Science.gov

Sample records for radio weak gravitational

  1. Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre

    2012-03-01

    This chapter reviews the data mining methods recently developed to solve standard data problems in weak gravitational lensing. We detail the different steps of the weak lensing data analysis along with the different techniques dedicated to these applications. An overview of the different techniques currently used will be given along with future prospects. Until about 30 years ago, astronomers thought that the Universe was composed almost entirely of ordinary matter: protons, neutrons, electrons, and atoms. The field of weak lensing has been motivated by the observations made in the last decades showing that visible matter represents only about 4-5% of the Universe (see Figure 14.1). Currently, the majority of the Universe is thought to be dark, that is, does not emit electromagnetic radiation. The Universe is thought to be mostly composed of an invisible, pressure less matter - potentially relic from higher energy theories - called "dark matter" (20-21%) and by an even more mysterious term, described in Einstein equations as a vacuum energy density, called "dark energy" (70%). This "dark" Universe is not well described or even understood; its presence is inferred indirectly from its gravitational effects, both on the motions of astronomical objects and on light propagation. So this point could be the next breakthrough in cosmology. Today's cosmology is based on a cosmological model that contains various parameters that need to be determined precisely, such as the matter density parameter Omega_m or the dark energy density parameter Omega_lambda. Weak gravitational lensing is believed to be the most promising tool to understand the nature of dark matter and to constrain the cosmological parameters used to describe the Universe because it provides a method to directly map the distribution of dark matter (see [1,6,60,63,70]). From this dark matter distribution, the nature of dark matter can be better understood and better constraints can be placed on dark energy

  2. Weak gravitational lensing with the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Brown, M.; Bacon, D.; Camera, S.; Harrison, I.; Joachimi, B.; Metcalf, R. B.; Pourtsidou, A.; Takahashi, K.; Zuntz, J.; Abdalla, F. B.; Bridle, S.; Jarvis, M.; Kitching, T.; Miller, L.; Patel, P.

    2015-04-01

    We investigate the capabilities of various stages of the SKA to perform world-leading weak gravitational lensing surveys. We outline a way forward to develop the tools needed for pursuing weak lensing in the radio band. We identify the key analysis challenges and the key pathfinder experiments that will allow us to address them in the run up to the SKA. We identify and summarize the unique and potentially very powerful aspects of radio weak lensing surveys, facilitated by the SKA, that can solve major challenges in the field of weak lensing. These include the use of polarization and rotational velocity information to control intrinsic alignments, and the new area of weak lensing using intensity mapping experiments. We show how the SKA lensing surveys will both complement and enhance corresponding efforts in the optical wavebands through cross-correlation techniques and by way of extending the reach of weak lensing to high redshift.

  3. Baryons, neutrinos, feedback and weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Harnois-Déraps, Joachim; van Waerbeke, Ludovic; Viola, Massimo; Heymans, Catherine

    2015-06-01

    The effect of baryonic feedback on the dark matter mass distribution is generally considered to be a nuisance to weak gravitational lensing. Measurements of cosmological parameters are affected as feedback alters the cosmic shear signal on angular scales smaller than a few arcminutes. Recent progress on the numerical modelling of baryon physics has shown that this effect could be so large that, rather than being a nuisance, the effect can be constrained with current weak lensing surveys, hence providing an alternative astrophysical insight on one of the most challenging questions of galaxy formation. In order to perform our analysis, we construct an analytic fitting formula that describes the effect of the baryons on the mass power spectrum. This fitting formula is based on three scenarios of the OverWhelmingly Large hydrodynamical simulations. It is specifically calibrated for z < 1.5, where it models the simulations to an accuracy that is better than 2 per cent for scales k < 10 h Mpc-1 and better than 5 per cent for 10 < k < 100 h Mpc-1. Equipped with this precise tool, this paper presents the first constraint on baryonic feedback models using gravitational lensing data, from the Canada France Hawaii Telescope Lensing Survey (CFHTLenS). In this analysis, we show that the effect of neutrino mass on the mass power spectrum is degenerate with the baryonic feedback at small angular scales and cannot be ignored. Assuming a cosmology precision fixed by WMAP9, we find that a universe with massless neutrinos is rejected by the CFHTLenS lensing data with 85-98 per cent confidence, depending on the baryon feedback model. Some combinations of feedback and non-zero neutrino masses are also disfavoured by the data, although it is not yet possible to isolate a unique neutrino mass and feedback model. Our study shows that ongoing weak gravitational lensing surveys (KiDS, HSC and DES) will offer a unique opportunity to probe the physics of baryons at galactic scales, in

  4. Atomic Inference from Weak Gravitational Lensing Data

    SciTech Connect

    Marshall, Phil; /KIPAC, Menlo Park

    2005-12-14

    We present a novel approach to reconstructing the projected mass distribution from the sparse and noisy weak gravitational lensing shear data. The reconstructions are regularized via the knowledge gained from numerical simulations of clusters, with trial mass distributions constructed from n NFW profile ellipsoidal components. The parameters of these ''atoms'' are distributed a priori as in the simulated clusters. Sampling the mass distributions from the atom parameter probability density function allows estimates of the properties of the mass distribution to be generated, with error bars. The appropriate number of atoms is inferred from the data itself via the Bayesian evidence, and is typically found to be small, reecting the quality of the data. Ensemble average mass maps are found to be robust to the details of the noise realization, and succeed in recovering the demonstration input mass distribution (from a realistic simulated cluster) over a wide range of scales. As an application of such a reliable mapping algorithm, we comment on the residuals of the reconstruction and the implications for predicting convergence and shear at specific points on the sky.

  5. Weber's gravitational force as static weak field approximation

    NASA Astrophysics Data System (ADS)

    Tiandho, Yuant

    2016-02-01

    Weber's gravitational force (WGF) is one of gravitational model that can accommodate a non-static system because it depends not only on the distance but also on the velocity and the acceleration. Unlike Newton's law of gravitation, WGF can predict the anomalous of Mercury and gravitational bending of light near massive object very well. Then, some researchers use WGF as an alternative model of gravitation and propose a new mechanics theory namely the relational mechanics theory. However, currently we have known that the theory of general relativity which proposed by Einstein can explain gravity with very accurate. Through the static weak field approximation for the non-relativistic object, we also have known that the theory of general relativity will reduce to Newton's law of gravity. In this work, we expand the static weak field approximation that compatible with relativistic object and we obtain a force equation which correspond to WGF. Therefore, WGF is more precise than Newton's gravitational law. The static-weak gravitational field that we used is a solution of the Einstein's equation in the vacuum that satisfy the linear field approximation. The expression of WGF with ξ = 1 and satisfy the requirement of energy conservation are obtained after resolving the geodesic equation. By this result, we can conclude that WGF can be derived from the general relativity.

  6. Gravitational anomaly and Hawking radiation near a weakly isolated horizon

    SciTech Connect

    Wu Xiaoning; Huang Chaoguang; Sun Jiarui

    2008-06-15

    Based on the idea of the work by Wilczek and his collaborators, we consider the gravitational anomaly near a weakly isolated horizon. We find that there exists a universal choice of tortoise coordinate for any weakly isolated horizon. Under this coordinate, the leading behavior of a quite arbitrary scalar field near a horizon is a 2-dimensional chiral scalar field. This means we can extend the idea of Wilczek and his collaborators to more general cases and show the relation between gravitational anomaly and Hawking radiation is a universal property of a black hole horizon.

  7. Gravitational anomaly and Hawking radiation near a weakly isolated horizon

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoning; Huang, Chao-Guang; Sun, Jia-Rui

    2008-06-01

    Based on the idea of the work by Wilczek and his collaborators, we consider the gravitational anomaly near a weakly isolated horizon. We find that there exists a universal choice of tortoise coordinate for any weakly isolated horizon. Under this coordinate, the leading behavior of a quite arbitrary scalar field near a horizon is a 2-dimensional chiral scalar field. This means we can extend the idea of Wilczek and his collaborators to more general cases and show the relation between gravitational anomaly and Hawking radiation is a universal property of a black hole horizon.

  8. Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas

    NASA Astrophysics Data System (ADS)

    Zhu, Ding Yu; Shen, Jian Qi

    2016-03-01

    The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth’s gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.

  9. Weak Gravitational Wave and Casimir Energy of a Scalar Field

    NASA Astrophysics Data System (ADS)

    Tavakoli, F.; Pirmoradian, R.; Parsabod, I.

    2016-09-01

    In this paper, we calculate the effect of a weak gravitational field on the Casimir force between two ideal plates subjected to a massless minimally coupled field. It is the aim of this work to study the Casimir energy under a weak perturbation of gravity. Moreover, the fluctuations of the stress-energy tensor for a scalar field in de Sitter space-time are computed as well.

  10. The general theory of secondary weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Clarkson, Chris

    2015-09-01

    Weak gravitational lensing is normally assumed to have only two principle effects: a magnification of a source and a distortion of the sources shape in the form of a shear. However, further distortions are actually present owing to changes in the gravitational field across the scale of the ray bundle of light propagating to us, resulting in the familiar arcs in lensed images. This is normally called the flexion, and is approximated by Taylor expanding the shear and magnification across the image plane. However, the physical origin of this effect arises from higher-order corrections in the geodesic deviation equation governing the gravitational force between neighbouring geodesics— so involves derivatives of the Riemann tensor. We show that integrating the second-order geodesic deviation equation results in a `Hessian map' for gravitational lensing, which is a higher-order addition to the Jacobi map. We derive the general form of the Hessian map in an arbitrary spacetime paying particular attention to the separate effects of local Ricci versus non-local Weyl curvature. We then specialise to the case of a perturbed FLRW model, and give the general form of the Hessian for the first time. This has a host of new contributions which could in principle be used as tests for modified gravity.

  11. Testing Einstein's weak equivalence principle with gravitational waves

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Feng; Gao, He; Wei, Jun-Jie; Mészáros, Peter; Zhang, Bing; Dai, Zi-Gao; Zhang, Shuang-Nan; Zhu, Zong-Hong

    2016-07-01

    A conservative constraint on Einstein's weak equivalence principle (WEP) can be obtained under the assumption that the observed time delay between correlated particles from astronomical sources is dominated by the gravitational fields through which they move. Current limits on the WEP are mainly based on the observed time delays of photons with different energies. It is highly desirable to develop more accurate tests that include the gravitational wave (GW) sector. The detection by the advanced LIGO/VIRGO systems of gravitational waves will provide attractive candidates for constraining the WEP, extending the tests to gravitational interactions with potentially higher accuracy. Considering the capabilities of the advanced LIGO/VIRGO network and the source direction uncertainty, we show that the joint detection of GWs and electromagnetic signals could probe the WEP to an accuracy down to 10-10 , which is one order of magnitude tighter than previous limits, and 7 orders of magnitude tighter than the multimessenger (photons and neutrinos) results by supernova 1987A.

  12. Coincidently Searching for Gravitational Waves and Low Frequency Radio Transients

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Yancey, C.; Shawhan, P. S.; Cutchin, S.; Simonetti, J. H.; Bear, B.; Tsai, J.

    2014-01-01

    The transient sky has become an important area of astrophysical study, especially with the appearance of recent fast transients, but little is known about the sources of these transients. One possible approach which can shed light on this area is multi-messenger astronomy using gravitational waves and prompt emission meter-wavelength radio to observe fast transients. This is made possible with gravitational-wave detectors such as LIGO, VIRGO, and GEO (IndIGO and KAGRA proposed or under construction) and phased-array radio-telescopes such LWA, LOFAR, LoFASM, and MWA. This talk presents a method for coincidence of gravitational wave and meter-wavelength radio observations to enable multi-messenger astronomy and discusses the optimization of gravitational-wave and radio sensitivities to attain effective combined observational sensitivities. It is shown that coincidence provides a 52.9% increase to the sensitivity distance for LIGO and a 200% increase to the SNR of radio arrays for particular cases.

  13. Gravitational force in weakly correlated particle spatial distributions.

    PubMed

    Gabrielli, Andrea; Masucci, Adolfo Paolo; Labini, Francesco Sylos

    2004-03-01

    We study the statistics of the gravitational (Newtonian) force in a particular class of weakly correlated spatial distributions of pointlike and unitary mass particles generated by the so-called Gauss-Poisson point processes. In particular we extend to these distributions the analysis that Chandrasekhar introduced for purely Poisson processes. In this way we can find the explicit asymptotic behavior of the probability density function of the force for both large and small values of the field as a generalization of the Holtzmark statistics. In particular, we show how the modifications at large fields depend on the density correlations introduced at small scales. The validity of the introduced approximations is positively tested through a direct comparison with the analysis of the statistics of the gravitational force in numerical simulations of Gauss-Poisson processes. PMID:15089268

  14. Curved Radio Spectra of Weak Cluster Shocks

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Ryu, Dongsu

    2015-08-01

    In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}˜ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}˜ 3. These shocks produce curved radio spectra that steepen gradually over (0.1-10){ν }{br} with a break frequency {ν }{br}˜ 1 GHz if the duration of electron acceleration is ˜60-80 Myr. However, the abrupt increase in the spectral index above ˜1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.

  15. Curved Radio Spectra of Weak Cluster Shocks

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Ryu, Dongsu

    2015-08-01

    In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}∼ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}∼ 3. These shocks produce curved radio spectra that steepen gradually over (0.1–10){ν }{br} with a break frequency {ν }{br}∼ 1 GHz if the duration of electron acceleration is ∼60–80 Myr. However, the abrupt increase in the spectral index above ∼1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.

  16. Tests of gravitational symmetries with radio pulsars

    NASA Astrophysics Data System (ADS)

    Shao, LiJing; Wex, Norbert

    2016-09-01

    Symmetries play important roles in modern theories of physical laws. In this paper, we review several experimental tests of important symmetries associated with the gravitational interaction, including the universality of free fall for self-gravitating bodies, time-shift symmetry in the gravitational constant, local position invariance and local Lorentz invariance of gravity, and spacetime translational symmetries. Recent experimental explorations for post-Newtonian gravity are discussed, of which, those from pulsar astronomy are highlighted. All of these tests, of very different aspects of gravity theories, at very different length scales, favor to very high precision the predictions of the strong equivalence principle (SEP) and, in particular, general relativity which embodies SEP completely. As the founding principles of gravity, these symmetries are motivated to be promoted to even stricter tests in future.

  17. Weak Gravitational Lensing from Regular Bardeen Black Holes

    NASA Astrophysics Data System (ADS)

    Ghaffarnejad, Hossein; niad, Hassan

    2016-03-01

    In this article we study weak gravitational lensing of regular Bardeen black hole which has scalar charge g and mass m. We investigate the angular position and magnification of non-relativistic images in two cases depending on the presence or absence of photon sphere. Defining dimensionless charge parameter q= {g}/{2m} we seek to disappear photon sphere in the case of |q|>{24√5}/{125} for which the space time metric encounters strongly with naked singularities. We specify the basic parameters of lensing in terms of scalar charge by using the perturbative method and found that the parity of images is different in two cases: (a) The strongly naked singularities is present in the space time. (b) singularity of space time is weak or is eliminated (the black hole lens).

  18. Aspects of electrostatics in a weak gravitational field

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Hamsa; Padmanabhan, T.

    2010-05-01

    Several features of electrostatics of point charged particles in a weak, homogeneous, gravitational field are discussed using the Rindler metric to model the gravitational field. Some previously known results are obtained by simpler and more transparent procedures and are interpreted in an intuitive manner. Specifically: (a) We discuss possible definitions of the electric field in curved spacetime (and noninertial frames), argue in favour of a specific definition for the electric field and discuss its properties. (b) We show that the electrostatic potential of a charge at rest in the Rindler frame (which is known and is usually expressed as a complicated function of the coordinates) is expressible as A 0 = q/ λ where λ is the affine parameter distance along the null geodesic from the charge to the field point. (c) This relates well with the result that the electric field lines of a charge coincide with the null geodesics; that is, both light and the electric field lines ‘bend’ in the same manner in a weak gravitational field. We provide a simple proof for this result as well as for the fact that the null geodesics (and field lines) are circles in space. (d) We obtain the sum of the electrostatic forces exerted by one charge on another in the Rindler frame and discuss its interpretation. In particular, we compare the results in the Rindler frame and in the inertial frame and discuss their consistency. (e) We show how a purely electrostatic term in the Rindler frame appears as a radiation term in the inertial frame. (In part, this arises because charges at rest in a weak gravitational field possess additional weight due to their electrostatic energy. This weight is proportional to the acceleration and falls inversely with distance—which are the usual characteristics of a radiation field.) (f) We also interpret the origin of the radiation reaction term by extending our approach to include a slowly varying acceleration. Many of these results might have possible

  19. X-Shaped Radio Galaxies and the Gravitational Wave Background

    NASA Astrophysics Data System (ADS)

    Hall Roberts, David; Saripalli, Lakshmi; Subrahmanyan, Ravi

    2015-08-01

    Coalescence of super massive black holes (SMBH's) in galactic mergers is potentially the dominant contributor to the low frequency gravitational wave background (GWB). It was proposed by Merritt and Ekers (2002) that X-shaped radio galaxies are signposts of such coalescences, and that their abundance might be used to predict the magnitude of the gravitational wave background. In Roberts et al. (2015) we presented radio images of all 52 X-shaped radio source candidates out of the sample of 100 selected by Cheung (2007) for which archival VLA data were available. These images indicate that at most 21% of the candidates might be genuine X-shaped radio sources that were formed by a restarting of beams in a new direction following a major merger. This suggests that fewer than 1.3% of extended radio sources appear to be candidates for genuine axis reorientations, much smaller than the 7% suggested by Leahy & Parma (1992). Thus the associated gravitational wave background may be substantially smaller than previous estimates. These results can be used to normalize detailed calculations of the SMBH coalescence rate and the GWB.

  20. Weak shear study of galaxy clusters by simulated gravitational lensing

    NASA Astrophysics Data System (ADS)

    Coss, David

    Gravitational lensing has been simulated for numerical galaxy clusters in order to characterize the effects of substructure and shape variations of dark matter halos on the weak lensing properties of clusters. In order to analyze realistic galaxy clusters, 6 high-resolution Adaptive Refinement Tree N-body simulations of clusters with hydrodynamics are used, in addition to a simulation of one group undergoing a merger. For each cluster, the three-dimensional particle distribution is projected perpendicular to three orthogonal lines of sight, providing 21 projected mass density maps. The clusters have representative concentration and mass values for clusters in the concordance cosmology. Two gravitational lensing simulation methods are presented. In the first method, direct integration is used to calculate deflection angles. To overcome computational constraints inherent in this method, a distributed computing project was created for parallel computation. In addition to its use in gravitational lensing simulation, a description of the setup and function of this distributed computing project is presented as an alternative to in-house computing clusters, which has the added benefit of public enrollment in science and low cost. In the second method, shear maps are created using a fast Fourier transform method. From these shear maps, the effects of substructure and shape variation are related to observational gravitational lensing studies. Average shear in regions less than and greater than half of the virial radius demonstrates distinct dispersion, varying by 24% from the mean among the 21 maps. We estimate the numerical error in shear calculations to be of the order of 5%. Therefore, this shear dispersion is a reliable consequence of shape dispersion, correlating most strongly with the ratio of smallest-to-largest principal axis lengths of a cluster isodensity shell. On the other hand, image ellipticities, which are of great importance in mass reconstruction, are shown

  1. Discreteness of space from GUP in a weak gravitational field

    NASA Astrophysics Data System (ADS)

    Deb, Soumen; Das, Saurya; Vagenas, Elias C.

    2016-04-01

    Quantum gravity effects modify the Heisenberg's uncertainty principle to a generalized uncertainty principle (GUP). Earlier work showed that the GUP-induced corrections to the Schrödinger equation, when applied to a non-relativistic particle in a one-dimensional box, led to the quantization of length. Similarly, corrections to the Klein-Gordon and the Dirac equations, gave rise to length, area and volume quantizations. These results suggest a fundamental granular structure of space. In this work, it is investigated how spacetime curvature and gravity might influence this discreteness of space. In particular, by adding a weak gravitational background field to the above three quantum equations, it is shown that quantization of lengths, areas and volumes continue to hold. However, it should be noted that the nature of this new quantization is quite complex and under proper limits, it reduces to cases without gravity. These results suggest that quantum gravity effects are universal.

  2. Gravitational failure of sea cliffs in weakly lithified sediment

    USGS Publications Warehouse

    Hampton, M.A.

    2002-01-01

    Gravitational failure of sea cliffs eroded into weakly lithified sediment at several sites in California involves episodic stress-release fracturing and cantilevered block falls. The principal variables that influence the gravitational stability are tensional stresses generated during the release of horizontal confining stress and weakening of the sediment with increased saturation levels. Individual failures typically comprise less than a cubic meter of sediment, but large areas of a cliff face can be affected by sustained instability over a period of several days. Typically, only the outer meter or so of sediment is removed during a failure episode. In-place sediment saturation levels vary over time and space, generally being higher during the rainy season but moderate to high year-round. Laboratory direct-shear tests show that sediment cohesion decreases abruptly with increasing saturation level; the decrease is similar for all tested sediment if the cohesion is normalized by the maximum, dry-sediment cohesion. Large failures that extend over most or all of the height of the sea cliff are uncommon, but a few large wedge-shaped failures sometimes occur, as does separation of large blocks at sea cliff-gully intersections.

  3. Karhunen-Loeve Analysis for Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Vanderplas, Jacob T.

    In the past decade, weak gravitational lensing has become an important tool in the study of the universe at the largest scale, giving insights into the distribution of dark matter, the expansion of the universe, and the nature of dark energy. This thesis research explores several applications of Karhunen-Loève (KL) analysis to speed and improve the comparison of weak lensing shear catalogs to theory in order to constrain cosmological parameters in current and future lensing surveys. This work addresses three related aspects of weak lensing analysis: Three-dimensional Tomographic Mapping: (Based on work published in Vanderplas et al 2011) We explore a new fast approach to three-dimensional mass mapping in weak lensing surveys. The KL approach uses a KL-based filtering of the shear signal to reconstruct mass structures on the line-of-sight, and provides a unified framework to evaluate the efficacy of linear reconstruction techniques. We find that the KL-based filtering leads to near-optimal angular resolution, and computation times which are faster than previous approaches. We also use the KL formalism to show that linear non-parametric reconstruction methods are fundamentally limited in their ability to resolve lens redshifts. Shear Peak Statistics with Incomplete Data: (Based on work published in Vanderplas et al 2012) We explore the use of KL eigenmodes for interpolation across masked regions in observed shear maps. Mass mapping is an inherently non-local calculation, meaning gaps in the data can have a significant effect on the properties of the derived mass map. Our KL mapping procedure leads to improvements in the recovery of detailed statistics of peaks in the mass map, which holds promise of improved cosmological constraints based on such studies. Two-point parameter estimation with KL modes: The power spectrum of the observed shear can yield powerful cosmological constraints. Incomplete survey sky coverage, however, can lead to mixing of power between

  4. New method for recovering weak coherent radio frequency signals

    SciTech Connect

    Goree, J.

    1985-03-01

    A single radio frequency lock-in amplifier reduces broadband noise, but not rf pickup of the same frequency as the signal. If this pickup noise is at least 14 dB stronger than broadband noise, after both have passed through the lock-in, then the signal-to-noise ratio can be improved by applying the lock-in output to a second, low frequency lock-in which is synchronized to an independent modulation of the signal. Weak coherent radio frequency signals buried in both rf pickup and broadband nise can be recovered by using this double lock-in method, as demonstrated in a plasma diagnostics experiment.

  5. Searching for Correlated Radio Transients & Gravitational Wave Bursts

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Shawhan, P. S.; Yancey, C.; Cutchin, S.; Simonetti, J. H.; Bear, B.; Tsai, J.

    2013-01-01

    We will discuss an ongoing multi-messenger search for transient radio pulses and gravitational wave bursts. This work is being conducted jointly by the Long Wavelength Array (LWA) and the LIGO Scientific Collaboration (LSC). A variety of astrophysical sources can produce simultaneous emission of gravitational waves and coherent low-frequency electromagnetic radiation. The primary common source motivating this work is the merger of neutron star binaries for which the LWA and LSC instruments have comparable sensitivity. Additional common sources include supernovae, long timescale GRBs and cosmic string cusp events. Data taken by both instruments can be compared to search for correlated signals. Identification of correlated signals can be used to increase the sensitivity of both instruments. We will summarize the coincident observations which have already been conducted and outline plans for future work. We will describe the process being used for synthesizing these data set and present preliminary results.

  6. Upper limits on gravitational wave emission from 78 radio pulsars

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Ganezer, K. S.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Nocera, F.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; de La Jordana, L. Sancho; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Sazonov, A.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van Putten, M.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.; Kramer, M.; Lyne, A. G.

    2007-08-01

    We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO 600 gravitational wave detectors. The data from both runs have been combined coherently to maximize sensitivity. For the first time, pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits. Our upper limits are therefore the first measured for 56 of these pulsars. For the remaining 22, our results improve on previous upper limits by up to a factor of 10. For example, our tightest upper limit on the gravitational strain is 2.6×10-25 for PSR J1603-7202, and the equatorial ellipticity of PSR J2124 3358 is less than 10-6. Furthermore, our strain upper limit for the Crab pulsar is only 2.2 times greater than the fiducial spin-down limit.

  7. Polarization as an indicator of intrinsic alignment in radio weak lensing

    NASA Astrophysics Data System (ADS)

    Brown, Michael L.; Battye, Richard A.

    2011-01-01

    We propose a new technique for weak gravitational lensing in the radio band making use of polarization information. Since the orientation of a galaxy’s polarized emission is both unaffected by lensing and is related to the galaxy’s intrinsic orientation, it effectively provides information on the unlensed galaxy position angle. We derive a new weak-lensing estimator, which exploits this effect and makes full use of both the observed galaxy shapes and the estimates of the intrinsic position angles as provided by polarization. Our method has the potential both to reduce the effects of shot noise and to reduce to negligible levels, in a model-independent way, all effects of intrinsic galaxy alignments. We test our technique on simulated weak-lensing skies, including an intrinsic alignment contaminant consistent with recent observations, in three overlapping redshift bins. Adopting a standard weak-lensing analysis and ignoring intrinsic alignments results in biases of 5-10 per cent in the recovered power spectra and cosmological parameters. Applying our new estimator to one-tenth the number of galaxies used for the standard case, we recover both power spectra and the input cosmology with similar precision and with negligible residual bias. This remains true even in the presence of a substantial (astrophysical) scatter in the relationship between the observed orientation of the polarized emission and the intrinsic orientation. Assuming a reasonable polarization fraction for star-forming galaxies, and no cosmological conspiracy in the relationship between polarization direction and intrinsic morphology, our estimator should prove a valuable tool for weak-lensing analyses of forthcoming radio surveys, in particular, deep wide-field surveys with e-MERLIN, MeerKAT and ASKAP, and ultimately, definitive radio lensing surveys with the SKA.

  8. Weak gravitational lensing systematic errors in the dark energy survey

    NASA Astrophysics Data System (ADS)

    Plazas, Andres Alejandro

    Dark energy is one of the most important unsolved problems in modern Physics, and weak gravitational lensing (WL) by mass structures along the line of sight ("cosmic shear") is a promising technique to learn more about its nature. However, WL is subject to numerous systematic errors which induce biases in measured cosmological parameters and prevent the development of its full potential. In this thesis, we advance the understanding of WL systematics in the context of the Dark Energy Survey (DES). We develop a testing suite to assess the performance of the shapelet-based DES WL measurement pipeline. We determine that the measurement bias of the parameters of our Point Spread Function (PSF) model scales as (S/N )-2, implying that a PSF S/N > 75 is needed to satisfy DES requirements. PSF anisotropy suppression also satisfies the requirements for source galaxies with S/N ≳ 45. For low-noise, marginally-resolved exponential galaxies, the shear calibration errors are up to about 0.06% (for shear values ≲ 0.075). Galaxies with S/N ≳ 75 present about 1% errors, sufficient for first-year DES data. However, more work is needed to satisfy full-area DES requirements, especially in the high-noise regime. We then implement tests to validate the high accuracy of the map between pixel coordinates and sky coordinates (astrometric solution), which is crucial to detect the required number of galaxies for WL in stacked images. We also study the effect of atmospheric dispersion on cosmic shear experiments such as DES and the Large Synoptic Survey Telescope (LSST) in the four griz bands. For DES (LSST), we find systematics in the g and r (g, r, and i) bands that are larger than required. We find that a simple linear correction in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r ( i) band for DES (LSST). More complex corrections will likely reduce the systematic cosmic-shear errors below statistical errors for LSST r band

  9. The Relativistic Quantized Force: Newton's Second Law, Inertial and Gravitational; Generalization of Schwarzschild Metric for Strong and Weak Gravitational Field

    NASA Astrophysics Data System (ADS)

    Almosallami, Azzam

    2011-03-01

    In this paper we derived the relativistic Quantized force, where the force given as a function of frequency [1]. Where, in this paper we defined the relativistic momentum as a function of frequency equivalent to the energy held by a body, and time, and then the quantized force is given as the first derivative of the momentum with respect to time. Subsequently we introduce in section one Newton's second law as it is relativistic quantized, and in section two we introduce the relativistic quantized inertial force, and then the relativistic quantized gravitational force, and the quantized gravitational time dilation. At the end we shall generalize the Schwartzschild metric to describe the weak and strong gravitational field.

  10. Deep HST imaging of distant weak radio and field galaxies

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Gordon, J. M.; Pascarelle, S. M.; Schmidtke, P. C.; Keel, W. C.; Burkey, J. M.; Dunlop, J. S.

    1994-01-01

    We present deep Hubble Space Telescope (HST) Wide-Field Camera (WFC) V- and I-band images of three distant weak radio galaxies with z = 0.311-2.390 and seven field galaxies with z = 0.131-0.58. The images were deconvolved with both the Lucy and multiresolution CLEAN methods, which yield a restoring Full Width at Half Maximum (FWHM) of less than or equal to 0.2 sec, (nearly) preserve photons and signal-to-noise ratio at low spatial frequencies, and produce consistent light profiles down to our 2 sigma surface brightness sensitivity limit of V approximately 27.2 and I approximately 25.9 mag/sq arcsec. Multi-component image modeling was used to provide deconvolution-independent estimates of structural parameters for symmetric galaxies. We present 12-band (m(sub 2750) UBVRIgriJHK) photometry for a subset of the galaxies and bootstrap the unknown FOC/48 zero point at 2750 A in three independent ways (yielding m(sub 2750) = 21.34 +/- 0.09 mag for 1.0 e(-)/s). Two radio galaxies with z = 0.311 and 0.528, as well as one field galaxy with z = 0.58, have the colors and spectra of early-type galaxies, and a(exp 1/4)-like light profiles in the HST images. The two at z greater than 0.5 have little or no color gradients in V - I and are likely giant ellipticals, while the z = 0.311 radio galaxy has a dim exponential disk and is likely an S0. Six of the seven field galaxies have light profiles that indicate (small) inner bulges following a(exp 1/4) laws and outer exponential disks, both with little or no color gradients. These are (early-type) spiral galaxies with z = 0.131-0.528. About half have faint companions or bars. One shows lumpy structure, possibly a merger. The compact narrow-line galaxy 53W002 at z = 2.390 has less than or = 30% +/- 10% of its HST V and I flux in the central kiloparsec (due to its weak Active Galactic Nucleus (AGN)). Most of its light (V approximately equal to 23.3) occurs in a symmetric envelope with a regular a(exp 1/4)-like profile of effective

  11. Gravitational lensing beyond the weak-field approximation

    SciTech Connect

    Perlick, Volker

    2014-01-14

    Gravitational lensing is considered in the full spacetime formalism of general relativity, assuming that the light rays are lightlike geodesics in a Lorentzian manifold. The review consists of three parts. The first part is devoted to spherically symmetric and static spacetimes. In particular, an exact lens map for this situation is discussed. The second part is on axisymmetric and stationary spacetimes. It concentrates on the investigation of the photon region, i.e., the region filled by spherical lightlike geodesics, in the Kerr spacetime. The photon region is of crucial relevance for the formation of a shadow. Finally, the third part briefly addresses two topics that apply to spacetimes without symmetry, namely Fermat’s principle and the exact lens map of Frittelli and Newman.

  12. Gravitational lensing beyond the weak-field approximation

    NASA Astrophysics Data System (ADS)

    Perlick, Volker

    2014-01-01

    Gravitational lensing is considered in the full spacetime formalism of general relativity, assuming that the light rays are lightlike geodesics in a Lorentzian manifold. The review consists of three parts. The first part is devoted to spherically symmetric and static spacetimes. In particular, an exact lens map for this situation is discussed. The second part is on axisymmetric and stationary spacetimes. It concentrates on the investigation of the photon region, i.e., the region filled by spherical lightlike geodesics, in the Kerr spacetime. The photon region is of crucial relevance for the formation of a shadow. Finally, the third part briefly addresses two topics that apply to spacetimes without symmetry, namely Fermat's principle and the exact lens map of Frittelli and Newman.

  13. Constraining modified gravitational theories by weak lensing with Euclid

    SciTech Connect

    Martinelli, Matteo; Calabrese, Erminia; De Bernardis, Francesco; Melchiorri, Alessandro; Pagano, Luca; Scaramella, Roberto

    2011-01-15

    Future proposed satellite missions such as Euclid can offer the opportunity to test general relativity on cosmic scales through mapping of the galaxy weak-lensing signal. In this paper we forecast the ability of these experiments to constrain modified gravity scenarios such as those predicted by scalar-tensor and f(R) theories. We find that Euclid will improve constraints expected from the Planck satellite on these modified theories of gravity by 2 orders of magnitude. We discuss parameter degeneracies and the possible biases introduced by modifications to gravity.

  14. Infrared imaging of MG 0414 + 0534 - The red gravitational lens systems as lensed radio galaxies

    NASA Technical Reports Server (NTRS)

    Annis, James; Luppino, Gerard A.

    1993-01-01

    We present an IR image of the gravitational lens system MG 0414 + 0534, and IR photometry of PG 1115 + 080, H1413 + 117, and Q1429 - 008. The IR of MG 0414 + 0534 shows a morphology that is similar to the radio and optical morphologies. The object is bright (K-prime = 13.7) and extremely red (I-K-prime = 5.7). MG 0414 + 0534 thus becomes the second radio-selected lens system to have very red optical IR colors. When plotted on a color-magnitude diagram of objects from a radio survey, MG 0414 + 0534 and the other very red system, MG 1131 + 0456, lie near the locus of radio galaxies. We therefore suggest that these systems are lensed high-redshift radio galaxies. In general, lensed radio galaxies should be common among lens systems selected from radio surveys, since a high proportion of radio sources are radio galaxies.

  15. A Coincident Search for Radio and Gravitational Waves from Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Cardena, Brett

    2011-05-01

    The merger of neutron star-neutron star binary pairs may be accompanied by the prompt emission of a coherent low-frequency radio pulse. This radio transient is produced as synchrotron radiation caused by the spin and rotation of the surface charge density of a pulsar through the magnetosphere of a larger neutron star, usually referred to as a Magnetar . This type of merger event would also result in the release of a gravitational coalescence wave-form. We will discuss a coincident radio transient and gravitational wave search. This search is being conducted by two radio telescope arrays: The Long Wave Array (LWA) and the Eight-meter-wavelength Transient Array (ETA) in coordination with the Laser Interferometer Gravitational-Wave Observatory (LIGO). We will outline this ongoing coincident search and discuss some preliminary results.

  16. RADIO OBSERVATIONS OF WEAK ENERGY RELEASES IN THE SOLAR CORONA

    SciTech Connect

    Ramesh, R.; Kathiravan, C.; Barve, Indrajit V.; Beeharry, G. K.; Rajasekara, G. N.

    2010-08-10

    We report observations of weak, circularly polarized, structureless type III bursts from the solar corona in the absence of H{alpha}/X-ray flares and other related activity, during the minimum between the sunspot cycles 23 and 24. The spectral information about the event obtained with the CALLISTO spectrograph at Mauritius revealed that the drift rate of the burst is {approx}-30 MHz s{sup -1} is in the range 50-120 MHz. Two-dimensional imaging observations of the burst at 77 MHz obtained with the Gauribidanur radioheliograph indicate that the emission region was located at a radial distance of {approx}1.5 R{sub sun} in the solar atmosphere. The estimated peak brightness temperature of the burst at 77 MHz is {approx}10{sup 8} K. We derived the average magnetic field at the aforementioned location of the burst using the one-dimensional (east-west) Gauribidanur radio polarimeter at 77 MHz, and the value is {approx}2.5 {+-} 0.2 G. We also estimated the total energy of the non-thermal electrons responsible for the observed burst as {approx}1.1 x 10{sup 24} erg. This is low compared to the energy of the weakest hard X-ray microflares reported in the literature, which is about {approx}10{sup 26} erg. The present result shows that non-thermal energy releases that correspond to the nanoflare category (energy {approx}10{sup 24} erg) are taking place in the solar corona, and the nature of such small-scale energy releases has not yet been explored.

  17. Commensal searches for microhertz gravitational waves and fast radio bursts: A pilot study

    NASA Astrophysics Data System (ADS)

    Shannon, Ryan; Hobbs, George; Ravi, Vikram

    2014-04-01

    In this pilot observing programme, we propose to observe at high cadence the transient gravitational-wave and radio-wave Universe. The goals of these observations are threefold: 1) To improve the timing precision of secondary pulsars in the Parkes Pulsar Timing Array (PPTA) to accelerate the detection of gravitational waves; 2) To characterise the gravitational wave universe in the hitherto unexplored microhertz frequency band; and 3) To develop methods and search for fast radio bursts (FRBs) while conducting precision time experiments. To achieve these goals, we request 120 hours of observations with the Parkes multibeam system, divided into 10 epochs comprising 12-hour LST days. This pilot project acts as a feasibility study for modifications to both the PPTA project and the International Pulsar Timing Array (IPTA), the consortium coordinating timing array observations in Australia, Europe, and North America, and assess the feasibility of searching for fast radio bursts while conduction precision timing observations.

  18. Weak Gravitational Lensing by Galaxy Troughs in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Gruen, Daniel; Dark Energy Survey Collaboration

    2016-06-01

    The Dark Energy Survey (DES) is in the process of imaging 5000 sq. deg. of the southern sky in five broad-band filters. Its primary purpose is to constrain cosmology and the physics of dark energy using weak gravitational lensing, galaxy clusters, baryonic acoustic oscillations, and supernova distance measurements.I will give an overview of weak gravitational lensing results from early DES data, with a focus on the newly developed galaxy trough statistics. Using the latter, we have made the highest signal-to-noise lensing measurements of the low density Universe to date, probing gravity and structure formation in the underdense regime. Besides these recent results, I will give an outlook on cosmological and astrophysical applications of the trough lensing signal.

  19. Weakly-Interacting Massive Particles in Torsionally-Gravitating Dirac Theory

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca

    2013-08-01

    We shall consider the problem of Dark Matter (DM) in torsion gravity with Dirac matter fields; we will consider the fact that if Weakly-Interacting Massive Particles in a bath are allowed to form condensates then torsional effects may be relevant even at galactic scales: we show that torsionally-gravitating Dirac fields have interesting properties for the problem of DM. We discuss consequences.

  20. SPIN-1/2 Particles in Weak Gravitational Fields:. Foldy-Wouthuysen and Cini-Touschek Approximations

    NASA Astrophysics Data System (ADS)

    Singh, Dinesh; Papini, Giorgio

    2002-12-01

    We introduce a Hamiltonian for spin-1/2 particles with weak inertial and gravitational field corrections. Low- and high-energy approximations then follow from the Foldy-Wouthuysen and Cini-Touschek transformations.

  1. The Effect of Weak Gravitational Lensing on the Angular Distribution of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Williams, L. L. R.

    1996-12-01

    If gamma-ray bursts (GRBs) are cosmologically distributed standard candles and are associated with the luminous galaxies, then the observed angular distribution of all GRBs is altered as a result of weak gravitational lensing of bursts by density inhomogeneities. The amplitude of the effect is generally small. For example, if the current catalogs extend to z_max_ ~ 1 and we live in a flat {OMEGA} = 1 universe, the angular autocorrelation function of GRBs will be enhanced by ~8% as a result of lensing, on all angular scales. For an extreme case of z_max_ = 1.5 and ({OMEGA}, {LAMBDA}) = (0.2, 0.8), an enhancement of ~33% is predicted. If the observed distribution of GRBs is used in the future to derive power spectra of mass density fluctuations on large angular scales, the effect of weak lensing should probably be taken into account.

  2. Gravitational-wave Constraints on the Progenitors of Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Callister, Thomas; Kanner, Jonah; Weinstein, Alan

    2016-07-01

    The nature of fast radio bursts (FRBs) remains enigmatic. Highly energetic radio pulses of millisecond duration, FRBs are observed with dispersion measures consistent with an extragalactic source. A variety of models have been proposed to explain their origin. One popular class of theorized FRB progenitor is the coalescence of compact binaries composed of neutron stars and/or black holes. Such coalescence events are strong gravitational-wave emitters. We demonstrate that measurements made by the LIGO and Virgo gravitational-wave observatories can be leveraged to severely constrain the validity of FRB binary coalescence models. Existing measurements constrain the binary black hole rate to approximately 5% of the FRB rate, and results from Advanced LIGO’s O1 and O2 observing runs may place similarly strong constraints on the fraction of FRBs due to binary neutron star and neutron star–black hole progenitors.

  3. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; De Rosa, G.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Escoffier, S.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Lefèvre, D.; Leonora, E.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Müller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaš, G. E.; Perrina, C.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J. D.; Zúñiga, J.; Falco, E. E.

    2014-11-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 1046 erg s-1. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.

  4. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    SciTech Connect

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M.; André, M.; Anton, G.; Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J.; Basa, S.; Biagi, S.; Capone, A.; Caramete, L.; and others

    2014-11-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.

  5. Higgs gravitational interaction, weak boson scattering, and Higgs inflation in Jordan and Einstein frames

    SciTech Connect

    Ren, Jing; Xianyu, Zhong-Zhi; He, Hong-Jian E-mail: xianyuzhongzhi@gmail.com

    2014-06-01

    We study gravitational interaction of Higgs boson through the unique dimension-4 operator ξH{sup †}HR, with H  the Higgs doublet and R  the Ricci scalar curvature. We analyze the effect of this dimensionless nonminimal coupling ξ  on weak gauge boson scattering in both Jordan and Einstein frames. We explicitly establish the longitudinal-Goldstone equivalence theorem with nonzero ξ coupling in both frames, and analyze the unitarity constraints. We study the ξ-induced weak boson scattering cross sections at O(1−30) TeV scales, and propose to probe the Higgs-gravity coupling via weak boson scattering experiments at the LHC (14 TeV) and the next generation pp colliders (50-100 TeV). We further extend our study to Higgs inflation, and quantitatively derive the perturbative unitarity bounds via coupled channel analysis, under large field background at the inflation scale. We analyze the unitarity constraints on the parameter space in both the conventional Higgs inflation and the improved models in light of the recent BICEP2 data.

  6. Higgs gravitational interaction, weak boson scattering, and Higgs inflation in Jordan and Einstein frames

    NASA Astrophysics Data System (ADS)

    Ren, Jing; Xianyu, Zhong-Zhi; He, Hong-Jian

    2014-06-01

    We study gravitational interaction of Higgs boson through the unique dimension-4 operator ξH†HScript R, with H the Higgs doublet and Script R the Ricci scalar curvature. We analyze the effect of this dimensionless nonminimal coupling ξ on weak gauge boson scattering in both Jordan and Einstein frames. We explicitly establish the longitudinal-Goldstone equivalence theorem with nonzero ξ coupling in both frames, and analyze the unitarity constraints. We study the ξ-induced weak boson scattering cross sections at Script O(1-30) TeV scales, and propose to probe the Higgs-gravity coupling via weak boson scattering experiments at the LHC (14 TeV) and the next generation pp colliders (50-100 TeV). We further extend our study to Higgs inflation, and quantitatively derive the perturbative unitarity bounds via coupled channel analysis, under large field background at the inflation scale. We analyze the unitarity constraints on the parameter space in both the conventional Higgs inflation and the improved models in light of the recent BICEP2 data.

  7. Rotation of the cosmic microwave background polarization from weak gravitational lensing.

    PubMed

    Dai, Liang

    2014-01-31

    When a cosmic microwave background (CMB) photon travels from the surface of last scatter through spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely cancel those induced by the curl component of deflection. PMID:24580435

  8. An accurate and practical method for inference of weak gravitational lensing from galaxy images

    NASA Astrophysics Data System (ADS)

    Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.

    2016-07-01

    We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong, extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded images of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies s-1 core-1 with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multiband observations; and joint inference of photometric redshifts and lensing tomography.

  9. An accurate and practical method for inference of weak gravitational lensing from galaxy images

    NASA Astrophysics Data System (ADS)

    Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.

    2016-04-01

    We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong (2014, BA14), extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded image of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies/second/core with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multi-band observations; and joint inference of photometric redshifts and lensing tomography.

  10. Detectable radio flares following gravitational waves from mergers of binary neutron stars.

    PubMed

    Nakar, Ehud; Piran, Tsvi

    2011-10-01

    Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves. They can also launch subrelativistic and mildly relativistic outflows and are often assumed to be the sources of short γ-ray bursts. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled. PMID:21964342

  11. Observations of radio-quiet quasars at 10-mas resolution by use of gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jackson, Neal; Tagore, Amitpal S.; Roberts, Carl; Sluse, Dominique; Stacey, Hannah; Vives-Arias, Hector; Wucknitz, Olaf; Volino, Filomena

    2015-11-01

    We present Very Large Array detections of radio emission in 4 four-image gravitational lens systems with quasar sources: HS 0810+2554, RX J0911+0511, HE 0435-1223 and SDSS J0924+0219, and extended Multi-Element Remote Linked Interferometer (e-MERLIN) observations of two of the systems. The first three are detected at a high level of significance, and SDSS J0924+0219 is detected. HS 0810+2554 is resolved, allowing us for the first time to achieve 10-mas resolution of the source frame in the structure of a radio-quiet quasar. The others are unresolved or marginally resolved. All four objects are among the faintest radio sources yet detected, with intrinsic flux densities in the range 1-5 μJy; such radio objects, if unlensed, will only be observable routinely with the Square Kilometre Array. The observations of HS 0810+2554, which is also detected with e-MERLIN, strongly suggest the presence of a mini active galactic nucleus, with a radio core and milliarcsecond scale jet. The flux densities of the lensed images in all but HE 0435-1223 are consistent with smooth galaxy lens models without the requirement for smaller scale substructure in the model, although some interesting anomalies are seen between optical and radio flux densities. These are probably due to microlensing effects in the optical.

  12. Search for transient gravitational waves in coincidence with short-duration radio transients during 2007-2013

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stiles, D.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Archibald, A. M.; Banaszak, S.; Berndsen, A.; Boyles, J.; Cardoso, R. F.; Chawla, P.; Cherry, A.; Dartez, L. P.; Day, D.; Epstein, C. R.; Ford, A. J.; Flanigan, J.; Garcia, A.; Hessels, J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Keane, E. F.; Kondratiev, V. I.; Kramer, M.; Leake, S.; Lorimer, D.; Lunsford, G.; Lynch, R. S.; Martinez, J. G.; Mata, A.; McLaughlin, M. A.; McPhee, C. A.; Penucci, T.; Ransom, S.; Roberts, M. S. E.; Rohr, M. D. W.; Stairs, I. H.; Stovall, K.; van Leeuwen, J.; Walker, A. N.; Wells, B. L.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO, Virgo, and GEO interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include starquakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.

  13. Constraining Horava-Lifshitz gravity by weak and strong gravitational lensing

    SciTech Connect

    Horvath, Zsolt; Gergely, Laszlo A.; Keresztes, Zoltan; Harko, Tiberiu; Lobo, Francisco S. N.

    2011-10-15

    We discuss gravitational lensing in the Kehagias-Sfetsos space-time emerging in the framework of Horava-Lifshitz gravity. In weak lensing, we show that there are three regimes, depending on the value of {lambda}=1/{omega}d{sup 2}, where {omega} is the Horava-Lifshitz parameter and d characterizes the lensing geometry. When {lambda} is close to zero, light deflection typically produces two images, as in Schwarzschild lensing. For very large {lambda}, the space-time approaches flatness, therefore there is only one undeflected image. In the intermediate range of {lambda}, only the upper focused image is produced due to the existence of a maximal deflection angle {delta}{sub max}, a feature inexistent in the Schwarzschild weak lensing. We also discuss the location of Einstein rings, and determine the range of the Horava-Lifshitz parameter compatible with present-day lensing observations. Finally, we analyze in the strong lensing regime the first two relativistic Einstein rings and determine the constraints on the parameter range to be imposed by forthcoming experiments.

  14. Gravitational Lensing by Kerr-Sen Dilaton-Axion Black Hole in the Weak Deflection Limit

    SciTech Connect

    Gyulchev, G. N.; Yazadjiev, S. S.

    2010-11-25

    We investigate analytically gravitational lensing by charged, stationary, axially symmetric Kerr-Sen dilaton-axion black hole in the weak deflection limit. Approximate solutions to the lightlike equations of motion are present up to and including third-order terms in M/b, a/b and r{sub {alpha}}/b, where M is the black hole mass, a is the angular momentum, r{sub {alpha}}= Q{sup 2}/M,Q being the charge and b is the impact parameter of the light ray. We compute the positions of the two weak field images up to post-Newtonian order. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly with the increase of the charge. The lensing observables are compared to these characteristics for particular cases as Schwarzschild and Kerr black holes as well as the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole.

  15. WEAK GRAVITATIONAL LENSING AS A PROBE OF PHYSICAL PROPERTIES OF SUBSTRUCTURES IN DARK MATTER HALOS

    SciTech Connect

    Shirasaki, Masato

    2015-02-01

    We propose a novel method to select satellite galaxies in outer regions of galaxy groups or clusters using weak gravitational lensing. The method is based on the theoretical expectation that the tangential shear pattern around satellite galaxies would appear with negative values at an offset distance from the center of the main halo. We can thus locate the satellite galaxies statistically with an offset distance of several lensing smoothing scales by using the standard reconstruction of surface mass density maps from weak lensing observation. We test the idea using high-resolution cosmological simulations. We show that subhalos separated from the center of the host halo are successfully located even without assuming the position of the center. For a number of such subhalos, the characteristic mass and offset length can be also estimated on a statistical basis. We perform a Fisher analysis to show how well upcoming weak lensing surveys can constrain the mass density profile of satellite galaxies. In the case of the Large Synoptic Survey Telescope with a sky coverage of 20,000 deg{sup 2}, the mass of the member galaxies in the outer region of galaxy clusters can be constrained with an accuracy of ∼0.1 dex for galaxy clusters with mass 10{sup 14} h {sup –1} M {sub ☉} at z = 0.15. Finally we explore the detectability of tidal stripping features for subhalos having a wide range of masses of 10{sup 11}-10{sup 13} h {sup –1} M {sub ☉}.

  16. Solar gravitational deflection of radio waves measured by very-long-baseline interferometry

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Kent, S. M.; Knight, C. A.; Shapiro, I. I.; Clark, T. A.; Hinteregger, H. F.; Rogers, A. E. E.; Whitney, A. R.

    1974-01-01

    Utilizing a four-antenna technique, simultaneous observations were made, at each end of an 845-km baseline, of the radio sources 3C279 and 3C273B, which are 10 deg apart in the sky. Differences in interferometric phases at 3.7-cm wavelength monitored near the time of the 1972 occultation of 3C279 by the sun, yielded a gravitational deflection of 0.99 plus or minus 0.03 times the value predicted by general relativity, corresponding to gamma = 0.98 plus or minus 0.06 (standard error).

  17. Radio Weak Lensing Shear Measurement in the Visibility Domain - I. Methodology

    NASA Astrophysics Data System (ADS)

    Rivi, M.; Miller, L.; Makhathini, S.; Abdalla, F. B.

    2016-08-01

    The high sensitivity of the new generation of radio telescopes such as the Square Kilometre Array (SKA) will allow cosmological weak lensing measurements at radio wavelengths that are competitive with optical surveys. We present an adaptation to radio data of lensfit, a method for galaxy shape measurement originally developed and used for optical weak lensing surveys. This likelihood method uses an analytical galaxy model and makes a Bayesian marginalisation of the likelihood over uninteresting parameters. It has the feature of working directly in the visibility domain, which is the natural approach to adopt with radio interferometer data, avoiding systematics introduced by the imaging process. As a proof of concept, we provide results for visibility simulations of individual galaxies with flux density S ≥ 10μJy at the phase centre of the proposed SKA1-MID baseline configuration, adopting 12 frequency channels in the band 950 - 1190 MHz. Weak lensing shear measurements from a population of galaxies with realistic flux and scalelength distributions are obtained after natural gridding of the raw visibilities. Shear measurements are expected to be affected by `noise bias': we estimate the bias in the method as a function of signal-to-noise ratio (SNR). We obtain additive and multiplicative bias values that are comparable to SKA1 requirements for SNR > 18 and SNR > 30, respectively. The multiplicative bias for SNR >10 is comparable to that found in ground-based optical surveys such as CFHTLenS, and we anticipate that similar shear measurement calibration strategies to those used for optical surveys may be used to good effect in the analysis of SKA radio interferometer data.

  18. A radio survey of weak T Tauri stars in Taurus-Auriga

    SciTech Connect

    O'neal, D.; Feigelson, E.D.; Mathieu, R.D.; Myers, P.C. Wisconsin Univ., Madison Harvard-Smithsonian Center for Astrophysics, Cambridge, MA )

    1990-11-01

    A multi-epoch 5 GHz survey of candidate or confirmed weak T Tauri stars in the Taurus-Auriga molecular cloud complex was conducted with the Very Large Array. The stars were chosen from those having detectable X-ray or chromospheric emission, and weak-emission-line pre-main-sequence stars found by other means. Snapshots of 99 VLA fields containing 119 candidate stars were obtained with a sensitivity of 0.7 mJy; most fields were observed on two or three dates. Nine radio sources coincident with cataloged stars were found. One may be an RS CVn binary system; the other eight are pre-main-sequence stars. Three of the detected stars - HD 283447, V410 Tau, and FK X-ray 1 - were previously known radio sources. Five new detections are Herbig's Anon 1, Hubble 4, HDE 283572, Elias 12, and HK Tau/c. At least five of the sources are variable, and no linear or circular polarization was found. Several lines of evidence suggest that the radio-detected weak T Tauri stars are quite young, perhaps younger on average than nondetected stars. 54 refs.

  19. Probing Dark Energy via Weak Gravitational Lensing with the Supernova Acceleration Probe (SNAP)

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-08

    SNAP is a candidate for the Joint Dark Energy Mission (JDEM) that seeks to place constraints on the dark energy using two distinct methods. The first, Type Ia SN, is discussed in a separate white paper. The second method is weak gravitational lensing, which relies on the coherent distortions in the shapes of background galaxies by foreground mass structures. The excellent spatial resolution and photometric accuracy afforded by a 2-meter space-based observatory are crucial for achieving the high surface density of resolved galaxies, the tight control of systematic errors in the telescope's Point Spread Function (PSF), and the exquisite redshift accuracy and depth required by this project. These are achieved by the elimination of atmospheric distortion and much of the thermal and gravity loads on the telescope. The SN and WL methods for probing dark energy are highly complementary and the error contours from the two methods are largely orthogonal. The nominal SNAP weak lensing survey covers 1000 square degrees per year of operation in six optical and three near infrared filters (NIR) spanning the range 350 nm to 1.7 {micro}m. This survey will reach a depth of 26.6 AB magnitude in each of the nine filters and allow for approximately 100 resolved galaxies per square arcminute, {approx} 3 times that available from the best ground-based surveys. Photometric redshifts will be measured with statistical accuracy that enables scientific applications for even the faint, high redshift end of the sample. Ongoing work aims to meet the requirements on systematics in galaxy shape measurement, photometric redshift biases, and theoretical predictions.

  20. SELF-CALIBRATION OF GRAVITATIONAL SHEAR-GALAXY INTRINSIC ELLIPTICITY CORRELATION IN WEAK LENSING SURVEYS

    SciTech Connect

    Zhang Pengjie

    2010-09-10

    The galaxy intrinsic alignment is a severe challenge to precision cosmic shear measurement. We propose self-calibrating the induced gravitational shear-galaxy intrinsic ellipticity correlation (the GI correlation) in weak lensing surveys with photometric redshift measurements. (1) We propose a method to extract the intrinsic ellipticity-galaxy density cross-correlation (I-g) from the galaxy ellipticity-density measurement in the same redshift bin. (2) We also find a generic scaling relation to convert the extracted I-g correlation to the necessary GI correlation. We perform a concept study under simplified conditions and demonstrate its capability to significantly reduce GI contamination. We discuss the impact of various complexities on the two key ingredients of the self-calibration technique, namely the method for extracting the I-g correlation and the scaling relation between the I-g and the GI correlation. We expect that none of them will likely be able to completely invalidate the proposed self-calibration technique.

  1. Eikonal approximation, Finsler structures, and implications for Lorentz-violating photons in weak gravitational fields

    NASA Astrophysics Data System (ADS)

    Schreck, M.

    2015-12-01

    In the current article, the classical analog of the minimal photon sector in the Lorentz-violating Standard-Model extension (SME) is investigated. The analysis is based on describing a photon classically by a geometric ray that satisfies the eikonal equation. The action principle, which leads to the eikonal equation in conventional optics, is demonstrated to work in most (but not all) Lorentz-violating cases as well. Furthermore it is found that the integrands of the action functional correspond to Finsler structures. Based on these results, Lorentz-violating light rays in a weak gravitational background are treated through the use of the minimal-coupling principle. This allows for obtaining sensitivities on Lorentz violation in the photon sector by measurements of light bending at massive bodies such as the Sun. The computations are carried out for the currently running ESA mission GAIA and the planned NASA/ESA mission LATOR. Finally, a range of aspects of explicit Lorentz violation for photons is discussed in the Finsler setting.

  2. Weakness

    MedlinePlus

    Lack of strength; Muscle weakness ... feel weak but have no real loss of strength. This is called subjective weakness. It may be ... flu. Or, you may have a loss of strength that can be noted on a physical exam. ...

  3. Reducing the weak lensing noise for the gravitational wave Hubble diagram using the non-Gaussianity of the magnification distribution

    SciTech Connect

    Hirata, Christopher M.; Cutler, Curt

    2010-06-15

    Gravitational wave sources are a promising cosmological standard candle because their intrinsic luminosities are determined by fundamental physics (and are insensitive to dust extinction). They are, however, affected by weak lensing magnification due to the gravitational lensing from structures along the line of sight. This lensing is a source of uncertainty in the distance determination, even in the limit of perfect standard candle measurements. It is commonly believed that the uncertainty in the distance to an ensemble of gravitational wave sources is limited by the standard deviation of the lensing magnification distribution divided by the square root of the number of sources. Here we show that by exploiting the non-Gaussian nature of the lensing magnification distribution, we can improve this distance determination, typically by a factor of 2-3; we provide a fitting formula for the effective distance accuracy as a function of redshift for sources where the lensing noise dominates.

  4. Improving three-dimensional mass mapping with weak gravitational lensing using galaxy clustering

    NASA Astrophysics Data System (ADS)

    Simon, Patrick

    2013-12-01

    Context. The weak gravitational lensing distortion of distant galaxy images (defined as sources) probes the projected large-scale matter distribution in the Universe. The availability of redshift information in galaxy surveys also allows us to recover the radial matter distribution to a certain degree. Aims: To improve quality in the mass mapping, we combine the lensing information with the spatial clustering of a population of galaxies (defined as tracers) that trace the matter density with a known galaxy bias. Methods: We construct a minimum-variance estimator for the 3D matter density that incorporates the angular distribution of galaxy tracers, which are coarsely binned in redshift. Merely the second-order bias of the tracers has to be known, which can in principle be self-consistently constrained in the data by lensing techniques. This synergy introduces a new noise component because of the stochasticity in the matter-tracer density relation. We give a description of the stochasticity noise in the Gaussian regime, and we investigate the estimator characteristics analytically. We apply the estimator to a mock survey based on the Millennium Simulation. Results: The estimator linearly mixes the individual lensing mass and tracer number density maps into a combined smoothed mass map. The weighting in the mix depends on the signal-to-noise ratio (S/N) of the individual maps and the correlation, R, between the matter and galaxy density. The weight of the tracers can be reduced by hand. For moderate mixing, the S/N in the mass map improves by a factor ~2-3 for R ≳ 0.4. Importantly, the systematic offset between a true and apparent mass peak distance (defined as z-shift bias) in a lensing-only map is eliminated, even for weak correlations of R ~ 0.4. Conclusions: If the second-order bias of tracer galaxies can be determined, the synergy technique potentially provides an option to improve redshift accuracy and completeness of the lensing 3D mass map. Herein, the aim

  5. Radio Emission from Weak Spherical Shocks in the Outskirts of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung

    2015-04-01

    In Kang (2015) we calculated the acceleration of cosmic-ray electrons at weak spherical shocks that are expected to form in the cluster outskirts, and estimated the diffuse synchrotron radiation emitted by those electrons. There we demonstrated that, at decelerating spherical shocks, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws predicted for constant planar shocks, because the shock compression ratio and the flux of inject electrons decrease in time. In this study, we consider spherical blast waves propagating through a constant density core surrounded by an isothermal halo with ρ∝ r^{-n} in order to explore how the deceleration of the shock affects the radio emission from accelerated electrons. The surface brightness profile and the volume-integrated radio spectrum of the model shocks are calculated by assuming a ribbon-like shock surface on a spherical shell and the associated downstream region of relativistic electrons. If the postshock magnetic field strength is about 0.7 or 7μG, at the shock age of ˜ 50 Myr, the volume-integrated radio spectrum steepens gradually with the spectral index from α_{inj} to α_{inj}+0.5 over 0.1-10 GHz, where α_{inj} is the injection index at the shock position expected from the diffusive shock acceleration theory. Such gradual steepening could explain the curved radio spectrum of the radio relic in cluster A2266, which was interpreted as a broken power-law by Trasatti et al. (2015), if the relic shock is young enough so that the break frequency is around 1$ GHz.

  6. Radio continuum detection in blue early-type weak-emission-line galaxies

    NASA Astrophysics Data System (ADS)

    Paswan, A.; Omar, A.

    2016-06-01

    The star formation rates (SFRs) in weak-emission-line (WEL) galaxies in a volume-limited (0.02 < z < 0.05) sample of blue early-type galaxies (ETGs) identified from the Sloan Digital Sky Survey, are constrained here using 1.4-GHz radio continuum emission. The direct detection of 1.4-GHz radio continuum emission is made in eight WEL galaxies and a median stacking is performed on 57 WEL galaxies using Very Large Array (VLA) Faint Images of Radio Sky at Twenty-cm (FIRST) images. The median stacked 1.4-GHz flux density and luminosity are estimated as 79 ± 19 μJy and 0.20 ± 0.05 × 1021 W Hz-1, respectively. The radio far-infrared correlation in four WEL galaxies suggests that the radio continuum emission from WEL galaxies is most likely a result of star formation activities. The median SFR for WEL galaxies is estimated as 0.23 ± 0.06 M⊙ yr-1, which is much less than SFRs (0.5-50 M⊙ yr-1) in purely star-forming blue ETGs. The SFRs in blue ETGs are found to be correlated with their stellar velocity dispersions (σ) and decreasing gradually beyond σ of ˜100 km s-1. This effect is most likely linked to the growth of a black hole and the suppression of star formation via active galactic nucleus (AGN) feedback. The colour differences between star-forming and WEL subtypes of blue ETGs appear to be driven to a large extent by the level of current star formation activities. In a likely scenario of an evolutionary sequence between subtypes, the observed colour distribution in blue ETGs can be explained best in terms of fast evolution through AGN feedback.

  7. The generation of gravitational waves. 1. Weak-field sources: A plug-in-and-grind formalism

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Kovacs, S. J.

    1974-01-01

    A plug-in-and-grind formalism is derived for calculating the gravitational waves emitted by any system with weak internal gravitational fields. If the internal fields have negligible influence on the system's motions, then the formalism reduces to standard linearized theory. Whether or not gravity affects the motions, if the motions are slow and internal stresses are weak, then the new formalism reduces to the standard quadrupole-moment formalism. In the general case the new formalism expresses the radiation in terms of a retarded Green's function for slightly curved spacetime, and then breaks the Green's-function integral into five easily understood pieces: direct radiation, produced directly by the motions of the sources; whump radiation, produced by the the gravitational stresses of the source; transition radiation, produced by a time-changing time delay (Shapiro effect) in the propagation of the nonradiative, 1/r field of the source; focussing radiation produced when one portion of the source focusses, in a time-dependent way, the nonradiative field of another portion of the source, and tail radiation, produced by backscatter of the nonradiative field in regions of focussing.

  8. Improved spacecraft radio science using an on-board atomic clock: Application to gravitational wave searches

    SciTech Connect

    Tinto, Massimo; Dick, George J.; Prestage, John D.; Armstrong, J. W.

    2009-05-15

    Recent advances in space-qualified atomic clocks (low-mass, low power-consumption, frequency stability comparable to that of ground-based clocks) can enable interplanetary spacecraft radio science experiments at unprecedented Doppler sensitivities. The addition of an on-board digital receiver would allow the up- and down-link Doppler frequencies to be measured separately. Such separate, high-quality measurements allow optimal data combinations that suppress the currently leading noise sources: phase scintillation noise from the Earth's atmosphere and Doppler noise caused by mechanical vibrations of the ground antenna. Here we provide a general expression for the optimal combination of ground and on-board Doppler data and compute the sensitivity such a system would have to low-frequency gravitational waves (GWs). Assuming a plasma scintillation noise calibration comparable to that already demonstrated with the multilink CASSINI radio system, the space-clock/digital-receiver instrumentation enhancements would give GW strain sensitivity of 3.7x10{sup -14} Hz{sup -1/2} for randomly polarized, monochromatic GW signals isotropically distributed over the celestial sphere, over a two-decade ({approx}0.0001-0.01 Hz) region of the low-frequency band. This is about an order of magnitude better than currently achieved with traditional two-way coherent Doppler experiments. The utility of optimally combining simultaneous up- and down-link observations is not limited to GW searches. The Doppler tracking technique discussed here could be performed at minimal incremental cost to improve also other radio science experiments (i.e., tests of relativistic gravity, planetary and satellite gravity field measurements, atmospheric and ring occultations) on future interplanetary missions.

  9. Intranight optical variability of radio-quiet weak emission line quasars - IV

    NASA Astrophysics Data System (ADS)

    Kumar, Parveen; Chand, Hum; Gopal-Krishna

    2016-09-01

    We report an extension of our programme to search for radio-quiet BL Lac candidates using intranight optical variability (INOV) as a probe. The present INOV observations cover a well-defined representative set of 10 `radio-quiet weak-emission-line quasars' (RQWLQs), selected from a newly published sample of 46 such sources, derived from the Sloan Digital Sky Survey (Data release 7). Intranight CCD monitoring of the 10 RQWLQs was carried out in 18 sessions lasting at least 3.5 h. For each session, differential light curves of the target RQWLQ were derived relative to two steady comparison stars monitored simultaneously. Combining these new data with those already published by us for 15 RQWLQs monitored in 30 sessions, we estimate an INOV duty cycle of ˜3 per cent for the RQWLQs, which appears inconsistent with BL Lacs. However, the observed INOV events (which occurred in just two of the sessions) are strong (with a fractional variability amplitude ψ > 10 per cent), hence blazar-like. We briefly point out the prospects of an appreciable rise in the estimated INOV duty cycle for RQWLQs with a relatively modest increase in sensitivity for monitoring these rather faint objects.

  10. An experiment to verify that the weak interactions satisfy the strong equivalence principle. [electron capture and gravitational potential

    NASA Technical Reports Server (NTRS)

    Eby, P. B.

    1978-01-01

    The construction of a clock based on the beta decay process is proposed to test for any violations by the weak interaction of the strong equivalence principle bu determining whether the weak interaction coupling constant beta is spatially constant or whether it is a function of gravitational potential (U). The clock can be constructed by simply counting the beta disintegrations of some suitable source. The total number of counts are to be taken a measure of elapsed time. The accuracy of the clock is limited by the statistical fluctuations in the number of counts, N, which is equal to the square root of N. Increasing N gives a corresponding increase in accuracy. A source based on the electron capture process can be used so as to avoid low energy electron discrimination problems. Solid state and gaseous detectors are being considered. While the accuracy of this type of beta decay clock is much less than clocks based on the electromagnetic interaction, there is a corresponding lack of knowledge of the behavior of beta as a function of gravitational potential. No predictions from nonmetric theories as to variations in beta are available as yet, but they may occur at the U/sg C level.

  11. Radio crickets: chirping jets from black hole binaries entering their gravitational wave inspiral

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Loeb, Abraham

    2016-03-01

    We study a novel electromagnetic signature of supermassive black hole (BH) binaries whose inspiral starts being dominated by gravitational wave (GW) emission. Recent simulations suggest that the binary's member BHs can continue to accrete gas from the circumbinary accretion disc in this phase of the binary's evolution, all the way until coalescence. If one of the binary members produces a radio jet as a result of accretion, the jet precesses along a biconical surface due to the binary's orbital motion. When the binary enters the GW phase of its evolution, the opening angle widens, the jet exhibits milliarcsecond-scale wiggles, and the conical surface of jet precession is twisted due to apparent superluminal motion. The rapidly increasing orbital velocity of the binary gives the jet an appearance of a `chirp'. This helical chirping morphology of the jet can be used to infer the binary parameters. For binaries with mass 107-1010 M⊙ at redshifts z < 0.5, monitoring these features in current and archival data will place a lower limit on sources that could be detected by Evolved Laser Interferometer Space Antenna and Pulsar Timing Arrays. In the future, microarcsecond interferometry with the Square Kilometre Array will increase the potential usefulness of this technique.

  12. The imprint of f(R) gravity on weak gravitational lensing I: Connection between observables and large-scale structure

    NASA Astrophysics Data System (ADS)

    Higuchi, Yuichi; Shirasaki, Masato

    2016-04-01

    We study the effect of f(R) gravity on the statistical properties of various large-scale structures which can be probed in weak gravitational lensing measurements. A set of ray-tracing simulations of gravitational lensing in f(R) gravity enables us to explore cosmological information on (i) stacking analyses of weak lensing observables and (ii) peak statistics in reconstructed lensing mass maps. For the f(R) model proposed by Hu & Sawicki, the measured lensing signals of dark matter haloes in the stacking analysis would show a ≲ 10% difference between the standard ΛCDM and the f(R) model when the additional degree of freedom in f(R) model would be |fR0| ˜ 10-5. Among various large-scale structures to be studied in stacking analysis, troughs, i.e, underdensity regions in projected plane of foreground massive haloes, could be promising to constrain the model with |fR0| ˜ 10-5, while stacking analysis around voids is found to be difficult to improve the constraint of |fR0| even in future lensing surveys with a sky coverage of ˜1000 square degrees. On the peak statistics, we confirm the correspondence between local maxima and dark matter haloes along the line of sight, regardless of the modification of gravity in our simulation. Thus, the number count of high significance local maxima would be useful to probe the mass function of dark matter haloes even in the f(R) model with |f_R0| ≲ 10^{-5}. We also find that including local minima in lensing mass maps would be helpful to improve the constant on f(R) gravity down to |fR0| = 10-5 in ongoing weak lensing surveys.

  13. The imprint of f(R) gravity on weak gravitational lensing - I. Connection between observables and large-scale structure

    NASA Astrophysics Data System (ADS)

    Higuchi, Yuichi; Shirasaki, Masato

    2016-07-01

    We study the effect of f(R) gravity on the statistical properties of various large-scale structures which can be probed in weak gravitational lensing measurements. A set of ray-tracing simulations of gravitational lensing in f(R) gravity enables us to explore cosmological information on (i) stacking analyses of weak lensing observables and (ii) peak statistics in reconstructed lensing mass maps. For the f(R) model proposed by Hu & Sawicki, the measured lensing signals of dark matter haloes in the stacking analysis would show a ≲10 per cent difference between the standard Λcold dark matter and the f(R) model when the additional degree of freedom in f(R) model would be |fR0| ˜ 10-5. Among various large-scale structures to be studied in stacking analysis, troughs, i.e. underdensity regions in projected plane of foreground massive haloes, could be promising to constrain the model with |fR0| ˜ 10-5, while stacking analysis around voids is found to be difficult to improve the constraint of |fR0| even in future lensing surveys with a sky coverage of ˜1000 deg2. On the peak statistics, we confirm the correspondence between local maxima and dark matter haloes along the line of sight, regardless of the modification of gravity in our simulation. Thus, the number count of high significance local maxima would be useful to probe the mass function of dark matter haloes even in the f(R) model with |fR0| ≲ 10-5. We also find that including local minima in lensing mass maps would be helpful to improve the constant on f(R) gravity down to |fR0| = 10-5 in ongoing weak lensing surveys.

  14. THE FAINTEST RADIO SOURCE YET: EXPANDED VERY LARGE ARRAY OBSERVATIONS OF THE GRAVITATIONAL LENS SDSS J1004+4112

    SciTech Connect

    Jackson, N.

    2011-09-20

    We present new radio observations of the large-separation gravitationally lensed quasar SDSS J1004+4112, taken in a total of 6 hr of observations with the Expanded Very Large Array. The maps reach a thermal noise level of approximately 4 {mu}Jy. We detect four of the five lensed images at the 15-35 {mu}Jy level, representing a source of intrinsic flux density, after allowing for lensing magnification, of about 1 {mu}Jy, intrinsically probably the faintest radio source yet detected. This reinforces the utility of gravitational lensing in potentially allowing us to study nJy-level sources before the advent of the Square Kilometre Array. In an optical observation taken three months after the radio observation, image C is the brightest image, whereas the radio map shows flux density ratios consistent with previous optical observations. Future observations separated by a time delay will give the intrinsic flux ratios of the images in this source.

  15. Weak gravitational lensing due to large-scale structure of the universe

    NASA Technical Reports Server (NTRS)

    Jaroszynski, Michal; Park, Changbom; Paczynski, Bohdan; Gott, J. Richard, III

    1990-01-01

    The effect of the large-scale structure of the universe on the propagation of light rays is studied. The development of the large-scale density fluctuations in the omega = 1 universe is calculated within the cold dark matter scenario using a smooth particle approximation. The propagation of about 10 to the 6th random light rays between the redshift z = 5 and the observer was followed. It is found that the effect of shear is negligible, and the amplification of single images is dominated by the matter in the beam. The spread of amplifications is very small. Therefore, the filled-beam approximation is very good for studies of strong lensing by galaxies or clusters of galaxies. In the simulation, the column density was averaged over a comoving area of approximately (1/h Mpc)-squared. No case of a strong gravitational lensing was found, i.e., no 'over-focused' image that would suggest that a few images might be present. Therefore, the large-scale structure of the universe as it is presently known does not produce multiple images with gravitational lensing on a scale larger than clusters of galaxies.

  16. Multi-messenger Astronomy of Gravitational-wave Sources with Flexible Wide-area Radio Transient Surveys

    NASA Astrophysics Data System (ADS)

    Yancey, Cregg C.; Bear, Brandon E.; Akukwe, Bernadine; Chen, Kevin; Dowell, Jayce; Gough, Jonathan D.; Kanner, Jonah; Kavic, Michael; Obenberger, Kenneth; Shawhan, Peter; Simonetti, John H.; -Wei Tsai, Gregory B. Taylor, Jr.

    2015-10-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg2 sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.

  17. Multi-messenger astronomy of gravitational-wave sources with flexible wide-area radio transient surveys

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Cregg C. Yancey, Brandon E. Bear, Bernadine Akukwe, Kevin Chen, Jayce Dowell, Jonathan D. Gough, Jonah Kanner, Kenneth Obenberger, Peter Shawhan, John H. Simonetti , Gregory B. Taylor , Jr-Wei Tsai

    2016-01-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg(2) sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.

  18. Laboratory simulation of Euclid-like sky images to study the impact of CCD radiation damage on weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Prod'homme, T.; Verhoeve, P.; Oosterbroek, T.; Boudin, N.; Short, A.; Kohley, R.

    2014-07-01

    Euclid is the ESA mission to map the geometry of the dark universe. It uses weak gravitational lensing, which requires the accurate measurement of galaxy shapes over a large area in the sky. Radiation damage in the 36 Charge-Coupled Devices (CCDs) composing the Euclid visible imager focal plane has already been identified as a major contributor to the weak-lensing error budget; radiation-induced charge transfer inefficiency (CTI) distorts the galaxy images and introduces a bias in the galaxy shape measurement. We designed a laboratory experiment to project Euclid-like sky images onto an irradiated Euclid CCD. In this way - and for the first time - we are able to directly assess the effect of CTI on the Euclid weak-lensing measurement free of modelling uncertainties. We present here the experiment concept, setup, and first results. The results of such an experiment provide test data critical to refine models, design and test the Euclid data processing CTI mitigation scheme, and further optimize the Euclid CCD operation.

  19. Strong quantum violation of the gravitational weak equivalence principle by a non-Gaussian wave packet

    NASA Astrophysics Data System (ADS)

    Chowdhury, P.; Home, D.; Majumdar, A. S.; Mousavi, S. V.; Mozaffari, M. R.; Sinha, S.

    2012-01-01

    The weak equivalence principle of gravity is examined at the quantum level in two ways. First, the position detection probabilities of particles described by a non-Gaussian wave packet projected upwards against gravity around the classical turning point and also around the point of initial projection are calculated. These probabilities exhibit mass dependence at both these points, thereby reflecting the quantum violation of the weak equivalence principle. Second, the mean arrival time of freely falling particles is calculated using the quantum probability current, which also turns out to be mass dependent. Such a mass dependence is shown to be enhanced by increasing the non-Gaussianity parameter of the wave packet, thus signifying a stronger violation of the weak equivalence principle through a greater departure from Gaussianity of the initial wave packet. The mass dependence of both the position detection probabilities and the mean arrival time vanishes in the limit of large mass. Thus, compatibility between the weak equivalence principle and quantum mechanics is recovered in the macroscopic limit of the latter. A selection of Bohm trajectories is exhibited to illustrate these features in the free fall case.

  20. Gravitational perturbation of the BTZ black hole induced by test particles and weak cosmic censorship in AdS spacetime

    SciTech Connect

    Rocha, Jorge V.; Cardoso, Vitor

    2011-05-15

    We analyze the gravitational perturbations induced by particles falling into a three dimensional, asymptotically AdS black hole geometry. More specifically, we solve the linearized perturbation equations obtained from the geodesic motion of a ringlike distribution of test particles in the BTZ background. This setup ensures that the U(1) symmetry of the background is preserved. The nonasymptotic flatness of the background raises difficulties in attributing the significance of energy and angular momentum to the conserved quantities of the test particles. This issue is well known but, to the best of our knowledge, has never been addressed in the literature. We confirm that the naive expressions for energy and angular momentum are the correct definitions. Finally, we put an asymptotically AdS version of the weak cosmic censorship to a test: by attempting to overspin the BTZ black hole with test particles it is found that the black hole cannot be spun-up past its extremal limit.

  1. Gravitational lensing from compact bodies: Analytical results for strong and weak deflection limits

    SciTech Connect

    Amore, Paolo; Cervantes, Mayra; De Pace, Arturo; Fernandez, Francisco M.

    2007-04-15

    We develop a nonperturbative method that yields analytical expressions for the deflection angle of light in a general static and spherically symmetric metric. The method works by introducing into the problem an artificial parameter, called {delta}, and by performing an expansion in this parameter to a given order. The results obtained are analytical and nonperturbative because they do not correspond to a polynomial expression in the physical parameters. Already to first order in {delta} the analytical formulas obtained using our method provide at the same time accurate approximations both at large distances (weak deflection limit) and at distances close to the photon sphere (strong deflection limit). We have applied our technique to different metrics and verified that the error is at most 0.5% for all regimes. We have also proposed an alternative approach which provides simpler formulas, although with larger errors.

  2. Unfolding the matter distribution using three-dimensional weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Simon, P.; Taylor, A. N.; Hartlap, J.

    2009-10-01

    Combining redshift and galaxy shape information offers new exciting ways of exploiting the gravitational lensing effect for studying the large scales of the cosmos. One application is the three-dimensional (3D) reconstruction of the matter density distribution which is explored in this paper. We give a generalization of an already known minimum-variance estimator of the 3D matter density distribution that facilitates the combination of thin redshift slices of sources with samples of broad redshift distributions for an optimal reconstruction; sources can be given individual statistical weights. We show how, in principle, intrinsic alignments of source ellipticities or shear/intrinsic alignment correlations can be accommodated, albeit these effects are not the focus of this paper. We describe an efficient and fast way to implement the estimator on a contemporary desktop computer. Analytic estimates for the noise and biases in the reconstruction are given. Some regularization (Wiener filtering) of the estimator, adjustable by a tuning parameter, is necessary to increase the signal-to-noise ratio (S/N) to a sensible level and to suppress oscillations in radial direction. This, however, introduces as side effect a systematic shift and stretch of structures in radial direction. This bias can be expressed in terms of a radial point-spread function (PSF) comprising the limitations of the reconstruction due to given source shot noise and a lack of knowledge of the exact source redshifts. We conclude that a 3D mass-density reconstruction on galaxy cluster scales (~1Mpc) is feasible but, for foreseeable surveys, a map with a S/N >~ 3 threshold is limited to structures with M200 >~ 1 × 1014 or 7 × 1014Msolarh-1, at low to moderate redshifts (z = 0.1 or 0.6). However, we find that a heavily smoothed full-sky map of the very large-scale density field may also be possible as the S/N of reconstructed modes increases towards larger scales. Future improvements of the method may be

  3. Astronomical polarization studies at radio and infrared wavelengths. Part 1: Gravitational deflection of polarized radiation

    NASA Technical Reports Server (NTRS)

    Dennison, B. K.

    1976-01-01

    The gravitational field is probed in a search for polarization dependence in the light bending. This involves searching for a splitting of a source image into orthogonal polarizations as the radiation passes through the solar gravitational field. This search was carried out using the techniques of very long and intermediate baseline interferometry, and by seeking a relative phase delay in orthogonal polarizations of microwaves passing through the solar gravitational field. In this last technique a change in the total polarization of the Helios 1 carrier wave was sought as the spacecraft passed behind the sun. No polarization splitting was detected.

  4. The Red Radio Ring: a gravitationally lensed hyperluminous infrared radio galaxy at z = 2.553 discovered through the citizen science project SPACE WARPS

    NASA Astrophysics Data System (ADS)

    Geach, J. E.; More, A.; Verma, A.; Marshall, P. J.; Jackson, N.; Belles, P.-E.; Beswick, R.; Baeten, E.; Chavez, M.; Cornen, C.; Cox, B. E.; Erben, T.; Erickson, N. J.; Garrington, S.; Harrison, P. A.; Harrington, K.; Hughes, D. H.; Ivison, R. J.; Jordan, C.; Lin, Y.-T.; Leauthaud, A.; Lintott, C.; Lynn, S.; Kapadia, A.; Kneib, J.-P.; Macmillan, C.; Makler, M.; Miller, G.; Montaña, A.; Mujica, R.; Muxlow, T.; Narayanan, G.; Briain, D. Ó.; O'Brien, T.; Oguri, M.; Paget, E.; Parrish, M.; Ross, N. P.; Rozo, E.; Rusu, C. E.; Rykoff, E. S.; Sanchez-Argüelles, D.; Simpson, R.; Snyder, C.; Schloerb, F. P.; Tecza, M.; Wang, W.-H.; Van Waerbeke, L.; Wilcox, J.; Viero, M.; Wilson, G. W.; Yun, M. S.; Zeballos, M.

    2015-09-01

    We report the discovery of a gravitationally lensed hyperluminous infrared galaxy (intrinsic LIR ≈ 1013 L⊙) with strong radio emission (intrinsic L1.4 GHz ≈ 1025 W Hz-1) at z = 2.553. The source was identified in the citizen science project SPACE WARPS through the visual inspection of tens of thousands of iJKs colour composite images of luminous red galaxies (LRGs), groups and clusters of galaxies and quasars. Appearing as a partial Einstein ring (re ≈ 3 arcsec) around an LRG at z = 0.2, the galaxy is extremely bright in the sub-millimetre for a cosmological source, with the thermal dust emission approaching 1 Jy at peak. The redshift of the lensed galaxy is determined through the detection of the CO(3→2) molecular emission line with the Large Millimetre Telescope's Redshift Search Receiver and through [O III] and Hα line detections in the near-infrared from Subaru/Infrared Camera and Spectrograph. We have resolved the radio emission with high-resolution (300-400 mas) eMERLIN L-band and Very Large Array C-band imaging. These observations are used in combination with the near-infrared imaging to construct a lens model, which indicates a lensing magnification of μ ≈ 10. The source reconstruction appears to support a radio morphology comprised of a compact (<250 pc) core and more extended component, perhaps indicative of an active nucleus and jet or lobe.

  5. MEASURING THE GEOMETRY OF THE UNIVERSE FROM WEAK GRAVITATIONAL LENSING BEHIND GALAXY GROUPS IN THE HST COSMOS SURVEY

    SciTech Connect

    Taylor, James E.; Massey, Richard J.; Leauthaud, Alexie; Tanaka, Masayuki; George, Matthew R.; Rhodes, Jason; Ellis, Richard; Scoville, Nick; Kitching, Thomas D.; Capak, Peter; Finoguenov, Alexis; Ilbert, Olivier; Kneib, Jean-Paul; Jullo, Eric; Koekemoer, Anton M.

    2012-04-20

    Gravitational lensing can provide pure geometric tests of the structure of spacetime, for instance by determining empirically the angular diameter distance-redshift relation. This geometric test has been demonstrated several times using massive clusters which produce a large lensing signal. In this case, matter at a single redshift dominates the lensing signal, so the analysis is straightforward. It is less clear how weaker signals from multiple sources at different redshifts can be stacked to demonstrate the geometric dependence. We introduce a simple measure of relative shear which for flat cosmologies separates the effect of lens and source positions into multiplicative terms, allowing signals from many different source-lens pairs to be combined. Applying this technique to a sample of groups and low-mass clusters in the COSMOS survey, we detect a clear variation of shear with distance behind the lens. This represents the first detection of the geometric effect using weak lensing by multiple, low-mass groups. The variation of distance with redshift is measured with sufficient precision to constrain the equation of state of the universe under the assumption of flatness, equivalent to a detection of a dark energy component {Omega}{sub X} at greater than 99% confidence for an equation-of-state parameter -2.5 {<=} w {<=} -0.1. For the case w = -1, we find a value for the cosmological constant density parameter {Omega}{sub {Lambda}} = 0.85{sup +0.044}{sub -}0{sub .19} (68% CL) and detect cosmic acceleration (q{sub 0} < 0) at the 98% CL. We consider the systematic uncertainties associated with this technique and discuss the prospects for applying it in forthcoming weak-lensing surveys.

  6. Nbody Simulations and Weak Gravitational Lensing using new HPC-Grid resources: the PI2S2 project

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Antonuccio-Delogu, V.; Costa, A.; Comparato, M.

    2008-08-01

    We present the main project of the new grid infrastructure and the researches, that have been already started in Sicily and will be completed by next year. The PI2S2 project of the COMETA consortium is funded by the Italian Ministry of University and Research and will be completed in 2009. Funds are from the European Union Structural Funds for Objective 1 regions. The project, together with a similar project called Trinacria GRID Virtual Laboratory (Trigrid VL), aims to create in Sicily a computational grid for e-science and e-commerce applications with the main goal of increasing the technological innovation of local enterprises and their competition on the global market. PI2S2 project aims to build and develop an e-Infrastructure in Sicily, based on the grid paradigm, mainly for research activity using the grid environment and High Performance Computer systems. As an example we present the first results of a new grid version of FLY a tree Nbody code developed by INAF Astrophysical Observatory of Catania, already published in the CPC program Library, that will be used in the Weak Gravitational Lensing field.

  7. Viking radio science data analysis and synthesis. [rotation of Mars, solar system dynamics, and gravitational laws

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.

    1984-01-01

    The rotational motion of Mars and its geophysical ramifications were investigated. Solar system dynamics and the laws of gravitation were also studied. The planetary ephemeris program, which was the central element in data analysis for this project, is described in brief. Viking Lander data were used in the investigation.

  8. A weak gravitational lensing recalibration of the scaling relations linking the gas properties of dark haloes to their mass

    NASA Astrophysics Data System (ADS)

    Wang, Wenting; White, Simon D. M.; Mandelbaum, Rachel; Henriques, Bruno; Anderson, Michael E.; Han, Jiaxin

    2016-03-01

    We use weak gravitational lensing to measure mean mass profiles around locally brightest galaxies (LBGs). These are selected from the Seventh Data Release of the Sloan Digital Sky Survey spectroscopic and photometric catalogues to be brighter than any neighbour projected within 1.0 Mpc and differing in redshift by <1000 km s-1. Most (>83 per cent) are expected to be the central galaxies of their dark matter haloes. Previous stacking analyses have used this LBG sample to measure mean Sunyaev-Zeldovich flux and mean X-ray luminosity as a function of LBG stellar mass. In both cases, a simulation of the formation of the galaxy population was used to estimate effective halo mass for LBGs of given stellar mass, allowing the derivation of scaling relations between the gas properties of haloes and their mass. By comparing results from a variety of simulations to our lensing data, we show that this procedure has significant model dependence reflecting: (i) the failure of any given simulation to reproduce observed galaxy abundances exactly; (ii) a dependence on the cosmology underlying the simulation; and (iii) a dependence on the details of how galaxies populate haloes. We use our lensing results to recalibrate the scaling relations, eliminating most of this model dependence and explicitly accounting both for residual modelling uncertainties and for observational uncertainties in the lensing results. The resulting scaling relations link the mean gas properties of dark haloes to their mass over an unprecedentedly wide range, 1012.5 < M500/M⊙ < 1014.5, and should fairly and robustly represent the full halo population.

  9. On claims that general relativity differs from Newtonian physics for self-gravitating dusts in the low velocity, weak field limit

    NASA Astrophysics Data System (ADS)

    Rowland, David R.

    2015-06-01

    Galaxy rotation curves are generally analyzed theoretically using Newtonian physics; however, two groups of authors have claimed that for self-gravitating dusts, general relativity (GR) makes significantly different predictions to Newtonian physics, even in the weak field, low velocity limit. One group has even gone so far as to claim that nonlinear general relativistic effects can explain flat galactic rotation curves without the need for cold dark matter. These claims seem to contradict the well-known fact that the weak field, low velocity, low pressure correspondence limit of GR is Newtonian gravity, as evidenced by solar system tests. Both groups of authors claim that their conclusions do not contradict this fact, with Cooperstock and Tieu arguing that the reason is that for the solar system, we have test particles orbiting a central gravitating body, whereas for a galaxy, each star is both an orbiting body and a contributor to the net gravitational field, and this supposedly makes a difference due to nonlinear general relativistic effects. Given the significance of these claims for analyses of the flat galactic rotation curve problem, this article compares the predictions of GR and Newtonian gravity for three cases of self-gravitating dusts for which the exact general relativistic solutions are known. These investigations reveal that GR and Newtonian gravity are in excellent agreement in the appropriate limits, thus supporting the conventional use of Newtonian physics to analyze galactic rotation curves. These analyses also reveal some sources of error in the referred to works.

  10. Radio follow-up of the γ-ray flaring gravitational lens JVAS B0218+357

    NASA Astrophysics Data System (ADS)

    Spingola, C.; Dallacasa, D.; Orienti, M.; Giroletti, M.; McKean, J. P.; Cheung, C. C.; Hovatta, T.; Ciprini, S.; D'Ammando, F.; Falco, E.; Larsson, S.; Max-Moerbeck, W.; Ojha, R.; Readhead, A. C. S.; Richards, J. L.; Scargle, J.

    2016-04-01

    We present results on multifrequency Very Long Baseline Array (VLBA) monitoring observations of the double-image gravitationally lensed blazar JVAS B0218+357. Multi-epoch observations started less than one month after the γ-ray flare detected in 2012 by the Large Area Telescope on board Fermi, and spanned a 2-month interval. The radio light curves did not reveal any significant flux density variability, suggesting that no clear correlation between the high-energy and low-energy emission is present. This behaviour was confirmed also by the long-term Owens Valley Radio Observatory monitoring data at 15 GHz. The milliarcsecond-scale resolution provided by the VLBA observations allowed us to resolve the two images of the lensed blazar, which have a core-jet structure. No significant morphological variation is found by the analysis of the multi-epoch data, suggesting that the region responsible for the γ-ray variability is located in the core of the active galactic nuclei, which is opaque up to the highest observing frequency of 22 GHz.

  11. Mass and Light Correlated with Galaxies on Local and Cosmic Scales: Weak Gravitational Lensing in the Deep Lens Survey

    NASA Astrophysics Data System (ADS)

    Choi, Ami

    In this dissertation, we describe the results of applying weak gravitational lensing techniques to probe the connection between luminous galaxies and the dark matter halos in which they live. Specifically, we study galaxy-shear correlations in the Deep Lens Survey, and we investigate how this function changes with observable galaxy properties such as stellar mass, luminosity, color, and redshift. In Chapter 3, we examine the galaxy-shear correlation function on a large range of scales from small radii where the dominant contribution is from halos associated with individual galaxies to large radii where the dominant contribution is from neighboring galaxies and large-scale structure. We study the lensing signal for galaxies binned by luminosity and find that more luminous galaxies are more massive. More interestingly, the galaxy-shear correlation function shows features consistent with satellite and 2-halo terms from the halo model and cannot be fit with a single power law out to 15 Mpc. We also find more correlated large scale structure mass at lower redshift, consistent with the paradigm of bottom-up hierarchical structure formation. In Chapter 4, we focus on a subset of the survey with ancillary infrared data that allow estimates of stellar mass. We study the lensing signal for galaxies binned by stellar mass and infer the nature and evolution of the relationship between virial mass and stellar mass. We show that stellar mass and virial mass scale such that galaxies with smaller stellar masses also have smaller virial masses. This work has implications for the idea of downsizing, but does not yet have the S/N to provide competitive constraints. In the process of making lensing measurements on the Deep Lens Survey, we have also investigated errors related to the two most important variables: shapes and photometric redshifts. we discuss our findings in the context of the survey characteristics in Chapter 2 and in the simulations section of Chapter 3. While neither

  12. The Viking relativity experiment. [radio transmission delay due to solar gravitation effects

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.; Reasenberg, R. D.; Macneil, P. E.; Goldstein, R. B.; Brenkle, J. P.; Cain, D. L.; Komarek, T.; Zygielbaum, A. I.; Cuddihy, W. F.; Michael, W. H., Jr.

    1977-01-01

    Measurements of the round-trip time of flight of radio signals transmitted from the earth to the Viking spacecraft are being analyzed to test the predictions of Einstein's theory of general relativity. According to this theory the signals will be delayed by up to approximately 250 microsec owing to the direct effect of solar gravity on the propagation. A very preliminary qualitative analysis of the Viking data obtained near the 1976 superior conjunction of Mars indicates agreement with the predictions to within the estimated uncertainty of 0.5%.

  13. DETECTION OF SUBSTRUCTURE IN THE GRAVITATIONALLY LENSED QUASAR MG0414+0534 USING MID-INFRARED AND RADIO VLBI OBSERVATIONS

    SciTech Connect

    MacLeod, Chelsea L.; Jones, Ramsey; Agol, Eric; Kochanek, Christopher S.

    2013-08-10

    We present 11.2 {mu}m observations of the gravitationally lensed, radio-loud z{sub s} = 2.64 quasar MG0414+0534, obtained using the Michelle camera on Gemini North. We find a flux ratio anomaly of A2/A1 = 0.93 {+-} 0.02 for the quasar images A1 and A2. When combined with the 11.7 {mu}m measurements from Minezaki et al., the A2/A1 flux ratio is nearly 5{sigma} from the expected ratio for a model based on the two visible lens galaxies. The mid-IR flux ratio anomaly can be explained by a satellite (substructure), 0.''3 northeast of image A2, as can the detailed very long baseline interferometry (VLBI) structures of the jet produced by the quasar. When we combine the mid-IR flux ratios with high-resolution VLBI measurements, we find a best-fit mass between 10{sup 6.2} and 10{sup 7.5} M{sub Sun} inside the Einstein radius for a satellite substructure modeled as a singular isothermal sphere at the redshift of the main lens (z{sub l} = 0.96). We are unable to set an interesting limit on the mass to light ratio due to its proximity to the quasar image A2. While the observations used here were technically difficult, surveys of flux anomalies in gravitational lenses with the James Webb Space Telescope will be simple, fast, and should well constrain the abundance of substructure in dark matter halos.

  14. A Radio-Based Search finds no evidence for intrinsically weak TGFs in the Fermi GBM Data

    NASA Astrophysics Data System (ADS)

    Briggs, Michael; Omar, Kareem

    2016-04-01

    We analyze gamma-ray data from the Fermi Gamma-ray Burst Monitor (GBM) around the times of VLF radio sferics. The gamma-ray photons are time-aligned to the times of radio sferics, with correction for the light travel time to Fermi, and accumulated. Gamma-ray photons from TGFs already known from the standard GBM TGF offline search are excluded from the accumulation. We use sferic signals from both the World Wide Lightning Location Network (WWLLN) and the Earth Networks Total Lightning Network (ENTLN). No excess signal is found in the accumulation of the gamma-ray data for sferics within 400 km of the Fermi nadir. However, an excess of gamma-rays is found in the co-aligned signal for sferics between 400 and 800 km of the Fermi nadir. Our interpretation of this distance-dependent non-detection / detection pattern is that the standard GBM offline search for TGFs is missing some TGFs that are weak at Fermi due to distance from Fermi and that there is no evidence for a population of TGFs that are intrinsically fainter than the threshold of the search.

  15. Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields.

    PubMed

    Malkemper, E Pascal; Eder, Stephan H K; Begall, Sabine; Phillips, John B; Winklhofer, Michael; Hart, Vlastimil; Burda, Hynek

    2015-01-01

    The mammalian magnetic sense is predominantly studied in species with reduced vision such as mole-rats and bats. Far less is known about surface-dwelling (epigeic) rodents with well-developed eyes. Here, we tested the wood mouse Apodemus sylvaticus for magnetoreception using a simple behavioural assay in which mice are allowed to build nests overnight in a visually symmetrical, circular arena. The tests were performed in the ambient magnetic field or in a field rotated by 90°. When plotted with respect to magnetic north, the nests were bimodally clustered in the northern and southern sectors, clearly indicating that the animals used magnetic cues. Additionally, mice were tested in the ambient magnetic field with a superimposed radio frequency magnetic field of the order of 100 nT. Wood mice exposed to a 0.9 to 5 MHz frequency sweep changed their preference from north-south to east-west. In contrast to birds, however, a constant frequency field tuned to the Larmor frequency (1.33 MHz) had no effect on mouse orientation. In sum, we demonstrated magnetoreception in wood mice and provide first evidence for a radical-pair mechanism in a mammal. PMID:25923312

  16. Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields

    PubMed Central

    Malkemper, E. Pascal; Eder, Stephan H. K.; Begall, Sabine; Phillips, John B.; Winklhofer, Michael; Hart, Vlastimil; Burda, Hynek

    2015-01-01

    The mammalian magnetic sense is predominantly studied in species with reduced vision such as mole-rats and bats. Far less is known about surface-dwelling (epigeic) rodents with well-developed eyes. Here, we tested the wood mouse Apodemus sylvaticus for magnetoreception using a simple behavioural assay in which mice are allowed to build nests overnight in a visually symmetrical, circular arena. The tests were performed in the ambient magnetic field or in a field rotated by 90°. When plotted with respect to magnetic north, the nests were bimodally clustered in the northern and southern sectors, clearly indicating that the animals used magnetic cues. Additionally, mice were tested in the ambient magnetic field with a superimposed radio frequency magnetic field of the order of 100 nT. Wood mice exposed to a 0.9 to 5 MHz frequency sweep changed their preference from north-south to east-west. In contrast to birds, however, a constant frequency field tuned to the Larmor frequency (1.33 MHz) had no effect on mouse orientation. In sum, we demonstrated magnetoreception in wood mice and provide first evidence for a radical-pair mechanism in a mammal. PMID:25923312

  17. Effect of the radio frequency discharge on the dust charging process in a weakly collisional and fully ionized plasma

    SciTech Connect

    Motie, Iman; Bokaeeyan, Mahyar

    2015-02-15

    A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-called the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.

  18. Coordinated study of non-seismic and weak seismic events (magnitude M less than 5) using VLF radio links

    NASA Astrophysics Data System (ADS)

    Wolbang, Daniel; Biernat, Helfried K.; Friedrich, Martin; Schwingenschuh, Konrad; Besser, B. P.; Eichelberger, Hans; Prattes, Gustav; Rozhnoi, Alexander; Solovieva, Maria; Biagi, Pier Francesco; Boudjada, Mohammed Y.

    In this study we analyze low seismicity earthquakes (EQs) with magnitudes M < 5 in South Eastern Europe, time period 2011-2013, via very low frequency (VLF) radio links. The main scientific objective of the statistical and event based investigations are reliable characterization of typical seismic and non-seismic variations in the VLF signal. The focus is on robust results, especially for weak EQs, because non-seismic influences could have a strong effect on the analysis. Various electromagnetic methods have been developed in order to study possible earthquake precursor phenomena generated in the lithosphere and then propagating in the atmosphere / ionosphere [1]. The major challenge of this seismo-electromagnetic (SEM) method is to differentiate parameter variations and disentangle seismic from non-seismic sources. In the course of the European radio receiver network (International Network for Frontier Research on Earthquake Precursors, INFREP) radio signals in the VLF/LF frequency range are continuously recorded by dedicated, distributed transmitters. The major VLF receiving station for this study (10-50 kHz, Graz, Austria) operates continuously throughout the year, the selected network-wide temporal resolution is 20 sec, 12 transmitters, located mainly in Europe, are received (amplitude and phase). The facility has a proven high reliability and availability. The VLF links from the transmitters to the receivers are sometimes more, sometimes less influenced by various disturbances. In case the signal is crossing an EQ preparation zone, we are in principle able to detect seismic activity if the signal to noise ratio is high enough [2]. Generally we distinguish between ionospheric or atmospheric disturbances, influences which depend on the EQ properties, and transmitter variations itself. Ionospheric / Atmospheric variations can be generated, e.g. by geomagnetic storms, solar flares or waves in the troposphere. The properties of the sub-ionospheric VLF waveguide are

  19. RCSLenS: testing gravitational physics through the cross-correlation of weak lensing and large-scale structure

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Joudaki, Shahab; Heymans, Catherine; Choi, Ami; Erben, Thomas; Harnois-Deraps, Joachim; Hildebrandt, Hendrik; Joachimi, Benjamin; Nakajima, Reiko; van Waerbeke, Ludovic; Viola, Massimo

    2016-03-01

    The unknown nature of `dark energy' motivates continued cosmological tests of large-scale gravitational physics. We present a new consistency check based on the relative amplitude of non-relativistic galaxy peculiar motions, measured via redshift-space distortion, and the relativistic deflection of light by those same galaxies traced by galaxy-galaxy lensing. We take advantage of the latest generation of deep, overlapping imaging and spectroscopic data sets, combining the Red Cluster Sequence Lensing Survey, the Canada-France-Hawaii Telescope Lensing Survey, the WiggleZ Dark Energy Survey and the Baryon Oscillation Spectroscopic Survey. We quantify the results using the `gravitational slip' statistic EG, which we estimate as 0.48 ± 0.10 at z = 0.32 and 0.30 ± 0.07 at z = 0.57, the latter constituting the highest redshift at which this quantity has been determined. These measurements are consistent with the predictions of General Relativity, for a perturbed Friedmann-Robertson-Walker metric in a Universe dominated by a cosmological constant, which are EG = 0.41 and 0.36 at these respective redshifts. The combination of redshift-space distortion and gravitational lensing data from current and future galaxy surveys will offer increasingly stringent tests of fundamental cosmology.

  20. The Evolution of the UV Spectra in Early Type Galaxies Out to Z=0.7: Clues to the Stellar Population and Agn's in Weak Radio Galaxies.

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier

    1991-07-01

    We request 26 hr in each of Cycle 2 & 3 with FOS or GHRS to take low resolution UV spectra of a WELL DEFINED HOMOGENEOUS SAMPLE OF 12 EARLY TYPE WEAK RADIO GALAXIES WITH 0.1weak radio sources is large enough to do BOTH AT ONCE. The end product will be a sample of early type galaxies uniformly distributed in z with HOMOGENEOUS UV SPECTROSCOPY AND HST IMAGES. Recent IUE data show a strong correlation between radio power and Lyman alpha luminosity, and a UV upturn (<2000 A) in nearby early type radio galaxies similar to that seen in luminous field ellipticals. HST UV spectroscopy will push this sample to intermediate redshifts (0.1radio power at higher redshifts; 3) their morphology at kpc scales, tracing the UV stellar population and any scattered nonthermal contribution; 4) any connection between their weak AGN and the history of their (nuclear) stellar population. This will provide important constraints to the evolution of their stellar population, their weak AGN, and the radio galaxy population as a whole.

  1. Copenhagen Quantum Mechanics Emerges from a Deterministic Schrödinger Theory in 11 Dimensional Spacetime Including Weak Field Gravitation

    NASA Astrophysics Data System (ADS)

    Doyen, G.; Drakova, D.

    2015-08-01

    We construct a world model consisting of a matter field living in 4 dimensional spacetime and a gravitational field living in 11 dimensional spacetime. The seven hidden dimensions are compactified within a radius estimated by reproducing the particle-wave characteristics of diffraction experiments. In the presence of matter fields the gravitational field develops localized modes with elementary excitations called gravonons which are induced by the sources (massive particles). The final world model treated here contains only gravonons and a scalar matter field. The gravonons are localized in the environment of the massive particles which generate them. The solution of the Schrödinger equation for the world model yields matter fields which are localized in the 4 dimensional subspace. The localization has the following properties: (i) There is a chooser mechanism for the selection of the localization site. (ii) The chooser selects one site on the basis of minor energy differences and differences in the gravonon structure between the sites, which at present cannot be controlled experimentally and therefore let the choice appear statistical. (iii) The changes from one localization site to a neighbouring one take place in a telegraph-signal like manner. (iv) The times at which telegraph like jumps occur depend on subtleties of the gravonon structure which at present cannot be controlled experimentally and therefore let the telegraph-like jumps appear statistical. (v) The fact that the dynamical law acts in the configuration space of fields living in 11 dimensional spacetime lets the events observed in 4 dimensional spacetime appear non-local. In this way the phenomenology of CQM is obtained without the need of introducing the process of collapse and a probabilistic interpretation of the wave function. Operators defining observables need not be introduced. All experimental findings are explained in a deterministic way as a consequence of the time development of the wave

  2. The dark matter haloes of moderate luminosity X-ray AGN as determined from weak gravitational lensing and host stellar masses

    NASA Astrophysics Data System (ADS)

    Leauthaud, Alexie; J. Benson, Andrew; Civano, Francesca; L. Coil, Alison; Bundy, Kevin; Massey, Richard; Schramm, Malte; Schulze, Andreas; Capak, Peter; Elvis, Martin; Kulier, Andrea; Rhodes, Jason

    2015-01-01

    Understanding the relationship between galaxies hosting active galactic nuclei (AGN) and the dark matter haloes in which they reside is key to constraining how black hole fuelling is triggered and regulated. Previous efforts have relied on simple halo mass estimates inferred from clustering, weak gravitational lensing, or halo occupation distribution modelling. In practice, these approaches remain uncertain because AGN, no matter how they are identified, potentially live a wide range of halo masses with an occupation function whose general shape and normalization are poorly known. In this work, we show that better constraints can be achieved through a rigorous comparison of the clustering, lensing, and cross-correlation signals of AGN hosts to the fiducial stellar-to-halo mass relation (SHMR) derived for all galaxies, irrespective of nuclear activity. Our technique exploits the fact that the global SHMR can be measured with much higher accuracy than any statistic derived from AGN samples alone. Using 382 moderate luminosity X-ray AGN at z < 1 from the COSMOS field, we report the first measurements of weak gravitational lensing from an X-ray-selected sample. Comparing this signal to predictions from the global SHMR, we find that, contrary to previous results, most X-ray AGN do not live in medium size groups - nearly half reside in relatively low mass haloes with M200b ˜ 1012.5 M⊙. The AGN occupation function is well described by the same form derived for all galaxies but with a lower normalization - the fraction of haloes with AGN in our sample is a few per cent. The number of AGN satellite galaxies scales as a power law with host halo mass with a power-law index α = 1. By highlighting the relatively `normal' way in which moderate luminosity X-ray AGN hosts occupy haloes, our results suggest that the environmental signature of distinct fuelling modes for luminous quasars compared to moderate luminosity X-ray AGN is less obvious than previously claimed.

  3. Scattering by Gravitational Wakes in Saturn's A-Ring & Inference of Wake Sizes from Multiple Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    Marouf, Essam A.; Wong, Kwok K.; French, Richard G.; Rappaport, Nicole J.; McGhee-French, Colleen A.

    2014-11-01

    Elongated and canted clusters of ring particles (gravitational wakes) are known to permeate the A- and B-Rings of Saturn. We constrain wake width W and height H, for given cant angle γ, using multiple 3.6 cm-λ Cassini radio occultations covering a range of ring opening angle B. We model the electromagnetic interaction problem as diffraction by randomly blocked screens constructed in the plane normal to the incidence direction (Marouf, DPS 1994, 1996, and 1997; Thomson and Marouf, Icarus, 2009). The screen’s transmittance is binary: the incident wave is either blocked or not blocked depending on the collective shadow area cast by the large particles and particle clusters. Wakes are modeled as monolayer of elliptical cylinders populated by random but uniform distribution of spherical particles. The cylinders can be immersed in a “halo” of loose spherical particles. Numerical simulations of diffraction patterns for a range of model parameters and viewing geometry reveal distinct diffracted cylindrical and spherical components. The first dominates at small scattering angles and originates from specific locations within the footprint of the spacecraft antenna. The second dominates at larger angles and originates from the full footprint. Its angular spectrum is in good agreement with theoretical predictions based on multiple scattering by classical ring models (Marouf et al., Icarus, 1982, 1983). We interpret Cassini measurements in the light of the simulation results, assuming that the measured scattered signal spectra can be modeled as superposition of diffracted spherical and cylindrical components. We compute and remove contribution of the first component assuming Voyager-like size distributions (Zebker et al., Icarus, 1985). In most cases, a large residual spectral component is interpreted as contribution of cylindrical (wake) diffraction. Its angular width determines a characteristic cylindrical shadow width that depends on the wake (W, H) and the viewing

  4. The Systematic Error Test for PSF Correction in Weak Gravitational Lensing Shear Measurement By the ERA Method By Idealizing PSF

    NASA Astrophysics Data System (ADS)

    Okura, Yuki; Futamase, Toshifumi

    2016-08-01

    We improve the ellipticity of re-smeared artificial image (ERA) method of point-spread function (PSF) correction in a weak lensing shear analysis in order to treat the realistic shape of galaxies and the PSF. This is done by re-smearing the PSF and the observed galaxy image using a re-smearing function (RSF) and allows us to use a new PSF with a simple shape and to correct the PSF effect without any approximations or assumptions. We perform a numerical test to show that the method applied for galaxies and PSF with some complicated shapes can correct the PSF effect with a systematic error of less than 0.1%. We also apply the ERA method for real data of the Abell 1689 cluster to confirm that it is able to detect the systematic weak lensing shear pattern. The ERA method requires less than 0.1 or 1 s to correct the PSF for each object in a numerical test and a real data analysis, respectively.

  5. Gravitational waves and red shifts - A space experiment for testing relativistic gravity using multiple time-correlated radio signals

    NASA Technical Reports Server (NTRS)

    Smarr, L. L.; Vessot, R. F. C.; Lundquist, C. A.; Decher, R.; Piran, T.

    1983-01-01

    A two-step satellite mission for improving the accuracy of gravitational wave detection and for observing actual gravity waveforms is proposed. The spacecraft would carry both a highly stable hydrogen maser, which would control a transmitter sending signals to earth, and a Doppler transponder operating in the two-way mode. The use of simultaneous one- and two-way Doppler transmissions offers four time records of frequency pulsations, which can reveal gravitational radiation at 1-10 MHz with an amplitude accuracy of a factor of six. The first mission phase would consist of a Shuttle launch into a highly eccentric orbit to obtain measurements of the gravitational redshift using gravitational potentials of different earth regions to establish that gravity is describable by a metric theory. Then, after a boost into a heliocentric orbit at 6 AU, the earth-satellite system could detect gravitational waves in the solar system, as well as bursts emitted by the collisions of supermassive black holes.

  6. Global VLBI Observations of Weak Extragalactic Radio Sources: Imaging Candidates to Align the VLBI and Gaia Frames

    NASA Technical Reports Server (NTRS)

    Bourda, Geraldine; Collioud, Arnaud; Charlot, Patrick; Porcas, Richard; Garrington, Simon

    2010-01-01

    The space astrometry mission Gaia will construct a dense optical QSO-based celestial reference frame. For consistency between optical and radio positions, it will be important to align the Gaia and VLBI frames (International Celestial Reference Frame) with the highest accuracy. In this respect, it is found that only 10% of the ICRF sources are suitable to establish this link (70 sources), either because most of the ICRF sources are not bright enough at optical wavelengths or because they show extended radio emission which precludes reaching the highest astrometric accuracy. In order to improve the situation, we initiated a multi-step VLBI observational project, dedicated to finding additional suitable radio sources for aligning the two frames. The sample consists of about 450 optically-bright radio sources, typically 20 times weaker than the ICRF sources, which have been selected by cross-correlating optical and radio catalogs. The initial observations, aimed at checking whether these sources are detectable with VLBI, and conducted with the European VLBI Network (EVN) in 2007, showed an excellent 90% detection rate. This paper reports on global VLBI observations carried out in March 2008 to image 105 from the 398 previously detected sources. All sources were successfully imaged, revealing compact VLBI structure for about half of them, which is very promising for the future.

  7. Gravitational lensing in quasar samples

    NASA Astrophysics Data System (ADS)

    Claeskens, Jean-François; Surdej, Jean

    The first cosmic mirage was discovered approximately 20 years ago as the double optical counterpart of a radio source. This phenomenon had been predicted some 70 years earlier as a consequence of General Relativity. We present here a summary of what we have learnt since. The applications are so numerous that we had to concentrate on a few selected aspects of this new field of research. This review is focused on strong gravitational lensing, i.e. the formation of multiple images, in QSO samples. It is intended to give the reader an up-to-date status of the observations and to present an overview of its most interesting potential applications in cosmology and astrophysics, as well as numerous important results achieved so far. The first section follows an intuitive approach to the basics of gravitational lensing and is developed in view of our interest in multiply imaged quasars. The astrophysical and cosmological applications of gravitational lensing are outlined in Sect. 2 and the most important results are presented in Sect. 5. Sections 3 and 4 are devoted to the observations. Finally, conclusions are summarized in the last section. We have tried to avoid duplication with existing (and excellent) introductions to the field of gravitational lensing. For this reason, we did not concentrate on the individual properties of specific lens models, as these are already well presented in Narayan and Bartelmann (1996) and on a more intuitive ground in Refsdal and Surdej (1994). Wambsganss (1998) proposes a broad view on gravitational lensing in astronomy; the reviews by Fort and Mellier (1994) and Hattori et al. (1999) deal with lensing by galaxy clusters; microlensing in the Galaxy and the local group is reviewed by Paczynski (1996) and a general panorama on weak lensing is given by Bartelmann and Schneider (1999) and Mellier (1999). The monograph on the theory of gravitational lensing by Schneider, Ehlers and Falco (1992) also remains a reference in the field.

  8. Omnidirectional Gravitational Radiation Observatory: Proceedings of the First International Workshop

    NASA Astrophysics Data System (ADS)

    Velloso, W. F.; Aguiar, O. D.; Magalhães, N. S.

    1997-08-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Introduction: The OMNI-1 Workshop and the beginning of the International Gravitational Radiation Observatory * Opening Talks * Gravitational radiation sources for Acoustic Detectors * The scientific and technological benefits of gravitational wave research * Operating Second and Third Generation Resonant-Mass Antennas * Performance of the ALLEGRO detector -- and what our experience tells us about spherical detectors * The Perth Niobium resonant mass antenna with microwave parametric transducer * The gravitational wave detectors EXPLORER and NAUTILUS * Gravitational Waves and Astrophysical Sources for the Next Generation Observatory * What is the velocity of gravitational waves? * Superstring Theory: how it change our ideas about the nature of Gravitation * Statistical approach to the G.W. emission from radio pulsars * Gravitational waves from precessing millisecond pulsars * The production rate of compact binary G.W. sources in elliptical galaxies * On the possibility to detect Gravitational Waves from precessing galactic neutron stars * Gravitational wave output of the head-on collision of two black holes * SN as a powerfull source of gravitational radiation * Long thick cosmic strings radiating gravitational waves and particles * Non-Parallel Electric and Magnetic Fields in a gravitational background, stationary G.W. and gravitons * Exact solutions of gravitational waves * Factorization method for linearized quantum gravity at tree-level. Graviton, photon, electron processes * Signal Detection with Resonant-Mass Antennas * Study of coalescing binaries with spherical gravitational waves detectors * Influence of transducer asymmetries on the isotropic response of a spherical gravitational wave antenna * Performances and preliminary results of the cosmic-ray detector associated with NAUTILUS * Possible transducer configurations for a spherical gravitational wave antenna * Detectability of

  9. Mergers of Charged Black Holes: Gravitational-wave Events, Short Gamma-Ray Bursts, and Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    2016-08-01

    The discoveries of GW150914, GW151226, and LVT151012 suggest that double black hole (BH–BH) mergers are common in the universe. If at least one of the two merging black holes (BHs) carries a certain amount of charge, possibly retained by a rotating magnetosphere, the inspiral of a BH–BH system would drive a global magnetic dipole normal to the orbital plane. The rapidly evolving magnetic moment during the merging process would drive a Poynting flux with an increasing wind power. The magnetospheric activities during the final phase of the merger would make a fast radio burst (FRB) if the BH charge can be as large as a factor of \\hat{q}∼ ({10}-9{--}{10}-8) of the critical charge Q c of the BH. At large radii, dissipation of the Poynting flux energy in the outflow would power a short-duration high-energy transient, which would appear as a detectable short-duration gamma-ray burst (GRB) if the charge can be as large as \\hat{q}∼ ({10}-5{--}{10}-4). The putative short GRB coincident with GW150914 recorded by Fermi GBM may be interpreted with this model. Future joint GW/GRB/FRB searches would lead to a measurement or place a constraint on the charges carried by isolate BHs.

  10. Mergers of Charged Black Holes: Gravitational-wave Events, Short Gamma-Ray Bursts, and Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    2016-08-01

    The discoveries of GW150914, GW151226, and LVT151012 suggest that double black hole (BH–BH) mergers are common in the universe. If at least one of the two merging black holes (BHs) carries a certain amount of charge, possibly retained by a rotating magnetosphere, the inspiral of a BH–BH system would drive a global magnetic dipole normal to the orbital plane. The rapidly evolving magnetic moment during the merging process would drive a Poynting flux with an increasing wind power. The magnetospheric activities during the final phase of the merger would make a fast radio burst (FRB) if the BH charge can be as large as a factor of \\hat{q}˜ ({10}-9{--}{10}-8) of the critical charge Q c of the BH. At large radii, dissipation of the Poynting flux energy in the outflow would power a short-duration high-energy transient, which would appear as a detectable short-duration gamma-ray burst (GRB) if the charge can be as large as \\hat{q}˜ ({10}-5{--}{10}-4). The putative short GRB coincident with GW150914 recorded by Fermi GBM may be interpreted with this model. Future joint GW/GRB/FRB searches would lead to a measurement or place a constraint on the charges carried by isolate BHs.

  11. The Evolution of the UV Spectra in Early Type Galaxies Out to Z=0.7: Clues to the Stellar Population and Agn's in Weak Radio GALAXIES.-II

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier

    1991-07-01

    We request 26 hr in each of Cycle 2 & 3 with FOS or GHRS to take low resolution UV spectra of a WELL DEFINED HOMOGENEOUS SAMPLE OF 12 EARLY TYPE WEAK RADIO GALAXIES WITH 0.1weak radio sources is large enough to do BOTH AT ONCE. The end product will be a sample of early type galaxies uniformly distributed in z with HOMOGENEOUS UV SPECTROSCOPY AND HST IMAGES. Recent IUE data show a strong correlation between radio power and Lyman alpha luminosity, and a UV upturn (<2000 A) in nearby early type radio galaxies similar to that seen in luminous field ellipticals. HST UV spectroscopy will push this sample to intermediate redshifts (0.1radio power at higher redshifts; 3) their morphology at kpc scales, tracing the UV stellar population and any scattered nonthermal contribution; 4) any connection between their weak AGN and the history of their (nuclear) stellar population. This will provide important constraints to the evolution of their stellar population, their weak AGN, and the radio galaxy population as a whole.

  12. The Origin of Gravitation

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng Ming

    2012-10-01

    In the natural world, people have discovered four kinds of forces: electromagnetic force, gravitation, weak force, and strong force. Although the gravitation has been discovered more than three hundred years, its mechanism of origin is unclear until today. While investigating the origin of gravitation, I do some experiments discover the moving photons produce gravitation. This discovery shows the origin of gravitation. Meanwhile I do some experiments discover the light interference fringes are produced by the gravitation: my discovery demonstrate light is a particle, but is not a wave-particle duality. Furthermore, applications of this discovery to other moving particles show a similar effect. In a word: the micro particle moving produce gravitation and electromagnetic force. Then I do quantity experiment get a general formula: Reveal the essence of gravitational mass and the essence of electric charge; reveal the origin of gravitation and the essence of matter wave. Along this way, I unify the gravitation and electromagnetic force. Namely I find a natural law that from atomic world to star world play in moving track. See website: https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-8473-2658-8/mechanism-of-interaction-in-moving-matter

  13. Gravitational lenses

    SciTech Connect

    Turner, E.L.

    1988-07-01

    For several years astronomers have devoted considerable effort to finding and studying a class of celestial phenomena whose very existence depends on rare cosmic accidents. These are gravitational-lens events, which occur when two or more objects at different distances from the earth happen to lie along the same line of sight and so coincide in the sky. The radiation from the more distant object, typically a quasar, is bent by the gravitational field of the foreground object. The bending creates a cosmic mirage: distorted or multiple images of the background object. Such phenomena may reveal many otherwise undetectable features of the image source, of the foreground object and of the space lying between them. Such observations could help to resolve several fundamental questions in cosmology. In the past decade theoretical and observational research on gravitational lenses has grown rapidly and steadily. At this writing at least 17 candidate lens systems have been discussed in the literature. Of the 17 lens candidates reported so far in professional literature, only five are considered to have been reliably established by subsequent observations. Another three are generally regarded as weak or speculative cases with less than 50 percent chance of actually being lens systems. In the remaining nine cases the evidence is mixed or is sparse enough so that the final judgment could swing either way. As might be concluded, little of the scientific promise of gravitational lenses has yet been realized. The work has not yielded a clear value for the proportionality constant or any of the other fundamental cosmological parameter. 7 figs.

  14. Gravitational-to-electromagnetic wave conversion and gamma-ray bursts calorimetry: The GRB980425/SN 1998bw ~1049 erg radio emission

    NASA Astrophysics Data System (ADS)

    Mosquera Cuesta, Herman J.

    2002-03-01

    The unusual features of supernova (SN) 1998bw and its apparent association with the gamma-ray burst (GRB) event GRB980425 were highlighted by Kulkarni et al. At its peak SN 1998bw was anomalously superluminous in radio wavelengths with an inferred fluence Eradio>=1049 erg [S. Kulkarni et al., Nature (London) 395, 663 (1998)], while the apparent expansion velocity of its ejecta (~10-5Msolar) suggests a shock wave moving relativistically (Vexp~2c). The unique properties of SN 1998bw strengthen the case for it being linked with GRB980425. I present a consistent, novel mechanism to explain the peculiar event SN 1998bw and similar phenomena in GRBs: Conversion of powerful, high frequency (~2 kHz) gravitational waves (GWs) into electromagnetic waves [M. Johnston, R. Ruffini, and F. Zerilli, Phys. Rev. Lett. 31, 1317 (1973)] might have taken place during SN 1998bw. Yet, conversion of GRB photons into GWs, as advanced by Johnston, Ruffini, and Zerilli [Phys. Lett. 49B, 185 (1974)], may also occur. These processes can produce GRBs depleted in γ rays but enhanced in x rays, for instance, or even more plausibly induce dark GRBs, those with no optical afterglow. The class of GWs needed to drive the calorimetric changes of these gamma-ray bursts may be generated by (a) the nonaxisymmetric dynamics of a torus surrounding the hypernova (or failed supernova) magnetized stellar-mass black hole (BH) remnant, as in van Putten's mechanism for driving long GRBs powered by the BH spin energy [Phys. Rev. Lett. 87, 091101 (2001)], or in the van Putten and Ostriker mechanism to account for the bimodal distribution in duration in GRBs [Astrophys. J. Lett. 552, L32 (2001)], where the torus magnetohydrodynamics may be dominated by either hyperaccretion onto a slowly spinning BH or suspended accretion onto a fast rotating BH, or (b) the just formed black hole with electromagnetic structure as in the GRB central engine mechanism of Ruffini et al. [Astrophys. J. Lett. 555, L107 (2001); 555, L

  15. Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    According to f =d(mv)/dt=m(dv/dt)+ v(dm/dt), a same gravitational formula had been de-duced from the variance in physical mass of QFT and from the variance in mass of inductive energy-transfer of GR respectively: f QF T = f GR = -G (mM/r2 )((r/r)+(v/c)) when their interaction-constants are all taken the experimental values (H05-0029-08, E15-0039-08). f QF T is the quasi-Casimir pressure. f GR is equivalent to Einstein's equation, then more easy to solve it. The hypothesis of the equivalent principle is not used in f QF T , but required by f GR . The predictions of f QF T and f GR are identical except that f QF T has quantum effects but f GR has not and f GR has Lense-Thirring effect but f QF T has not. The quantum effects of gravitation had been verified by Nesvizhevsky et al with the ultracold neutrons falling in the earth's gravitational field in 2002. Yet Lense-Thirring effect had not been measured by GP-B. It shows that f QF T is essential but f GR is phenomenological. The macro-f QF T is the statistic average pressure collided by net virtual neutrinos ν 0 flux (after self-offset in opposite directions) and in direct proportion to the mass. But micro-f QF T is in direct proportion to the scattering section. The electric mass (in inverse proportion to de Broglie wavelength λ) far less than nucleonic mass and the electric scattering section (in direct proportion to λ2 ) far large than that of nucleon, then the net ν 0 flux pressure exerted to electron far large than that to nucleon and the electric displacement far large than that of nucleon, it causes the gravitational polarization of positive-negative charge center separation. Because the gravity far less than the electromagnetic binding force, in atoms the gravitational polarization only produces a little separation. But the net ν 0 flux can press a part freedom electrons in plasma of ionosphere into the earth's surface, the static electric force of redundant positive ions prevents electrons from further

  16. Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    According to f =d(mv)/dt=m(dv/dt)+ v(dm/dt), a same gravitational formula had been de-duced from the variance in physical mass of QFT and from the variance in mass of inductive energy-transfer of GR respectively: f QF T = f GR = -G (mM/r2 )((r/r)+(v/c)) when their interaction-constants are all taken the experimental values (H05-0029-08, E15-0039-08). f QF T is the quasi-Casimir pressure. f GR is equivalent to Einstein's equation, then more easy to solve it. The hypothesis of the equivalent principle is not used in f QF T , but required by f GR . The predictions of f QF T and f GR are identical except that f QF T has quantum effects but f GR has not and f GR has Lense-Thirring effect but f QF T has not. The quantum effects of gravitation had been verified by Nesvizhevsky et al with the ultracold neutrons falling in the earth's gravitational field in 2002. Yet Lense-Thirring effect had not been measured by GP-B. It shows that f QF T is essential but f GR is phenomenological. The macro-f QF T is the statistic average pressure collided by net virtual neutrinos ν 0 flux (after self-offset in opposite directions) and in direct proportion to the mass. But micro-f QF T is in direct proportion to the scattering section. The electric mass (in inverse proportion to de Broglie wavelength λ) far less than nucleonic mass and the electric scattering section (in direct proportion to λ2 ) far large than that of nucleon, then the net ν 0 flux pressure exerted to electron far large than that to nucleon and the electric displacement far large than that of nucleon, it causes the gravitational polarization of positive-negative charge center separation. Because the gravity far less than the electromagnetic binding force, in atoms the gravitational polarization only produces a little separation. But the net ν 0 flux can press a part freedom electrons in plasma of ionosphere into the earth's surface, the static electric force of redundant positive ions prevents electrons from further

  17. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  18. A new method for point-spread function correction using the ellipticity of re-smeared artificial images in weak gravitational lensing shear analysis

    SciTech Connect

    Okura, Yuki; Futamase, Toshifumi E-mail: tof@astr.tohoku.ac.jp

    2014-09-10

    Highly accurate weak lensing analysis is urgently required for planned cosmic shear observations. For this purpose we have eliminated various systematic noises in the measurement. The point-spread function (PSF) effect is one of them. A perturbative approach for correcting the PSF effect on the observed image ellipticities has been previously employed. Here we propose a new non-perturbative approach for PSF correction that avoids the systematic error associated with the perturbative approach. The new method uses an artificial image for measuring shear which has the same ellipticity as the lensed image. This is done by re-smearing the observed galaxy images and observed star images (PSF) with an additional smearing function to obtain the original lensed galaxy images. We tested the new method with simple simulated objects that have Gaussian or Sérsic profiles smeared by a Gaussian PSF with sufficiently large size to neglect pixelization. Under the condition of no pixel noise, it is confirmed that the new method has no systematic error even if the PSF is large and has a high ellipticity.

  19. Gravitational Waves from Neutron Stars: A Review

    NASA Astrophysics Data System (ADS)

    Lasky, Paul D.

    2015-09-01

    Neutron stars are excellent emitters of gravitational waves. Squeezing matter beyond nuclear densities invites exotic physical processes, many of which violently transfer large amounts of mass at relativistic velocities, disrupting spacetime and generating copious quantities of gravitational radiation. I review mechanisms for generating gravitational waves with neutron stars. This includes gravitational waves from radio and millisecond pulsars, magnetars, accreting systems, and newly born neutron stars, with mechanisms including magnetic and thermoelastic deformations, various stellar oscillation modes, and core superfluid turbulence. I also focus on what physics can be learnt from a gravitational wave detection, and where additional research is required to fully understand the dominant physical processes at play.

  20. Structure formation, backreaction and weak gravitational fields

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem; Singh, T. P.

    2008-03-01

    There is an ongoing debate in the literature as to whether the effects of averaging out inhomogeneities ('backreaction') in cosmology can be large enough to account for the acceleration of the scale factor in the Friedmann-Lemaître-Robertson-Walker (FLRW) models. In particular, some simple models of structure formation studied in the literature seem to indicate that this is indeed possible, and it has also been suggested that the perturbed FLRW framework is no longer a good approximation during structure formation, when the density contrast becomes non-linear. In this work we attempt to clarify the situation to some extent, using a fully relativistic model of pressureless spherical collapse. We find that whereas averaging during structure formation can lead to acceleration via a selective choice of averaging domains, the acceleration is not present when more generic domains are used for averaging. Further, we show that for most of the duration of the collapse, matter velocities remain small, and the perturbed FLRW form of the metric can be explicitly recovered, in the structure formation phase. We also discuss the fact that the magnitude of the average effects of inhomogeneities depends on the scale of averaging, and while it may not be completely negligible on intermediate scales, it is expected to remain small when averaging on suitably large scales.

  1. History of Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.

    1970-07-01

    While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.

  2. Hunting gravitational waves using pulsars

    NASA Astrophysics Data System (ADS)

    Mayor, Louise

    2014-10-01

    With the first direct detection of gravitational waves at the top of many physicists' wish list, Louise Mayor describes how radio astronomers are hoping to reveal these ripples in space-time by pointing their telescopes at an array of distant pulsars.

  3. Gravitation research

    NASA Technical Reports Server (NTRS)

    Weiss, R.; Muehlner, D. J.; Benford, R. L.; Owens, D. K.; Pierre, N. A.; Rosenbluh, M.

    1972-01-01

    Balloon measurements were made of the far infrared background radiation. The radiometer used and its calibration are discussed. An electromagnetically coupled broadband gravitational antenna is also considered. The proposed antenna design and noise sources in the antenna are reviewed. A comparison is made between interferometric broadband and resonant bar antennas for the detection of gravitational wave pulses.

  4. The gravitational wave experiment

    NASA Technical Reports Server (NTRS)

    Bertotti, B.; Ambrosini, R.; Asmar, S. W.; Brenkle, J. P.; Comoretto, G.; Giampieri, G.; Less, L.; Messeri, A.; Wahlquist, H. D.

    1992-01-01

    Since the optimum size of a gravitational wave detector is the wave length, interplanetary dimensions are needed for the mHz band of interest. Doppler tracking of Ulysses will provide the most sensitive attempt to date at the detection of gravitational waves in the low frequency band. The driving noise source is the fluctuations in the refractive index of interplanetary plasma. This dictates the timing of the experiment to be near solar opposition and sets the target accuracy for the fractional frequency change at 3.0 x 10 exp -14 for integration times of the order of 1000 sec. The instrumentation utilized by the experiment is distributed between the radio systems on the spacecraft and the seven participating ground stations of the Deep Space Network and Medicina. Preliminary analysis is available of the measurements taken during the Ulysses first opposition test.

  5. Weak and compact radio emission in early massive star formation regions: an ionized jet toward G11.11–0.12P1

    SciTech Connect

    Rosero, V.; Hofner, P.; McCoy, M.; Kurtz, S.; Loinard, L.; Carrasco-González, C.; Rodríguez, L. F.; Menten, K. M.; Wyrowski, F.; Araya, E. D.; Cesaroni, R.; Ellingsen, S. P.

    2014-12-01

    We report 1.3 cm and 6 cm continuum observations toward the massive proto-stellar candidate G11.11–0.12P1 using the Karl G. Jansky Very Large Array. We detect a string of four unresolved radio continuum sources coincident with the mid-infrared source in G11P1. The continuum sources have positive spectral indices consistent with a thermal (free-free) ionized jet. The most likely origins of the ionized gas are shocks due to the interaction of a stellar wind with the surrounding high-density material. We also present NIR United Kingdom Infrared Telescope (UKIRT) archival data that show an extended structure detected only at K band (2.2 μm), which is oriented perpendicular to the jet, and that may be scattered light from a circumstellar disk around the massive protostar. Our observations plus the UKIRT archival data thus provide new evidence that a disk/jet system is present in the massive proto-stellar candidate located in the G11.11–0.12P1 core.

  6. Gravitational lens observations

    NASA Astrophysics Data System (ADS)

    Burke, B. F.; Roberts, D. H.; Hewitt, J. N.; Greenfield, P. E.; Dupree, A. K.

    1983-06-01

    The structure of the gravitational lens 0957 + 561 provides strong constraints on allowable lens models. Here, the modeling constraints for the lens are summarized, and it is shown that, for the foreground cluster, mass-to-luminosity ratio with a well-defined locus can be given. Constraints on other images in the radio map are then discussed, and it is concluded that a third quasar image has not yet been identified convincingly, but perturbations of the B quasar image are consistent with the partial jet image predicted by Greenfield (1981). Finally, polarization studies of the A and B images are reported.

  7. Gravitating Hopfions

    SciTech Connect

    Shnir, Ya. M.

    2015-12-15

    We construct solutions of the 3 + 1 dimensional Faddeev–Skyrme model coupled to Einstein gravity. The solutions are static and asymptotically flat. They are characterized by a topological Hopf number. We investigate the dependence of the ADM masses of gravitating Hopfions on the gravitational coupling. When gravity is coupled to flat space solutions, a branch of gravitating Hopfion solutions arises and merges at a maximal value of the coupling constant with a second branch of solutions. This upper branch has no flat space limit. Instead, in the limit of a vanishing coupling constant, it connects to either the Bartnik–McKinnon or a generalized Bartnik–McKinnon solution. We further find that in the strong-coupling limit, there is no difference between the gravitating solitons of the Skyrme model and the Faddeev–Skyrme model.

  8. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  9. Resolving the Bright HCN(1-0) Emission toward the Seyfert 2 Nucleus of M51: Shock Enhancement by Radio Jets and Weak Masing by Infrared Pumping?

    NASA Astrophysics Data System (ADS)

    Matsushita, Satoki; Trung, Dinh-V.-; Boone, Frédéric; Krips, Melanie; Lim, Jeremy; Muller, Sebastien

    2015-01-01

    We present high angular resolution observations of the HCN(1-0) emission (at ~1'' or ~34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained by the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ~1'' (~34 pc) resolution, and consistent with the Seyfert 2 classification picture.

  10. Probing gravitational dark matter

    NASA Astrophysics Data System (ADS)

    Ren, Jing; He, Hong-Jian

    2015-03-01

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χs. It is a Bbb Z2 odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξsχs2Script R, where ξs is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξsχs2Script R, together with Higgs-curvature nonminimal coupling term ξhH†HScript R, induces effective couplings between χs2 and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  11. Probing gravitational dark matter

    SciTech Connect

    Ren, Jing; He, Hong-Jian

    2015-03-27

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χ{sub s}. It is a ℤ{sub 2} odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξ{sub s}χ{sub s}{sup 2}R, where ξ{sub s} is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξ{sub s}χ{sub s}{sup 2}R, together with Higgs-curvature nonminimal coupling term ξ{sub h}H{sup †}HR, induces effective couplings between χ{sub s}{sup 2} and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  12. Gravitational waves from gravitational collapse

    SciTech Connect

    Fryer, Christopher L; New, Kimberly C

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  13. RESOLVING THE BRIGHT HCN(1–0) EMISSION TOWARD THE SEYFERT 2 NUCLEUS OF M51: SHOCK ENHANCEMENT BY RADIO JETS AND WEAK MASING BY INFRARED PUMPING?

    SciTech Connect

    Matsushita, Satoki; Trung, Dinh-V-; Boone, Frédéric; Krips, Melanie; Lim, Jeremy; Muller, Sebastien

    2015-01-20

    We present high angular resolution observations of the HCN(1-0) emission (at ∼1'' or ∼34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained by the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ∼1'' (∼34 pc) resolution, and consistent with the Seyfert 2 classification picture.

  14. Gravitational quantum states of Antihydrogen

    SciTech Connect

    Voronin, A. Yu.; Froelich, P.; Nesvizhevsky, V. V.

    2011-03-15

    We present a theoretical study of the motion of the antihydrogen atom (H) in the gravitational field of Earth above a material surface. We predict that the H atom, falling in the gravitational field of Earth above a material surface, would settle into long-lived quantum states. We point out a method of measuring the difference in the energy of H in such states. The method allows for spectroscopy of gravitational levels based on atom-interferometric principles. We analyze the general feasibility of performing experiments of this kind. We point out that such experiments provide a method of measuring the gravitational force (Mg) acting on H and that they might be of interest in the context of testing the weak equivalence principle for antimatter.

  15. Tidal radiation. [relativistic gravitational effects

    NASA Technical Reports Server (NTRS)

    Mashhoon, B.

    1977-01-01

    The general theory of tides is developed within the framework of Einstein's theory of gravitation. It is based on the concept of Fermi frame and the associated notion of tidal frame along an open curve in spacetime. Following the previous work of the author an approximate scheme for the evaluation of tidal gravitational radiation is presented which is valid for weak gravitational fields. The emission of gravitational radiation from a body in the field of a black hole is discussed, and for some cases of astrophysical interest estimates are given for the contributions of radiation due to center-of-mass motion, purely tidal deformation, and the interference between the center of mass and tidal motions.

  16. A VLA gravitational lens survey

    NASA Technical Reports Server (NTRS)

    Hewitt, J. N.; Turner, E. L.; Burke, B. F.; Lawrence, C. R.; Bennett, C. L.

    1987-01-01

    A VLA survey designed to detect gravitational lensing on sub-arc second and arc second scales is described, and preliminary results of radio data are presented. In particular, it is found that the density of matter in the form of a uniform comoving number density of 10 to the 11th - 10 to the 12th solar mass compact objects, luminous or dark, must be substantially less than the critical density. Data obtained for the radio source 1042+178 are briefly examined.

  17. A New Estimate of Hubble's Constant From The Gravitational Lens PKS 1830-211

    NASA Technical Reports Server (NTRS)

    Jones, D.; Meier, D.

    1999-01-01

    The Einstein ring gravitational lens PKS 1830-211 consistents of two bright, milliarcsecond-scale radio components separated by 1 arcsec and connected by a fainter ring of radio emission (Rao and Subrahmanyan 1988; Jauncey et al. 1991).

  18. Gravitational lensing of active galactic nuclei.

    PubMed Central

    Hewitt, J N

    1995-01-01

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613

  19. Cosmology with weak lensing surveys.

    PubMed

    Munshi, Dipak; Valageas, Patrick

    2005-12-15

    Weak gravitational lensing is responsible for the shearing and magnification of the images of high-redshift sources due to the presence of intervening mass. Since the lensing effects arise from deflections of the light rays due to fluctuations of the gravitational potential, they can be directly related to the underlying density field of the large-scale structures. Weak gravitational surveys are complementary to both galaxy surveys and cosmic microwave background observations as they probe unbiased nonlinear matter power spectra at medium redshift. Ongoing CMBR experiments such as WMAP and a future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period, ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM; e.g. SNAP) or the Large-aperture Synoptic Survey Telescope will play a major role in advancing our understanding of the universe in this direction. In this review article, we describe various aspects of probing the matter power spectrum and the bi-spectrum and other related statistics with weak lensing surveys. This can be used to probe the background dynamics of the universe as well as the nature of dark matter and dark energy. PMID:16286284

  20. The proposal for new space-based gravitational experiments

    NASA Astrophysics Data System (ADS)

    Milyukov, Vadim; Sazhin, Mikhail; Zharov, Vladimir

    The development of space technologies opens new perspectives in solving the fundamental problems of gravity. We propose the experimental investigation of General Relativity (GR) in space experiments in following: a) measurement of post-Newtonian parameters (PPN), b) gravity wave detection in the low frequency band. The accuracy, with which GR is currently confirmed, is fractions of percent: 2.3× 10(-5) . However, in spite of the remarkable success of GR in the weak-field approximation, there are many reasons to consider alternative relativistic theories of gravity that predict the existence of effects other than GR, thus motivating new fundamental gravitational experiments. In this connection, the experimental measurements of PPN of parameters play a special role. To improve the accuracy of measurement of geodetic effects in the gravitational field of the Earth the clusters of spacecrafts, connected by microwave radio links and optical links, are widely used. Such a scheme allows to suppress effectively a coherent noise acting on the spacecraft, and to measure the distance between the satellites within a fraction of a millimeter. This technology was already tested for GRACE and GRAIL NASA missions. Furthermore, there are technologies allowing to effectively compensate non-gravitational noise to the level of 10(-10) - 10(-12) \\ m/s(2/sqrt{Hz}) . The project, which assume the lunch of cluster of the spacecrafts intended to study fundamental processes in the Universe, including the measurement of the PPN parameters and low frequency gravitational waves, is proposed in this report. We study the space-based systems in a configuration of few spacecrafts on different orbits in the gravitational field of the Earth for measuring these effects. Measurements of distances between spacecrafts are performed using microwave radio links, laser interferometry and ultra stable frequency standards. Developed modern technologies for distant measurements allow to reach the accuracy

  1. Gravitational Lensing

    SciTech Connect

    Lincoln, Don

    2015-06-24

    In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.

  2. Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Saha, P.; Murdin, P.

    2000-11-01

    Gravity bends light rays in a way analogous to, but quantitatively different from, the way it bends trajectories of passing particles. If light from some bright object passes close enough to some foreground mass, that object's image will be altered. The effect is more like a piece of bathroom glass in the sky than a precision-ground and well-focused lens, but the terms `gravitational lensing' or ...

  3. Experimental gravitation

    NASA Astrophysics Data System (ADS)

    Lämmerzahl, Claus; di Virgilio, Angela

    2016-06-01

    100 years after the invention of General Relativity (GR) and 110 years after the development of Special Relativity (SR) we have to state that until now no single experiment or observation allows any doubt about the validity of these theories within the accuracy of the available data. Tests of GR can be divided into three categories: (i) test of the foundations of GR, (ii) tests of the consequences of GR, and (iii) test of the interplay between GR and quantum mechanics. In the first category, we have tests of the Einstein Equivalence Principle and the structure of the Newton axioms, in the second category we have effects like the gravitational redshift, light defection, gravitational time delay, the perihelion shift, the gravitomagnetic effects as the Lense-Thirring and Schiff effect, and gravitational waves. Tests of the effects of gravity on quantum systems are a first step towards experiments searching for a quantum gravity theory. In this paper, we also highlight practical applications in positioning, geodesy, and the International Atomic Time. After 100 years, GR can now definitely be regarded also as practical and applied science.

  4. PKS 1830-211: A Possible Compound Gravitational Lens

    NASA Technical Reports Server (NTRS)

    Lovell, J. E. J.; Reynolds, J. E.; Jauncey, D. L.; Backus, P. R.; McCullock, P. M.; Sinclair, M. W.; Wilson, W. E.; Tzioumis, A. K.; Gough, R. G.; Ellingsen, S. P.; Phillips, C. J.; Preston, R. A.; Jones, D. L.

    1996-01-01

    Measurements of the properties of gravitational lenses have the power to tell us what sort of universe we live in. The brightest known radio Einstein ring/gravitational lens PKS 1830-211, whilst obscured by our Galaxy at optical wavelengths, has recently provided a lensing galaxy redshift of 0.89 through the detection of molecular absorption in the millimetre waveband.

  5. Radio Detection of Neutron Star Binary Mergers

    NASA Astrophysics Data System (ADS)

    Bear, Brandon; Cardena, Brett; Dispoto, Dana; Papadopoulos, Joanna; Kavic, Michael; Simonetti, John

    2011-10-01

    Neutron star binary systems lose energy through gravitational radiation, and eventually merge. The gravitational radiation from the merger can be detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO). It is expected that a transient radio pulse will also be produced during the merger event. Detection of such radio transients would allow for LIGO to search for signals within constrained time periods. We calculate the LWA-1 detection rate of transient events from neutron star binary mergers. We calculate the detection rate of transient events from neutron star binary mergers for the Long Wavelength Array and the Eight-meter-wavelength Transient Array.

  6. Modified entropic gravitation in superconductors

    NASA Astrophysics Data System (ADS)

    de Matos, Clovis Jacinto

    2012-01-01

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde’s derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor’s quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravitational force can be interpreted as a surface force. The experimental detection of this new repulsive gravitational-type force appears to be challenging.

  7. Multiparameter investigation of gravitational slip

    SciTech Connect

    Daniel, Scott F.; Caldwell, Robert R.; Cooray, Asantha; Serra, Paolo; Melchiorri, Alessandro

    2009-07-15

    A detailed analysis of gravitational slip, a new post-general relativity cosmological parameter characterizing the degree of departure of the laws of gravitation from general relativity on cosmological scales, is presented. This phenomenological approach assumes that cosmic acceleration is due to new gravitational effects; the amount of spacetime curvature produced per unit mass is changed in such a way that a universe containing only matter and radiation begins to accelerate as if under the influence of a cosmological constant. Changes in the law of gravitation are further manifest in the behavior of the inhomogeneous gravitational field, as reflected in the cosmic microwave background, weak lensing, and evolution of large-scale structure. The new parameter {pi}{sub 0} is naively expected to be of order unity. However, a multiparameter analysis, allowing for variation of all of the standard cosmological parameters, finds that {pi}{sub 0}=0.09{sub -0.59}{sup +0.74}(2{sigma}), where {pi}{sub 0}=0 corresponds to a cosmological constant plus cold dark matter universe under general relativity. Future probes of the cosmic microwave background (Planck) and large-scale structure (Euclid) may improve the limits by a factor of 4.

  8. Gravitational radiation from collapsing magnetized dust

    SciTech Connect

    Sotani, Hajime; Yoshida, Shijun; Kokkotas, Kostas D.

    2007-04-15

    In this article we study the influence of magnetic fields on the axial gravitational waves emitted during the collapse of a homogeneous dust sphere. We found that while the energy emitted depends weakly on the initial matter perturbations it has strong dependence on the strength and the distribution of the magnetic field perturbations. The gravitational wave output of such a collapse can be up to an order of magnitude larger or smaller calling for detailed numerical 3D studies of collapsing magnetized configurations.

  9. Optics in a nonlinear gravitational plane wave

    NASA Astrophysics Data System (ADS)

    Harte, Abraham I.

    2015-09-01

    Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.

  10. Newtorites in bar detectors of gravitational wave

    NASA Astrophysics Data System (ADS)

    Ronga, F.; ROG Collaboration

    2016-05-01

    The detection of particles with only gravitational interactions (Newtorites) in gravitational bar detectors was studied in 1984 by Bernard, De Rujula and Lautrup. The negative results of dark matter searches suggest to look to exotic possibilities like Newtorites. The limits obtained with the Nautilus bar detector will be presented and the possible improvements will be discussed. Since the gravitational coupling is very weak, the possible limits are very far from what is needed for dark matter, but for large masses are the best limits obtained on the Earth. An update of limits for MACRO particles will be given.

  11. Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.

    1957-06-01

    Experimental results on the non-conservation of parity and charge conservation in weak interactions are reviewed. The two-component theory of the neutrino is discussed. Lepton reactions are examined under the assumption of the law of conservation of leptons and that the neutrino is described by a two- component theory. From the results of this examination, the universal Fermi interactions are analyzed. Although reactions involving the neutrino can be described, the same is not true of reactions which do not involve the lepton, as the discussion of the decay of K mesons and hyperons shows. The question of the invariance of time reversal is next examined. (J.S.R.)

  12. Gravitational Waves and Time Domain Astronomy

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  13. Relativistic Transverse Gravitational Redshift

    NASA Astrophysics Data System (ADS)

    Mayer, A. F.

    2012-12-01

    The parametrized post-Newtonian (PPN) formalism is a tool for quantitative analysis of the weak gravitational field based on the field equations of general relativity. This formalism and its ten parameters provide the practical theoretical foundation for the evaluation of empirical data produced by space-based missions designed to map and better understand the gravitational field (e.g., GRAIL, GRACE, GOCE). Accordingly, mission data is interpreted in the context of the canonical PPN formalism; unexpected, anomalous data are explained as similarly unexpected but apparently real physical phenomena, which may be characterized as ``gravitational anomalies," or by various sources contributing to the total error budget. Another possibility, which is typically not considered, is a small modeling error in canonical general relativity. The concept of the idealized point-mass spherical equipotential surface, which originates with Newton's law of gravity, is preserved in Einstein's synthesis of special relativity with accelerated reference frames in the form of the field equations. It was not previously realized that the fundamental principles of relativity invalidate this concept and with it the idea that the gravitational field is conservative (i.e., zero net work is done on any closed path). The ideal radial free fall of a material body from arbitrarily-large range to a point on such an equipotential surface (S) determines a unique escape-velocity vector of magnitude v collinear to the acceleration vector of magnitude g at this point. For two such points on S separated by angle dφ , the Equivalence Principle implies distinct reference frames experiencing inertial acceleration of identical magnitude g in different directions in space. The complete equivalence of these inertially-accelerated frames to their analogous frames at rest on S requires evaluation at instantaneous velocity v relative to a local inertial observer. Because these velocity vectors are not parallel, a

  14. Gravitational Lensing Extends SETI Range

    NASA Astrophysics Data System (ADS)

    Factor, Richard

    Microwave SETI (The Search for Extraterrestrial Intelligence) focuses on two primary strategies, the "Targeted Search" and the "All-Sky Survey." Although the goal of both strategies is the unequivocal discovery of a signal transmitted by intelligent species outside our solar system, they pursue the strategies in very different manners and have vastly different requirements. This chapter introduces Gravitational Lensing SETI (GL-SETI), a third strategy. Its goal is the unequivocal discovery of an extraterrestrial signal, with equipment and data processing requirements that are substantially different from the commonly-used strategies. This strategy is particularly suitable for use with smaller radio telescopes and has budgetary requirements suitable for individual researchers.

  15. Transient multimessenger astronomy with gravitational waves

    NASA Astrophysics Data System (ADS)

    Márka, S.; LIGO Scientific Collaboration; Virgo Collaboration

    2011-06-01

    Comprehensive multimessenger astronomy with gravitational waves is a pioneering field bringing us interesting results and presenting us with exciting challenges for the future. During the era of the operation of advanced interferometric gravitational wave detectors, we will have the opportunity to investigate sources of gravitational waves that are also expected to be observable through other messengers, such as gamma rays, x-rays, optical, radio, and/or neutrino emission. Multimessenger searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network have already produced insights on cosmic events and it is expected that the simultaneous observation of electromagnetic or neutrino emission could be a crucial aspect for the first direct detection of gravitational waves in the future. Trigger time, direction and expected frequency range enhances our ability to search for gravitational wave signatures with amplitudes closer to the noise floor of the detector. Furthermore, multimessenger observations will enable the extraction of otherwise unaccessible scientific insight. We summarize the status of transient multimessenger detection efforts as well as mention some of the open questions that might be resolved by advanced or third generation gravitational wave detector networks.

  16. Astrophysically Triggered Searches for Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Marka, Zsuzsa

    2010-02-01

    Many expected sources of gravitational waves are observable in more traditional channels, via gamma rays, X-rays, optical, radio, or neutrino emission. Some of these channels are already being used in searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network, and others are currently being incorporated into new or planned searches. Astrophysical targets include gamma-ray bursts, soft-gamma repeaters, supernovae, and glitching pulsars. The observation of electromagnetic or neutrino emission simultaneously with gravitational waves could be crucial for the first direct detection of gravitational waves. Information on the progenitor, such as trigger time, direction and expected frequency range, can enhance our ability to identify gravitational wave signatures with amplitude close to the noise floor of the detector. Furthermore, combining gravitational waves with electromagnetic and neutrino observations will enable the extraction of scientific insight that was hidden from us before. We will discuss the status for astrophysically triggered searches with the LIGO-GEO600-Virgo network and the science goals and outlook for the second and third generation gravitational wave detector era. )

  17. Radio efficiency of pulsars

    SciTech Connect

    Szary, Andrzej; Melikidze, George I.; Gil, Janusz; Zhang, Bing; Xu, Ren-Xin E-mail: zhang@physics.unlv.edu

    2014-03-20

    We investigate radio emission efficiency, ξ, of pulsars and report a near-linear inverse correlation between ξ and the spin-down power, E-dot , as well as a near-linear correlation between ξ and pulsar age, τ. This is a consequence of very weak, if any, dependences of radio luminosity, L, on pulsar period, P, and the period derivative, P-dot , in contrast to X-ray or γ-ray emission luminosities. The analysis of radio fluxes suggests that these correlations are not due to a selection effect, but are intrinsic to the pulsar radio emission physics. We have found that, although with a large variance, the radio luminosity of pulsars is ≈10{sup 29} erg s{sup –1}, regardless of the position in the P-- P-dot diagram. Within such a picture, a model-independent statement can be made that the death line of radio pulsars corresponds to an upper limit in the efficiency of radio emission. If we introduce the maximum value for radio efficiency into the Monte Carlo-based population syntheses we can reproduce the observed sample using the random luminosity model. Using the Kolmogorov-Smirnov test on a synthetic flux distribution reveals a high probability of reproducing the observed distribution. Our results suggest that the plasma responsible for generating radio emission is produced under similar conditions regardless of pulsar age, dipolar magnetic field strength, and spin-down rate. The magnetic fields near the pulsar surface are likely dominated by crust-anchored, magnetic anomalies, which do not significantly differ among pulsars, leading to similar conditions for generating electron-positron pairs necessary to power radio emission.

  18. Gravitational lensing in plasmic medium

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.

    2015-07-01

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  19. Gravitational lensing in plasmic medium

    SciTech Connect

    Bisnovatyi-Kogan, G. S. Tsupko, O. Yu.

    2015-07-15

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  20. Gravitational Lensing: Einstein's unfinished symphony

    NASA Astrophysics Data System (ADS)

    Treu, Tommaso; Ellis, Richard S.

    2015-01-01

    Gravitational lensing - the deflection of light rays by gravitating matter - has become a major tool in the armoury of the modern cosmologist. Proposed nearly a hundred years ago as a key feature of Einstein's theory of general relativity, we trace the historical development since its verification at a solar eclipse in 1919. Einstein was apparently cautious about its practical utility and the subject lay dormant observationally for nearly 60 years. Nonetheless there has been rapid progress over the past twenty years. The technique allows astronomers to chart the distribution of dark matter on large and small scales thereby testing predictions of the standard cosmological model which assumes dark matter comprises a massive weakly-interacting particle. By measuring the distances and tracing the growth of dark matter structure over cosmic time, gravitational lensing also holds great promise in determining whether the dark energy, postulated to explain the accelerated cosmic expansion, is a vacuum energy density or a failure of general relativity on large scales. We illustrate the wide range of applications which harness the power of gravitational lensing, from searches for the earliest galaxies magnified by massive clusters to those for extrasolar planets which temporarily brighten a background star. We summarise the future prospects with dedicated ground and space-based facilities designed to exploit this remarkable physical phenomenon.

  1. Doppler-cancelled response to VLF gravitational waves

    NASA Technical Reports Server (NTRS)

    Caporali, A.

    1981-01-01

    The interaction of long periodic gravitational waves with a three link microwave system known as the Doppler Cancelling System is discussed. This system, which was developed for a gravitational redshift experiment, uses one-way and two-way Doppler informatin to construct the beat signal of two reference oscillators moving with respect to each other. The geometric optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational wave space-time. The signature left on the Doppler-cancelled beat by burst and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler Cancelling System and that of a Doppler tracking system which employs two-way, round-trip radio waves. A three-fold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.

  2. Approximation methods in gravitational-radiation theory

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  3. Gravitational lens time delays and gravitational waves

    SciTech Connect

    Frieman, J.A. Department of Astronomy Astrophysics, University of Chicago, Chicago, Illinois 60637 ); Harari, D.D.; Surpi, G.C. )

    1994-10-15

    Using Fermat's principle, we analyze the effects of very long wavelength gravitational waves upon the images of a gravitationally lensed quasar. We show that the lens equation in the presence of gravity waves is equivalent to that of a lens with a different alignment between source, deflector, and observer in the absence of gravity waves. Contrary to a recent claim, we conclude that measurements of time delays in gravitational lenses cannot serve as a method to detect or constrain a stochastic background of gravitational waves of cosmological wavelengths, because the wave-induced time delay is observationally indistinguishable from an intrinsic time delay due to the lens geometry.

  4. Detectors of gravitational waves

    NASA Astrophysics Data System (ADS)

    Pizzella, G.

    Gravitational waves Motion of test bodies in a g.w. field Energy carried by gravitational waves Gravitational-wave sources Spinning star Double-star systems Fall into a Schwarzschild black hole Radiation from gravitational collapse Gravitational-wave detectors The nonresonant detectors The resonant detectors Electromechnical transducers Piezoelectric ceramic The capacitor The inductor Data analysis The Brownian noise The back-action The wide-band noise, data analysis and optimization The resonant transducer The Wiener-Kolmogoroff filter The cross-section and the effective temperature The antenna bandwidth The gravitational-wave experiments in the world The laser interferometers The resonant detectors

  5. High stability radio links

    NASA Technical Reports Server (NTRS)

    Kursinski, E. Robert

    1989-01-01

    Radio telecommunication links are used for communication with deep space probes. These links consist of sinusoidal carrier signals at radio frequencies (RF) modulated with information sent between the spacecraft and the earth. This carrier signal is a very pure and stable sinusoid, typically derived from an atomic frequency standard whose frequency and phase are used to measure the radial velocity of the probe and from this and other data types derive its trajectory. This same observable can be used to search for space-time distortions cased by low frequency (0.1 to 100 MHz) gravitation radiation. How such a system works, what its sensitivity limitations are, and what potential future improvements can be made are discussed.

  6. Rosetta Radio Science Investigations

    NASA Technical Reports Server (NTRS)

    Patzold, M.; Neubauer, F. M.; Wennmacher, A.; Aksnes, K.; Anderson, J. D.; Asmar, S. W.; Tinto, M.; Tsurutani, B. T.; Yeomans, D. K.; Barriot, J. -P.; Bird, M. K.; Boehnhardt, H.; Gill, E.; Montenbruck, O.; Grun, E.; Hausler, B.; Ip, W. H.; Thomas, N.; Marouf, E. A.; Rickman, H.; Wallis, M. K.; Wickramasinghe, N. C.

    1996-01-01

    The Rosetta Radio Science Investigations (RSI) experiment was selected by the European Space Agency to be included in the International Rosetta Mission to comet P/Wirtanen (launch in 2003, arrival and operational phase at the comet 2011-2013). The RSI science objectives address fundamental aspects of cometary physics such as the mass and bulk density of the nucleus, the gravity field, non-gravitational forces, the size and shape, the internal structure, the composition and roughness of the nucleus surface, the abundance of large dust grains and the plasma content in the coma and the combined dust and gas mass flux on the orbiter. RSI will make use of the radio system of the Rosetta spacecraft.

  7. Educational Radio.

    ERIC Educational Resources Information Center

    Arafeh, Sousan

    1999-01-01

    Examines the effectiveness of the radio in education and the crucial role of the radio in distance education in first half of the 20th century; dramatic social changes in the 1960s that led to a review of educational institutions and of educational media; and the radio today as a neglected but inexpensive medium of communication that should be…

  8. Optimizing SNAP for Weak Lensing

    NASA Astrophysics Data System (ADS)

    High, F. W.; Ellis, R. S.; Massey, R. J.; Rhodes, J. D.; Lamoureux, J. I.; SNAP Collaboration

    2004-12-01

    The Supernova/Acceleration Probe (SNAP) satellite proposes to measure weak gravitational lensing in addition to type Ia supernovae. Its pixel scale has been set to 0.10 arcsec per pixel as established by the needs of supernova observations. To find the optimal pixel scale for accurate weak lensing measurements we conduct a tradeoff study in which, via simulations, we fix the suvey size in total pixels and vary the pixel scale. Our preliminary results show that with a smaller scale of about 0.08 arcsec per pixel we can minimize the contribution of intrinsic shear variance to the error on the power spectrum of mass density distortion. Currently we are testing the robustness of this figure as well as determining whether dithering yields analogous results.

  9. Experimental investigations of weak definite and weak indefinite noun phrases

    PubMed Central

    Klein, Natalie M.; Gegg-Harrison, Whitney M.; Carlson, Greg N.; Tanenhaus, Michael K.

    2013-01-01

    Definite noun phrases typically refer to entities that are uniquely identifiable in the speaker and addressee’s common ground. Some definite noun phrases (e.g. the hospital in Mary had to go the hospital and John did too) seem to violate this uniqueness constraint. We report six experiments that were motivated by the hypothesis that these “weak definite” interpretations arise in “incorporated” constructions. Experiments 1-3 compared nouns that seem to allow for a weak definite interpretation (e.g. hospital, bank, bus, radio) with those that do not (e.g. farm, concert, car, book). Experiments 1 and 2 used an instruction-following task and picture-judgment task, respectively, to demonstrate that a weak definite need not uniquely refer. In Experiment 3 participants imagined scenarios described by sentences such as The Federal Express driver had to go to the hospital/farm. The imagined scenarios following weak definite noun phrases were more likely to include conventional activities associated with the object, whereas following regular nouns, participants were more likely to imagine scenarios that included typical activities associated with the subject; similar effects were observed with weak indefinites. Experiment 4 found that object-related activities were reduced when the same subject and object were used with a verb that does not license weak definite interpretations. In Experiment 5, a science fiction story introduced an artificial lexicon for novel concepts. Novel nouns that shared conceptual properties with English weak definite nouns were more likely to allow weak reference in a judgment task. Experiment 6 demonstrated that familiarity for definite articles and anti- familiarity for indefinite articles applies to the activity associated with the noun, consistent with predictions made by the incorporation analysis. PMID:23685208

  10. EDITORIAL: Focus on Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Jain, Bhuvnesh

    2007-11-01

    Gravitational lensing emerged as an observational field following the 1979 discovery of a doubly imaged quasar lensed by a foreground galaxy. In the 1980s and '90s dozens of other multiply imaged systems were observed, as well as time delay measurements, weak and strong lensing by galaxies and galaxy clusters, and the discovery of microlensing in our galaxy. The rapid pace of advances has continued into the new century. Lensing is currently one of best techniques for finding and mapping dark matter over a wide range of scales, and also addresses broader cosmological questions such as understanding the nature of dark energy. This focus issue of New Journal of Physics presents a snapshot of current research in some of the exciting areas of lensing. It provides an occasion to look back at the advances of the last decade and ahead to the potential of the coming years. Just about a decade ago, microlensing was discovered through the magnification of stars in our galaxy by invisible objects with masses between that of Jupiter and a tenth the mass of the Sun. Thus a new component of the mass of our galaxy, dubbed MACHOs, was established (though a diffuse, cold dark matter-like component is still needed to make up most of the galaxy mass). More recently, microlensing led to another exciting discovery—of extra-solar planets with masses ranging from about five times that of Earth to that of Neptune. We can expect many more planets to be discovered through ongoing surveys. Microlensing is the best technique for finding Earth mass planets, though it is not as productive overall as other methods and does not allow for follow up observations. Beyond planet hunting, microlensing has enabled us to observe previously inaccessible systems, ranging from the surfaces of other stars to the accretion disks around the black holes powering distant quasars. Galaxies and galaxy clusters at cosmological distances can produce dramatic lensing effects: multiple images of background galaxies

  11. Firefighters' Radios

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Public Technology Inc. asked for NASA assistance to devise the original firefighter's radio. Good short-range radio communications are essential during a fire to coordinate hose lines, rescue victims, and otherwise increase efficiency. Useful firefighting tool is lower cost, more rugged short range two-way radio. Inductorless electronic circuit replaced inductances and coils in radio circuits with combination of transistors and other low-cost components. Substitution promises reduced circuit size and cost. Enhanced electrical performance made radio more durable and improved maintainability by incorporating modular construction.

  12. TOPICAL REVIEW Gravitational lensing

    NASA Astrophysics Data System (ADS)

    Bartelmann, Matthias

    2010-12-01

    Gravitational lensing has developed into one of the most powerful tools for the analysis of the dark universe. This review summarizes the theory of gravitational lensing, its main current applications and representative results achieved so far. It has two parts. In the first, starting from the equation of geodesic deviation, the equations of thin and extended gravitational lensing are derived. In the second, gravitational lensing by stars and planets, galaxies, galaxy clusters and large-scale structures is discussed and summarized.

  13. Gravitation in Material Media

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…

  14. Weak lensing and cosmological investigation

    NASA Astrophysics Data System (ADS)

    Acquaviva, Viviana

    2005-03-01

    In the last few years the scientific community has been dealing with the challenging issue of identifying the dark energy component. We regard weak gravitational lensing as a brand new, and extremely important, tool for cosmological investigation in this field. In fact, the features imprinted on the Cosmic Microwave Background radiation by the lensing from the intervening distribution of matter represent a pretty unbiased estimator, and can thus be used for putting constraints on different dark energy models. This is true in particular for the magnetic-type B-modes of CMB polarization, whose unlensed spectrum at large multipoles (l ~= 1000) is very small even in presence of an amount of gravitational waves as large as currently allowed by the experiments: therefore, on these scales the lensing phenomenon is the only responsible for the observed power, and this signal turns out to be a faithful tracer of the dark energy dynamics. We first recall the formal apparatus of the weak lensing in extended theories of gravity, introducing the physical observables suitable to cast the bridge between lensing and cosmology, and then evaluate the amplitude of the expected effect in the particular case of a Non-Minimally-Coupled model, featuring a quadratic coupling between quintessence and Ricci scalar.

  15. The Deep Space Network as an instrument for radio science research

    NASA Technical Reports Server (NTRS)

    Asmar, S. W.; Renzetti, N. A.

    1993-01-01

    Radio science experiments use radio links between spacecraft and sensor instrumentation that is implemented in the Deep Space Network. The deep space communication complexes along with the telecommunications subsystem on board the spacecraft constitute the major elements of the radio science instrumentation. Investigators examine small changes in the phase and/or amplitude of the radio signal propagating from a spacecraft to study the atmospheric and ionospheric structure of planets and satellites, planetary gravitational fields, shapes, masses, planetary rings, ephemerides of planets, solar corona, magnetic fields, cometary comae, and such aspects of the theory of general relativity as gravitational waves and gravitational redshift.

  16. Gravitational radiation and the ultimate speed in Rosen's bimetric theory of gravity

    NASA Technical Reports Server (NTRS)

    Caves, C. M.

    1980-01-01

    In Rosen's bimetric theory of gravity the (local) speed of gravitational radiation is determined by the combined effects of cosmological boundary values and nearby concentrations of matter. It is possible for the speed of gravitational radiation to be less than the speed of light. It is here shown that the emission of gravitational radiation prevents particles of nonzero rest mass from exceeding the speed of gravitational radiation. Observations of relativistic particles place limits on the speed of gravitational radiation and the cosmological boundary values today, and observations of synchroton radiation from compact radio sources place limits on the cosmological boundary values in the past.

  17. A gravitational lens candidate with an unusually red optical counterpart

    NASA Technical Reports Server (NTRS)

    Hewitt, J. N.; Turner, E. L.; Lawrence, C. R.; Schneider, D. P.; Brody, J. P.

    1992-01-01

    The properties of the strong radio source MG0414 + 0534 are described. It is found to display many of the properties expected in a gravitational lens system. At radio wavelengths and 0.5-arcsec resolution, MG0414 + 0534 is made up of four compact components whose unusual configuration and relative flux densities are similar to those found in confirmed four-image gravitational lens systems. At optical wavelengths three objects are detected, consistent with there being optical objects at the positions of the radio components, given the lower optical resolution. The radio and optical centroid positions agree within the astrometric errors, and the relative ordering of the fluxes is the same. The colors and radiooptical spectral indices are similar, but there are differences larger than the photometric errors and the measured variability (about 30 percent). Extinction by dust might simultaneously explain the unusually red color and the absence of light from a lens.

  18. Unify the electromagnetic force and gravitation

    NASA Astrophysics Data System (ADS)

    Sheng Ming, Zheng

    2013-04-01

    In the process of mankind investigate natural rule: people know four kinds of force: electromagnetic force, gravitation, weak force, and strong force. Meanwhile people use these four kinds force to explain all phenomena in the Nature. Obviously people do not know their mechanism of origin until now. On the other hand, these four kinds force is the difference showing form of one force, is not it? For solve these questions and find their mechanism of origin, I do some experiments and discover that the moving photons produce gravitation. This discovery shows the origin of gravitation. Meanwhile I also do experiments show that light is a particle, but is not a wave-particle duality. My experiments show that the elementary particles moving produce gravitation and electromagnetic force, this effect also produce wave effect. That is to say my experiment and calculate not only reveal the origin of gravitation, but also reveal the origin of electric charge and magnetic force. Base on this I first unify the electromagnetic force and gravitation. The more detail see below website: https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-8473-2658-8/mechanism-of-interaction-in-moving-matter.

  19. Unify the electromagnetic force and gravitation

    NASA Astrophysics Data System (ADS)

    Ming, Zheng Sheng

    2013-04-01

    In the process of mankind investigate natural rule: people know four kinds of force: electromagnetic force, gravitation, weak force, and strong force. Meanwhile people use these four kinds force to explain all phenomena in the Nature. Obviously people do not know their mechanism of origin until now. On the other hand, these four kinds force is the difference showing form of one force, is not it? For solve these questions and find their mechanism of origin, I do some experiments and discover that the moving photons produce gravitation. This discovery shows the origin of gravitation. Meanwhile I also do experiments show that light is a particle, but is not a wave-particle duality. My experiments show that the elementary particles moving produce gravitation and electromagnetic force, this effect also produce wave effect. That is to say my experiment and calculate not only reveal the origin of gravitation, but also reveal the origin of electric charge and magnetic force. Base on this I first unify the electromagnetic force and gravitation. The more detail see below website: https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-8473-2658-8/mechanism-of-interaction-in-moving-matter

  20. Gravitational Wave Propulsion

    NASA Astrophysics Data System (ADS)

    Fontana, Giorgio

    2005-02-01

    There is only one experimental proof that gravitational waves exist. With such a limitation, it may seem premature to suggest the possibility that gravitational waves can became a preferred space propulsion technique. The present understanding of the problem indicates that this is not the case. The emission of gravitational waves from astrophysical sources has been confirmed by observation, the respective detection at large distance from the source is difficult and actually we have no confirmation of a successful detection. Therefore the required preliminary discovery has been already made. This opinion is enforced by many different proposals for building the required powerful gravitational wave generators that have recently appeared in the literature and discussed at conferences. It is no longer reasonable to wait for additional confirmation of the existence of gravitational waves to start a program for building generators and testing their possible application to space travel. A vast literature shows that gravitational waves can be employed for space propulsion. Gravitational wave rockets have been proposed, non-linearity of Einstein equations allows the conversion of gravitational waves to a static gravitational field and ``artificial gravity assist'' may become a new way of travelling in space-time. Different approaches to gravitational wave propulsion are reviewed and compared. Gravitational wave propulsion is also compared to traditional rocket propulsion and an undeniable advantage can be demonstrated in terms of efficiency and performance. Testing the predictions will require gravitational wave generators with high power and wavelength short enough for producing high energy densities. Detectors designed for the specific application must be developed, taking into account that non-linearity effects are expected. The study and development of Gravitational wave propulsion is a very challenging endeavor, involving the most complex theories, sophisticated

  1. Radio wave.

    PubMed

    Elkin, V

    1992-01-01

    In developing countries with high rates of poverty and illiteracy, radio is emerging as an excellent medium for delivering information on health issues, family planning, nutrition, and agricultural development. Since radio does not require wired electricity, it can reach remote rural populations. Surveys have found that between 50-75% of poor rural households in developing countries own radios, and the majority listen to educational radio at least once a week. A program that reaches the urban poor outside of Lima, Peru, has been instrumental in controlling the spread of cholera. A Bolivian station broadcasts 8 hours of literacy, health, agricultural, and cultural programming a day to an audience of more than 2 million Aymara Indians. Small village radio stations with a broadcast range of 15 miles can be established for under US$400 and can generally achieve sustainability through local fundraising events such as raffles. In many cases, listeners have become broadcasters at their local radio stations. PMID:12286181

  2. Radio receivers

    NASA Astrophysics Data System (ADS)

    Bankov, V. N.; Barulin, L. G.; Zhodzishskii, M. I.; Malyshev, I. V.; Petrusinskii, V. V.

    The book is concerned with the design of microelectronic radio receivers and their components based on semiconductor and hybrid integrated circuits. Topics discussed include the hierarchical structure of radio receivers, the synthesis of structural schemes, the design of the principal functional units, and the design of radio receiver systems with digital signal processing. The discussion also covers the integrated circuits of multifunctional amplifiers, analog multipliers, charge-transfer devices, frequency filters, piezoelectronic devices, and microwave amplifiers, filters, and mixers.

  3. Gravitational effects on biological systems.

    PubMed

    Boncinelli, P; Vanni, P

    1998-10-01

    The possible effects of the earth's gravitational field on biological systems have been studied from a quantitative point of view, focusing the attention to a very simple system, a solution containing proteins, which biochemists might use in experiments. Gravity has been compared with other forces which are known to influence protein activity, including thermic agitation, weak electrostatic interactions, Van der Waals forces and viscous dissipation. Comparisons have been described in terms of the energy of the interaction per mole, referring to some physically simple cases and substances of biological interest. From this study it is evident that the earth's gravitational energy should be taken into account when considering the chemical behaviour of solutions containing substances that have high molecular weight, such as a typical protein, since its value is comparable to other weak interactions. Moreover, since solutions represent the basis of much more complex biological processes taking place inside cells, the influence of gravity should extend also to cellular biochemical behaviour, especially in presence of altered gravity, both in microgravity (such as on satellites orbiting around the earth), and in macrogravity (such as in a centrifugating biological system). PMID:11541902

  4. WEAK LENSING MASS RECONSTRUCTION: FLEXION VERSUS SHEAR

    SciTech Connect

    Pires, S.

    2010-11-10

    Weak gravitational lensing has proven to be a powerful tool to map directly the distribution of dark matter in the universe. The technique, currently used, relies on the accurate measurement of the gravitational shear that corresponds to the first-order distortion of the background galaxy images. More recently, a new technique has been introduced that relies on the accurate measurement of the gravitational flexion that corresponds to the second-order distortion of the background galaxy images. This technique should probe structures on smaller scales than that of shear analysis. The goal of this paper is to compare the ability of shear and flexion to reconstruct the dark matter distribution by taking into account the dispersion in shear and flexion measurements. Our results show that the flexion is less sensitive than shear for constructing the convergence maps on scales that are physically feasible for mapping, meaning that flexion alone should not be used to do convergence map reconstruction, even on small scales.

  5. Demagnified gravitational waves from cosmological double neutron stars and gravitational wave foreground cleaning around 1 Hz

    SciTech Connect

    Seto, Naoki

    2009-11-15

    Gravitational waves (GWs) from cosmological double neutron star binaries (NS+NS) can be significantly demagnified by the strong gravitational lensing effect, and the proposed future missions such as the Big Bang Observer or Deci-hertz Interferometer Gravitational Wave Observatory might miss some of the demagnified GW signals below a detection threshold. The undetectable binaries would form a GW foreground, which might hamper detection of a very weak primordial GW signal. We discuss the outlook of this potential problem, using a simple model based on the singular isothermal sphere lens profile. Fortunately, it is expected that, for a presumable merger rate of NS+NSs, the residual foreground would be below the detection limit {omega}{sub GW,lim}{approx}10{sup -16} realized with the Big Bang Observer/Deci-hertz Interferometer Gravitational Wave Observatory by correlation analysis.

  6. Nonlinear Structure Formation, Backreaction and Weak Gravitational Fields

    NASA Astrophysics Data System (ADS)

    Paranjape, A.

    There is an ongoing debate in the literature concerning the effects of averaging out inhomogeneities (“backreaction”) in cosmology. In particular, some simple models of structure formation studied in the literature seem to indicate that the backreaction can play a significant role at late times, and it has also been suggested that the standard perturbed FLRW framework is no longer a good approximation during structure formation, when the density contrast becomes nonlinear. In this work we use Zalaletdinov's covariant averaging scheme (macroscopic gravity or MG) to show that as long as the metric of the Universe can be described by the perturbed FLRW form, the corrections due to averaging remain negligibly small. Further, using a fully relativistic and reasonably generic model of pressureless spherical collapse, we show that as long as matter velocities remain small (which is true in our model), the perturbed FLRW form of the metric can be explicitly recovered. Together, these results imply that the backreaction remains small even during nonlinear structure formation, and we confirm this within the toy model with a numerical calculation.

  7. Quasar emission lines, radio structures and radio unification

    NASA Astrophysics Data System (ADS)

    Jackson, Neal; Browne, I. W. A.

    2013-02-01

    Unified schemes of radio sources, which account for different types of radio active galactic nucleus in terms of anisotropic radio and optical emission, together with different orientations of the ejection axis to the line of sight, have been invoked for many years. Recently, large samples of optical quasars, mainly from the Sloan Digital Sky Survey (SDSS), together with large radio samples, such as Faint Images of the Radio Sky at Twenty cm (FIRST), have become available. These hold the promise of providing more stringent tests of unified schemes but, compared to previous samples, lack high-resolution radio maps. Nevertheless, they have been used to investigate unified schemes, in some cases yielding results which appear inconsistent with such theories. Here we investigate using simulations how the selection effects to which such investigations are subject can influence the conclusions drawn. In particular, we find that the effects of limited resolution do not allow core-dominated radio sources to be fully represented in the samples, that the effects of limited sensitivity systematically exclude some classes of sources and the lack of deep radio data make it difficult to decide to what extent closely separated radio sources are associated. Nevertheless, we conclude that relativistic unified schemes are entirely compatible with the current observational data. For a sample selected from SDSS and FIRST which includes weak-cored triples we find that the equivalent width of the [O III] emission line decreases as core dominance increases, as expected, and also that core-dominated quasars are optically brighter than weak-cored quasars.

  8. Educational Radio.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    This report summarizes information about the history, technology, and operation of educational radio in the U.S. Also presented are the Federal Communications Commission's (FCC) rules and regulations concerning the licensing and channel assignment of educational radio, and its auxiliary special broadcast services. Included are the application…

  9. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Schaffer, R. D.; Gorenstein, M. V.

    1981-01-01

    The activities of the Deep Space Network in support of Radio Astronomy Operations during April and May 1981 are reported. Work in progres in support of an experiment selected for use of the DSN by the Radio Astronomy Experiment Selection Panel, Twin Quasi-Stellar Object VLBI, is reported.

  10. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.; Manchester, R. N.

    1980-01-01

    The activities of the Deep Space Network in support of radio and radar astronomy operations during July and August 1980 are reported. A brief update on the OSS-sponsored planetary radio astronomy experiment is provided. Also included are two updates, one each from Spain and Australia on current host country activities.

  11. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Gulkis, S.

    1981-01-01

    The activities of the Deep Space Network in support of radio astronomy operations during the first quarter of 1981 are reported. Results of the use of a low noise maser are presented, as well as updates in DSN support of experiments sanctioned by the Radio Astronomy Experiment Selection Panel.

  12. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Niell, A. E.

    1981-01-01

    The activities of the DSN in support of Radio and Radar Astronomy Operations during September through December 1980 are described. Emphasis is on a report of an experiment selected for use of the DSN by the radio Astronomy Experiment Selection Panel: that of VLBI observations of the energetic galactic object SS-433.

  13. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  14. Measuring neutrino masses with weak lensing

    SciTech Connect

    Wong, Yvonne Y. Y.

    2006-11-17

    Weak gravitational lensing of distant galaxies by large scale structure (LSS) provides an unbiased way to map the matter distribution in the low redshift universe. This technique, based on the measurement of small distortions in the images of the source galaxies induced by the intervening LSS, is expected to become a key cosmological probe in the future. We discuss how future lensing surveys can probe the sum of the neutrino masses at the 0 05 eV level.

  15. Weak Lie symmetry and extended Lie algebra

    SciTech Connect

    Goenner, Hubert

    2013-04-15

    The concept of weak Lie motion (weak Lie symmetry) is introduced. Applications given exhibit a reduction of the usual symmetry, e.g., in the case of the rotation group. In this context, a particular generalization of Lie algebras is found ('extended Lie algebras') which turns out to be an involutive distribution or a simple example for a tangent Lie algebroid. Riemannian and Lorentz metrics can be introduced on such an algebroid through an extended Cartan-Killing form. Transformation groups from non-relativistic mechanics and quantum mechanics lead to such tangent Lie algebroids and to Lorentz geometries constructed on them (1-dimensional gravitational fields).

  16. Direct shear mapping - a new weak lensing tool

    NASA Astrophysics Data System (ADS)

    de Burgh-Day, C. O.; Taylor, E. N.; Webster, R. L.; Hopkins, A. M.

    2015-08-01

    We have developed a new technique called direct shear mapping (DSM) to measure gravitational lensing shear directly from observations of a single background source. The technique assumes the velocity map of an unlensed, stably rotating galaxy will be rotationally symmetric. Lensing distorts the velocity map making it asymmetric. The degree of lensing can be inferred by determining the transformation required to restore axisymmetry. This technique is in contrast to traditional weak lensing methods, which require averaging an ensemble of background galaxy ellipticity measurements, to obtain a single shear measurement. We have tested the efficacy of our fitting algorithm with a suite of systematic tests on simulated data. We demonstrate that we are in principle able to measure shears as small as 0.01. In practice, we have fitted for the shear in very low redshift (and hence unlensed) velocity maps, and have obtained null result with an error of ±0.01. This high-sensitivity results from analysing spatially resolved spectroscopic images (i.e. 3D data cubes), including not just shape information (as in traditional weak lensing measurements) but velocity information as well. Spirals and rotating ellipticals are ideal targets for this new technique. Data from any large Integral Field Unit (IFU) or radio telescope is suitable, or indeed any instrument with spatially resolved spectroscopy such as the Sydney-Australian-Astronomical Observatory Multi-Object Integral Field Spectrograph (SAMI), the Atacama Large Millimeter/submillimeter Array (ALMA), the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Square Kilometer Array (SKA).

  17. Investigations of Galaxy Clusters Using Gravitational Lensing

    SciTech Connect

    Wiesner, Matthew P.

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  18. Weak Lensing Results of the Merging Cluster A1758

    NASA Technical Reports Server (NTRS)

    Markevitch, M.; Gonzalez, A. H.; Bradac, M.

    2011-01-01

    Here we present the weak lensing results of A1758, which is known to have four cluster members undergoing two separate mergers, A1758N and A1758S. Weak lensing results of A1758N agree with previous weak lensing results of clusters lE0657-558 (Bullet cluster) and MACS J0025.4-1222, whose X-ray gas components were found to be largely separated from their clusters' gravitational potentials. A1758N has a geometry that is different from previously published mergers in that one of its X-ray peaks overlays the corresponding gravitational potential and the other X-ray peak is well separated from its cluster's gravitational potential.

  19. Actuators Help Correct For Gravitational Bending Of Antenna

    NASA Technical Reports Server (NTRS)

    Levy, Roy; Strain, Douglas M.

    1996-01-01

    Force-actuator scheme devised to help correct for decrease, caused by gravitational bending, in gain of 34-m-diameter paraboloidal microwave antenna reflector used for tracking distant spacecraft and observing celestial radio sources. Also applicable to other antennas bending significantly under own weight, with consequent degradation of performance.

  20. Multibaseline gravitational wave radiometry

    SciTech Connect

    Talukder, Dipongkar; Bose, Sukanta; Mitra, Sanjit

    2011-03-15

    We present a statistic for the detection of stochastic gravitational wave backgrounds (SGWBs) using radiometry with a network of multiple baselines. We also quantitatively compare the sensitivities of existing baselines and their network to SGWBs. We assess how the measurement accuracy of signal parameters, e.g., the sky position of a localized source, can improve when using a network of baselines, as compared to any of the single participating baselines. The search statistic itself is derived from the likelihood ratio of the cross correlation of the data across all possible baselines in a detector network and is optimal in Gaussian noise. Specifically, it is the likelihood ratio maximized over the strength of the SGWB and is called the maximized-likelihood ratio (MLR). One of the main advantages of using the MLR over past search strategies for inferring the presence or absence of a signal is that the former does not require the deconvolution of the cross correlation statistic. Therefore, it does not suffer from errors inherent to the deconvolution procedure and is especially useful for detecting weak sources. In the limit of a single baseline, it reduces to the detection statistic studied by Ballmer [Classical Quantum Gravity 23, S179 (2006).] and Mitra et al.[Phys. Rev. D 77, 042002 (2008).]. Unlike past studies, here the MLR statistic enables us to compare quantitatively the performances of a variety of baselines searching for a SGWB signal in (simulated) data. Although we use simulated noise and SGWB signals for making these comparisons, our method can be straightforwardly applied on real data.

  1. Combing gravitational hair in 2 + 1 dimensions

    NASA Astrophysics Data System (ADS)

    Donnelly, William; Marolf, Donald; Mintun, Eric

    2016-01-01

    The gravitational Gauss law requires any addition of energy to be accompanied by the addition of gravitational flux. The possible configurations of this flux for a given source may be called gravitational hair, and several recent works discuss gravitational observables (‘gravitational Wilson lines’) which create this hair in highly collimated ‘combed’ configurations. We construct and analyze time-symmetric classical solutions of 2 + 1 Einstein-Hilbert gravity such as might be created by smeared versions of such operators. We focus on the AdS3 case, where this hair is characterized by the profile of the boundary stress tensor; the desired solutions are those where the boundary stress tensor at initial time t = 0 agrees precisely with its vacuum value outside an angular interval [-α ,α ]. At linear order in source strength the energy is independent of the combing parameter α, but nonlinearities cause the full energy to diverge as α \\to 0. In general, solutions with combed gravitational flux also suffer from what we call displacement from their naive location. For weak sources and large α one may set the displacement to zero by further increasing the energy, though for strong sources and small α we find no preferred notion of a zero-displacement solution. In the latter case we conclude that naively expected gravitational Wilson lines do not exist. In the zero-displacement case, taking the AdS scale ℓ to infinity gives finite-energy flux-directed solutions that may be called asymptotically flat.

  2. Dense neuron system interacting with the gravitational potential.

    PubMed

    Thuraisingham, R A

    2015-10-01

    A theoretical model is developed to study the role of the gravitational potential between neurons in the brain under conditions of zero gravity. The model includes firing and non-firing neurons in a neural network where the source of interaction is the gravitational potential. The importance of this study is its ability to examine the role of the weak gravitational potential alone without the inclusion of other interactions between neurons. The results of the study show density fluctuations contain components from thermal effects and gravitational interactions. It also shows collective oscillatory behavior amongst neurons from gravitational interactions. The study provides a simple alternate mechanism to understand organized behavior of neurons in the brain under conditions of zero gravity. PMID:26187097

  3. Exact Relativistic Newtonian Representation of Gravitational static Spacetime Geometries

    NASA Astrophysics Data System (ADS)

    Ghosh, Shubhrangshu; Sarkar, Tamal; Bhadra, Arunava

    2016-09-01

    We construct a self-consistent relativistic Newtonian analogue corresponding to gravitational static spherical symmetric spacetime geometries, starting directly from a generalized scalar relativistic gravitational action in a Newtonian framework, which gives geodesic equations of motion identical to those of the parent metric. Consequently, the derived velocity-dependent relativistic scalar potential, which is a relativistic generalization of the Newtonian gravitational potential, exactly reproduces the relativistic gravitational features corresponding to any static spherical symmetric spacetime geometry in its entirety, including all the experimentally tested gravitational effects in the weak field up to the present. This relativistic analogous potential is expected to be quite useful in studying a wide range of astrophysical phenomena, especially in strong field gravity.

  4. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  5. Those Elusive Gravitational Waves

    ERIC Educational Resources Information Center

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  6. On propagation of electromagnetic and gravitational waves in the expanding Universe

    NASA Astrophysics Data System (ADS)

    Gladyshev, V. O.

    2016-07-01

    The purpose of this study was to obtain an equation for the propagation time of electromagnetic and gravitational waves in the expanding Universe. The velocity of electromagnetic waves propagation depends on the velocity of the interstellar medium in the observer's frame of reference. Gravitational radiation interacts weakly with the substance, so electromagnetic and gravitational waves propagate from a remote astrophysical object to the terrestrial observer at different time. Gravitational waves registration enables the inverse problem solution - by the difference in arrival time of electromagnetic and gravitational-wave signal, we can determine the characteristics of the emitting area of the astrophysical object.

  7. Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernov, S. V.; Gwinn, C. R.; Tchekhovskoy, A. A.

    2015-10-01

    Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.

  8. On the origin of radio emission in radio quiet quasars

    NASA Astrophysics Data System (ADS)

    Laor, Ari; Behar, Ehud

    The radio emission in radio loud quasars (RLQs) originates in a jet carrying relativistic electrons. In radio quiet quasars (RQQs) the radio emission is ˜ 103 times weaker, relative to other bands. Its origin is not clearly established yet, but it is often speculated to arise from a weak jet. Here we show that there is a tight relation between L_R and L_X for RQQs, with L_R/L_X˜ 10-5, based on the optically selected Palomar-Green (PG) quasars, with nearly complete X-ray and radio detections (avoiding biases and selection effects). Coronally active stars also show a tight relation between L_R and L_X with L_R/L_X˜ 10-5 (the Güdel & Benz relation), which together with correlated variability indicates that stellar coronae are magnetically heated. The X-ray emission of quasars most likely originates from a hot accretion disk corona, and since RQQs follow the Güdel & Benz relation, it is natural to associate their radio emission with coronal emission as well. The tight relation between L_R and L_X may simply reflect the equality of accretion disk coronal heating by magnetically generated relativistic electrons (producing L_R), and coronal cooling by Compton scattering (producing L_X). This suggestion can be tested by looking for correlated X-ray and radio variability patterns, such as the Neupert effect, displayed by stellar coronae.

  9. Progress in gravitational wave detection

    NASA Astrophysics Data System (ADS)

    Cheng, Jing-Quan; Yang, De-Hua

    2005-09-01

    General theory of Einstein's relativity predicts the existence of gravitational wave when mass is accelerated. However, no material has direct effect when the gravitational wave passes. Therefore, gravitational wave can only be detected indirectly. The effort in gravitational wave detection was started in the 60s of last century by using a huge cylinder of aluminum. This paper introduced all the relevant projects in the gravitational wave detection. These projects include Weber's bar, Laser interferometer Gravitational wave Detector (LGD), Laser Interferometer Gravitational wave Observatory (LIGO), GEO600, VIRGO, TAMA300, Advanced LIGO, Large scale Cryogenic Gravitational wave Telescope (LCGO), and Laser Interferometer Space Antenna (LISA).

  10. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  11. Gravitational waves in bimetric MOND

    NASA Astrophysics Data System (ADS)

    Milgrom, Mordehai

    2014-01-01

    I consider the weak-field limit (WFL) of the bimetric, relativistic formulation of the modified Newtonian dynamics (BIMOND)—the lowest order in the small departures hμν=gμν-ημν, h stretchy="false">^μν=g stretchy="false">^μν-ημν from double Minkowski space-time. In particular, I look at propagating solutions, for a favorite subclass of BIMOND. The WFL splits into two sectors for two linear combinations, hμν±, of hμν and h stretchy="false">^μν. The hμν+ sector is equivalent to the WFL of general relativity (GR), with its gauge freedom, and has the same vacuum gravitational waves. The hμν- sector is fully nonlinear even for the weakest hμν-, and inherits none of the coordinate gauge freedom. The equations of motion are scale invariant in the deep-MOND limit of purely gravitational systems. In these last two regards, the BIMOND WFL is greatly different from that of other bimetric theories studied to date. Despite the strong nonlinearity, an arbitrary pair of harmonic GR wave packets of hμν and h stretchy="false">^μν moving in the same direction, is a solution of the (vacuum) BIMOND WFL.

  12. Hunting Gravitational Waves with Multi-Messenger Counterparts: Australia's Role

    NASA Astrophysics Data System (ADS)

    Howell, E. J.; Rowlinson, A.; Coward, D. M.; Lasky, P. D.; Kaplan, D. L.; Thrane, E.; Rowell, G.; Galloway, D. K.; Yuan, Fang; Dodson, R.; Murphy, T.; Hill, G. C.; Andreoni, I.; Spitler, L.; Horton, A.

    2015-12-01

    The first observations by a worldwide network of advanced interferometric gravitational wave detectors offer a unique opportunity for the astronomical community. At design sensitivity, these facilities will be able to detect coalescing binary neutron stars to distances approaching 400 Mpc, and neutron star-black hole systems to 1 Gpc. Both of these sources are associated with gamma-ray bursts which are known to emit across the entire electromagnetic spectrum. Gravitational wave detections provide the opportunity for `multi-messenger' observations, combining gravitational wave with electromagnetic, cosmic ray, or neutrino observations. This review provides an overview of how Australian astronomical facilities and collaborations with the gravitational wave community can contribute to this new era of discovery, via contemporaneous follow-up observations from the radio to the optical and high energy. We discuss some of the frontier discoveries that will be made possible when this new window to the Universe is opened.

  13. Basic Radio Circuits and Vacuum Tube AM Troubleshooting; Radio and Television Service, Intermediate: 9785.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The 135-hour quinmester course covers study of basic radio circuits as applied to vacuum tube radios in six blocks of instruction: orientation; AM receivers with tubes; no signal, audio failure; distortion; weak, noisy signals; and a post-test. Each block is subdivided into several units, and block objectives are outlined. Completion of AC…

  14. The gravitational wave decade

    NASA Astrophysics Data System (ADS)

    Conklin, John

    2016-03-01

    With the expected direct detection of gravitational waves by Advanced LIGO and pulsar timing arrays in the near future, and with the recent launch of LISA Pathfinder this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. NASA has decided to join with ESA on the L3 mission as a junior partner and has recently assembled a study team to provide advice on how NASA might contribute to the European-led mission. This talk will describe these efforts and the activities of the Gravitational Wave Science Interest Group and the L3 Study Team, which will lead to the first space-based gravitational wave observatory.

  15. Astronomers Discover Six-Image Gravitational Lens

    NASA Astrophysics Data System (ADS)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  16. Gravitational Wave Search with the Clock Mission

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1997-01-01

    Doppler tracking of distant spacecraft is the only method currently available to search for gravitational waves in the low-frequency (approx. 0.0001-0.1 Hz) band. In this technique the Doppler system measures the relative dimensionless velocity 2(delta)v/c = (delta)f/f(sub o) between the earth and the spacecraft as a function of time, where (delta)f is the frequency perturbation and f(sub o) is the nominal frequency of the radio link. A gravitational wave of amplitude h incident on this system causes small frequency perturbations, of order h in (delta)f/f(sub o), replicated three times in the observed record (Estabrook and Wahlquist 1975). All experiments to date and those planned for the near future involve only 'two-way' Doppler-i.e., uplink signal coherently transponded by the spacecraft with Doppler measured using a frequency standard common to the transmit and receive chains of the ground station. If, as on the proposed Clock Mission, there is an additional frequency standard on the spacecraft and a suitable earth-spacecraft radio system, some noise sources can be isolated and removed from the data (Vessot and Levine 1978). Supposing that the Clock Mission spacecraft is transferred into a suitable interplanetary orbit, I discuss here how the on-board frequency standard could be employed with an all-Ka-band radio system using the very high stability Deep Space Network station DSS 25 being instrumented for Cassini. With this configuration, the Clock Mission could search for gravitational waves at a sensitivity limited by the frequency standards, rather than plasma or tropospheric scintillation effects, whenever the sun-earth-spacecraft angle is greater than 90 degrees.

  17. Gravitational scaling dimensions

    SciTech Connect

    Hamber, Herbert W.

    2000-06-15

    A model for quantized gravitation based on simplicial lattice discretization is studied in detail using a comprehensive finite size scaling analysis combined with renormalization group methods. The results are consistent with a value for the universal critical exponent for gravitation, {nu}=1/3, and suggest a simple relationship between Newton's constant, the gravitational correlation length and the observable average space-time curvature. Some perhaps testable phenomenological implications of these results are discussed. To achieve a high numerical accuracy in the evaluation of the lattice path integral a dedicated parallel machine was assembled. (c) 2000 The American Physical Society.

  18. On Gravitational Repulsion

    NASA Astrophysics Data System (ADS)

    Piran, Tsvi

    1997-11-01

    The concepts of negative gravitational mass and gravitational repulsion are alien to general relativity. Still, we show here that small negative fluctuations~--- small dimples in the primordial density field~--- that act as if they have an effective negative gravitational mass, play a dominant role in shaping our Universe. These initially tiny perturbations repel matter surrounding them, expand and grow to become voids in the galaxy distribution. These voids~--- regions with a diameter of $40h^{-1}$ Mpc which are almost devoid of galaxies~--- are the largest objects in the Universe.

  19. Astronomers Discover Six-Image Gravitational Lens

    NASA Astrophysics Data System (ADS)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  20. Gravitational wave astronomy - astronomy of the 21st century

    NASA Astrophysics Data System (ADS)

    Dhurandhar, S. V.

    2011-03-01

    An enigmatic prediction of Einstein's general theory of relativity is gravitational waves. With the observed decay in the orbit of the Hulse-Taylor binary pulsar agreeing within a fraction of a percent with the theoretically computed decay from Einstein's theory, the existence of gravitational waves was firmly established. Currently there is a worldwide effort to detect gravitational waves with inteferometric gravitational wave observatories or detectors and several such detectors have been built or being built. The initial detectors have reached their design sensitivities and now the effort is on to construct advanced detectors which are expected to detect gravitational waves from astrophysical sources. The era of gravitational wave astronomy has arrived. This article describes the worldwide effort which includes the effort on the Indian front - the IndIGO project -, the principle underlying interferometric detectors both on ground and in space, the principal noise sources that plague such detectors, the astrophysical sources of gravitational waves that one expects to detect by these detectors and some glimpse of the data analysis methods involved in extracting the very weak gravitational wave signals from detector noise.

  1. Gravitational wave astronomy-- astronomy of the 21st century

    NASA Astrophysics Data System (ADS)

    Dhurandhar, S. V.

    2011-12-01

    An enigmatic prediction of Einstein's general theory of relativity is gravitational waves. With the observed decay in the orbit of the Hulse-Taylor binary pulsar agreeing within a fraction of a percent with the theoretically computed decay from Einstein's theory, the existence of gravitational waves was firmly established. Currently there is a worldwide effort to detect gravitational waves with inteferometric gravitational wave observatories or detectors and several such detectors have been built or are being built. The initial detectors have reached their design sensitivities and now the effort is on to construct advanced detectors which are expected to detect gravitational waves from astrophysical sources. The era of gravitational wave astronomy has arrived. This article describes the worldwide effort which includes the effort on the Indian front-- the IndIGO project --, the principle underlying interferometric detectors both on ground and in space, the principal noise sources that plague such detectors, the astrophysical sources of gravitational waves that one expects to detect by these detectors and some glimpse of the data analysis methods involved in extracting the very weak gravitational wave signals from detector noise.

  2. Weak Value Theory

    SciTech Connect

    Shikano, Yutaka

    2011-03-28

    I show that the weak value theory is useful from the viewpoints of the experimentally verifiability, consistency, capacity for explanation as to many quantum paradoxes, and practical advantages. As an example, the initial state in the Hardy paradox can be experimentally verified using the weak value via the weak measurement.

  3. Gravitational-wave joy

    NASA Astrophysics Data System (ADS)

    seyithocuk; jjeherrera; eltodesukane; GrahamRounce; rloldershaw; Beaker, Dr; Sandhu, G. S.; Ophiuchi

    2016-03-01

    In reply to the news article on the LIGO collaboration's groundbreaking detection of gravitational waves, first predicted by Einstein 100 years ago, from two black holes colliding (pp5, 6-7 and http://ow.ly/Ylsyt).

  4. Observation of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Gonzalez, Gabriela

    2016-06-01

    On September 14 2015, the two LIGO gravitational wave detectors in Hanford, Washington and Livingston, Louisiana registered a nearly simultaneous signal with time-frequency properties consistent with gravitational-wave emission by the merger of two massive compact objects. Further analysis of the signals by the LIGO Scientific Collaboration and Virgo Collaboration revealed that the gravitational waves detected by LIGO came from the merger of a binary black hole (BBH) system approximately 420 Mpc distant (z=0.09) with constituent masses of 36 and 29 M_sun. I will describe the details of the observation, the status of ground-based interferometric detectors, and prospects for future observations in the new era of gravitational wave astronomy.

  5. Mass ejection from neutron star mergers: different components and expected radio signals

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Piran, Tsvi

    2015-06-01

    In addition to producing a strong gravitational signal, a short gamma-ray burst (GRB), and a compact remnant, neutron star mergers eject significant masses (up to a few per cent of M⊙) at significant kinetic energies. The different components of the ejected mass include a dynamical ejected mass, a GRB jet and also a shock-breakout material, a cocoon resulting from the interaction of the jet with other ejecta, and viscous- and neutrino-driven winds. The interaction of these ejecta with the surrounding interstellar medium will produce a long-lasting radio flare. We estimate here the expected radio flares arising from these outflows. The flares are rather weak and uncertainties in the kinetic energy, the velocity, and the external density make exact estimates of these signals difficult. The relative strength of the different signals depends strongly on the viewing angle. An observer along the jet axis or close to it will detect a strong signal at a few dozen days from the radio afterglow (or the orphan radio afterglow) produced by the highly relativistic GRB jet. A generic observer at larger viewing angles will generally observe the dynamical ejecta, whose contribution peaks a year or so after the event. Depending on the observed frequency and the external density, other components may also give rise to a significant contribution. If the short GRB 130603B was a merger event, its radio flare from the dynamical ejecta might be detectable with the EVLA and the LOFAR for the higher range of external densities n ≳ 0.5 cm-3

  6. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  7. The double quasar 0957+561: a radio study at 6-centimeters wavelength.

    PubMed

    Roberts, D H; Greenfield, P E; Burke, B F

    1979-08-31

    The optical double quasar 0957+561 has been interpreted as the gravitational double image of a single object. A radio map made with the Very Large Array of the National Radio Astronomy Observatory shows unresolved sources coincident With the optical images as well as a complex of related extended emission. Although the results cannot rule out the gravitational lens hypothesis, the complex radio structure is more easily interpreted as two separate quasars. The optical and radio properties of the two quasars are so similar that the two must have been formed at the same time with similar initial conditions. PMID:17813079

  8. Relativistic theory of gravitation

    SciTech Connect

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter.

  9. Gravitational Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Finn, Lee Samuel

    2012-03-01

    If two black holes collide in a vacuum, can they be observed? Until recently, the answer would have to be "no." After all, how would we observe them? Black holes are "naked" mass: pure mass, simple mass, mass devoid of any matter whose interactions might lead to the emission of photons or neutrinos, or any electromagnetic fields that might accelerate cosmic rays or leave some other signature that we could observe in our most sensitive astronomical instruments. Still, black holes do have mass. As such, they interact—like all mass—gravitationally. And the influence of gravity, like all influences, propagates no faster than that universal speed we first came to know as the speed of light. The effort to detect that propagating influence, which we term as gravitational radiation or gravitational waves, was initiated just over 50 years ago with the pioneering work of Joe Weber [1] and has been the object of increasingly intense experimental effort ever since. Have we, as yet, detected gravitational waves? The answer is still "no." Nevertheless, the accumulation of the experimental efforts begun fifty years ago has brought us to the point where we can confidently say that gravitational waves will soon be detected and, with that first detection, the era of gravitational wave astronomy—the observational use of gravitational waves, emitted by heavenly bodies—will begin. Data analysis for gravitational wave astronomy is, today, in its infancy and its practitioners have much to learn from allied fields, including machine learning. Machine learning tools and techniques have not yet been applied in any extensive or substantial way to the study or analysis of gravitational wave data. It is fair to say that this owes principally to the fields relative youth and not to any intrinsic unsuitability of machine learning tools to the analysis problems the field faces. Indeed, the nature of many of the analysis problems faced by the field today cry-out for the application of

  10. New window into stochastic gravitational wave background.

    PubMed

    Rotti, Aditya; Souradeep, Tarun

    2012-11-30

    A stochastic gravitational wave background (SGWB) would gravitationally lens the cosmic microwave background (CMB) photons. We correct the results provided in existing literature for modifications to the CMB polarization power spectra due to lensing by gravitational waves. Weak lensing by gravitational waves distorts all four CMB power spectra; however, its effect is most striking in the mixing of power between the E mode and B mode of CMB polarization. This suggests the possibility of using measurements of the CMB angular power spectra to constrain the energy density (Ω(GW)) of the SGWB. Using current data sets (QUAD, WMAP, and ACT), we find that the most stringent constraints on the present Ω(GW) come from measurements of the angular power spectra of CMB temperature anisotropies. In the near future, more stringent bounds on Ω(GW) can be expected with improved upper limits on the B modes of CMB polarization. Any detection of B modes of CMB polarization above the expected signal from large scale structure lensing could be a signal for a SGWB. PMID:23368112

  11. Radio continuum polarimetric imaging of high redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Carilli, C. L.; Owen, F. N.; Harris, D. E.

    1994-01-01

    Multifrequency images of total and polarized radio continuum emission from the two high redshift radio galaxies 0902+343 (z = 3.40) and 0647+415 (4C 41.17, z = 3.80) are presented. These images represent the most sensitive polarimetric study of high redshift ratio galaxies to date. The emission from both galaxies is substantially polarized, up to 30% in some regions, and both sources sit behind deep 'Faraday screens,' producing large rotation measures, over 10(exp 3) rad/sq. m in magnitude, and large rotation measure gradients across the sources. Such large rotation measures provide further evidence that high redshift radio galaxies are situated in very dense environments. Drawing the analogy to a class of low redshift powerful radio galaxies with similarly large rotation measures, we suggest that 0902+343 and 0647+415 are situated at the centers of dense, x-ray 'colling flow' clusters, and that the cluster gas is substantially magnetized. The remarkable similarity between the optical and radio morphologies of 0647+415 on scales as small as 0.1 sec is presented. We consider, and reject, both synchrotron and inverse Compton radiation as possible sources of the optical emission. We also consider both scattering of light out of a 'cone' of radiation from an obscured nucleus, and jet-induced star formation, and find that both models encounter difficulties in explaining this remarkably close radio-optical alignment. High resolution spectral index images reveal compact, flat spectrum components in both sources. We suggest that these components are the active nuclei of the galaxies. Lastly, high resolution images of 0902+343 show that the southernmost component forms a 'ring' of 0.2 sec radius. We discuss the possibility that this ring is the result of gravitational lensing, along the lines proposed by Kochanek & Lawrence (1990).

  12. SUNGLASS: A Weak-lensing Simulation Pipeline

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Taylor, A.; Heavens, A.; Rhodes, J.; Bartlett, J.

    2013-01-01

    Weak gravitational lensing analysis is a powerful tool to investigate the dark Universe. Next generation weak-lensing telescope surveys (e.g. Euclid and WFIRST) promise to determine the equation of state of dark energy to 1% as well as probing the possibilities of extra dimensional gravity models and alternative cosmologies. To realize the potential of these new telescope surveys and to test new weak-lensing analysis techniques, challenges must be met. To achieve the small statistical errors required, experiments require full end-to-end simulations of huge volumes, which also probe the non-linear regime to assist in understanding the limitations of the analysis techniques. We have developed a new cosmic shear analysis pipeline SUNGLASS (Simulated UNiverses for Gravitational Lensing Analysis and Shear Surveys) that rapidly generates cosmic shear and convergence catalogues using N-body simulations. In this poster, I introduce the SUNGLASS pipeline and show how the SUNGLASS mock shear catalogues can be used in preparation for upcoming telescope missions and for analysis of existing observational data sets.

  13. Relativistic Generalization of the Inertial and Gravitational Masses Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Mitskievich, Nikolai V.

    2008-09-01

    The Newtonian approximation in the gravitational field description not necessarily involves admission of non-relativistic properties of the source terms in Einstein's equations: it is sufficient to merely consider the weak-field condition for gravitational field. When, e.g., a source has electromagnetic nature, one simply cannot ignore its intrinsically relativistic properties, since there cannot be invented any non-relativistic approximation which would adequately describe electromagnetic stress-energy tensor even at large distances where the fields become naturally weak. But the test particle on which gravitational field is acting, should be treated as non-relativistic (this premise is required for introduction of the Newtonian potential ΦN from the geodesic equation).

  14. Aperiodic Weak Topological Superconductors.

    PubMed

    Fulga, I C; Pikulin, D I; Loring, T A

    2016-06-24

    Weak topological phases are usually described in terms of protection by the lattice translation symmetry. Their characterization explicitly relies on periodicity since weak invariants are expressed in terms of the momentum-space torus. We prove the compatibility of weak topological superconductors with aperiodic systems, such as quasicrystals. We go beyond usual descriptions of weak topological phases and introduce a novel, real-space formulation of the weak invariant, based on the Clifford pseudospectrum. A nontrivial value of this index implies a nontrivial bulk phase, which is robust against disorder and hosts localized zero-energy modes at the edge. Our recipe for determining the weak invariant is directly applicable to any finite-sized system, including disordered lattice models. This direct method enables a quantitative analysis of the level of disorder the topological protection can withstand. PMID:27391744

  15. Aperiodic Weak Topological Superconductors

    NASA Astrophysics Data System (ADS)

    Fulga, I. C.; Pikulin, D. I.; Loring, T. A.

    2016-06-01

    Weak topological phases are usually described in terms of protection by the lattice translation symmetry. Their characterization explicitly relies on periodicity since weak invariants are expressed in terms of the momentum-space torus. We prove the compatibility of weak topological superconductors with aperiodic systems, such as quasicrystals. We go beyond usual descriptions of weak topological phases and introduce a novel, real-space formulation of the weak invariant, based on the Clifford pseudospectrum. A nontrivial value of this index implies a nontrivial bulk phase, which is robust against disorder and hosts localized zero-energy modes at the edge. Our recipe for determining the weak invariant is directly applicable to any finite-sized system, including disordered lattice models. This direct method enables a quantitative analysis of the level of disorder the topological protection can withstand.

  16. A Xylophone Detector of Gravitational Radiation

    NASA Technical Reports Server (NTRS)

    Tinto, Massimo

    1997-01-01

    We discuss spacecraft Doppler tracking searches for gravitational waves in which Doppler data recorded on the ground are linearly combined with Doppler measurements made on board a spacecraft. By using the four-link radio system first proposed by Vessot and Levine, we describe a new method for removing from the combined data the frequency fluctuations due to the Earth troposphere, ionosphere, and mechanical vibrations of the antenna on the ground. This technique provides also a way for reducing by several orders of magnitude, at selected Fourier components, the frequency fluctuations due to other noise sources, such as the clock on board the spacecraft or the antenna and buffeting of the probe by nongravitational forces. In this respect spacecraft Doppler tracking can be regarded as a xylophone detector of gravitational radiation. In the assumption of calibrating the frequency fluctuations induced by the interplanetary plasma, a strain sensitivity equal to 4.7 x 10(exp -18) at 10(exp -3) Hz is estimated. This experimental technique could be extended to other tests of the theory of relativity, and to radio science experiments that rely on high-precision Doppler measurements.

  17. HST Observations of New Class Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Jackson, Neal

    1995-07-01

    We propose to examine a few of the very best lens candidates from a new gravitational lens survey, the Cosmic Lens All-Sky Survey (CLASS) made with the VLA. We are virtually certain that we have one new lens system (1600+434) and another (1609+655) has a radio configuration which almost invariably indicates gravitational lensing. The other cases are systems which have a high probability of being lenses (statistically we would expect at least 5 of the 10 objects should be lensed, since we have imaged >3000 radio sources and experience shows that 1 in 500 are lensed). All have separations which make them difficult to study from the ground and therefore uniquely suited to the capabilities of the HST. In this investigation we will study 1600+434 and 1609+655 and attempt to image the lensing galaxy. We will image the remainder in an attempt to confirm their lens status (which requires 0.1" resolution imaging typically) and search for lensing galaxies and/or clusters in those found to be lensed systems.

  18. Reduced time delay for gravitational waves with dark matter emulators

    NASA Astrophysics Data System (ADS)

    Desai, S.; Kahya, E. O.; Woodard, R. P.

    2008-06-01

    We discuss the implications for gravitational wave detectors of a class of modified gravity theories which dispense with the need for dark matter. These models, which are known as dark matter emulators, have the property that weak gravitational waves couple to the metric that would follow from general relativity without dark matter whereas ordinary particles couple to a combination of the metric and other fields which reproduces the result of general relativity with dark matter. We show that there is an appreciable difference in the Shapiro delays of gravitational waves and photons or neutrinos from the same source, with the gravitational waves always arriving first. We compute the expected time lags for GRB 070201, for SN 1987a and for Sco-X1. We estimate the probable error by taking account of the uncertainty in position, and by using three different dark matter profiles.

  19. Cosmic shear from scalar-induced gravitational waves

    SciTech Connect

    Sarkar, Devdeep; Serra, Paolo; Cooray, Asantha; Ichiki, Kiyotomo; Baumann, Daniel

    2008-05-15

    Weak gravitational lensing by foreground density perturbations generates a gradient mode in the shear of background images. In contrast, cosmological tensor perturbations induce a nonzero curl mode associated with image rotations. In this note, we study the lensing signatures of both primordial gravitational waves from inflation and second-order gravitational waves generated from the observed spectrum of primordial density fluctuations. We derive the curl mode for galaxy lensing surveys at redshifts of 1-3 and for lensing of the cosmic microwave background at a redshift of 1100. We find that the curl mode angular power spectrum associated with secondary tensor modes for galaxy lensing surveys dominates over the corresponding signal generated by primary gravitational waves from inflation. However, both tensor contributions to the shear curl mode spectrum are below the projected noise levels of upcoming galaxy and cosmic microwave background lensing surveys and therefore are unlikely to be detectable.

  20. LensTools: Weak Lensing computing tools

    NASA Astrophysics Data System (ADS)

    Petri, A.

    2016-02-01

    LensTools implements a wide range of routines frequently used in Weak Gravitational Lensing, including tools for image analysis, statistical processing and numerical theory predictions. The package offers many useful features, including complete flexibility and easy customization of input/output formats; efficient measurements of power spectrum, PDF, Minkowski functionals and peak counts of convergence maps; survey masks; artificial noise generation engines; easy to compute parameter statistical inferences; ray tracing simulations; and many others. It requires standard numpy and scipy, and depending on tools used, may require Astropy (ascl:1304.002), emcee (ascl:1303.002), matplotlib, and mpi4py.

  1. Modeling Gravitational Radiation Waveforms from Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, J. G.; Centrelia, J. M.; Choi, D.; Koppitz, M.; VanMeter, J.

    2006-01-01

    Gravitational radiation from merging binary black hole systems is anticipated as a key source for gravitational wave observations. Ground-based instruments, such as the Laser Interferometer Gravitational-wave Observatory (LIGO) may observe mergers of stellar-scale black holes, while the space-based Laser Interferometer Space Antenna (LISA) observatory will be sensitive to mergers of massive galactic-center black holes over a broad range of mass scales. These cataclysmic events may emit an enormous amount of energy in a brief time. Gravitational waves from comparable mass mergers carry away a few percent of the system's mass-energy in just a few wave cycles, with peak gravitational wave luminosities on the order of 10^23 L_Sun. Optimal analysis and interpretation of merger observation data will depend on developing a detailed understanding, based on general relativistic modeling, of the radiation waveforms. We discuss recent progress in modeling radiation from equal mass mergers using numerical simulations of Einstein's gravitational field equations, known as numerical relativity. Our simulations utilize Adaptive Mesh Refinement (AMR) to allow high-resolution near the black holes while simultaneously keeping the outer boundary of the computational domain far from the black holes, and making it possible to read out gravitational radiation waveforms in the weak-field wave zone. We discuss the results from simulations beginning with the black holes orbiting near the system's innermost stable orbit, comparing the recent simulations with earlier "Lazarus" waveform estimates based on an approximate hybrid numerical/perturbative technique.

  2. Sources of gravitational waves

    NASA Technical Reports Server (NTRS)

    Schutz, Bernard F.

    1989-01-01

    Sources of low frequency gravitational radiation are reviewed from an astrophysical point of view. Cosmological sources include the formation of massive black holes in galactic nuclei, the capture by such holes of neutron stars, the coalescence of orbiting pairs of giant black holes, and various means of producing a stochastic background of gravitational waves in the early universe. Sources local to our Galaxy include various kinds of close binaries and coalescing binaries. Gravitational wave astronomy can provide information that no other form of observing can supply; in particular, the positive identification of a cosmological background originating in the early universe would be an event as significant as was the detection of the cosmic microwave background.

  3. Open questions in astrophysically triggered gravitational wave searches

    NASA Astrophysics Data System (ADS)

    Márka, S.; LIGO Scientific Collaboration; Virgo Collaboration

    2010-08-01

    Sources of gravitational waves are often expected to also be observable through several other messengers, such as gamma rays, X-rays, optical, radio, and/or neutrino emission. Some of these channels are already being used in searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network, and others are currently being incorporated into new searches. Astrophysical targets include gamma-ray bursts, soft-gamma repeaters, supernovae, and glitching pulsars. The simultaneous observation of electromagnetic or neutrino emission could be a crucial aspect for the first direct detection of gravitational waves. Information on the progenitor, such as trigger time, direction and expected frequency range, can enhance our ability to identify gravitational wave signatures with amplitudes close to the noise floor of the detector. Furthermore, combining gravitational waves with electromagnetic and neutrino observations will enable the extraction of scientific insight that was hidden from us before. The paper discusses the status of transient multimessenger detection efforts as well as intriguing questions that might be resolved in the future by advanced and third generation gravitational wave detectors.

  4. Magnetohydrodynamic solitons and radio knots in jets

    NASA Technical Reports Server (NTRS)

    Fiedler, R.

    1986-01-01

    Weakly nonlinear surface waves are examined in the context of the beam model for jetlike radio sources. By introducing a finite scale length, viz. the beam radius, geometrical dispersion can act to balance nonlinear wave growth and thereby produce solitons, localized wave packets of stable waveform. A method for obtaining a soliton equation from the MHD equations is presented and then applied to radio knots in jets.

  5. The Radio JOVE Project - Shoestring Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  6. Doppler experiments with Cassini radio system

    NASA Technical Reports Server (NTRS)

    Comoretto, G.; Bertotti, B.; Iess, L.; Ambrosini, R.

    1992-01-01

    The radio system of the Cassini orbiter will include a K-alpha band downlink channel, mainly intended for telemetry. A K-alpha uplink has also been proposed to allow for a highly accurate gravitational wave experiment. The fourfold increase in frequency will reduce the plasma noise by a factor of 12 and will allow a Doppler accuracy better than 10 exp -15 for time scales of 10 exp 3 - 10 exp 4 s. Extensive Doppler measurements of the gravitational field of Saturn and its satellites can be performed, exploiting the induced change in the velocity of the spacecraft. Possible sources of low-frequency gravitational waves and errors in the Doppler link are discussed.

  7. Superconducting Antenna Concept for Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Gulian, A.; Foreman, J.; Nikoghosyan, V.; Nussinov, S.; Sica, L.; Tollaksen, J.

    The most advanced contemporary efforts and concepts for registering gravitational waves are focused on measuring tiny deviations in large arm (kilometers in case of LIGO and thousands of kilometers in case of LISA) interferometers via photons. In this report we discuss a concept for the detection of gravitational waves using an antenna comprised of superconducting electrons (Cooper pairs) moving in an ionic lattice. The major challenge in this approach is that the tidal action of the gravitational waves is extremely weak compared with electromagnetic forces. Any motion caused by gravitational waves, which violates charge neutrality, will be impeded by Coulomb forces acting on the charge carriers (Coulomb blockade) in metals, as well as in superconductors. We discuss a design, which avoids the effects of Coulomb blockade. It exploits two different superconducting materials used in a form of thin wires -"spaghetti." The spaghetti will have a diameter comparable to the London penetration depth, and length of about 1-10 meters. To achieve competitive sensitivity, the antenna would require billions of spaghettis, which calls for a challenging manufacturing technology. If successfully materialized, the response of the antenna to the known highly periodic sources of gravitational radiation, such as the Pulsar in Crab Nebula will result in an output current, detectable by superconducting electronics. The antenna will require deep (0.3K) cryogenic cooling and magnetic shielding. This design may be a viable successor to LISA and LIGO concepts, having the prospect of higher sensitivity, much smaller size and directional selectivity. This concept of compact antenna may benefit also terrestrial gradiometry.

  8. Scalar Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Mottola, Emil

    2016-03-01

    General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degree of freedom in the extended effective field theory (EFT) of gravity generated by the trace anomaly of massless quantum fields in curved space. Linearized around flat space this quantum scalar degree of freedom combines with the conformal part of the metric and predicts the existence of scalar spin-0 ``breather'' propagating gravitational waves in addition to the transverse tensor spin-2 waves of classical General Relativity. Estimates of the expected strength of scalar gravitational radiation from compact astrophysical sources are given.

  9. Gravitation: Foundations and Frontiers

    NASA Astrophysics Data System (ADS)

    Padmanabhan, T.

    2010-01-01

    1. Special relativity; 2. Scalar and electromagnetic fields in special relativity; 3. Gravity and spacetime geometry: the inescapable connection; 4. Metric tensor, geodesics and covariant derivative; 5. Curvature of spacetime; 6. Einstein's field equations and gravitational dynamics; 7. Spherically symmetric geometry; 8. Black holes; 9. Gravitational waves; 10. Relativistic cosmology; 11. Differential forms and exterior calculus; 12. Hamiltonian structure of general relativity; 13. Evolution of cosmological perturbations; 14. Quantum field theory in curved spacetime; 15. Gravity in higher and lower dimensions; 16. Gravity as an emergent phenomenon; Notes; Index.

  10. Supersymmetry and gravitational duality

    SciTech Connect

    Argurio, Riccardo; Dehouck, Francois; Houart, Laurent

    2009-06-15

    We study how the supersymmetry algebra copes with gravitational duality. As a playground, we consider a charged Taub-Newman-Unti-Tamburino(NUT) solution of D=4, N=2 supergravity. We find explicitly its Killing spinors, and the projection they obey provides evidence that the dual magnetic momenta necessarily have to appear in the supersymmetry algebra. The existence of such a modification is further supported using an approach based on the Nester form. In the process, we find new expressions for the dual magnetic momenta, including the NUT charge. The same expressions are then rederived using gravitational duality.

  11. Gravitational-Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  12. Pioneering in gravitational physiology

    NASA Technical Reports Server (NTRS)

    Soffen, G. A.

    1983-01-01

    Gravity affects biology at almost all levels above that of the cell organelle. Attention is presently given to progress made in the understanding of gravitational effects through studies employing centrifuges, clinostats, inverted preparations, linear devices, water immersion, free fall, and short- and long-term spaceflight. The cardiovascular changes which cause malaise and illness during the first few days of extended space missions are the direct result of fluid translocation from the lower extremities. Upon reentry, there is hypovolumnia and a cardiovascular deconditioning that can include tachycardia, changes in arterial blood pressure, narrow pulse pressure, and syncope. Attention is also given to NASA's gravitational physiology reseach program.

  13. Space Telecommunications Radio System STRS Cognitive Radio

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  14. The Search for HI Emission at z ≈ 0.4 in Gravitationally Lensed Galaxies with the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Hunt, L. R.; Pisano, D. J.; Edel, S.

    2016-08-01

    Neutral hydrogen (Hi) provides a very important fuel for star formation, but is difficult to detect at high redshift due to weak emission, limited sensitivity of modern instruments, and terrestrial radio frequency interference (RFI) at low frequencies. We report the first attempt to use gravitational lensing to detect Hi line emission from three gravitationally lensed galaxies behind the cluster Abell 773, two at redshifts of 0.398 and one at z = 0.487, using the Green Bank Telescope. We find that a 3σ upper limit for a galaxy with a rotation velocity of 200 km s‑1 is M H i = 6.58 × 109 and 1.5 × 1010 M ⊙ at z = 0.398 and z = 0.487. The estimated Hi masses of the sources at z = 0.398 and z = 0.487 are factors of 3.7 and ∼30 times lower than our detection limits at the respective redshifts. To facilitate these observations we have used sigma-clipping to remove both narrow- and wideband RFI but retain the signal from the source. We are able to reduce the noise of the spectrum by ∼25% using our routine instead of discarding observations with too much RFI. The routine is most effective when ∼10% of the integrations or fewer contain RFI. These techniques can be used to study Hi in highly magnified distant galaxies that are otherwise too faint to detect.

  15. The Search for HI Emission at z ≈ 0.4 in Gravitationally Lensed Galaxies with the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Hunt, L. R.; Pisano, D. J.; Edel, S.

    2016-08-01

    Neutral hydrogen (Hi) provides a very important fuel for star formation, but is difficult to detect at high redshift due to weak emission, limited sensitivity of modern instruments, and terrestrial radio frequency interference (RFI) at low frequencies. We report the first attempt to use gravitational lensing to detect Hi line emission from three gravitationally lensed galaxies behind the cluster Abell 773, two at redshifts of 0.398 and one at z = 0.487, using the Green Bank Telescope. We find that a 3σ upper limit for a galaxy with a rotation velocity of 200 km s‑1 is M H i = 6.58 × 109 and 1.5 × 1010 M ⊙ at z = 0.398 and z = 0.487. The estimated Hi masses of the sources at z = 0.398 and z = 0.487 are factors of 3.7 and ˜30 times lower than our detection limits at the respective redshifts. To facilitate these observations we have used sigma-clipping to remove both narrow- and wideband RFI but retain the signal from the source. We are able to reduce the noise of the spectrum by ˜25% using our routine instead of discarding observations with too much RFI. The routine is most effective when ˜10% of the integrations or fewer contain RFI. These techniques can be used to study Hi in highly magnified distant galaxies that are otherwise too faint to detect.

  16. Weathering the Largest Storms in the Universe : Understanding environmental effects on extended radio emission in clusters

    NASA Astrophysics Data System (ADS)

    Dehghan, S.

    2014-05-01

    This thesis presents an investigation of the habitat of extended radio sources, and the way in which the generation and properties of these radio sources are affected by environmental factors. We begin with a detailed structure analysis of the 0.3 deg2 area of the MUSYC-ACES field, generated by applying a density-based clustering method, known as DBSCAN, to our spectroscopic and photometric samples of the field. As a result, we identify 62 over-dense regions across the field. Based on the properties of the detected structures, we classify 13 as clusters, of which 90% are associated with diffuse soft-band X-ray emission. This provides a strong and independent confirmation that both the clustering and classification methodologies are reliable for use in investigation of the environment of the radio sources in the Chandra Deep Field South (CDFS). Using an interpolation-based method followed by a new calibration technique of using clusters of similar mass as standard candles, we are able to estimate the local environmental richness for a desired region. This methodology is applied to a sample of AGNs and star forming galaxies in the CDFS to probe whether or not the radio luminosity of the different radio sources is correlated to their environments. As a result, we do not find a significant correlation between the radio luminosity and the environment of star-forming galaxies and radio-quiet AGNs, however, a weak positive dependency is spotted for radio-loud AGNs. This may indicate that over-populated environments trigger or enhance the radio activity processes in the AGNs. We find that star-forming galaxies, unlike radio-loud AGNs, tend to avoid overpopulated environments especially at low redshifts. However, radio-loud AGN are found in both poor and rich environments. As a result, we find neither of these radio sources suitable for tracing the over-dense regions of the Universe, unlike tailed radio galaxies. It is believed that tailed radio galaxies reside in the dense

  17. Numerical solution of an elastic and viscoelastic gravitational models by the finite element method

    NASA Astrophysics Data System (ADS)

    Arjona Almodóvar, A.; Chacón Rebollo, T.; Gómez Marmol, M.

    2014-12-01

    Volcanic areas present a lower effective viscosity than usually in the Earth's crust. Both the elastic-gravitational and the viscoelastic-gravitational models allow the computation of gravity, deformation, and gravitational potential changes in order to investigate crustal deformations of Earth (see for instance Battaglia & Segall, 2004; Fernández et al. 1999, 2001; Rundle 1980 and 1983). These models can be represented by a coupled system of linear parabolic (for the elastic deformations), hyperbolic (for the viscoelastic deformations) and elliptic partial differential equations (for gravitational potential changes) (see for instance Arjona et al. 2008 and 2010). The existence and uniqueness of weak solutions for both the elastic-gravitational and viscoelastic-gravitational problem was demonstrated in Arjona et al. (2008 and 2014). The stabilization to solutions of the associated stationary system was proved in Arjona and Díaz (2007). Here we consider the internal source as response to the effect of a pressurized magma reservoir into a multilayered, elastic-gravitational and viscoelastic-gravitational earth model. We introduce the numerical analysis of a simplified steady elastic-gravitational model, solved by means of the finite element method. We also present some numerical tests in realistic situations that confirm the predictions of theoretical order of convergence. Finally, we describe the methodology for both the elastic-gravitational and the viscoelastic-gravitational models using 2D and 3D test examples performed with FreeFEM++.

  18. Astronomers Get New Tools for Gravitational-Wave Detection

    NASA Astrophysics Data System (ADS)

    2010-01-01

    Teamwork between gamma-ray and radio astronomers has produced a breakthrough in finding natural cosmic tools needed to make the first direct detections of the long-elusive gravitational waves predicted by Albert Einstein nearly a century ago. An orbiting gamma-ray telescope has pointed radio astronomers to specific locations in the sky where they can discover new millisecond pulsars. Millisecond pulsars, rapidly-spinning superdense neutron stars, can serve as extremely precise and stable natural clocks. Astronomers hope to detect gravitational waves by measuring tiny changes in the pulsars' rotation caused by the passage of the gravitational waves. To do this, they need a multitude of millisecond pulsars dispersed widely throughout the sky. However, nearly three decades after the discovery of the first millisecond pulsar, only about 150 of them had been found, some 90 of those clumped tightly in globular star clusters and thus unusable for detecting gravitational waves. The problem was that millisecond pulsars could only be discovered through arduous, computing-intensive searches of small portions of sky. "We've probably found far less than one percent of the millisecond pulsars in the Milky Way Galaxy," said Scott Ransom of the National Radio Astronomy Observatory (NRAO). The breakthrough came when an instrument aboard NASA's Fermi Gamma-Ray Space Telescope began surveying the sky in 2008. This instrument located hundreds of gamma-ray-emitting objects throughout our Galaxy, and astronomers suspected many of these could be millisecond pulsars. Paul Ray of the Naval Research Laboratory initiated an international collaboration to use radio telescopes to confirm the identity of these objects as millisecond pulsars. "The data from Fermi were like a buried-treasure map," Ransom said. "Using our radio telescopes to study the objects located by Fermi, we found 17 millisecond pulsars in three months. Large-scale searches had taken 10-15 years to find that many," Ransom

  19. Weak cosmic censorship: as strong as ever.

    PubMed

    Hod, Shahar

    2008-03-28

    Spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. This is the essence of the weak cosmic censorship conjecture. The hypothesis, put forward by Penrose 40 years ago, is still one of the most important open questions in general relativity. In this Letter, we reanalyze extreme situations which have been considered as counterexamples to the weak cosmic censorship conjecture. In particular, we consider the absorption of scalar particles with large angular momentum by a black hole. Ignoring back reaction effects may lead one to conclude that the incident wave may overspin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when back reaction effects are properly taken into account, the stability of the black-hole event horizon is irrefutable. We therefore conclude that cosmic censorship is actually respected in this type of gedanken experiments. PMID:18517851

  20. Gravitational Waves: The Evidence Mounts

    ERIC Educational Resources Information Center

    Wick, Gerald L.

    1970-01-01

    Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)

  1. Foundations for a theory of gravitation theories

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Lee, D. L.; Lightman, A. P.

    1972-01-01

    A foundation is laid for future analyses of gravitation theories. This foundation is applicable to any theory formulated in terms of geometric objects defined on a 4-dimensional spacetime manifold. The foundation consists of (1) a glossary of fundamental concepts; (2) a theorem that delineates the overlap between Lagrangian-based theories and metric theories; (3) a conjecture (due to Schiff) that the Weak Equivalence Principle implies the Einstein Equivalence Principle; and (4) a plausibility argument supporting this conjecture for the special case of relativistic, Lagrangian-based theories.

  2. The Importance of Site Selection for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Zainal Abidin, Zamri; Abidin Ibrahim, Zainol

    2014-10-01

    Radio sources are very weak since this object travel very far from outer space. Radio astronomy studies are limited due to radio frequency interference (RFI) that is made by man. If the harassment is not stopped, it will provide critical problems in their radio astronomy scientists research. The purpose of this study is to provide RFI map Peninsular Malaysia with a minimum mapping techniques RFI interference. RFI mapping technique using GIS is proposed as a tool in mapping techniques. Decision-making process for the selection requires gathering information from a variety of parameters. These factors affecting the selection process are also taken account. In this study, various factors or parameters involved such as availability of telecommunications transmission (including radio and television), rainfall, water line and human activity. This study will benefit radio astronomy research especially in the RFI profile in Malaysia. Keywords: Radio Astronomy, Radio Frequency Interference (RFI), RFI mapping technique : GIS.

  3. Industrial interference and radio astronomy

    NASA Astrophysics Data System (ADS)

    Jessner, A.

    2013-07-01

    The interferer - victim scenario is described for the case of industrial interference affecting radio astronomical observatories. The sensitivity of radio astronomical receivers and their interference limits are outlined. EMC above 30 MHz is a serious problem for Radio Astronomy. Interferer (CISPR) and victim (ITU-R RA 769) standards are not harmonised. The emissions from the interferer and their spectral characteristics are not defined sufficiently well by CISPR standards. The required minimum coupling losses (MCL) between an industrial device and radio astronomical antenna depends on device properties but is shown to exceed 140 dB in most cases. Spatial separation of a few km is insufficient on its own, the terrain must shield > 30-40 dB, additional mitigations such as extra shielding or suppression of high frequency emissions may be necessary. A case by case compatibility analysis and tailored EMC measures are required for individual installations. Aggregation of many weak rfi emitters can become serious problem. If deployment densities are high enough, the emission constraints can even exceed those for a single interferer at a short distance from the radio observatory. Compatibility studies must account not only for the single interferer but also for many widely distributed interference sources.

  4. Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Siemens, Xavier

    2016-03-01

    For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.

  5. Nanohertz gravitational wave searches with interferometric pulsar timing experiments.

    PubMed

    Tinto, Massimo

    2011-05-13

    We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same timekeeping subsystem (i.e., "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band (10(-9)-10(-8))  Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost 2 orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the NASA's Deep Space Network and the forthcoming large arraying projects. PMID:21668135

  6. Research on gravitational physiology

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Dahl, A. O.

    1974-01-01

    The topic of gravitational plant physiology was studied through aspects of plant development (in ARABIDOPSIS) and of behavior (in HELIANTHUS) as these were affected by altered g experience. The effect of increased g levels on stem polarity (in COLEUS) was also examined.

  7. New Perspectives on Gravitation

    NASA Astrophysics Data System (ADS)

    Zhang, Yikun

    2003-04-01

    Based on radiation mechanics, a new rational mechanics proposed by the author, we can prove Newton's gravitational law and its conditions of validity. The gravitational coefficient is not a universal constant, but affected by many factors and can be both positive and negative. It is further shown how the gravitational coefficients are different for the planets in the solar system. The new rational mechanics expounds that the force causing an apple falling from a tree is not the same force causing the Earth revolving about the Sun. The gravitational force is the combining effect of shielding and shooting of gravitons between the Sun and Earth, whereas a dropped apple falling from a tree is due to the surface adsorption of Earth, called the blowing force. From this, we can rigorously prove that all electrically neutral bodies must fall with the same acceleration. However, any electrically charged bodies fall with different accelerations. It is also deduced that the weight of a magnet and its acceleration of falling depend on its orientation. So we have to distinguish weight and gravity. Moreover, the weight of a body may not be a conservative force on a planet.

  8. Extragalactic Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Rees, Martin J.

    After some introductory "numerology", routes towards black hole formation are briefly reviewed; some properties of black holes relevant to theories for active galactic nuclei are then described. Applications are considered to specific models for energy generation and the production of relativistic beams. The paper concludes with a discussion of extragalactic sources of gravitational waves.

  9. DIFFUSIVE SHOCK ACCELERATION SIMULATIONS OF RADIO RELICS

    SciTech Connect

    Kang, Hyesung; Ryu, Dongsu; Jones, T. W. E-mail: ryu@canopus.cnu.ac.kr

    2012-09-01

    Recent radio observations have identified a class of structures, so-called radio relics, in clusters of galaxies. The radio emission from these sources is interpreted as synchrotron radiation from GeV electrons gyrating in {mu}G-level magnetic fields. Radio relics, located mostly in the outskirts of clusters, seem to associate with shock waves, especially those developed during mergers. In fact, they seem to be good structures to identify and probe such shocks in intracluster media (ICMs), provided we understand the electron acceleration and re-acceleration at those shocks. In this paper, we describe time-dependent simulations for diffusive shock acceleration at weak shocks that are expected to be found in ICMs. Freshly injected as well as pre-existing populations of cosmic-ray (CR) electrons are considered, and energy losses via synchrotron and inverse Compton are included. We then compare the synchrotron flux and spectral distributions estimated from the simulations with those in two well-observed radio relics in CIZA J2242.8+5301 and ZwCl0008.8+5215. Considering that CR electron injection is expected to be rather inefficient at weak shocks with Mach number M {approx}< a few, the existence of radio relics could indicate the pre-existing population of low-energy CR electrons in ICMs. The implication of our results on the merger shock scenario of radio relics is discussed.

  10. Bayesian analysis on gravitational waves and exoplanets

    NASA Astrophysics Data System (ADS)

    Deng, Xihao

    constraints on the function space that may be reasonably thought to characterize the range of gravitational wave signals. For example, focus attention on the detection of a gravitational wave burst, by which we mean a signal that begins and ends over the course of an observational epoch. The burst may result from a source that we know how to model - e.g., a near-unity mass ratio black hole binary system - or it may be the result of a process, which we have not imagined and, so, have no model for. Similarly, a gravitational wave background resulting from a superposition of a number of weak sources may be difficult to characterize if the number of weak sources is sufficiently large that none can be individually resolved, but not so large that their superposition leads to a reasonably Gaussian distribution. The fourth part develops Bayesian analysis methods that can be used to detect gravitational waves generated from circular-orbit supermassive black hole binaries with a pulsar timing array. PTA response to such gravitational waves can be modeled as the difference between two sinusoidal terms --- the one with a coherent phase among different pulsars called "Earth term" and the other one with incoherent phases among different pulsars called "pulsar term". For gravitational waves from slowly evolving binaries, the two terms in the PTA response model have the same frequency. Previous methods aimed at detecting gravitational waves from circular-orbit binaries ignored pulsar terms in data analysis since those terms were considered to be negligible when averaging over all the pulsars. However, it is found that we can incorporate the contributions of pulsar terms into data analysis in the case of slowly evolving binaries by treating the incoherent phases in pulsar terms as unknown parameters to be marginalized. The final part of this thesis applies Bayesian analysis to search for the evidence of a planetary system around the K0 giant star HD 102103 detected by the Penn State

  11. Analysis of the Capability and Limitations of Relativistic Gravity Measurements Using Radio Astronomy Methods

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.; Counselman, C. C., III

    1975-01-01

    The uses of radar observations of planets and very-long-baseline radio interferometric observations of extragalactic objects to test theories of gravitation are described in detail with special emphasis on sources of error. The accuracy achievable in these tests with data already obtained, can be summarized in terms of: retardation of signal propagation (radar), deflection of radio waves (interferometry), advance of planetary perihelia (radar), gravitational quadrupole moment of sun (radar), and time variation of gravitational constant (radar). The analyses completed to date have yielded no significant disagreement with the predictions of general relativity.

  12. RADIO ALTIMETERS

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A radio ranging device is described which utilizes a superregenerative oscillator having alternate sending and receiving phases with an intervening ranging interval between said phases, means for varying said ranging interval, means responsive to an on-range noise reduction condition for stopping said means for varying the ranging interval and indicating means coupled to the ranging interval varying means and calibrated in accordance with one-half the product of the ranging interval times the velocity of light whereby the range is indicated.

  13. Definition phase of Grand Tour missions/radio science investigations study for outer planets missions

    NASA Technical Reports Server (NTRS)

    Tyler, G. L.

    1972-01-01

    Scientific instrumentation for satellite communication and radio tracking systems in the outer planet exploration mission is discussed. Mission planning considers observations of planetary and satellite-masses, -atmospheres, -magnetic fields, -surfaces, -gravitational fields, solar wind composition, planetary radio emissions, and tests of general relativity in time delay and ray bending experiments.

  14. Gravitational mass of positron from LEP synchrotron losses

    PubMed Central

    Kalaydzhyan, Tigran

    2016-01-01

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials. PMID:27461548

  15. Gravitational mass of positron from LEP synchrotron losses

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran

    2016-07-01

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials.

  16. Gravitational mass of positron from LEP synchrotron losses.

    PubMed

    Kalaydzhyan, Tigran

    2016-01-01

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton's theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials. PMID:27461548

  17. The gravitational analog of Faraday's induction law

    NASA Astrophysics Data System (ADS)

    Zile, Daniel; Overduin, James

    2015-04-01

    Michael Faraday, the discoverer of electromagnetic induction, was convinced that there must also be a gravitational analog of this law, and he carried out drop-tower experiments in 1849 to look for the electric current induced in a coil by changes in gravitational flux through the coil. This work, now little remembered, was in some ways the first investigation of what we would now call a unified-field theory. We revisit Faraday's experiments in the light of current knowledge and ask what might be learned if they were to be performed today. We then review the gravitational analog for Faraday's law that arises within the vector (or gravito-electromagnetic) approximation to Einstein's theory of general relativity in the weak-field, low-velocity limit. This law relates spinning masses and induced ``mass currents'' rather than spinning charges and electric currents, but is otherwise remarkably similar to its electromagnetic counterpart. The predicted effects are completely unobservable in everyday settings like those envisioned by Faraday, but are thought to be relevant in astrophysical contexts like the accretion disks around collapsed stars, thus bearing out Faraday's remarkable intuition. Undergraduate student.

  18. Gravitational mass of relativistic matter and antimatter

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran

    2015-12-01

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65 gravitational mass of relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron-Positron Collider (LEP) and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 - 4 ×10-7

  19. Breaking a dark degeneracy with gravitational waves

    NASA Astrophysics Data System (ADS)

    Lombriser, Lucas; Taylor, Andy

    2016-03-01

    We identify a scalar-tensor model embedded in the Horndeski action whose cosmological background and linear scalar fluctuations are degenerate with the concordance cosmology. The model admits a self-accelerated background expansion at late times that is stable against perturbations with a sound speed attributed to the new field that is equal to the speed of light. While degenerate in scalar fluctuations, self-acceleration of the model implies a present cosmological tensor mode propagation at lesssim95 % of the speed of light with a damping of the wave amplitude that is gtrsim5 % less efficient than in general relativity. We show that these discrepancies are endemic to self-accelerated Horndeski theories with degenerate large-scale structure and are tested with measurements of gravitational waves emitted by events at cosmological distances. Hence, gravitational-wave cosmology breaks the dark degeneracy in observations of the large-scale structure between two fundamentally different explanations of cosmic acceleration—a cosmological constant and a scalar-tensor modification of gravity. The gravitational wave event GW150914 recently detected with the aLIGO instruments and its potential association with a weak short gamma-ray burst observed with the Fermi GBM experiment may have provided this crucial measurement.

  20. Quantum gravitational decoherence of light and matter

    NASA Astrophysics Data System (ADS)

    Oniga, Teodora; Wang, Charles H.-T.

    2016-02-01

    Real world quantum systems are open to perpetual influence from the wider environment. Quantum gravitational fluctuations provide a most fundamental source of the environmental influence through their universal interactions with all forms of energy and matter causing decoherence. This may have subtle implications on precision laboratory experiments and astronomical observations and could limit the ultimate capacities for quantum technologies prone to decoherence. To establish the essential physical mechanism of decoherence under weak spacetime fluctuations, we carry out a sequence of analytical steps utilizing the Dirac constraint quantization and gauge invariant influence functional techniques resulting in a general master equation of a compact form that describes an open quantum gravitational system with arbitrary bosonic fields. An initial application of the theory is illustrated by the implied quantum gravitational dissipation of light as well as (non)relativistic massive or massless scalar particles. Related effects could eventually lead to important physical consequences including those on a cosmological scale and for a large number of correlated particles.

  1. Spacecraft Radio Scintillation and Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1993-01-01

    When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of

  2. WEAK-LENSING RESULTS FOR THE MERGING CLUSTER A1758

    SciTech Connect

    Ragozzine, B.; Clowe, D.; Markevitch, M.; Gonzalez, A. H.; Bradac, M.

    2012-01-10

    Here we present the weak-lensing results for A1758, which is known to consist of four subclusters undergoing two separate mergers, A1758N and A1758S. Weak-lensing results for A1758N agree with previous weak-lensing results for clusters 1E0657-558 (Bullet cluster) and MACS J0025.4-1222, whose X-ray gas components were found to be largely separated from their clusters' gravitational potentials. A1758N has a geometry that is different from previously published mergers in that one of its X-ray peaks overlays the corresponding gravitational potential and the other X-ray peak is well separated from its cluster's gravitational potential. The weak-lensing mass peaks of the two northern clusters are separated at the 2.5{sigma} level. We estimate the combined mass of the clusters in A1758N to be (2.2 {+-} 0.5) Multiplication-Sign 10{sup 15} M{sub Sun} and r{sub 200} = 2300{sup +100}{sub -130} kpc. We also detect seven strong-lensing candidates, two of which may provide information that would improve the mass measurements of A1758N.

  3. Gravitational wave astronomy and cosmology

    NASA Astrophysics Data System (ADS)

    Hughes, Scott A.

    2014-09-01

    The first direct observation of gravitational waves' action upon matter has recently been reported by the BICEP2 experiment. Advanced ground-based gravitational-wave detectors are being installed. They will soon be commissioned, and then begin searches for high-frequency gravitational waves at a sensitivity level that is widely expected to reach events involving compact objects like stellar mass black holes and neutron stars. Pulsar timing arrays continue to improve the bounds on gravitational waves at nanohertz frequencies, and may detect a signal on roughly the same timescale as ground-based detectors. The science case for space-based interferometers targeting millihertz sources is very strong. The decade of gravitational-wave discovery is poised to begin. In this writeup of a talk given at the 2013 TAUP conference, we will briefly review the physics of gravitational waves and gravitational-wave detectors, and then discuss the promise of these measurements for making cosmological measurements in the near future.

  4. Radio Jove: Jupiter Radio Astronomy for Citizens

    NASA Astrophysics Data System (ADS)

    Higgins, Charles; Thieman, J. R.; Flagg, R.; Reyes, F. J.; Sky, J.; Greenman, W.; Brown, J.; Typinski, D.; Ashcraft, T.; Mount, A.

    2014-01-01

    Radio JOVE is a hands-on educational activity that brings the radio sounds of the Sun, Jupiter, the Milky Way Galaxy, and terrestrial radio noise to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with professional radio observatories in real-time over the Internet. Our website (http://radiojove.gsfc.nasa.gov) includes science information, construction manuals, observing guides, and education resources for teachers and students. Radio Jove is continually expanding its participants with over 1800 kits sold to more than 70 countries worldwide. Recently some of our most dedicated observers have upgraded their Radio Jove antennas to semi-professional observatories. We have spectrographs and wide band antennas, some with 8 MHz bandwidth and some with dual polarization capabilities. In an effort to add to the science literature, these observers are coordinating their efforts to pursue some basic questions about Jupiter’s radio emissions (radio source locations, spectral structure, long term changes, etc.). We can compare signal and ionosphere variations using the many Radio Jove observers at different locations. Observers are also working with members of the Long Wavelength Array Station 1 (LWA1) radio telescope to coordinate observations of Jupiter; Radio Jove is planning to make coordinated observations while the Juno Mission is active beginning in 2015. The Radio Jove program is overviewed, its hardware and software are highlighted, recent sample observations are shown, and we demonstrate that we are capable of real citizen science.

  5. Gravitational inconsistency in the lunar theory: confirmation by radio tracking.

    PubMed

    Cary, C N; Sjogren, W L

    1968-05-24

    When range and Doppler observations of space probes near or on Moon are reduced by use of a lunar ephemeris calculated from the Brown lunar theory, residuals as large as 440 meters in position and 1.5 millimeters per second in velocity are observed. When the calculations are repeated with use of LE 5, the integrated lunar ephemeris described (1), the residuals are greatly reduced. PMID:17774402

  6. Radio tracking system

    NASA Technical Reports Server (NTRS)

    Breidenthal, J. C.; Komarek, T. A.

    1982-01-01

    The principles and techniques of deep space radio tracking are described along with the uses of tracking data in navigation and radio science. Emphasis is placed on the measurement functions of radio tracking.

  7. The generation of gravitational waves. II - The postlinear formalism revisited

    NASA Technical Reports Server (NTRS)

    Crowley, R. J.; Thorne, K. S.

    1977-01-01

    Two different versions of the Green's function for the scalar wave equation in weakly curved spacetime (one due to DeWitt and DeWitt, the other to Thorne and Kovacs) are compared and contrasted; and their mathematical equivalence is demonstrated. Then the DeWitt-DeWitt Green's function is used to construct several alternative versions of the Thorne-Kovacs postlinear formalism for gravitational-wave generation. Finally it is shown that, in calculations of gravitational bremsstrahlung radiation, some of our versions of the postlinear formalism allow one to treat the interacting bodies as point masses, while others do not.

  8. Four Poission-Laplace Theory of Gravitation (I)

    NASA Astrophysics Data System (ADS)

    Nyambuya, Golden Gadzirayi

    2015-08-01

    The Poisson-Laplace equation is a working and acceptable equation of gravitation which is mostly used or applied in its differential form in Magneto-Hydro-Dynamic (MHD) modelling of e.g. molecular clouds. From a general relativistic standpoint, it describes gravitational fields in the region of low spacetime curvature as it emerges in the weak field limit. For non-static gravitational fields, this equation is not generally covariant. On the requirements of general covariance, this equation can be extended to include a time-dependent component, in which case one is led to the Four Poisson-Laplace equation. We solve the Four Poisson-Laplace equation for radial solutions, and apart from the Newtonian gravitational component, we obtain four new solutions leading to four new gravitational components capable (in-principle) of explaining e.g. the Pioneer anomaly, the Titius-Bode Law and the formation of planetary rings. In this letter, we focus only on writing down these solutions. The task showing that these new solutions might explain the aforesaid gravitational anomalies has been left for separate future readings.

  9. Gravitational coset models

    NASA Astrophysics Data System (ADS)

    Cook, Paul P.; Fleming, Michael

    2014-07-01

    The algebra A {/D - 3 + + +} dimensionally reduces to the E D-1 symmetry algebra of (12 - D)-dimensional supergravity. An infinite set of five-dimensional gravitational objects embedded in D-dimensions is constructed by identifying the null geodesic motion on cosets embedded in the generalised Kac-Moody algebra A {/D - 3 + + +}. By analogy with super-gravity these are bound states of dual gravitons. The metric interpolates continuously between exotic gravitational solutions generated by the action of an affine sub-group. We investigate mixed-symmetry fields in the brane sigma model, identify actions for the full interpolating bound state and investigate the dualisation of the bound state to a solution of the Einstein-Hilbert action via the Hodge dual on multiforms. We conclude that the Hodge dual is insufficient to reconstruct solutions to the Einstein-Hilbert action from mixed-symmetry tensors.

  10. Gravitational wave astronomy.

    NASA Astrophysics Data System (ADS)

    Finn, L. S.

    Astronomers rely on a multiplicity of observational perspectives in order to infer the nature of the Universe. Progress in astronomy has historically been associated with new or improved observational perspectives. Gravitational wave detectors now under construction will provide us with a perspective on the Universe fundamentally different from any we have come to know. With this new perspective comes the hope of new insights and understanding, not just of exotic astrophysical processes, but of "bread-and-butter" astrophysics: e.g., stars and stellar evolution, galaxy formation and evolution, neutron star structure, and cosmology. In this report the author discusses briefly a small subset of the areas of conventional, "bread-and-butter" astrophysics where we can reasonably hope that gravitational wave observations will provide us with valuable new insights and understandings.

  11. Towers of Gravitational Theories

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Rothstein, Ira Z.

    In this essay, we introduce a theoretical framework designed to describe black hole dynamics. The difficulties in understanding such dynamics stems from the proliferation of scales involved when one attempts to simultaneously describe all of the relevant dynamical degrees of freedom. These range from the modes that describe the black hole horizon, which are responsible for dissipative effects, to the long wavelength gravitational radiation that drains mechanical energy from macroscopic black hole bound states. We approach the problem from a Wilsonian point of view, by building a tower of theories of gravity each of which is valid at different scales. The methodology leads to multiple new results in diverse topics including phase transitions of Kaluza-Klein black holes and the interactions of spinning black hole in non-relativistic orbits. Moreover, our methods tie together speculative ideas regarding dualities for black hole horizons to real physical measurements in gravitational wave detectors.

  12. Towers of gravitational theories

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Rothstein, Ira Z.

    2006-11-01

    In this essay we introduce a theoretical framework designed to describe black hole dynamics. The difficulties in understanding such dynamics stems from the proliferation of scales involved when one attempts to simultaneously describe all of the relevant dynamical degrees of freedom. These range from the modes that describe the black hole horizon, which are responsible for dissipative effects, to the long wavelength gravitational radiation that drains mechanical energy from macroscopic black hole bound states. We approach the problem from a Wilsonian point of view, by building a tower of theories of gravity each of which is valid at different scales. The methodology leads to multiple new results in diverse topics including phase transitions of Kaluza-Klein black holes and the interactions of spinning black hole in non-relativistic orbits. Moreover, our methods tie together speculative ideas regarding dualities for black hole horizons to real physical measurements in gravitational wave detectors.

  13. Gravitational properties of antimatter

    SciTech Connect

    Goldman, T.; Nieto, M.M.

    1985-01-01

    Quantum gravity is at the forefront of modern particle physics, yet there are no direct tests, for antimatter, of even the principle of equivalence. We note that modern descriptions of gravity, such as fibre bundles and higher dimensional spacetimes, allow violations of the commonly stated form of the principle of equivalence, and of CPT. We review both indirect arguments and experimental tests of the expected gravitational properties of CPT-conjugate states. We conclude that a direct experimental test of the gravitational properties of antimatter, at the 1% (or better) level, would be of great value. We identify some experimental reasons which make the antiproton a prime candidate for this test, and we strongly urge that such an experiment be done at LEAR. 21 references.

  14. Gravitational lensing by gravastars

    NASA Astrophysics Data System (ADS)

    Kubo, Tomohiro; Sakai, Nobuyuki

    2016-04-01

    As a possible method to detect gravastars (gravitational-vacuum-star), which was originally proposed by Mazur and Mottola, we study their gravitational lensing effects. Specifically, we adopt a spherical thin-shell model of a gravastar developed by Visser and Wiltshire, which connects interior de Sitter geometry and exterior Schwarzschild geometry, and assume that its surface is optically transparent. We calculate the image of a companion which rotates around the gravastar; we find that some characteristic images appear, depending on whether the gravastar possess unstable circular orbits of photons (Model 1) or not (Model 2). For Model 2, we calculate the total luminosity change, which is called microlensing effects; the maximal luminosity could be considerably larger than the black hole with the same mass.

  15. Gravitationally induced quantum transitions

    NASA Astrophysics Data System (ADS)

    Landry, A.; Paranjape, M. B.

    2016-06-01

    In this paper, we calculate the probability for resonantly inducing transitions in quantum states due to time-dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultracold neutrons, which are organized according to the energy levels of the Schrödinger equation in the presence of the Earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency ω . The driving force is created by oscillating a macroscopic mass in the neighborhood of the system of neutrons. The neutron lifetime is approximately 880 sec while the probability of transitions increases as t2. Hence, the optimal strategy is to drive the system for two lifetimes. The transition amplitude then is of the order of 1.06 ×10-5, and hence with a million ultracold neutrons, one should be able to observe transitions.

  16. Linked Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Thompson, Amy; Swearngin, Joseph; Wickes, Alexander; Willem Dalhuisen, Jan; Bouwmeester, Dirk

    2013-04-01

    The electromagnetic knot is a topologically nontrivial solution to the vacuum Maxwell equations with the property that any two field lines belonging to either the electric, magnetic, or Poynting vector fields are closed and linked exactly once [1]. The relationship between the vacuum Maxwell and linearized Einstein equations, as expressed in the form of the spin-N massless field equations, suggests that gravitational radiation possesses analogous topologically nontrivial field configurations. Using twistor methods we find the analogous spin-2 solutions of Petrov types N, D, and III. Aided by the concept of tendex and vortex lines as recently developed for the physical interpretation of solutions in general relativity [2], we investigate the physical properties of these knotted gravitational fields by characterizing the topology of their associated tendex and vortex lines.[4pt] [1] Ranada, A. F. and Trueba, J. L., Mod. Nonlinear Opt. III, 119, 197 (2002).[2] Nichols, D. A., et al., Phys. Rev. D, 84 (2011).

  17. Gravitational vacuum condensate stars

    PubMed Central

    Mazur, Pawel O.; Mottola, Emil

    2004-01-01

    A new final state of gravitational collapse is proposed. By extending the concept of Bose–Einstein condensation to gravitational systems, a cold, dark, compact object with an interior de Sitter condensate pv = -ρv and an exterior Schwarzschild geometry of arbitrary total mass M is constructed. These regions are separated by a shell with a small but finite proper thickness ℓ of fluid with equation of state p = +ρ, replacing both the Schwarzschild and de Sitter classical horizons. The new solution has no singularities, no event horizons, and a global time. Its entropy is maximized under small fluctuations and is given by the standard hydrodynamic entropy of the thin shell, which is of the order kBℓMc/, instead of the Bekenstein–Hawking entropy formula, SBH = 4πkBGM2/c. Hence, unlike black holes, the new solution is thermodynamically stable and has no information paradox. PMID:15210982

  18. Gravitational Condensate Stars

    NASA Astrophysics Data System (ADS)

    Mazur, P.; Mottola, E.

    The issue of the final state of the gravitational collapse will be addressed. Ishall present physical arguments to the effect that the remnant of the gravitationalcollapse of super-massive stars is a cold and dark super-dense object which isthermodynamically and dynamically stable: a Gravitational Condensate Star orQuasi Black Hole (QBH). A QBH is characterized by a huge, but not an infinite,surface redshift. This surface redshift depends universally on the total mass of aQBH and the proper thickness of a thin shell of an exotic matter described bythe Zel'dovich equation of state p = c2 . The velocity of sound in a thin shell isequal to the velocity of light. Hence, this thin shell replaces the event horizon of amathematical black hole ( = 0). Inside a thin shell the zero entropy gravitationalcondensate characterized by the cosmological equation of state p = -c2 resides.A QBH is described by a new static and spherically symmetric solution of Ein-stein's equations supplemented with the proper boundary conditions based on mi-crophysics considerations. The new solution has no singularities and no eventhorizons. Its entropy is maximized under small fluctuations and is given by thestandard hydrodynamic entropy of the thin shell which is proportional to the to-tal mass instead of the Bekenstein-Hawking entropy which is proportional to thesquare of the total mass. This resolves the paradox of an excessively high en-tropy of black holes as compared to their progenitors. The formation of such acold gravitational condensate stellar remnant very likely would require a violentcollapse process with an explosive output of energy. Some observational conse-quences of the formation of gravitational condensate stars will be described.

  19. Gravitation Astrometric Measurement Experiment (GAME)

    NASA Astrophysics Data System (ADS)

    Gai, M.; Vecchiato, A.; Ligori, S.; Riva, A.; Lattanzi, M. G.; Busonero, D.; Fienga, A.; Loreggia, D.; Crosta, M. T.

    2012-07-01

    GAME is a recent concept for a small/medium class mission aimed at Fundamental Physics tests in the Solar system, by means of an optimised instrument in the visible, based on smart combination of coronagraphy and Fizeau interferometry. The targeted precision on the γ and β parameters of the Parametrised Post-Newtonian formulation of General Relativity are respectively in the 10-7-10-8 and 10-5-10-6 range, improving by one or two orders of magnitude with respect to the expectations on current or near future experiments. Such precision is suitable to detect possible deviations from the unity value, associated to generalised Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy from a Solar system scale experiment. The measurement principle is based on the differential astrometric signature on the stellar positions, i.e. based on the spatial component of the effect rather than the temporal component as in the most recent experiments using radio link delay timing variation (Cassini). The instrument concept is based on multiple field, multiple aperture Fizeau interferometry, observing simultaneously regions close to the Solar limb (requiring the adoption of coronagraphic techniques), and others in opposition to the Sun. The diluted optics approach is selected for achieving an efficient rejection of the scattered solar radiation, while retaining an acceptable angular resolution on the science targets. The multiple field observation is aimed at cost-effective control of systematic effects through simultaneous calibration. We describe the science motivation, the proposed mission profile, the instrument concept and the expected performance.

  20. PLASMA EMISSION BY WEAK TURBULENCE PROCESSES

    SciTech Connect

    Ziebell, L. F.; Gaelzer, R.; Yoon, P. H.; Pavan, J. E-mail: rudi.gaelzer@ufrgs.br E-mail: joel.pavan@ufpel.edu.br

    2014-11-10

    The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.

  1. Development of a direct experimental test for any violation of the equivalence principle by the weak interaction

    NASA Technical Reports Server (NTRS)

    Parker, P. D. M.

    1981-01-01

    Violation of the equivalence principle by the weak interaction is tested. Any variation of the weak interaction coupling constant with gravitational potential, i.e., a spatial variation of the fundamental constants is investigated. The level of sensitivity required for such a measurement is estimated on the basis of the size of a change in the gravitational potential which is accessible. The alpha particle spectrum is analyzed, and the counting rate was improved by a factor of approximately 100.

  2. Weak bond screening system

    NASA Astrophysics Data System (ADS)

    Chuang, S. Y.; Chang, F. H.; Bell, J. R.

    Consideration is given to the development of a weak bond screening system which is based on the utilization of a high power ultrasonic (HPU) technique. The instrumentation of the prototype bond strength screening system is described, and the adhesively bonded specimens used in the system developmental effort are detailed. Test results obtained from these specimens are presented in terms of bond strength and level of high power ultrasound irradiation. The following observations were made: (1) for Al/Al specimens, 2.6 sec of HPU irradiation will screen weak bond conditions due to improper preparation of bonding surfaces; (2) for composite/composite specimens, 2.0 sec of HPU irradiation will disrupt weak bonds due to under-cured conditions; (3) for Al honeycomb core with composite skin structure, 3.5 sec of HPU irradiation will disrupt weak bonds due to bad adhesive or oils contamination of bonding surfaces; and (4) for Nomex honeycomb with Al skin structure, 1.3 sec of HPU irradiation will disrupt weak bonds due to bad adhesive.

  3. Soviet radio telescopes and solar radio astronomy

    NASA Astrophysics Data System (ADS)

    Alekseev, V. A.; Gel'Freikh, Georgii B.; Zaitsev, Valerii V.; Iliasov, Iurii P.; Kaidanovskii, N. L.

    Soviet radio telescopes of different type and purpose are described, with particular emphasis on very long baseline interferometry. Soviet radio-astronomy studies of solar radio emission and the interplanetary medium are also discussed, with particular attention given to the investigation of the sun's supercorona and the interplanetary plasma.

  4. Gravitational lensing by rotating naked singularities

    SciTech Connect

    Gyulchev, Galin N.; Yazadjiev, Stoytcho S.

    2008-10-15

    We model massive compact objects in galactic nuclei as stationary, axially symmetric naked singularities in the Einstein-massless scalar field theory and study the resulting gravitational lensing. In the weak deflection limit we study analytically the position of the two weak field images, the corresponding signed and absolute magnifications as well as the centroid up to post-Newtonian order. We show that there are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are functions of the scalar charge. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly for the weakly naked and vastly for the strongly naked singularities with the increase of the scalar charge. The pointlike caustics drift away from the optical axis and do not depend on the scalar charge. In the strong deflection limit approximation, we compute numerically the position of the relativistic images and their separability for weakly naked singularities. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as Janis-Newman-Winicour naked singularities.

  5. Electromagnetic Counterparts of Gravitational Wave Sources: Mergers of Compact Objects

    NASA Astrophysics Data System (ADS)

    Kamble, Atish; Kaplan, David L. A.

    2013-01-01

    Mergers of compact objects are considered prime sources of gravitational waves (GW) and will soon be targets of GW observatories such as the Advanced-LIGO and VIRGO. Finding electromagnetic counterparts of these GW sources will be important to understand their nature. We discuss possible electromagnetic signatures of the mergers. We show that the BH-BH mergers could have luminosities which exceed Eddington luminosity from unity to several orders of magnitude depending on the masses of the merging BHs. As a result these mergers could be explosive, release up to 1051 erg of energy and shine as radio transients. At any given time we expect about a few such transients in the sky at GHz frequencies, which could be detected to be about 300 Mpc. It has also been argued that these radio transients would look alike radio supernovae with comparable detection rates. Multi-band follow-up could, however, distinguish between the mergers and supernovae.

  6. Observing cosmic string loops with gravitational lensing surveys

    SciTech Connect

    Mack, Katherine J.; Wesley, Daniel H.; King, Lindsay J.

    2007-12-15

    We show that the existence of cosmic strings can be strongly constrained by the next generation of gravitational lensing surveys at radio frequencies. We focus on cosmic string loops, which simulations suggest would be far more numerous than long (horizon-sized) strings. Using simple models of the loop population and minimal assumptions about the lensing cross section per loop, we estimate the optical depth to lensing and show that extant radio surveys such as CLASS have already ruled out a portion of the cosmic string model parameter space. Future radio interferometers, such as LOFAR and especially SKA, may constrain G{mu}/c{sup 2}<10{sup -9} in some regions of parameter space, outperforming current constraints from pulsar timing and the cosmic microwave backgound by up to two orders of magnitude. This method relies on direct detections of cosmic strings, and so is less sensitive to the theoretical uncertainties in string network evolution that weaken other constraints.

  7. LIMITS ON THE STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES

    SciTech Connect

    Demorest, P. B.; Ransom, S.; Ferdman, R. D.; Kaspi, V. M.; Gonzalez, M. E.; Stairs, I. H.; Nice, D.; Arzoumanian, Z.; Brazier, A.; Cordes, J. M.; Burke-Spolaor, S.; Lazio, J.; Chamberlin, S. J.; Ellis, J.; Giampanis, S.; Finn, L. S.; Freire, P.; Jenet, F.; Lommen, A. N.; McLaughlin, M.; and others

    2013-01-10

    We present an analysis of high-precision pulsar timing data taken as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We have observed 17 pulsars for a span of roughly five years using the Green Bank and Arecibo radio telescopes. We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Sub-microsecond timing residuals are obtained in nearly all cases, and the best rms timing residuals in this set are {approx}30-50 ns. We present methods for analyzing post-fit timing residuals for the presence of a gravitational wave signal with a specified spectral shape. These optimally take into account the timing fluctuation power removed by the model fit, and can be applied to either data from a single pulsar, or to a set of pulsars to detect a correlated signal. We apply these methods to our data set to set an upper limit on the strength of the nHz-frequency stochastic supermassive black hole gravitational wave background of h{sub c} (1 yr{sup -1}) < 7 Multiplication-Sign 10{sup -15} (95%). This result is dominated by the timing of the two best pulsars in the set, PSRs J1713+0747 and J1909-3744.

  8. Weak bump quasars

    NASA Technical Reports Server (NTRS)

    Wilkes, B. J.; Mcdowell, J.

    1994-01-01

    Research into the optical, ultraviolet and infrared continuum emission from quasars and their host galaxies was carried out. The main results were the discovery of quasars with unusually weak infrared emission and the construction of a quantitative estimate of the dispersion in quasar continuum properties. One of the major uncertainties in the measurement of quasar continuum strength is the contribution to the continuum of the quasar host galaxy as a function of wavelength. Continuum templates were constructed for different types of host galaxy and individual estimates made of the decomposed quasar and host continua based on existing observations of the target quasars. The results are that host galaxy contamination is worse than previously suspected, and some apparent weak bump quasars are really normal quasars with strong host galaxies. However, the existence of true weak bump quasars such as PHL 909 was confirmed. The study of the link between the bump strength and other wavebands was continued by comparing with IRAS data. There is evidence that excess far infrared radiation is correlated with weaker ultraviolet bumps. This argues against an orientation effect and implies a probable link with the host galaxy environment, for instance the presence of a luminous starburst. However, the evidence still favors the idea that reddening is not important in those objects with ultraviolet weak bumps. The same work has led to the discovery of a class of infrared weak quasars. Pushing another part of the envelope of quasar continuum parameter space, the IR-weak quasars have implications for understanding the effects of reddening internal to the quasars, the reality of ultraviolet turnovers, and may allow further tests of the Phinney dust model for the IR continuum. They will also be important objects for studying the claimed IR to x-ray continuum correlation.

  9. Pixelation Effects in Weak Lensing

    NASA Technical Reports Server (NTRS)

    High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard

    2007-01-01

    Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, and Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09' for a 0.14' FWHM point-spread function (PSF). The pixel scale could be increased to 0.16' if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape

  10. Pixelation Effects in Weak Lensing

    NASA Astrophysics Data System (ADS)

    High, F. William; Rhodes, Jason; Massey, Richard; Ellis, Richard

    2007-11-01

    Weak gravitational lensing can be used to investigate both dark matter and dark energy but requires accurate measurements of the shapes of faint, distant galaxies. Such measurements are hindered by the finite resolution and pixel scale of digital cameras. We investigate the optimum choice of pixel scale for a space-based mission, using the engineering model and survey strategy of the proposed Supernova Acceleration Probe as a baseline. We do this by simulating realistic astronomical images containing a known input shear signal and then attempting to recover the signal using the Rhodes, Refregier, & Groth algorithm. We find that the quality of shear measurement is always improved by smaller pixels. However, in practice, telescopes are usually limited to a finite number of pixels and operational life span, so the total area of a survey increases with pixel size. We therefore fix the survey lifetime and the number of pixels in the focal plane while varying the pixel scale, thereby effectively varying the survey size. In a pure trade-off for image resolution versus survey area, we find that measurements of the matter power spectrum would have minimum statistical error with a pixel scale of 0.09" for a 0.14" FWHM point-spread function (PSF). The pixel scale could be increased to ~0.16" if images dithered by exactly half-pixel offsets were always available. Some of our results do depend on our adopted shape measurement method and should be regarded as an upper limit: future pipelines may require smaller pixels to overcome systematic floors not yet accessible, and, in certain circumstances, measuring the shape of the PSF might be more difficult than those of galaxies. However, the relative trends in our analysis are robust, especially those of the surface density of resolved galaxies. Our approach thus provides a snapshot of potential in available technology, and a practical counterpart to analytic studies of pixelation, which necessarily assume an idealized shape

  11. The Deep Space Network: An instrument for radio science research

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.

    1981-01-01

    Doppler and ranging data routinely generated at the Deep Space Stations of the California Institute of Technology-Jet Propulsion Laboratory Deep Space Network serve as an excellent source of radio science information. Important radio science experiments based on Deep Space Network generated radio metric data have included confirmation of Einstein's Theory of Relativity, measurement of the masses and gravitational harmonics of the planets out to Saturn, and measurement of electron density distribution and turbulence in the solar corona. In response to an increased level of radio science requirements, the Deep Space Network chose in 1976 to implement a new radio science system, which was completed in late 1978. Key features include (1) highly phase stable open loop receivers, (2) reduction of recorded data bandwidth through use of programmed local oscillators, and (3) real time digitization and recording on computer compatible tape.

  12. Weak bump quasars

    NASA Technical Reports Server (NTRS)

    Mcdowell, Jonathan C.; Elvis, Martin; Wilkes, Belinda J.; Willner, Steven P.; Oey, M. S.

    1989-01-01

    The recent emphasis on big bumps dominating the UV continuum of quasars has obscured the facts that bump properties vary widely and that there are objects in which no such component is evident. As part of a survey of quasar continuum spectra, a class of quasars is identified in which the optical-UV continuum big bump feature appears to be weak or absent, relative to both IR and X-ray. These weak bump quasars are otherwise normal objects and constitute a few percent of the quasar population.

  13. Infrared weak quasars

    NASA Technical Reports Server (NTRS)

    Mcdowell, J. C.; Elvis, M.; Wilkes, B. J.

    1992-01-01

    Examples of quasars with anomalously weak IR emission are presented, and the effects of starlight subtraction on estimates of the UV and IR component strengths are discussed. Inferred model parameters are very sensitive to the position of the peak of the UV energy distribution. In many low redshift objects the peak is not seen; even in those objects where the turnover is clear, the turnover may not be intrinsic but instead due to reddening within the quasar host galaxy. The small number of unusual quasars with weak IR emission will be of utility as a probe of the quasar phenomenon in the absence of dominant dust reprocessing.

  14. Weak shock reflection

    NASA Astrophysics Data System (ADS)

    Hunter, John K.; Brio, Moysey

    2000-05-01

    We present numerical solutions of a two-dimensional inviscid Burgers equation which provides an asymptotic description of the Mach reflection of weak shocks. In our numerical solutions, the incident, reflected, and Mach shocks meet at a triple point, and there is a supersonic patch behind the triple point, as proposed by Guderley for steady weak-shock reflection. A theoretical analysis indicates that there is an expansion fan at the triple point, in addition to the three shocks. The supersonic patch is extremely small, and this work is the first time it has been resolved.

  15. Semiclassical limit for Dirac particles interacting with a gravitational field

    NASA Astrophysics Data System (ADS)

    Silenko, Alexander J.; Teryaev, Oleg V.

    2005-03-01

    The behavior of a spin-1/2 particle in a weak static gravitational field is considered. The Dirac Hamiltonian is diagonalized by the Foldy-Wouthuysen transformation providing also the simple form for the momentum and spin polarization operators. The operator equations of momentum and spin motion are derived for a first time. Their semiclassical limit is analyzed. The dipole spin-gravity coupling in the previously found (another) Hamiltonian does not lead to any observable effects. The general agreement between the quantum and classical approaches is established, contrary to several recent claims. The expression for the gravitational Stern-Gerlach force is derived. The helicity evolution in the gravitational field and corresponding accelerated frame coincides, being the manifestation of the equivalence principle.

  16. Does lunisolar gravitational tide affect the activity of animals?

    NASA Astrophysics Data System (ADS)

    Deshcherevskii, A. V.; Sidorin, A. Ya.

    2010-12-01

    Multiyear time series obtained by the continuous instrumental monitoring of the electrical activity (EA) of weakly electric fish Gnathonemus leopoldianus and the motor activity (MA) of the freshwater catfish Hoplosternum thoracatum and the cockroach Blaberus craniifer are compared to the parameters of the lunisolar gravitational tide. These curves are observed to be very similar for a large number of time intervals. However, a more detailed analysis shows this to be only a superficial resemblance caused by the closeness of the periods of diurnal and semidiurnal rhythms of bioindicator activity (the dominant rhythms in EA and MA patterns) and the periods of main gravitational tidal waves. It is concluded that the lunisolar gravitational tide has no significant effect on animal behavior in our experiment.

  17. Quantum Emulation of Gravitational Waves

    PubMed Central

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-01-01

    Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801

  18. Quantum Emulation of Gravitational Waves.

    PubMed

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-01-01

    Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801

  19. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin

    1997-01-01

    We are engaged in testing gravitational theory by means of observations of objects in the solar system. These tests include an examination of the Principle Of Equivalence (POE), the Shapiro delay, the advances of planetary perihelia, the possibility of a secular variation G in the "gravitational constant" G, and the rate of the de Sitter (geodetic) precession of the Earth-Moon system. These results are consistent with our preliminary results focusing on the contribution of Lunar Laser Ranging (LLR), which were presented at the seventh Marcel Grossmann meeting on general relativity. The largest improvement over previous results comes in the uncertainty for (eta): a factor of five better than our previous value. This improvement reflects the increasing strength of the LLR data. A similar analysis presented at the same meeting by a group at the Jet Propulsion Laboratory gave a similar result for (eta). Our value for (beta) represents our first such result determined simultaneously with the solar quadrupole moment from the dynamical data set. These results are being prepared for publication. We have shown how positions determined from different planetary ephemerides can be compared and how the combination of VLBI and pulse timing information can yield a direct tie between planetary and radio frames. We have continued to include new data in our analysis as they became available. Finally, we have made improvement in our analysis software (PEP) and ported it to a network of modern workstations from its former home on a "mainframe" computer.

  20. The life cycle of radio galaxies

    NASA Astrophysics Data System (ADS)

    Young, Andrew

    2004-06-01

    This thesis will examine some key issues in the life history of radio galaxies. The evolution of radio galaxies can be understood in terms of the history of their relativistic particle distributions and morphologies. Using radio data from the Very Large Array, I examine the relativistic particle acceleration processes in several Fanaroff-Riley I sources. 1116+28, 1243+26, and 1553+24 all show dual spectral components known as jets and sheaths. These and other radio galaxies show that the strength of the acceleration mechanism approaches the strong shock limit for first order Fermi acceleration. Active radio galaxies accelerate electrons that then undergo energy losses by way of synchrotron, adiabatic, and inverse-Compton mechanisms. 3C386 and 3C98 has structure which may indicate that the acceleration process has recently ceased or is coming to an end. An examination of these possibly dying radio sources with large, bright, and diffuse lobes reveals that the shape of the spectra indicates that their acceleration mechanisms approach the strong shock limit. With these derived low frequency spectral indices, an estimate of the true magnetic field strength in the lobes can be made should X-ray observations be available. This will alleviate the need to invoke equipartition assumptions. A radio galaxy will eventually lose almost all of its relativistic electron energy through radiative and adiabatic losses and evolve into a relic state. In this state, there may have no discernible radio core, radio jet, or optical counterpart. However, mechanisms such as cluster merger shocks or re-started radio galaxies could re-energize these relic plasmas. Relic radio sources in the clusters Abell 85 and MKW 3s show that these processes do occur and reveal spectra that are consistent with weak shocks. The sources studied here can be viewed as a snapshot in the timeline of a radio galaxy. The life cycles of radio galaxies have broad implications not just for themselves but also on the

  1. In praise of weakness

    NASA Astrophysics Data System (ADS)

    Steinberg, Aephraim; Feizpour, Amir; Rozema; Mahler; Hayat

    2013-03-01

    Quantum physics is being transformed by a radical new conceptual and experimental approach known as weak measurement that can do everything from tackling basic quantum mysteries to mapping the trajectories of photons in a Young's double-slit experiment. Aephraim Steinberg, Amir Feizpour, Lee Rozema, Dylan Mahler and Alex Hayat unveil the power of this new technique.

  2. Weaknesses in Underperforming Schools

    ERIC Educational Resources Information Center

    van de Grift, Wim; Houtveen, Thoni

    2007-01-01

    In some Dutch elementary schools, the average performance of students over several years is significantly below the level that could be expected of them. This phenomenon is known as "underperformance." The most important identifiable weaknesses that go along with this phenomenon are that (a) learning material offered at school is insufficient to…

  3. Weak Radial Artery Pulse

    PubMed Central

    Venugopalan, Poothirikovil; Sivakumar, Puthuval; Ardley, Robert G.; Oates, Crispian

    2012-01-01

    We present an 11year-old boy with a weak right radial pulse, and describe the successful application of vascular ultrasound to identify the ulnar artery dominance and a thin right radial artery with below normal Doppler flow velocity that could explain the discrepancy. The implications of identifying this anomaly are discussed. PMID:22375269

  4. Weak Lensing with LSST

    NASA Astrophysics Data System (ADS)

    Wittman, David M.; Jain, B.; Jarvis, M.; Knox, L.; Margoniner, V.; Takada, M.; Tyson, J.; Zhan, H.; LSST Weak Lensing Science Collaboration

    2006-12-01

    Constraining dark energy parameters with weak lensing is one of the primary science goals of the LSST. The LSST Weak Lensing Science Collaboration has been formed with the goal of optimizing the weak lensing science by optimizing the survey cadence; working with Data Management to insure high-quality pipeline processing which will meet our needs; developing the necessary analysis tools well before the onset of data-taking; participating in high-fidelity simulations to test the system end-to-end; and analyzing the real dataset as it becomes available. We review the major weak lensing probes, the twoand three-point shear correlations, and how they constrain dark energy parameters. We also review the possibility of going beyond dark energy models and testing gravity with the LSST data. To realize the promise of the awesome LSST statistical precision, we must ensure that systematic errors are kept under control. We review the major sources of systematics and our plans for mitigation. We present data that demonstrate that these sources of systematics can be kept to a level smaller than the statistical error.

  5. Dynamical generation of the weak and dark matter scale

    NASA Astrophysics Data System (ADS)

    Hambye, Thomas; Strumia, Alessandro

    2013-09-01

    Assuming that naturalness should be modified by ignoring quadratic divergences, we propose a simple extension of the standard model where the weak scale is dynamically generated together with an automatically stable vector. Identifying it as thermal dark matter, the model has one free parameter. It predicts one extra scalar, detectable at colliders, which triggers a first-order dark/electroweak cosmological phase transition with production of gravitational waves. Vacuum stability holds up to the Planck scale.

  6. The Radio Amateur's Handbook.

    ERIC Educational Resources Information Center

    Blakeslee, Douglas, Ed.

    The objectives of this basic reference work for the radio amateur are to present radio theory and practice in terms of application and to reflect both the fundamentals and the rapidly-advancing technology of radio communications so that the radio amateur will have a guide to what is practical, meaningful, proven, and useful. Twenty-three chapters…

  7. The Frequency Spectrum Radio.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1979-01-01

    This journal issue focuses on the frequency spectrum used in radio communication and on the World Administrative Radio Conference, sponsored by the International Telecommunication Union, held in Geneva, Switzerland, in the fall of 1979. Articles describe the World Administrative Radio Conference as the most important radio communication conference…

  8. Gravitational collapse of Vaidya spacetime

    NASA Astrophysics Data System (ADS)

    Vertogradov, Vitalii

    2016-03-01

    The gravitational collapse of generalized Vaidya spacetime is considered. It is known that the endstate of gravitational collapse, as to whether a black hole or a naked singularity is formed, depends on the mass function M(v,r). Here we give conditions for the mass function which corresponds to the equation of the state P = αρ where α ∈ (0, 1 3] and according to these conditions we obtain either a black hole or a naked singularity at the endstate of gravitational collapse. Also we give conditions for the mass function when the singularity is gravitationally strong.

  9. Weak lensing of the primary CMB bispectrum

    SciTech Connect

    Cooray, Asantha; Sarkar, Devdeep; Serra, Paolo

    2008-06-15

    The bispectrum of cosmic microwave background (CMB) anisotropies is a well-known probe of the non-Gaussianity of primordial perturbations. Just as the intervening large-scale structure modifies the CMB angular power spectrum through weak gravitational lensing, the CMB primary bispectrum generated at the last scattering surface is also modified by lensing. We discuss the lensing modification to the CMB bispectrum and show that lensing leads to an overall decrease in the amplitude of the primary bispectrum at multipoles of interest between 100 and 2000 through additional smoothing introduced by lensing. Since weak lensing is not accounted for in current estimators of the primordial non-Gaussianity parameter, the existing measurements of f{sub NL} of the local model with WMAP out to l{sub max}{approx}750 is biased low by about 6%. For a high resolution experiment such as Planck, the lensing modification to the bispectrum must be properly included when attempting to estimate the primordial non-Gaussianity or the bias will be at the level of 30%. For Planck, weak lensing increases the minimum detectable value for the non-Gaussianity parameter of the local type f{sub NL} to 7 from the previous estimate of about 5 without lensing. The minimum detectable value of f{sub NL} for a cosmic variance limited experiment is also increased from less than 3 to {approx}5.

  10. Hypernuclear Weak Decays

    NASA Astrophysics Data System (ADS)

    Itonaga, K.; Motoba, T.

    The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.

  11. Gravitational Physics Research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.

  12. Gravitational Horizon(3)

    NASA Astrophysics Data System (ADS)

    Yang, Chao Yuan

    2012-05-01

    Anomalous decelerations of spacecraft Pioneer-10,11,etc could be interpreted as signal delay effect between speed of gravity and that of light as reflected in virtual scale, similar to covarying virtual scale effect in relative motion (http://arxiv.org/html/math-ph/0001019v5).A finite speed of gravity faster than light could be inferred (http://arXiv.org/html/physics/0001034v2). Measurements of gravitational variations by paraconical pendulum during a total solar eclipse infer the same(http://arXiv.org/html/physics/0001034v9). A finite Superluminal speed of gravity is the necessary condition to imply that there exists gravitational horizon (GH). Such "GH" of our Universe would stretch far beyond the cosmic event horizon of light. Dark energy may be owing to mutually interactive gravitational horizons of cousin universes. Sufficient condition for the conjecture is that the dark energy would be increasing with age of our Universe since accelerated expansion started about 5 Gyr ago, since more and more arrivals of "GH" of distant cousin universes would interact with "GH" of our Universe. The history of dark energy variations between then and now would be desirable(http://arXiv.org/html/physics/0001034). In "GH" conjecture, the neighborhood of cousin universes would be likely boundless in 4D-space-time without begining or end. The dark energy would keep all universes in continually accelerated expansion to eventual fragmentation. Fragments would crash and merge into bangs, big or small, to form another generation of cousin universes. These scenarios might offer a clue to what was before the big bang.

  13. Octonic Gravitational Field Equations

    NASA Astrophysics Data System (ADS)

    Demir, Süleyman; Tanişli, Murat; Tolan, Tülay

    2013-08-01

    Generalized field equations of linear gravity are formulated on the basis of octons. When compared to the other eight-component noncommutative hypercomplex number systems, it is demonstrated that associative octons with scalar, pseudoscalar, pseudovector and vector values present a convenient and capable tool to describe the Maxwell-Proca-like field equations of gravitoelectromagnetism in a compact and simple way. Introducing massive graviton and gravitomagnetic monopole terms, the generalized gravitational wave equation and Klein-Gordon equation for linear gravity are also developed.

  14. Regular gravitational lagrangians

    NASA Astrophysics Data System (ADS)

    Dragon, Norbert

    1992-02-01

    The Einstein action with vanishing cosmological constant is for appropriate field content the unique local action which is regular at the fixed point of affine coordinate transformations. Imposing this regularity requirement one excludes also Wess-Zumino counterterms which trade gravitational anomalies for Lorentz anomalies. One has to expect dilatational and SL (D) anomalies. If these anomalies are absent and if the regularity of the quantum vertex functional can be controlled then Einstein gravity is renormalizable. On leave of absence from Institut für Theoretische Physik, Universität Hannover, W-3000 Hannover 1, FRG.

  15. Weak Interactions and Instability Cascades.

    PubMed

    Kadoya, Taku; McCann, Kevin S

    2015-01-01

    Food web theory states that a weak interactor which is positioned in the food web such that it tends to deflect, or mute, energy away from a potentially oscillating consumer-resource interaction often enhances community persistence and stability. Here we examine how adding other weak interactions (predation/harvesting) on the stabilizing weak interactor alters the stability of food web using a set of well-established food web models/modules. We show that such "weak on weak" interaction chains drive an indirect dynamic cascade that can rapidly ignite a distant consumer-resource oscillator. Nonetheless, we also show that the "weak on weak" interactions are still more stable than the food web without them, and so weak interactions still generally act to stabilize food webs. Rather, these results are best interpreted to say that the degree of the stabilizing effect of a given important weak interaction can be severely compromised by other weak interactions (including weak harvesting). PMID:26219561

  16. Tests of the weak equivalence principle

    NASA Astrophysics Data System (ADS)

    Speake, C. C.; Will, C. M.

    2012-09-01

    The Einstein equivalence principle is the foundation for general relativity and all metric theories of gravity. Of its three tenets—the equality of acceleration of test bodies, or weak equivalence principle; the validity of Lorentz invariance in local freely falling frames; and the position invariance of local physical laws—the weak equivalence principle has played the most important role historically, and continues to be a focus of intense theoretical and experimental investigation. From the probably apocryphal 16th century demonstrations by Galileo at Pisa's leaning tower to the sensitive torsion-balance measurements of today (both pictured on the cover of this issue), this principle, dubbed WEP, has been crucial to the development of gravitation theory. The universality of the rate of acceleration of all types of matter in a gravitational field can be taken as evidence that gravitation is fundamentally determined by the geometry, or metric, of spacetime. Newton began his magnum opus 'The Principia' with a discussion of WEP and his experiments to verify it, while Einstein took WEP for granted in his construction of general relativity, never once referring to the epochal experiments by Baron Eötvös. The classic 1964 experiment of Roll, Krotkov and Dicke ushered in the modern era of high-precision tests, and the search for a 'fifth force' during the late 1980s (instigated, ironically, by purported anomalies in Eötvös's old data) caused the enterprise to pivot from pure tests of the foundation of GR to searches for new physics beyond the standard model of the non-gravitational interactions. Today, the next generation of experimental tests of WEP are being prepared for launch or are being developed, with the goal of reaching unprecedented levels of sensitivity, in search of signatures of interactions inspired by string theory, extra dimensions and other concepts from the world of high-energy physics. At the same time observations continue using lunar laser

  17. String pair production in a time-dependent gravitational field

    SciTech Connect

    Tolley, Andrew J.; Wesley, Daniel H.

    2005-12-15

    We study the pair creation of point particles and strings in a time-dependent, weak gravitational field. We find that, for massive string states, there are surprising and significant differences between the string and point-particle results. Central to our approach is the fact that a weakly curved spacetime can be represented by a coherent state of gravitons, and therefore we employ standard techniques in string perturbation theory. String and point-particle pairs are created through tree-level interactions between the background gravitons. In particular, we focus on the production of excited string states and perform explicit calculations of the production of a set of string states of arbitrary excitation level. The differences between the string and point-particle results may contain important lessons for the pair production of strings in the strong gravitational fields of interest in cosmology and black hole physics.

  18. Gravitational Instability of Cylindrical Viscoelastic Medium Permeated with Non Uniform Magnetic Field and Rotation

    NASA Astrophysics Data System (ADS)

    Dhiman, Joginder Singh; Sharma, Rajni

    2016-03-01

    The self-gravitating instability of an infinitely extending axisymmetric cylinder of viscoelastic medium permeated with non uniform magnetic field and rotation is studied for both the strongly coupled plasma (SCP) and weakly coupled plasma (WCP). The non uniform magnetic field and rotation are considered to act along the axial direction of the cylinder. The normal mode method of perturbations is applied to obtain the dispersion relation. The condition for the onset of gravitational instability has been derived from the dispersion relation under both strongly and weakly coupling limits. It is found that the Jeans criterion for gravitational collapse gets modified due to the presence of shear and bulk viscosities for the SCP, however, the magnetic field and rotation whether uniform or non uniform has no effect on the Jeans criterion of an infinitely extending axisymmetric cylinder of a self-gravitating viscoelastic medium.

  19. Monitoring Radio Frequency Interference in Southwest Virginia

    NASA Astrophysics Data System (ADS)

    Rapp, Steve

    2010-01-01

    The radio signals received from astronomical objects are extremely weak. Because of this, radio sources are easily shrouded by interference from devices such as satellites and cell phone towers. Radio astronomy is very susceptible to this radio frequency interference (RFI). Possibly even worse than complete veiling, weaker interfering signals can contaminate the data collected by radio telescopes, possibly leading astronomers to mistaken interpretations. To help promote student awareness of the connection between radio astronomy and RFI, an inquiry-based science curriculum was developed to allow high school students to determine RFI levels in their communities. The Quiet Skies Project_the result of a collaboration between the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the National Radio Astronomy Observatory (NRAO)_encourages students to collect and analyze RFI data and develop conclusions as a team. Because the project focuses on electromagnetic radiation, it is appropriate for physics, physical science, chemistry, or general science classes. My class-about 50 students from 15 southwest Virginia high schools-participated in the Quiet Skies Project and were pioneers in the use of the beta version of the Quiet Skies Detector (QSD), which is used to detect RFI. Students have been involved with the project since 2005 and have collected and shared data with NRAO. In analyzing the data they have noted some trends in RFI in Southwest Virginia.

  20. Fast Radio Bursts and Radio Transients from Black Hole Batteries

    NASA Astrophysics Data System (ADS)

    Mingarelli, Chiara; Levin, Janna; Lazio, Joseph

    2016-03-01

    Most black holes (BHs) will absorb a neutron star (NS) companion fully intact, without tidal disruption, suggesting the pair will remain dark to telescopes. Even without tidal disruption, electromagnetic (EM) luminosity is generated from the battery phase of the binary when the BH interacts with the NS magnetic field. Originally the luminosity was expected in high-energy X-rays or gamma-rays, however we conjecture that some of the battery power is emitted in the radio bandwidth. While the luminosity and timescale are suggestive of fast radio bursts (FRBs), NS-BH coalescence rates are too low to make these a primary FRB source. Instead, we propose the transients form a FRB sub-population, distinguishable by a double peak. The main burst is from the peak luminosity before merger, while the post-merger burst follows from the NS magnetic field migration to the BH, causing a shock. NS-BH pairs are desirable for ground-based gravitational wave (GW) observatories since the pair might not be detected any other way, with EM counterparts augmenting the scientific leverage beyond the GW signal. Valuably, EM signal can break degeneracies in the parameters encoded in the GW as well as probe the NS magnetic field strength, yielding insights into open problems in NS magnetic field decay.

  1. Gravitational vacuum condensate stars.

    PubMed

    Mazur, Pawel O; Mottola, Emil

    2004-06-29

    A new final state of gravitational collapse is proposed. By extending the concept of Bose-Einstein condensation to gravitational systems, a cold, dark, compact object with an interior de Sitter condensate p(v) = -rho(v) and an exterior Schwarzschild geometry of arbitrary total mass M is constructed. These regions are separated by a shell with a small but finite proper thickness l of fluid with equation of state p = +rho, replacing both the Schwarzschild and de Sitter classical horizons. The new solution has no singularities, no event horizons, and a global time. Its entropy is maximized under small fluctuations and is given by the standard hydrodynamic entropy of the thin shell, which is of the order k(B)lMc/Planck's over 2 pi, instead of the Bekenstein-Hawking entropy formula, S(BH) = 4 pi k(B)GM(2)/Planck's over 2 pi c. Hence, unlike black holes, the new solution is thermodynamically stable and has no information paradox. PMID:15210982

  2. Gravitating lepton bag model

    SciTech Connect

    Burinskii, A.

    2015-08-15

    The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag–string–quark system.

  3. General Relativity and Gravitation

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm

    2015-07-01

    Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.

  4. Gravitating lepton bag model

    NASA Astrophysics Data System (ADS)

    Burinskii, A.

    2015-08-01

    The Kerr-Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr's gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring-string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag-string-quark system.

  5. Gravitational Microlensing Events as a Target for the SETI project

    NASA Astrophysics Data System (ADS)

    Rahvar, Sohrab

    2016-09-01

    The detection of signals from a possible extrasolar technological civilization is one of the most challenging efforts of science. In this work, we propose using natural telescopes made of single or binary gravitational lensing systems to magnify leakage of electromagnetic signals from a remote planet that harbors Extraterrestrial Intelligent (ETI) technology. Currently, gravitational microlensing surveys are monitoring a large area of the Galactic bulge to search for microlensing events, finding more than 2000 events per year. These lenses are capable of playing the role of natural telescopes, and, in some instances, they can magnify radio band signals from planets orbiting around the source stars in gravitational microlensing systems. Assuming that the frequency of electromagnetic waves used for telecommunication in ETIs is similar to ours, we propose follow-up observation of microlensing events with radio telescopes such as the Square Kilometre Array (SKA), the Low Frequency Demonstrators, and the Mileura Wide-Field Array. Amplifying signals from the leakage of broadcasting by an Earth-like civilization will allow us to detect them as far as the center of the Milky Way galaxy. Our analysis shows that in binary microlensing systems, the probability of amplification of signals from ETIs is more than that in single microlensing events. Finally, we propose the use of the target of opportunity mode for follow-up observations of binary microlensing events with SKA as a new observational program for searching ETIs. Using optimistic values for the factors of the Drake equation provides detection of about one event per year.

  6. Gravitational radiation from neutron stars deformed by crustal Hall drift

    NASA Astrophysics Data System (ADS)

    Suvorov, A. G.; Mastrano, A.; Geppert, U.

    2016-07-01

    A precondition for the radio emission of pulsars is the existence of strong, small-scale magnetic field structures (`magnetic spots') in the polar cap region. Their creation can proceed via crustal Hall drift out of two qualitatively and quantitatively different initial magnetic field configurations: a field confined completely to the crust and another which penetrates the whole star. The aim of this study is to explore whether these magnetic structures in the crust can deform the star sufficiently to make it an observable source of gravitational waves. We model the evolution of these field configurations, which can develop, within ˜104-105 yr, magnetic spots with local surface field strengths ˜1014 G maintained over ≳106 yr. Deformations caused by the magnetic forces are calculated. We show that, under favourable initial conditions, a star undergoing crustal Hall drift can have ellipticity ɛ ˜ 10-6, even with sub-magnetar polar field strengths, after ˜105 yr. A pulsar rotating at ˜102 Hz with such ɛ is a promising gravitational wave source candidate. Since such large deformations can be caused only by a particular magnetic field configuration that penetrates the whole star and whose maximum magnetic energy is concentrated in the outer core region, gravitational wave emission observed from radio pulsars can thus inform us about the internal field structures of young neutron stars.

  7. Constraints on primordial density perturbations from induced gravitational waves

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David

    2010-01-15

    We consider the stochastic background of gravitational waves produced during the radiation-dominated hot big bang as a constraint on the primordial density perturbation on comoving length scales much smaller than those directly probed by the cosmic microwave background or large-scale structure. We place weak upper bounds on the primordial density perturbation from current data. Future detectors such as BBO and DECIGO will place much stronger constraints on the primordial density perturbation on small scales.

  8. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    PubMed

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves. PMID:26404832

  9. Radio frequency detection assembly and method for detecting radio frequencies

    SciTech Connect

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  10. Weak lensing cosmology beyond ΛCDM

    SciTech Connect

    Das, Sudeep; Linder, Eric V.; Nakajima, Reiko; Putter, Roland de E-mail: rdeputter@icc.ub.edu E-mail: reiko@astro.uni-bonn.de

    2012-11-01

    Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of physics affecting growth — dynamical dark energy, extended gravity, neutrino masses, and spatial curvature — we analyze the cosmological constraints. Similarly we consider the effects of a range of systematic uncertainties, in shear measurement, photometric redshifts, intrinsic alignments, and the nonlinear power spectrum, on cosmological parameter extraction. We also investigate, and provide fitting formulas for, the influence of survey parameters such as redshift depth, galaxy number densities, and sky area on the cosmological constraints in the beyond-ΛCDM parameter space. Finally, we examine the robustness of results for different fiducial cosmologies.

  11. Weakly supervised glasses removal

    NASA Astrophysics Data System (ADS)

    Wang, Zhicheng; Zhou, Yisu; Wen, Lijie

    2015-03-01

    Glasses removal is an important task on face recognition, in this paper, we provide a weakly supervised method to remove eyeglasses from an input face image automatically. We choose sparse coding as face reconstruction method, and optical flow to find exact shape of glasses. We combine the two processes iteratively to remove glasses more accurately. The experimental results reveal that our method works much better than these algorithms alone, and it can remove various glasses to obtain natural looking glassless facial images.

  12. Asymptotically Safe Weak Interactions

    NASA Astrophysics Data System (ADS)

    Calmet, Xavier

    We emphasize that the electroweak interactions without a Higgs boson are very similar to quantum general relativity. The Higgs field could just be a dressing field and might not exist as a propagating particle. In that interpretation, the electroweak interactions without a Higgs boson could be renormalizable at the nonperturbative level because of a nontrivial fixed point. Tree-level unitarity in electroweak bosons scattering is restored by the running of the weak scale.

  13. Composite weak bosons

    SciTech Connect

    Suzuki, M.

    1988-04-01

    Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.

  14. The gravitational properties of antimatter

    SciTech Connect

    Goldman, T.; Hughes, R.J.; Nieto, M.M.

    1986-09-01

    It is argued that a determination of the gravitational acceleration of antimatter towards the earth is capable of imposing powerful constraints on modern quantum gravity theories. Theoretical reasons to expect non-Newtonian non-Einsteinian effects of gravitational strength and experimental suggestions of such effects are reviewed. 41 refs. (LEW)

  15. Method for numerical relativity: simulation of axisymmetric gravitational collapse and gravitational radiation generation

    SciTech Connect

    Evans, C.R. II

    1984-01-01

    A method is presented that allows fully self-consistent numerical simulation of asymptotically flat axisymmetric nonrotating general relativistic systems. These techniques were developed to model and understand resulting relativistic effects in gravitational core collapse and gravitational radiation generation. Both vacuum (Brill) spacetimes and matter-filled configurations can be treated. The author uses the (3 + 1) composition of Arnowitt, Deser, and Misner to write general relativity in a dynamical form. The conformal approach, including the transverse-traceless decomposition of extrinsic curvature due to York, is used to solve the initial-value problem. In addition, these techniques are extended to provide a fully constrained evolution scheme. Several new boundary conditions, applied at large but finite radius, are derived for the elliptic constraint equations. The method uses a simplifying three-gauge, placing the metric in quasi-isotropic form. The resulting three-metric contains only two components that must be solved. One, the conformal factor, is fixed by the Hamiltonian constraint. The second has nice radiative features and is related in the weak-field limit to the usual transverse-traceless gravitational wave amplitude. The time slicing is determined by implementation of the maximal slicing condition.

  16. Fast Radio Bursts and Radio Transients from Black Hole Batteries

    NASA Astrophysics Data System (ADS)

    Mingarelli, Chiara M. F.; Levin, Janna; Lazio, T. Joseph W.

    2015-12-01

    Most black holes (BHs) will absorb a neutron star (NS) companion fully intact without tidal disruption, suggesting the pair will remain dark to telescopes. Even without tidal disruption, electromagnetic (EM) luminosity is generated from the battery phase of the binary when the BH interacts with the NS magnetic field. Originally, the luminosity was expected to be in high-energy X-rays or gamma-rays, however, we conjecture that some of the battery power is emitted in the radio bandwidth. While the luminosity and timescale are suggestive of fast radio bursts (FRBs; millisecond-scale radio transients) NS-BH coalescence rates are too low to make these a primary FRB source. Instead, we propose that the transients form a FRB sub-population, distinguishable by a double peak with a precursor. The rapid ramp-up in luminosity manifests as a precursor to the burst which is 20%-80% as luminous given 0.5 ms timing resolution. The main burst arises from the peak luminosity before the merger. The post-merger burst follows from the NS magnetic field migration to the BH, causing a shock. NS-BH pairs are especially desirable for ground-based gravitational wave (GW) observatories since the pair might not otherwise be detected, with EM counterparts greatly augmenting the scientific leverage beyond the GW signal. The EM signal’s ability to break degeneracies in the parameters encoded in the GW and probe the NS magnetic field strength is quite valuable, yielding insights into open problems in NS magnetic field decay.

  17. Fast Radio Bursts and Radio Transients from Black Hole Batteries

    NASA Astrophysics Data System (ADS)

    Mingarelli, Chiara M. F.; Levin, Janna; Lazio, T. Joseph W.

    2015-12-01

    Most black holes (BHs) will absorb a neutron star (NS) companion fully intact without tidal disruption, suggesting the pair will remain dark to telescopes. Even without tidal disruption, electromagnetic (EM) luminosity is generated from the battery phase of the binary when the BH interacts with the NS magnetic field. Originally, the luminosity was expected to be in high-energy X-rays or gamma-rays, however, we conjecture that some of the battery power is emitted in the radio bandwidth. While the luminosity and timescale are suggestive of fast radio bursts (FRBs; millisecond-scale radio transients) NS–BH coalescence rates are too low to make these a primary FRB source. Instead, we propose that the transients form a FRB sub-population, distinguishable by a double peak with a precursor. The rapid ramp-up in luminosity manifests as a precursor to the burst which is 20%–80% as luminous given 0.5 ms timing resolution. The main burst arises from the peak luminosity before the merger. The post-merger burst follows from the NS magnetic field migration to the BH, causing a shock. NS–BH pairs are especially desirable for ground-based gravitational wave (GW) observatories since the pair might not otherwise be detected, with EM counterparts greatly augmenting the scientific leverage beyond the GW signal. The EM signal’s ability to break degeneracies in the parameters encoded in the GW and probe the NS magnetic field strength is quite valuable, yielding insights into open problems in NS magnetic field decay.

  18. The radio sources CTA 21 and OF+247: The hot spots of radio galaxies

    NASA Astrophysics Data System (ADS)

    Artyukh, V. S.; Tyul'bashev, S. A.; Chernikov, P. A.

    2013-06-01

    The physical conditions in the radio sources CTA 21 and OF+247 are studied assuming that the low-frequency spectral turnovers are due to synchrotron self-absorption. The physical parameters of the radio sources are estimated using a technique based on a nonuniform synchrotron source model. It is shown that the magnetic-field distributions in the dominant compact components of these radio sources are strongly inhomogeneous. The magnetic fields at the center of the sources are B ˜ 10-1 G, and the fields are two to three orders of magnitude weaker at the periphery. The magnetic field averaged over the compact component is B ˜ 10-3 G, and the density of relativistic electrons is n e ˜ 10-3 cm-3. Assuming that there is equipartition of the energies of the magnetic field and relativistic particles, averaged over the source, < E H > = < E e > ˜ 10-7-10-6 erg cm-3. The energy density of the magnetic field exceeds that of the relativistic electrons at the centers of the radio sources. The derived parameters of CTA 21 and OF+247 are close to those of the hot spots in the radio galaxy Cygnus A. On this basis, it is suggested that CTA 21 and OF+247 are radio galaxies at an early stage of their evolution, when the hot spots (dominant compact radio components) have appeared, and the radio lobes (weak extended components) are still being formed.

  19. Gravitational correction to vacuum polarization

    NASA Astrophysics Data System (ADS)

    Jentschura, U. D.

    2015-02-01

    We consider the gravitational correction to (electronic) vacuum polarization in the presence of a gravitational background field. The Dirac propagators for the virtual fermions are modified to include the leading gravitational correction (potential term) which corresponds to a coordinate-dependent fermion mass. The mass term is assumed to be uniform over a length scale commensurate with the virtual electron-positron pair. The on-mass shell renormalization condition ensures that the gravitational correction vanishes on the mass shell of the photon, i.e., the speed of light is unaffected by the quantum field theoretical loop correction, in full agreement with the equivalence principle. Nontrivial corrections are obtained for off-shell, virtual photons. We compare our findings to other works on generalized Lorentz transformations and combined quantum-electrodynamic gravitational corrections to the speed of light which have recently appeared in the literature.

  20. Gravitational Repulsion and Dirac Antimatter

    NASA Astrophysics Data System (ADS)

    Kowitt, Mark E.

    1996-03-01

    Based on an analogy with electron and hole dynamics in semiconductors, Dirac's relativistic electron equation is generalized to include a gravitational interaction using an electromagnetic-type approximation of the gravitational potential. With gravitational and inertial masses decoupled, the equation serves to extend Dirac's deduction of antimatter parameters to include the possibility of gravitational repulsion between matter and antimatter. Consequences for general relativity and related “antigravity” issues are considered, including the nature and gravitational behavior of virtual photons, virtual pairs, and negative-energy particles. Basic cosmological implications of antigravity are explored—in particular, potential contributions to inflation, expansion, and the general absence of detectable antimatter. Experimental and observational tests are noted, and new ones suggested.

  1. The SuperCLASS Weak Lensing Deep Field Survey

    NASA Astrophysics Data System (ADS)

    Harrison, Ian; Superclass Collaboration

    2014-04-01

    SuperCLASS is a survey of 1.75 square degrees of the Northern sky using the e-MERLIN telescope array at a frequency of 1.4GHz, aiming to reach an image noise RMS level of 4 micro-Jy/beam. The primary goal is to use the expected source density of ~1 per square arcminute (giving a total of ~10,000), ~150 milli-arcsecond resolution and presence in the survey region of 5 massive Abell clusters to measure a significant weak lensing effect in the radio band for only the second time, proving the potential of radio weak lensing as a powerful tool for mapping dark matter and constraining cosmological models. In doing this we will also learn a significant amount about the source population (star forming galaxies and radio AGN) themselves and their polarisation properties. SuperCLASS will not only require development of a pipeline for making the highly accurate determination of shapes of a large number of sources for performing standard weak lensing measurements, but will also form a test bed for new methods, such as the use of polarisation information to mitigate the biasing effect of intrinsic alignments between galaxies, which will be a key systematic for future weak lensing surveys. Whilst the challenges of the necessary shape measurement in image plane optical data are relatively well-explored, there is little experience in meeting those involved in the use of data from radio interferometers. The knowledge gained about efficient and accurate techniques for large scale radio astronomy from SuperCLASS will be invaluable in the build up to the next generation of experiments.

  2. Beyond concordance cosmology with magnification of gravitational-wave standard sirens.

    PubMed

    Camera, Stefano; Nishizawa, Atsushi

    2013-04-12

    We show how future gravitational-wave detectors would be able to discriminate between the concordance Λ cold dark matter cosmological model and up-to-date competing alternatives, e.g., dynamical dark energy (DE) models or modified gravity (MG) theories. Our method consists of using the weak-lensing magnification effect that affects a standard-siren signal because of its traveling through the Universe's large scale structure. As a demonstration, we present constraints on DE and MG from proposed gravitational-wave detectors, namely Einstein Telescope and DECI-Hertz Interferometer Gravitational-Wave Observatory and Big-Bang Observer. PMID:25167243

  3. Gravitational waves from rotating and precessing rigid bodies. 2: General solutions and computationally useful formulae

    NASA Technical Reports Server (NTRS)

    Zimmerman, M.

    1979-01-01

    The classical mechanics results for free precession which are needed in order to calculate the weak field, slow-motion, quadrupole-moment gravitational waves are reviewed. Within that formalism, algorithms are given for computing the exact gravitational power radiated and waveforms produced by arbitrary rigid-body freely-precessing sources. The dominant terms are presented in series expansions of the waveforms for the case of an almost spherical object precessing with a small wobble angle. These series expansions, which retain the precise frequency dependence of the waves, may be useful for gravitational astronomers when freely-precessing sources begin to be observed.

  4. DETECTION, LOCALIZATION, AND CHARACTERIZATION OF GRAVITATIONAL WAVE BURSTS IN A PULSAR TIMING ARRAY

    SciTech Connect

    Finn, Lee Samuel; Lommen, Andrea N.

    2010-08-01

    Efforts to detect gravitational waves by timing an array of pulsars have traditionally focused on stationary gravitational waves, e.g., stochastic or periodic signals. Gravitational wave bursts-signals whose duration is much shorter than the observation period-will also arise in the pulsar timing array waveband. Sources that give rise to detectable bursts include the formation or coalescence of supermassive black holes (SMBHs), the periapsis passage of compact objects in highly elliptic or unbound orbits about an SMBH, or cusps on cosmic strings. Here, we describe how pulsar timing array data may be analyzed to detect and characterize these bursts. Our analysis addresses, in a mutually consistent manner, a hierarchy of three questions. (1) What are the odds that a data set includes the signal from a gravitational wave burst? (2) Assuming the presence of a burst, what is the direction to its source? (3) Assuming the burst propagation direction, what is the burst waveform's time dependence in each of its polarization states? Applying our analysis to synthetic data sets, we find that we can detect gravitational waves even when the radiation is too weak to either localize the source or infer the waveform, and detect and localize sources even when the radiation amplitude is too weak to permit the waveform to be determined. While the context of our discussion is gravitational wave detection via pulsar timing arrays, the analysis itself is directly applicable to gravitational wave detection using either ground- or space-based detector data.

  5. Gravitational mass and Newton's universal gravitational law under relativistic conditions

    NASA Astrophysics Data System (ADS)

    Vayenas, Constantinos G.; Fokas, Athanasios; Grigoriou, Dimitrios

    2015-09-01

    We discuss the predictions of Newton's universal gravitational law when using the gravitational, mg, rather than the rest masses, mo, of the attracting particles. According to the equivalence principle, the gravitational mass equals the inertial mass, mi, and the latter which can be directly computed from special relativity, is an increasing function of the Lorentz factor, γ, and thus of the particle velocity. We consider gravitationally bound rotating composite states, and we show that the ratio of the gravitational force for gravitationally bound rotational states to the force corresponding to low (γ ≈ 1) particle velocities is of the order of (mPl/mo)2 where mpi is the Planck mass (ħc/G)1/2. We also obtain a similar result, within a factor of two, by employing the derivative of the effective potential of the Schwarzschild geodesics of GR. Finally, we show that for certain macroscopic systems, such as the perihelion precession of planets, the predictions of this relativistic Newtonian gravitational law differ again by only a factor of two from the predictions of GR.

  6. Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abbott, R.; Adhikari, R.; Ageev, A.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Araya, M.; Armandula, H.; Ashley, M.; Asiri, F.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Ballmer, S.; Barish, B. C.; Barker, C.; Barker, D.; Barnes, M.; Barr, B.; Barton, M. A.; Bayer, K.; Beausoleil, R.; Belczynski, K.; Bennett, R.; Berukoff, S. J.; Betzwieser, J.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Black, E.; Blackburn, K.; Blackburn, L.; Bland, B.; Bochner, B.; Bogue, L.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burgess, R.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cantley, C. A.; Cardenas, L.; Carter, K.; Casey, M. M.; Castiglione, J.; Chandler, A.; Chapsky, J.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chickarmane, V.; Chin, D.; Christensen, N.; Churches, D.; Cokelaer, T.; Colacino, C.; Coldwell, R.; Coles, M.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D.; Creighton, T. D.; Crooks, D. R.; Csatorday, P.; Cusack, B. J.; Cutler, C.; D'Ambrosio, E.; Danzmann, K.; Daw, E.; Debra, D.; Delker, T.; Dergachev, V.; Desalvo, R.; Dhurandhar, S.; di Credico, A.; Díaz, M.; Ding, H.; Drever, R. W.; Dupuis, R. J.; Edlund, J. A.; Ehrens, P.; Elliffe, E. J.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fallnich, C.; Farnham, D.; Fejer, M. M.; Findley, T.; Fine, M.; Finn, L. S.; Franzen, K. Y.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Ganezer, K. S.; Garofoli, J.; Giaime, J. A.; Gillespie, A.; Goda, K.; González, G.; Goßler, S.; Grandclément, P.; Grant, A.; Gray, C.; Gretarsson, A. M.; Grimmett, D.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E.; Gustafson, R.; Hamilton, W. O.; Hammond, M.; Hanson, J.; Hardham, C.; Harms, J.; Harry, G.; Hartunian, A.; Heefner, J.; Hefetz, Y.; Heinzel, G.; Heng, I. S.; Hennessy, M.; Hepler, N.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hindman, N.; Hoang, P.; Hough, J.; Hrynevych, M.; Hua, W.; Ito, M.; Itoh, Y.; Ivanov, A.; Jennrich, O.; Johnson, B.; Johnson, W. W.; Johnston, W. R.; Jones, D. I.; Jones, L.; Jungwirth, D.; Kalogera, V.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kells, W.; Kern, J.; Khan, A.; Killbourn, S.; Killow, C. J.; Kim, C.; King, C.; King, P.; Klimenko, S.; Koranda, S.; Kötter, K.; Kovalik, J.; Kozak, D.; Krishnan, B.; Landry, M.; Langdale, J.; Lantz, B.; Lawrence, R.; Lazzarini, A.; Lei, M.; Leonor, I.; Libbrecht, K.; Libson, A.; Lindquist, P.; Liu, S.; Logan, J.; Lormand, M.; Lubiński, M.; Lück, H.; Lyons, T. T.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majid, W.; Malec, M.; Mann, F.; Marin, A.; Márka, S.; Maros, E.; Mason, J.; Mason, K.; Matherny, O.; Matone, L.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McHugh, M.; McNabb, J. W.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Miyoki, S.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mueller, G.; Mukherjee, S.; Murray, P.; Myers, J.; Nagano, S.; Nash, T.; Nayak, R.; Newton, G.; Nocera, F.; Noel, J. S.; Nutzman, P.; Olson, T.; O'Reilly, B.; Ottaway, D. J.; Ottewill, A.; Ouimette, D.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.; Pedraza, M.; Penn, S.; Pitkin, M.; Plissi, M.; Prix, R.; Quetschke, V.; Raab, F.; Radkins, H.; Rahkola, R.; Rakhmanov, M.; Rao, S. R.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Redding, D.; Regehr, M. W.; Regimbau, T.; Reid, S.; Reilly, K. T.; Reithmaier, K.; Reitze, D. H.; Richman, S.; Riesen, R.; Riles, K.; Rivera, B.; Rizzi, A.; Robertson, D. I.; Robertson, N. A.; Robison, L.; Roddy, S.; Rollins, J.; Romano, J. D.; Romie, J.; Rong, H.; Rose, D.; Rotthoff, E.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.; Salzman, I.; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Sathyaprakash, B.; Saulson, P. R.; Savage, R.; Sazonov, A.; Schilling, R.; Schlaufman, K.; Schmidt, V.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Seader, S. E.; Searle, A. C.; Sears, B.; Seel, S.; Seifert, F.; Sengupta, A. S.; Shapiro, C. A.; Shawhan, P.; Shoemaker, D. H.; Shu, Q. Z.; Sibley, A.; Siemens, X.; Sievers, L.; Sigg, D.; Sintes, A. M.; Smith, J. R.; Smith, M.; Smith, M. R.; Sneddon, P. H.; Spero, R.; Stapfer, G.; Steussy, D.; Strain, K. A.; Strom, D.; Stuver, A.; Summerscales, T.; Sumner, M. C.; Sutton, P. J.; Sylvestre, J.; Takamori, A.; Tanner, D. B.; Tariq, H.; Taylor, I.; Taylor, R.; Taylor, R.; Thorne, K. A.; Thorne, K. S.; Tibbits, M.; Tilav, S.; Tinto, M.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Vallisneri, M.; van Putten, M.; Vass, S.; Vecchio, A.; Veitch, J.; Vorvick, C.

    2005-05-01

    We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10-24. These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10-5 for the four closest pulsars.

  7. Gravitational Lenses and the Structure and Evolution of Galaxies

    NASA Technical Reports Server (NTRS)

    Kochanek, Christopher

    2003-01-01

    The grant has supported the completion of 16 papers and 4 conference proceedings to date. During the first year of the project we completed five papers, each of which represents a new direction in the theory and interpretation of gravitational lenses. In the first paper, "The Importance of Einstein Rings", we developed the first theory for the formation and structure of the Einstein rings formed by lensing extended sources like the host galaxies of quasar and radio sources. We applied the theory to three lenses with lensed host galaxies. For the time delay lens PG 1115+080 we found that the structure of the Einstein ring ruled out models of the gravitational potential which permitted a large Hubble constant (70 km/s Mpc). In the second paper, :Cusped Mass Models Of Gravitational Lenses", we introduced a new class of lens models where the central density is characterized by a cusp ( rho proportional to tau(sup -gamma), 1 less than gamma less than 2) as in most modern models and theories of galaxies rather than a finite core radius. In the third paper, "Global Probes of the Impact of Baryons on Dark Matter Halos", we made the first globally consistent models for the separation distribution of gravitational lenses including both galaxy and cluster lenses. We show that the key physics for the origin of the sharp separation cutoff in the separation distribution near 3 arc sec is the effect of the cooling baryons in galaxies on the density structure of the system.

  8. NANOGrav Constraints on Gravitational Wave Bursts with Memory

    NASA Astrophysics Data System (ADS)

    Arzoumanian, Z.; Brazier, A.; Burke-Spolaor, S.; Chamberlin, S. J.; Chatterjee, S.; Christy, B.; Cordes, J. M.; Cornish, N. J.; Demorest, P. B.; Deng, X.; Dolch, T.; Ellis, J. A.; Ferdman, R. D.; Fonseca, E.; Garver-Daniels, N.; Jenet, F.; Jones, G.; Kaspi, V. M.; Koop, M.; Lam, M. T.; Lazio, T. J. W.; Levin, L.; Lommen, A. N.; Lorimer, D. R.; Luo, J.; Lynch, R. S.; Madison, D. R.; McLaughlin, M. A.; McWilliams, S. T.; Nice, D. J.; Palliyaguru, N.; Pennucci, T. T.; Ransom, S. M.; Siemens, X.; Stairs, I. H.; Stinebring, D. R.; Stovall, K.; Swiggum, J.; Vallisneri, M.; van Haasteren, R.; Wang, Y.; Zhu, W. W.; NANOGrav Collaboration

    2015-09-01

    Among efforts to detect gravitational radiation, pulsar timing arrays are uniquely poised to detect “memory” signatures, permanent perturbations in spacetime from highly energetic astrophysical events such as mergers of supermassive black hole binaries. The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) observes dozens of the most stable millisecond pulsars using the Arecibo and Green Bank radio telescopes in an effort to study, among other things, gravitational wave memory. We herein present the results of a search for gravitational wave bursts with memory (BWMs) using the first five years of NANOGrav observations. We develop original methods for dramatically speeding up searches for BWM signals. In the directions of the sky where our sensitivity to BWMs is best, we would detect mergers of binaries with reduced masses of {10}9 {M}⊙ out to distances of 30 Mpc; such massive mergers in the Virgo cluster would be marginally detectable. We find no evidence for BWMs. However, with our non-detection, we set upper limits on the rate at which BWMs of various amplitudes could have occurred during the time spanned by our data—e.g., BWMs with amplitudes greater than 10-13 must encounter the Earth at a rate less than 1.5 yr-1.

  9. Frontiers in gravitational physics

    NASA Astrophysics Data System (ADS)

    Dutta, Koushik

    In this thesis we present three research projects in classical General Relativity and Cosmology. In the first part of the thesis we investigate the definition of gravitational charge corresponding to the asymptotic boost symmetry of a spacetime and derive its role in the first law of black hole thermodynamics. In the cosmology part, we investigate the role of a scalar field in the early and late time evolution of the Universe. We find out observational constraints on the pseudo Nambu Goldstone Boson quintessence model using the latest supernova and Cosmic Microwave Background (CMB) data. In an attempt to explain a particular anomaly in the latest CMB data, we propose a modification to the standard single field inflation based on the initial kinetic energy domination with anisotropic initial conditions. Predictions of this mechanism can be tested in future data analysis.

  10. Gravitational adaptation of animals

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Burton, R. R.

    1982-01-01

    The effect of gravitational adaptation is studied in a group of five Leghorn cocks which had become physiologically adapted to 2 G after 162 days of centrifugation. After this period of adaptation, they are periodically exposed to a 2 G field, accompanied by five previously unexposed hatch-mates, and the degree of retained acceleration adaptation is estimated from the decrease in lymphocyte frequency after 24 hr at 2 G. Results show that the previously adapted birds exhibit an 84% greater lymphopenia than the unexposed birds, and that the lymphocyte frequency does not decrease to a level below that found at the end of 162 days at 2 G. In addition, the capacity for adaptation to chronic acceleration is found to be highly heritable. An acceleration tolerant strain of birds shows lesser mortality during chronic acceleration, particularly in intermediate fields, although the result of acceleration selection is largely quantitative (a greater number of survivors) rather than qualitative (behavioral or physiological changes).

  11. Atomic and gravitational clocks

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity, respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous - whose rates are related by a non-constant function beta sub a - is demonstrated. The cosmological character of beta sub a is also discussed.

  12. Spherical gravitational collapse in N dimensions

    SciTech Connect

    Goswami, Rituparno; Joshi, Pankaj S.

    2007-10-15

    We investigate here spherically symmetric gravitational collapse in a space-time with an arbitrary number of dimensions and with a general type I matter field, which is a broad class that includes most of the physically reasonable matter forms. We show that given the initial data for matter in terms of the initial density and pressure profiles at an initial surface t=t{sub i} from which the collapse evolves, there exist the rest of the initial data functions and classes of solutions of Einstein equations which we construct here, such that the space-time evolution goes to a final state which is either a black hole or a naked singularity, depending on the nature of initial data and evolutions chosen, and subject to validity of the weak energy condition. The results are discussed and analyzed in the light of the cosmic censorship hypothesis in black hole physics. The formalism here combines the earlier results on gravitational collapse in four dimensions in a unified treatment. Also the earlier work is generalized to higher-dimensional space-times to allow a study of the effect of the number of dimensions on the possible final outcome of the collapse in terms of either a black hole or naked singularity. No restriction is adopted on the number of dimensions, and other limiting assumptions such as self-similarity of space-time are avoided, in order to keep the treatment general. Our methodology allows us to consider to an extent the genericity and stability aspects related to the occurrence of naked singularities in gravitational collapse.

  13. Earth Gravitational Model 2020

    NASA Astrophysics Data System (ADS)

    Barnes, D.; Factor, J. K.; Holmes, S. A.; Ingalls, S.; Presicci, M. R.; Beale, J.; Fecher, T.

    2015-12-01

    The National Geospatial-Intelligence Agency [NGA], in conjunction with its U.S. and international partners, has begun preliminary work on its next Earth Gravitational Model, to replace EGM2008. The new 'Earth Gravitational Model 2020' [EGM2020] has an expected public release date of 2020, and will likely retain the same harmonic basis and resolution as EGM2008. As such, EGM2020 will be essentially an ellipsoidal harmonic model up to degree (n) and order (m) 2159, but will be released as a spherical harmonic model to degree 2190 and order 2159. EGM2020 will benefit from new data sources and procedures. Updated satellite gravity information from the GOCE and GRACE mission, will better support the lower harmonics, globally. Multiple new acquisitions (terrestrial, airborne and shipborne) of gravimetric data over specific geographical areas, will provide improved global coverage and resolution over the land, as well as for coastal and some ocean areas. Ongoing accumulation of satellite altimetry data as well as improvements in the treatment of this data, will better define the marine gravity field, most notably in polar and near-coastal regions. NGA and partners are evaluating different approaches for optimally combining the new GOCE/GRACE satellite gravity models with the terrestrial data. These include the latest methods employing a full covariance adjustment. NGA is also working to assess systematically the quality of its entire gravimetry database, towards correcting biases and other egregious errors where possible, and generating improved error models that will inform the final combination with the latest satellite gravity models. Outdated data gridding procedures have been replaced with improved approaches. For EGM2020, NGA intends to extract maximum value from the proprietary data that overlaps geographically with unrestricted data, whilst also making sure to respect and honor its proprietary agreements with its data-sharing partners.

  14. Weakly broken galileon symmetry

    SciTech Connect

    Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo

    2015-09-01

    Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.

  15. Weak decay of hypernuclei

    SciTech Connect

    Grace, R.

    1983-01-01

    The Moby Dick spectrometer (at BNL) in coincidence with a range spectrometer and a TOF neutron detector will be used to study the weak decay modes of /sup 12/C. The Moby Dick spectrometer will be used to reconstruct and tag events in which specific hypernuclear states are formed in the reaction K/sup -/ + /sup 12/C ..-->.. ..pi../sup -/ + /sup 12/C. Subsequent emission of decay products (pions, protons and neutrons) in coincidence with the fast forward pion will be detected in a time and range spectrometer, and a neutron detector.

  16. Tests of general relativity using Starprobe radio metric tracking data

    NASA Technical Reports Server (NTRS)

    Mease, K. D.; Anderson, J. D.; Wood, L. J.; White, L. K.

    1982-01-01

    The potential of a proposed spacecraft mission, called Starprobe, for testing general relativity and providing information on the interior structure and dynamics of the sun is investigated. Parametric, gravitational perturbation terms are derived which represent relativistic effects and effects due to spatial and temporal variations in the solar potential at a given radial distance. A covariance analysis based on Kalman filtering theory predicts the accuracies with which the free parameters in the perturbation terms can be estimated with radio metric tracking data through the process of trajectory reconstruction. It is concluded that Starprobe can contribute significant information on both the nature of gravitation and the structure and dynamics of the solar interior.

  17. Constraining the braneworld with gravitational wave observations.

    PubMed

    McWilliams, Sean T

    2010-04-01

    Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, l, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining l via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain l at the approximately 1 microm level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of l < or = 5 microm. PMID:20481929

  18. Spectrometer for new gravitational experiment with UCN

    NASA Astrophysics Data System (ADS)

    Kulin, G. V.; Frank, A. I.; Goryunov, S. V.; Kustov, D. V.; Geltenbort, P.; Jentschel, M.; Strepetov, A. N.; Bushuev, V. A.

    2015-08-01

    We describe an experimental installation for a new test of the weak equivalence principle for neutron. The device is a sensitive gravitational spectrometer for ultracold neutrons allowing to precisely compare the gain in kinetic energy of free falling neutrons to quanta of energy ℏΩ transferred to the neutron via a non stationary device, i.e. a quantum modulator. The results of first test experiments indicate a collection rate allowing measurements of the factor of equivalence γ with a statistical uncertainty in the order of 5×10-3 per day. A number of systematic effects were found, which partially can be easily corrected. For the elimination of others more detailed investigations and analysis are needed. Some possibilities to improve the device are also discussed.

  19. Gravitational Polarization & The Schiff-Dessler Controversy

    NASA Astrophysics Data System (ADS)

    Morawice, Pawel; Yin, Ming; Wescott, Michael; Overcash, Dan; Datta, Timir

    2009-11-01

    The behavior of composite matter in external fields can be very reveling. The quantum mechanical problem of an electrically conducting material object (test mass) placed in a uniform (weak) gravitational field, g, was considered by many authors starting with Schiff [Phys. Rev. 151, 1067 (1966)]. Depending on the theoretical treatment opposing results of gravity induced (electric) field Eg have been reported. In the Schiff model [L.I. Schiff, PRB, 1, 4649 (1970)] Eg is predicted to be oriented anti-parallel (with reference to g). On the other hand it is found to be parallel in the more realistic elastic lattice model [A. J. Dessler et al, Phys.Rev, 168, 737, (1968); Edward Teller, PNAS, 74, 2664 (1977)]. Surprisingly, this contradiction has been largely overlooked by modern researchers. The preliminary results of an experimental study will be reported. Several interesting theoretical and technological implications will be suggested.

  20. Quantum decoherence during inflation from gravitational nonlinearities

    NASA Astrophysics Data System (ADS)

    Nelson, Elliot

    2016-03-01

    We study the inflationary quantum-to-classical transition for the adiabatic curvature perturbation ζ due to quantum decoherence, focusing on the role played by squeezed-limit mode couplings. We evolve the quantum state Ψ in the Schrödinger picture, for a generic cubic coupling to additional environment degrees of freedom. Focusing on the case of minimal gravitational interactions, we find the evolution of the reduced density matrix for a given long-wavelength fluctuation by tracing out the other (mostly shorter-wavelength) modes of ζ as an environment. We show that inflation produces phase oscillations in the wave functional Ψ[ζ(x)], which suppress off-diagonal components of the reduced density matrix, leaving a diagonal mixture of different classical configurations. Gravitational nonlinearities thus provide a minimal mechanism for generating classical stochastic perturbations from inflation. We identify the time when decoherence occurs, which is delayed after horizon crossing due to the weak coupling, and find that Hubble-scale modes act as the decohering environment. We also comment on the observational relevance of decoherence and its relation to the squeezing of the quantum state.

  1. Metrology for AGP - Astrometric Gravitation Probe

    NASA Astrophysics Data System (ADS)

    Gai, Mario; et al.

    2015-08-01

    The Astrometric Gravitation Probe (AGP) is a concept of space mission aimed at tests of Fundamental Physics in the Solar system, using Fizeau interferometry and coronagraphy techniques to implement differential astrometry among superposed stellar fields. The main goal is verification of the General Relativity (GR) and competing gravitation theories in the weak field of the Solar System by high precision measurement of the light deflection in the vicinity of the Sun at < 10-7 and of the main and minor planet dynamics at the microarcsec/year level. The AGP payload concept is based on a single main telescope (1.15 m diameter) implementing a multi-aperture Fizeau interferometer, for simultaneous observation of four regions close to the Solar limb and in opposition; coronagraphic techniques are applied on the elementary sub-apertures. The star displacement due to light deflection is derived by differential astrometry on images taken in different deflection conditions (e.g. ON and OFF). The instrument design is focused on systematic error control through multiple field simultaneous observation and calibration. The metrology system requirements related to the science goals are discussed, and the technical aspects of possible implementations are investigated. The potential benefit of auto-collimation and cophasing techniques derives from monitoring comparably large sections of the optical system common to the stellar beams. The performance at microarcsec level is verified by simulation.

  2. Gravitational wave astronomy: needle in a haystack.

    PubMed

    Cornish, Neil J

    2013-02-13

    A worldwide array of highly sensitive ground-based interferometers stands poised to usher in a new era in astronomy with the first direct detection of gravitational waves. The data from these instruments will provide a unique perspective on extreme astrophysical objects, such as neutron stars and black holes, and will allow us to test Einstein's theory of gravity in the strong field, dynamical regime. To fully realize these goals, we need to solve some challenging problems in signal processing and inference, such as finding rare and weak signals that are buried in non-stationary and non-Gaussian instrument noise, dealing with high-dimensional model spaces, and locating what are often extremely tight concentrations of posterior mass within the prior volume. Gravitational wave detection using space-based detectors and pulsar timing arrays bring with them the additional challenge of having to isolate individual signals that overlap one another in both time and frequency. Promising solutions to these problems will be discussed, along with some of the challenges that remain. PMID:23277598

  3. Gravitationally induced spurs in spiral galaxies - An example in M31

    NASA Technical Reports Server (NTRS)

    Byrd, G. G.

    1983-01-01

    Radio and optical morphological data are consistent with a gravitational mechanism for the anomalous structure between the S4 and SS arms of M31, with the large complex of H I and H II in and around NGC 206 being implicated in the creation of the anomalous spur. Computer models of the gravitational effects of the spur show that its gravitational induction explains the observed velocity distortions. It is speculated that spurs in more distant galaxies, for which high resolution data as complete as that presented are not yet available, are also gravitational. This implicitly applies not only to spurs in galaxies with well defined spiral structure, but also for galaxies with more chaotic spiral arm patterns.

  4. Weight, gravitation, inertia, and tides

    NASA Astrophysics Data System (ADS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  5. Radio observations of ZwCl 2341.1+0000: a double radio relic cluster

    NASA Astrophysics Data System (ADS)

    van Weeren, R. J.; Röttgering, H. J. A.; Bagchi, J.; Raychaudhury, S.; Intema, H. T.; Miniati, F.; Enßlin, T. A.; Markevitch, M.; Erben, T.

    2009-11-01

    Context: Hierarchal models of large-scale structure (LSS) formation predict that galaxy clusters grow via gravitational infall and mergers of smaller subclusters and galaxy groups. Diffuse radio emission, in the form of radio halos and relics, is found in clusters undergoing a merger, indicating that shocks or turbulence associated with the merger are capable of accelerating electrons to highly relativistic energies. Double relics are a rare class of radio sources found in the periphery of clusters, with the two components located symmetrically on the opposite sides of the cluster center. These relics are important probes of the cluster periphery as (i) they provide an estimate of the magnetic field strength, and (ii) together with detailed modeling can be used to derive information about the merger geometry, mass, and timescale. Observations of these double relics can thus be used to test the framework of LSS formation. Here we report on radio observations of ZwCl 2341.1+0000, a complex merging structure of galaxies located at z=0.27, using Giant Metrewave Radio Telescope (GMRT) observations. Aims: The main aim of the observations is to study the nature of the diffuse radio emission in the galaxy cluster ZwCl 2341.1+0000. Methods: We carried out GMRT 610, 241, and 157 MHz continuum observations of ZwCl 2341.1+0000. The radio observations are combined with X-ray and optical data of the cluster. Results: The GMRT observations show a double peripheral radio relic in the cluster ZwCl 2341.1+0000. The spectral index is -0.49 ± 0.18 for the northern relic and -0.76 ± 0.17 for the southern relic. We have derived values of 0.48{-}0.93 μGauss for the equipartition magnetic field strength. The relics are probably associated with outward traveling merger shock waves. Appendix is only available in electronic form at http://www.aanda.org

  6. A RECIPE TO PROBE ALTERNATIVE THEORIES OF GRAVITATION VIA N-BODY NUMERICAL SIMULATIONS. I. SPIRAL GALAXIES

    SciTech Connect

    Brandao, C. S. S.; De Araujo, J. C. N. E-mail: jcarlos.dearaujo@inpe.br

    2012-05-01

    A way to probe alternative theories of gravitation is to study if they could account for the structures of the universe. We therefore modified the well-known Gadget-2 code to probe alternative theories of gravitation through galactic dynamics. As an application, we simulate the evolution of spiral galaxies to probe alternative theories of gravitation whose weak field limits have a Yukawa-like gravitational potential. These simulations show that galactic dynamics can be used to constrain the parameters associated with alternative theories of gravitation. It is worth stressing that the recipe given in this study can be applied to any other alternative theory of gravitation in which the superposition principle is valid.

  7. Weak Gravitatational Lensing by Illustris-1 Galaxies

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa G.; Koh, Patrick H.

    2016-06-01

    We compute the weak gravitational lensing signal of isolated, central galaxies obtained from the z=0.5 timestep of the ΛCDM Illustris-1 simulation. The galaxies have stellar masses ranging from 9.5 ≤ log10(M*/Msun) ≤ 11.0 and are located outside cluster and rich group environments. Although there is local substructure present in the form of small, luminous satellite galaxies, the central galaxies are the dominant objects within the virial radii (r200), and each central galaxy is at least 5 times brighter than any other luminous galaxy within the friends-of-friends halo. We compute the weak lensing signal within projected radii 0.05 < rp/r200 < 1.5 and investigate the degree to which the weak lensing signal is anisotropic. Since CDM halos are non-spherical, the weak lensing signal is expected to be anisotropic; however, the degree of anisotropy that is observed depends upon the symmetry axes that are used to define the geometry. The anisotropy is expected to be maximized when the major axis of the projected dark matter mass distribution is used to define the geomety. In practice in the observed universe, one must necessarily use the projected distribution of the luminous mass to define the geometry. If mass and light are not well-aligned, this results in a suppression of the weak lensing anistropy. Our initial analysis shows that the ellipticity of the projected dark matter halo is uncorrelated with the ellipticity of the projected stellar mass. That is εhalo ≠ f × εlight, where f is a constant multiplicative factor. In addition, in projection on the sky, the major axis of the dark matter mass is offset from that of the stellar mass by ∼40o on average. On scales rp ≤ 0.15 r200, the weak lensing anisotropy obtained when using the stellar mass to define the geometry is of order 7% and agrees well with the anisotropy obtained when using the dark matter mass to define the geometry. On scales rp ∼ r200, the anisotropy obtained when using the stellar mass

  8. Resonance and Radio

    ERIC Educational Resources Information Center

    Starrett, Malin J.

    2008-01-01

    The science and technology of radio receives little attention in contemporary education. This article discusses ways to explore the basic operating principles of radio. (Contains 4 figures, 3 footnotes, and 2 notes.)

  9. Gravitational lensing of gravitational waves from merging neutron star binaries

    SciTech Connect

    Wang, Yun; Stebbins, Albert; Turner, Edwin L.

    1996-05-01

    We discuss the gravitational lensing of gravitational waves from merging neutron star binaries, in the context of advanced LIGO type gravitational wave detectors. We consider properties of the expected observational data with cut on the signal-to-noise ratio \\rho, i.e., \\rho>\\rho_0. An advanced LIGO should see unlensed inspiral events with a redshift distribution with cut-off at a redshift z_{\\rm max} < 1 for h \\leq 0.8. Any inspiral events detected at z>z_{\\rm max} should be lensed. We compute the expected total number of events which are present due to gravitational lensing and their redshift distribution for an advanced LIGO in a flat Universe. If the matter fraction in compact lenses is close to 10\\%, an advanced LIGO should see a few strongly lensed events per year with \\rho >5.

  10. Triggered Jovian radio emissions

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1985-01-01

    Certain Jovian radio emissions seem to be triggered from outside, by much weaker radio waves from the sun. Recently found in the Voyager observations near Jupiter, such triggering occurs at hectometric wavelengths during the arrival of solar radio bursts, with the triggered emissions lasting sometimes more than an hour as they slowly drifted toward higher frequencies. Like the previous discovery of similar triggered emissions at the earth, this suggests that Jupiter's emissions might also originate from natural radio lasers.

  11. An overview of gravitational physiology

    NASA Technical Reports Server (NTRS)

    Miquel, Jaime; Souza, Kenneth A.

    1991-01-01

    The focus of this review is on the response of humans and animals to the effects of the near weightless condition occurring aboard orbiting spacecraft. Gravity is an omnipresent force that has been a constant part of our lives and of the evolution of all living species. Emphasis is placed on the general mechanisms of adaptation to altered gravitational fields and vectors, i.e., both hypo- and hypergravity. A broad literature review of gravitational biology was conducted and the general state of our knowledge in this area is discussed. The review is specifically targeted at newcomers to the exciting and relatively new area of space and gravitational biology.

  12. Gravitation. [Book on general relativity

    NASA Technical Reports Server (NTRS)

    Misner, C. W.; Thorne, K. S.; Wheeler, J. A.

    1973-01-01

    This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.

  13. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Will, C. M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluates the appropriate asymptotic quantities by matching along the correct space-time light cones.

  14. Gravitational Stokes parameters. [for electromagnetic and gravitational radiation in relativity

    NASA Technical Reports Server (NTRS)

    Anile, A. M.; Breuer, R. A.

    1974-01-01

    The electromagnetic and gravitational Stokes parameters are defined in the general theory of relativity. The general-relativistic equation of radiative transfer for polarized radiation is then derived in terms of the Stokes parameters for both high-frequency electromagnetic and gravitational waves. The concept of Stokes parameters is generalized for the most general class of metric theories of gravity, where six (instead of two) independent states of polarization are present.

  15. Dipole gravitational radiation in the nonsymmetric gravitational theory of Moffat

    NASA Astrophysics Data System (ADS)

    Krisher, Timothy P.

    1985-07-01

    The generation of gravitational radiation in the nonsymmetric gravitational theory (NGT) of Moffat is analyzed. It is shown that the theory predicts the emission of dipole gravitational radiation from a binary system. The source of the dipole radiation is a vector density S postulated to be proportional to the number density of fermion particles in the components of the system. This radiation is shown to result in a secular decrease in the orbital period of a binary system in addition to that predicted by general relativity. The size of the effect is proportional to the reduced mass of the system and to the square of the difference in l2/[mass] between the two components of the system, where l is a parameter having units of [length] that is related to the number of fermion particles in each component. As part of the analysis, the stress-energy pseudotensor of the NGT, expanded to quadratic order in the gravitational fields, and the NGT gravitational-wave luminosity formula are derived for the first time. With a perfect-fluid model of matter, results are also given for the post-Newtonian expansions of the source densities of the gravitational fields. The results of this analysis are then applied to the binary pulsar system PSR 1913+16 which contains a pulsar orbiting an unobserved companion. With gravitational radiation attributed as the cause of the observed secular decrease in the orbital period, this system provides a test of the prediction by the NGT of dipole gravitational radiation. It is shown that the NGT can only fit the observations of this system provided the l parameter of the unseen companion is <~350 km.

  16. Future detectability of gravitational-wave induced lensing from high-sensitivity CMB experiments

    NASA Astrophysics Data System (ADS)

    Namikawa, Toshiya; Yamauchi, Daisuke; Taruya, Atsushi

    2015-02-01

    We discuss the future detectability of gravitational-wave induced lensing from high-sensitivity cosmic microwave background (CMB) experiments. Gravitational waves can induce a rotational component of the weak-lensing deflection angle, usually referred to as the curl mode, which would be imprinted on the CMB maps. Using the technique of reconstructing lensing signals involved in CMB maps, this curl mode can be measured in an unbiased manner, offering an independent confirmation of the gravitational waves complementary to B-mode polarization experiments. Based on the Fisher matrix analysis, we first show that with the noise levels necessary to confirm the consistency relation for the primordial gravitational waves, the future CMB experiments will be able to detect the gravitational-wave induced lensing signals. For a tensor-to-scalar ratio of r ≲0.1 , even if the consistency relation is difficult to confirm with a high significance, the gravitational-wave induced lensing will be detected at more than 3 σ significance level. Further, we point out that high-sensitivity experiments will be also powerful to constrain the gravitational waves generated after the recombination epoch. Compared to the B-mode polarization, the curl mode is particularly sensitive to gravitational waves generated at low redshifts (z ≲10 ) with a low frequency (k ≲1 0-3 Mpc-1 ), and it could give a much tighter constraint on their energy density ΩGW by more than 3 orders of magnitude.

  17. Commercial Radio as Communication.

    ERIC Educational Resources Information Center

    Rothenbuhler, Eric W.

    1996-01-01

    Compares the day-to-day work routines of commercial radio with the principles of a theoretical communication model. Illuminates peculiarities of the conduct of communication by commercial radio. Discusses the application of theoretical models to the evaluation of practicing institutions. Offers assessments of commercial radio deriving from…

  18. Extragalactic Radio Sources

    ERIC Educational Resources Information Center

    Kellerman, Kenneth I.

    1973-01-01

    Discusses new problems arising from the growing observational data through radio telescope arrays, involving the origin of radio sources, apparent superluminal velocities, conversion of radio sources to relativistic particles, and the nature of compact opaque and extended transparent sources. New physics may be needed to answer these cosmological…

  19. Dissipation of modified entropic gravitational energy through gravitational waves

    NASA Astrophysics Data System (ADS)

    de Matos, Clovis Jacinto

    2012-01-01

    The phenomenological nature of a new gravitational type interaction between two different bodies derived from Verlinde's entropic approach to gravitation in combination with Sorkin's definition of Universe's quantum information content, is investigated. Assuming that the energy stored in this entropic gravitational field is dissipated under the form of gravitational waves and that the Heisenberg principle holds for this system, one calculates a possible value for an absolute minimum time scale in nature tau=15/16 Λ^{1/2}hbar G/c4˜9.27×10^{-105} seconds, which is much smaller than the Planck time t P =( ħG/ c 5)1/2˜5.38×10-44 seconds. This appears together with an absolute possible maximum value for Newtonian gravitational forces generated by matter Fg=32/30c7/Λ hbar G2˜ 3.84× 10^{165} Newtons, which is much higher than the gravitational field between two Planck masses separated by the Planck length F gP = c 4/ G˜1.21×1044 Newtons.

  20. Quantum Opportunities in Gravitational Wave Detectors

    SciTech Connect

    Mavalvala, Negris

    2012-03-14

    Direct observation of gravitational waves should open a new window into the Universe. Gravitational wave detectors are the most sensitive position meters ever constructed. The quantum limit in gravitational wave detectors opens up a whole new field of study. Quantum opportunities in gravitational wave detectors include applications of quantum optics techniques and new tools for quantum measurement on truly macroscopic (human) scales.

  1. Gravitation toward Walls among Human Subjects

    ERIC Educational Resources Information Center

    Dabbs, James M., Jr.; Wheeler, Patricia A.

    1976-01-01

    In two studies, college students (N=34) in a classroom corridor who walked near the wall ("gravitators") were contrasted with those who walked near the center ("non-gravitators"). Gravitators were lower than non-gravitators on Autonomy and Defendence and appeared to be less responsive to other persons. (Author)

  2. Testing local Lorentz invariance with gravitational waves

    NASA Astrophysics Data System (ADS)

    Kostelecký, V. Alan; Mewes, Matthew

    2016-06-01

    The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz-violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational-wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation.

  3. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  4. Is There a Quad Problem Among Pptical Gravitational Lenses?

    SciTech Connect

    Oguri, Masamune

    2007-06-06

    Most of optical gravitational lenses recently discovered in the Sloan Digital Sky Survey Quasar Lens Search (SQLS) have two-images rather than four images, in marked contrast to radio lenses for which the fraction of four-image lenses (quad fraction) is quite high. We revisit the quad fraction among optical lenses by taking the selection function of the SQLS into account. We find that the current observed quad fraction in the SQLS is indeed lower than, but consistent with, the prediction of our theoretical model. The low quad fraction among optical lenses, together with the high quad fraction among radio lenses, implies that the quasar optical luminosity function has a relatively shallow faint end slope.

  5. Primordial magnetic seed field amplification by gravitational waves

    NASA Astrophysics Data System (ADS)

    Betschart, Gerold; Zunckel, Caroline; Dunsby, Peter K. S.; Marklund, Mattias

    2005-12-01

    Using second-order gauge-invariant perturbation theory, a self-consistent framework describing the nonlinear coupling between gravitational waves and a large-scale homogeneous magnetic field is presented. It is shown how this coupling may be used to amplify seed magnetic fields to strengths needed to support the galactic dynamo. In situations where the gravitational wave background is described by an “almost“ Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology we find that the magnitude of the original magnetic field is amplified by an amount proportional to the magnitude of the gravitational wave induced shear anisotropy and the square of the field’s initial comoving scale. We apply this mechanism to the case where the seed field and gravitational wave background are produced during inflation and find that the magnitude of the gravitational boost depends significantly on the manner in which the estimate of the shear anisotropy at the end of inflation is calculated. Assuming a seed field of 10-34G spanning a comoving scale of about 10 kpc today, the shear anisotropy at the end of inflation must be at least as large as 10-40 in order to obtain a generated magnetic field of the same order of magnitude as the original seed. Moreover, contrasting the weak-field approximation to our gauge-invariant approach, we find that while both methods agree in the limit of high conductivity, their corresponding solutions are otherwise only compatible in the limit of infinitely long-wavelength gravitational waves.

  6. Gravitational Many-Body Problem

    SciTech Connect

    Makino, J.

    2008-04-29

    In this paper, we briefly review some aspects of the gravitational many-body problem, which is one of the oldest problems in the modern mathematical science. Then we review our GRAPE project to design computers specialized to this problem.

  7. Relativistic Gravitational Experiments in Space

    NASA Technical Reports Server (NTRS)

    Hellings, Ronald W. (Editor)

    1989-01-01

    The results are summarized of a workshop on future gravitational physics space missions. The purpose of the workshop was to define generic technological requirements for such missions. NASA will use the results to direct its program of advanced technology development.

  8. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  9. The Radio Emission Of Radio Quiet Quasars - A New Working Hypothesis

    NASA Astrophysics Data System (ADS)

    Laor, Ari; Behar, E.

    2009-12-01

    What is the origin of radio emission in radio quiet Active Galactic Nuclei? In radio loud AGN the answer is clear, jet emission. In RQ AGN, which are 103 times weaker, the answer is not established yet, but it is commonly thought to originate in a weak jet. RQ AGN display a significant correlation between the radio luminosity (LR) and X-ray luminosity (LX), with LR 10-5 LX. A very similar correlation, known as the Guedel-Benz relation, holds for coronally active stars. The Guedel-Benz relation strongly suggests that stellar coronae are magnetically heated. In AGN the X-ray emission is also thought to originate in a magnetically heated corona, and thus it is natural to associate their radio emission with coronal activity as well. The radio emission may thus serve as a probe for physical processes in AGN coronae, as it does in stellar coronae. I will discuss some predictions, based on this hypothesis, on the likely radio spectrum, its variability, and its relation to the X-ray variability.

  10. The renaissance of radio astronomy: towards the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Ferrari, C.

    2016-09-01

    In this paper, I will give a brief overview of the largest radio telescope in the world, the Square Kilometre Array (SKA). The history of this instrument, its development as a huge international project, as well as its main scientific goals, will be summarised. I will then focus on a particular science case by presenting how the first phase of the SKA (SKA1), whose observations are expected to start in the early 2020's, will change our radio view of the largest gravitationally bound structures of the Universe: galaxy clusters.

  11. Gravitational-wave sensitivity curves

    NASA Astrophysics Data System (ADS)

    Moore, C. J.; Cole, R. H.; Berry, C. P. L.

    2015-01-01

    There are several common conventions in use by the gravitational-wave community to describe the amplitude of sources and the sensitivity of detectors. These are frequently confused. We outline the merits of and differences between the various quantities used for parameterizing noise curves and characterizing gravitational-wave amplitudes. We conclude by producing plots that consistently compare different detectors. Similar figures can be generated on-line for general use at http://rhcole.com/apps/GWplotter.

  12. Constructing gravitational dimensions

    NASA Astrophysics Data System (ADS)

    Schwartz, Matthew

    2003-07-01

    It would be extremely useful to know whether a particular low energy effective theory might have come from a compactification of a higher dimensional space. Here, this problem is approached from the ground up by considering theories with multiple interacting massive gravitons. It is actually very difficult to construct discrete gravitational dimensions which have a local continuum limit. In fact, any model with only nearest neighbor interactions is doomed. If we could find a non-linear extension for the Fierz-Pauli Lagrangian for a graviton of mass mg, which does not break down until the scale Λ2=(mgMPl), this could be used to construct a large class of models whose continuum limit is local in the extra dimension. But this is shown to be impossible: a theory with a single graviton must break down by Λ3=(m2gMPl)1/3. Next, we look at how the discretization prescribed by the truncation of the Kaluza-Klein tower of an honest extra dimension raises the scale of strong coupling. It dictates an intricate set of interactions among various fields which conspire to soften the strongest scattering amplitudes and allow for a local continuum limit, at least at the tree level. A number of candidate symmetries associated with locality in the discretized dimension are also discussed.

  13. Shearfree cylindrical gravitational collapse

    SciTech Connect

    Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.

    2009-09-15

    We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.

  14. Persistent Gravitational Radiation from Glitching Pulsars

    NASA Astrophysics Data System (ADS)

    Melatos, A.; Douglass, J. A.; Simula, T. P.

    2015-07-01

    Quantum mechanical simulations of neutron star rotational glitches, triggered by vortex avalanches in the superfluid stellar interior, reveal that vortices pin nonaxisymmetrically to the crust during the intervals between glitches. Hence a glitching neutron star emits a persistent current quadrupole gravitational wave signal at the star’s rotation frequency, whose interglitch amplitude is constant and determined by the avalanche history since birth. The signal can be detected in principle by coherent searches planned for the Laser Interferometer Gravitational Wave Observatory (LIGO), whether or not a glitch occurs during the observation, if the power-law distribution of glitch sizes extends up to {{Δ }}{{{Ω }}}{max}/{{Ω }}≳ {10}-6{η }-1{({{Δ }}φ )}-1{({{Ω }}/{10}3 {rad} {{{s}}}-1)}-3(D/1 {kpc}) in the targeted object, where {{Δ }}{{{Ω }}}{max} and {{Δ }}φ are the largest angular velocity jump and avalanche opening angle, respectively, to have occurred in a glitch since birth, Ω is the angular velocity at present, η is the crustal fraction of the moment of inertia, and D is the distance from the Earth. A major caveat concerning detectability is whether the nonaxisymmetries observed in existing simulations with ≲ {10}3 vortices extrapolate to realistic neutron stars with ≳ {10}15 vortices. The arguments for and against extrapolation are discussed critically in the context of avalanche dynamics in self-organized critical systems, but the issue cannot be resolved without larger simulations and tighter observational limits on η {{Δ }}φ {{Δ }}{{{Ω }}}{max} from future LIGO (non)detections and radio timing campaigns.

  15. Lossy compression of weak lensing data

    SciTech Connect

    Vanderveld, R. Ali; Bernstein, Gary M.; Stoughton, Chris; Rhodes, Jason; Massey, Richard; Dobke, Benjamin M.

    2011-07-12

    Future orbiting observatories will survey large areas of sky in order to constrain the physics of dark matter and dark energy using weak gravitational lensing and other methods. Lossy compression of the resultant data will improve the cost and feasibility of transmitting the images through the space communication network. We evaluate the consequences of the lossy compression algorithm of Bernstein et al. (2010) for the high-precision measurement of weak-lensing galaxy ellipticities. This square-root algorithm compresses each pixel independently, and the information discarded is by construction less than the Poisson error from photon shot noise. For simulated space-based images (without cosmic rays) digitized to the typical 16 bits per pixel, application of the lossy compression followed by image-wise lossless compression yields images with only 2.4 bits per pixel, a factor of 6.7 compression. We demonstrate that this compression introduces no bias in the sky background. The compression introduces a small amount of additional digitization noise to the images, and we demonstrate a corresponding small increase in ellipticity measurement noise. The ellipticity measurement method is biased by the addition of noise, so the additional digitization noise is expected to induce a multiplicative bias on the galaxies measured ellipticities. After correcting for this known noise-induced bias, we find a residual multiplicative ellipticity bias of m {approx} -4 x 10-4. This bias is small when compared to the many other issues that precision weak lensing surveys must confront, and furthermore we expect it to be reduced further with better calibration of ellipticity measurement methods.

  16. Lossy compression of weak lensing data

    DOE PAGESBeta

    Vanderveld, R. Ali; Bernstein, Gary M.; Stoughton, Chris; Rhodes, Jason; Massey, Richard; Dobke, Benjamin M.

    2011-07-12

    Future orbiting observatories will survey large areas of sky in order to constrain the physics of dark matter and dark energy using weak gravitational lensing and other methods. Lossy compression of the resultant data will improve the cost and feasibility of transmitting the images through the space communication network. We evaluate the consequences of the lossy compression algorithm of Bernstein et al. (2010) for the high-precision measurement of weak-lensing galaxy ellipticities. This square-root algorithm compresses each pixel independently, and the information discarded is by construction less than the Poisson error from photon shot noise. For simulated space-based images (without cosmicmore » rays) digitized to the typical 16 bits per pixel, application of the lossy compression followed by image-wise lossless compression yields images with only 2.4 bits per pixel, a factor of 6.7 compression. We demonstrate that this compression introduces no bias in the sky background. The compression introduces a small amount of additional digitization noise to the images, and we demonstrate a corresponding small increase in ellipticity measurement noise. The ellipticity measurement method is biased by the addition of noise, so the additional digitization noise is expected to induce a multiplicative bias on the galaxies measured ellipticities. After correcting for this known noise-induced bias, we find a residual multiplicative ellipticity bias of m {approx} -4 x 10-4. This bias is small when compared to the many other issues that precision weak lensing surveys must confront, and furthermore we expect it to be reduced further with better calibration of ellipticity measurement methods.« less

  17. Io control of Jovian radio emission

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1980-01-01

    The possibility of Io controlling Jovian decametric radio emission, particularly in the region below 22 MHz, is discussed. Results of a two-year survey at 26.3 at 26.3 MHz are presented which demonstrate the control of Io over a high-intensity storm component of the radio emission and the independence of a weak radio component from the phase of Io, as was observed at lower frequencies. It is thus hypothesized that Io control is a flux-dependent rather than a frequency-dependent phenomenon, and results of analyses at 18 and 10 MHz which support this hypothesis are presented. The apparent correlation between frequency and Io control is thus shown to result from a selection effect due to the increase of non-Io emission with decreasing frequency and relative antenna detection threshold. This result implies a contiguous Io-controlled source region extending out several Jovian radii along the Io flux tube.

  18. Models of Uranium continuum radio emission

    NASA Technical Reports Server (NTRS)

    Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Schweitzer, Andrea E.; Warwick, James W.

    1987-01-01

    Uranium continuum radio emission detected by the Voyager 2 Planetary Radio Astronomy experiment during the January 1986 encounter is considered. The continuum emissions comprised four components (equatorial emissions, anomaly emissions, strong nightside emissions, and weak nightside emissions) associated with different sources. The equatorial emissions appeared most prominently during the days before closest approach and extended from 40 kHz or below to about 120 kHz. The anomaly emissions were seen about 12 hours before closest approach and extended to about 250 kHz. The agreement found between Miranda's phase and strong radio emission at 20.4 kHz, just after closest approach, suggests intense dynamic activity on the Miranda L shell.

  19. Interplanetary navigation using pulsating radio sources

    NASA Technical Reports Server (NTRS)

    Downs, G. S.

    1974-01-01

    Radio beacons with distinguishing signatures exist in nature as pulsating radio sources (pulsars). These objects radiate well determined pulse trains over hundreds of megahertz of bandwidth at radio frequencies. Since they are at known positions, they can also be used as navigation beacons in interplanetary space. Pulsar signals are weak and dispersive when viewed from earth. If an omnidirectional antenna is connected to a wideband receiver (200 MHz bandwidth centered at 200 MHz) in which dispersion effects are removed, nominal spacecraft position errors of 1500 km can be obtained after 24 h of signal integration. An antenna gain of 10 db would produce errors as low as 150 km. Since the spacecraft position is determined from the measurement of the phase of a periodic signal, ambiguities occur in the position measurement. Simultaneous use of current spacecraft navigation schemes eliminates these ambiguities.

  20. Nuclear Quantum Gravitation - The Correct Theory

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald

    2016-03-01

    Nuclear Quantum Gravitation provides a clear, definitive Scientific explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and with distinct Scientific Logic. Nuclear Quantum Gravitation has 10 certain, Scientific proofs and 21 more good indications. With this theory the Physical Forces are obviously Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli- Foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics http://www.newtonphysics.on.ca/einstein/

  1. Testing gravitational physics with satellite laser ranging

    NASA Astrophysics Data System (ADS)

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C.; Ries, John; Koenig, Rolf; Matzner, Richard; Sindoni, Giampiero; Neumeyer, Hans

    2011-08-01

    Laser ranging, both Lunar (LLR) and Satellite Laser Ranging (SLR), is one of the most accurate techniques to test gravitational physics and Einstein's theory of General Relativity. Lunar Laser Ranging has provided very accurate tests of both the strong equivalence principle, at the foundations of General Relativity, and of the weak equivalence principle, at the basis of any metric theory of gravity; it has provided strong limits to the values of the so-called PPN (Parametrized Post-Newtonian) parameters, that are used to test the post-Newtonian limit of General Relativity, strong limits to conceivable deviations to the inverse square law for very weak gravity and accurate measurements of the geodetic precession, an effect predicted by General Relativity. Satellite laser ranging has provided strong limits to deviations to the inverse square gravity law, at a different range with respect to LLR, and in particular has given the first direct test of the gravitomagnetic field by measuring the gravitomagnetic shift of the node of a satellite, a frame-dragging effect also called Lense-Thirring effect. Here, after an introduction to gravitomagnetism and frame-dragging, we describe the latest results in measuring the Lense-Thirring effect using the LAGEOS satellites and the latest gravity field models obtained by the space mission GRACE. Finally, we describe an update of the LARES (LAser RElativity Satellite) mission. LARES is planned for launch in 2011 to further improve the accuracy in the measurement of frame-dragging.

  2. GRAVITATIONAL MICROLENSING BY THE ELLIS WORMHOLE

    SciTech Connect

    Abe, F.

    2010-12-10

    A method to calculate light curves of the gravitational microlensing of the Ellis wormhole is derived in the weak-field limit. In this limit, lensing by the wormhole produces one image outside the Einstein ring and another image inside. The weak-field hypothesis is a good approximation in Galactic lensing if the throat radius is less than 10{sup 11} km. The light curves calculated have gutters of approximately 4% immediately outside the Einstein ring crossing times. The magnification of the Ellis wormhole lensing is generally less than that of Schwarzschild lensing. The optical depths and event rates are calculated for the Galactic bulge and Large Magellanic Cloud fields according to bound and unbound hypotheses. If the wormholes have throat radii between 100 and 10{sup 7} km, are bound to the galaxy, and have a number density that is approximately that of ordinary stars, detection can be achieved by reanalyzing past data. If the wormholes are unbound, detection using past data is impossible.

  3. CONSTRAINING SOURCE REDSHIFT DISTRIBUTIONS WITH GRAVITATIONAL LENSING

    SciTech Connect

    Wittman, D.; Dawson, W. A.

    2012-09-10

    We introduce a new method for constraining the redshift distribution of a set of galaxies, using weak gravitational lensing shear. Instead of using observed shears and redshifts to constrain cosmological parameters, we ask how well the shears around clusters can constrain the redshifts, assuming fixed cosmological parameters. This provides a check on photometric redshifts, independent of source spectral energy distribution properties and therefore free of confounding factors such as misidentification of spectral breaks. We find that {approx}40 massive ({sigma}{sub v} = 1200 km s{sup -1}) cluster lenses are sufficient to determine the fraction of sources in each of six coarse redshift bins to {approx}11%, given weak (20%) priors on the masses of the highest-redshift lenses, tight (5%) priors on the masses of the lowest-redshift lenses, and only modest (20%-50%) priors on calibration and evolution effects. Additional massive lenses drive down uncertainties as N{sub lens}{sup -1/2}, but the improvement slows as one is forced to use lenses further down the mass function. Future large surveys contain enough clusters to reach 1% precision in the bin fractions if the tight lens-mass priors can be maintained for large samples of lenses. In practice this will be difficult to achieve, but the method may be valuable as a complement to other more precise methods because it is based on different physics and therefore has different systematic errors.

  4. The enigmatic T Tauri radio source

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Brown, Alexander

    1994-01-01

    We have analyzed eight high angular resolution images of the prototype low mass pre-main-sequence star T Tauri obtained with the Very Large Array between 1987 and 1990. Our objectives were to confirm a recent report that the radio emission is both variable and circularly polarized, to determine whether this behavior originates in the optical star or in the infrared source lying 0.6 sec to its south, and to identify possible emission mechanisms. No variability or circular polarization was detected in the weak (approximately equals 1 mJy) radio emission associated with the visible star, down to levels of approximately equals 10%. The observed flux can be accounted for by free-free emission from an ionized wind with a mass-loss rate M = 3.7 x 10(exp -8) solar mass yr(exp -1), but a more accurate determination of the spectral index is needed to test the validity of sperical wind models. In sharp contrast, the 3.6 cm emission of the infrared source is variable (approximately equals 4-7 mJy) on time scales less than or equal to 3 days and circularly polarized at low levels of approximately equals 3% - 5%. The polarization was left circular when detected during periods of low radio activity but changed to right circular during a radio outburst, similar to the reversals that have been seen in some RS CVn binary systems. The spectral index is negative during 'quiescence,'and we argue that the emission is nonthermal gyrosynchrotron radiation. The detection of magnetic radio activity in this optically invisible infrared source sparks new interest in clarifying its evolutionary status. Sensitive 3.6 cm images reveal weak emission extending approximately equals 1 sec west of the T Tau system that is probably associated with high-velocity shock-excited gas flowing toward HH-1555. We find no radio evidence for a putative third component north of the visible star.

  5. Self-gravitational instability in magnetized finitely conducting viscoelastic fluid

    NASA Astrophysics Data System (ADS)

    Prajapati, R. P.; Chhajlani, R. K.

    2013-04-01

    The linear self-gravitational instability of finitely conducting, magnetized viscoelastic fluid is investigated using the modified generalized hydrodynamic (GH) model. A general dispersion relation is obtained with the help of linearized perturbation equations using the normal mode analysis and it is discussed for longitudinal and transverse modes of propagation. In longitudinal propagation, we find that Alfven mode is uncoupled with the gravitating mode. The Jeans criterion of instability is determined which depends upon shear viscosity and bulk viscosity while it is independent of magnetic field. The viscoelastic effects modify the fundamental Jeans criterion of gravitational instability. In transverse mode of propagation, the Alfven mode couples with the acoustic mode, compressional viscoelastic mode and gravitating mode. The growth rate of Jeans instability is compared in weakly coupled plasma (WCP) and strongly coupled plasma (SCP) which is larger for SCP in both the modes of propagations. The presence of finite electrical resistivity removes the effect of magnetic field in the condition of Jeans instability and expression of critical Jeans wavenumber. It is found that Mach number and shear viscosity has stabilizing while finite electrical resistivity has destabilizing influence on the growth rate of Jeans instability.

  6. A comprehensive Bayesian approach to gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Littenberg, Tyson Bailey

    2009-06-01

    The challenge of determining whether data from a gravitational wave detector contains signals which are cosmic in origin is the central problem in gravitational wave astronomy. The "detection problem" is particularly challenging for low amplitude signals embedded in "glitchy" instrument noise. It is imperative that we can robustly distinguish between the data being consistent with instrument noise alone, or noise and a weak gravitational wave signal. In response to this challenge we have set out to develop a robust, general purpose approach that can locate and characterize gravitational wave signals, and provided odds that the signal is of cosmic origin. Our approach employs the Markov Chain Monte Carlo family of algorithms to construct a fully Bayesian solution to the challenge - the Parallel Tempered Markov Chain Monte Carlo (PTMCMC) detection algorithm. The PTMCMC detection algorithm establishes which regions of parameter space contain the highest posterior weight, efficiently explores the posterior distribution function of the model parameters, and calculates the marginalized likelihood, or evidence, for the models under consideration. We illustrate our approach using simulated LISA and LIGO-Virgo data.

  7. A study of the x ray environment of radio galaxies

    NASA Technical Reports Server (NTRS)

    Rhee, George F.; Burns, Jack O.; Owen, Frazer

    1993-01-01

    We are currently working on a program to use extensive x-ray and radio databases to investigate the relationship between extended radio emission and environment in clusters of galaxies. The radio galaxy morphology is determined using VLA imaging and the x-ray properties are determined from Einstein IPC images. This study is motivated by the hypothesis that the key to understanding radio galaxies lies in the local environment. To test this hypothesis we have studied the detailed relationship between galaxy radio emission and the x-ray morphology of their parent clusters. In this pilot study we have used 35 radio sources found in 27 clusters. We have determined the position angle of the x-ray and radio emission, and x-ray and radio luminosities. The x-ray position was taken to be the position of peak flux of the subclump containing the radio galaxy. The radio position was taken to be the position of the galaxy. We do not find a correlation between the x-ray and radio source position angle. This remains true when the sample is divided into subsamples according to radio morphology (wide angle tail, twin jet, narrow angle tail galaxies). We find a weak correlation between the radio source luminosity and the x-ray luminosity. We have computed the distance from the radio galaxy position to the center of the x-ray clump. We find a mean distance from the x-ray clump center of 0.16 Mpc for the radio galaxies in this sample. The mean distance to the nearest clump of x-ray emission is typically half the distance to the optical cluster center. We thus find strong evidence that radio galaxies are located very close to clumps of x-ray emission. These subclumps are not always affiliated with the central cluster x-ray emission. This supports our hypothesis that x-ray emission may provide a key to understanding radio galaxy morphology. We find evidence that radio galaxies occur in clusters that contain prominent substructures. Radio galaxies may thus provide an added diagnostic of

  8. MEASURING THE JET POWER OF FLAT-SPECTRUM RADIO QUASARS

    SciTech Connect

    Shabala, S. S.; Santoso, J. S.; Godfrey, L. E. H.

    2012-09-10

    We use frequency-dependent position shifts of flat-spectrum radio cores to estimate the kinetic power of active galactic nucleus (AGN) jets. We find a correlation between the derived jet powers and AGN narrow-line luminosity, consistent with the well-known relation for radio galaxies and steep spectrum quasars. This technique can be applied to intrinsically weak jets even at high redshift.

  9. Wideband Observations of Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Pennucci, Timothy T.

    2015-08-01

    Pulsars are exotic objects which have yielded a bounty of important astrophysical results. As rapidly rotating, highly magnetized neutron stars, pulsars' stable rotation and beamed radio emission enables their use as interstellar laboratory clocks. The extraordinary timing regularity of the millisecond pulsar (MSP) population permits some of the most precise measurements in astronomy. The discovery of MSPs raised the probability of directly detecting gravitational waves for the first time. Ongoing efforts by several pulsar timing array (PTA) collaborations compliment the ground- and space-based efforts of laser interferometers. One such PTA is the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). NANOGrav has recently employed a new set of wideband instruments to increase the sensitivity of their PTA, and the future of pulsar astronomy is moving towards progressively larger bandwidths. In this dissertation, we address the benefits and issues from adopting the new instrumentation, particularly for the scientific motivations of NANOGrav. We first develop a measurement technique for simultaneously obtaining pulse times-of-arrival (TOAs) and dispersion measures (DMs) using 2D models of evolving Gaussian components. We then apply the methodology broadly to a variety of pulsars, including a bright, test MSP in a globular cluster, the Galactic Center magnetar, and the entire suite of 37 MSPs from the NANOGrav 9-year data set. For a subset of these MSPs, we make targeted observations at specific orbital phases aimed at improving the timing models and constraining the Shapiro delay. With a few exceptions, we find positive or consistent timing results from the implementation of our first generation wideband timing protocol. Some highlights include: improved measurement uncertainties, mitigation of chromatic ISM effects, a reduction in the number of timing parameters and TOAs, signs of chromatic DMs, and at least one new pulsar mass.

  10. Gravitational-wave implications for structure formation: A second-order approach

    NASA Astrophysics Data System (ADS)

    Pazouli, Despoina; Tsagas, Christos G.

    2016-03-01

    Gravitational waves are propagating undulations in the spacetime fabric, which interact very weakly with their environment. In cosmology, gravitational-wave distortions are produced by most of the inflationary scenarios and their anticipated detection should open a new window to the early Universe. Motivated by the relative lack of studies on the potential implications of gravitational radiation for the large-scale structure of the Universe, we consider its coupling to density perturbations during the postrecombination era. We do so by assuming an Einstein-de Sitter background cosmology and by employing a second-order perturbation study. At this perturbative level and on superhorizon scales, we find that gravitational radiation adds a distinct and faster growing mode to the standard linear solution for the density contrast. Given the expected weakness of cosmological gravitational waves, however, the effect of the new mode is currently subdominant and it could start becoming noticeable only in the far future. Nevertheless, this still raises the intriguing possibility that the late-time evolution of large-scale density perturbations may be dictated by the long-range (the Weyl), rather than the local (the Ricci) component of the gravitational field.

  11. Spherically Symmetric Gravitational Fields

    NASA Astrophysics Data System (ADS)

    Vargas Moniz, P.

    The purpose of this paper is to investigate the quantum vacua directly implied by the wave function of a gravitational configuration characterized by the presence of an apparent horizon, namely the Vaidya space-time solution. Spherical symmetry is a main feature of this configuration, with a scalar field constituting a source [a Klein-Gordon geon or Berger-Chitre-Moncrief-Nutku (BCMN) type model]. The subsequent analysis requires solving a Wheeler-DeWitt equation near the apparent horizon (following the guidelinesintroduced by A. Tomimatsu,18; M. Pollock, 19 and developed by A. Hosoya and I. Oda20,21) with the scalar field herein expanded in terms of S2 spherical harmonics: midisuperspace quantization. The main results present in this paper are as follows. It is found that the mass function characteristic of the Vaidya metric is positive definite within this quantum approach. Furthermore, the inhomogeneous matter sector determines a descrip-tion in terms of open quantum (sub)systems, namely in the form of an harmonic oscillator whose frequency depends on the mass function. For this open (sub)system, a twofold approach is employed. On the one hand, an exact invariant observable is obtained from the effective Hamiltonian for the inhomogeneous matter modes. It is shown that this invariant admits a set of discrete eigenvalues which depend on the mass function. The corresponding set of eigenstates is constructed from a particular vacuum state. On the other hand, exact solutions are found for the Schrädinger equation associated with the inhomogeneous matter modes. This paper is concluded with a discussion, where two other issues are raised: (i) the possible application to realistic black hole dynamics of the results obtained for a simplified (BCMN) model and (ii) whether such vacuum states could be related with others defined instead within scalar field theories constructed in classical backgrounds.

  12. Strong gravitational lensing of gravitational waves in Einstein Telescope

    SciTech Connect

    Piórkowska, Aleksandra; Biesiada, Marek; Zhu, Zong-Hong E-mail: marek.biesiada@us.edu.pl

    2013-10-01

    Gravitational wave experiments have entered a new stage which gets us closer to the opening a new observational window on the Universe. In particular, the Einstein Telescope (ET) is designed to have a fantastic sensitivity that will provide with tens or hundreds of thousand NS-NS inspiral events per year up to the redshift z = 2. Some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral NS-NS events in the Einstein telescope. Being conservative we consider the lens population of elliptical galaxies. It turns out that depending on the local insipral rate ET should detect from one per decade detection in the pessimistic case to a tens of detections per year for the most optimistic case. The detection of gravitationally lensed source in gravitational wave detectors would be an invaluable source of information concerning cosmography, complementary to standard ones (like supernovae or BAO) independent of the local cosmic distance ladder calibrations.

  13. Weak gravity conjecture in the AdS/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Nakayama, Yu; Nomura, Yasunori

    2015-12-01

    We study implications of the weak gravity conjecture in the AdS/CFT correspondence. Unlike in Minkowski spacetime, Anti-de Sitter (AdS) spacetime has a physical length scale, so that the conjecture must be generalized with an additional parameter. We discuss possible generalizations and translate them into the language of dual conformal field theories (CFTs), which take the form of inequalities involving the dimension and charge of an operator as well as the current and energy-momentum tensor central charges. We then test these inequalities against various CFTs to see if they are universally obeyed by all the CFTs. We find that certain CFTs, such as supersymmetric QCDs, do not satisfy them even in the large N limit. This does not contradict the conjecture in AdS spacetime because the theories violating them are either unlikely or unclear to have weakly coupled gravitational descriptions, but it suggests that the CFT inequalities obtained here by naive translations do not apply beyond the regime in which weakly coupled gravitational descriptions are available.

  14. How To Measure Gravitational Aberration?

    NASA Astrophysics Data System (ADS)

    Krizek, M.; Solcova, A.

    2007-08-01

    In 1905, Henri Poincaré predicted the existence of gravitational waves and assumed that their speed c[g] would be that of the speed of light c. If the gravitational aberration would also have the same magnitude as the aberration of light, we would observe several paradoxical phenomena. For instance, the orbit of two bodies of equal mass would be unstable, since two attractive forces arise that are not in line and hence form a couple. This tends to increase the angular momentum, period, and total energy of the system. This can be modelled by a system of ordinary differential equations with delay. A big advantage of computer simulation is that we can easily perform many test for various possible values of the speed of gravity [1]. In [2], Carlip showed that gravitational aberration in general relativity is almost cancelled out by velocity-dependent interactions. This means that rays of sunlight are not parallel to the attractive gravitational force of the Sun, i.e., we do not see the Sun in the direction of its attractive force, but slightly shifted about an angle less than 20``. We show how the actual value of the gravitational aberration can be obtained by measurement of a single angle at a suitable time instant T corresponding to the perihelion of an elliptic orbit. We also derive an a priori error estimate that expresses how acurately T has to be determined to attain the gravitational aberration to a prescribed tolerance. [1] M. Křížek: Numerical experience with the finite speed of gravitational interaction, Math. Comput. Simulation 50 (1999), 237-245. [2] S. Carlip: Aberration and the speed of gravity, Phys. Lett. A 267 (2000), 81-87.

  15. Relationships between volcano gravitational spreading and magma intrusion

    NASA Astrophysics Data System (ADS)

    Delcamp, Audray; van Wyk de Vries, Benjamin; James, Mike R.; Gailler, L. S.; Lebas, E.

    2012-04-01

    Volcano spreading, with its characteristic sector grabens, is caused by outward flow of weak substrata due to gravitational loading. This process is now known to affect many present-day edifices. A volcano intrusive complex can form an important component of an edifice and may induce deformation while it develops. Such intrusions are clearly observed in ancient eroded volcanoes, like the Scottish Palaeocene centres, or in geophysical studies such as in La Réunion, or inferred from large calderas, such as in Hawaii, the Canaries or Galapagos volcanoes. Volcano gravitational spreading and intrusive complex emplacement may act simultaneously within an edifice. We explore the coupling and interactions between these two processes. We use scaled analogue models, where an intrusive complex made of Golden syrup is emplaced within a granular model volcano based on a substratum of a ductile silicone layer overlain by a brittle granular layer. We model specifically the large intrusive complex growth and do not model small-scale and short-lived events, such as dyke intrusion, that develop above the intrusive complex. The models show that the intrusive complex develops in continual competition between upward bulging and lateral gravity spreading. The brittle substratum strongly controls the deformation style, the intrusion shape and also controls the balance between intrusive complex spreading and ductile layer-related gravitational spreading. In the models, intrusive complex emplacement and spreading produce similar structures to those formed during volcano gravitational spreading alone (i.e. grabens, folds, en échelon fractures). Therefore, simple analysis of fault geometry and fault kinetic indicators is not sufficient to distinguish gravitational from intrusive complex spreading, except when the intrusive complex is eccentric from the volcano centre. However, the displacement fields obtained for (1) a solely gravitational spreading volcano and for (2) a gravitational

  16. Intermediate Strength Gravitational Lensing

    SciTech Connect

    Irwin, John

    2005-03-17

    Weak lensing is found in the correlations of shear in {approx}10{sup 4} galaxy images, strong lensing is detected by the obvious distortion of a single galaxy image, whereas intermediate lensing requires detection of less obvious curvature in several neighboring galaxies. Small impact-parameter lensing causes a sextupole distortion whose orientation is correlated with the quadrupole distortion (shear). By looking within a field for the spatial correlation of this sextupole-quadrupole correlation, an intermediate lensing regime is observed. This technique requires correction for the sextupole as well as the quadrupole content of the PSF. We remove the HST PSF and uncover intermediate lensing in the Hubble deep fields. Correlations of the type expected are found.

  17. A POPULATION OF X-RAY WEAK QUASARS: PHL 1811 ANALOGS AT HIGH REDSHIFT

    SciTech Connect

    Wu Jianfeng; Brandt, W. N.; Schneider, Donald P.; Hall, Patrick B.; Gibson, Robert R.; Schmidt, Sarah J.; Richards, Gordon T.; Shemmer, Ohad; Just, Dennis W.

    2011-07-20

    We report the results from Chandra and XMM-Newton observations of a sample of 10 type 1 quasars selected to have unusual UV emission-line properties (weak and blueshifted high-ionization lines; strong UV Fe emission) similar to those of PHL 1811, a confirmed intrinsically X-ray weak quasar. These quasars were identified by the Sloan Digital Sky Survey at high redshift (z {approx} 2.2); eight are radio quiet while two are radio intermediate. All of the radio-quiet PHL 1811 analogs, without exception, are notably X-ray weak by a mean factor of {approx}13. These sources lack broad absorption lines and have blue UV/optical continua, supporting the hypothesis that they are intrinsically X-ray weak like PHL 1811 itself. However, their average X-ray spectrum appears to be harder than those of typical quasars, which may indicate the presence of heavy intrinsic X-ray absorption. Our sample of radio-quiet PHL 1811 analogs supports a connection between an X-ray weak spectral energy distribution and PHL 1811-like UV emission lines; this connection provides an economical way to identify X-ray weak type 1 quasars. The fraction of radio-quiet PHL 1811 analogs in the radio-quiet quasar population is estimated to be {approx}< 1.2%. We have investigated correlations between relative X-ray brightness and UV emission-line properties (e.g., C IV equivalent width and blueshift) for a sample combining our radio-quiet PHL 1811 analogs, PHL 1811 itself, and typical type 1 quasars. These correlation analyses suggest that PHL 1811 analogs may have extreme wind-dominated broad emission-line regions. Observationally, the radio-quiet PHL 1811 analogs appear to be a subset ({approx}30%) of radio-quiet weak-line quasars (WLQs). The existence of a subset of quasars in which high-ionization 'shielding gas' covers most of the broad emission-line region (BELR), but little more than the BELR, could potentially unify the PHL 1811 analogs and WLQs. The two radio-intermediate PHL 1811 analogs are X

  18. Asymmetric gravitational spreading - Analogue experiments on the Svecofennian orogen

    NASA Astrophysics Data System (ADS)

    Nikkilä, Kaisa; Korja, Annakaisa; Koyi, Hemin; Eklund, Olav

    2015-04-01

    Over-thickened orogenic crust may suffer from rheological, gravitational and topographical unbalancing resulting in discharging via gravitational spreading. If the thickened orogen is also hot, then increased temperature may reduce the viscosity of the crust that may induce large-scale horizontal flow. The effect of flow on the crustal architecture has previously been modeled with symmetric two-way spreading or asymmetric one- or two-way spreading (like channel flow) experiments. Most models do not take into account of the contrasting mechanical properties of the juxtaposed terranes. We have made analogue experiments to study gravitational one-way spreading and the interplay between two crustal blocks with contrasting rheological properties. The models are 3 cm thick replicas of 60 km thick crust. They have three horizontal layers representing strong lower, weak middle and brittle upper crust. The models have cuts to study the effect of inherited crustal-scale weakness zones. The experiments have been conducted within a large centrifuge in the Hans Ramberg Tectonic Laboratory at Uppsala University. The analogue models propose that asymmetric, unilateral flow has different effect on the contrasting crustal units, in both horizontal and vertical directions. The laterally heterogeneous crust flows towards the direction of extension, and it rotates and extends the pre-existing weakness zones. The weakness zones facilitate exhumation and they increase strain rate. The weakness zones split the crust into subblocks, which stretch individually and which may show signatures of compression or rotation. The changes in thickness of the model reflect changes in the layers, which may thin or thicken depending on the mechanical properties of crustal layers. A consequence of this the total amount of flattening is less than the model extension. The results are compared to geophysical and geological data from Precambrian Svecofennian orogen in Fennoscandia. The comparison suggest

  19. Extended radio source in the center of M31

    SciTech Connect

    Hjellming, R.M.; Smarr, L.L.

    1982-06-01

    Radio observations of the central 1/sup 0/ x 1/sup 0/ region of the Andromeda Nebula (M31), made with the 1 km configuration of the NRAO VLA, show that at 1465 MHz the central radio source is nearly spherical and 2 kpc (10') in diameter, with a brightness distribution roughly proportional to exp(-R/1.'1), where R is the angular distance from the radio maximum located 20'' from the nucleus at the position angle of 70/sup 0/. The broad structure of this object may be due to a bulge population of many weak supernova remnants or to a cosmic-ray electron-dominated galactic wind.

  20. Interplanetary scintillation observations with the Cocoa Cross radio telescope

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Erskine, F. T.; Huneke, A. H.; Mitchell, D. G.

    1976-01-01

    Physical and electrical parameters for the 34.3-MHz Cocoa Cross radio telescope are given. The telescope is dedicated to the determination of solar-wind characteristics in and out of the ecliptic plane through measurement of electron-density irregularity structure as determined from IPS (interplanetary scintillation) of natural radio sources. The collecting area (72,000 sq m), angular resolution (0.4 deg EW by 0.6 deg NS), and spatial extent (1.3 km EW by 0.8 km NS) make the telescope well suited for measurements of IPS index and frequency scale for hundreds of weak radio sources without serious confusion effects.

  1. General Relativity and Gravitation, 1989

    NASA Astrophysics Data System (ADS)

    Ashby, Neil; Bartlett, David F.; Wyss, Walker

    2005-10-01

    Part I. Classical Relativity and Gravitation Theory: 1. Global properties of exact solutions H. Friedrich; 2. Numerical relativity T. Nakamura; 3. How fast can a pulsar spin? J. L. Friedman; 4. Colliding waves in general relativity V. Ferrari; Part II. Relativistic Astrophysics, Early Universe, and Classical Cosmology: 5. Observations of cosmic microwave radiation R. B. Partridge; 6. Cosmic microwave background radiation (theory) M. Panek; 7. Inflation and quantum cosmology A. D. Linde; 8. Observations of lensing B. Fort; 9. Gravitational lenses: theory and interpretation R. Blandford; Part III. Experimental Gravitation and Gravitational Waves: 10. Solar system tests of GR: recent results and present plans I. Shapiro; 11. Laser interferometer detectors R. Weiss; 12. Resonant bar gravitational wave experiments G. Pizzella; 13. A non-inverse square law test E. Adelberger; Part IV. Quantum Gravity, Superstrings, Quantum Cosmology: 14. Cosmic strings B. Unruh; 15. String theory as a quantum theory of gravity G. Horowitz; 16. Progress in quantum cosmology J. B. Hartle; 17. Self-duality, quantum gravity, Wilson loops and all that A. V. Ashtekar; Part V. Summary Talk: 18. GR-12 Conference summary J. Ehlers II; Part VI. Reports on Workshops/Symposia: 19. Exact solutions and exact properties of Einstein equations V. Moncrieff; 20. Spinors, twistors and complex methods N. Woodhouse; 21. Alternative gravity theories M. Francaviglia; 22. Asymptotia, singularities and global structure B. G. Schmidt; 23. Radiative spacetimes and approximation methods T. Damour; 24. Algebraic computing M. MacCallum; 25. Numerical relativity J. Centrella; 26. Mathematical cosmology J. Wainwright; 27. The early universe M. Turner; 28. Relativistic astrophysics M. Abramowitz; 29. Astrophysical and observational cosmology B. Carr; 30. Solar system and pulsar tests of gravitation R. Hellings; 31. Earth-based gravitational experiments J. Faller; 32. Resonant bar and microwave gravitational wave

  2. General Relativity and Gravitation, 1989

    NASA Astrophysics Data System (ADS)

    Ashby, Neil; Bartlett, David F.; Wyss, Walker

    1990-11-01

    Part I. Classical Relativity and Gravitation Theory: 1. Global properties of exact solutions H. Friedrich; 2. Numerical relativity T. Nakamura; 3. How fast can a pulsar spin? J. L. Friedman; 4. Colliding waves in general relativity V. Ferrari; Part II. Relativistic Astrophysics, Early Universe, and Classical Cosmology: 5. Observations of cosmic microwave radiation R. B. Partridge; 6. Cosmic microwave background radiation (theory) M. Panek; 7. Inflation and quantum cosmology A. D. Linde; 8. Observations of lensing B. Fort; 9. Gravitational lenses: theory and interpretation R. Blandford; Part III. Experimental Gravitation and Gravitational Waves: 10. Solar system tests of GR: recent results and present plans I. Shapiro; 11. Laser interferometer detectors R. Weiss; 12. Resonant bar gravitational wave experiments G. Pizzella; 13. A non-inverse square law test E. Adelberger; Part IV. Quantum Gravity, Superstrings, Quantum Cosmology: 14. Cosmic strings B. Unruh; 15. String theory as a quantum theory of gravity G. Horowitz; 16. Progress in quantum cosmology J. B. Hartle; 17. Self-duality, quantum gravity, Wilson loops and all that A. V. Ashtekar; Part V. Summary Talk: 18. GR-12 Conference summary J. Ehlers II; Part VI. Reports on Workshops/Symposia: 19. Exact solutions and exact properties of Einstein equations V. Moncrieff; 20. Spinors, twistors and complex methods N. Woodhouse; 21. Alternative gravity theories M. Francaviglia; 22. Asymptotia, singularities and global structure B. G. Schmidt; 23. Radiative spacetimes and approximation methods T. Damour; 24. Algebraic computing M. MacCallum; 25. Numerical relativity J. Centrella; 26. Mathematical cosmology J. Wainwright; 27. The early universe M. Turner; 28. Relativistic astrophysics M. Abramowitz; 29. Astrophysical and observational cosmology B. Carr; 30. Solar system and pulsar tests of gravitation R. Hellings; 31. Earth-based gravitational experiments J. Faller; 32. Resonant bar and microwave gravitational wave

  3. Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers.

    PubMed

    Bernuzzi, Sebastiano; Dietrich, Tim; Nagar, Alessandro

    2015-08-28

    In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the binary tidal interactions during the late-inspiral merger. The relation f(2)(κ(2)^T) depends very weakly on the binary total mass, mass ratio, equation of state, and thermal effects. This observation opens up the possibility of developing a model of the gravitational spectrum of every merger unifying the late-inspiral and postmerger descriptions. PMID:26371635

  4. One gravitational potential or two? Forecasts and tests.

    PubMed

    Bertschinger, Edmund

    2011-12-28

    The metric of a perturbed Robertson-Walker space-time is characterized by three functions: a scale-factor giving the expansion history and two potentials that generalize the single potential of Newtonian gravity. The Newtonian potential induces peculiar velocities and, from these, the growth of matter fluctuations. Massless particles respond equally to the Newtonian potential and to a curvature potential. The difference of the two potentials, called the gravitational slip, is predicted to be very small in general relativity, but can be substantial in modified gravity theories. The two potentials can be measured, and gravity tested on cosmological scales, by combining weak gravitational lensing or the integrated Sachs-Wolfe effect with galaxy peculiar velocities or clustering. PMID:22084285

  5. Gravitational scattering of zero-rest-mass plane waves

    NASA Technical Reports Server (NTRS)

    De Logi, W. K.; Kovacs, S. J., Jr.

    1977-01-01

    The Feyman-diagram technique is used to calculate the differential cross sections for the scattering of zero-rest-mass plane waves of spin 0, 1, and 2 by linearized Schwarzschild and Kerr geometries in the long-wavelength weak-field limit. It is found that the polarization of right (or left) circularly polarized electromagnetic waves is unaffected by the scattering process (i.e., helicity is conserved) and that the two helicity (polarization) states of the photon are scattered differently by the Kerr geometry. This coupling between the photon helicity and the angular momentum of the scatterer also leads to a partial polarization of unpolarized incident light. For gravitational waves, on the other hand, there is neither helicity conservation nor helicity-dependent scattering; the angular momentum of the scatterer has no polarizing effect on incident unpolarized gravitational waves.

  6. Lensing of 21-cm fluctuations by primordial gravitational waves.

    PubMed

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed. PMID:23003237

  7. Lensing of 21-cm Fluctuations by Primordial Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-01

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r˜10-9—far smaller than those currently accessible—to be probed.

  8. Saturn's fast spin determined from its gravitational field and oblateness.

    PubMed

    Helled, Ravit; Galanti, Eli; Kaspi, Yohai

    2015-04-01

    The alignment of Saturn's magnetic pole with its rotation axis precludes the use of magnetic field measurements to determine its rotation period. The period was previously determined from radio measurements by the Voyager spacecraft to be 10 h 39 min 22.4 s (ref. 2). When the Cassini spacecraft measured a period of 10 h 47 min 6 s, which was additionally found to change between sequential measurements, it became clear that the radio period could not be used to determine the bulk planetary rotation period. Estimates based upon Saturn's measured wind fields have increased the uncertainty even more, giving numbers smaller than the Voyager rotation period, and at present Saturn's rotation period is thought to be between 10 h 32 min and 10 h 47 min, which is unsatisfactory for such a fundamental property. Here we report a period of 10 h 32 min 45 s ± 46 s, based upon an optimization approach using Saturn's measured gravitational field and limits on the observed shape and possible internal density profiles. Moreover, even when solely using the constraints from its gravitational field, the rotation period can be inferred with a precision of several minutes. To validate our method, we applied the same procedure to Jupiter and correctly recovered its well-known rotation period. PMID:25807487

  9. Gravitational Effects on Signal Transduction

    NASA Technical Reports Server (NTRS)

    Sytkowski, Arthur J.

    1999-01-01

    An understanding of the mechanisms by which individual cells perceive gravity and how these cells transduce and respond to gravitational stimuli is critical for the development of long-term manned space flight experiments. We now propose to use a well-characterized model erythroid cell system and to investigate gravitational perturbations of its erythropoietin (Epo) signaling pathway and gene regulation. Cells will be grown at 1-G and in simulated microgravity in the NASA Rotating Wall Vessel bioreactor (RWV). Cell growth and differentiation, the Epo-receptor, the protein kinase C pathway to the c-myc gene, and the protein phosphatase pathway to the c-myb gene will be studied and evaluated as reporters of gravitational stimuli. The results of these experiments will have impact on the problems of 1) gravitational sensing by individual cells, and 2) the anemia of space flight. This ground-based study also will serve as a Space Station Development Study in gravitational effects on intracellular signal transduction.

  10. Gravitational Waves from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kokkotas, Konstantinos

    2016-03-01

    Neutron stars are the densest objects in the present Universe, attaining physical conditions of matter that cannot be replicated on Earth. These unique and irreproducible laboratories allow us to study physics in some of its most extreme regimes. More importantly, however, neutron stars allow us to formulate a number of fundamental questions that explore, in an intricate manner, the boundaries of our understanding of physics and of the Universe. The multifaceted nature of neutron stars involves a delicate interplay among astrophysics, gravitational physics, and nuclear physics. The research in the physics and astrophysics of neutron stars is expected to flourish and thrive in the next decade. The imminent direct detection of gravitational waves will turn gravitational physics into an observational science, and will provide us with a unique opportunity to make major breakthroughs in gravitational physics, in particle and high-energy astrophysics. These waves, which represent a basic prediction of Einstein's theory of general relativity but have yet to be detected directly, are produced in copious amounts, for instance, by tight binary neutron star and black hole systems, supernovae explosions, non-axisymmetric or unstable spinning neutron stars. The focus of the talk will be on the neutron star instabilities induced by rotation and the magnetic field. The conditions for the onset of these instabilities and their efficiency in gravitational waves will be presented. Finally, the dependence of the results and their impact on astrophysics and especially nuclear physics will be discussed.

  11. The Detection of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Braccini, Stefano; Fidecaro, Francesco

    The detection of gravitational waves is challenging researchers since half a century. The relative precision required, 10^{-21}, is difficult to imagine, this is 10^{-5} the diameter of a proton over several kilometres, using masses of tens of kilograms, or picometres over millions of kilometres. A theoretical description of gravitational radiation and its effects on matter, all consequence of the general theory of relativity, is given. Then the astrophysical phenomena that are candidates of gravitational wave emission are discussed, considering also amplitudes and rates. The binary neutron star system PSR1913+16, which provided the first evidence for energy loss by gravitational radiation in 1975, is briefly discussed. Then comes a description of the experimental developments, starting with ground-based interferometers, their working principles and their most important sources of noise. The earth-wide network that is being built describes how these instruments will be used in the observation era. Several other detection techniques, such as space interferometry, pulsar timing arrays and resonant detectors, covering different bands of the gravitational wave frequency spectrum complete these lectures.

  12. Stellar radio emission (Review)

    NASA Astrophysics Data System (ADS)

    Zhelezniakov, V. V.

    The current understanding of the radio-emission characteristics of 'ordinary' main sequence stars as well as giants and supergiants is examined. Particular consideration is given to radio emission from supergiants, Young T Tauri stars, magnetic Ap stars, flare stars of UV Ceti type, Alpha Sco, and RS CVn objects. It is noted that the study of stellar radio emission is in its initial stage. Further progress in this area depends on successes in finding new radio sources, associated, for example, with magnetic stars, and on an intensified investigation of the frequency spectra and polarization of already-discovered radio stars. It is also noted that, although the current knowledge of solar physics can help in understanding stellar radio emission, models and ideas developed for solar conditions should not be mechanically transferred to other stars by a simple change in scale.

  13. BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches

    NASA Astrophysics Data System (ADS)

    Shapiro Key, Joey; Cornish, Neil; Littenberg, Tyson; Kanner, Jonah

    2015-01-01

    A central challenge in gravitational wave astronomy is identifying weak signals in the presence of non-stationary and non-Gaussian noise. The separation of gravitational wave signals from noise requires good models for both. Searches for "un-modeled" transient signals are strongly impacted by the methods used to characterize the noise. The BayesWave algorithm uses a multi-component, variable dimension, parameterized noise model that explicitly accounts for non-stationarity and non-Gaussianity in data from interferometric gravitational wave detectors. Instrumental transients (glitches) and burst sources of gravitational waves are modeled using a Morlet-Gabor continuous wavelet basis. This method can be applied to several challenges in gravitational wave astronomy. It can be used to distinguish astrophysical signals from instrumental artifacts; reconstruct the spectrum, waveform, and source location of observed signals; and quickly characterize noise contamination in the data. Currently, the algorithm is being applied to detector characterization studies as well as a wide range of gravitational wave source studies, including generic gravitational wave bursts, supernovae, and compact object mergers.

  14. Radio emission from chemically peculiar stars

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Drake, Stephen A.; Bastian, T. S.

    1992-01-01

    In five VLA observing runs the initial survey of radio emission from magnetic Bp-Ap stars by Drake et al. is extended to include a total of 16 sources detected at 6 cm out of 61 observed, giving a detection rate of 26 percent. Of these stars, three are also detected at 2 cm, four at 3.6 cm, and five at 20 cm. The 11 new stars detected as radio sources have spectral types B5-A0 and are He-weak and Si-strong. No classical (SrCrEu-type) Ap stars have yet been detected. The 16 detected sources show a wide range of radio luminosities with the early-B He-S stars on average 20 times more radio luminous than the late-B He-W stars and 1000 times more luminous than Theta Aurigae. Multifrequency observations indicate flat spectra in all cases. Four stars have a detectable degree of circular polarization at one or more frequencies. It is argued that the radio-emitting CP (chemically peculiar) stars form a distinct class of radio stars that differs from both the hot star wind sources and the active late-type stars. The observed properties of radio emission from these stars may be understood in terms of optically thick gyrosynchrotron emission from a nonthermal distribution of electrons produced in a current sheet far from the star. In this model the electrons travel along magnetic fields to smaller radii and higher magnetic latitudes where they mirror and radiate microwave radiation.

  15. Recent Developments in Gravitation - Proceedings of the Relativity Meeting - 89

    NASA Astrophysics Data System (ADS)

    Verdaguer, E.; Garriga, J.; Céspedes, J.

    1990-10-01

    The Table of Contents for the full book PDF is as follows: * Foreword * I. INVITED LECTURES * Low Energy Effects of Quantum Gravity * Rigid Motion lnvariance of Newtonian and Einatein's Theories of General Relativity * General Relativity and the Early Universe * Computer Algebra and Exact Solutions of the Einstein Equations * Gravitational Waves * II. REVIEW TALKS * Classical Relativistic Particles with Spin * Testing Flux Conservative Methods in Numerical Relativity * Symmetries in General Relativity and the Problem of Symmetry Inheritance * Clifford Algebra Approach to Gravitation: Applications to Symmetries and to Twisting, Type-N Fields * Unusual Frames of the Space-Time * Massive Photon Modes in Q.E.D. and Abnormal e+ e- Pair Production * Repulsive Gravity: A Current State of Understanding * Physics versus Metaphysics in Collision between Plane Gravitational Waves * Primordial Black Holes and FRW Cosmology * What Does Morphological Segregation of Galaxies Tell Us about Galaxy Formation? * III. SHORT COMMUNICATIONS * A Demianski Cavity with Small Rotation Parameter in a Dust Universe with Cosmological Constant * Relation between Quasirigidity and Weak Rigidity in Weak Fields * Almost-Product Structures in Relativity * On the Solutions of Quantum Field Equations in Curved Space-Time * Perturbative Methods for Type D Space-Time * The Energy-Momentum Tensor of Two Perfect Fluids * Two Fluids Solutions of Einstein Equations * Gravitational Wave Detection: The Problem of Estimating a Signal's Arrival Time * Quantum Particles Produced during Cosmic String Formation * Electric Neutrality and the Jordan-Thiry Scalar Field * Why Do Spinors Appear in Relativity? * Variational Principles and Quantum Gravity * A Nelson Like Approach to Quantum Mechanics on a Maximally Symmetric Manifold * A Note on the Scalar Product in Relativistic Quantum Mechanics * On the Tolman Bondi Solution of Einstein's Equations. Numerical Applications * The Dirac Equation in Two Rectilinear

  16. Pulsar discoveries by volunteer distributed computing and the strongest continuous gravitational wave signal

    NASA Astrophysics Data System (ADS)

    Knispel, Benjamin

    2011-07-01

    Neutron stars are the endpoints of stellar evolution and one of the most compact forms of matter in the universe. They can be observed as radio pulsars and are promising sources for the emission of continuous gravitational waves. Discovering new radio pulsars in tight binary orbits offers the opportunity to conduct very high precision tests of General Relativity and to further our understanding of neutron star structure and matter at super-nuclear densities. The direct detection of gravitational waves would validate Einstein's theory of Relativity and open a new window to the universe by offering a novel astronomical tool. This thesis addresses both of these scientific fields: the first fully coherent search for radio pulsars in tight, circular orbits has been planned, set up and conducted in the course of this thesis. Two unusual radio pulsars, one of them in a binary system, have been discovered. The other half of this thesis is concerned with the simulation of the Galactic neutron star population to predict their emission of continuous gravitational waves. First realistic statistical upper limits on the strongest continuous gravitational-wave signal and detection predictions for realistic all-sky blind searches have been obtained. The data from a large-scale pulsar survey with the 305-m Arecibo radio telescope were searched for signals from radio pulsars in binary orbits. The massive amount of computational work was done on hundreds of thousands of computers volunteered by members of the general public through the distributed computing project Einstein@Home. The newly developed analysis pipeline searched for pulsar spin frequencies below 250 Hz and for orbital periods as short as 11 min. The structure of the search pipeline consisting of data preparation, data analysis, result post-processing, and set-up of the pipeline components is presented in detail. The first radio pulsar, discovered with this search, PSR J2007+2722, is an isolated radio pulsar, likely from

  17. Gravitational Lenses and the Structure and Evolution of Galaxies

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Kochanek, Christopher

    2004-01-01

    During the first year of the project we completed five papers, each of which represents a new direction in the theory and interpretation of gravitational lenses. In the first paper, The Importance of Einstein Rings, we developed the first theory for the formation and structure of the Einstein rings formed by lensing extended sources like the host galaxies of quasar and radio sources. In the second paper, Cusped Mass Models Of Gravitational Lenses, we introduced a new class of lens models. In the third paper, Global Probes of the Impact of Baryons on Dark Matter Halos, we made the first globally consistent models for the separation distribution of gravitational lenses including both galaxy and cluster lenses. The last two papers explore the properties of two lenses in detail. During the second year we have focused more closely on the relationship of baryons and dark matter. In the third year we have been further examining the relationship between baryons and dark matter. In the present year we extended our statistical analysis of lens mass distributions using a self-similar model for the halo mass distribution as compared to the luminous galaxy.

  18. Neutrino mass and dark energy from weak lensing.

    PubMed

    Abazajian, Kevork N; Dodelson, Scott

    2003-07-25

    Weak gravitational lensing of background galaxies by intervening matter directly probes the mass distribution in the Universe. This distribution is sensitive to both the dark energy and neutrino mass. We examine the potential of lensing experiments to measure features of both simultaneously. Focusing on the radial information contained in a future deep 4000 deg(2) survey, we find that the expected (1-sigma) error on a neutrino mass is 0.1 eV, if the dark-energy parameters are allowed to vary. The constraints on dark-energy parameters are similarly restrictive, with errors on w of 0.09. PMID:12906650

  19. STEM on the radio

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-10-01

    Looking for an Internet radio station focusing on programing about science, technology, engineering, and math (STEM)? The U.S. National Science Foundation (NSF) announced on 26 September the launch of Science360 Radio, which it says is the first Internet radio stream dedicated to STEM programing. Science360 includes more than 100 radio shows and podcasts that are available on the Web as well as on iPhone and Android devices. The shows originate from a variety of sources, including NSF, other U.S. government agencies, science organizations, universities, and media outlets. For more information, see http://science360.gov/files/.

  20. The Optimal Gravitational Lens Telescope

    NASA Astrophysics Data System (ADS)

    Surdej, J.; Delacroix, C.; Coleman, P.; Dominik, M.; Habraken, S.; Hanot, C.; Le Coroller, H.; Mawet, D.; Quintana, H.; Sadibekova, T.; Sluse, D.

    2010-05-01

    Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster, ...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach.

  1. Gravitational waves and multimessenger astronomy

    NASA Astrophysics Data System (ADS)

    Ricci, Fulvio

    2016-07-01

    It is widely expected that in the coming quinquennium the first gravitational wave signal will be directly detected. The ground-based advanced LIGO and Virgo detectors are being upgraded to a sensitivity level such that we expect to be measure a significant binary merger rate. Gravitational waves events are likely to be accompanied by electromagnetic counterparts and neutrino emission carrying complementary information to those associated to the gravitational signals. If it becomes possible to measure all these forms of radiation in concert, we will end up an impressive increase in the comprehension of the whole phenomenon. In the following we summarize the scientific outcome of the interferometric detectors in the past configuration. Then we focus on some of the potentialities of the advanced detectors once used in the new context of the multimessenger astronomy.

  2. Chirality and gravitational parity violation.

    PubMed

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. PMID:25919812

  3. Cardiovascular Adjustments to Gravitational Stress

    NASA Technical Reports Server (NTRS)

    Blomqvist, C. Gunnar; Stone, H. Lowell

    1991-01-01

    The effects of gravity on the cardiovascular system must be taken into account whenever a hemodynamic assessment is made. All intravascular pressure have a gravity-dependent hydrostatic component. The interaction between the gravitational field, the position of the body, and the functional characteristics of the blood vessels determines the distribution of intravascular volume. In turn this distribution largely determines cardiac pump function. Multiple control mechanisms are activated to preserve optimal tissue perfusion when the magnitude of the gravitational field or its direction relative to the body changes. Humans are particularly sensitive to such changes because of the combination of their normally erect posture and the large body mass and blood volume below the level of the heart. Current aerospace technology also exposes human subjects to extreme variations in the gravitational forces that range from zero during space travel to as much an nine-times normal during operation of high-performance military aircraft. This chapter therefore emphasizes human physiology.

  4. THE OPTIMAL GRAVITATIONAL LENS TELESCOPE

    SciTech Connect

    Surdej, J.; Hanot, C.; Sadibekova, T.; Delacroix, C.; Habraken, S.; Coleman, P.; Dominik, M.; Le Coroller, H.; Mawet, D.; Quintana, H.; Sluse, D.

    2010-05-15

    Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster, ...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach.

  5. Highlights in gravitation and cosmology

    NASA Astrophysics Data System (ADS)

    Iyer, B. R.; Vishveshwara, C. V.; Narlikar, Jayant V.; Kembhavi, Ajit K.

    1988-01-01

    Theoretical and observational studies in gravitation and cosmology are discussed in reviews and reports presented at the international conference held in Goa, India on December 14-19, 1987. Sections are devoted to classical relativity, quantum gravity, black holes and compact objects, and gravitational-radiation and gravity experiments. Particular attention is given to exact solutions of the Einstein equations and their classification, the asymptotic structure of isolated systems, the physical properties and parameters of radiative space-times, canonical quantization of generally covariant systems, field theories of quantum gravity, observational and theoretical aspects of dark matter, gravitational lenses, cosmic strings and galaxy formation, black-hole thermodynamics, the general relativity of compact objects, the general-relativistic problem of motion and binary pulsars, and relativity and fifth-force experiments.

  6. Gravitational baryogenesis after anisotropic inflation

    NASA Astrophysics Data System (ADS)

    Fukushima, Mitsuhiro; Mizuno, Shuntaro; Maeda, Kei-ichi

    2016-05-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence, it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  7. Electromagnetic-gravitational energy systems

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1981-01-01

    Two methods are considered to 'tap' the earth's rotational energy. This ancient 'collapsed gravitational energy' exceeds the earth-lunar binding energy. One involves an orbiting 'electromagnetic-gravitational' coupling system whereby the earth's rotation, with its nonuniform mass distribution, first uses gravity to add orbital energy to a satellite, similar to a planetary 'flyby'. The second stage involves enhanced satellite 'drag' as current-carrying coils withdraw the added orbital energy as they pass through the earth's nonuniform magnetic field. A second more direct method couples the earth's rotational motion using conducting wires moving through the noncorotating part (ionospheric current systems) of the geomagnetic field. These methods, although not immediately feasible, are considerably more efficient than using pure gravitational coupling to earth-moon tides.

  8. Radio data transmission for SCADA

    SciTech Connect

    Frasier, W.E. )

    1989-09-01

    Enron has used such wireless systems as meteor burst radio, 952 MHz multiple address radio, VSAT and L-band satellite, cellular radio and ACSB radio. The company's experience with meteor burst radio communications is discussed in this paper. It indicates good system reliability and consequently all back-up telephone lines have been removed from sites using this system.

  9. Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar

    SciTech Connect

    Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aso, Y.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S.

    2011-02-15

    The physical mechanisms responsible for pulsar timing glitches are thought to excite quasinormal mode oscillations in their parent neutron star that couple to gravitational-wave emission. In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two colocated Hanford gravitational-wave detectors of the Laser Interferometer Gravitational-wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational-wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational-wave detection candidate was found. We place Bayesian 90% confidence upper limits of 6.3x10{sup -21} to 1.4x10{sup -20} on the peak intrinsic strain amplitude of gravitational-wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0x10{sup 44} to 1.3x10{sup 45} erg.

  10. Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Bennett, M. F.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bork, R.; Born, M.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Cain, J.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Capano, C.; Cardenas, L.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Dahl, K.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Davies, G.; Daw, E. J.; Dayanga, T.; Debra, D.; Degallaix, J.; Dergachev, V.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Driggers, J.; Dueck, J.; Duke, I.; Dumas, J.-C.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Garofoli, J. A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goetz, E.; Goggin, L. M.; González, G.; Goßler, S.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ivanov, A.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; Kim, H.; King, P. J.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Kringel, V.; Krishnan, B.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Lei, M.; Leindecker, N.; Leonor, I.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Mak, C.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McKechan, D. J. A.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merrill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Miller, J.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno, G.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.; Müller-Ebhardt, H.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Newton, G.; Nishida, E.; Nishizawa, A.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Oldenburg, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pan, Y.; Pankow, C.; Papa, M. A.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Pickenpack, M.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov, L.; Puncken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rakhmanov, M.; Raymond, V.; Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano, J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sakata, S.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F.; Stein, A. J.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Torres, C.; Torrie, C. I.; Traylor, G.; Trias, M.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; Buchner, S.

    2011-02-01

    The physical mechanisms responsible for pulsar timing glitches are thought to excite quasinormal mode oscillations in their parent neutron star that couple to gravitational-wave emission. In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two colocated Hanford gravitational-wave detectors of the Laser Interferometer Gravitational-wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational-wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational-wave detection candidate was found. We place Bayesian 90% confidence upper limits of 6.3×10-21 to 1.4×10-20 on the peak intrinsic strain amplitude of gravitational-wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0×1044 to 1.3×1045erg.

  11. Search for Gravitational Waves Associated with the August 2006 Timing Glitch of the Vela Pulsar

    NASA Technical Reports Server (NTRS)

    Camp, J. B.; Cannizzo, J.; Stroeer, A.

    2011-01-01

    The physical mechanisms responsible for pulsar timing glitches are thought to excite quasinormal mode oscillations in their parent neutron star that couple to gravitational-wave emission, In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two colocated Hanford gravitational-wave detectors of the Laser Interferometer Gravitational-wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational-wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational-wave detection candidate was found. We place Bayesian 90% confidence upper limits of 6,3 x 10(exp -21) to 1.4 x 10(exp -20) on the peak: intrinsic strain amplitude of gravitational-wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0 x 10(exp 44) to 1.3 x 10(exp 45) erg.

  12. Galaxies near distant quasars - Observational evidence for statistical gravitational lensing. II

    NASA Astrophysics Data System (ADS)

    Fugmann, W.

    1989-09-01

    A new statistical analysis of the data presented by Fugmann (1988) indicating that the association of the nearest neighboring galaxies with distant flat-spectrum radio quasars is significant at the 97.5 percent level. The distribution of nearest-neighbor distances is consistent with model calculations of gravitational microlensing, although very small angular distances may be systematically depleted. The overdensity of galaxies near the radio-selected flat-spectrum quasars of this sample seems to exceed that implied by the results of Webster et al. (1988) for a sample of optically selected QSOs.

  13. Testing the gravitational instability hypothesis?

    NASA Technical Reports Server (NTRS)

    Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.

    1994-01-01

    We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests

  14. GRAVITATIONAL WAVES FROM STELLAR COLLAPSE

    SciTech Connect

    C. L. FRYER

    2001-01-01

    Stellar core-collapse plays an important role in nearly all facets of astronomy: cosmology (as standard candles), formation of compact objects, nucleosynthesis and energy deposition in galaxies. In addition, they release energy in powerful explosions of light over a range of energies, neutrinos, and the subject of this meeting, gravitational waves. Because of this broad range of importance, astronomers have discovered a number of constraints which can be used to help them understand the importance of stellar core-collapse as gravitational wave sources.

  15. Cosmologies with variable gravitational constant

    NASA Astrophysics Data System (ADS)

    Narlikar, J. V.

    1983-03-01

    In 1937 Dirac presented an argument, based on the socalled large dimensionless numbers, which led him to the conclusion that the Newtonian gravitational constant G changes with epoch. Towards the end of the last century Ernst Mach had given plausible arguments to link the property of inertia of matter to the large scale structure of the universe. Mach's principle also leads to cosmological models with a variable gravitational constant. Three cosmologies which predict a variable G are discussed in this paper both from theoretical and observational points of view.

  16. Dynamics of dissipative gravitational collapse

    SciTech Connect

    Herrera, L.; Santos, N.O.

    2004-10-15

    The Misner and Sharp approach to the study of gravitational collapse is extended to the dissipative case in, both, the streaming out and the diffusion approximations. The role of different terms in the dynamical equation are analyzed in detail. The dynamical equation is then coupled to a causal transport equation in the context of Israel-Stewart theory. The decreasing of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamics state, is reobtained, at any time scale. In accordance with the equivalence principle, the same decreasing factor is obtained for the gravitational force term. Prospective applications of this result to some astrophysical scenarios are discussed.

  17. SXS Catalog of Gravitational Waveforms

    NASA Astrophysics Data System (ADS)

    Hemberger, Daniel; SXS Collaboration

    2015-04-01

    Many aspects of gravitational-wave astronomy rely on numerical relativity for accurate models of gravitational waveforms. In recent years, several numerical relativity groups have built catalogs of numerical waveforms from binary black hole systems. I will report on the status of the Simulating Extreme Spacetimes (SXS) waveform catalog, which comprises simulations performed with the Spectral Einstein Code (SpEC). I will describe our approach for assessing numerical errors and convergence. Finally, I will discuss future plans to increase parameter space coverage of the catalog and to improve waveform accuracy.

  18. Neutrino halos in clusters of galaxies and their weak lensing signature

    SciTech Connect

    Villaescusa-Navarro, Francisco; Peña-Garay, Carlos; Miralda-Escudé, Jordi; Quilis, Vicent E-mail: miralda@icc.ub.es E-mail: vicent.quilis@uv.es

    2011-06-01

    We study whether non-linear gravitational effects of relic neutrinos on the development of clustering and large-scale structure may be observable by weak gravitational lensing. We compute the density profile of relic massive neutrinos in a spherical model of a cluster of galaxies, for several neutrino mass schemes and cluster masses. Relic neutrinos add a small perturbation to the mass profile, making it more extended in the outer parts. In principle, this non-linear neutrino perturbation is detectable in an all-sky weak lensing survey such as EUCLID by averaging the shear profile of a large fraction of the visible massive clusters in the universe, or from its signature in the general weak lensing power spectrum or its cross-spectrum with galaxies. However, correctly modeling the distribution of mass in baryons and cold dark matter and suppressing any systematic errors to the accuracy required for detecting this neutrino perturbation is severely challenging.

  19. Measuring the distance-redshift relation with the cross-correlation of gravitational wave standard sirens and galaxies

    NASA Astrophysics Data System (ADS)

    Oguri, Masamune

    2016-04-01

    Gravitational waves from inspiraling compact binaries are known to be an excellent absolute distance indicator, yet it is unclear whether electromagnetic counterparts of these events are securely identified for measuring their redshifts, especially in the case of black hole-black hole mergers such as the one recently observed with the Advanced LIGO. We propose to use the cross-correlation between spatial distributions of gravitational wave sources and galaxies with known redshifts as an alternative means of constraining the distance-redshift relation from gravitational waves. In our analysis, we explicitly include the modulation of the distribution of gravitational wave sources due to weak gravitational lensing. We show that the cross-correlation analysis in next-generation observations will be able to tightly constrain the relation between the absolute distance and the redshift and therefore constrain the Hubble constant as well as dark energy parameters.

  20. Radio Frequency Interference and the National Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Smith, Sierra

    2014-01-01

    Radio frequency interference (RFI) and radio astronomy have been closely linked since the emergence of radio astronomy as a scientific discipline in the 1930s. Even before the official establishment of the National Radio Astronomy Observatory, protection against contemporary and future radio noise levels was seen as crucial to ensure success of any new observatory. My talk will examine the various local, regional, national, and international efforts enacted to protect NRAO and other American radio astronomy sites from RFI.

  1. Atmospheric Dispersion Effects in Weak Lensing Measurements

    DOE PAGESBeta

    Plazas, Andrés Alejandro; Bernstein, Gary

    2012-10-01

    The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed themore » statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.« less

  2. Atmospheric Dispersion Effects in Weak Lensing Measurements

    SciTech Connect

    Plazas, Andrés Alejandro; Bernstein, Gary

    2012-10-01

    The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed the statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.

  3. Gravitational waves carrying orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2016-02-01

    Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.

  4. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum. Keywords: Gravitational wave astrophysics; gravitational radiation; gravitational wave detectors; black holes.

  5. Theory and detection of gravitational waves

    NASA Astrophysics Data System (ADS)

    Pizzella, G.

    The role of gravitational waves in general relativity is examined. It is found that the gravitational waves are a particular solution of the Einstein equations. The computation of the energy flux emitted by moving bodies as gravitational waves is very similar to that for electromagnetic waves. A description of gravitational wave sources is presented, taking into account a spinning star, double star systems, the fall into a Schwarzschild black hole, and radiation from gravitational collapse. Questions regarding the interaction of gravitational waves with matter are explored, and the interaction of a gravitational wave with oscillators and an elastic cylinder is considered. Electromechanical transducers are discussed, giving attention to the piezoelectric ceramic, the capacitor, the inductor, the Brownian noise of the bar, the backreaction, the wide band noise, and data analysis. The design of a gravitational wave antenna is also described.

  6. Merging Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2009-01-01

    This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.

  7. The Gravitational Landscape of the Solar System

    ERIC Educational Resources Information Center

    van den Berg, Willem H.

    2008-01-01

    The Sun's gravitational influence is of course much greater than that of any of the planets. Just how much greater can be dramatically illustrated by plotting their combined gravitational potential on the same graph.

  8. Radio search for the pulsing X-ray source in Hercules.

    NASA Technical Reports Server (NTRS)

    Doxsey, R.; Rappaport, S.; Spencer, J.; Zaumen, W.; Murthy, G. T.

    1972-01-01

    The region of the celestial sphere near the pulsing X-ray source in Hercules (2U 1705+34) has been searched for radio emission with the NRAO three-element interferometer. The search was conducted during a period when the Hercules source was in its 27-day state of low X-ray luminosity. Four weak radio sources, which may be considered as candidates for the radio counterpart of this X-ray source, were detected.

  9. Relativistic KLT to Link Up with Very Fast Radio Sources like Quasars and Probes

    NASA Astrophysics Data System (ADS)

    Maccone, C.

    2010-04-01

    The KLT (Karhunen-Loève Transform) is optimal for filtering weak signals out of the background noise in SETI and radio astronomy. We present the relativistic KLT enabling us to link up with relativistic radio sources like quasars and/or spaceships.

  10. Geometric phase and gravitational precession of D-branes

    NASA Astrophysics Data System (ADS)

    Pedder, Chris; Sonner, Julian; Tong, David

    2007-12-01

    We study Berry’s phase in the D0-D4-brane system. When a D0-brane moves in the background of D4-branes, the first excited states undergo a holonomy described by a non-Abelian Berry connection. At weak coupling this is an SU(2) connection over R5, known as the Yang monopole. At strong coupling, the holonomy is recast as the classical gravitational precession of a spinning particle. The Berry connection is the spin connection of the near-horizon limit of the D4-branes, which is a continuous deformation of the Yang and anti-Yang monopole.

  11. On the Cauchy problems for polymer flooding with gravitation

    NASA Astrophysics Data System (ADS)

    Shen, Wen

    2016-07-01

    We study two systems of conservation laws for polymer flooding in secondary oil recovery, one with gravitation force and one without. For each model, we prove global existence of weak solutions for the Cauchy problems, under rather general assumptions on the flux functions. Approximate solutions are constructed through a front tracking algorithm, and compactness is achieved through the bound on suitably defined wave strengths. As the main technical novelty, we introduce some new nonlinear functionals that yield a uniform bound on the total variation of the flux function.

  12. Broadcast Management: Radio; Television.

    ERIC Educational Resources Information Center

    Quaal, Ward L.; Martin, Leo A.

    After outlining the qualities necessary in a good radio or television manager, the book describes his duties which fall in three major areas: programming, engineering, and sales. It discusses the relationship between the station and its audience in detail. Sections on radio and television programming describe the way most stations operate and…

  13. Film, Radio, and Television.

    ERIC Educational Resources Information Center

    Hardesty, Carolyn, Ed.

    1990-01-01

    This journal issue covers the history of film, radio, and television in Iowa. The first article, "When Pictures and Sound Came to Iowa," summarizes the origin of movies and radio and their early beginnings in Iowa. Using old photographs and measurement charts, the viewing, reading, and listening habits of young people in 1950 and 1958 are…

  14. Amateur Radio Satellite Communications.

    ERIC Educational Resources Information Center

    Koch, David P.

    The Amateur Radio Satellite Communications project had, as its goal, the assembly of an amateur radio satellite station in a high school physics classroom. Specific objectives were to provide: (1) a special source of interest as a motivator for attracting students and building public relations; (2) a center of interest as a motivator for the study…

  15. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  16. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1984-12-25

    Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.

  17. The Radio Jove Project

    NASA Technical Reports Server (NTRS)

    Thieman, J. R.

    2010-01-01

    The Radio love Project is a hands-on education and outreach project in which students, or any other interested individuals or groups build a radio telescope from a kit, operate the radio telescope, transmit the resulting signals through the internet if desired, analyze the results, and share the results with others through archives or general discussions among the observers. Radio love is intended to provide an introduction to radio astronomy for the observer. The equipment allows the user to observe radio signals from Jupiter, the Sun, the galaxy, and Earth-based radiation both natural and man-made. The project was started through a NASA Director's Discretionary Fund grant more than ten years ago. it has continued to be carried out through the dedicated efforts of a group of mainly volunteers. Dearly 1500 kits have been distributed throughout the world. Participation can also be done without building a kit. Pre-built kits are available. Users can also monitor remote radio telescopes through the internet using free downloadable software available through the radiosky.com website. There have been many stories of prize-winning projects, inspirational results, collaborative efforts, etc. We continue to build the community of observers and are always open to new thoughts about how to inspire the observers to still greater involvement in the science and technology associated with Radio Jove.

  18. Optical and radio rangefinders

    NASA Astrophysics Data System (ADS)

    Kostetskaia, Iaromira Mikhailovna

    This handbook expounds the theory of optical and radio rangefinders and radiogeodesic systems. Particular attention is given to instrument design, investigations using geodesic phase rangefinders, ranging errors, and the effect of meteorological factors in the atmospheric surface layer. Applications of optical and radio rangefinders are considered, including the establishment of geodetic networks and the assessment of the accuracy of triangulation networks.

  19. Weak Lensing from Space I: Instrumentation and Survey Strategy

    SciTech Connect

    Rhodes, Jason; Refregier, Alexandre; Massey, Richard; Albert, Justin; Bacon, David; Bernstein, Gary; Ellis, Richard; Jain, Bhuvnesh; Kim, Alex; Lampton, Mike; McKay, Tim; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bester, M.; Bonissent, A.; Bower, C.; Carithers, W.; Commins, E.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, A.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Harris, S.; Harvey, P.; Heetderks, H.; Holland, S.; Huterer, D.; Karcher, A.; Kolbe, W.; Kreiger, B.; Lafever, R.; Lamoureux, J.; Levi, M.; Devin, D.; Linder, E.; Loken, S.; Malina, R.; McKee, S.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto, E.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch, A.; von der Lippe, H.; Vincent, D.; Walder, J.-P.; Wang, G.

    2003-04-23

    A wide field space-based imaging telescope is necessary to fully exploit the technique of observing dark matter via weak gravitational lensing. This first paper in a three part series outlines the survey strategies and relevant instrumental parameters for such a mission. As a concrete example of hardware design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using SNAP engineering models, we quantify the major contributions to this telescope's Point Spread Function (PSF). These PSF contributions are relevant to any similar wide field space telescope. We further show that the PSF of SNAP or a similar telescope will be smaller than current ground-based PSFs, and more isotropic and stable over time than the PSF of the Hubble Space Telescope. We outline survey strategies for two different regimes - a ''wide'' 300 square degree survey and a ''deep'' 15 square degree survey that will accomplish various weak lensing goals including statistical studies and dark matter mapping.

  20. Constraints on axion inflation from the weak gravity conjecture

    NASA Astrophysics Data System (ADS)

    Rudelius, Tom

    2015-09-01

    We derive constraints facing models of axion inflation based on decay constant alignment from a string-theoretic and quantum gravitational perspective. In particular, we investigate the prospects for alignment and `anti-alignment' of C4 axion decay constants in type IIB string theory, deriving a strict no-go result in the latter case. We discuss the relationship of axion decay constants to the weak gravity conjecture and demonstrate agreement between our string-theoretic constraints and those coming from the `generalized' weak gravity conjecture. Finally, we consider a particular model of decay constant alignment in which the potential of C4 axions in type IIB compactifications on a Calabi-Yau three-fold is dominated by contributions from D7-branes, pointing out that this model evades some of the challenges derived earlier in our paper but is highly constrained by other geometric considerations.