitude During Quiet and Magnetically Disturbed Periods

    NASA Astrophysics Data System (ADS)

    Paula, E. R.; Jonah, O. F.; Moraes, A. O.; Kherani, E. A.; Fejer, B. G.; Abdu, M. A.; Batista, I. S.; Negreti, P. M. D. S.; Dutra, S. L. G.; Paes, R. D. R.

    2014-12-01

    Small scale irregularities of hundred of meters, associated with bubbles cause scattering and diffraction of radio waves crossing the ionosphere and produces scintillation in amplitude and/or phase of the GNSS signal that can cause loss of lock of its code and/or carrier, affecting the positioning determination. The L1 band GPS amplitude scintillation intensities, represented by the S4 scintillation index, at the low latitude station of São José dos Campos (23.1º S, 45.8º W, dip latitude 17.3º S), located under the southern crest of the EIA, were analyzed during two northern hemisphere Sudden Stratospheric Warming (SSW) events. These events occurred during the northern winter months of 2003/2004 marked by moderate magnetic disturbances and 2012/2013 during a very quiet magnetic period. Normally during these months (January to February) moderate to strong scintillation occurs in this Brazilian station for moderate and high solar flux. Long lasting weakening of the scintillation amplitude at this low latitude station was observed during these two SSW events, compared to the pre-SSW periods, however stronger S4 weakening was observed during 2003/2004. The main mechanisms that can lead to scintillation weakening are the meridional neutral wind and the equatorial vertical plasma drift. Since no wind data is available during pre-SSW and SSW periods, we have sought to identify its signature in the latitudinal distribution of the TEC along the 60o magnetic meridian and we suggest that a SSW induced southward meridional wind had a large contribution to the S4 weakening. The other mechanism that could have contributed to S4 weakening is the vertical plasma drift. This parameter, inferred from São Luís (2.52°S, 44.3°W, dip latitude 1.73°S) digisonde data for the 17 to 21 LT period during the SSW events, showed predominant decreases around the prereversal hours relative to their pre-SSW periods. The vertical drift during the period of the 2003/2004 SSW event presented a large flattening and remained constant at about 10 m/s. We suggest that this larger drift decrease during the magnetic storm, compared to the 2012/2013 SSW period, is caused by the SSW effects reinforced by the disturbance dynamo and overshielding westward polarity electric fields associated with the storm.

  14. The Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi

    2011-08-01

    We present the status of the Sardinia Radio Telescope (SRT) project, a new general purpose, fully steerable 64 m diameter parabolic radio telescope under construction in Sardinia. The instrument is funded by Italian Ministry of University and Research (MIUR), by the Sardinia Regional Government (RAS), and by the Italian Space Agency (ASI), and it is charge to three research structures of the National Institute for Astrophysics (INAF): the Institute of Radio Astronomy of Bologna, the Cagliari Astronomical Observatory (in Sardinia), and the Arcetri Astrophysical Observatory in Florence. The radio telescope has a shaped Gregorian optical configuration with a 8 m diameter secondary mirror and additional Beam-Wave Guide (BWG) mirrors. One of the most challenging feature of SRT is the active surface of the primary reflector which provides good efficiency up to about 100 GHz. This paper reports on the most recent advances of the construction.

  15. 47 CFR 32.2231 - Radio systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., amplification, propagation, reception, modulation, and demodulation of radio waves in free space over which... 47 Telecommunication 2 2012-10-01 2012-10-01 false Radio systems. 32.2231 Section 32.2231... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2231 Radio systems....

  16. 47 CFR 32.2231 - Radio systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., amplification, propagation, reception, modulation, and demodulation of radio waves in free space over which... 47 Telecommunication 2 2014-10-01 2014-10-01 false Radio systems. 32.2231 Section 32.2231... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2231 Radio systems....

  17. Packet Radio: An Alternative Way to Connect.

    ERIC Educational Resources Information Center

    Lucas, Larry W.

    1995-01-01

    Explains packet radio as a form of telecomputing in which digital data is transported via radio waves instead of telephone lines or other cabling, and describes how it can be used by students to access the Internet. Highlights include packet bulletin board systems and equipment needed for a packet radio station. (LRW)

  18. 47 CFR 32.2231 - Radio systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., amplification, propagation, reception, modulation, and demodulation of radio waves in free space over which... 47 Telecommunication 2 2013-10-01 2013-10-01 false Radio systems. 32.2231 Section 32.2231... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2231 Radio systems....

  19. Composite scintillator screen

    SciTech Connect

    Zeman, Herbert D.

    1994-01-01

    A scintillator screen for an X-ray system includes a substrate of low-Z material and bodies of a high-Z material embedded within the substrate. By preselecting the size of the bodies embedded within the substrate, the spacial separation of the bodies and the thickness of the screen, the sensitivity of the screen to X-rays within a predetermined energy range can be predicted.

  20. Modular scintillation camera

    SciTech Connect

    Barrett, H. H.

    1985-04-30

    Improved optical coupling modules to be used in coded-aperture-type radiographic imaging systems. In a first system, a rotating slit coded-aperture is employed between the radioactive object and the module. The module consists of one pair of side-by-side photomultipliers receiving light rays from a scintillation crystal exposed to the object via the coded-aperture. The light rays are guided to the photomultipliers by a mask having a central transverse transparent window, or by a cylindrical lens, the mask or lens being mounted in a light-conveying quartz block assembly providing internal reflections at opposite faces of the assembly. This generates output signals from the photomultipliers which can be utilized to compute one-dimensional coordinate values for restoring the image of the radioactive object on a display screen. In another form of optical coupling module, usable with other types of coded-apertures, four square photomultipliers form a substantially square block and receive light rays from scintillations from a scintillation crystal exposed to the radioactive object via the coded-aperture. The light rays are guided to the photomultipliers by a square mask or a centrally transparent square lens configuration mounted in a light-conveying assembly formed by internally reflecting quartz blocks, the optical rays being directed to the respective photomultipliers so as to generate resultant output signals which can be utilized to compute image coordinate values for two-dimensional representation of the radioactive object being examined.

  1. Educational Radio.

    ERIC Educational Resources Information Center

    Arafeh, Sousan

    1999-01-01

    Examines the effectiveness of the radio in education and the crucial role of the radio in distance education in first half of the 20th century; dramatic social changes in the 1960s that led to a review of educational institutions and of educational media; and the radio today as a neglected but inexpensive medium of communication that should be…

  2. A multidisciplinary study of planetary, solar and astrophysical radio emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Calvert, W.; Fielder, R.; Goertz, C.; Grabbe, C.; Kurth, W.; Mutel, R.; Sheerin, J.; Mellott, M.; Spangler, S.

    1986-01-01

    Combination of the related fields of planetary, solar, and astrophysical radio emissions was attempted in order to more fully understand the radio emission processes. Topics addressed include: remote sensing of astrophysical plasma turbulence; Alfven waves; astrophysical shock waves; surface waves; very long base interferometry results; very large array observations; solar magnetic flux; and magnetohydrodynamic waves as a tool for solar corona diagnostics.

  3. Scintillators for well logging applications

    NASA Astrophysics Data System (ADS)

    Melcher, C. L.

    1989-04-01

    The hostile environmental conditions and limited space in the borehole requires gamma-ray detectors with special properties which are not usually important in laboratory applications. Since the borehole temperature can exceed 200° C, scintillators with inherently good temperature responses are desirable. Lower scintillation output at high temperature affects signal-to-noise, energy resolution and gain control. The scintillation decay time also usually depends on temperature, thus affecting pulse shaping and counting rate. Due to the shock and vibration encountered in the borehole, mechanically rugged and nonhygroscopic scintillators are preferred to avoid the need for special packaging that reduces crystal size and performance. Most well logging applications benefit from scintillators with high gamma-ray detection efficiency which results from high atomic number and high density. In order to take advantage of high detection efficiencies and the resulting high counting rates, a short scintillation decay time is necessary to minimize pulse pileup.

  4. Neutron crosstalk between liquid scintillators

    NASA Astrophysics Data System (ADS)

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-09-01

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  5. A plastic scintillation counter prototype.

    PubMed

    Furuta, Etsuko; Kawano, Takao

    2015-10-01

    A new prototype device for beta-ray measurement, a plastic scintillation counter, was assembled as an alternative device to liquid scintillation counters. This device uses plastic scintillation sheets (PS sheets) as a sample applicator without the use of a liquid scintillator. The performance was evaluated using tritium labeled compounds, and good linearity was observed between the activity and net count rate. The calculated detection limit of the device was 0.01 Bq mL(-1) after 10 h measurement for 2 mL sample. PMID:26164628

  6. Firefighters' Radios

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Public Technology Inc. asked for NASA assistance to devise the original firefighter's radio. Good short-range radio communications are essential during a fire to coordinate hose lines, rescue victims, and otherwise increase efficiency. Useful firefighting tool is lower cost, more rugged short range two-way radio. Inductorless electronic circuit replaced inductances and coils in radio circuits with combination of transistors and other low-cost components. Substitution promises reduced circuit size and cost. Enhanced electrical performance made radio more durable and improved maintainability by incorporating modular construction.

  7. MEXART observations at 140 MHz: Calibration to perform the Interplanetary Scintillation (IPS) technique

    NASA Astrophysics Data System (ADS)

    Villanueva, P.; Mejia Ambriz, J. C.; Gonzalez-Esparza, A.; Aguilar-Rodriguez, E.; Carrillo Vargas, A.; Andrade Mascote, E.

    2010-12-01

    The Mexican Array Radio Telescope (MEXART) is an array of 64 X 64 dipoles, covering 9600 square meters, located in Michoacan, Mexico at a latitude of 19 and 101 longitude. The telescope has 16 beams at different declinations to detect stellar radio sources at 140 MHz in a declination range of -40 to 80. We report the sensitivity of the instrument, by using a list of radio sources characterized at 140 MHz. We also present an analysis of the scintillation index versus the elongation angle for some IPS radio sources.

  8. The gamma-ray line of Ti-44, combined with radio observations, as a probe of supernova

    NASA Astrophysics Data System (ADS)

    Silberberg, R.; Cameron, R. A.; Tsao, C. H.; Kassim, N. E.; Weiler, K. W.

    1993-12-01

    The decay of Ti-44 can be used to search for young Galactic supernova remnants (SNRs). While these objects may be hidden in obscured regions toward the inner Galaxy not accessible to optical telescopes, observations at both gamma ray and radio wavelengths can be used to discover and explore these objects. The Oriented Scintillation Spectrometer Experiment (OSSE) instrument on the Compton Gamma Ray Observatory (CGRO) can observe the gamma ray lines accompanying (Ti-44)-(Sc-44)-(Ca-44) decay, especially the 1.16 MeV line, and detect recent supernovae (SNe) with ages up to several centuries. Centimeter wavelength radio continuum observations can then be used to identify the young SNRs associated with the gamma-ray detections. The radio observations provide information on the interaction of the SN blast wave with the progenitor star's circumstellar environment and local interstellar medium (ISM), together with information on the expansion velocity and small scale structure of young SNRs. The determination of the radio morphology of young SNRs, whose SN type can be inferred from the gamma-ray observations, provides valuable insight into the interpretation of existing radio observations of older SNRs.

  9. Prediction of the level of ionospheric scintillation at equatorial latitudes in Brazil using a neural network

    NASA Astrophysics Data System (ADS)

    Lima, G. R. T.; Stephany, S.; Paula, E. R.; Batista, I. S.; Abdu, M. A.

    2015-08-01

    Electron density irregularity structures, often associated with ionospheric plasma bubbles, drive amplitude and phase fluctuations in radio signals that, in turn, create a phenomenon known as ionospheric scintillation. The phenomenon occurs frequently around the magnetic equator where plasma instability mechanisms generate postsunset plasma bubbles and density depletions. A previous correlation study suggested that scintillation at the magnetic equator may provide a forecast of subsequent scintillation at the equatorial ionization anomaly southern peak. In this work, it is proposed to predict the level of scintillation over So Lus (2.52S, 44.3W; dip latitude: ~2.5S) near the magnetic equator with lead time of hours but without specifying the moment at which the scintillation starts or ends. A collection of extended databases relating scintillation to ionospheric variables for So Lus is employed to perform the training of an artificial neural network with a new architecture. Two classes are considered, not strong (null/weak/moderate) and strong scintillation. An innovative scheme preprocesses the data taking into account similarities of the values of the variables for the same class. A formerly proposed resampling heuristic is employed to provide a balanced number of tuples of each class in the training set. Tests were performed showing that the proposed neural network is able to predict the level of scintillation over the station on the evening ahead of the data sample considered between 17:30 and 19:00 LT.

  10. Strong scintillations in astrophysics. III - The fluctuations in intensity

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Jokipii, J. R.

    1975-01-01

    Fluctuations in intensity due to wave propagation in a wide range of turbulent media, are discussed on the basis of a previously developed theory of strong scintillations. An asymptotic analytic solution to the fourth-moment equation is presented, and its range of validity is discussed. Various parameters characterizing the intensity fluctuations, such as scintillation index and correlation scale, are expressed in terms of turbulence parameters for both Gaussian and power-law irregularity spectra as well as for thick and thin turbulent media.

  11. Simple instruments in radio astronomy

    NASA Astrophysics Data System (ADS)

    Nguyen-Quang-Rieu

    Radio astronomy has a major role in the study of the universe. The spiral structure of our Galaxy and the cosmic background radiation were first detected, and the dense component of interstellar gas is studied, at radio wavelengths. COBE revealed very weak temperature fluctuations in the microwave background, considered to be the seeds of galaxies and clusters of galaxies. Most electromagnetic radiation from outer space is absorbed or reflected by the Earth's atmosphere, except in two narrow spectral windows: the visible-near-infrared and the radio, which are nearly transparent. Centimetre and longer radio waves propagate almost freely in space; observations of them are practically independent of weather. Turbulence in our atmosphere does not distort the wavefront, which simplifies the building of radio telescopes, because no devices are needed to correct for it. Observations at these wavelengths can be made in high atmospheric humidity, or where the sky is not clear enough for optical telescopes. Simple instruments operating at radio wavelengths can be built at low cost in tropical countries, to teach students and to familiarize them with radio astronomy. We describe a two-antennae radio interferometer and a single-dish radio telescope operating at centimetre wavelengths. The Sun and strong synchrotron radio-sources, like Cassiopeia A and Cygnus A, are potential targets.

  12. Extruding plastic scintillator at Fermilab

    SciTech Connect

    Anna Pla-Dalmau; Alan D. Bross; Victor V. Rykalin

    2003-10-31

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R&D program at Fermilab.

  13. Hybrid scintillators for neutron discrimination

    SciTech Connect

    Feng, Patrick L; Cordaro, Joseph G; Anstey, Mitchell R; Morales, Alfredo M

    2015-05-12

    A composition capable of producing a unique scintillation response to neutrons and gamma rays, comprising (i) at least one surfactant; (ii) a polar hydrogen-bonding solvent; and (iii) at least one luminophore. A method including combining at least one surfactant, a polar hydrogen-bonding solvent and at least one luminophore in a scintillation cell under vacuum or an inert atmosphere.

  14. Scintillation detector for carbon-14

    NASA Technical Reports Server (NTRS)

    Knoll, G. F.; Rogers, W. L.

    1971-01-01

    Detector consists of plastic, cylindrical double-wall scintillation cell, which is filled with gas to be analyzed. Thin, inner cell wall is isolated optically from outer (guard) scintillator wall by evaporated-aluminum coating. Bonding technique provides mechanical support to cell wall when device is exposed to high temperatures.

  15. Lithium-loaded liquid scintillators

    DOEpatents

    Dai, Sheng; Kesanli, Banu; Neal, John S.

    2012-05-15

    The invention is directed to a liquid scintillating composition containing (i) one or more non-polar organic solvents; (ii) (lithium-6)-containing nanoparticles having a size of up to 10 nm and surface-capped by hydrophobic molecules; and (iii) one or more fluorophores. The invention is also directed to a liquid scintillator containing the above composition.

  16. Free liquid scintillation counting bibliography

    SciTech Connect

    1996-12-31

    Packard Instrument Company announces the availability of its newly updated Bibliography of Packard Tri-Carb Liquid Scintillation Analyzers. This unique new booklet lists 628 references in which Packard Tri-Carb{reg_sign} liquid scintillation analyzers have been used in life science, environmental, nuclear power and archaeological measurements. All listings are cross-referenced by radionuclide, specific field of study and author.

  17. Development of intrinsic IPT scintillator

    SciTech Connect

    Bross, A.D.

    1989-07-31

    We report on the development of a new polystyrene based plastic scintillator. Optical absorption, fluorescence and light output measurements are presented. Preliminary results of radiation damage effects are also given and compared to the effects on a commercial plastic scintillator, NE 110. 6 refs., 12 figs.

  18. Scintillation light transport and detection

    NASA Astrophysics Data System (ADS)

    Gabriel, T. A.; Lillie, R. A.

    1987-08-01

    The MORSE neutron gamma-ray transport code has been modified to allow for the transport of scintillation light. This modified code is used to analyze the light collection characteristics of a large liquid scintillator module (18 × 18 × 350 cm 3).

  19. Echo scintillation Index affected by cat-eye target's caliber with Cassegrain lens

    NASA Astrophysics Data System (ADS)

    Shan, Cong-miao; Sun, Hua-yan; Zhao, Yan-zhong; Zheng, Yong-hui

    2015-10-01

    The optical aperture of cat-eye target has the aperture averaging effect to the active detecting laser of active laser detection system, which can be used to identify optical targets. The echo scintillation characteristics of the transmission-type lens target have been studied in previous work. Discussing the differences of the echo scintillation characteristics between the transmission-type lens target and Cassegrain lens target can be helpful to targets classified. In this paper, the echo scintillation characteristics of Cat-eye target's caliber with Cassegrain lens has been discussed . By using the flashing theory of spherical wave in the weak atmospheric turbulence, the annular aperture filter function and the Kolmogorov power spectrum, the analytic expression of the scintillation index of the cat-eye target echo of the horizontal path two-way transmission was given when the light is normal incidence. Then the impact of turbulence inner and outer scale to the echo scintillation index and the analytic expression of the echo scintillation index at the receiving aperture were presented using the modified Hill spectrum and the modified Von Karman spectrum. Echo scintillation index shows the tendency of decreasing with the target aperture increases and different ratios of the inner and outer aperture diameter show the different echo scintillation index curves. This conclusion has a certain significance for target recognition in the active laser detection system that can largely determine the target type by largely determining the scope of the cat-eye target which depending on echo scintillation index.

  20. Galileo radio science investigations

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Eshleman, V. R.; Hinson, D. P.; Kliore, A. J.; Lindal, G. F.; Woo, R.; Bird, M. K.; Volland, H.; Edenhoffer, P.; Paetzold, M.

    1992-01-01

    Galileo radio-propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements can be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system provides linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. A highly-stable, dual-frequency, spacecraft radio system is developed that is suitable for simultaneous measurements of all the parameters normally attributed to radio waves.

  1. Magnetohydrodynamic solitons and radio knots in jets

    NASA Technical Reports Server (NTRS)

    Fiedler, R.

    1986-01-01

    Weakly nonlinear surface waves are examined in the context of the beam model for jetlike radio sources. By introducing a finite scale length, viz. the beam radius, geometrical dispersion can act to balance nonlinear wave growth and thereby produce solitons, localized wave packets of stable waveform. A method for obtaining a soliton equation from the MHD equations is presented and then applied to radio knots in jets.

  2. Ionospheric scintillation over Antarctica during the storms of 2010

    NASA Astrophysics Data System (ADS)

    Mitchell, C.; Kinrade, J.; Yin, P.; Smith, N.; Bust, G. S.; Weatherwax, A. T.; Rose, M.; Maxfield, D.; Jarvis, M. J.

    2011-12-01

    At the present time our knowledge of the Earth's ionosphere is dominated by measurements from the Northern Hemisphere. In spite of recent evidence indicating unexplained differences in the ionospheres from the two hemispheres, there is still very little information from the ionosphere over the Southern oceans and the Antarctic. Although the Antarctic is rather sparsely instrumented for ionospheric study, over the past decade increasing numbers of geodetic GPS receivers have been deployed there and more recently several groups have installed specialist GPS equipment for monitoring scintillation. In January 2010 a project commenced that involved the remote deployment of equipment at 81 degrees and 89 degrees South geographic. The objective of the fieldwork was to deploy GPS receiving equipment that would for the first time take simultaneous measurements of total electron content (TEC), plasma velocity and ionospheric scintillation at remote locations across the Antarctic. The paper reports on the results from the first year of data collection throughout three ionospheric storms. The first storm shows a multitude of small-scale ionospheric irregularities over the auroral and polar regions while the high-latitude ionosphere is in partial darkness. TEC is observed entering the polar cap and being broken up into a patch in a region of strong phase scintillation. The second and third storms occur in the deep Antarctic winter and show far less in the way of TEC in the polar cap; nevertheless they show strong evidence of phase scintillation and irregularities observed from multiple instruments across the polar region. The results provide new evidence for the importance of particle precipitation in causing phase scintillation in the polar regions on low-elevation GPS signals. It is anticipated that this will be useful input in forming a realistic statistical model of the irregularities in the high-latitude ionosphere that are responsible for phase and amplitude scintillation on a variety of radio signals.

  3. 75th anniversary of the N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 25 February 2015)

    NASA Astrophysics Data System (ADS)

    2015-06-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) celebrating the 75th anniversary of the N V Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the RAS (IZMIRAN) was held in the IZMIRAN conference hall on 25 February 2015. The agenda of the session announced on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division contained the following reports: (1) Kuznetsov V D (IZMIRAN, Moscow) "N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, and tomorrow"; (2) Gvishiani A D (Geophysical Center, Moscow) "Studies of the terrestrial magnetic field and the network of Russian magnetic laboratories"; (3) Sokoloff D D (Faculty of Physics, Lomonosov Moscow State University, Moscow) "Magnetic dynamo questions"; (4) Petrukovich A A (Space Research Institute, RAS, Moscow) "Some aspects of magnetosphere-ionosphere relations"; (5) Lukin D S (Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region) "Current problems of ionospheric radio wave propagation"; (6) Safargaleev V V (Polar Geophysical Institute, Kola Scientific Center, RAS, Murmansk), Sergienko T I (Swedish Institute of Space Physics (IRF), Sweden), Kozlovskii A E (Sodankyl \\ddot a Geophysical Observatory, Finland), Safargaleev A V (St. Petersburg State University, St. Petersburg), Kotikov A L (St. Petersburg Branch of IZMIRAN, St. Petersburg) "Magnetic and optical measurements and signatures of reconnection in the cusp and vicinity"; (7) Kuznetsov V D (IZMIRAN, Moscow) "Space solar research: achievements and prospects". Papers written on the basis of oral reports 1, 3, 4, 6, and 7 are given below. • N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, tomorrow, V D Kuznetsov Physics-Uspekhi, 2015, Volume 58, Number 6, Pages 590-600 • Problems of magnetic dynamo, D D Sokoloff Physics-Uspekhi, 2015, Volume 58, Number 6, Pages 601-605 • Some aspects of magnetosphere-ionosphere relations, A A Petrukovich, M M Mogilevsky, A A Chernyshov, D R Shklyar Physics-Uspekhi, 2015, Volume 58, Number 6, Pages 606-611 • Magnetic and optical measurements and signatures of reconnection in the cusp and vicinity, V V Safargaleev, T I Sergienko, A V Safargaleev, A L Kotikov Physics-Uspekhi, 2015, Volume 58, Number 6, Pages 612-620 • Space solar research: achievements and prospects, V D Kuznetsov Physics-Uspekhi, 2015, Volume 58, Number 6, Pages 621-629

  4. CONFERENCES AND SYMPOSIA: Seventy years of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation (IZMIRAN) (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 25 November 2009)

    NASA Astrophysics Data System (ADS)

    2010-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 70th anniversary of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) (Troitsk, Moscow region) was held in the conference hall of IZMIRAN on 25 November 2009. The following reports were put on the session agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Gurevich A V (Lebedev Physical Institute RAS, Moscow) "The role of cosmic rays and runaway electron breakdown in atmospheric lightning discharges"; (2) Aleksandrov E B (Ioffe Physical Technical Institute, RAS, St. Petersburg) "Advances in quantum magnetometry for geomagnetic research"; (3) Dorman L I (IZMIRAN, Troitsk, Moscow region, CR & SWC, Israel) "Cosmic ray variations and space weather"; (4) Mareev E A (Institute of Applied Physics, RAS, Nizhnii Novgorod) "Global electric circuit research: achievements and prospects"; (5) Tereshchenko E D, Safargaleev V V (Polar Geophysical Institute, Kola Research Center, RAS, Murmansk) "Geophysical research in Spitsbergen Archipelago: status and prospects"; (6) Gulyaev Yu V, Armand N A, Efimov A I, Matyugov S S, Pavelyev A G, Savich N A, Samoznaev L N, Smirnov V V, Yakovlev O I (Kotel'nikov Institute of Radio Engineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow region) "Results of solar wind and planetary ionosphere research using radiophysical methods"; (7) Kunitsyn V E (Lomonosov Moscow State University, Moscow) "Satellite radio probing and the radio tomography of the ionosphere"; (8) Kuznetsov V D (IZMIRAN, Troitsk, Moscow region) "Space Research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences." Papers based on reports 2-8 are published below. The main contents of report 1 are reproduced in A V Gurevich's review, "Nonlinear effects in the ionosphere" [Phys. Usp. 50 1091 (2007)] and in the paper by A V Gurevich et al., "Nonlinear phenomena in the ionospheric plasma. Effects of cosmic rays and runaway breakdown on thunderstorm discharges" [Phys. Usp. 52 735 (2009)]. • Advances in quantum magnetometry for geomagnetic research , E B Aleksandrov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 487-496 • Cosmic ray variations and space weather, L I Dorman Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 496-503 • Global electric circuit research: achievements and prospects, E A Mareev Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 504-511 • Geophysical research in Spitsbergen Archipelago: status and prospects, V V Safargaleev, E D Tereshchenko Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 511-517 • Results of solar wind and planetary ionosphere research using radiophysical methods, N A Armand, Yu V Gulyaev, A L Gavrik, A I Efimov, S S Matyugov, A G Pavelyev, N A Savich, L N Samoznaev, V M Smirnov, O I Yakovlev Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 517-523 • Satellite radio probing and radio tomography of the ionosphere, V E Kunitsyn, E D Tereshchenko, E S Andreeva, I A Nesterov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 523-528 • Space research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences , V D Kuznetsov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 528-534

  5. Gravitational Wave Search with the Clock Mission

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1997-01-01

    Doppler tracking of distant spacecraft is the only method currently available to search for gravitational waves in the low-frequency (approx. 0.0001-0.1 Hz) band. In this technique the Doppler system measures the relative dimensionless velocity 2(delta)v/c = (delta)f/f(sub o) between the earth and the spacecraft as a function of time, where (delta)f is the frequency perturbation and f(sub o) is the nominal frequency of the radio link. A gravitational wave of amplitude h incident on this system causes small frequency perturbations, of order h in (delta)f/f(sub o), replicated three times in the observed record (Estabrook and Wahlquist 1975). All experiments to date and those planned for the near future involve only 'two-way' Doppler-i.e., uplink signal coherently transponded by the spacecraft with Doppler measured using a frequency standard common to the transmit and receive chains of the ground station. If, as on the proposed Clock Mission, there is an additional frequency standard on the spacecraft and a suitable earth-spacecraft radio system, some noise sources can be isolated and removed from the data (Vessot and Levine 1978). Supposing that the Clock Mission spacecraft is transferred into a suitable interplanetary orbit, I discuss here how the on-board frequency standard could be employed with an all-Ka-band radio system using the very high stability Deep Space Network station DSS 25 being instrumented for Cassini. With this configuration, the Clock Mission could search for gravitational waves at a sensitivity limited by the frequency standards, rather than plasma or tropospheric scintillation effects, whenever the sun-earth-spacecraft angle is greater than 90 degrees.

  6. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  7. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  8. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Schaffer, R. D.; Gorenstein, M. V.

    1981-01-01

    The activities of the Deep Space Network in support of Radio Astronomy Operations during April and May 1981 are reported. Work in progres in support of an experiment selected for use of the DSN by the Radio Astronomy Experiment Selection Panel, Twin Quasi-Stellar Object VLBI, is reported.

  9. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Gulkis, S.

    1981-01-01

    The activities of the Deep Space Network in support of radio astronomy operations during the first quarter of 1981 are reported. Results of the use of a low noise maser are presented, as well as updates in DSN support of experiments sanctioned by the Radio Astronomy Experiment Selection Panel.

  10. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Niell, A. E.

    1981-01-01

    The activities of the DSN in support of Radio and Radar Astronomy Operations during September through December 1980 are described. Emphasis is on a report of an experiment selected for use of the DSN by the radio Astronomy Experiment Selection Panel: that of VLBI observations of the energetic galactic object SS-433.

  11. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  12. Properties of scintillator solutes

    SciTech Connect

    Fluornoy, J.M.

    1998-06-01

    This special report summarizes measurements of the spectroscopic and other properties of the solutes that were used in the preparation of several new liquid scintillators developed at EG and G/Energy Measurements/Santa Barbara Operations (the precursor to Bechtel Nevada/Special Technologies Laboratory) on the radiation-to-light converter program. The data on the individual compounds are presented in a form similar to that used by Prof. Isadore Berlman in his classic handbook of fluorescence spectra. The temporal properties and relative efficiencies of the new scintillators are presented in Table 1, and the efficiencies as a function of wavelength are presented graphically in Figure 1. In addition, there is a descriptive glossary of the abbreviations used herein. Figure 2 illustrates the basic structures of some of the compounds and of the four solvents reported in this summary. The emission spectra generally exhibit more structure than the absorption spectra, with the result that the peak emission wavelength for a given compound may lie several nm away from the wavelength, {lambda}{sub avg}, at the geometric center of the emission spectrum. Therefore, the author has chosen to list absorption peaks, {lambda}{sub max}, and emission {lambda}{sub avg} values in Figures 3--30, as being most illustrative of the differences between the compounds. The compounds, BHTP, BTPB, ADBT, and DPTPB were all developed on this program. P-terphenyl, PBD, and TPB are commercially available blue emitters. C-480 and the other longer-wavelength emitters are laser dyes available commercially from Exciton Corporation. 1 ref., 30 figs.

  13. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, W.W.

    1991-05-14

    An improved radiation detector containing a crystalline mixture of LaF[sub 3] and CeF[sub 3] as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF[sub 3] and the remainder CeF[sub 3] have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography. 2 figures.

  14. Scintillator materials containing lanthanum fluorides

    DOEpatents

    Moses, William W.

    1991-01-01

    An improved radiation detector containing a crystalline mixture of LaF.sub.3 and CeF.sub.3 as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF.sub.3 and the remainder CeF.sub.3 have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography.

  15. A multi-instrument case study of high-latitude ionospheric GNSS scintillation due to drifting plasma irregularities

    NASA Astrophysics Data System (ADS)

    van der Meeren, C.; Oksavik, K.; Moen, J. I.; Romano, V.

    2013-12-01

    For this study, GPS receiver scintillation and Total Electron Content (TEC) data from high-latitude locations on Svalbard have been combined with several other data sets, including the EISCAT Svalbard Radar (ESR) and allsky cameras, to perform a multi-instrument case study of high-latitude GPS ionospheric scintillations in relation to drifting plasma irregularities at night over Svalbard on 31 October 2011. Scintillations are rapid amplitude and phase fluctuations of electromagnetic signals. GNSS-based systems may be disturbed by ionospheric plasma irregularities and structures such as plasma patches (areas of enhanced electron density in the polar cap) and plasma gradients. When the GNSS radio signals propagate through such areas, in particular gradients, the signals experience scintillations that at best increases positioning errors and at worst may break the receiver's signal lock, potentially resulting in the GNSS receiver losing track of its position. Due to the importance of many GNSS applications, it is desirable to study the scintillation environment to understand the limitations of the GNSS systems. We find scintillation mainly localised to plasma gradients, with predominantly phase scintillation at the leading edge of patches and both phase and amplitude scintillation at the trailing edge. A single edge may also contain different scintillation types at different locations.

  16. VHF scintillations as a diagnostic tool for the study of ionospheric irregularities

    NASA Astrophysics Data System (ADS)

    Ahmad, Altaf; Ahmad, M. M.; Pathan, B. M.

    1994-01-01

    In this paper we present the results of observations of the scintillations of radio beacon on 250.351 MHz from geostationary satellite FLEETSAT (73 deg E) recorded at Bombay on April 9-10, 1992 during night hours. The scintillation index, S(sub 4), is used to describe the strength of the scintillations. The variation of scintillation index with local time shows a maxima of 0.589 at 02:55 India Standard Time (IST). This scintillation activity is linked with the spread F-irregularities. A brief description of the scintillation theories like phase screen theory and theory for weak scintillations -- Rytov solution is given. These theories provide an integral measure of the fluctuations in terms of phase and amplitude fluctuations imposed on VHF signals while traversing through the ionosphere. Power spectrum analysis for the log-amplitude and phase departure and cross spectrum between them have also been carried out. Using spectral index p = 1, we have shown that the scale sizes for the ionospheric irregularities are greater than 1 km.

  17. Ionospheric irregularities during a substorm event: Observations of ULF pulsations and GPS scintillations

    NASA Astrophysics Data System (ADS)

    Kim, H.; Clauer, C. R.; Deshpande, K.; Lessard, M. R.; Weatherwax, A. T.; Bust, G. S.; Crowley, G.; Humphreys, T. E.

    2014-07-01

    Plasma instability in the ionosphere is often observed as disturbances and distortions of the amplitude and phase of the radio signals, which are known as ionospheric scintillations. High-latitude ionospheric plasma, closely connected to the solar wind and magnetospheric dynamics, produces very dynamic and short-lived Global Positioning System (GPS) scintillations, making it challenging to characterize them. It is observed that scintillations in the high-latitude ionosphere occur frequently during geomagnetic storms and substorms. In addition, it is well known that Ultra Low Frequency (ULF) pulsations (Pi2 and Pi1B) are closely associated with substorm activity. This study reports simultaneous observations of Pi2 and Pi1B pulsations and GPS phase scintillations during a substorm using a newly designed Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) installed at the South Pole. The magnetic field and GPS data from the instruments appear to be associated in terms of their temporal and spectral features. Moreover, the scintillation events were observed near the auroral latitudes where Pi1B pulsations are commonly detected. The temporal, spectral and spatial association between the scintillation and geomagnetic pulsation events suggests that the magnetic field perturbations and enhanced electric fields caused by substorm currents could contribute to the creation of plasma instability in the high-latitude ionosphere, leading to GPS scintillations.

  18. Scintillator fiber optic long counter

    DOEpatents

    McCollum, Tom (Sterling, VA); Spector, Garry B. (Fairfax, VA)

    1994-01-01

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

  19. Scintillator fiber optic long counter

    DOEpatents

    McCollum, T.; Spector, G.B.

    1994-03-29

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  20. Ionospheric Irregularities at High Latitudes During Geomagnetic Storms and Substorms: Simultaneous Observations of Magnetic Field Perturbations and GPS Scintillations

    NASA Astrophysics Data System (ADS)

    Kim, H.; Deshpande, K.; Clauer, C. R.; Bust, G. S.; Crowley, G.; Humphreys, T. E.; Kim, L.; Lessard, M.; Weatherwax, A. T.; Zachariah, T. P.

    2012-12-01

    Plasma instability in the ionosphere is often observed as disturbance and distortion of the amplitude and phase of radio signals, which are known as ionospheric scintillations. High-latitude ionospheric plasma, closely connected to solar wind and magnetospheric dynamics, produce very dynamic and short-lived GPS scintillations, making it challenging to characterize them. This study reports simultaneous observations of geomagnetic pulsations and GPS signal scintillations during geomagnetic storms and substorms using a newly designed Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) installed at the South Pole. A statistical investigation of the AAL-PIP data recorded from January through May 2012 is presented to study local time distribution of scintillation events and a correlation between GPS scintillation and magnetic field perturbations. This report discusses a possible connection between magnetic field perturbations associated with the ionospheric currents and the creation of plasma instability by examining relative contribution of storm/substorm activity to ionospheric irregularities.