Science.gov

Sample records for radio-loud active galactic

  1. MAGNETIC FLUX PARADIGM FOR RADIO LOUDNESS OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Sikora, Marek; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2013-02-20

    We argue that the magnetic flux threading the black hole (BH), rather than BH spin or Eddington ratio, is the dominant factor in launching powerful jets and thus determining the radio loudness of active galactic nuclei (AGNs). Most AGNs are radio quiet because the thin accretion disks that feed them are inefficient in depositing magnetic flux close to the BH. Flux accumulation is more likely to occur during a hot accretion (or thick disk) phase, and we argue that radio-loud quasars and strong emission-line radio galaxies occur only when a massive, cold accretion event follows an episode of hot accretion. Such an event might be triggered by the merger of a giant elliptical galaxy with a disk galaxy. This picture supports the idea that flux accumulation can lead to the formation of a so-called magnetically choked accretion flow. The large observed range in radio loudness reflects not only the magnitude of the flux pressed against the BH, but also the decrease in UV flux from the disk, due to its disruption by the ''magnetosphere'' associated with the accumulated flux. While the strongest jets result from the secular accumulation of flux, moderate jet activity can also be triggered by fluctuations in the magnetic flux deposited by turbulent, hot inner regions of otherwise thin accretion disks, or by the dissipation of turbulent fields in accretion disk coronae. These processes could be responsible for jet production in Seyferts and low-luminosity AGNs, as well as jets associated with X-ray binaries.

  2. Ultrafast outflows in radio-loud active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Tazaki, F.; Mushotzky, R. F.; Ueda, Y.; Cappi, M.; Gofford, J.; Reeves, J. N.; Guainazzi, M.

    2014-09-01

    Recent X-ray observations show absorbing winds with velocities up to mildly relativistic values of the order of ˜0.1c in a limited sample of six broad-line radio galaxies. They are observed as blueshifted Fe XXV-XXVI K-shell absorption lines, similarly to the ultrafast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud active galactic nuclei (AGN) observed with XMM-Newton and Suzaku. The sample is drawn from the Swift Burst Alert Telescope 58-month catalogue and blazars are excluded. X-ray bright Fanaroff-Riley Class II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27 per cent of the sources. However, correcting for the number of spectra with insufficient signal-to-noise ratio, we can estimate that the incidence of UFOs is this sample of radio-loud AGN is likely in the range f ≃ (50 ± 20) per cent. A photoionization modelling of the absorption lines with XSTAR allows us to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between vout ≲ 1000 km s-1 and vout ≃ 0.4c, with mean and median values of vout ≃ 0.133c and vout ≃ 0.117c, respectively. The material is highly ionized, with an average ionization parameter of logξ ≃ 4.5 erg s-1 cm, and the column densities are larger than NH > 1022 cm-2. Overall, these characteristics are consistent with the presence of complex accretion disc winds in a significant fraction of radio-loud AGN and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.

  3. RADIO-LOUD ACTIVE GALACTIC NUCLEUS: IS THERE A LINK BETWEEN LUMINOSITY AND CLUSTER ENVIRONMENT?

    SciTech Connect

    Ineson, J.; Croston, J. H.; Hardcastle, M. J.; Jarvis, M.; Kraft, R. P.; Evans, D. A.

    2013-06-20

    We present here the first results from the Chandra ERA (Environments of Radio-loud AGN) Large Project, characterizing the cluster environments of a sample of 26 radio-loud active galactic nuclei (AGNs) at z {approx} 0.5 that covers three decades of radio luminosity. This is the first systematic X-ray environmental study at a single epoch, and has allowed us to examine the relationship between radio luminosity and cluster environment without the problems of Malmquist bias. We have found a weak correlation between radio luminosity and host cluster X-ray luminosity, as well as tentative evidence that this correlation is driven by the subpopulation of low-excitation radio galaxies, with high-excitation radio galaxies showing no significant correlation. The considerable scatter in the environments may be indicative of complex relationships not currently included in feedback models.

  4. Kepler Photometry of Four Radio-loud Active Galactic Nuclei in 2010-2012

    NASA Astrophysics Data System (ADS)

    Wehrle, Ann E.; Wiita, Paul J.; Unwin, Stephen C.; Di Lorenzo, Paolo; Revalski, Mitchell; Silano, Daniel; Sprague, Dan

    2013-08-01

    We have used Kepler photometry to characterize variability in four radio-loud active galactic nuclei (AGN; three quasars and one object tentatively identified as a Seyfert 1.5 galaxy) on timescales from minutes to months, comparable to the light crossing time of the accretion disk around the central supermassive black hole or the base of the relativistic jet. Kepler's almost continuous observations provide much better temporal coverage than is possible from ground-based observations. We report the first such data analyzed for quasars. We have constructed power spectral densities using eight Kepler quarters of long-cadence (30-minute) data for three AGN, six quarters for one AGN and two quarters of short-cadence (1-minute) data for all four AGN. On timescales longer than about 0.2-0.6 days, we find red noise with mean power-law slopes ranging from -1.8 to -1.2, consistent with the variability originating in turbulence either behind a shock or within an accretion disk. Each AGN has a range of red noise slopes which vary slightly by month and quarter of observation. No quasi-periodic oscillations of astrophysical origin were detected. We detected flares of several days long when brightness increased by 3%-7% in two objects. No flares on timescales of minutes to hours were detected. Our observations imply that the duty cycle for enhanced activity in these radio-loud AGN is small. These well-sampled AGN light curves provide an impetus to develop more detailed models of turbulence in jets and instabilities in accretion disks.

  5. KEPLER PHOTOMETRY OF FOUR RADIO-LOUD ACTIVE GALACTIC NUCLEI IN 2010-2012

    SciTech Connect

    Wehrle, Ann E.; Wiita, Paul J.; Di Lorenzo, Paolo; Revalski, Mitchell; Silano, Daniel; Sprague, Dan; Unwin, Stephen C.

    2013-08-20

    We have used Kepler photometry to characterize variability in four radio-loud active galactic nuclei (AGN; three quasars and one object tentatively identified as a Seyfert 1.5 galaxy) on timescales from minutes to months, comparable to the light crossing time of the accretion disk around the central supermassive black hole or the base of the relativistic jet. Kepler's almost continuous observations provide much better temporal coverage than is possible from ground-based observations. We report the first such data analyzed for quasars. We have constructed power spectral densities using eight Kepler quarters of long-cadence (30-minute) data for three AGN, six quarters for one AGN and two quarters of short-cadence (1-minute) data for all four AGN. On timescales longer than about 0.2-0.6 days, we find red noise with mean power-law slopes ranging from -1.8 to -1.2, consistent with the variability originating in turbulence either behind a shock or within an accretion disk. Each AGN has a range of red noise slopes which vary slightly by month and quarter of observation. No quasi-periodic oscillations of astrophysical origin were detected. We detected flares of several days long when brightness increased by 3%-7% in two objects. No flares on timescales of minutes to hours were detected. Our observations imply that the duty cycle for enhanced activity in these radio-loud AGN is small. These well-sampled AGN light curves provide an impetus to develop more detailed models of turbulence in jets and instabilities in accretion disks.

  6. An X-Ray Spectral Survey of Radio-loud Active Galactic Nuclei with ASCA

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita M.; Eracleous, Michael; Mushotzky, Richard F.

    1999-11-01

    We present a uniform and systematic analysis of the 0.6-10 keV X-ray spectra of radio-loud active galactic nuclei (AGNs) observed by ASCA. The sample, which is not statistically complete, includes 10 broad-line radio galaxies (BLRGs), five radio-loud quasars (QSRs), nine narrow-line radio galaxies (NLRGs), and 10 radio galaxies (RGs) of mixed FR I and FR II types. For several sources the ASCA data are presented here for the first time. The exposure times of the observations and the fluxes of the objects vary over a wide range; as a result, so does the signal-to-noise ratio of the individual X-ray spectra. At soft X-rays, about 50% of NLRGs and 100% of RGs exhibit thermal plasma emission components, with bimodal distributions of temperatures and luminosities. This indicates that the emission in such an object arises in hot gas either in a surrounding cluster or loose group or in a hot corona, consistent with previous ROSAT and optical results. At energies above 2 keV, a hard power-law component (photon index Γ~1.7-1.8) is detected in 90% of cases. The power-law photon indices and luminosities in BLRGs, QSRs, and NLRGs are similar. This is consistent with simple orientation-based unification schemes for lobe-dominated radio-loud sources in which BLRGs, QSRs, and NLRGs harbor the same type of central engine. Moreover, excess cold absorption in the range 1021-1024 cm-2 is detected in most (but not all) NLRGs, consistent with absorption by obscuring tori, as postulated by unification scenarios. The ASCA data provide initial evidence that the immediate gaseous environment of the X-ray source of BLRGs may be different than in Seyfert 1 galaxies: absorption edges of ionized oxygen, common in the latter, are detected in only one BLRG. Instead we detect large columns of cold gas in a fraction (~44%-60%) of BLRGs and QSRs, comparable to the columns detected in NLRGs, which is puzzling. This difference hints at different physical and/or geometrical properties of the medium

  7. THE CLUSTERING OF GALAXIES AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Worpel, Hauke; Brown, Michael J. I.; Jones, D. Heath; Floyd, David J. E.; Beutler, Florian

    2013-07-20

    We examine the hypothesis that mergers and close encounters between galaxies can fuel active galactic nuclei (AGNs) by increasing the rate at which gas accretes toward the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors, and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the Six Degree Field Galaxy Survey. We find tentative evidence that radio AGNs with more than 200 times the median radio power have, on average, more close (r < 160 kpc) companions than their radio-quiet counterparts, suggesting that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is neither a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years.

  8. Fermi-LAT γ-ray anisotropy and intensity explained by unresolved radio-loud active galactic nuclei

    SciTech Connect

    Mauro, Mattia Di; Cuoco, Alessandro; Donato, Fiorenza; Siegal-Gaskins, Jennifer M. E-mail: alessandro.cuoco@to.infn.it E-mail: jsg@tapir.caltech.edu

    2014-11-01

    Radio-loud active galactic nuclei (AGN) are expected to contribute substantially to both the intensity and anisotropy of the isotropic γ-ray background (IGRB). In turn, the measured properties of the IGRB can be used to constrain the characteristics of proposed contributing source classes. We consider individual subclasses of radio-loud AGN, including low-, intermediate-, and high-synchrotron-peaked BL Lacertae objects, flat-spectrum radio quasars, and misaligned AGN. Using updated models of the γ-ray luminosity functions of these populations, we evaluate the energy-dependent contribution of each source class to the intensity and anisotropy of the IGRB. We find that collectively radio-loud AGN can account for the entirety of the IGRB intensity and anisotropy as measured by the Fermi Large Area Telescope (LAT). Misaligned AGN provide the bulk of the measured intensity but a negligible contribution to the anisotropy, while high-synchrotron-peaked BL Lacertae objects provide the dominant contribution to the anisotropy. In anticipation of upcoming measurements with the Fermi-LAT and the forthcoming Cherenkov Telescope Array, we predict the anisotropy in the broader energy range that will be accessible to future observations.

  9. Radio-Loud Narrow-Line Seyfert 1 as a New Class of Gamma-Ray Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Palma, F.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Foschini, L.; Frailis, M.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Pelassa, V.; Pepe, M.; Persic, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Rochester, L. S.; Rodriguez, A. Y.; Ryde, F.; Sadrozinski, H. F.-W.; Sambruna, R.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Sgrò, C.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Tagliaferri, G.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.; Fermi/LAT Collaboration; Ghisellini, G.; Maraschi, L.; Tavecchio, F.

    2009-12-01

    We report the discovery with Fermi/LAT of γ-ray emission from three radio-loud narrow-line Seyfert 1 galaxies: PKS 1502+036 (z = 0.409), 1H 0323+342 (z = 0.061), and PKS 2004 - 447 (z = 0.24). In addition to PMN J0948+0022 (z = 0.585), the first source of this type to be detected in γ rays, they may form an emerging new class of γ-ray active galactic nuclei (AGNs). These findings can have strong implications on our knowledge about relativistic jets and the unified model of the AGN.

  10. GALAXY CLUSTERS AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI AT 1.3 < z < 3.2 AS SEEN BY SPITZER

    SciTech Connect

    Wylezalek, Dominika; Stern, Daniel; Eisenhardt, Peter R. M.; Galametz, Audrey; Vernet, Joeel; De Breuck, Carlos; Seymour, Nick; Brodwin, Mark; Gonzalez, Anthony H.; Hatch, Nina; Jarvis, Matt; Rettura, Alessandro; Stanford, Spencer A.; Stevens, Jason A.

    2013-05-20

    We report the first results from the Clusters Around Radio-Loud AGN program, a Cycle 7 and 8 Spitzer Space Telescope snapshot program to investigate the environments of a large sample of obscured and unobscured luminous radio-loud active galactic nuclei (AGNs) at 1.2 < z < 3.2. These data, obtained for 387 fields, reach 3.6 and 4.5 {mu}m depths of [3.6]{sub AB} = 22.6 and [4.5]{sub AB} = 22.9 at the 95% completeness level, which is two to three times fainter than L* in this redshift range. By using the color cut [3.6] - [4.5] > -0.1 (AB), which efficiently selects high-redshift (z > 1.3) galaxies of all types, we identify galaxy cluster member candidates in the fields of the radio-loud AGN. The local density of these Infrared Array Camera (IRAC)-selected sources is compared to the density of similarly selected sources in blank fields. We find that 92% of the radio-loud AGN reside in environments richer than average. The majority (55%) of the radio-loud AGN fields are found to be overdense at a {>=}2{sigma} level; 10% are overdense at a {>=}5{sigma} level. A clear rise in surface density of IRAC-selected sources toward the position of the radio-loud AGN strongly supports an association of the majority of the IRAC-selected sources with the radio-loud AGN. Our results provide solid statistical evidence that radio-loud AGN are likely beacons for finding high-redshift galaxy (proto-)clusters. We investigate how environment depends on AGN type (unobscured radio-loud quasars versus obscured radio galaxies), radio luminosity and redshift, finding no correlation with either AGN type or radio luminosity. We find a decrease in density with redshift, consistent with galaxy evolution for this uniform, flux-limited survey. These results are consistent with expectations from the orientation-driven AGN unification model, at least for the high radio luminosity regimes considered in this sample.

  11. Radio-Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications

    SciTech Connect

    Sikora, Marek; Stawarz, Lukasz; Lasota, Jean-Pierre; /Paris, Inst. Astrophys.

    2007-01-30

    We investigate how the total radio luminosity of AGN-powered radio sources depends on their accretion luminosity and the central black hole mass. Our studies cover about seven orders of magnitude in accretion luminosity (expressed in Eddington units, i.e. as Eddington ratios) and the full range of AGN black hole masses. We find that AGNs form two distinct and well separated sequences on the radio-loudness--Eddington-ratio plane. The ''upper'' sequence is formed by radio selected AGNs, the ''lower'' sequence contains mainly optically selected objects. Whereas an apparent ''gap'' between the two sequences may be an artifact of selection effects, the sequences themselves mark the real upper bounds of radio-loudness of two distinct populations of AGNs: those hosted respectively by elliptical and disk galaxies. Both sequences show the same dependence of the radio-loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that the normalization of this dependence is determined by the black hole spin. This implies that central black holes in giant elliptical galaxies have (on average) much larger spins than black holes in spiral/disc galaxies. This galaxy-morphology related radio-dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars hosted by elliptical galaxies is radio quiet. This led to speculations in the literature that formation of powerful jets at high accretion rates is intermittent and related to switches between two disk accretion modes, as directly observed in some BH X-ray binaries. We argue that such intermittency can be reconciled with the spin paradigm, provided that successful formation of relativistic jets by rotating black holes requires collimation by MHD outflows from accretion disks.

  12. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  13. FROM THE BLAZAR SEQUENCE TO THE BLAZAR ENVELOPE: REVISITING THE RELATIVISTIC JET DICHOTOMY IN RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Meyer, Eileen T.; Fossati, Giovanni; Georganopoulos, Markos; Lister, Matthew L.

    2011-10-20

    We revisit the concept of a blazar sequence that relates the synchrotron peak frequency ({nu}{sub peak}) in blazars with synchrotron peak luminosity (L{sub peak}, in {nu}L{sub {nu}}) using a large sample of radio-loud active galactic nuclei. We present observational evidence that the blazar sequence is formed from two populations in the synchrotron {nu}{sub peak}-L{sub peak} plane, each forming an upper edge to an envelope of progressively misaligned blazars, and connecting to an adjacent group of radio galaxies having jets viewed at much larger angles to the line of sight. When binned by jet kinetic power (L{sub kin}; as measured through a scaling relationship with extended radio power), we find that radio core dominance decreases with decreasing synchrotron L{sub peak}, revealing that sources in the envelope are generally more misaligned. We find population-based evidence of velocity gradients in jets at low kinetic powers ({approx}10{sup 42}-10{sup 44.5} erg s{sup -1}), corresponding to Fanaroff-Riley (FR) I radio galaxies and most BL Lac objects. These low jet power 'weak-jet' sources, thought to exhibit radiatively inefficient accretion, are distinguished from the population of non-decelerating, low synchrotron-peaking (LSP) blazars and FR II radio galaxies ('strong' jets) which are thought to exhibit radiatively efficient accretion. The two-population interpretation explains the apparent contradiction of the existence of highly core-dominated, low-power blazars at both low and high synchrotron peak frequencies, and further implies that most intermediate synchrotron peak sources are not intermediate in intrinsic jet power between LSP and high synchrotron-peaking (HSP) sources, but are more misaligned versions of HSP sources with similar jet powers.

  14. The X-ray view of radio-loud active galactic nuclei: The central engine and its environment

    NASA Astrophysics Data System (ADS)

    Donato, Davide

    The non-thermal emission from many Active Galactic Nuclei (AGN) is obscured by optically thick circumnuclear matter, particularly at optical and ultraviolet wavelengths. In radio-loud (RL) sources, the AGN activity is coupled with the presence of a bipolar jet that emit radio through g-ray light which is relativistically beamed along the jet axes. The combination of absorption and beaming produces highly anisotropic radiation. The understanding of the origin and magnitude of this radiation allows astronomers to unify different classes of AGN; that is, to identify each single, underlying AGN type that gives rise to different classes through different orientations with respect to the jet axis. This is the fundamental notion behind what are called "unification models" of AGN. Although this general idea is well accepted, many aspects remain matter of debate. In fact, the explanation of the wide and complex variety of AGN phenomena must be searched in a combination of apparent differences (like orientation) and real differences in a number of physical parameters (like gas/dust content and distribution, luminosity, etc.). The goal of this thesis is to address some of the RL unification open questions using X-ray data. The improved sensitivity and angular resolution of a new generation of satellites, combined with the fact that X-rays provide useful information on a variety of AGN phenomena, will allow me to: (1) Study the broadband X-ray continua of BL Lacertae objects (BL Lacs) and Flat Spectrum Radio Quasars (FSRQs); (2) Probe the emission from the very inner region of an AGN; (3) Determine the presence and characteristic of extended X-ray emission from the AGN environment. The results obtained from theses studies will provide me insights into (1) the X-ray average spectral properties of BL Lacs and FSRQs and the physical processes responsible of the emission; (2) the presence of the obscuring torus and the amount of absorption, (3) the nature of X-ray emission, and (4

  15. Are luminous radio-loud active galactic nuclei triggered by galaxy interactions?

    NASA Astrophysics Data System (ADS)

    Ramos Almeida, C.; Bessiere, P. S.; Tadhunter, C. N.; Pérez-González, P. G.; Barro, G.; Inskip, K. J.; Morganti, R.; Holt, J.; Dicken, D.

    2012-01-01

    We present the results of a comparison between the optical morphologies of a complete sample of 46 southern 2 Jy radio galaxies at intermediate redshifts (0.05 < z < 0.7) and those of two control samples of quiescent early-type galaxies: 55 ellipticals at redshifts z ≤ 0.01 from the Observations of Bright Ellipticals at Yale (OBEY) survey, and 107 early-type galaxies at redshifts 0.2 < z < 0.7 in the Extended Groth Strip (EGS). Based on these comparisons, we discuss the role of galaxy interactions in the triggering of powerful radio galaxies (PRGs). We find that a significant fraction of quiescent ellipticals at low and intermediate redshifts show evidence for disturbed morphologies at relatively high surface brightness levels, which are likely the result of past or on-going galaxy interactions. However, the morphological features detected in the galaxy hosts of the PRGs (e.g. tidal tails, shells, bridges, etc.) are up to 2 mag brighter than those present in their quiescent counterparts. Indeed, if we consider the same surface brightness limits, the fraction of disturbed morphologies is considerably smaller in the quiescent population (53 per cent at z < 0.2 and 48 per cent at 0.2 ≤ z < 0.7) than in the PRGs (93 per cent at z < 0.2 and 95 per cent at 0.2 ≤ z < 0.7 considering strong-line radio galaxies only). This supports a scenario in which PRGs represent a fleeting active phase of a subset of the elliptical galaxies that have recently undergone mergers/interactions. However, we demonstrate that only a small proportion (≲20 per cent) of disturbed early-type galaxies are capable of hosting powerful radio sources.

  16. Constraining the population of radio-loud active galactic nuclei at high redshift with the power spectrum of the 21 cm Forest

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Dillon, Joshua S.; Mesinger, Andrei; Hewitt, Jacqueline N.

    2014-06-01

    The 21 cm forest, the absorption by the intergalactic medium (IGM) towards a high redshift radio-loud source, is a probe of the thermal state of the IGM. To date, the literature has focused on line-of-sight spectral studies of a single quasar known to have a large redshift. We instead examine many sources in a wide field of view, and show that the imprint from the 21 cm forest absorption of these sources is detectible in the power spectrum. The properties of the power spectrum can reveal information on the population of the earliest radio loud sources that may have existed during the pre-reionization epoch at z>10.Using semi-numerical simulations of the IGM and a semi-empirical source population, we show that the 21 cm forest dominates, in a distinctive region of Fourier space, the brightness temperature power spectrum that many contemporary experiments aim to measure. In particular, the forest dominates the diffuse emission on smaller spatial scales along the line of sight. Exploiting this separation, one may constrain the IGM thermal history, such as heating by the first X-ray sources, on large spatial scales and the absorption of radio loud active galactic nuclei on small ones.Using realistic simulations of noise and foregrounds, we show that planned instruments on the scale of the Hydrogen Epoch of Reionization Array (HERA) with a collecting area of one tenth of a square kilometer can detect the 21cm forest in this small spatial scale region with high signal to noise. We develop an analytic toy model for the signal and explore its detectability over a large range of thermal histories and potential high redshift source scenarios.

  17. Radiation Mechanism and Jet Composition of Gamma-Ray Bursts and GeV-TeV-selected Radio-loud Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Liang, En-Wei; Sun, Xiao-Na; Zhang, Bing; Lu, Ye; Zhang, Shuang-Nan

    2013-09-01

    Gamma-ray bursts (GRBs) and GeV-TeV-selected radio-loud active galactic nuclei (AGNs) are compared based on our systematic modeling of the observed spectral energy distributions of a sample of AGNs with a single-zone leptonic model. We show that the correlation between the jet power (P jet) and the prompt gamma-ray luminosity (L jet) of GRBs is consistent, within the uncertainties, with the correlation between jet power and the synchrotron peak luminosity (L s, jet) of flat spectrum radio quasars (FSRQs). Their radiation efficiencies (ε) are also comparable (>10% for most sources), which increase with the bolometric jet luminosity (L bol, jet) for FSRQs and with the L jet for GRBs with similar power-law indices. BL Lac objects (BL Lacs) do not follow the P jet-L s, jet relation of FSRQs. They have lower ε and L bol, jet values than FSRQs, and a tentative L bol, jet-ε relation is also found, with a power-law index different from that of the FSRQs. The magnetization parameters (σ) of FSRQs are on average larger than that of BL Lacs. They are anti-correlated with ε for the FSRQs, but positively correlated with ε for the BL Lacs. GeV narrow-line Seyfert 1 galaxies potentially share similar properties with FSRQs. Based on the analogy between GRBs and FSRQs, we suggest that the prompt gamma-ray emission of GRBs is likely produced by the synchrotron process in a magnetized jet with high radiation efficiency, similar to FSRQs. The jets of BL Lacs, on the other hand, are less efficient and are likely more matter-dominated.

  18. Suzaku View of the Swift/BAT Active Galactic Nuclei. V. Torus Structure of Two Luminous Radio-Loud Active Galactic Nuclei (3C 206 and PKS 0707-35)

    NASA Technical Reports Server (NTRS)

    Tazaki, Fumie; Ueda, Yoshihiro; Terashima, Yuichi; Mushotzky, Richard F.; Tombesi, Francesco

    2013-01-01

    We present the results from broadband X-ray spectral analysis of 3C 206 and PKS 0707-35 with Suzaku and Swift/BAT, two of the most luminous unobscured and obscured radio-loud active galactic nuclei (AGNs) with hard X-ray luminosities of 10(sup 45.5) erg per second and 10(sup 44.9) erg per second (14-195 keV), respectively. Based on the radio core luminosity, we estimate that the X-ray spectrum of 3C 206 contains a significant (60% in the 14-195 keV band) contribution from the jet, while it is negligible in PKS 0707-35.We can successfully model the spectra with the jet component (for 3C 206), the transmitted emission, and two reflection components from the torus and the accretion disk. The reflection strengths from the torus are found to be R(sub torus)(=Omega/2pi) = 0.29 +/- 0.18 and 0.41 +/- 0.18 for 3C 206 and PKS 0707-35, respectively, which are smaller than those in typical Seyfert galaxies. Utilizing the torus model by Ikeda et al., we quantify the relation between the half-opening angle of a torus (theta(sub oa)) and the equivalent width of an iron-K line. The observed equivalent width of 3C 206, less than 71 eV, constrains the column density in the equatorial plane to N(sup eq)(sub H) lesst han 10(sup 23) per square centimeter, or the half-opening angle to theta(sub oa) greater than 80 deg. if N(sup eq)(sub H) = 10(sup 24) per square centimeter is assumed. That of PKS 0707-35, 72 +/- 36 eV, is consistent with N(sup eq)(sub H) 10(sup 23) per square centimeter. Our results suggest that the tori in luminous radio-loud AGNs are only poorly developed. The trend is similar to that seen in radio-quiet AGNs, implying that the torus structure is not different between AGNs with jets and without jets.

  19. SUZAKU VIEW OF THE SWIFT/BAT ACTIVE GALACTIC NUCLEI. V. TORUS STRUCTURE OF TWO LUMINOUS RADIO-LOUD ACTIVE GALACTIC NUCLEI (3C 206 AND PKS 0707-35)

    SciTech Connect

    Tazaki, Fumie; Ueda, Yoshihiro; Terashima, Yuichi; Mushotzky, Richard F.; Tombesi, Francesco

    2013-07-20

    We present the results from broadband X-ray spectral analysis of 3C 206 and PKS 0707-35 with Suzaku and Swift/BAT, two of the most luminous unobscured and obscured radio-loud active galactic nuclei (AGNs) with hard X-ray luminosities of 10{sup 45.5} erg s{sup -1} and 10{sup 44.9} erg s{sup -1} (14-195 keV), respectively. Based on the radio core luminosity, we estimate that the X-ray spectrum of 3C 206 contains a significant ({approx}60% in the 14-195 keV band) contribution from the jet, while it is negligible in PKS 0707-35. We can successfully model the spectra with the jet component (for 3C 206), the transmitted emission, and two reflection components from the torus and the accretion disk. The reflection strengths from the torus are found to be R{sub torus}({identical_to} {Omega}/2{pi}) = 0.29 {+-} 0.18 and 0.41 {+-} 0.18 for 3C 206 and PKS 0707-35, respectively, which are smaller than those in typical Seyfert galaxies. Utilizing the torus model by Ikeda et al., we quantify the relation between the half-opening angle of a torus ({theta}{sub oa}) and the equivalent width of an iron-K line. The observed equivalent width of 3C 206, < 71 eV, constrains the column density in the equatorial plane to N{sub H}{sup eq} <10{sup 23} cm{sup -2}, or the half-opening angle to {theta}{sub oa} > 80 Degree-Sign if N{sub H}{sup eq} =10{sup 24} cm{sup -2} is assumed. That of PKS 0707-35, 72 {+-} 36 eV, is consistent with N{sub H}{sup eq} {approx}10{sup 23} cm{sup -2}. Our results suggest that the tori in luminous radio-loud AGNs are only poorly developed. The trend is similar to that seen in radio-quiet AGNs, implying that the torus structure is not different between AGNs with jets and without jets.

  20. MULTI-WAVELENGTH OBSERVATIONS OF A SAMPLE OF INTERMEDIATE-LUMINOSITY RADIO-LOUD ACTIVE GALAXIES

    SciTech Connect

    Lewis, Karen T.; Sambruna, Rita M.; Cheung, Chi C.; Eracleous, Michael; Kadler, Matthias

    2011-07-15

    We present the results from exploratory (12-23 ks) XMM-Newton observations of six optically selected, radio-loud active galactic nuclei (AGNs), together with new radio data and a reanalysis of their archival SDSS spectra. The sources were selected in an effort to expand the current sample of radio-loud AGNs suitable for detailed X-ray spectroscopy studies. The sample includes three broad-line and three narrow-line sources, with X-ray luminosities of the order of L{sub 2-10keV} {approx} 10{sup 43} erg s{sup -1}. The EPIC spectra of the broad-lined sources can be described by single power laws with photon indices {Gamma} {approx} 1.6 and little to negligible absorption (N{sub H} {approx}<10{sup 21} cm{sup -2}); on the contrary, significant absorption is detected in the narrow-lined objects, N{sub H} {approx} 10{sup 23} cm{sup -2}, one of which displays a prominent (equivalent width {approx}2 keV) Fe K{alpha} emission line. Studying their location in several luminosity-luminosity diagrams for radio-loud AGNs, we find that the sources fall at the lower end of the distribution for bright, classical radio-loud AGNs and close to LINER-like sources. As such, and as indicated by the ratios of their optical emission lines, we conclude that the sources of our sample fall on the border between radiatively efficient and inefficient accretion flows. Future deeper studies of these targets at X-rays and longer wavelengths will expand our understanding of the central engines of radio-loud AGNs at a critical transition region.

  1. Radio Loud AGNs are Mergers

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco; Gilli, Roberto; Lotz, Jennifer M.; Norman, Colin

    2015-06-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei (AGNs) at z\\gt 1 using new samples. The objects have Hubble Space Telescope (HST) images taken with Wide Field Camera 3 (WFC3) in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z\\gt 1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%-14%+8%) radio-loud galaxies at z\\gt 1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38%-15+16 are merging systems. The merger fraction for the sample of non-active galaxies at z\\gt 1 is indistinguishable from radio-quiet objects. This is strong evidence that mergers are the triggering mechanism for the radio-loud AGN phenomenon and the launching of relativistic jets from supermassive black holes (SMBHs). We speculate that major black hole (BH)–BH mergers play a major role in spinning up the central SMBHs in these objects.

  2. Radio-Loud and Radio-Quiet Gamma-Ray Pulsars from the Galactic Plane and the Gould Belt

    SciTech Connect

    Gonthier, P. L.

    2005-03-17

    We present recent results of a pulsar population synthesis study in the polar cap model that includes the Parkes Multibeam Pulsar Survey, realistic beam geometries for radio and {gamma}-ray emission from neutron stars born in the Galactic disc as well as the local Gould Belt. We include nine radio surveys to normalize the simulated results from the Galactic disc to the number of radio pulsars observed by the group of selected surveys. In normalizing the contribution of the Gould Belt, we use results from a recent study that indicates a supernova rate in the Gould Belt of 3 to 5 times that of the local region of the Galactic plane leading to {approx}100 neutron stars born in the Gould Belt during the last 5 Myr. Our simulations include the dynamical evolution of the Gould Belt where neutron stars are produced in the plane of the Gould Belt during the past 5 Myr. We discuss the simulated numbers of radio-quiet (those below flux threshold of radio surveys) and radio-loud, {gamma}-ray pulsars from the Galactic disc and the Gould belt observed by {gamma}-ray telescopes EGRET, AGILE and GLAST. They suggest that about 35 of the unidentified EGRET sources could be (mostly radio-loud) {gamma}-ray pulsars with 2/3 of them born in the Galactic disc and 1/3 in the Gould Belt.

  3. A New Radio Loudness Diagnostic for Active Galaxies: A Radio-to-Mid-Infrared Parameter

    NASA Technical Reports Server (NTRS)

    Melendez, Marcio B.; Kraemer, S. B.; Schmitt, H. R.

    2010-01-01

    We have studied the relationship between the nuclear (high-resolution) radio emission, at 8.4GHz (3.6cm) and 1.4GHz (20cm), the [O IV) (gamma)25.89 micron, [Ne III] (gamma)l5.56 micron and [Ne II] (gamma)l2.81 micron emission lines and the black hole mass accretion rate for a sample of Seyfert galaxies. In order to characterize the radio contribution for the Seyfert nuclei we used the 8.4 GHz/[O IV] ratio, assuming that [0 IV] scales with the luminosity of the active galactic nuclei (AGN). From this we find that Seyfert 1 s (i.e. Seyfert 1.0s, 1.2s and 1.5s) and Seyfert 2s (i.e. Seyfert 1.8s, 1.9s and 2.0s) have similar radio contributions, relative to the AGN. On the other hand, sources in which the [Ne u] emission is dominated either by the AGN or star formation have statistically different radio contributions, with star formation dominated sources more 'radio loud', by a factor of approx.2.8 on average, than AGN dominated sources. We show that star formation dominated sources with relatively larger radio contribution have smaller mass accretion rates. Overall, we suggest that 8.4 GHz/[O IV], or alternatively, 1.4 GHz/[O IV] ratios, can be used to characterize the radio contribution, relative to the AGN, without the limitation of previous methods that rely on optical observables. Key words: Galaxy: stellar content - galaxies: Seyfert - infrared: galaxies

  4. The structure of host galaxies of radio-loud quasars and possible triggering mechanisms for quasar activity

    NASA Technical Reports Server (NTRS)

    Romanishin, W.; Hintzen, Paul

    1989-01-01

    An image modeling program is used to analyze optical imaging data for a sample of radio-loud quasars with redshifts between 0.2 and 0.7. It is found that the host galaxies of these quasars tend to be more compact than normal ellipticals. The cooling flow cluster elliptical galaxies near these host galaxies are studied. It is suggested that these cooling flow galaxies are also compact due to star formation in their central regions. Two populations of quasars are identified. One, in which activity is triggered by galaxy mergers of interactions has predominately spiral galaxies and are radio quiet. The other, in which activity is triggered by star formation bursts induced by cooling flows, has predominately elliptical hosts and may be radio loud.

  5. Constraining the Radio-loud Fraction of Quasars at z > 5.5

    NASA Astrophysics Data System (ADS)

    Bañados, E.; Venemans, B. P.; Morganson, E.; Hodge, J.; Decarli, R.; Walter, F.; Stern, D.; Schlafly, E.; Farina, E. P.; Greiner, J.; Chambers, K. C.; Fan, X.; Rix, H.-W.; Burgett, W. S.; Draper, P. W.; Flewelling, J.; Kaiser, N.; Metcalfe, N.; Morgan, J. S.; Tonry, J. L.; Wainscoat, R. J.

    2015-05-01

    Radio-loud active galactic nuclei at z˜ 2-4 are typically located in dense environments and their host galaxies are among the most massive systems at those redshifts, providing key insights for galaxy evolution. Finding radio-loud quasars at the highest accessible redshifts (z˜ 6) is important to the study of their properties and environments at even earlier cosmic time. They could also serve as background sources for radio surveys intended to study the intergalactic medium beyond the epoch of reionization in HI 21 cm absorption. Currently, only five radio-loud (R={{f}ν ,5 GHz}/{{f}ν ,4400 \\overset{\\circA }}\\gt 10) quasars are known at z˜ 6. In this paper we search for 5.5≲ z≲ 7.2 quasars by cross-matching the optical Panoramic Survey Telescope & Rapid Response System 1 and radio Faint Images of the Radio Sky at Twenty cm surveys. The radio information allows identification of quasars missed by typical color-based selections. While we find no good 6.4≲ z≲ 7.2 quasar candidates at the sensitivities of these surveys, we discover two new radio-loud quasars at z˜ 6. Furthermore, we identify two additional z˜ 6 radio-loud quasars that were not previously known to be radio-loud, nearly doubling the current z˜ 6 sample. We show the importance of having infrared photometry for z\\gt 5.5 quasars to robustly classify them as radio-quiet or radio-loud. Based on this, we reclassify the quasar J0203+0012 (z = 5.72), previously considered radio-loud, to be radio-quiet. Using the available data in the literature, we constrain the radio-loud fraction of quasars at z˜ 6, using the Kaplan-Meier estimator, to be 8.1-3.2+5.0%. This result is consistent with there being no evolution of the radio-loud fraction with redshift, in contrast to what has been suggested by some studies at lower redshifts.

  6. Quasar Radio-Loudness and the Elliptical Core Problem

    NASA Astrophysics Data System (ADS)

    Hamilton, Timothy S.

    2010-01-01

    The dichotomy between radio-loud and radio-quiet QSOs is not simply one of host morphology. While radio-louds are almost always found in elliptical hosts, radio-quiets are known to reside in both elliptical and spiral galaxies. We find that what determines whether a given elliptical galaxy will host either a radio-loud or radio-quiet QSO is a combination of accretion rate and host scale. QSOs with high x-ray luminosities (above 10e44.9 erg/s at 0.5 keV) are nearly all found to be radio-loud. But those with low luminosities divide fairly neatly along the Kormendy law, the correlation between re and μe. Those larger than about 10 kpc are radio-loud, while smaller ones are radio-quiet. It has recently been found that core and coreless ellipticals are also divided at about this limit. This implies that for low-luminosity QSOs, radio-louds are found in core ellipticals, while radio-quiets are in coreless ellipticals and spirals. This segregation shows up particularly strongly for low-redshift objects. Since the presence or absence of a core may be tied to the galactic merger history, we have an evolutionary explanation for the differences between radio-loud and radio-quiet QSOs.

  7. Radio Loudness of AGNs: Host Galaxy Morphology and the Spin Paradigm

    SciTech Connect

    Stawarz, L.; Sikora, M.; Lasota, J.-P.

    2007-10-15

    We investigate how the total radio luminosity of AGN-powered radio sources depends on their accretion luminosity and the central black hole mass. We find that AGNs form two distinct and well separated sequences on the radio-loudness -- Eddington-ratio plane. We argue that these sequences mark the real upper bounds of radio-loudness of two distinct populations of AGNs: those hosted respectively by elliptical and disk galaxies. Both sequences show the same dependence of the radio-loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that another parameter in addition to the accretion rate must play a role in determining the jet production efficiency in active galactic nuclei, and that this parameter is related to properties of the host galaxy. The revealed host-related radio dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars hosted by elliptical galaxies is radio quiet. We argue that the huge difference between the radio-loudness reachable by AGNs in disc and elliptical galaxies can be explained by the scenario according to which the spin of a black hole determines the outflows power, and central black holes can reach large spins only in early type galaxies (following major mergers), and not (in a statistical sense) in spiral galaxies.

  8. The Radio-Loud Narrow-Line Quasar SDSS J172206.03+565451.6

    NASA Astrophysics Data System (ADS)

    Komossa, Stefanie; Voges, Wolfgang; Adorf, Hans-Martin; Xu, Dawei; Mathur, Smita; Anderson, Scott F.

    2006-03-01

    We report identification of the radio-loud narrow-line quasar SDSS J172206.03+565451.6, which we found in the course of a search for radio-loud narrow-line active galactic nuclei (AGNs). SDSS J172206.03+565451.6 is only about the fourth securely identified radio-loud narrow-line quasar and the second-most radio loud, with a radio index R1.4~100-700. Its black hole mass, MBH~=(2-3)×107 Msolar estimated from Hβ line width and 5100 Å luminosity, is unusually small given its radio loudness, and the combination of mass and radio index puts SDSS J172206.03+565451.6 in a scarcely populated region of MBH-R diagrams. SDSS J172206.03+565451.6 is a classical narrow-line Seyfert 1-type object with FWHMHβ~=1490 km s-1, an intensity ratio of [O III]/Hβ~=0.7, and Fe II emission complexes with Fe II λ4570/Hβ~=0.7. The ionization parameter of its narrow-line region, estimated from the line ratio [O II]/[O III], is similar to Seyferts, and its high ratio of [Ne V]/[Ne III] indicates a strong EUV-to-soft X-ray excess. We advertise the combined usage of [O II]/[O III] and [Ne V]/[Ne III] diagrams as a useful diagnostic tool to estimate ionization parameters and to constrain the EUV-soft X-ray continuum shape relatively independently from other parameters.

  9. Intranight polarization variability in radio-loud and radio-quiet AGN

    NASA Astrophysics Data System (ADS)

    Villforth, Carolin; Nilsson, Kari; Østensen, Roy; Heidt, Jochen; Niemi, Sami-Matias; Pforr, Janine

    2009-08-01

    Intranight polarization variability in active galactic nuclei (AGN) has not been studied extensively so far. Studying the variability in polarization makes it possible to distinguish between different emission mechanisms. Thus, it can help answering the question if intranight variability in radio-loud and radio-quiet AGN is of the same or of fundamentally different origin. In this paper, we investigate intranight polarization variability in AGN. Our sample consists of 28 AGN at low to moderate redshifts (0.048 <= z <= 1.036), 12 of which are radio-quiet quasars (RQQs) and 16 are radio-loud blazars. The subsample of blazars consists of eight flat-spectrum radio-quasars (FSRQs) and eight BL Lac objects. Each AGN was observed for a time-span of ~4h in the R band to measure polarization and variability. Using statistical methods, we determine duty cycles for polarized emission and polarization intranight variability. We find clear differences between the two samples. A majority of the radio-loud AGN show moderate to high degrees of polarization, more than half of them also show variability in polarization. There seems to be a dividing line for polarization intranight variability at P ~ 5 per cent over which all objects vary in polarization. We did not find clear correlations between the strength of the variability and the redshift or degree of polarization. Only two out of 12 RQQs show polarized emission, both at levels of P < 1 per cent. The lack of polarization intranight variability in radio-quiet AGN points towards accretion instabilities being the cause for intranight flux variability whereas the high duty cycle of polarization variability in radio-loud objects is more likely caused by instabilities in the jet or changes of physical conditions in the jet plasma. We were able to constrain the time-scale of the detected variations to >4 h. Further studies of intranight polarization variability will be necessary to reveal exact physical conditions behind this

  10. The Disk-Jet Connection in Radio-Loud AGN: The X-Ray Perspective

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita

    2008-01-01

    Unification schemes assume that radio-loud active galactic nuclei (AGN) contain an accretion disk and a relativistic jet perpendicular to the disk, and an obscuring molecular torus. The jet dominance decreases with larger viewing angles from blazars to Broad-Line and Narrow-Line Radio Galaxies. A fundamental question is how accretion and ejecta are related. The X-rays provide a convenient window to study these issues, as they originate in the innermost nuclear regions and penetrate large obscuring columns. I review the data, using observations by Chandra but also from other currently operating high-energy experiments. Synergy with the upcoming GLAST mission will also be highlighted.

  11. Dark bubbles around high-redshift radio-loud active galactic nucleus

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Sbarrato, T.

    2016-09-01

    At redshift larger than 3 there is a disagreement between the number of blazars (whose jet is pointing at us) and the number of expected parents (whose jet is pointing elsewhere). Now we strengthen this claim because (i) the number of blazars identified within the Sloan Digital Sky Survey (SDSS)+Faint Images of the Radio Sky at Twenty-cm (FIRST) survey footprint increased, demanding a more numerous parent population, and (ii) the detected blazars have a radio flux large enough to be above the FIRST flux limit even if the jet is slightly misaligned. The foreseen number of these slightly misaligned jets, in principle detectable, is much larger than the radio-detected sources in the FIRST+SDSS survey (at redshift larger than 4). This argument is independent of the presence of an isotropic radio component, such as the hotspot or the radio lobe, and does not depend on the bulk Lorentz factor Γ. We propose a scenario that ascribes the lack of slightly misaligned sources to an overobscuration of the nucleus by a `bubble' of dust, possibly typical of the first high-redshift quasars.

  12. Parent population of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Berton, M.; Foschini, L.; Ciroi, S.; Cracco, V.; La Mura, G.; Lister, M. L.; Mathur, S.; Peterson, B. M.; Richards, J. L.; Rafanelli, P.

    2015-06-01

    Flat-spectrum radio-loud narrow-line Seyfert 1 galaxies (NLS1s) are a recently discovered class of γ-ray emitting active galactic nuclei (AGN), that exhibit some blazar-like properties which are explained with the presence of a relativistic jet viewed at small angles. When blazars are observed at larger angles they appear as radio-galaxies, and we expect to observe an analogue parent population for beamed NLS1s. However, the number of known NLS1s with the jet viewed at large angles is not enough. Therefore, we tried to understand the origin of this deficit. Current hypotheses about the nature of parent sources are steep-spectrum radio-loud NLS1s, radio-quiet NLS1s and disk-hosted radio-galaxies. To test these hypotheses we built three samples of candidate sources plus a control sample, and calculated their black hole mass and Eddington ratio using their optical spectra. We then performed a Kolmogorov-Smirnov statistical test to investigate the compatibility of our different samples with a beamed population. Our results indicate that, when the inclination angle increases, a beamed source appears as a steep-spectrum radio-loud NLS1, or possibly even as a disk-hosted radio-galaxy with low black hole mass and high Eddington ratio. Further investigations, involving larger complete samples and observations at radio frequency, are needed to understand the incidence of disk-hosted radio-galaxies in the parent population, and to assess whether radio-quiet NLS1s can play a role, as well. Appendix A is available in electronic form at http://www.aanda.org

  13. Continuum reverberation mapping in a z = 1.41 radio-loud quasar

    NASA Astrophysics Data System (ADS)

    Goicoechea, L. J.; Shalyapin, V. N.; Gil-Merino, R.; Braga, V. F.

    2012-07-01

    Q0957+561 was the first discovered gravitationally lensed quasar. The mirage shows two images of a radio-loud quasar at redshift z = 1.41. The time lag between these two images is well established around one year. We detected a very prominent variation in the optical brightness of Q0957+561A at the beginning of 2009, which allowed us to predict the presence of significant intrinsic variations in multi-wavelength light curves of Q0957+561B over the first semester of 2010. To study the predicted brightness fluctuations of Q0957+561B, we conducted an X-ray, NUV, optical and NIR monitoring campaign using both ground-based and space-based facilities. The continuum NUV-optical light curves revealed evidence of a centrally irradiated, standard accretion disk. In this paper, we focus on the radial structure of the standard accretion disk and the nature of the central irradiating source in the distant radio-loud active galactic nucleus (AGN).

  14. First direct comparison of high and low ionization line kinematics in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sulentic, J. W.; Marziani, P.; Dultzin-Hacyan, D.; Calvani, M.; Moles, M.

    1995-01-01

    We present first results of a comparison of emission line shift properties for the high (HILs) and low (LILs) ionization lines in 43 low-reshift quasars. We identify a core sample of C IV lambda 1549 and hydrogen beta profiles with a wide distribution of red- and blueshifts (less than or equal to +/- 1000 km/sec). We also identify two tails in this distribution: one with large hydrogen beta redshifts (greater than or equal to 2000 km/sec) and another with large C IV blueshifts (greater than or equal to 1500 km/sec). The tails are mutually exclusive. All objects with extreme hydrogen beta redshift are radio loud, and all objects with extreme C IV blueshift are radio quiet. The core samples of smaller shifts can be most simply divided into: (1) hydrogen beta - a redshifted radio-loud population (related to the tail) and a radio-quiet population with mean shift near zero, and (2) C IV - a blueshifted radio-quiet population (related to the tail) and a radio-loud population with mean shift near zero. The results suggest fundamentally different kinematics for the HILs and LILs. They also suggest very different kinematics for radio-loud and radio-quiet active galactic nuclei. They also favor a predominance of radial motion in a large fraction of the sample.

  15. Properties of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Foschini, L.; Berton, M.; Caccianiga, A.; Ciroi, S.; Cracco, V.; Peterson, B. M.; Angelakis, E.; Braito, V.; Fuhrmann, L.; Gallo, L.; Grupe, D.; Järvelä, E.; Kaufmann, S.; Komossa, S.; Kovalev, Y. Y.; Lähteenmäki, A.; Lisakov, M. M.; Lister, M. L.; Mathur, S.; Richards, J. L.; Romano, P.; Sievers, A.; Tagliaferri, G.; Tammi, J.; Tibolla, O.; Tornikoski, M.; Vercellone, S.; La Mura, G.; Maraschi, L.; Rafanelli, P.

    2015-03-01

    We have conducted a multiwavelength survey of 42 radio loud narrow-1ine Seyfert 1 galaxies (RLNLS1s), selected by searching among all the known sources of this type and omitting those with steep radio spectra. We analyse data from radio frequencies to X-rays, and supplement these with information available from online catalogues and the literature in order to cover the full electromagnetic spectrum. This is the largest known multiwavelength survey for this type of source. We detected 90% of the sources in X-rays and found 17% at γ rays. Extreme variability at high energies was also found, down to timescales as short as hours. In some sources, dramatic spectral and flux changes suggest interplay between a relativistic jet and the accretion disk. The estimated masses of the central black holes are in the range ~106-8 M⊙, lower than those of blazars, while the accretion luminosities span a range from ~0.01 to ~0.49 times the Eddington limit, with an outlier at 0.003, similar to those of quasars. The distribution of the calculated jet power spans a range from ~1042.6 to ~1045.6 erg s-1, generally lower than quasars and BL Lac objects, but partially overlapping with the latter. Once normalised by the mass of the central black holes, the jet power of the three types of active galactic nuclei are consistent with each other, indicating that the jets are similar and the observational differences are due to scaling factors. Despite the observational differences, the central engine of RLNLS1s is apparently quite similar to that of blazars. The historical difficulties in finding radio-loud narrow-line Seyfert 1 galaxies might be due to their low power and to intermittent jetactivity. Tables 4-9 and Figs. 8-13 are available in electronic form at http://www.aanda.org

  16. A Comparison of Radio-loud and Radio-quiet E+A Galaxies

    NASA Astrophysics Data System (ADS)

    Camacho, Yssavo; Wallack, Nicole; Learis, Anna; Liu, Charles

    2015-01-01

    E+A galaxies are systems undergoing an important evolutionary transition. Their optical spectra show significant numbers of A-type stars in an elliptical galaxy that has little to no star formation (SF). These galaxies have likely experienced a recent starburst (< 1 Gyr) followed by an even more recent quench in their SF. What caused their recent SF quench remains one of the most prominent questions surrounding E+A galaxies. Within the Goto (2007, MNRAS 381,187) catalogue of 564 E+A galaxies, there is a small fraction (~3%) that have detectable radio continuum emission from FIRST or NVSS. One possible cause for the observed radio continuum is active galactic nuclei (AGN). AGN feedback is believed to be important in galaxy evolution, including SF quenching (Dubois et al. 2013, MNRAS 433, 3297). In an effort to understand better the differences between radio-loud and radio-quiet E+As, we obtained and compared their spectral energy distributions (SEDs) using the publicly available data from SDSS, 2MASS, and WISE. We also compared them to the SEDs of other known galaxy types. We find that the radio-loud and radio-quiet samples exhibit statistically insignificant differences in the optical, near-infrared, and mid-infrared bands. We also compare the two samples on a (J-H) vs. (H-K) color-color diagram. This work was supported by the National Science Foundation via grant AST-1004583 to the CUNY College of Staten Island, and grant AST-1004591 to the American Museum of Natural History.

  17. The Suzaku Observation of the Nucleus of theRadio-Loud Active Galaxy Centaurus A: Constraints on Abundances of the Accreting Material

    SciTech Connect

    Markowitz, A.; Takahashi, T.; Watanabe, S.; Nakazawa, K.; Fukazawa, Y.; Kokubun, M.; Makishima, K.; Awaki, H.; Bamba, A.; Isobe, N.; Kataoka, J.; Madejski, G.; Mushotzky, R.; Okajima, T.; Ptak, A.; Reeves, J.N.; Ueda, Y.; Yamasaki, T.; Yaqoob, T.

    2007-06-27

    A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3 to 250 keV. The net exposure times after screening were: 70 ks per X-ray Imaging Spectrometer (XIS) camera, 60.8 ks for the Hard X-ray Detector (HXD) PIN, and 17.1 ks for the HXD-GSO. The hard X-rays are fit by two power-laws of the same slope, absorbed by columns of 1.5 and 7 x 10{sup 23} cm{sup -2} respectively. The spectrum is consistent with previous suggestions that the power-law components are X-ray emission from the sub-pc VLBI jet and from Bondi accretion at the core, but it is also consistent with a partial covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature vapec model, plus a third power-law component to account for scattered nuclear emission, jet emission, and emission from X-ray Binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca and Ni are detected. The Fe K{alpha} line width yields a 200 light-day lower limit on the distance from the black hole to the line-emitting gas. Fe, Ca, and S K-shell absorption edges are detected. Elemental abundances are constrained via absorption edge depths and strengths of the fluorescent and diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.1) of the circumnuclear material suggests that it could not have originated in the relatively metal-poor outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.

  18. The Suzaku Observation of the Nucleus of the Radio Loud Active Galaxy Centaurus A: Constraints on Abundances in the Accreting Material

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Takahashi, T.A; Watanabe, S.; Nakazawa, K.; Fukazawa, Y.; Kokubun, M.; Makishima, K.; Awaki, H.; Bamba, A.; Isobe, N.; Kataoka, J.; Madejski, G.; Mushotzky, R.; Okajima, T.; Ptak, A.; Reeves, J. N.; Ueda, Y.; Yamasaki, T.; Yaqoob, T.

    2007-01-01

    A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3 to 250 keV. The hard X-rays are fit by two power laws, absorbed by columns of 1.5 and 7 x 10(exp 23) per square centimeter. The dual power-laws are consistent with previous suggestions that the powerlaw components are X-ray emission from the sub-pc VLBI jet and from Bondi accretion at the core, or are consistent with a partial covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature VAPEC model, plus a third power-law component to account for scattered nuclear emission, kpc-scale jet emission, and emission from X-ray Binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca and Ni are detected. The width of the Fe Ka line yields a 200 light-day lower limit on the distance from the black hole to the line-emitting gas. K-shell absorption edges due to Fe, Ca, and S are detected. Elemental abundances are constrained via the fluorescent lines strengths, absorption edge depths and the diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.l) of the circumnuclear material compared to that in the metal-poor outer halo suggests that the accreting material could not have originated in the outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.

  19. Multiphase ISM in Radio Loud Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Sahu, Sheetal Kumar; Chaware, Laxmikant; Pandey, S. K.

    We present optical, IR and X-ray photometric study of a sample of radio loud early type galaxies chosen from B2 sample. To get radial profiles of various photometric and geometrical parameters, We per- formed multiband surface photometry on CCD images of our sample gala- xies in ’BVR’ broad band filter and Hα narrow band filter obtained from IUCAA Girawali Observatory(IGO 2m telescope) Pune(INDIA),that descri- be elliptical isophotes fitted to the 2D light distribution of the galaxies. The main focus of our study is to analyze radial profiles of quantities such as the (local) surface brightness, the ellipticity, and the deviations from elliptical isophotes parametrized by the Fourier coefficients. We generated color maps,residual maps,dust extinction maps, Hα emission maps and x-ray diffuse maps (obtained from CHANDRA data archive) of the galaxies to study the morphology of the dust, ionized and hot gas content present in the galaxies. We carried out detailed analysis of the dust properties(mass and temperature of the dust) for sample galaxies. We also made use of the HST(WFPC2) archival optical images to investigate properties of the dust in the central region(˜10 arcsec) of our sample galaxies, including this we also estimated molecular gas mass, mass loss by red giant stars and mass loss rate from evolved stars in the sample galaxies obtained from IRAS fluxes. This multiwavelength study of our sample galaxies enabled us to find physical correlation among different phases of ISM also to address various issues related to dust i.e origin, nature and ate(evolution)of dust in radio-loud early type galaxies, coexistence of multiphase ISM in extra-galactic environment and its possible implications for the scenarios of formation and evolution of galaxies.

  20. Radio-Loud AGN: The Suzaku View

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita

    2009-01-01

    We review our Suzaku observations of Broad-Line Radio Galaxies (BLRGs). The continuum above 2 approx.keV in BLRGs is dominated by emission from an accretion flow, with little or no trace of a jet, which is instead expected to emerge at GeV energies and be detected by Fermi. Concerning the physical conditions of the accretion disk, BLRGs are a mixed bag. In some sources the data suggest relatively high disk ionization, in others obscuration of the innermost regions, perhaps by the jet base. While at hard X-rays the distinction between BLRGs and Seyferts appears blurry, one of the cleanest observational differences between the two classes is at soft X-rays, where Seyferts exhibit warm absorbers related to disk winds while BLRGs do not. We discuss the possibility that jet formation inhibits disk winds, and thus is related to the remarkable dearth of absorption features at soft X-rays in BLRGs and other radio-loud AGN.

  1. Toward a New Paradigm for the Unification of Radio Loud AGN and its Connection to Accretion

    NASA Technical Reports Server (NTRS)

    Georganpoulos, Markos; Meyer, Eileen T.; Fossati, Giovanni; Lister, Matthew L.

    2012-01-01

    We recently argued [21J that the collective properties. of radio loud active galactic nuclei point to the existence of two families of sources, one of powerful sources with single velocity jets and one of weaker jets with significant velocity gradients in the radiating plasma. These families also correspond to different accretion modes and therefore different thermal and emission line intrinsic properties: powerful sources have radiatively efficient accretion disks, while in weak sources accretion must be radiatively inefficient. Here, after we briefly review of our recent work, we present the following findings that support our unification scheme: (i) along the broken sequence of aligned objects, the jet kinetic power increases. (ii) in the powerful branch of the sequence of aligned objects the fraction of BLLs decreases with increasing jet power. (iii) for powerful sources, the fraction of BLLs increases for more un-aligned objects, as measured by the core to extended radio emission. Our results are also compatible with the possibility that a given accretion power produces jets of comparable kinetic power.

  2. Investigating powerful jets in radio-loud narrow-line Seyfert 1s

    NASA Astrophysics Data System (ADS)

    Orienti, M.; D'Ammando, F.; Larsson, J.; Finke, J.; Giroletti, M.; Dallacasa, D.; Isacsson, T.; Stoby Hoglund, J.

    2015-11-01

    We report results on multiband observations from radio to γ-rays of the two radio-loud narrow-line Seyfert 1 (NLSy1) galaxies PKS 2004-447 and J1548+3511. Both sources show a core-jet structure on parsec scale, while they are unresolved at the arcsecond scale. The high core dominance and the high variability brightness temperature make these NLSy1 galaxies good γ-ray source candidates. Fermi-Large Area Telescope detected γ-ray emission only from PKS 2004-447, with a γ-ray luminosity comparable to that observed in blazars. No γ-ray emission is observed for J1548+3511. Both sources are variable in X-rays. J1548+3511 shows a hardening of the spectrum during high activity states, while PKS 2004-447 has no spectral variability. A spectral steepening likely related to the soft excess is hinted below 2 keV for J1548+3511, while the X-ray spectra of PKS 2004-447 collected by XMM-Newton in 2012 are described by a single power law without significant soft excess. No additional absorption above the Galactic column density or the presence of an Fe line is detected in the X-ray spectra of both sources.

  3. Reverberation Mapping Campaign of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Anirban

    In this dissertation, I present results of black hole mass (M BH) measurements of four active galactic nuclei (AGN). AGN activity plays a key part in galaxy formation and evolution as evidenced by relationships like MBH-sigmastar. Accurate measurements of MBH is thus required to better understand these relationships. Luminosity of AGNs is also related to the radius of the broad line region (BLR). I have used reverberation mapping (RM) to obtain measurements of the radius of BLR and MBH of four AGNs. Reverberation data were collected over a period of 180-day span in 2012. None of these objects have been reverberation mapped before. We have also placed our objects on the Radius-Luminosity relationship and three out of four fall on the relationship. The fourth object lies above the Radius-Luminosity relationship and is a minor outlier. Two of these objects are Radio-Loud, which have orientation information available. This has increased the sample of radio-loud AGNs, which have RM from 5 to 7. We have increased the overall sample size of AGNs that have mass measurements from 62 to 66. We obtain masses for these following objects 3C 382 (MBH)= 30.1 -8.7+12.61 x 107 M O, PG2209+184 (MBH)=14.53-8.7 +5.79 x 107 MO, MARK 1040 (MBH)= 30.1-8.7+12.61 x 107 MO and 1ES0206+52(MBH)= 517.3-280+214 x 107 M O.

  4. Accretion disc/corona emission from a radio-loud narrow-line Seyfert 1 galaxy PKS 0558-504

    NASA Astrophysics Data System (ADS)

    Ghosh, R.; Dewangan, G. C.; Raychaudhuri, B.

    2016-02-01

    Approximately 10-20 per cent of active galactic nuclei (AGN) are known to eject powerful jets from the innermost regions. There is very little observational evidence if the jets are powered by spinning black holes and if the accretion discs extend to the innermost regions in radio-loud AGN. Here, we study the soft X-ray excess, the hard X-ray spectrum and the optical/UV emission from the radio-loud narrow-line Seyfert 1 galaxy PKS 0558-504 using Suzaku and Swift observations. The broad-band X-ray continuum of PKS 0558-504 consists of a soft X-ray excess emission below 2 keV that is well described by a blackbody (kT ˜ 0.13 keV) and high-energy emission that is well described by a thermal Comptonization (compps) model with kTe ˜ 250 keV, optical depth τ ˜ 0.05 (spherical corona) or kTe ˜ 90 keV, τ ˜ 0.5 (slab corona). The Comptonizing corona in PKS 0558-504 is likely hotter than in radio-quiet Seyferts such as IC 4329A and Swift J2127.4+5654. The observed soft X-ray excess can be modelled as blurred reflection from an ionized accretion disc or optically thick thermal Comptonization in a low-temperature plasma. Both the soft X-ray excess emission when interpreted as the blurred reflection and the optical/UV to soft X-ray emission interpreted as intrinsic disc Comptonized emission implies spinning (a > 0.6) black hole. These results suggest that disc truncation at large radii and retrograde black hole spin both are unlikely to be the necessary conditions for launching the jets.

  5. Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita

    There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements

  6. X-RAYS FROM A RADIO-LOUD COMPACT BROAD ABSORPTION LINE QUASAR 1045+352 AND THE NATURE OF OUTFLOWS IN RADIO-LOUD BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Kunert-Bajraszewska, Magdalena; Katarzynski, Krzysztof; Siemiginowska, Aneta; Janiuk, Agnieszka

    2009-11-10

    We present new results on X-ray properties of radio-loud broad absorption line (BAL) quasars and focus on broadband spectral properties of a high-ionization BAL (HiBAL) compact steep spectrum (CSS) radio-loud quasar 1045+352. This HiBAL quasar has a very complex radio morphology indicating either strong interactions between a radio jet and the surrounding interstellar medium or a possible re-start of the jet activity. We detected 1045+352 quasar in a short 5 ksec Chandra ACIS-S observation. We applied theoretical models to explain spectral energy distribution of 1045+352 and argue that non-thermal, inverse-Compton (IC) emission from the innermost parts of the radio jet can account for a large fraction of the observed X-ray emission. In our analysis, we also consider a scenario in which the observed X-ray emission from radio-loud BAL quasars can be a sum of IC jet X-ray emission and optically thin corona X-ray emission. We compiled a sample of radio-loud BAL quasars that were observed in X-rays to date and report no correlation between their X-ray and radio luminosity. However, the radio-loud BAL quasars show a large range of X-ray luminosities and absorption columns. This is consistent with the results obtained earlier for radio-quiet BAL quasars and may indicate an orientation effect in BAL quasars or more complex dependence between X-ray emission, radio emission, and an orientation based on the radio morphology.

  7. THE EDDINGTON LIMIT IN COSMIC RAYS: AN EXPLANATION FOR THE OBSERVED LACK OF LOW-MASS RADIO-LOUD QUASARS AND THE M{sub .}-M{sub *} RELATION

    SciTech Connect

    Sironi, Lorenzo; Socrates, Aristotle E-mail: socrates@ias.ed

    2010-02-20

    We present a feedback mechanism for supermassive black holes and their host bulges that operates during epochs of radio-loud quasar activity. In the radio cores of relativistic quasar jets, internal shocks convert a fraction of ordered bulk kinetic energy into randomized relativistic ions, or in other words cosmic rays. By employing a phenomenologically motivated jet model, we show that enough 1-100 GeV cosmic rays escape the radio core into the host galaxy to break the Eddington limit in cosmic rays. As a result, hydrostatic balance is lost and a cosmic ray momentum-driven wind develops, expelling gas from the host galaxy and thus self-limiting the black hole and bulge growth. Although the interstellar cosmic ray power is much smaller than the quasar photon luminosity, cosmic rays provide a stronger feedback than UV photons, since they exchange momentum with the galactic gas much more efficiently. The amount of energy released into the host galaxy as cosmic rays, per unit of black hole rest mass energy, is independent of black hole mass. It follows that radio-loud jets should be more prevalent in relatively massive systems since they sit in galaxies with relatively deep gravitational potentials. Therefore, jet-powered cosmic ray feedback not only self-regulates the black hole and bulge growth, but also provides an explanation for the lack of radio-loud activity in relatively small galaxies. By employing basic known facts regarding the physical conditions in radio cores, we approximately reproduce both the slope and the normalization of the M{sub .}-M{sub *} relation.

  8. SPITZER MID-IR SPECTROSCOPY OF POWERFUL 2 JY AND 3CRR RADIO GALAXIES. I. EVIDENCE AGAINST A STRONG STARBURST-AGN CONNECTION IN RADIO-LOUD AGN

    SciTech Connect

    Dicken, D.; Axon, D.; Robinson, A.; Kharb, P.; Tadhunter, C.; Ramos Almeida, C.; Morganti, R.; Kouwenhoven, M. B. N.; Spoon, H.; Inskip, K. J.; Holt, J.; Nesvadba, N. P. H.

    2012-02-01

    We present deep Spitzer/Infrared Spectrograph (IRS) spectra for complete samples of 46 2 Jy radio galaxies (0.05 < z < 0.7) and 19 3CRR FRII radio galaxies (z < 0.1), and use the detection of polycyclic aromatic hydrocarbon (PAH) features to examine the incidence of contemporaneous star formation and radio-loud active galactic nucleus (AGN) activity. Our analysis reveals PAH features in only a minority (30%) of the objects with good IRS spectra. Using the wealth of complementary data available for the 2 Jy and 3CRR samples we make detailed comparisons between a range of star formation diagnostics: optical continuum spectroscopy, mid- to far-IR (MFIR) color, far-IR excess and PAH detection. There is good agreement between the various diagnostic techniques: most candidates identified to have star formation activity on the basis of PAH detection are also identified using at least two of the other techniques. We find that only 35% of the combined 2 Jy and 3CRR sample show evidence for recent star formation activity (RSFA) at optical and/or MFIR wavelengths. This result argues strongly against the idea of a close link between starburst and powerful radio-loud AGN activity, reinforcing the view that, although a large fraction of powerful radio galaxies may be triggered in galaxy interactions, only a minority are triggered at the peaks of star formation activity in major, gas-rich mergers. However, we find that compact radio sources (D < 15 kpc) show a significantly higher incidence of RSFA (>75%) than their more extended counterparts ( Almost-Equal-To 15%-25%). We discuss this result in the context of a possible bias toward the selection of compact radio sources triggered in gas-rich environments.

  9. Reverberation mapping of two radio-loud quasars

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Anirban; Brotherton, Michael S.; Mason, Michelle; Roberts, Caroline Anna; Singh, Vikram; Johnson-Groh, Mara; Erickson, Nicholas; Lundquist, Michael J.; Alexander, Michael J.; Staudaher, Shawn; Cales, Sabrina; DiPompeo, Michael A.; Smullen, Rachel; Eftekharzadeh, Sarah; Kobulnicky, Henry A.; Nyugen, My; Chatterjee, Ritaban; Chatterjee, Suchetana; Runnoe, Jessie C.; Dale, Daniel A.

    2016-06-01

    We present results of a reverberation mapping (RM) campaign on two radio-loud quasars, 3C 382 and PG 2209+184, using the Wyoming Infrared Observatory (WIRO). For 3C 382 we determine a Hβ time lag of &ea; = 47.2 ^{16.8}_{-30.4} days, with a RMS line dispersion of 2317±195 km s^{-1}, and a corresponding mass of 2.12^{0.92}_{-1.46} × 10^8 M_⊙. For PG 2209+184, we determine a Hβ time lag of τ = 38.9 ^{11.9}_{-21} days, with a RMS line dispersion of 2114±121 km s^{-1}, and a corresponding mass of 1.45^{0.58}_{-0.87} × 10^8 M_⊙. These two objects are consistent with the radius-luminosity relationship for H$β and bring the total of radio-loud quasars reverberation mapped to seven. Radio-loud quasars bring the potential of investigating orientation biases in quasar black hole mass determination.

  10. Reverberation mapping of two radio-loud quasars

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Anirban; Brotherton, Michael S.; Mason, Michelle; Roberts, Caroline Anna; Singh, Vikram; Johnson-Groh, Mara; Erickson, Nicholas; Lundquist, Michael J.; Alexander, Michael J.; Staudaher, Shawn; Cales, Sabrina; DiPompeo, Michael A.; Smullen, Rachel; Eftekharzadeh, Sarah; Kobulnicky, Henry A.; Nyugen, My; Chatterjee, Ritaban; Chatterjee, Suchetana; Runnoe, Jessie C.; Dale, Daniel A.

    2016-06-01

    We present results of a reverberation mapping (RM) campaign on two radio-loud quasars, 3C 382 and PG 2209+184, using the Wyoming Infrared Observatory (WIRO). For 3C 382 we determine a Hβ time lag of η = 47.2 ^{16.8}_{-30.4} days, with a RMS line dispersion of 2317±195 km s^{-1}, and a corresponding mass of 2.12^{0.92}_{-1.46} × 10^8 M_⊙. For PG 2209+184, we determine a Hβ time lag of τ = 38.9 ^{11.9}_{-21} days, with a RMS line dispersion of 2114±121 km s^{-1}, and a corresponding mass of 1.45^{0.58}_{-0.87} × 10^8 M_⊙. These two objects are consistent with the radius-luminosity relationship for H$β and bring the total of radio-loud quasars reverberation mapped to seven. Radio-loud quasars bring the potential of investigating orientation biases in quasar black hole mass determination.

  11. Radio-loud Narrow Line Seyfert 1 under a different perspective: a revised black hole mass estimate from optical spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Baldi, Ranieri D.; Capetti, Alessandro; Robinson, Andrew; Laor, Ari; Behar, Ehud

    2016-05-01

    Several studies indicate that radio-loud (RL) active galactic nuclei (AGNs) are produced only by the most massive black holes (BH), MBH ˜ 108-1010 M⊙. This idea has been challenged by the discovery of RL Narrow Line Seyfert 1 (RL NLSy1), having estimated masses of MBH ˜ 106-107 M⊙. However, these low MBH estimates might be due to projection effects. Spectropolarimetry allows us to test this possibility by looking at RL NLSy1s under a different perspective, i.e. from the viewing angle of the scattering material. We here report the results of a pilot study of Very Large Telescope spectropolarimetric observations of the RL NLSy1 PKS 2004-447. Its polarization properties are remarkably well reproduced by models in which the scattering occurs in an equatorial structure surrounding its broad-line region, seen close to face-on. In particular, we detect a polarized Hα line with a width of ˜9000 km s-1, ˜6 times broader than the width seen in direct light. This corresponds to a revised estimate of MBH ˜ 6 × 108 M⊙, well within the typical range of RL AGN. The double-peaked polarized broad Hα profile of the target suggests that the rare combination of the orientation effects and a broad line region dominated by the rotation might account for this class of objects, casting doubts on the virial estimates of BH mass for type-I AGN.

  12. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    SciTech Connect

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard; Marshall, Kevin; Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver

    2014-10-10

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  13. Why Have Many of the Brightest Radio-loud Blazars Not Been Detected in Gamma-Rays by Fermi?

    NASA Astrophysics Data System (ADS)

    Lister, M. L.; Aller, M. F.; Aller, H. D.; Hovatta, T.; Max-Moerbeck, W.; Readhead, A. C. S.; Richards, J. L.; Ros, E.

    2015-09-01

    We use the complete MOJAVE 1.5 Jy sample of active galactic nuclei (AGNs) to examine the gamma-ray detection statistics of the brightest radio-loud blazars in the northern sky. We find that 23% of these AGNs were not detected above 0.1 GeV by the Fermi-LAT during the four-year 3FGL catalog period partly because of an instrumental selection effect and partly due to their lower Doppler boosting factors. Blazars with synchrotron peaks in their spectral energy distributions located below {10}13.4 Hz also tend to have high-energy peaks that lie below the 0.1 GeV threshold of the LAT, and are thus less likely to be detected by Fermi. The non-detected AGNs in the 1.5 Jy sample also have significantly lower 15 GHz radio modulation indices and apparent jet speeds, indicating that they have lower than average Doppler factors. Since the effective amount of relativistic Doppler boosting is enhanced in gamma-rays (particularly in the case of external inverse-Compton scattering), this makes them less likely to appear in the 3FGL catalog. Based on their observed properties, we have identified several bright radio-selected blazars that are strong candidates for future detection by Fermi.

  14. Elliptical accretion disks in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Eracleous, Michael; Livio, Mario; Halpern, Jules P.; Storchi-Bergmann, Thaisa

    1995-01-01

    We present a calculation of the profiles of emission lines originating in a relativistic, eccentric disk, and show examples of the resulting model profiles. Our calculations are motivated by the fact that in about one-quarter of the double-peaked emission lines observed in radio-loud active galactic nuclei (and in the mildly active nucleus of NGC 1097), the red peak is stronger than the blue peak, which is contrary to the prediction of relativistic, circular disk models. Using the eccentric disk model we fit some of the observed profiles that cannot be fitted with a circular disk model. We propose two possible scenarios for the formation of an eccentric disk in an active galactic nucleus: (a) tidal perturbation of the disk around a supermassive black hole by a smaller binary companion, and (b) formation of an elliptical disk from the debris resulting from the tidal disruption of a star by the central black hole. In the former case we show that the eccentricity can be long-lived because of the presence of the binary companion. In the latter case, although the inner parts of the disk may circularize quickly, we estimate that the outer parts will maintain their eccentricity for times much longer than the local viscous time. We suggest that it may be possible to detect profile variability on much shorter timescales than those ranging from a decade to several centuries by comparing the evolution of the line profile with detailed model predictions. We argue that line-profile variability may also be the most promising discriminant among competing models for the origin of asymmetric, double-peaked emission lines.

  15. Broad absorption line variability in radio-loud quasars

    NASA Astrophysics Data System (ADS)

    Welling, C. A.; Miller, B. P.; Brandt, W. N.; Capellupo, D. M.; Gibson, R. R.

    2014-05-01

    We investigate C IV broad absorption line (BAL) variability within a sample of 46 radio-loud quasars (RLQs), selected from Sloan Digital Sky Survey (SDSS)/Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) data to include both core-dominated (39) and lobe-dominated (7) objects. The sample consists primarily of high-ionization BAL quasars, and a substantial fraction have large BAL velocities or equivalent widths; their radio luminosities and radio-loudness values span ˜2.5 orders of magnitude. We have obtained 34 new Hobby-Eberly Telescope spectra of 28 BAL RLQs to compare to earlier SDSS data, and we also incorporate archival coverage (primarily dual-epoch SDSS) for a total set of 78 pairs of equivalent width measurements for 46 BAL RLQs, probing rest-frame time-scales of ˜80-6000 d (median 500 d). In general, only modest changes in the depths of segments of absorption troughs are observed, akin to those seen in prior studies of BAL radio-quiet quasars (RQQs). Also similar to previous findings for RQQs, the RLQs studied here are more likely to display BAL variability on longer rest-frame time-scales. However, typical values of |{Δ}EW| and |{Δ}EW|/ are ˜40 ± 20 per cent lower for BAL RLQs when compared with those of a time-scale-matched sample of BAL RQQs. Optical continuum variability is of similar amplitude in BAL RLQs and BAL RQQs; for both RLQs and RQQs, continuum variability tends to be stronger on longer time-scales. BAL variability in RLQs does not obviously depend upon their radio luminosities or radio-loudness values, but we do find tentative evidence for greater fractional BAL variability within lobe-dominated RLQs. Enhanced BAL variability within more edge-on (lobe-dominated) RLQs supports some geometrical dependence to the outflow structure.

  16. Fossil shell emission in dying radio loud AGNs

    NASA Astrophysics Data System (ADS)

    Kino, M.; Ito, H.; Kawakatu, N.; Orienti, M.; Nagai, H.; Wajima, K.; Itoh, R.

    2016-02-01

    We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolution of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock, while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in the radio band while it is bright in the TeV γ-ray band and can be detectable by CTA. Data from STELLA

  17. Radio-Loud Coronal Mass Ejections without Shocks near Earth

    NASA Astrophysics Data System (ADS)

    Akiyama, S.; Gopalswamy, N.; Xie, H.; Yashiro, S.; Makela, P. A.; St Cyr, O. C.; MacDowall, R. J.; Kaiser, M. L.

    2010-12-01

    Type II radio bursts are produced by low energy electrons accelerated in shocks driven by coronal mass ejections (CMEs). One can infer shocks near the Sun, in the Interplanetary medium, and near Earth depending on the wavelength range in which the type II bursts are produced. In fact, type II bursts are good indicators of CMEs that produce solar energetic particles. If the type II burst occurs from a source on the Earth-facing side of the solar disk, it is highly likely that a shock arrives at Earth in 2-3 days and hence can be used to predict shock arrival at Earth. However, a significant fraction of CMEs producing type II bursts were not associated shocks at Earth, even though the CMEs originated close to the disk center. There are several reasons for the lack of shock at 1 AU. CMEs originating at large central meridian distances (CMDs) may be driving a shock, but the shock may not be extended sufficiently to reach to the Sun-Earth line. Another possibility is CME cannibalism because of which shocks merge and one observes a single shock at Earth. Finally, the CME-driven shock may become weak and dissipate before reaching 1 AU. We examined a set of 30 type II bursts observed by the Wind/WAVES experiment that had the solar sources very close to the disk center (within a CMD of 15 degrees), but did not have shock at Earth. We find that the near-Sun speeds of the associated CMEs average to ~600 km/s, only slightly higher than the average speed of CMEs associated with radio-quiet shocks. However, the fraction of halo CMEs is only ~28%, compared to 40% for radio-quiet shocks and 72% for all radio-loud shocks. We conclude that the disk-center radio loud CMEs with no shocks at 1 AU are generally of lower energy and they drive shocks only close to the Sun.

  18. ENSEMBLE VARIABILITY OF NEAR-INFRARED-SELECTED ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Kouzuma, S.; Yamaoka, H. E-mail: yamaoka@phys.kyushu-u.ac.jp

    2012-03-01

    We present the properties of the ensemble variability V for nearly 5000 near-infrared active galactic nuclei (AGNs) selected from the catalog of Quasars and Active Galactic Nuclei (13th Edition) and the SDSS-DR7 quasar catalog. From three near-infrared point source catalogs, namely, Two Micron All Sky Survey (2MASS), Deep Near Infrared Survey (DENIS), and UKIDSS/LAS catalogs, we extract 2MASS-DENIS and 2MASS-UKIDSS counterparts for cataloged AGNs by cross-identification between catalogs. We further select variable AGNs based on an optimal criterion for selecting the variable sources. The sample objects are divided into subsets according to whether near-infrared light originates by optical emission or by near-infrared emission in the rest frame; and we examine the correlations of the ensemble variability with the rest-frame wavelength, redshift, luminosity, and rest-frame time lag. In addition, we also examine the correlations of variability amplitude with optical variability, radio intensity, and radio-to-optical flux ratio. The rest-frame optical variability of our samples shows negative correlations with luminosity and positive correlations with rest-frame time lag (i.e., the structure function, SF), and this result is consistent with previous analyses. However, no well-known negative correlation exists between the rest-frame wavelength and optical variability. This inconsistency might be due to a biased sampling of high-redshift AGNs. Near-infrared variability in the rest frame is anticorrelated with the rest-frame wavelength, which is consistent with previous suggestions. However, correlations of near-infrared variability with luminosity and rest-frame time lag are the opposite of these correlations of the optical variability; that is, the near-infrared variability is positively correlated with luminosity but negatively correlated with the rest-frame time lag. Because these trends are qualitatively consistent with the properties of radio-loud quasars reported

  19. Radio-Loud Coronal Mass Ejections Without Shocks Near Earth

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; SaintCyr, O. C.; MacDowall, R. J.; Kaiser, M. L.; Xie, H.; Makela, P.; Akiyama, S.

    2010-01-01

    Type II radio bursts are produced by low energy electrons accelerated in shocks driven by corona) mass ejections (CMEs). One can infer shocks near the Sun, in the Interplanetary medium, and near Earth depending on the wavelength range in which the type II bursts are produced. In fact, type II bursts are good indicators of CMEs that produce solar energetic particles. If the type 11 burst occurs from a source on the Earth-facing side of the solar disk, it is highly likely that a shock arrives at Earth in 2-3 days and hence can be used to predict shock arrival at Earth. However, a significant fraction of CMEs producing type II bursts were not associated shocks at Earth, even though the CMEs originated close to the disk center. There are several reasons for the lack of shock at 1 AU. CMEs originating at large central meridian distances (CMDs) may be driving a shock, but the shock may not be extended sufficiently to reach to the Sun-Earth line. Another possibility is CME cannibalism because of which shocks merge and one observes a single shock at Earth. Finally, the CME-driven shock may become weak and dissipate before reaching 1 AU. We examined a set of 30 type II bursts observed by the Wind/WAVES experiment that had the solar sources very close to the disk center (within a CMD of 15 degrees), but did not have shock at Earth. We find that the near-Sun speeds of the associated CMEs average to approx.600 km/s, only slightly higher than the average speed of CMEs associated with radio-quiet shocks. However, the fraction of halo CMEs is only approx.28%, compared to 40% for radio-quiet shocks and 72% for all radio-loud shocks. We conclude that the disk-center radio loud CMEs with no shocks at 1 AU are generally of lower energy and they drive shocks only close to the Sun.

  20. Fermi LAT detection of increasing gamma-ray emission from the radio-loud NLSy1 PKS 1502+036

    NASA Astrophysics Data System (ADS)

    D'Ammando, Filippo; Ciprini, Stefano

    2015-12-01

    The Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope, has observed gamma-ray flaring activity from a source positionally consistent with the radio-loud narrow-line Seyfert 1 PKS 1502+036 (also known as 3FGL J1505.1+0326, Acero et al. 2015, ApJS, 218, 23), with radio coordinates (J2000.0), R.A.: 226.2769879 deg, Dec.: 3.4418922 deg (Fey et al. 2004, AJ, 127, 3587) at redshift z = 0.4078 (Hewett & Wild 2010, MNRAS, 405, 2302).

  1. Swift Observations Of High-z Radio-loud Quasars Detected With Bat

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita M.; Tueller, J.; Markwardt, C.; Mushotzky, R.; Tavecchio, F.

    2006-01-01

    We present follow-up Swift observations of 4 high-z radio-loud quasars detected with the BAT during the 15-month survey in 15-150 keV. The 0.5-8-keV spectra are best fitted either with a power law with no excess absorption over the Galactic value (0212+735, 0836+710, 2149--307 in higher state) or by a downward-curved broken power law model (0537--286, 2149--307 in lower state). The BAT spectra integrated over the whole 15 months of the survey are fitted with a single power law, with a range of spectral slopes, Gamma=l.3-2.3. Comparison with previous SAX observations shows that there is a trend for the 15-150-keV continuum to soften with fading intensity; on the contrary, little or no spectral variations are observed at medium-hard X-rays. This may suggest either/both dramatic variability above 10-keV, or/and two separate spectral components.

  2. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  3. Compact radio cores in radio-quiet active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Maini, A.; Prandoni, I.; Norris, R. P.; Giovannini, G.; Spitler, L. R.

    2016-04-01

    Context. The mechanism of radio emission in radio-quiet (RQ) active galactic nuclei (AGNs) is still debated and might arise from the central AGN, from star formation activity in the host, or from either of these sources. A direct detection of compact and bright radio cores embedded in sources that are classified as RQ can unambiguously determine whether a central AGN significantly contributes to the radio emission. Aims: We search for compact, high-surface-brightness radio cores in RQ AGNs that are caused unambiguously by AGN activity. Methods: We used the Australian Long Baseline Array to search for compact radio cores in four RQ AGNs located in the Extended Chandra Deep Field South (ECDFS). We also targeted four radio-loud (RL) AGNs as a control sample. Results: We detected compact and bright radio cores in two AGNs that are classified as RQ and in one that is classified as RL. Two RL AGNs were not imaged because the quality of the observations was too poor. Conclusions: We report on a first direct evidence of radio cores in RQ AGNs at cosmological redshifts. Our detections show that some of the sources that are classified as RQ contain an active AGN that can contribute significantly (~50% or more) to the total radio emission.

  4. Diffuse γ-ray emission from misaligned active galactic nuclei

    SciTech Connect

    Di Mauro, M.; Donato, F.; Calore, F.; Ajello, M.; Latronico, L.

    2014-01-10

    Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. We calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). A correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with upper limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. Our results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.

  5. Variability in Active Galactic Nuclei from Propagating Turbulent Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Pollack, Maxwell; Pauls, David; Wiita, Paul J.

    2016-03-01

    We use the Athena hydrodynamics code to model propagating two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei for various input jet velocities and jet-to-ambient matter density ratios. Using results from these simulations we estimate the changing synchrotron emission by summing the fluxes from a vertical strip of zones behind the reconfinement shock, which is nearly stationary, and from which a substantial portion of the flux variability should arise. We explore a wide range of timescales by considering two light curves from each simulation; one uses a relativistic turbulence code with bulk velocities taken from our simulations as input, while the other uses the bulk velocity data to compute fluctuations caused by variations in the Doppler boosting due to changes in the direction and the speed of the flow through all zones in the strip. We then calculate power spectral densities (PSDs) from the light curves for both turbulent and bulk velocity origins for variability. The range of the power-law slopes of the PSDs for the turbulence induced variations is -1.8 to -2.3, while for the bulk velocity produced variations this range is -2.1 to -2.9 these are in agreement with most observations. When superimposed, these power spectra span a very large range in frequency (about five decades), with the turbulent fluctuations yielding most of the shorter timescale variations and the bulk flow changes dominating the longer periods.

  6. Diffuse γ-Ray Emission from Misaligned Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Di Mauro, M.; Calore, F.; Donato, F.; Ajello, M.; Latronico, L.

    2014-01-01

    Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. We calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). A correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with upper limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. Our results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.

  7. 3C 57 as an atypical radio-loud quasar: implications for the radio-loud/radio-quiet dichotomy

    NASA Astrophysics Data System (ADS)

    Sulentic, J. W.; Martínez-Carballo, M. A.; Marziani, P.; del Olmo, A.; Stirpe, G. M.; Zamfir, S.; Plauchu-Frayn, I.

    2015-06-01

    Lobe-dominated radio-loud (LD RL) quasars occupy a restricted domain in the 4D Eigenvector 1 (4DE1) parameter space which implies restricted geometry/physics/kinematics for this subclass compared to the radio-quiet (RQ) majority of quasars. We discuss how this restricted domain for the LD RL parent population supports the notion for a RQ-RL dichotomy among type 1 sources. 3C 57 is an atypical RL quasar that shows both uncertain radio morphology and falls in a region of 4DE1 space where RL quasars are rare. We present new radio flux and optical spectroscopic measures designed to verify its atypical optical/UV spectroscopic behaviour and clarify its radio structure. The former data confirms that 3C 57 falls off the 4DE1 quasar `main sequence' with both extreme optical Fe II emission (R_{Fe II} ˜ 1) and a large C IV λ1549 profile blueshift (˜-1500 km s-1). These parameter values are typical of extreme Population A sources which are almost always RQ. New radio measures show no evidence for flux change over a 50+ year time-scale consistent with compact steep-spectrum (or young LD) over core-dominated morphology. In the 4DE1 context where LD RL are usually low L/LEdd quasars, we suggest that 3C 57 is an evolved RL quasar (i.e. large blackhole mass) undergoing a major accretion event leading to a rejuvenation reflected by strong Fe II emission, perhaps indicating significant heavy metal enrichment, high bolometric luminosity for a low-redshift source and resultant unusually high Eddington ratio giving rise to the atypical C IV λ1549.

  8. EXAMINING THE RADIO-LOUD/RADIO-QUIET DICHOTOMY WITH NEW CHANDRA AND VLA OBSERVATIONS OF 13 UGC GALAXIES

    SciTech Connect

    Kharb, P.; Axon, D. J.; Robinson, A.; Capetti, A.; Balmaverde, B.; Chiaberge, M.; Macchetto, D.; Grandi, P.; Giovannini, G.; Montez, R.

    2012-04-15

    We present the results from new {approx}15 ks Chandra-ACIS and 4.9 GHz Very Large Array (VLA) observations of 13 galaxies hosting low-luminosity active galactic nuclei (AGNs). This completes the multiwavelength study of a sample of 51 nearby early-type galaxies described in Capetti and Balmaverde and Balmaverde and Capetti. The aim of the three previous papers was to explore the connection between the host galaxies and AGN activity in a radio-selected sample. We detect nuclear X-ray emission in eight sources and radio emission in all but one (viz., UGC 6985). The new VLA observations improve the spatial resolution by a factor of 10: the presence of nuclear radio sources in 12 of the 13 galaxies confirms their AGN nature. As previously indicated, the behavior of the X-ray and radio emission in these sources depends strongly on the form of their optical surface brightness profiles derived from Hubble Space Telescope imaging, i.e., on their classification as 'core', 'power-law', or 'intermediate' galaxies. With more than twice the number of 'power-law' and 'intermediate' galaxies compared to previous work, we confirm with a much higher statistical significance that these galaxies lie well above the radio-X-ray correlation established in Fanaroff-Riley type I radio galaxies and the low-luminosity 'core' galaxies. This result highlights the fact that the 'radio-loud/radio-quiet' dichotomy is a function of the host galaxy's optical surface brightness profile. We present radio-optical-X-ray spectral indices for all 51 sample galaxies. Survival statistics point to significant differences in the radio-to-optical and radio-to-X-ray spectral indices between the 'core' and 'power-law galaxies (Gehan's Generalized Wilcoxon test probability p for the two classes being statistically similar is <10{sup -5}), but not in the optical-to-X-ray spectral indices (p = 0.25). Therefore, the primary difference between the 'core' and 'power-law' galaxies is in their ability to launch

  9. The radio-loud AGN population at z ≳ 1 in the COSMOS field. I. selection and spectral energy distributions

    NASA Astrophysics Data System (ADS)

    Baldi, Ranieri D.; Capetti, Alessandro; Chiaberge, Marco; Celotti, Annalisa

    2014-07-01

    We select a sample of radio galaxies at high redshifts (z ≳ 1) in the COSMOS field by cross-matching optical and infrared (IR) images with the FIRST radio data. The aim of this study is to explore the high-z radio-loud (RL) active galactic nuclei (AGN) population at much lower luminosities than the classical samples of distant radio sources, which are similar to those of the local population of radio galaxies. Precisely, we extended a previous analysis focused on low-luminosity radio galaxies. The wide multiwavelength coverage provided by the COSMOS survey allows us to derive their spectral energy distributions (SEDs). We model them with our own developed technique 2SPD that includes old and young stellar populations and dust emission. When added to those previously selected, we obtain a sample of 74 RL AGN. The SED modeling returns several important quantities associated with the AGN and host properties. The resulting photometric redshifts range from z ~ 0.7 to 3. The sample mostly includes compact radio sources but also 21 FR IIs sources; the radio power distribution of the sample covers ~1031.5 - 1034.3 erg s-1 Hz-1, thus straddling the local FR I/FR II break. The inferred range of stellar mass of the hosts is ~1010 - 1011.5M⊙. The SEDs are dominated by the contribution from an old stellar population with an age of ~1 - 3 Gyr for most of the sources. However, UV and mid-IR (MIR) excesses are observed for half of the sample. The dust luminosities inferred from the MIR excesses are in the range, Ldust ~ 1043 - 1045.5 erg s-1, which are associated with temperatures approximately of 350-1200 K. Estimates of the UV component yield values of ~1041.5 - 1045.5 erg s-1 at 2000 Å. The UV emission is significantly correlated with both IR and radio luminosities; the former being the stronger link. However, the origin of UV and dust emission, whether it is produced by the AGN of by star formation, is still unclear. Our results show that this RL AGN population at high

  10. The extreme ultraviolet spectra of low-redshift radio-loud quasars

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Reynolds, Cormac; Marziani, Paola; O'Dea, Christopher P.

    2016-07-01

    This paper reports on the extreme ultraviolet (EUV) spectrum of three low-redshift (z ˜ 0.6) radio-loud quasars, 3C 95, 3C 57 and PKS 0405-123. The spectra were obtained with the Cosmic Origins Spectrograph of the Hubble Space Telescope. The bolometric thermal emission, Lbol, associated with the accretion flow is a large fraction of the Eddington limit for all of these sources. We estimate the long-term time-averaged jet power, overline{Q}, for the three sources. overline{Q}/L_{bol}, is shown to lie along the correlation of overline{Q}/L_{bol}, and αEUV found in previous studies of the EUV continuum of intermediate and high-redshift quasars, where the EUV continuum flux density between 1100 and 700 Å is defined by F_{ν } ˜ ν ^{-α _{EUV}}. The high Eddington ratios of the three quasars extend the analysis into a wider parameter space. Selecting quasars with high Eddington ratios has accentuated the statistical significance of the partial correlation analysis of the data. Namely, the correlation of overline{Q}/L_{bol} and αEUV is fundamental, and the correlation of overline{Q} and αEUV is spurious at a very high statistical significance level (99.8 per cent). This supports the regulating role of ram pressure of the accretion flow in magnetically arrested accretion models of jet production. In the process of this study, we use multifrequency and multiresolution Very Large Array radio observations to determine that one of the bipolar jets in 3C 57 is likely frustrated by galactic gas that keeps the jet from propagating outside the host galaxy.

  11. The host galaxies of active galactic nuclei with powerful relativistic jets

    NASA Astrophysics Data System (ADS)

    Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L.

    2016-08-01

    We present deep near-infrared (NIR) images of a sample of 19 intermediate-redshift (0.3 < z < 1.0) radio-loud active galactic nuclei (AGN) with powerful relativistic jets (L1.4 GHz > 1027 W Hz-1), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities L1.4 GHz ˜ 1023.7-1028.3 W Hz-1, allowing us to divide our sample into high-luminosity blazars (HLBs) and low-luminosity blazars (LLBs). The host galaxies of our sample are bright and seem to follow the μe-Reff relation for ellipticals and bulges. The two populations of blazars show different behaviours in the MK,nuclear -MK,bulge plane, where a statistically significant correlation is observed for HLBs. Although it may be affected by selection effects, this correlation suggests a close coupling between the accretion mode of the central supermassive black hole and its host galaxy, which could be interpreted in terms of AGN feedback. Our findings are consistent with semi-analytical models where low-luminosity AGN emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and high-luminosity AGN are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.

  12. The far-infrared emission of the radio-loud quasar 3C 318

    NASA Astrophysics Data System (ADS)

    Podigachoski, P.; Barthel, P. D.; Peletier, R. F.; Steendam, S.

    2016-01-01

    3C 318, a radio-loud quasar at z = 1.574, is a subgalactic-sized radio source, and a good test-bed for the interplay between black hole and galaxy growth in the high-z Universe. Based on its IRAS, ISO, and SCUBA detections, it has long been considered as one of the most intrinsically luminous (LIR > 1013 L⊙) infrared sources in the Universe. Recent far-infrared data from the Herschel Space Observatory reveal that most of the flux associated with 3C 318, measured with earlier instruments, in fact comes from a bright nearby source. Optical imaging and spectroscopy show that this infrared-bright source is a strongly star-forming pair of interacting galaxies at z = 0.35. Adding existing Spitzer and SDSS photometry, we perform a spectral energy distribution analysis of the pair, and find that it has a combined infrared luminosity of LIR = 1.5 × 1012 L⊙, comparable to other intermediate-redshift ultra-luminous infrared galaxies studied with Herschel. Isolating the emission from 3C 318's host, we robustly constrain the level of star formation to a value a factor of three lower than that published earlier, which is more in line with the star formation activity found in other Herschel-detected 3CR objects at similar redshift.

  13. WHAT GOVERNS THE BULK VELOCITY OF THE JET COMPONENTS IN ACTIVE GALACTIC NUCLEI?

    SciTech Connect

    Chai Bo; Cao Xinwu; Gu Minfeng E-mail: cxw@shao.ac.cn

    2012-11-10

    We use a sample of radio-loud active galactic nuclei (AGNs) with measured black hole masses to explore the jet formation mechanisms in these sources. Based on Koenigl's inhomogeneous jet model, the jet parameters, such as the bulk motion Lorentz factor, magnetic field strength, and electron density in the jet, can be estimated with the very long baseline interferometry and X-ray data.. We find a significant correlation between black hole mass and the bulk Lorentz factor of the jet components for this sample, while no significant correlation is present between the bulk Lorentz factor and the Eddington ratio. The massive black holes will be spun up through accretion, as the black holes acquire mass and angular momentum simultaneously through accretion. Recent investigation indeed suggested that most supermassive black holes in elliptical galaxies have on average higher spins than the black holes in spiral galaxies, where random, small accretion episodes (e.g., tidally disrupted stars, accretion of molecular clouds) might have played a more important role. If this is true, then the correlation between black hole mass and the bulk Lorentz factor of the jet components found in this work implies that the motion velocity of the jet components is probably governed by the black hole spin. No correlation is found between the magnetic field strength at 10R {sub S} (R {sub S} = 2GM/c {sup 2} is the Schwarzschild radius) in the jets and the bulk Lorentz factor of the jet components for this sample. This is consistent with the black hole spin scenario, i.e., the faster moving jets are magnetically accelerated by the magnetic fields threading the horizon of more rapidly rotating black holes. The results imply that the Blandford-Znajek mechanism may dominate over the Blandford-Payne mechanism for the jet acceleration, at least in these radio-loud AGNs.

  14. RADIO PROPERTIES OF LOW-REDSHIFT BROAD-LINE ACTIVE GALACTIC NUCLEI INCLUDING EXTENDED RADIO SOURCES

    SciTech Connect

    Rafter, Stephen E.; Crenshaw, D. Michael; Wiita, Paul J.

    2011-03-15

    We present a study of the extended radio emission in a sample of 8434 low-redshift (z < 0.35) broad-line active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. To calculate the jet and lobe contributions to the total radio luminosity, we have taken the 846 radio core sources detected in our previous study of this sample and performed a systematic search in the FIRST database for extended radio emission that is likely associated with the optical counterparts. We found that 51 out of 846 radio core sources have extended emission (>4'' from the optical AGN) that is positively associated with the AGN, and we have identified an additional 12 AGNs with extended radio emission but no detectable radio core emission. Among these 63 AGNs, we found 6 giant radio galaxies, with projected emission exceeding 750 kpc in length, and several other AGNs with unusual radio morphologies also seen in higher redshift surveys. The optical spectra of many of the extended sources are similar to those of typical broad-line radio galaxy spectra, having broad H{alpha} emission lines with boxy profiles and large M{sub BH}. With extended emission taken into account, we find strong evidence for a bimodal distribution in the radio-loudness parameter R ({identical_to}{nu}{sub radio} L{sub radio}/{nu}{sub opt} L{sub opt}), where the lower radio luminosity core-only sources appear as a population separate from the extended sources, with a dividing line at log(R) {approx}1.75. This dividing line ensures that these are indeed the most radio-loud AGNs, which may have different or extreme physical conditions in their central engines when compared to the more numerous radio-quiet AGNs.

  15. The innermost dusty structure in active galactic nuclei as probed by the Keck interferometer

    NASA Astrophysics Data System (ADS)

    Kishimoto, M.; Hönig, S. F.; Antonucci, R.; Barvainis, R.; Kotani, T.; Tristram, K. R. W.; Weigelt, G.; Levin, K.

    2011-03-01

    We are now exploring the inner region of type 1 active galactic nuclei (AGNs) with the Keck interferometer in the near-infrared. Adding to the four targets previously studied, we report measurements of the K-band (2.2 μm) visibilities for four more targets, namely AKN120, IC 4329A, Mrk6, and the radio-loud QSO 3C 273 at z = 0.158. The observed visibilities are quite high for all the targets, which we interpret as an indication of the partial resolution of the dust sublimation region. The effective ring radii derived from the observed visibilities scale approximately with L1/2, where L is the AGN luminosity. Comparing the radii with those from independent optical-infrared reverberation measurements, these data support our previous claim that the interferometric ring radius is either roughly equal to or slightly larger than the reverberation radius. We interpret the ratio of these two radii for a given L as an approximate probe of the radial distribution of the inner accreting material. We show tentative evidence that this inner radial structure might be closely related to the radio-loudness of the central engine. Finally, we re-observed the brightest Seyfert 1 galaxy NGC 4151. Its marginally higher visibility at a shorter projected baseline, compared to our previous measurements obtained one year before, further supports the partial resolution of the inner structure. We did not detect any significant change in the implied emission size when the K-band flux was brightened by a factor of 1.5 over a time interval of one year.

  16. Phenomenology of Broad Emission Lines in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Sulentic, J. W.; Marziani, P.; Dultzin-Hacyan, D.

    Broad emission lines hold fundamental clues about the kinematics and structure of the central regions in AGN. In this article we review the most robust line profile properties and correlations emerging from the best data available. We identify fundamental differences between the profiles of radio-quiet and radio-loud sources as well as differences between the high- and low-ionization lines, especially in the radio-quiet majority of AGN. An Eigenvector 1 correlation space involving FWHM Hβ, W(FeIIopt)/W(Hβ), and the soft X-ray spectral index provides optimal discrimination between all principal AGN types (from narrow-line Seyfert 1 to radio galaxies). Both optical and radio continuum luminosities appear to be uncorrelated with the E1 parameters. We identify two populations of radio-quiet AGN: Population A sources (with FWHM(Hβ) <~ 4000 km s-1, generally strong FeII emission and a soft X-ray excess) show almost no parameter space overlap with radio-loud sources. Population B shows optical properties largely indistinguishable from radio-loud sources, including usually weak FeII emission, FWHM(Hβ) >~ 4000 km s-1 and lack of a soft X-ray excess. There is growing evidence that a fundamental parameter underlying Eigenvector 1 may be the luminosity-to-mass ratio of the active nucleus (L/M), with source orientation playing a concomitant role.

  17. Selection of High-z Radio-Loud Quasars, and Their Luminosity Function

    NASA Astrophysics Data System (ADS)

    Tuccillo, D.; González-Serrano, J. I.; Benn, C. R.

    We present the selection techniques based on the use of Neural Networks and on the cross match between FIRST and SDSS that lead to the spectroscopic identification of 15 new Radio Loud QSOs in the redshift range 3. 6 ≤ z ≤ 4. 4. These QSOs did not have previous spectroscopical identification in SDSS or other works. Our selection method is highly complete (97 %) and it allows the estimation of the binned luminosity function of radio-loud quasar at z ˜ 4 with unprecedented accuracy. Our luminosity function is compared with the results of other samples of RL QSOs in similar ranges of redshift and with the whole population of QSOs (RL+RQ). The evolution of the luminosity function with redshift was for many years interpreted as a flattening of the bright end slope, but has recently been re-interpreted as strong evolution of the break luminosity for high-z QSOs and our results, for the radio-loud population, are consistent with this. We also find indications of a constant radio-loud fraction for QSOs at high z. Our next investigation will select RL QSOs candidates in the range of redshift 4. 4 ≤ z ≤ 5. 7, and will make use of data in the radio (FIRST), in the optical (SDSS DR10) and in the infrared (UKIDSS Large Area Survey DR10, and WISE).

  18. SHALON observations of Active Galactic Nuclei at red shift from z = 0.0179 to z = 2.979

    NASA Astrophysics Data System (ADS)

    Sinitsyna, V. G.; Alaverdyan, A. Y.; Andreeva, M. S.; Balygin, K. A.; Borisov, S. S.; Ivanov, I. A.; Kirichenko, A. M.; Klimov, A. I.; Kozhukhova, I. P.; Mirzafatikhov, R. M.; Moseiko, N. I.; Nikolsky, S. I.; Ostashev, I. E.; Palamarchuk, A. I.; Sinitsyna, V. Y.; Volokh, I. G.

    2016-05-01

    The radio-loud active galactic nuclei having the radio emission arising from a core region rather than from lobes are often referred to as “blazars” and include Flat Spectrum Radio Quasars (FSRQ) and BL Lacertae (BL Lac) objects. During the period 1992 - 2015, SHALON has been used for observations of the metagalactic sources NGC1275, Mkn421, Mkn501, Mkn180, 3c382, 4c+31.63, OJ 287, 3c454.3, 4c+55.17, 1739+522. We present results of long term observations of FSRQ: among them are known object 3c454.3, high-red shifted quasar 1739+522 as well as BL Lac type objects. The observation results are presented with integral spectra, images and spectral energy distributions for each of sources at energies > 800 GeV. A number of variability periods in different wavelengths including VHE γ-rays were found.

  19. New insights on the QSO radio-loud/radio-quiet dichotomy: SDSS spectra in the context of the 4D eigenvector1 parameter space

    NASA Astrophysics Data System (ADS)

    Zamfir, S.; Sulentic, J. W.; Marziani, P.

    2008-06-01

    We search for a dichotomy/bimodality between radio-loud (RL) and radio-quiet (RQ) type 1 active galactic nuclei (AGN). We examine several samples of Slogan Digital Sky Survey (SDSS) quasi-stellar objects (QSOs) with high signal-to-noise ratio optical spectra and matching Faint Images of the Radio Sky at Twenty-cm/NRAO VLA Sky Survey (FIRST/NVSS) radio observations. We use the radio data to identify the weakest RL sources with a Fanaroff-Riley type II (FRII) structure to define a RL/RQ boundary which corresponds to log L1.4GHz = 31.6 ergs-1 Hz-1. We measure the properties of broad-line Hβ and FeII emission to define the optical plane of a 4DE1 spectroscopic diagnostic space. The RL quasars occupy a much more restricted domain in this optical plane compared to the RQ sources, which a 2D Kolmogorov-Smirnov test finds to be highly significant. This tells us that the range of broad-line region kinematics and structure for RL sources is more restricted than for the RQ QSOs, which supports the notion of dichotomy. FRII and CD RL sources also show significant 4DE1 domain differences that likely reflect differences in line-of-sight orientation (inclined versus face-on, respectively) for these two classes. The possibility of a distinct radio-intermediate (RI) population between RQ and RL source is disfavoured because a 4DE1 diagnostic space comparison shows no difference between RI and RQ sources. We show that searches for dichotomy in radio versus bolometric luminosity diagrams will yield ambiguous results mainly because in a reasonably complete sample, the radio brightest RQ sources will be numerous enough to blur the gap between RQ and RL sources. Within resolution constraints of NVSS and FIRST, we find no FRI sources among the broad-line quasar population.

  20. Accretion disc-corona and jet emission from the radio-loud narrow-line Seyfert 1 galaxy RX J1633.3+4719

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, G. C.; Gandhi, P.; Misra, R.; Kembhavi, A. K.

    2016-08-01

    We perform X-ray/ultraviolet (UV) spectral and X-ray variability studies of the radio-loud narrow-line Seyfert 1 (NLS1) galaxy RX J1633.3+4719 using XMM-Newton and Suzaku observations from 2011 and 2012. The 0.3-10 keV spectra consist of an ultrasoft component described by an accretion disc blackbody (kT_in = 39.6^{+11.2}_{-5.5} eV) and a power law due to the thermal Comptonization (Γ = 1.96^{+0.24}_{-0.31}) of the disc emission. The disc temperature inferred from the soft excess is at least a factor of 2 lower than that found for the canonical soft excess emission from radio-quiet NLS1s. The UV spectrum is described by a power law with photon index 3.05^{+0.56}_{-0.33}. The observed UV emission is too strong to arise from the accretion disc or the host galaxy, but can be attributed to a jet. The X-ray emission from RX J1633.3+4719 is variable with fractional variability amplitude Fvar = 13.5 ± 1.0 per cent. In contrast to radio-quiet active galactic nuclei (AGN), X-ray emission from the source becomes harder with increasing flux. The fractional rms variability increases with energy and the rms spectrum is well described by a constant disc component and a variable power-law continuum with the normalization and photon index being anticorrelated. Such spectral variability cannot be caused by variations in the absorption and must be intrinsic to the hot corona. Our finding of possible evidence for emission from the inner accretion disc, jet and hot corona from RX J1633.3+4719 in the optical to X-ray bands makes this object an ideal target to probe the disc-jet connection in AGN.

  1. Compact steep-spectrum sources as the parent population of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Berton, M.; Caccianiga, A.; Foschini, L.; Peterson, B. M.; Mathur, S.; Terreran, G.; Ciroi, S.; Congiu, E.; Cracco, V.; Frezzato, M.; La Mura, G.; Rafanelli, P.

    2016-06-01

    Narrow-line Seyfert 1 galaxies (NLS1s) are an interesting subclass of active galactic nuclei (AGN), which tipically does not exhibit any strong radio emission. Seven percent of them, though, are radio-loud and often show a flat radio-spectrum (F-NLS1s). This, along to the detection of γ-ray emission coming from them, is usually interpreted as a sign of a relativistic beamed jet oriented along the line of sight. An important aspect of these AGN that must be understood is the nature of their parent population, in other words how do they appear when observed under different angles. In the recent literature it has been proposed that a specific class of radio-galaxies, compact-steep sources (CSS) classified as high excitation radio galaxies (HERG), can represent the parent population of F-NLS1s. To test this hypothesis in a quantitative way,in this paper we analyzed the only two statistically complete samples of CSS/HERGs and F-NLS1s available in the literature. We derived the black hole mass and Eddington ratio distributions, and we built for the first time the radio luminosity function of F-NLS1s. Finally, we applied a relativistic beaming model to the luminosity function of CSS/HERGs, and compared the result with the observed function of F-NLS1s. We found that compact steep-spectrum sources are valid parent candidates and that F-NLS1s, when observed with a different inclination, might actually appear as CSS/HERGs.

  2. The effect of Compton drag on the dynamics of dissipative Poynting-dominated flows: implications for the unification of radio loud AGN

    NASA Astrophysics Data System (ADS)

    Levinson, A.; Globus, N.

    2016-05-01

    The dynamics of a dissipative Poynting-dominated flow subject to a radiation drag due to Compton scattering of ambient photons by relativistic electrons accelerated in reconnecting current sheets is studied. It is found that the efficiency at which magnetic energy is converted to radiation is limited to a maximum value of ɛc = 3ldis σ0/4(σ0 + 1), where σ0 is the initial magnetization of the flow and ldis ≤ 1 the fraction of initial Poynting flux that can dissipate. The asymptotic Lorentz factor satisfies Γ∞ ≥ Γ0(1 + ldis σ0/4), where Γ0 is the initial Lorentz factor. This limit is approached in cases where the cooling time is shorter than the local dissipation time. A somewhat smaller radiative efficiency is expected if radiative losses are dominated by synchrotron and Synchrotron Self-Compton emissions. It is suggested that under certain conditions magnetic field dissipation may occur in two distinct phases: On small scales, asymmetric magnetic fields that are advected into the polar region and dragged out by the outflow dissipate to a more stable configuration. The dissipated energy is released predominantly as gamma rays. On much larger scales, the outflow encounters a flat density profile medium and re-collimates. This leads to further dissipation and wobbling of the jet head by the kink instability, as found recently in 3D magnetohydrodynamic simulations. Within the framework of a model proposed recently to explain the dichotomy of radio loud active galactic nuclei (AGN), this scenario can account for the unification of gamma-ray blazars with Fanaroff-Riley type I and Fanaroff-Riley type II radio sources.

  3. The peculiar radio-loud narrow line Seyfert 1 galaxy 1H 0323+342

    SciTech Connect

    Paliya, Vaidehi S.; Stalin, C. S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Anjum, Ayesha; Pandey, S. B.

    2014-07-10

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ∼3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  4. The Peculiar Radio-loud Narrow Line Seyfert 1 Galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.; Anjum, Ayesha; Pandey, S. B.

    2014-07-01

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ~3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  5. CMB quenching of high-redshift radio-loud AGNs

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Haardt, F.; Ciardi, B.; Sbarrato, T.; Gallo, E.; Tavecchio, F.; Celotti, A.

    2015-10-01

    The very existence of more than a dozen of high-redshift (z ≳ 4) blazars indicates that a much larger population of misaligned powerful jetted active galactic nucleus (AGN) was already in place when the Universe was ≲1.5 Gyr old. Such parent population proved to be very elusive, and escaped direct detection in radio surveys so far. High-redshift blazars themselves seem to be failing in producing extended radio lobes, raising questions about the connection between such class and the vaster population of radio galaxies. We show that the interaction of the jet electrons with the intense cosmic microwave background (CMB) radiation explains the lack of extended radio emission in high-redshift blazars and in their parent population, helping to explain the apparently missing misaligned counterparts of high-redshift blazars. On the other hand, the emission from the more compact and more magnetized hotspots are less affected by the enhanced CMB energy density. By modelling the spectral energy distribution of blazar lobes and hotspots, we find that most of them should be detectable by low-frequency deep radio observations, e.g. by LOw-Frequency ARray for radio astronomy and by relatively deep X-ray observations with good angular resolution, e.g. by the Chandra satellite. At high redshifts, the emission of a misaligned relativistic jet, being debeamed, is missed by current large sky area surveys. The isotropic flux produced in the hotspots can be below ˜1 mJy and the isotropic lobe radio emission is quenched by the CMB cooling. Consequently, even sources with very powerful jets can go undetected in current radio surveys, and misclassified as radio-quiet AGNs.

  6. Fermi monitoring of radio-loud narrow-line Seyfert 1 galaxies

    SciTech Connect

    Paliya, Vaidehi S.; Stalin, C. S.; Ravikumar, C. D.

    2015-02-01

    We present detailed analysis of the γ-ray flux variability and spectral properties of the five radio-loud narrow line Seyfert 1 (RL-NLSy1) galaxies, detected by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope, namely 1H 0323+342, SBS 0846+513, PMN J0948+0022, PKS 1502+036, and PKS 2004−447. The first three sources show significant flux variations, including the rapid variability of a few hours by 1H 0323+342. The average γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 shows deviation from a simple power-law (PL) behavior, whereas the PL model gives a better fit for the other three sources. The spectra of 1H 0323+342, SBS 0846+513, and PMN J0948+0022, which are in low, flaring, and moderately active states, respectively, show significant curvature. Such curvature in the γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 could be due to the emission region located inside the broad line region (BLR) where the primary mechanism of the γ-ray emission is inverse-Compton (IC) scattering of BLR photons occurring in the Klein–Nishina regime. The γ-ray emission of SBS 0846+513 is explained by IC scattering of dusty torus photons, which puts the emission region outside the BLR and thus under the Thomson regime. Therefore, the observed curvature of SBS 0846+513 could be intrinsic to the particle energy distribution. The presence of curvature in the γ-ray spectrum and flux variability amplitudes of some of the RL-NLSy1 galaxies suggests that these sources could be akin to low/moderate jet power flat spectrum radio quasars.

  7. Covering factors of the dusty obscurers in radio-loud and radio-quiet quasars

    NASA Astrophysics Data System (ADS)

    Gupta, Maitrayee; Sikora, Marek; Nalewajko, Krzysztof

    2016-09-01

    We compare covering factors of circumnuclear dusty obscurers in radio-loud and radio-quiet quasars. The radio-loud quasars are represented by a sample of FR II quasars obtained by cross-matching a catalog of the FR II radio sources selected by van Velzen et al. with the SDSS DR7 catalog of quasars. Covering factors of FR II quasars are compared with covering factors of the radio-quiet quasars matched with them in redshift, black hole mass, and Eddington-ratio. We found that covering factors, proxied by the infrared-to-bolometric luminosity ratio, are on average slightly smaller in FR II quasars than in radio-quiet quasars, however, this difference is statistically significant only for the highest Eddington ratios. For both samples, no statistically significant dependence of a median covering factor on Eddington ratio, black hole mass, nor redshift can be claimed.

  8. Radio-loud narrow-line Seyfert 1 galaxies with high-velocity outflows

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Xu, D.; Zensus, J. A.

    2016-02-01

    We have studied four radio-loud Narrow-line Seyfert 1 (NLS1) galaxies with extreme optical emission-line shifts, indicating radial outflow velocities of up 2450 km s-1. The shifts are accompanied by strong line broadening, up to 2270 km s-1 in [NeV]. A significant ionization stratification (higher line shift at higher ionization potential) of most ions implies that we see a large-scale wind rather than single, localized jet-cloud interactions. The observations are consistent with a scenario, where the signatures of outflows are maximized because of a pole-on view into the central engine of these radio-loud NLS1 galaxies.

  9. The Optical-UV Emissivity of Quasars: Dependence on Black Hole Mass and Radio Loudness

    NASA Astrophysics Data System (ADS)

    Shankar, Francesco; Calderone, Giorgio; Knigge, Christian; Matthews, James; Buckland, Rachel; Hryniewicz, Krzysztof; Sivakoff, Gregory; Dai, Xinyu; Richardson, Kayleigh; Riley, Jack; Gray, James; La Franca, Fabio; Altamirano, Diego; Croston, Judith; Gandhi, Poshak; Hönig, Sebastian; McHardy, Ian; Middleton, Matthew

    2016-02-01

    We analyzed a large sample of radio-loud and radio-quiet quasar spectra at redshift 1.0 ≤ z ≤ 1.2 to compare the inferred underlying quasar continuum slopes (after removal of the host galaxy contribution) with accretion disk models. The latter predict redder (decreasing) α3000 continuum slopes ({L}ν \\propto {ν }α at 3000 Å) with increasing black hole mass, bluer α3000 with increasing luminosity at 3000 Å, and bluer α3000 with increasing spin of the black hole, when all other parameters are held fixed. We find no clear evidence for any of these predictions in the data. In particular, we find the following. (i) α3000 shows no significant dependence on black hole mass or luminosity. Dedicated Monte Carlo tests suggest that the substantial observational uncertainties in the black hole virial masses can effectively erase any intrinsic dependence of α3000 on black hole mass, in line with some previous studies. (ii) The mean slope α3000 of radio-loud sources, thought to be produced by rapidly spinning black holes, is comparable to, or even redder than, that of radio-quiet quasars. Indeed, although quasars appear to become more radio loud with decreasing luminosity, we still do not detect any significant dependence of α3000 on radio loudness. The predicted mean α3000 slopes tend to be bluer than in the data. Disk models with high inclinations and dust extinction tend to produce redder slopes closer to empirical estimates. Our mean α3000 values are close to the ones independently inferred at z < 0.5, suggesting weak evolution with redshift, at least for moderately luminous quasars.

  10. X-RAY EMISSION FROM OPTICALLY SELECTED RADIO-INTERMEDIATE AND RADIO-LOUD QUASARS

    SciTech Connect

    Miller, B. P.; Brandt, W. N.; Schneider, D. P.; Wu Jianfeng; Gibson, R. R.; Steffen, A. T. E-mail: niel@astro.psu.edu E-mail: jfwu@astro.psu.edu E-mail: rgibson@astro.washington.edu

    2011-01-01

    We present the results of an investigation into the X-ray properties of radio-intermediate and radio-loud quasars (RIQs and RLQs, respectively). We combine large, modern optical (e.g., SDSS) and radio (e.g., FIRST) surveys with archival X-ray data from Chandra, XMM-Newton, and ROSAT to generate an optically selected sample that includes 188 RIQs and 603 RLQs. This sample is constructed independently of X-ray properties but has a high X-ray detection rate (85%); it provides broad and dense coverage of the l-z plane, including at high redshifts (22% of objects have z = 2-5), and it extends to high radio-loudness values (33% of objects have R* = 3-5, using logarithmic units). We measure the 'excess' X-ray luminosity of RIQs and RLQs relative to radio-quiet quasars (RQQs) as a function of radio loudness and luminosity, and parameterize the X-ray luminosity of RIQs and RLQs both as a function of optical/UV luminosity and also as a joint function of optical/UV and radio luminosity. RIQs are only modestly X-ray bright relative to RQQs; it is only at high values of radio loudness (R* {approx}> 3.5) and radio luminosity that RLQs become strongly X-ray bright. We find no evidence for evolution in the X-ray properties of RIQs and RLQs with redshift (implying jet-linked IC/CMB emission does not contribute substantially to the nuclear X-ray continuum). Finally, we consider a model in which the nuclear X-ray emission contains both disk/corona-linked and jet-linked components and demonstrate that the X-ray jet-linked emission is likely beamed but to a lesser degree than applies to the radio jet. This model is used to investigate the increasing dominance of jet-linked X-ray emission at low inclinations.

  11. Diffuse neutrino intensity from the inner jets of active galactic nuclei: Impacts of external photon fields and the blazar sequence

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Inoue, Yoshiyuki; Dermer, Charles D.

    2014-07-01

    We study high-energy neutrino production in inner jets of radio-loud active galactic nuclei (AGN), taking into account effects of external photon fields and the blazar sequence. We show that the resulting diffuse neutrino intensity is dominated by quasar-hosted blazars, in particular, flat spectrum radio quasars, and that PeV-EeV neutrino production due to photohadronic interactions with broadline and dust radiation is unavoidable if the AGN inner jets are ultrahigh-energy cosmic-ray (UHECR) sources. Their neutrino spectrum has a cutoff feature around PeV energies since target photons are due to Lyα emission. Because of infrared photons provided by the dust torus, neutrino spectra above PeV energies are too hard to be consistent with the IceCube data unless the proton spectral index is steeper than 2.5, or the maximum proton energy is ≲100 PeV. Thus, the simple model has difficulty in explaining the IceCube data. For the cumulative neutrino intensity from blazars to exceed ˜10-8 GeV cm-2 s-1 sr-1, their local cosmic-ray energy generation rate would be ˜10-100 times larger than the local UHECR emissivity but is comparable to the averaged γ-ray blazar emissivity. Interestingly, future detectors such as the Askaryan Radio Array can detect ˜0.1-1 EeV neutrinos even in more conservative cases, allowing us to indirectly test the hypothesis that UHECRs are produced in the inner jets. We find that the diffuse neutrino intensity from radio-loud AGN is dominated by blazars with γ-ray luminosity of ≳1048 erg s-1, and the arrival directions of their ˜1-100 PeV neutrinos correlate with the luminous blazars detected by Fermi.

  12. The Formation of Galactic Bulges

    NASA Astrophysics Data System (ADS)

    Carollo, C. Marcella; Ferguson, Henry C.; Wyse, Rosemary F. G.

    2000-03-01

    Part I. Introduction: What are galactic bulges?; Part II. The Epoch of Bulge Formation: Origin of bulges; Deep sub-mm surveys: High-z ULIRGs and the formation of spheroids; Ages and metallicities for stars in the galactic bulge; Integrated stellar populations of bulges: First results; HST-NICMOS observations of galactic bulges: Ages and dust; Inside-out bulge formation and the origin of the Hubble sequence; Part III. The Timescales of Bulge Formation: Constraints on the bulge formation timescale from stellar populations; Bulge building with mergers and winds; Role of winds, starbursts, and activity in bulge formation; Dynamical timescales of bulge formation; Part IV. Physical Processes in Bulge Formation: the role of bars for secular bulge formation; Bars and boxy/peanut-shaped bulges: an observational point of view; Boxy- and peanut-shaped bulges; A new class of bulges; The role of secondary bars in bulge formation; Radial transport of molecular gas to the nuclei of spiral galaxies; Dynamical evolution of bulge shapes; Two-component stellar systems: Phase-space constraints; Central NGC 2146 - a firehose-type bending instability?; Bulge formation: the role of the multi-phase ISM; Global evolution of a self-gravitating multi-phase ISM in the central kpc region of galaxies; Part V. Bulge Phenomenology: Bulge-disk decomposition of spiral galaxies in the near-infrared; The triaxial bulge of NGC 1371; The bulge-disk orthogonal decoupling in galaxies: NGC 4698 and NGC 4672; The kinematics and the origin of the ionized gas in NGC 4036; Optically thin thermal plasma in the galactic bulge; X-ray properties of bulges; The host galaxies of radio-loud AGN; The centers of radio-loud early-type galaxies with HST; Central UV spikes in two galactic spheroids; Conference summary: where do we stand?

  13. Morphological research on radio loud AGN 4C39.25 using KaVA observations

    NASA Astrophysics Data System (ADS)

    Yoo, Hyemin; Sohn, Bong Won; Yi, Sukyoung; KaVA AGN WG members

    2016-01-01

    4C39.25 (0923+392) is a distant radio loud AGN placed at redshift 0.695. Its kilo-parsec scale jet observed by VLBA(Kollgaard et al. 1990) and parsec scale jet observed by VLBA(Kellermann et al. 1998) are misaligned. This might indicate episodic-jet activity which recently turned on. This object currently shows two stationary compact parsec-scale components:a bright jet component on the east and less luminous core on the west. Also, it is known that there have been superluminal jet components which are flowing from the core toward east, and then merging with the bright jet component (Marscher et al. 1991, Alberdi et al. 2000, Lister et al. 2013). Including the detection of broad emission lines(SDSS), its viewing angle was concluded to be small. However, the jet component being more luminous than the core is abnormal for a source with a small viewing angle. Furthermore, it has young radio galaxy-like properties such as non-variation in total flux(Alberdi et al. 1997, 2000, MOJAVE database) and a high frequency peak in the spectral energy distribution(Orienti et al 2007). In this case, it is more reliable to think that viewing angle of 4C39.25 is large. Korean VLBI Network (KVN) and VLBI Exploration of Radio Astronomy (VERA) Array (KaVA) is a cooperated VLBI system of Korea and Japan which provides high-frequency (23GHz and 43GHz) and high spatial resolution(1.2mas and 0.6mas). Their advantages of multi-wavelength and relatively high S/N ratio relative to its number of baseline allow us to discover the central region and dim structures of 4C39.25. We present results of several epochs observed during 2013 to 2014, focusing on morphological changes of 4C39.25 using KaVA images. According to these results, we were able to find a recently emitted counter-jet component for images of first 6 epochs. Also the counter-jet component propagates along a curved trajectory, and it shows an extreme superluminal motion. This might indicate a necessity of relatively large viewing

  14. DISCOVERY OF DRAMATIC OPTICAL VARIABILITY IN SDSS J1100+4421: A PECULIAR RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXY?

    SciTech Connect

    Tanaka, Masaomi; Morokuma, Tomoki; Doi, Mamoru; Kikuchi, Yuki; Itoh, Ryosuke; Akitaya, Hiroshi; Tanaka, Yasuyuki T.; Kawabata, Koji S.; Tominaga, Nozomu; Saito, Yoshihiko; Kawai, Nobuyuki; Stawarz, Łukasz; Gandhi, Poshak; Ali, Gamal; Essam, Ahmad; Hamed, Gamal; Aoki, Tsutomu; Contreras, Carlos; Hsiao, Eric Y.; Iwata, Ikuru; and others

    2014-10-01

    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ∼10{sup 7} M {sub ☉} implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ≅ 4 × 10{sup 2}-3 × 10{sup 3}, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.

  15. Investigating the variability of active galactic nuclei using combined multi-quarter Kepler data

    SciTech Connect

    Revalski, Mitchell; Nowak, Dawid; Wiita, Paul J.; Wehrle, Ann E.; Unwin, Stephen C.

    2014-04-10

    We used photometry from the Kepler satellite to characterize the variability of four radio-loud active galactic nuclei (AGNs) on timescales from years to minutes. The Kepler satellite produced nearly continuous high precision data sets which provided better temporal coverage than possible with ground based observations. We have now accumulated 11 quarters of data, eight of which were reported in our previous paper. In addition to constructing power spectral densities (PSDs) and characterizing the variability of the last three quarters, we have linked together the individual quarters using a multiplicative scaling process, providing data sets spanning ∼2.8 yr with >98% coverage at a 30 minute sampling rate. We compute PSDs on these connected data sets that yield power law slopes at low frequencies in the approximate range of –1.5 to –2.0, with white noise seen at higher frequencies. These PSDs are similar to those of both the individual quarters and to those of ground-based optical observations of other AGNs. We also have explored a PSD binning method intended to reduce a bias toward shallow slope fits by evenly distributing the points within the PSDs. This tends to steepen the computed PSD slopes, especially when the low frequencies are relatively poorly fit. We detected flares lasting several days in which the brightness increased by ∼15%-20% in one object, as well a smaller flare in another. Two AGNs showed only small, ∼1%-2%, fluctuations in brightness.

  16. Investigating the Variability of Active Galactic Nuclei Using Combined Multi-quarter Kepler Data

    NASA Astrophysics Data System (ADS)

    Revalski, Mitchell; Nowak, Dawid; Wiita, Paul J.; Wehrle, Ann E.; Unwin, Stephen C.

    2014-04-01

    We used photometry from the Kepler satellite to characterize the variability of four radio-loud active galactic nuclei (AGNs) on timescales from years to minutes. The Kepler satellite produced nearly continuous high precision data sets which provided better temporal coverage than possible with ground based observations. We have now accumulated 11 quarters of data, eight of which were reported in our previous paper. In addition to constructing power spectral densities (PSDs) and characterizing the variability of the last three quarters, we have linked together the individual quarters using a multiplicative scaling process, providing data sets spanning ~2.8 yr with >98% coverage at a 30 minute sampling rate. We compute PSDs on these connected data sets that yield power law slopes at low frequencies in the approximate range of -1.5 to -2.0, with white noise seen at higher frequencies. These PSDs are similar to those of both the individual quarters and to those of ground-based optical observations of other AGNs. We also have explored a PSD binning method intended to reduce a bias toward shallow slope fits by evenly distributing the points within the PSDs. This tends to steepen the computed PSD slopes, especially when the low frequencies are relatively poorly fit. We detected flares lasting several days in which the brightness increased by ~15%-20% in one object, as well a smaller flare in another. Two AGNs showed only small, ~1%-2%, fluctuations in brightness.

  17. RMS Spectral Modelling - a powerful tool to probe the origin of variability in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev

    2016-07-01

    The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.

  18. The Far-Infrared Emission of Radio Loud and Radio Quiet Quasars

    NASA Technical Reports Server (NTRS)

    Polletta, M.; Courvoisier, T. J.-L.; Wilkes, B. J.; Hooper, E. J.

    2000-01-01

    Continuum observations at radio, millimeter, infrared and soft X-ray energies are presented for a sample of 22 quasars, consisting of flat and steep spectrum radio loud, radio intermediate and radio quiet objects. The primary observational distinctions, among the different kinds of quasars in the radio and IR energy domains are studied using large observational datasets provided by ISOPHOT on board the Infrared Space Observatory, by the IRAM interferometer, by the sub-millimetre array SCUBA on JCMT, and by the European Southern Observatory (ESO) facilities IRAC1 on the 2.2 m telescope and SEST. The spectral energy distributions of all quasars from radio to IR energies are analyzed and modeled with non-thermal and thermal spectral components. The dominant mechanism emitting in the far/mid-IR is thermal dust emission in all quasars, with the exception of flat spectrum radio loud quasars for which the presence of thermal IR emission remains rather uncertain, since it is difficult to separate it from the bright non-thermal component. The dust is predominantly heated by the optical/ultraviolet radiation emitted from the external components of the AGN. A starburst contributes to the IR emission at different levels, but always less than the AGN (<= 27%). The distribution of temperatures, sizes, masses, and luminosities of the emitting dust are independent of the quasar type.

  19. Discovery of a z = 6.1 Radio-Loud Quasar in the NDWFS

    SciTech Connect

    McGreer, I D; Becker, R H; Helfand, D J; White, R L

    2006-07-24

    From examination of only 4 deg{sup 2} of sky in the NOAO Deep Wide-Field Survey (NDWFS) region, we have identified the first radio-loud quasar at a redshift z > 6. The object, FIRST J1427385+331241, was discovered by matching the FLAMEX IR survey to FIRST survey radio sources with NDWFS counterparts. One candidate z > 6 quasar was found, and spectroscopy with the Keck II telescope confirmed its identification, yielding a redshift z = 6.12. The object is a Broad Absorption Line (BAL) quasar with an optical luminosity of M{sub B} {approx} -26.9 and a radio-to-optical flux ratio {approx} 60. Two Mg II absorptions systems are present at redshifts of z = 2.18 and z = 2.20. We briefly discuss the implications of this discovery for the high-redshift quasar population.

  20. Radio-loud CMEs from the Disk Center Lacking Shocks at 1 AU

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N; Makela, P.; Akiyama, S.; Yashiro, S.; Xie, H.; MacDowall, R. J.; Kaiser, M. L.

    2013-01-01

    A coronal mass ejection (CME) associated with a type II burst and originating close to the center of the solar disk typically results in a shock at Earth in 2-3 days and hence can be used to predict shock arrival at Earth. However, a significant fraction (about 28%) of such CMEs producing type II bursts were not associated with shocks at Earth. We examined a set of 21 type II bursts observed by the Wind/WAVES experiment at decameter-hectometric (DH) wavelengths that had CME sources very close to the disk center (within a central meridian distance of 30 degrees), but did not have a shock at Earth. We find that the near-Sun speeds of these CMEs average to 644 km/s, only slightly higher than the average speed of CMEs associated with radio-quiet shocks. However, the fraction of halo CMEs is only 30%, compared to 54% for the radio-quiet shocks and 91% for all radio-loud shocks. We conclude that the disk-center radio-loud CMEs with no shocks at 1 AU are generally of lower energy and they drive shocks only close to the Sun and dissipate before arriving at Earth. There is also evidence for other possible processes that lead to the lack of shock at 1 AU: (i) overtaking CME shocks merge and one observes a single shock at Earth, and (ii) deflection by nearby coronal holes can push the shocks away from the Sun-Earth line, such that Earth misses these shocks. The probability of observing a shock at 1 AU increases rapidly above 60% when the CME speed exceeds 1000 km/s and when the type II bursts propagate to frequencies below 1 MHz.

  1. Disclosing the Radio Loudness Distribution Dichotomy in Quasars: An Unbiased Monte Carlo Approach Applied to the SDSS-FIRST Quasar Sample

    NASA Astrophysics Data System (ADS)

    Baloković, M.; Smolčić, V.; Ivezić, Ž.; Zamorani, G.; Schinnerer, E.; Kelly, B. C.

    2012-11-01

    We investigate the dichotomy in the radio loudness distribution of quasars by modeling their radio emission and various selection effects using a Monte Carlo approach. The existence of two physically distinct quasar populations, the radio-loud and radio-quiet quasars, is controversial and over the last decade a bimodal distribution of radio loudness of quasars has been both affirmed and disputed. We model the quasar radio luminosity distribution with simple unimodal and bimodal distribution functions. The resulting simulated samples are compared to a fiducial sample of 8300 quasars drawn from the SDSS DR7 Quasar Catalog and combined with radio observations from the FIRST survey. Our results indicate that the SDSS-FIRST sample is best described by a radio loudness distribution which consists of two components, with (12 ± 1)% of sources in the radio-loud component. On the other hand, the evidence for a local minimum in the loudness distribution (bimodality) is not strong and we find that previous claims for its existence were probably affected by the incompleteness of the FIRST survey close to its faint limit. We also investigate the redshift and luminosity dependence of the radio loudness distribution and find tentative evidence that at high redshift radio-loud quasars were rarer, on average louder, and exhibited a smaller range in radio loudness. In agreement with other recent work, we conclude that the SDSS-FIRST sample strongly suggests that the radio loudness distribution of quasars is not a universal function, and that more complex models than presented here are needed to fully explain available observations.

  2. DISCLOSING THE RADIO LOUDNESS DISTRIBUTION DICHOTOMY IN QUASARS: AN UNBIASED MONTE CARLO APPROACH APPLIED TO THE SDSS-FIRST QUASAR SAMPLE

    SciTech Connect

    Balokovic, M.; Smolcic, V.; Ivezic, Z.; Zamorani, G.; Schinnerer, E.; Kelly, B. C.

    2012-11-01

    We investigate the dichotomy in the radio loudness distribution of quasars by modeling their radio emission and various selection effects using a Monte Carlo approach. The existence of two physically distinct quasar populations, the radio-loud and radio-quiet quasars, is controversial and over the last decade a bimodal distribution of radio loudness of quasars has been both affirmed and disputed. We model the quasar radio luminosity distribution with simple unimodal and bimodal distribution functions. The resulting simulated samples are compared to a fiducial sample of 8300 quasars drawn from the SDSS DR7 Quasar Catalog and combined with radio observations from the FIRST survey. Our results indicate that the SDSS-FIRST sample is best described by a radio loudness distribution which consists of two components, with (12 {+-} 1)% of sources in the radio-loud component. On the other hand, the evidence for a local minimum in the loudness distribution (bimodality) is not strong and we find that previous claims for its existence were probably affected by the incompleteness of the FIRST survey close to its faint limit. We also investigate the redshift and luminosity dependence of the radio loudness distribution and find tentative evidence that at high redshift radio-loud quasars were rarer, on average louder, and exhibited a smaller range in radio loudness. In agreement with other recent work, we conclude that the SDSS-FIRST sample strongly suggests that the radio loudness distribution of quasars is not a universal function, and that more complex models than presented here are needed to fully explain available observations.

  3. NUCLEAR RADIO JET FROM A LOW-LUMINOSITY ACTIVE GALACTIC NUCLEUS IN NGC 4258

    SciTech Connect

    Doi, Akihiro; Kohno, Kotaro; Nakanishi, Kouichiro; Kameno, Seiji; Inoue, Makoto; Hada, Kazuhiro; Sorai, Kazuo

    2013-03-01

    The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 100 GHz and archival data from the Very Large Array at 1.7-43 GHz and the James Clerk Maxwell telescope at 347 GHz. The NGC 4258 nuclear component exhibits (1) an intra-month variable and complicated spectral feature at 5-22 GHz and (2) a slightly inverted spectrum at 5-100 GHz ({alpha} {approx} 0.3; F {sub {nu}}{proportional_to}{nu}{sup {alpha}}) in time-averaged flux densities, which are also apparent in the closest LLAGN M81. These similarities between NGC 4258 and M81 in radio spectral natures in addition to previously known core shift in their AU-scale jet structures produce evidence that the same mechanism drives their nuclei. We interpret the observed spectral property as the superposition of emission spectra originating at different locations with frequency-dependent opacity along the nuclear jet. Quantitative differences between NGC 4258 and M81 in terms of jet/counter jet ratio, radio loudness, and degree of core shift can be consistently understood by fairly relativistic speeds ({Gamma} {approx}> 3) of jets and their quite different inclinations. The picture established from the two closest LLAGNs is useful for understanding the physical origin of unresolved and flat/inverted spectrum radio cores that are prevalently found in LLAGNs, including Sgr A*, with starved supermassive black holes in the present-day universe.

  4. Nuclear Radio Jet from a Low-luminosity Active Galactic Nucleus in NGC 4258

    NASA Astrophysics Data System (ADS)

    Doi, Akihiro; Kohno, Kotaro; Nakanishi, Kouichiro; Kameno, Seiji; Inoue, Makoto; Hada, Kazuhiro; Sorai, Kazuo

    2013-03-01

    The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 100 GHz and archival data from the Very Large Array at 1.7-43 GHz and the James Clerk Maxwell telescope at 347 GHz. The NGC 4258 nuclear component exhibits (1) an intra-month variable and complicated spectral feature at 5-22 GHz and (2) a slightly inverted spectrum at 5-100 GHz (α ~ 0.3; F νvpropνα) in time-averaged flux densities, which are also apparent in the closest LLAGN M81. These similarities between NGC 4258 and M81 in radio spectral natures in addition to previously known core shift in their AU-scale jet structures produce evidence that the same mechanism drives their nuclei. We interpret the observed spectral property as the superposition of emission spectra originating at different locations with frequency-dependent opacity along the nuclear jet. Quantitative differences between NGC 4258 and M81 in terms of jet/counter jet ratio, radio loudness, and degree of core shift can be consistently understood by fairly relativistic speeds (Γ >~ 3) of jets and their quite different inclinations. The picture established from the two closest LLAGNs is useful for understanding the physical origin of unresolved and flat/inverted spectrum radio cores that are prevalently found in LLAGNs, including Sgr A*, with starved supermassive black holes in the present-day universe.

  5. MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. V. MULTI-EPOCH VLBA IMAGES

    SciTech Connect

    Lister, M. L.; Aller, H. D.; Aller, M. F. E-mail: haller@umich.edu

    2009-03-15

    We present images from a long-term program (MOJAVE: Monitoring of Jets in active galactic nuclei (AGNs) with VLBA Experiments) to survey the structure and evolution of parsec-scale jet phenomena associated with bright radio-loud active galaxies in the northern sky. The observations consist of 2424 15 GHz Very Long Baseline Array (VLBA) images of a complete flux-density-limited sample of 135 AGNs above declination -20{sup 0}, spanning the period 1994 August to 2007 September. These data were acquired as part of the MOJAVE and 2 cm Survey programs, and from the VLBA archive. The sample-selection criteria are based on multi-epoch parsec-scale (VLBA) flux density, and heavily favor highly variable and compact blazars. The sample includes nearly all the most prominent blazars in the northern sky, and is well suited for statistical analysis and comparison with studies at other wavelengths. Our multi-epoch and stacked-epoch images show 94% of the sample to have apparent one-sided jet morphologies, most likely due to the effects of relativistic beaming. Of the remaining sources, five have two-sided parsec-scale jets, and three are effectively unresolved by the VLBA at 15 GHz, with essentially all of the flux density contained within a few tenths of a milliarcsecond.

  6. Are the hosts of VLBI-selected radio-AGN different to those of radio-loud AGN?

    NASA Astrophysics Data System (ADS)

    Rees, G. A.; Norris, R. P.; Spitler, L. R.; Herrera-Ruiz, N.; Middelberg, E.

    2016-05-01

    Recent studies have found that radio-AGN selected by radio-loudness show little difference in terms of their host galaxy properties when compared to non-AGN galaxies of similar stellar mass and redshift. Using new 1.4 GHz very long baseline interferometry (VLBI) observations of the Cosmological Evolution Survey field, we find that approximately 49 ± 8 per cent of high-mass (M > 1010.5 M⊙), high-luminosity (L1.4 > 1024 W Hz-1) radio-AGN possess a VLBI-detected counterpart. These objects show no discernible bias towards specific stellar masses, redshifts or host properties other than what is shown by the radio-AGN population in general. Radio-AGN that are detected in VLBI observations are not special, but form a representative sample of the radio-loud AGN population.

  7. SDSS J013127.34-032100.1: A Newly Discovered Radio-loud Quasar at z = 5.18 with Extremely High Luminosity

    NASA Astrophysics Data System (ADS)

    Yi, Wei-Min; Wang, Feige; Wu, Xue-Bing; Yang, Jinyi; Bai, Jin-Ming; Fan, Xiaohui; Brandt, William N.; Ho, Luis C.; Zuo, Wenwen; Kim, Minjin; Wang, Ran; Yang, Qian; Zhang, Ju-jia; Wang, Fang; Wang, Jian-Guo; Ai, Yanli; Fan, Yu-Feng; Chang, Liang; Wang, Chuan-Jun; Lun, Bao-Li; Xin, Yu-Xin

    2014-11-01

    Very few of the z > 5 quasars discovered to date have been radio-loud, with radio-to-optical flux ratios (radio-loudness parameters) higher than 10. Here we report the discovery of an optically luminous radio-loud quasar, SDSS J013127.34-032100.1 (J0131-0321 in short), at z = 5.18 ± 0.01 using the Lijiang 2.4 m and Magellan telescopes. J0131-0321 has a spectral energy distribution consistent with that of radio-loud quasars. With an i-band magnitude of 18.47 and a radio flux density of 33 mJy, its radio-loudness parameter is ~100. The optical and near-infrared spectra taken by Magellan enable us to estimate its bolometric luminosity to be L bol ~ 1.1 × 1048 erg s-1, approximately 4.5 times greater than that of the most distant quasar known to date. The black hole mass of J0131-0321 is estimated to be 2.7 × 109 M ⊙, with an uncertainty up to 0.4 dex. Detailed physical properties of this high-redshift, radio-loud, potentially super-Eddington quasar can be probed in the future with more dedicated and intensive follow-up observations using multi-wavelength facilities.

  8. SDSS J013127.34–032100.1: A NEWLY DISCOVERED RADIO-LOUD QUASAR AT z = 5.18 WITH EXTREMELY HIGH LUMINOSITY

    SciTech Connect

    Yi, Wei-Min; Bai, Jin-Ming; Zhang, Ju-jia; Wang, Fang; Wang, Jian-Guo; Fan, Yu-Feng; Chang, Liang; Wang, Chuan-Jun; Lun, Bao-Li; Wang, Feige; Wu, Xue-Bing; Yang, Jinyi; Ho, Luis C.; Zuo, Wenwen; Yang, Qian; Ai, Yanli; Fan, Xiaohui; Brandt, William N.; Kim, Minjin; Wang, Ran; and others

    2014-11-10

    Very few of the z > 5 quasars discovered to date have been radio-loud, with radio-to-optical flux ratios (radio-loudness parameters) higher than 10. Here we report the discovery of an optically luminous radio-loud quasar, SDSS J013127.34–032100.1 (J0131–0321 in short), at z = 5.18 ± 0.01 using the Lijiang 2.4 m and Magellan telescopes. J0131–0321 has a spectral energy distribution consistent with that of radio-loud quasars. With an i-band magnitude of 18.47 and a radio flux density of 33 mJy, its radio-loudness parameter is ∼100. The optical and near-infrared spectra taken by Magellan enable us to estimate its bolometric luminosity to be L {sub bol} ∼ 1.1 × 10{sup 48} erg s{sup –1}, approximately 4.5 times greater than that of the most distant quasar known to date. The black hole mass of J0131–0321 is estimated to be 2.7 × 10{sup 9} M {sub ☉}, with an uncertainty up to 0.4 dex. Detailed physical properties of this high-redshift, radio-loud, potentially super-Eddington quasar can be probed in the future with more dedicated and intensive follow-up observations using multi-wavelength facilities.

  9. THE WISE BLAZAR-LIKE RADIO-LOUD SOURCES: AN ALL-SKY CATALOG OF CANDIDATE γ-RAY BLAZARS

    SciTech Connect

    D'Abrusco, R.; Paggi, A.; Smith, H. A.; Massaro, F.; Masetti, N.

    2014-11-01

    We present a catalog of radio-loud candidate γ-ray emitting blazars with WISE mid-infrared colors similar to the colors of confirmed γ-ray blazars. The catalog is assembled from WISE sources detected in all four WISE filters, with colors compatible with the three-dimensional locus of the WISE γ-ray emitting blazars, and which can be spatially cross-matched with radio sources from one of the three radio surveys: NVSS, FIRST, and/or SUMSS. Our initial WISE selection uses a slightly modified version of previously successful algorithms. We then select only the radio-loud sources using a measure of the radio-to-IR flux, the q {sub 22} parameter, which is analogous to the q {sub 24} parameter known in the literature but which instead uses the WISE band-four flux at 22 μm. Our final catalog contains 7855 sources classified as BL Lacs, FSRQs, or mixed candidate blazars; 1295 of these sources can be spatially re-associated as confirmed blazars. We describe the properties of the final catalog of WISE blazar-like radio-loud sources and consider possible contaminants. Finally, we discuss why this large catalog of candidate γ-ray emitting blazars represents a new and useful resource to address the problem of finding low-energy counterparts to currently unidentified high-energy sources.

  10. The compact radio structure of radio-loud NLS1 galaxies and the relationship to CSS sources

    NASA Astrophysics Data System (ADS)

    Gu, M.; Chen, Y.; Komossa, S.; Yuan, W.; Shen, Z.

    2016-02-01

    Narrow-line Seyfert 1 galaxies are thought to be young AGNs with relatively small black hole masses and high accretion rates. Radio-loud narrow-line Seyfert 1 galaxies (RLNLS1s) are very special, because some of them show blazar-like characteristics, while others resemble compact steep-spectrum sources. Relativistic jets were shown to exist in a few RLNLS1s based on VLBI observations and confirmed by the gamma-ray flaring of some of them. These properties may possibly be contrary to typical radio-loud AGNs, in light of the low black-hole masses, and high accretion rates. We present the compact radio structure of fourteen RLNLS1 galaxies from Very Long Baseline Array observations at 5 GHz in 2013. Although all these sources are very radio-loud with {R > 100}, their jet properties are diverse, in terms of their milli-arcsecond (mas) scale (pc scale) morphology and their overall radio spectral shape. The core brightness temperatures of our sources are significantly lower than those of blazars, therefore, the beaming effect is generally not significant in our sources, compared to blazars. This implies that the bulk jet speed may likely be low in our sources. The relationship between RLNLS1s and compact steep-spectrum sources, and the implications on jet formation are discussed based on the pc-scale jet properties.

  11. THE ROLE OF THE ACCRETION DISK, DUST, AND JETS IN THE IR EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Mason, R. E.; Ramos Almeida, C.; Alonso-Herrero, A.

    2013-11-10

    We use recent high-resolution infrared (IR; 1-20 μm) photometry to examine the origin of the IR emission in low-luminosity active galactic nuclei (LLAGN). The data are compared with published model fits that describe the spectral energy distribution (SED) of LLAGN in terms of an advection-dominated accretion flow, truncated thin accretion disk, and jet. The truncated disk in these models is usually not luminous enough to explain the observed IR emission, and in all cases its spectral shape is much narrower than the broad IR peaks in the data. Synchrotron radiation from the jet appears to be important in very radio-loud nuclei, but the detection of strong silicate emission features in many objects indicates that dust must also contribute. We investigate this point by fitting the IR SED of NGC 3998 using dusty torus and optically thin (τ{sub mid-IR} ∼ 1) dust shell models. While more detailed modeling is necessary, these initial results suggest that dust may account for the nuclear mid-IR emission of many LLAGN.

  12. SPECTRAL SURVEY OF X-RAY BRIGHT ACTIVE GALACTIC NUCLEI FROM THE ROSSI X-RAY TIMING EXPLORER

    SciTech Connect

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard

    2011-03-15

    Using long-term monitoring data from the Rossi X-ray Timing Explorer (RXTE), we have selected 23 active galactic nuclei (AGNs) with sufficient brightness and overall observation time to derive broadband X-ray spectra from 3 to {approx}>100 keV. Our sample includes mainly radio-quiet Seyferts, as well as seven radio-loud sources. Given the longevity of the RXTE mission, the greater part of our data is spread out over more than a decade, providing truly long-term average spectra and eliminating inconsistencies arising from variability. We present long-term average values of absorption, Fe line parameters, Compton reflection strengths, and photon indices, as well as fluxes and luminosities for the hard and very hard energy bands, 2-10 keV and 20-100 keV, respectively. We find tentative evidence for high-energy rollovers in three of our objects. We improve upon previous surveys of the very hard X-ray energy band in terms of accuracy and sensitivity, particularly with respect to confirming and quantifying the Compton reflection component. This survey is meant to provide a baseline for future analysis with respect to the long-term averages for these sources and to cement the legacy of RXTE, and especially its High Energy X-ray Timing Experiment, as a contributor to AGN spectral science.

  13. The Correlations of Jet Power with Black Hole Mass and Spin in Radio Loud Quasars

    NASA Astrophysics Data System (ADS)

    Xu, Zhang; Hao-jing, Zhang; Xiong, Zhang

    2016-04-01

    The formation of jets is closely related with the black hole mass and black hole spin, to study the correlations of jet power with the black hole mass and black hole spin is of significant importance for understanding the jet formation and structure. We have collected 65 radio loud quasars from the literature. The sample includes 35 Steep Spectrum Radio Quasars (SSRQs) and 30 Flat Spectrum Radio Quasars (FSRQs) with the redshifts ranging from about zero to two. We present here the correlation analysis of jet power with the black hole mass and back hole spin based on the sample data. Our conclusions are as follows: (1) The black hole mass has a strong correlation with the jet power; (2) The black hole spin is also strongly correlated with the jet power, especially for the magnetic field strength B = BEDD, where BEDD is the Eddington magnetic field strength, and the correlation coefficient is higher than that between black hole mass and jet power; (3) There are certain differences between the distributions of spin data of SSRQs and FSRQs; (4) This study has further confirmed that the jet energy is related not only with the black hole mass, but also with the spin energy of the black hole. The formation of black hole jet may be very possibly resulted by the joint effect of black hole mass and black hole spin. These results are consistent with the previous results obtained by other methods.

  14. AN INFRARED EXCESS IDENTIFIED IN RADIO-LOUD BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    DiPompeo, M. A.; Runnoe, J. C.; Brotherton, M. S.; Myers, A. D.

    2013-01-10

    If broad absorption line (BAL) quasars represent a high-covering-fraction evolutionary state (even if this is not the sole factor governing the presence of BALs), it is expected that they should show an excess of mid-infrared radiation compared to normal quasars. Some previous studies have suggested that this is not the case. We perform the first analysis of the IR properties of radio-loud BAL quasars, using IR data from WISE and optical (rest-frame ultraviolet) data from SDSS, and compare the BAL quasar sample with a well-matched sample of unabsorbed quasars. We find a statistically significant excess in the mid- to near-infrared luminosities of BAL quasars, particularly at rest-frame wavelengths of 1.5 and 4 {mu}m. Our sample was previously used to show that BALs are observed along many lines of sight toward quasars, but with an overabundance of more edge-on sources, suggesting that orientation factors into the appearance of BALs. The evidence here-of a difference in IR luminosities between BAL quasars and unabsorbed quasars-can be ascribed to evolution. This suggests that a merging of the current BAL paradigms is needed to fully describe the class.

  15. THE EXTREME ULTRAVIOLET DEFICIT AND MAGNETICALLY ARRESTED ACCRETION IN RADIO-LOUD QUASARS

    SciTech Connect

    Punsly, Brian

    2014-12-20

    The Hubble Space Telescope composite quasar spectra presented in Telfer et al. show a significant deficit of emission in the extreme ultraviolet for the radio-loud component of the quasar population (RLQs) compared to the radio-quiet component of the quasar population. The composite quasar continuum emission between 1100 Å and ∼580 Å is generally considered to be associated with the innermost regions of the accretion flow onto the central black hole. The deficit between 1100 Å and 580 Å in RLQs has a straightforward interpretation as a missing or a suppressed innermost region of local energy dissipation in the accretion flow. It is proposed that this can be the result of islands of large-scale magnetic flux in RLQs that are located close to the central black hole that remove energy from the accretion flow as Poynting flux (sometimes called magnetically arrested accretion). These magnetic islands are natural sites for launching relativistic jets. Based on the Telfer et al. data and the numerical simulations of accretion flows in Penna et al., the magnetic islands are concentrated between the event horizon and an outer boundary of <2.8 M (in geometrized units) for rapidly rotating black holes and <5.5 M for modestly rotating black holes.

  16. Expected level of self-Compton scattering in radio loud quasars

    NASA Technical Reports Server (NTRS)

    Bloom, Steven D.; Marscher, Alan P.

    1992-01-01

    Radio-loud quasars usually contain parsec-scale nonthermal jets. The most compact emission region ('the core'), and perhaps some of the moving 'knots', are expected to be efficient producers of inverse Compton scattered X-rays and gamma-rays since many of the synchrotron photons will upscatter before escaping. Through multifrequency flux density observations and Very Long Baseline Interferometry (VLBI) measurements of angular sizes, one can predict the flux density of this self-Compton high-energy emission. It is not always the case that the brightest synchrotron sources are also the brightest X-ray and gamma-ray sources. Perhaps a better predictor of high-energy brightness is the ratio of hard X-ray to high-frequency radio emission. Using the synchrotron self-Compton relations, we predict the gamma-ray fluxes of several sources we expect to be detected by the Energetic Gamma Ray Experiment Telescope (EGRET). More accurate predictions will be made when we complete a program of contemporaneous radio-submillimeter and X-ray observations during the course of the EGRET all-sky survey.

  17. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  18. GPU-BASED MONTE CARLO DUST RADIATIVE TRANSFER SCHEME APPLIED TO ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Heymann, Frank; Siebenmorgen, Ralf

    2012-05-20

    A three-dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing-time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons. Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting procedure and at high spatial resolution by a vectorized ray tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust temperatures of one- and two-dimensional benchmarks are reproduced at high precision. The parallelization capability of various MC algorithms is analyzed and included in our treatment. We utilize the Lucy algorithm for the optical thin case where the Poisson noise is high, the iteration-free Bjorkman and Wood method to reduce the calculation time, and the Fleck and Canfield diffusion approximation for extreme optical thick cells. The code is applied to model the appearance of active galactic nuclei (AGNs) at optical and infrared wavelengths. The AGN torus is clumpy and includes fluffy composite grains of various sizes made up of silicates and carbon. The dependence of the SED on the number of clumps in the torus and the viewing angle is studied. The appearance of the 10 {mu}m silicate features in absorption or emission is discussed. The SED of the radio-loud quasar 3C 249.1 is fit by the AGN model and a cirrus component to account for the far-infrared emission.

  19. GPU-based Monte Carlo Dust Radiative Transfer Scheme Applied to Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Heymann, Frank; Siebenmorgen, Ralf

    2012-05-01

    A three-dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing-time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons. Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting procedure and at high spatial resolution by a vectorized ray tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust temperatures of one- and two-dimensional benchmarks are reproduced at high precision. The parallelization capability of various MC algorithms is analyzed and included in our treatment. We utilize the Lucy algorithm for the optical thin case where the Poisson noise is high, the iteration-free Bjorkman & Wood method to reduce the calculation time, and the Fleck & Canfield diffusion approximation for extreme optical thick cells. The code is applied to model the appearance of active galactic nuclei (AGNs) at optical and infrared wavelengths. The AGN torus is clumpy and includes fluffy composite grains of various sizes made up of silicates and carbon. The dependence of the SED on the number of clumps in the torus and the viewing angle is studied. The appearance of the 10 μm silicate features in absorption or emission is discussed. The SED of the radio-loud quasar 3C 249.1 is fit by the AGN model and a cirrus component to account for the far-infrared emission.

  20. Discovery of millimetre-wave excess emission in radio-quiet active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Baldi, Ranieri D.; Laor, Ari; Horesh, Assaf; Stevens, Jamie; Tzioumis, Tasso

    2015-07-01

    The physical origin of radio emission in radio-quiet active galactic nuclei (RQ AGN) remains unclear, whether it is a downscaled version of the relativistic jets typical of radio-loud (RL) AGN, or whether it originates from the accretion disc. The correlation between 5 GHz and X-ray luminosities of RQ AGN, which follows LR = 10-5LX observed also in stellar coronae, suggests an association of both X-ray and radio sources with the accretion disc corona. Observing RQ AGN at higher (mm-wave) frequencies, where synchrotron self-absorption is diminished, and smaller regions can be probed, is key to exploring this association. Eight RQ AGN, selected based on their high X-ray brightness and variability, were observed at 95 GHz with the CARMA (Combined Array for Research in Millimetre-wave Astronomy) and ATCA (the Australia Telescope Compact Array) telescopes. All targets were detected at the 1-10 mJy level. Emission excess at 95 GHz of up to ×7 is found with respect to archival low-frequency steep spectra, suggesting a compact, optically thick core superimposed on the more extended structures that dominate at low frequencies. Though unresolved, the 95 GHz fluxes imply optically thick source sizes of 10-4-10-3 pc, or ˜10-1000 gravitational radii. The present sources lie tightly along an LR (95 GHz) = 10-4LX (2-10 keV) correlation, analogous to that of stellar coronae and RQ AGN at 5 GHz, while RL AGN are shown to have higher LR/LX ratios. The present observations argue that simultaneous mm-wave and X-ray monitoring of RQ AGN features a promising method for understanding accretion disc coronal emission.

  1. Radio observations of a hard X-ray selected sample of active galaxies

    NASA Technical Reports Server (NTRS)

    Unger, S. W.; Lawrence, A.; Wilson, A. S.; Elvis, M.; Wright, A. E.

    1987-01-01

    Radio observations of a hard X-ray selected sample of active galaxies obtained with the VLA and Parkes radio telescopes are discussed, and the ratio of the radio to X-ray flux density is used to determine the degree of radio-loudness of the galaxies. A continuous distribution of the degree of radio loudness is found amongst the sample galaxies, and no evidence for distinct radio-quiet and radio-loud populations is noted. The X-ray and radio luminosity is shown to be nonlinearly correlated, with the radio-loud objects all having high X-ray luminosity.

  2. Investigating the radio-loud phase of broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Bruni, G.; González-Serrano, J. I.; Pedani, M.; Benn, C. R.; Mack, K.-H.; Holt, J.; Montenegro-Montes, F. M.; Jiménez-Luján, F.

    2014-09-01

    Context. Broad absorption lines (BALs) are present in the spectra of ~20% of quasars (QSOs); this indicates fast outflows (up to 0.2c) that intercept the observer's line of sight. These QSOs can be distinguished again into radio-loud (RL) BAL QSOs and radio-quiet (RQ) BAL QSOs. The first are very rare, even four times less common than RQ BAL QSOs. The reason for this is still unclear and leaves open questions about the nature of the BAL-producing outflows and their connection with the radio jet. Aims: We explored the spectroscopic characteristics of RL and RQ BAL QSOs with the aim to find a possible explanation for the rarity of RL BAL QSOs. Methods: We identified two samples of genuine BAL QSOs from SDSS optical spectra, one RL and one RQ, in a suitable redshift interval (2.5 < z < 3.5) that allowed us to observe the Mg ii and Hβ emission lines in the adjacent near-infrared (NIR) band. We collected NIR spectra of the two samples using the Telescopio Nazionale Galileo (TNG, Canary Islands). By using relations known in the literature, we estimated the black-hole mass, the broad-line region radius, and the Eddington ratio of our objects and compared the two samples. Results: We found no statistically significant differences from comparing the distributions of the cited physical quantities. This indicates that they have similar geometries, accretion rates, and central black-hole masses, regardless of whether the radio-emitting jet is present or not. Conclusions: These results show that the central engine of BAL QSOs has the same physical properties with and without a radio jet. The reasons for the rarity of RL BAL QSOs must reside in different environmental or evolutionary variables. Figure 3 is available in electronic form at http://www.aanda.org

  3. Multiwavelength Study of Radio Loud Early-Type Galaxies from the B2 Sample

    NASA Astrophysics Data System (ADS)

    Sahu, Sheetal Kumar; Chaware, Laxmikant; Pandey, S. K.; Kulkarni, Samridhi; Pandge, M. B.; Chakradhari, N. K.

    2014-07-01

    We present multiwavelength study of a sample of radio loud early-type galaxies chosen from the B2 sample. We performed surface photometry in BVR broad band filters and Hα narrow band filter on CCD images of sample galaxies using IGO 2m telescope, Pune (INDIA), to get radial profiles of various photometric and geometrical parameters that describe elliptical isophotes fitted to the 2D light distribution of the galaxies. The analysis of radial profiles of quantities such as the (local) surface brightness, the ellipticity, and the deviations from elliptical isophotes parametrized by the Fourier coefficients are main focus of our study. We generated color maps, residual maps, and dust extinction maps, Hα emission maps of the galaxies to study the morphology of the dust and ionized gas content present in the galaxies. We carried out detailed analysis of the properties of the dust present in our sample galaxies. Additionaly, we investigated properties of the dust in the central ~10 arcsec region of our sample galaxies using optical images available from the HST (WFPC2) data archive. We estimated mass and temperature of the dust, molecular gas mass, in the sample galaxies using FIR fluxes of the galaxies obtained from IRAS. We used spectroscopic data available from the SDSS (DR7) to get an estimate of the mass of the central super massive black-hole for B2 1257+28 (NGC 4874). We plotted rotation curve for coma cluster (Abell 1656), which indicates the presence of dark matter halo around the galaxy B2 1257+28.

  4. KILOPARSEC-SCALE JETS IN THREE RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Richards, Joseph L.; Lister, Matthew L.

    2015-02-10

    We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array. We find all sources show two-sided, mildly core-dominated jet structures with diffuse lobes dominated by termination hotspots. These span 20–70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a 45° bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core–luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures (≲10{sup 10} K), we conclude these jets are mildly relativistic (β≲0.3, δ∼1−1.5) and aligned at moderately small angles to the line of sight (10–15°). The derived kinematic ages of ∼10{sup 6}–10{sup 7} yr are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from 7 to 10 and suggest that such extended emission may be common, at least among the brightest of these sources.

  5. Suzaku Discovery of Ultra-fast Outflows in Radio-loud AGN

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita M.; Tombesi, F.; Reeves, J.; Braito, V.; Gofford, J.; Cappi, M.

    2010-03-01

    We present the results of an analysis of the 3.5--10.5 keV spectra of five bright Broad-Line Radio Galaxies (BLRGs) using proprietary and archival Suzaku observations. In three sources -- 3C 111, 3C 120, and 3C 390.3 -- we find evidence, for the first time in a radio-loud AGN, for absorption features at observed energies 7 keV and 8--9 keV, with high significance according to both the F-test and extensive Monte Carlo simulations (99% or larger). In the remaining two BLRGs, 3C 382 and 3C 445, there is no evidence for such absorption features in the XIS spectra. If interpreted as due to Fe XXV and/or Fe XXVI K-shell resonance lines, the absorption features in 3C 111, 3C 120, and 3C 390.3 imply an origin from an ionized gas outflowing with velocities in the range v 0.04-0.15c, reminiscent of Ultra-Fast Outflows (UFOs) previously observed in radio-quiet Seyfert galaxies. A fit with specific photoionization models gives ionization parameters log ξ 4--5.6 erg s-1 cm and column densities of NH 1022-23 cm-2, similar to the values observed in Seyferts. Based on light travel time arguments, we estimate that the UFOs in the three BLRGs are located within 20--500 gravitational radii from the central black hole, and thus most likely are connected to disk winds/outflows. Our estimates show that the UFOs mass outflow rate is comparable to the accretion rate and their kinetic energy a significant fraction of the AGN bolometric luminosity, making these outflows significant for the global energetic of these systems, in particular for mechanisms of jet formation.

  6. The VLA Survey of Chandra Deep Field South. V. Evolution and Luminosity Functions of Sub-millijansky Radio Sources and the Issue of Radio Emission in Radio-quiet Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Padovani, P.; Miller, N.; Kellermann, K. I.; Mainieri, V.; Rosati, P.; Tozzi, P.

    2011-10-01

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 μJy at the field center and redshift ~5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P >~ 3 × 1024 W Hz-1) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for ~30% of the sample and ~60% of all AGNs, and outnumbering radio-loud AGNs at <~ 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  7. THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Padovani, P.; Mainieri, V.; Rosati, P.; Miller, N.; Kellermann, K. I.; Tozzi, P.

    2011-10-10

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 {mu}Jy at the field center and redshift {approx}5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P {approx}> 3 x 10{sup 24} W Hz{sup -1}) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for {approx}30% of the sample and {approx}60% of all AGNs, and outnumbering radio-loud AGNs at {approx}< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  8. The gamma-ray emitting radio-loud narrow-line Seyfert 1 galaxy PKS 2004-447. I. The X-ray View

    NASA Astrophysics Data System (ADS)

    Kreikenbohm, A.; Schulz, R.; Kadler, M.; Wilms, J.; Markowitz, A.; Chang, C. S.; Carpenter, B.; Elsässer, D.; Gehrels, N.; Mannheim, K.; Müller, C.; Ojha, R.; Ros, E.; Trüstedt, J.

    2016-01-01

    As part of the TANAMI multiwavelength progam, we discuss new X-ray observations of the γ-ray and radio-loud narrow line Seyfert 1 galaxy (γ-NLS1) PKS 2004-447. The active galaxy is a member of a small sample of radio-loud NLS1s detected in γ-rays by the Fermi Large Area Telescope. It stands out for being the radio-loudest and the only southern-hemisphere source in this sample. We present results from our X-ray monitoring program comprised of Swift snapshot observations from 2012 through 2014 and two new X-ray observations with XMM-Newton in 2012. Supplemented by archival data from 2004 and 2011, our data set allows for a careful analysis of the X-ray spectrum and variability of this peculiar source. The (0.5-10) keV spectrum is described well by a power law (Γ ~ 1.6), which can be interpreted as non-thermal emission from a relativistic jet. The source exhibits moderate flux variability on timescales of both months and years. Correlated brightness variations in the (0.5-2) keV and (2-10) keV bands are explained by a single variable spectral component, such as the one from the jet. A possible soft excess seen in the data from 2004 cannot be confirmed by the new XMM-Newton observations taken during low-flux states. Any contribution to the total flux in 2004 is less than 20% of the power-law component. The (0.5-10) keV luminosities of PKS 2004-447 are in the range of (0.5-2.7) × 1044 erg s-1. A comparison of the X-ray properties among the known γ-NLS1 galaxies shows that in four out of five cases the X-ray spectrum is dominated by a flat power law without intrinsic absorption. These objects are moderately variable in their brightness, while spectral variability is observed in at least two sources. The major difference across the X-ray spectra of γ-NLS1s is the luminosity, which spans a range of almost two orders of magnitude from 1044 erg s-1 to 1046 erg s-1 in the (0.5-10) keV band.

  9. The gamma-ray emitting radio-loud narrow-line Seyfert 1 galaxy PKS 2004-447. II. The radio view

    NASA Astrophysics Data System (ADS)

    Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsässer, D.; Gehrels, N.; Großberger, C.; Hase, H.; Horiuchi, S.; Lovell, J. E. J.; Mannheim, K.; Markowitz, A.; Müller, C.; Phillips, C.; Plötz, C.; Quick, J.; Trüstedt, J.; Tzioumis, A. K.; Wilms, J.

    2016-04-01

    Context. Γ-ray-detected radio-loud narrow-line Seyfert 1 (γ-NLS1) galaxies constitute a small but interesting sample of the γ-ray-loud AGN. The radio-loudest γ-NLS1 known, PKS 2004-447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims: We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS 2004-447, which are essential for understanding the diversity of the radio properties of γ-NLS1s. Methods: The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results: The TANAMI VLBI image at 8.4 GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other γ-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size < 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions: PKS 2004-447 appears to be a unique member of the γ-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all γ-NLS1s and extremely rare among γ-ray-loud AGN. The VLBI images shown in Figs. 3 and 4 (as FITS files) and the ATCA

  10. Theory of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shields, G. A.

    1986-01-01

    The involvement of accretion disks around supermassive black holes in the theory of active galactic nuclei (AGN) is discussed. The physics of thin and thick accretion disks is discussed and the partition between thermal and nonthermal energy production in supermassive disks is seen as uncertain. The thermal limit cycle may operate in supermassive disks (Shields, 1985), with accumulation of gas in the disk for periods of 10 to the 4th to 10 to the 7th years, punctuated by briefer outbursts during which the mass is rapidly transferred to smaller radii. An extended X-ray source in AGN is consistent with observations (Tennant and Mushotsky, 1983), and a large wind mass loss rate exceeding the central accretion rate means that only a fraction of the mass entering the disk will reach the central object; the rest being lost to the wind. Controversy in the relationship between the broad lines and the disk is also discussed.

  11. An Optical-Infrared Study of Radio-Loud Quasar Environments

    NASA Astrophysics Data System (ADS)

    Hall, Patrick Brian

    1998-06-01

    I present the data for an optical/near-infrared study of radio-loud quasar environments from z = 0.6-2.0, and the analysis of the data from z = 1.0-2.0. I thoroughly discuss the sample selection, observing, data reduction, and object cataloging. Even accounting for possible systematic offsets, I find a significant excess of K/ ~ 19 galaxies in the fields of z = 1-2 RLQs, on two spatial scales. One component is at θ <40&prime‧ from the quasars and is significant compared to the galaxy surface density at θ >40'' in the same fields. The other component appears roughly uniform across the fields (to θ~100'') and is significant compared to the galaxy surface density seen in random-field surveys in the literature. The r-K color distributions of the excess galaxy populations are indistinguishable, and are significantly redder than the color distribution of the field population. The excess galaxy population is thus consistent with being predominantly early-type galaxies at the quasar redshifts. The average excess within 0.5h 75-1 Mpc (~ 65'') of the quasars corresponds to Abell richness class ~0 compared to the galaxy surface density at >0.5h75-1 Mpc from the quasars, and to Abell richness class ~1 compared to that from the literature. I estimate -0.65-0.55+0.41 magnitudes of evolution in MK* to \\bar z = 1.67 by assuming the excess galaxies are at the quasar redshifts. I discuss the spectral energy distributions (SEDs) of galaxies in fields with data in several passbands. Most candidate quasar-associated galaxies are consistent with being 2-3 Gyr old early-types at the quasar redshifts of z~ 1.5. However, some objects have SEDs similar to extremely late-type stars; others have SEDs consistent with being 4-5 Gyr old at z~ 1.5 and others are consistent with old but dust-reddened galaxies at the quasar redshifts. These potentially different galaxy types suggest there may be considerable dispersion in the properties of early-type cluster galaxies at z~ 1.5. There is also

  12. The parsec-scale structure of radio-loud broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Bruni, G.; Dallacasa, D.; Mack, K.-H.; Montenegro-Montes, F. M.; González-Serrano, J. I.; Holt, J.; Jiménez-Luján, F.

    2013-06-01

    Context. Broad absorption line quasars (BAL QSOs) belong to a class of objects not well-understood as yet. Their UV spectra show BALs in the blue wings of the UV resonance lines, owing to ionized gas with outflow velocities up to 0.2 c. They can have radio emission that is difficult to characterize and that needs to be studied at various wavelengths and resolutions. Aims: We aim to study the pc-scale properties of their synchrotron emission and, in particular, to determine their core properties. Methods: We performed observations in the Very Long Baseline Interferometry (VLBI) technique, using both the European VLBI Network (EVN) at 5 GHz, and the Very Long Baseline Array (VLBA) at 5 and 8.4 GHz to map the pc-scale structure of the brightest radio-loud objects of our sample, allowing a proper morphological interpretation. Results: A variety of morphologies have been found: 9 BAL QSOs on a total of 11 observed sources have a resolved structure. Core-jet, double, and symmetric objects are present, suggesting different orientations. In some cases the sources can be young GPS or CSS. The projected linear size of the sources, also considering observations from our previous work for the same objects, can vary from tens of pc to hundreds of kpc. In some cases, a diffuse emission can be supposed from the missing flux-density with respect to previous lower resolution observations. Finally, the magnetic field strength does not significantly differ from the values found in the literature for radio sources with similar sizes. Conclusions: These results are not easily interpreted with the youth scenario for BAL QSOs, in which they are generally compact objects still expelling a dust cocoon. The variety of orientations, morphologies, and extensions found are presumably related to different possible angles for the BAL producing outflows, with respect to the jet axis. Moreover, the phenomenon could be present in various phases of the QSO evolution. Table 3 is available in

  13. The Radio luminosity Function of Radio-Loud Quasars from the 7C Redshift Survey

    NASA Technical Reports Server (NTRS)

    Willott, Chris J.; Rawlings, Steve; Blundell, Katherine M.; Lacy, Mark

    1998-01-01

    We present a complete sample of 24 radio-loud quasars (RLQs) from the new 7C Redshift Survey. Every quasar with a low-frequency (151 MHz) radio flux-density S(sub 151) > 0.5 Jy in two regions of the sky covering 0.013 sr is included; 23 of these have sufficient extended flux to meet the selection criteria, 18 of these have steep radio spectra (hereafter denoted as SSQs). The key advantage of this sample over most samples of RLQs is the lack of an optical magnitude limit. By combining the 7C and 3CRR samples, we have investigated the properties of RLQs as a function of redshift z and radio luminosity L(sub 151). We derive the radio luminosity function (RLF) of RLQs and find that the data are well fitted by a single power-law with slope alpha(sub 1) = 1.9 +/- 0.1 (for H(sub 0) = 50 km/s.Mpc, OMEGA(sub M) = 1, OMEGA(sub DELTA) = 0). We find that there must be a break in the RLQ RLF at log(sub 10)(L(sub 151)/W Hz.sr) approximately < or = 27, in order for the models to be consistent with the 7C and 6C source counts. The z-dependence of the RLF follows a one-tailed gaussian which peaks at z = 1.7 +/- 0.2. We find no evidence for a decline in the co-moving space density of RLQs at higher redshifts. A positive correlation between the radio and optical luminosities of SSQs is observed, confirming a result of Serjeant. We are able to rule out this correlation being due to selection effects or biases in our combined sample. The radio-optical correlation and best-fit model RLF enable us to estimate the distribution of optical magnitudes of quasars in samples selected at low radio frequencies, We con- clude that for samples with S(sub 151) approximately < or = 1 Jy one must use optical data significantly deeper than the POSS-I limit (R approximately equal 20), in order to avoid severe incompleteness.

  14. Direct Microlensing-Reverberation Observations of the Intrinsic Magnetic Structure of Active Galactic Nuclei in Different Spectral States: A Tale of Two Quasars

    NASA Astrophysics Data System (ADS)

    Schild, Rudolph E.; Leiter, Darryl J.; Robertson, Stanley L.

    2008-03-01

    We show how direct microlensing-reverberation analysis performed on two well-known quasars (Q2237, the Einstein Cross, and Q0957, the Twin) can be used to observe the inner structure of two quasars which are in significantly different spectral states. These observations allow us to measure the detailed internal structure of Q2237 in a radio-quiet high-soft state, and compare it to Q0957 in a radio-loud low-hard state. When taken together we find that the observed differences in the spectral states of these two quasars can be understood as being due to the location of the inner radii of their accretion disks relative to the co-rotation radii of the magnetospheric eternally collapsing objects (MECO) in the centers of these quasars. The radiating structures observed in these quasars are associated with standard accretion disks and outer outflow structures, where the latter are the major source of UV-optical continuum radiation. While the observed inner accretion disk structure of the radio-quiet quasar Q2237 is consistent with either a MECO or a black hole, the observed inner structure of the radio-loud quasar Q0957 can only be explained by the action of the intrinsic magnetic propeller of a MECO with its accretion disk. Hence a simple and unified answer to the long-standing question: "Why are some quasars radio loud?" is found if the central objects of quasars are MECO, with radio-loud and radio-quiet spectral states similar to the case of galactic black hole candidates.

  15. XMM-Newton Observations of the Radio-Loud Broad Absorption Line Quasar FBQS J131213.5+231958

    NASA Astrophysics Data System (ADS)

    Mathur, Smita; Dai, Xinyu

    2010-12-01

    We present XMM-Newton observations of the broad absorption line (BAL) quasar FBQS J131213.5+231958. The X-ray spectrum of the source can be well described by an absorbed power-law model in which the absorber is either ionized or only partially covers the continuum source. This can explain the apparent lack of absorption observed in the Chandra spectrum with low signal-to-noise ratio. While the power-law slope of the spectrum is similar to that of non-BAL radio-loud quasars, the Eddington luminosity ratio is likely to be significantly higher than the mean. This shows that in high-mass black holes (BHs), high Eddington accretion may not result in as steep of a spectrum as in lower-mass BHs. This provides important constraints for accretion disk models. It also provides support to the idea that BAL quasars, at least their radio-loud subclass, represent an early evolutionary stage of quasars.

  16. Super- and sub-critical regions in shocks driven by radio-loud and radio-quiet CMEs

    NASA Astrophysics Data System (ADS)

    Bemporad, Alessandro; Mancuso, Salvatore

    2013-05-01

    White-light coronagraphic images of Coronal Mass Ejections (CMEs) observed by SOHO/LASCO C2 have been used to estimate the density jump along the whole front of two CME-driven shocks. The two events are different in that the first one was a "radio-loud" fast CME, while the second one was a "radio quiet" slow CME. From the compression ratios inferred along the shock fronts, we estimated the Alfvén Mach numbers for the general case of an oblique shock. It turns out that the "radio-loud" CME shock is initially super-critical around the shock center, while later on the whole shock becomes sub-critical. On the contrary, the shock associated with the "radio-quiet" CME is sub-critical at all times. This suggests that CME-driven shocks could be efficient particle accelerators at the shock nose only at the initiation phases of the event, if and when the shock is super-critical, while at later times they lose their energy and the capability to accelerate high energetic particles.

  17. Reduction and analysis of VLA maps for 281 radio-loud quasars using the UNLV Cray Y-MP supercomputer

    NASA Technical Reports Server (NTRS)

    Ding, Ailian; Hintzen, Paul; Weistrop, Donna; Owen, Frazer

    1993-01-01

    The identification of distorted radio-loud quasars provides a potentially very powerful tool for basic cosmological studies. If large morphological distortions are correlated with membership of the quasars in rich clusters of galaxies, optical observations can be used to identify rich clusters of galaxies at large redshifts. Hintzen, Ulvestad, and Owen (1983, HUO) undertook a VLA A array snapshot survey at 20 cm of 123 radio-loud quasars, and they found that among triple sources in their sample, 17 percent had radio axes which were bent more than 20 deg and 5 percent were bent more than 40 deg. Their subsequent optical observations showed that excess galaxy densities within 30 arcsec of 6 low-redshift distorted quasars were on average 3 times as great as those around undistorted quasars (Hintzen 1984). At least one of the distorted quasars observed, 3C275.1, apparently lies in the first-ranked galaxy at the center of a rich cluster of galaxies (Hintzen and Romanishin, 1986). Although their sample was small, these results indicated that observations of distorted quasars could be used to identify clusters of galaxies at large redshifts. The purpose of this project is to increase the available sample of distorted quasars to allow optical detection of a significant sample of quasar-associated clusters of galaxies at large redshifts.

  18. A statistical analysis of the broadband 0.1 to 3.5 keV spectral properties of X-ray-selected active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Thompson, R. J.; Cordova, F. A.

    1994-01-01

    We survey the broadband spectral properties of approximately 500 X-ray-selected active galactic nuclei (AGNs) observed with the Einstein Observatory. Included in this survey are the approximately 450 AGNs in the Extended Medium Sensitivity Survey (EMSS) of Gioia et al. (1990) and the approximately 50 AGNs in the Ultrasoft Survey of Cordova et al. (1992). We present a revised version of the latter sample, based on the post publication discovery of a software error in the Einstein Rev-1b processing. We find that the mean spectral index of the AGNs between 0.1 and 0.6 keV is softer, and the distribution of indices wider, than previous estimates based on analyses of the X-ray spectra of optically selected AGNs. A subset of these AGNs exhibit flux variabiulity, some on timescales as short as 0.05 days. A correlation between radio and hard X-ray luminosity is confirmed, but the data do not support a correlation between the radio and soft X-ray luminosities, or between radio loudness and soft X-ray spectral slope. Evidence for physically distinct soft and hard X-ray components is found, along with the possibility of a bias in previous optically selected samples toward selection of AGNs with flatter X-ray spectra.

  19. A Radial Velocity Test for Supermassive Black Hole Binaries as an Explanation for Broad, Double-peaked Emission Lines in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Eracleous, Michael; Halpern, Jules P.

    2016-01-01

    One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocity can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1-2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.

  20. Determining the radio active galactic nuclei contribution to the radio-far-infrared correlation using the black hole Fundamental Plane relation

    NASA Astrophysics Data System (ADS)

    Wong, O. Ivy; Koss, M. J.; Schawinski, K.; Kapińska, A. D.; Lamperti, I.; Oh, K.; Ricci, C.; Berney, S.; Trakhtenbrot, B.

    2016-08-01

    We investigate the 1.4-GHz radio properties of 92 nearby (z < 0.05) ultra-hard X-ray selected active galactic nuclei (AGNs) from the Swift Burst Alert Telescope (BAT) sample. Through the ultra-hard X-ray selection, we minimize the biases against obscured or Compton-thick AGNs as well as confusion with emission derived from star formation that typically affect AGN samples selected from the ultraviolet, optical and infrared wavelengths. We find that all the objects in our sample of nearby, ultra-hard X-ray selected AGNs are radio quiet; 83 per cent of the objects are classed as high-excitation galaxies and 17 per cent as low-excitation galaxies. While these low-z BAT sources follow the radio-far-infrared correlation in a similar fashion to star-forming galaxies, our analysis finds that there is still significant AGN contribution in the observed radio emission from these radio-quiet AGNs. In fact, the majority of our BAT sample occupy the same X-ray-radio Fundamental Plane as has been observed in other samples, which include radio-loud AGNs - evidence that the observed radio emission (albeit weak) is connected to the AGN accretion mechanism, rather than star formation.

  1. Observational signatures of galactic winds powered by active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Nims, Jesse; Quataert, Eliot; Faucher-Giguère, Claude-André

    2015-03-01

    We predict the observational signatures of galaxy scale outflows powered by active galactic nuclei (AGN). Most of the emission is produced by the forward shock driven into the ambient interstellar medium (ISM) rather than by the reverse shock. AGN-powered galactic winds with energetics suggested by phenomenological feedback arguments should produce spatially extended ˜1-10 keV X-ray emission ˜ 1041-44 erg s- 1, significantly in excess of the spatially extended X-ray emission associated with normal star-forming galaxies. The presence of such emission is a direct test of whether AGN outflows significantly interact with the ISM of their host galaxy. We further show that even radio-quiet quasars should have a radio luminosity comparable to or in excess of the far-infrared-radio correlation of normal star-forming galaxies. This radio emission directly constrains the total kinetic energy flux in AGN-powered galactic winds. Radio emission from AGN wind shocks can also explain the recently highlighted correlations between radio luminosity and the kinematics of AGN narrow-line regions in radio-quiet quasars.

  2. X-raying the Winds of Luminous Active Galaxies

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Chartas, G.; Gallagher, S. C.; Gibson, R. R.; Miller, B. P.

    2009-12-01

    We briefly describe some recent observational results, mainly at X-ray wavelengths, on the winds of luminous active galactic nuclei (AGNs). These winds likely play a significant role in galaxy feedback. Topics covered include (1) Relations between X-ray and UV absorption in Broad Absorption Line (BAL) and mini-BAL quasars; (2) X-ray absorption in radio-loud BAL quasars; and (3) Evidence for relativistic iron K BALs in the X-ray spectra of a few bright quasars. We also mention some key outstanding problems and prospects for future advances; e.g., with the International X-ray Observatory (IXO).

  3. Sampling Studies Of Quasars, Radio-loud Galaxies, & Radio-quiet Galaxies -- Searching For The Cause Of Radio Emission

    NASA Astrophysics Data System (ADS)

    Coldwell, G.; Salois, Amee; Soechting, I.; Smith, M.

    2011-01-01

    Comparing the environments of Radio-Loud Galaxies, Radio-Quiet Galaxies, and Quasars offers an opportunity to study the evolution of these objects. Our samples have been carefully chosen from Data Release 7 of the Sloan Digital Sky Survey, which also includes samples studied in the FIRST survey, and have been cut to determine the best possible results. Our study includes three samples. The Quasar sample currently contains 69 objects, the Radio-Loud Galaxy (RLG) sample has 1,335 objects, and the Radio-Quiet Galaxy (RQG) sample contains 2,436 objects (any updates will be given at the meeting). A number of trims were made to produce (smaller) samples with characteristics suited for precise results. By comparing the environments of these three samples we will be able to see any similarities or differences between them. If similarities are detected it suggests that the central object has evolved according to 'nature' - in an isolated manner with little environmental feedback, which may or may not have an effect on its evolution, as supposed by Coldwell et al. (2009). If differences are detected it suggests that the central object has evolved according to `nurture’ and that the environment may have played an important role in the development of their properties. We employ similar procedures used by Coldwell et al. (2009) in their study of blue and red AGNs. Upon the completion of an accurate sample, future work will be pursued studying a number of properties of the environments including studies of: the stellar masses, star formation rates, sersic morphologies, as well as densities and ages of the environments.

  4. The Jet/Disk Connection in AGN: Chandra and XMM-Newton Observations of Three Powerful Radio-Loud Quasars

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita; Gliozzi, Mario; Tavecchio, F.; Maraschi, L.; Foschini, Luigi

    2007-01-01

    The connection between the accretion process that powers AGN and the formation of jets is still poorly understood. Here we tackle this issue using new, deep Chandra and XMM-Newton observations of tlie cores of three powerful radio loud quasars: 1136-135, 1150+497 (Chandra), and 0723+679 (XMM-Newton), in the redshift range z=0.3-0.8. These sources are known from our previous Chandra siiapsliot survey to liave kpc-scale X-ray jets. In 1136-135 and 1150-1+497; evidence is found for the presence of diffuse thermal X-ray emission around the cores; on scales of 40-50 kpc and with luminosity L(sub 0.3-2 kev approx. 10(sup 43) erg per second, suggesting thermal emission from the host galaxy or a galaxy group. The X-ray continua of the cores in the three sources are described by an upward-curved (concave) broken power law, with photon indices GAMMA (sub soft) approx. 1.8 - 2.1 and GAMMA (sub hard) approx. 1.7 below and above approx. equal to 2 keV, respectively. There is evidence for an uiiresolved Fe K alpha line with EW approx. 70 eV in the three quasars. The Spectral Energy Distributions of the sources can be well described by a mix of jet and disk emission, with the jet dominating the radio and hard X-rays (via synchrotron and external Compton) and the disk dominating the optical/UV through soft X-rays. The ratio of the jet-to-disk powers is approx. 1, consistent with those derived for a number of gamma ray emitting blazars. This indicates that near equality of accretion and jet power may be common in powerful radio-loud AGN.

  5. X-Ray Properties Expected from Active Galactic Nucleus Feedback in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Pellegrini, Silvia; Ciotti, Luca; Ostriker, Jeremiah P.

    2012-01-01

    Detailed hydrodynamic simulations of active galactic nucleus feedback have been performed including the effects of radiative and mechanical momentum and energy input on the interstellar medium (ISM) of typical elliptical galaxies. We focus on the observational properties of the models in the soft and hard X-ray bands: nuclear X-ray luminosity; global X-ray luminosity and temperature of the hot ISM; and temperature and X-ray brightness profiles before, during, and after outbursts. After ~10 Gyr, the bolometric nuclear emission L BH is very sub-Eddington (l = L BH/L Edd ~ 10-4), and within the range observed, though larger than typical values. Outbursts last for ≈107 yr, and the duty cycle of nuclear activity is a few × (10-3 to 10-2), over the last 6 Gyr. The ISM thermal luminosity L X oscillates in phase with the nuclear luminosity, with broader peaks. This behavior helps statistically reproduce the observed large L X variation. The average gas temperature is within the observed range, in the upper half of those observed. In quiescence, the temperature profile has a negative gradient; thanks to past outbursts, the brightness profile lacks the steep shape of cooling flow models. After outbursts, disturbances are predicted in the temperature and brightness profiles (analyzed by unsharp masking). Most significantly, during major accretion episodes, a hot bubble of shocked gas is inflated at the galaxy center (within ≈100 pc) the bubble would be conical in shape in real galaxies and would be radio-loud. Its detection in X-rays is within current capabilities, though it would likely remain unresolved. The ISM resumes its smooth appearance on a timescale of ≈200 Myr the duty cycle of perturbations in the ISM is of the order of 5%-10%. While showing general agreement between the models and real galaxies, this analysis indicates that additional physical input may still be required including moving to two-dimensional or three-dimensional simulations, input of

  6. THE NUCLEAR INFRARED EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Mason, R. E.; Lopez-Rodriguez, E.; Packham, C.; Alonso-Herrero, A.; Elitzur, M.; Aretxaga, I.; Roche, P. F.; Oi, N.

    2012-07-15

    We present high-resolution mid-infrared (MIR) imaging, nuclear spectral energy distributions (SEDs), and archival Spitzer spectra for 22 low-luminosity active galactic nuclei (LLAGNs; L{sub bol} {approx}< 10{sup 42} erg s{sup -1}). Infrared (IR) observations may advance our understanding of the accretion flows in LLAGNs, the fate of the obscuring torus at low accretion rates, and, perhaps, the star formation histories of these objects. However, while comprehensively studied in higher-luminosity Seyferts and quasars, the nuclear IR properties of LLAGNs have not yet been well determined. We separate the present LLAGN sample into three categories depending on their Eddington ratio and radio emission, finding different IR characteristics for each class. (1) At the low-luminosity, low-Eddington-ratio (log L{sub bol}/L{sub Edd} < -4.6) end of the sample, we identify 'host-dominated' galaxies with strong polycyclic aromatic hydrocarbon bands that may indicate active (circum-)nuclear star formation. (2) Some very radio-loud objects are also present at these low Eddington ratios. The IR emission in these nuclei is dominated by synchrotron radiation, and some are likely to be unobscured type 2 AGNs that genuinely lack a broad-line region. (3) At higher Eddington ratios, strong, compact nuclear sources are visible in the MIR images. The nuclear SEDs of these galaxies are diverse; some resemble typical Seyfert nuclei, while others lack a well-defined MIR 'dust bump'. Strong silicate emission is present in many of these objects. We speculate that this, together with high ratios of silicate strength to hydrogen column density, could suggest optically thin dust and low dust-to-gas ratios, in accordance with model predictions that LLAGNs do not host a Seyfert-like obscuring torus. We anticipate that detailed modeling of the new data and SEDs in terms of accretion disk, jet, radiatively inefficient accretion flow, and torus components will provide further insights into the nuclear

  7. The physics of galactic winds driven by active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Quataert, Eliot

    2012-09-01

    Active galactic nuclei (AGN) drive fast winds in the interstellar medium of their host galaxies. It is commonly assumed that the high ambient densities and intense radiation fields in galactic nuclei imply short cooling times, thus making the outflows momentum conserving. We show that cooling of high-velocity shocked winds in AGN is in fact inefficient in a wide range of circumstances, including conditions relevant to ultraluminous infrared galaxies (ULIRGs), resulting in energy-conserving outflows. We further show that fast energy-conserving outflows can tolerate a large amount of mixing with cooler gas before radiative losses become important. For winds with initial velocity vin ≳ 10 000 km s-1, as observed in ultraviolet and X-ray absorption, the shocked wind develops a two-temperature structure. While most of the thermal pressure support is provided by the protons, the cooling processes operate directly only on the electrons. This significantly slows down inverse Compton cooling, while free-free cooling is negligible. Slower winds with vin ˜ 1000 km s-1, such as may be driven by radiation pressure on dust, can also experience energy-conserving phases but under more restrictive conditions. During the energy-conserving phase, the momentum flux of an outflow is boosted by a factor ˜vin/2vs by work done by the hot post-shock gas, where vs is the velocity of the swept-up material. Energy-conserving outflows driven by fast AGN winds (vin ˜ 0.1c) may therefore explain the momentum fluxes Ṗ≫LAGN/c of galaxy-scale outflows recently measured in luminous quasars and ULIRGs. Shocked wind bubbles expanding normal to galactic discs may also explain the large-scale bipolar structures observed in some systems, including around the Galactic Centre, and can produce significant radio, X-ray and γ-ray emission. The analytic solutions presented here will inform implementations of AGN feedback in numerical simulations, which typically do not include all the important

  8. THE GALACTIC CENTER: NOT AN ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris

    2013-06-01

    We present 10 {mu}m-35 {mu}m Spitzer spectra of the interstellar medium in the Central Molecular Zone (CMZ), the central 210 pc Multiplication-Sign 60 pc of the Galactic center (GC). We present maps of the CMZ in ionic and H{sub 2} emission, covering a more extensive area than earlier spectroscopic surveys in this region. The radial velocities and intensities of ionic lines and H{sub 2} suggest that most of the H{sub 2} 0-0 S(0) emission comes from gas along the line-of-sight, as found by previous work. We compare diagnostic line ratios measured in the Spitzer Infrared Nearby Galaxies Survey to our data. Previous work shows that forbidden line ratios can distinguish star-forming galaxies from low-ionization nuclear emission-line regions (LINERs) and active galactic nuclei (AGNs). Our GC line ratios agree with star-forming galaxies and not with LINERs or AGNs.

  9. A CLOSER VIEW OF THE RADIO-FIR CORRELATION: DISENTANGLING THE CONTRIBUTIONS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    SciTech Connect

    Moric, I.; Smolcic, V.; Riechers, D. A.; Scoville, N.; Kimball, A.; Ivezic, Z.

    2010-11-20

    We extend the Unified Radio Catalog, a catalog of sources detected by various (NVSS, FIRST, WENSS, GB6) radio surveys, and SDSS, to IR wavelengths by matching it to the IRAS Point and Faint Source catalogs. By fitting each NVSS-selected galaxy's NUV-NIR spectral energy distribution (SED) with stellar population synthesis models we add to the catalog star formation rates (SFRs), stellar masses, and attenuations. We further add information about optical emission-line properties for NVSS-selected galaxies with available SDSS spectroscopy. Using an NVSS 20 cm (F{sub 1.4{sub GHz}} {approx}> 2.5 mJy) selected sample, matched to the SDSS spectroscopic ('main' galaxy and quasar) catalogs and IRAS data (0.04 < z {approx}< 0.2) we perform an in-depth analysis of the radio-FIR correlation for various types of galaxies, separated into (1) quasars, (2) star-forming, (3) composite, (4) Seyfert, (5) LINER, and (6) absorption line galaxies using the standard optical spectroscopic diagnostic tools. We utilize SED-based SFRs to independently quantify the source of radio and FIR emission in our galaxies. Our results show that Seyfert galaxies have FIR/radio ratios lower than, but still within the scatter of, the canonical value due to an additional (likely active galactic nucleus (AGN)) contribution to their radio continuum emission. Furthermore, IR-detected absorption and LINER galaxies are on average strongly dominated by AGN activity in both their FIR and radio emission; however their average FIR/radio ratio is consistent with that expected for star-forming galaxies. In summary, we find that most AGN-containing galaxies in our NVSS-IRAS-SDSS sample have FIR/radio flux ratios indistinguishable from those of the star-forming galaxies that define the radio-FIR correlation. Thus, attempts to separate AGNs from star-forming galaxies by their FIR/radio flux ratios alone can separate only a small fraction of the AGNs, such as the radio-loud quasars.

  10. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  11. The Role of Star Formation in Radio-Loud Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Herbst, Hanna; Wilcots, E.; Hess, K.

    2010-01-01

    X-ray observations have shown that additional non-gravitational processes are required to explain the heating of the intergalactic medium in galaxy groups. The two most likely processes are galactic outflows from starbursts and feedback from AGN. Here, we look at star formation as a possible additional heating mechanism in X-ray luminous groups such as NGC 741, NGC 1052, NGC 524, and NGC 1587. We report on the results of optical imaging of these groups carried out using the WIYN 3.5m telescope with a specific emphasis on measuring the star formation rates of the resident galaxies in each group and estimating the impact of that star formation on the thermodynamics of the intragroup medium.

  12. Ambartsumyan's concept of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Khachikian, E. Ye.

    2010-01-01

    As Victor Ambartsumyan, himself, noted, the concept of active galactic nuclei occupies a special place among his scientific ideas. It was proposed more than half a century ago and was recognized by the U.S. National Academy of Sciences as revolutionary, on a copernican scale. However, by no means all of its propositions were accepted at once by large parts of the astronomy community. Nevertheless, as the American astrophysicist A. R. Sandage has written, “today, not one astronomer would deny the mystery surrounding the nuclei of galaxies or that the first to recognize the rich reward held in this treasury was Viktor Ambartsumian.” The purpose of this article is to acquaint the reader with the major stages in the formation and development of the concept of active galactic nuclei and with some of the work on this topic done at the Byurakan and other astrophysical observatories throughout the world.

  13. Gravitational lensing of active galactic nuclei.

    PubMed Central

    Hewitt, J N

    1995-01-01

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613

  14. Gamma rays from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    1990-01-01

    The general properties of Active Galactic Nuclei (AGN) and quasars are reviewed with emphasis on their continuum spectral emission. Two general classes of models for the continuum are outlined and critically reviewed in view of the impending GRO (Gamma Ray Observatory) launch and observations. The importance of GRO in distinguishing between these models and in general in furthering the understanding of AGN is discussed. The very broad terms the status of the current understanding of AGN are discussed.

  15. From the Blazar Sequence to the Blazar Envelope: Revisiting the Relativistic Jet Dichotomy in Radio-Loud AGN

    NASA Technical Reports Server (NTRS)

    Meyer, Eileen T.; Fossati, Giovanini; Georganopoulos, Markos; Lister, Matthew L.

    2012-01-01

    We revisit the concept of a blazar sequence that relates the synchrotron peak frequency (Vpeak) in blazars with synchrotron peak luminosity (Lpeak, in vLv) using a large sample of radio-loud AGN. We present observational evidence that the blazar sequence is formed from two populations in the synchrotron Vpeak - Lpeak plane, each forming an upper edge to an envelope of progressively misaligned blazars, and connecting to an adjacent group of radio galaxies having jets viewed at much larger angles to the line of sight. When binned by jet kinetic power (Lkin; as measured through a scaling relationship with extended radio power), we find that radio core dominance decreases with decreasing synchrotron Lpeak, revealing that sources in the envelope are generally more misaligned. We find population-based evidence of velocity gradients in jets at low kinetic powers (approximately 10(exp 42) - 10(exp 44.5) erg s(exp -1)), corresponding to FR I radio galaxies and most BL Lacs. These low jet power 'weak jet' sources, thought to exhibit radiatively inefficient accretion, are distinguished from the population of non-decelerating, low synchrotron-peaking (LSP) blazars and FR II radio galaxies ('strong' jets) which are thought to exhibit radiatively efficient accretion. The two-population interpretation explains the apparent contradiction of the existence of highly core-dominated, low-power blazars at both low and high synchrotron peak frequencies, and further implies that most intermediate synchrotron peak (ISP) sources are not intermediate in intrinsic jet power between LSP and high synchrotron-peaking (HSP) sources, but are more misaligned versions of HSP sources with similar jet powers.

  16. The fuelling of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Begelman, Mitchell C.; Frank, Julian

    1990-01-01

    Accretion mechanisms for powering the central engines of active galactic nuclei (AGN) and possible sources of fuel are reviewed. It is a argued that the interstellar matter in the main body of the host galaxy is channeled toward the center, and the problem of angular momentum transport is addressed. Thin accretion disks are not a viable means of delivering fuel to luminous AGN on scales much larger than a parsec because of the long inflow time and effects of self-gravity. There are also serious obstacles to maintaining and regulating geometrically thick, hot accretion flows. The role of nonaxisymmetric perturbations of the gravitational potential on galactic scales and their triggers is emphasized. A unified model is outlined for fueling AGN, in which the inflow on large scales is driven by gravitational torques, and on small scales forms a mildly self-gravitating disk of clouds with inflow driven by magnetic torques or cloud-cloud collisions.

  17. Active galactic nuclei cores in infrared-faint radio sources. Very long baseline interferometry observations using the Very Long Baseline Array

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Spitler, L. R.; Deller, A. T.; Collier, J. D.; Parker, Q. A.

    2015-06-01

    Context. Infrared-faint radio sources (IFRS) form a new class of galaxies characterised by radio flux densities between tenths and tens of mJy and faint or absent infrared counterparts. It has been suggested that these objects are radio-loud active galactic nuclei (AGNs) at significant redshifts (z ≳ 2). Aims: Whereas the high redshifts of IFRS have been recently confirmed based on spectroscopic data, the evidence for the presence of AGNs in IFRS is mainly indirect. So far, only two AGNs have been unquestionably confirmed in IFRS based on very long baseline interferometry (VLBI) observations. In this work, we test the hypothesis that IFRS contain AGNs in a large sample of sources using VLBI. Methods: We observed 57 IFRS with the Very Long Baseline Array (VLBA) down to a detection sensitivity in the sub-mJy regime and detected compact cores in 35 sources. Results: Our VLBA detections increase the number of VLBI-detected IFRS from 2 to 37 and provide strong evidence that most - if not all - IFRS contain AGNs. We find that IFRS have a marginally higher VLBI detection fraction than randomly selected sources with mJy flux densities at arcsec-scales. Moreover, our data provide a positive correlation between compactness - defined as the ratio of milliarcsec- to arcsec-scale flux density - and redshift for IFRS, but suggest a decreasing mean compactness with increasing arcsec-scale radio flux density. Based on these findings, we suggest that IFRS tend to contain young AGNs whose jets have not formed yet or have not expanded, equivalent to very compact objects. We found two IFRS that are resolved into two components. The two components are spatially separated by a few hundred milliarcseconds in both cases. They might be components of one AGN, a binary black hole, or the result of gravitational lensing.

  18. X-RAY OBSERVATIONAL SIGNATURE OF A BLACK HOLE ACCRETION DISK IN AN ACTIVE GALACTIC NUCLEUS RX J1633+4718

    SciTech Connect

    Yuan, W.; Liu, B. F.; Zhou, H.; Wang, T. G.

    2010-11-01

    We report the discovery of a luminous ultra-soft X-ray excess in a radio-loud narrow-line Seyfert 1 galaxy, RX J1633+4718, from archival ROSAT observations. The thermal temperature of this emission, when fitted with a blackbody, is as low as 32.5{sup +8.0}{sub -6.0} eV. This is in remarkable contrast to the canonical temperatures of {approx}0.1-0.2 keV found hitherto for the soft X-ray excess in active galactic nuclei (AGNs) and is interestingly close to the maximum temperature predicted for a postulated accretion disk in this object. If this emission is indeed blackbody in nature, the derived luminosity (3.5{sup +3.3}{sub -1.5} x 10{sup 44} erg s{sup -1}) infers a compact emitting area with a size ({approx}5 x 10{sup 12} cm or 0.33 AU in radius) that is comparable to several times the Schwarzschild radius of a black hole (BH) at the mass estimated for this AGN ({approx}3 x 10{sup 6} M{sub sun}). In fact, this ultra-steep X-ray emission can be well fitted as the (Compton scattered) Wien tail of the multi-temperature blackbody emission from an optically thick accretion disk, whose inferred parameters (BH mass and accretion rate) are in good agreement with independent estimates using the optical emission-line spectrum. We thus consider this feature as a signature of the long-sought X-ray radiation directly from a disk around a supermassive BH, presenting observational evidence for a BH accretion disk in the AGN. Future observations with better data quality, together with improved independent measurements of the BH mass, may constrain the spin of the BH.

  19. INFRARED AND HARD X-RAY DIAGNOSTICS OF ACTIVE GALACTIC NUCLEUS IDENTIFICATION FROM THE SWIFT/BAT AND AKARI ALL-SKY SURVEYS

    SciTech Connect

    Matsuta, K.; Dotani, T.; Yamamura, I.; Gandhi, P.; Nakagawa, T.; Isobe, N.; Stawarz, L.; Ueda, Y.; Ichikawa, K.; Terashima, Y.; Oyabu, S.

    2012-07-10

    We combine data from two all-sky surveys in order to study the connection between the infrared and hard X-ray (>10 keV) properties for local active galactic nuclei (AGNs). The Swift Burst Alert Telescope all-sky survey provides an unbiased, flux-limited selection of hard X-ray-detected AGNs. Cross-correlating the 22 month hard X-ray survey with the AKARI all-sky survey, we studied 158 AGNs detected by the AKARI instruments. We find a strong correlation for most AGNs between the infrared (9, 18, and 90 {mu}m) and hard X-ray (14-195 keV) luminosities, and quantify the correlation for various subsamples of AGNs. Partial correlation analysis confirms the intrinsic correlation after removing the redshift contribution. The correlation for radio galaxies has a slope and normalization identical to that for Seyfert 1 galaxies, implying similar hard X-ray/infrared emission processes in both. In contrast, Compton-thick (CT) sources show a large deficit in the hard X-ray band, because high gas column densities diminish even their hard X-ray luminosities. We propose two photometric diagnostics for source classification: one is an X-ray luminosity versus infrared color diagram, in which type 1 radio-loud AGNs are well isolated from the others in the sample. The other uses the X-ray versus infrared color as a useful redshift-independent indicator for identifying CT AGNs. Importantly, CT AGNs and starburst galaxies in composite systems can also be differentiated in this plane based upon their hard X-ray fluxes and dust temperatures. This diagram may be useful as a new indicator to classify objects in new and upcoming surveys such as WISE and NuSTAR.

  20. Search for correlations between the optical and radio polarization of active galactic nuclei - I. VLBA polarization data at 15 + 22 + 43 GHz

    NASA Astrophysics Data System (ADS)

    Algaba, J. C.; Gabuzda, D. C.; Smith, P. S.

    2011-02-01

    Although the continua of radio-loud active galactic nuclei (AGNs) are typically dominated by synchrotron radiation over virtually the entire spectrum, it is not clear whether the radio and higher frequency emission originates in the same or different parts of the jet. In some inhomogeneous synchrotron source models, the radio and ultraviolet-optical-infrared emission may be co-spatial, depending on the model parameters considered. Indeed, several different radio-optical correlations based on polarization data have been found recently, suggesting that the optical and radio polarization may be closely related in some AGNs, and that the corresponding emission regions may be co-spatial. Our joint analysis of optical and 15 + 22 + 43 GHz Very Long Baseline Array (VLBA) polarization data for a sample of about 40 AGNs shows that, after correction for the inferred VLBA core Faraday rotations, about 50-55 per cent of BL Lac objects and high-polarization quasars, and about 65 per cent of high-polarization quasars (LPQs) have aligned VLBA-core and optical polarization angles to within 20°; a considerable number of objects also show no obvious relationship between their VLBA-core and optical polarization angles. This may indicate that only some AGNs have co-spatial regions of optical and radio emission in their jets. However, another possibility is that some of the 15-43 GHz VLBA cores have Faraday rotations of the order of several tens of thousand of rad m-2, which were not properly fitted using our three-frequency data due to n×π ambiguities in the observed polarization angles, leading to inaccurate subtraction of the effects of the core Faraday rotation and so incorrect ‘zero-wavelength' radio polarization angles.

  1. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VI. Kinematics Analysis of a Complete Sample of Blazar Jets

    NASA Astrophysics Data System (ADS)

    Lister, M. L.; Cohen, M. H.; Homan, D. C.; Kadler, M.; Kellermann, K. I.; Kovalev, Y. Y.; Ros, E.; Savolainen, T.; Zensus, J. A.

    2009-12-01

    We discuss the jet kinematics of a complete flux-density-limited sample of 135 radio-loud active galactic nuclei (AGNs) resulting from a 13 year program to investigate the structure and evolution of parsec-scale jet phenomena. Our analysis is based on new 2 cm Very Long Baseline Array (VLBA) images obtained between 2002 and 2007, but includes our previously published observations made at the same wavelength, and is supplemented by VLBA archive data. In all, we have used 2424 images spanning the years 1994-2007 to study and determine the motions of 526 separate jet features in 127 jets. The data quality and temporal coverage (a median of 15 epochs per source) of this complete AGN jet sample represent a significant advance over previous kinematics surveys. In all but five AGNs, the jets appear one-sided, most likely the result of differential Doppler boosting. In general, the observed motions are directed along the jet ridge line, outward from the optically thick core feature. We directly observe changes in speed and/or direction in one third of the well-sampled jet components in our survey. While there is some spread in the apparent speeds of separate features within an individual jet, the dispersion is about three times smaller than the overall dispersion of speeds among all jets. This supports the idea that there is a characteristic flow that describes each jet, which we have characterized by the fastest observed component speed. The observed maximum speed distribution is peaked at ~10c, with a tail that extends out to ~50c. This requires a distribution of intrinsic Lorentz factors in the parent population that range up to ~50. We also note the presence of some rare low-pattern speeds or even stationary features in otherwise rapidly flowing jets that may be the result of standing re-collimation shocks, and/or a complex geometry and highly favorable Doppler factor.

  2. Invisible Active Galactic Nuclei. II. Radio Morphologies and Five New H i 21cm Absorption Line Detectors

    NASA Astrophysics Data System (ADS)

    Yan, Ting; Stocke, John T.; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2016-03-01

    This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5 and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by

  3. The subarcsecond mid-infrared view of local active galactic nuclei - II. The mid-infrared-X-ray correlation

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Gandhi, P.; Hönig, S. F.; Smette, A.; Duschl, W. J.

    2015-11-01

    We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18μm continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by significant biases. The MIR-X-ray correlation is nearly linear and within a factor of 2 independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (˜1045 erg s-1) towards low MIR luminosities for a given X-ray luminosity is indicated but not significant. Unobscured objects have, on average, an MIR-X-ray ratio that is only ≤0.15 dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log NH < 23) actually show the highest MIR-X-ray ratio on average. Radio-loud objects show a higher mean MIR-X-ray ratio at low luminosities while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates do not show any deviation from the general behaviour suggesting that they possess a dusty obscurer as in other AGN. Double AGN also do not deviate. Finally, we show that the MIR-X-ray correlation can be used to investigate the AGN nature of uncertain objects. Specifically, we give equations that allow us to determine the intrinsic 2-10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the

  4. The unusual near-infrared morphology of the radio-loud quasar 4C+09.17

    NASA Astrophysics Data System (ADS)

    Armus, L.; Neugebauer, G.; Lehnert, M. D.; Matthews, K.

    1997-08-01

    Near-infrared images of the luminous, high-redshift (z=2.1108), radio-loud quasar 4C+09.17 reveal a complex structure. The quasar (K=15.76 mag) is surrounded by three `companion' objects having 17.91.5. If this object is at the redshift of 4C+09.17, it has a luminosity of about 7L*. The faintest companion has colours which are unlike those expected from either a spiral or an E/S0 galaxy at any redshift associated with the 4C+09.17 system. Since this object lies along the same direction as the radio jet/lobe of 4C+09.17, as well as the extended Lyalpha emission mapped by Heckman et al., we suggest that this component can be explained as a combination of strong line emission and scattered QSO light. The resolved, diffuse emission surrounding 4C+09.17 is bright, K~17.0 mag, and about 1 mag redder in J-K than the quasar. If this emission is starlight, a very luminous elliptical host galaxy is implied for 4C+09.17. Scattered and reddened AGN light, emission-line gas, and flux from absorbing galaxies along the line of sight may all contribute to this emission.

  5. A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its circumstellar environment

    SciTech Connect

    Corsi, A.; Ofek, E. O.; Gal-Yam, A.; Xu, D.; Frail, D. A.; Kulkarni, S. R.; Horesh, A.; Carpenter, J.; Arcavi, I.; Cao, Y.; Mooley, K.; Sesar, B.; Fox, D. B.; Kasliwal, M. M.; Sullivan, M.; Maguire, K.; Pan, Y.-C.; Cenko, S. B.; Sternberg, A.; Bersier, D.; and others

    2014-02-10

    We present the discovery, classification, and extensive panchromatic (from radio to X-ray) follow-up observations of PTF11qcj, a supernova (SN) discovered by the Palomar Transient Factory (PTF). Our observations with the Karl G. Jansky Very Large Array show that this event is radio-loud: PTF11qcj reached a radio peak luminosity comparable to that of the famous gamma-ray-burst-associated SN 1998bw (L {sub 5} {sub GHz} ≈ 10{sup 29} erg s{sup –1} Hz{sup –1}). PTF11qcj is also detected in X-rays with the Chandra Observatory, and in the infrared band with Spitzer. Our multi-wavelength analysis probes the SN interaction with circumstellar material. The radio observations suggest a progenitor mass-loss rate of ∼10{sup –4} M {sub ☉} yr{sup –1} × (v{sub w} /1000 km s{sup –1}), and a velocity of ≈0.3-0.5 c for the fastest moving ejecta (at ≈10 days after explosion). However, these estimates are derived assuming the simplest model of SN ejecta interacting with a smooth circumstellar wind, and do not account for possible inhomogeneities in the medium and asphericity of the explosion. The radio data show deviations from such a simple model, as well as a late-time re-brightening. The X-ray flux from PTF11qcj is compatible with the high-frequency extrapolation of the radio synchrotron emission (within the large uncertainties). A light echo from pre-existing dust is in agreement with our infrared data. Our pre-explosion data from the PTF suggest that a precursor eruption of absolute magnitude M{sub r} ≈ –13 mag may have occurred ≈2.5 yr prior to the SN explosion. Overall, PTF11qcj fits the expectations from the explosion of a Wolf-Rayet star. Precursor eruptions may be a feature characterizing the final pre-explosion evolution of such stars.

  6. The physical fundamental plane of black hole activity: revisited

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Han, Zhenhua; Zhang, Zhen

    2016-01-01

    The correlation between the jet power and accretion disk luminosity is investigated for active galactic nuclei (AGNs) and black hole X-ray binaries (BHXBs) from the literature. The power-law correlation index is steep (μ˜1.0 -1.4) for radio loud quasars and the `outliers' of BHXBs, and it is flatter (μ˜ 0.3 -0.6) for radio loud galaxies and the standard BHXBs. The steep-index groups are mostly at higher accretion rates (peaked at Eddington ratio > 0.01) and the flatter-index groups are at relatively low accretion rates (peaked at Eddington ratio < 0.01), implying that the former groups could be dominated by the inner disk accretion of black hole, while the jet in latter groups would be a hybrid production of the accretion and black hole spin. We could still have a fundamental plane of black hole activity for the BHXBs and AGNs with diverse (maybe two kinds of) correlation indices. It is noted that the fundamental plane of black hole activity should be referred to the correlation between the jet power and disk luminosity or equivalently to the correlation between jet power, Eddington ratio and black hole mass, rather than the jet power, disk luminosity and black hole mass.

  7. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Beky, Bence; Kocsis, Bence E-mail: bkocsis@cfa.harvard.edu

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10{sup 6} solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or {approx}10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  8. Stellar Transits in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 106 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ~10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  9. Reverberation mapping of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    1993-01-01

    The broad emission lines in the spectra of active galactic nuclei respond to variations in the luminosity of the central continuum source with a delay due to light-travel time effects within the emission-line region. It is therefore possible through the process of 'reverberation mapping' to determine the geometry and kinematics of the emission-line region by careful monitoring of the continuum variations and the resulting emission-line response. In this review, I will discuss progress in application of the reverberation mapping technique. I will describe the underlying assumptions and limitations of the method, discuss how the results obtained to date are changing our understanding of active nuclei, and outline several new questions that might be addressed through further reverberation mapping programs.

  10. Starbursts in Low Luminosity Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    González Delgado, Rosa M.; Cid Fernandes, Roberto

    2005-05-01

    Low Luminosity Active Galactic Nuclei (LLAGN), which comprise low-ionization nuclear emission-line regions (LINERs) and transition-type objects (TOs), represent the most common type of nuclear activity. Here, we search for spectroscopic signatures of starbursts and post-starbursts in LLAGN, and investigate their relationship to the ionization mechanism in LLAGN. The method used is based on the stellar population synthesis of the circumnuclear optical continuum of these galaxies. We have found that intermediate-age populations (108-109 yr) are very common in weak-[O I] LLAGN, but that very young stars (≤107 yr) contribute very little to the central optical continuum of these objects. However, ˜ 1 Gyr ago these nuclei harboured starbursts of size ˜ 100 pc and masses 107-108 M⊙. Meanwhile, most of the strong-[O I] LLAGN have predominantly old stellar populations.

  11. THE JET-DRIVEN OUTFLOW IN THE RADIO GALAXY SDSS J1517+3353: IMPLICATIONS FOR DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Rosario, D. J.; Taylor, G. B. E-mail: shieldsga@mail.utexas.ed E-mail: krista@mail.utexas.ed

    2010-06-10

    We report on the study of an intriguing active galaxy that was selected as a potential multiple supermassive black hole merger in the early-type host SDSS J151709.20+335324.7 (z = 0.135) from a complete search for double-peaked [O III] lines from the SDSS spectroscopic quasi-stellar object (QSO) database. Ground-based SDSS imaging reveals two blue structures on either side of the photometric center of the host galaxy, separated from each other by about 5.7 kpc. From a combination of SDSS fiber and Keck/HIRES long-slit spectroscopy, it is demonstrated that, in addition to these two features, a third distinct structure surrounds the nucleus of the host galaxy. All three structures exhibit highly ionized line emission with line ratios characteristic of Seyfert II active galactic nuclei. The analysis of spatially resolved emission-line profiles from the HIRES spectrum reveal three distinct kinematic subcomponents, one at rest and the other two moving at -350 km s{sup -1} and 500 km s{sup -1} with respect to the systemic velocity of the host galaxy. A comparison of imaging and spectral data confirm a strong association between the kinematic components and the spatial knots, which implies a highly disturbed and complex active region in this object. A comparative analysis of the broadband positions, colors, kinematics, and spectral properties of the knots in this system lead to two plausible explanations: (1) a multiple active galactic nucleus (AGN) produced due to a massive dry merger, or (2) a very powerful radio jet-driven outflow. Subsequent VLA radio imaging reveals a clear jet aligned with the emission-line gas, confirming the latter explanation. We use the broadband radio measurements to examine the impact of the jet on the interstellar medium of the host galaxy, and find that the energy in the radio lobes can heat a significant fraction of the gas to the virial temperature. Finally, we discuss tests that may help future surveys distinguish between jet

  12. DUST EMISSION FROM UNOBSCURED ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Thompson, G. D.; Levenson, N. A.; Uddin, S. A.; Sirocky, M. M.

    2009-05-20

    We use mid-infrared (MIR) spectroscopy of unobscured active galactic nuclei (AGNs) to reveal their native dusty environments. We concentrate on Seyfert 1 galaxies, observing a sample of 31 with the Infrared Spectrograph aboard the Spitzer Space Telescope, and compare them with 21 higher luminosity quasar counterparts. Silicate dust reprocessing dominates the MIR spectra, and we generally measure the 10 and 18 {mu}m spectral features weakly in emission in these galaxies. The strengths of the two silicate features together are sensitive to the dust distribution. We present numerical radiative transfer calculations that distinguish between clumpy and smooth geometries, which are applicable to any central heating source, including stars as well as AGNs. In the observations, we detect the obscuring 'torus' of unified AGN schemes, modeling it as compact and clumpy. We also determine that star formation increases with AGN luminosity, although the proportion of the galaxies' bolometric luminosity attributable to stars decreases with AGN luminosity.

  13. Dust Emission from Unobscured Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Thompson, G. D.; Levenson, N. A.; Uddin, S. A.; Sirocky, M. M.

    2009-05-01

    We use mid-infrared (MIR) spectroscopy of unobscured active galactic nuclei (AGNs) to reveal their native dusty environments. We concentrate on Seyfert 1 galaxies, observing a sample of 31 with the Infrared Spectrograph aboard the Spitzer Space Telescope, and compare them with 21 higher luminosity quasar counterparts. Silicate dust reprocessing dominates the MIR spectra, and we generally measure the 10 and 18 μm spectral features weakly in emission in these galaxies. The strengths of the two silicate features together are sensitive to the dust distribution. We present numerical radiative transfer calculations that distinguish between clumpy and smooth geometries, which are applicable to any central heating source, including stars as well as AGNs. In the observations, we detect the obscuring "torus" of unified AGN schemes, modeling it as compact and clumpy. We also determine that star formation increases with AGN luminosity, although the proportion of the galaxies' bolometric luminosity attributable to stars decreases with AGN luminosity.

  14. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  15. Multiwavelength Monitoring of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2001-01-01

    By intensive monitoring of AGN variability over a large range in wavelength, we can probe the structure and physics of active galactic nuclei on microarcsecond angular scales. For example, multi-wavelength variability data allow us (a) to establish causal relationships between variations in different wavebands, and thus determine which physical processes are primary and which spectral changes are induced by variations at other wavelengths, and (b) through reverberation mapping of the UV/optical emission lines, to determine the structure and kinematics of the line-emitting region, and thus accurately determine the central masses in AGNs. Multiwavelength monitoring is resource-intensive, and is difficult to implement with general-purpose facilities. As a result, virtually all programs undertaken to date have been either sparsely sampled, or short in duration, or both. The potentially high return on this type of investigation, however, argues for dedicated facilities for multiwavelength monitoring programs.

  16. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  17. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  18. A GMRT study of Seyfert galaxies NGC 4235 and NGC 4594: evidence of episodic activity?

    NASA Astrophysics Data System (ADS)

    Kharb, P.; Srivastava, S.; Singh, V.; Gallimore, J. F.; Ishwara-Chandra, C. H.; Ananda, Hota

    2016-06-01

    Low-frequency observations at 325 and 610 MHz have been carried out for two `radio-loud' Seyfert galaxies, NGC 4235 and NGC 4594 (Sombrero galaxy), using the Giant Meterwave Radio Telescope (GMRT). The 610 MHz total intensity and 325-610 MHz spectral index images of NGC 4235 tentatively suggest the presence of a `relic' radio lobe, most likely from a previous episode of active galactic nucleus (AGN) activity. This makes NGC 4235 only the second known Seyfert galaxy after Mrk 6 to show signatures of episodic activity. Spitzer and Herschel infrared spectral energy distribution (SED) modelling using the CLUMPYDREAM code predicts star formation rates (SFRs) that are an order of magnitude lower than those required to power the radio lobes in these Seyferts (˜0.13-0.23 M⊙ yr-1 compared to the required SFR of ˜2.0-2.7 M⊙ yr-1 in NGC 4594 and NGC 4235, respectively). This finding along with the detection of parsec and sub-kpc radio jets in both Seyfert galaxies, that are roughly along the same position angles as the radio lobes, strongly support the suggestion that Seyfert lobes are AGN powered. SED modelling supports the `true' type 2 classification of NGC 4594: this galaxy lacks significant dust obscuration as well as a prominent broad-line region. Between the two Seyfert galaxies, there is an inverse relation between their radio-loudness and Eddington ratio and a direct relation between their Eddington-scaled jet power and bolometric power.

  19. An X-Ray and Multiwavelength Survey of Highly Radio-loud Quasars at z > 4: Jet-linked Emission in the Brightest Radio Beacons of the Early Universe

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Brandt, W. N.; Miller, Brendan P.; Garmire, Gordon P.; Schneider, Donald P.; Vignali, Cristian

    2013-02-01

    We present a systematic study of the X-ray and multiwavelength properties of a sample of 17 highly radio-loud quasars (HRLQs) at z > 4 with sensitive X-ray coverage from new Chandra and archival Chandra, XMM-Newton, and Swift observations. Eight of the new and archival observations are reported in this work for the first time. New Chandra observations of two moderately radio-loud and highly optically luminous quasars at z >~ 4 are also reported. Our HRLQ sample represents the top ~5% of radio-loud quasars (RLQs) in terms of radio loudness. We found that our HRLQs have an X-ray emission enhancement over HRLQs at lower redshifts (by a typical factor of ≈3), and this effect, after controlling for several factors which may introduce biases, has been solidly estimated to be significant at the 3σ-4σ level. HRLQs at z = 3-4 are also found to have a similar X-ray emission enhancement over z < 3 HRLQs, which further supports the robustness of our results. We discuss models for the X-ray enhancement's origin including a fractional contribution from inverse Compton scattering of cosmic microwave background photons. No strong correlations are found between the relative X-ray brightness and optical/UV emission-line rest-frame equivalent widths (REWs) for RLQs. However, the line REWs are positively correlated with radio loudness, which suggests that relativistic jets make a negligible contribution to the optical/UV continua of these HRLQs (contrary to the case where the emission lines are diluted by the relativistically boosted continuum). Our HRLQs are generally consistent with the known anti-correlation between radio loudness and X-ray power-law photon index. We also found that the two moderately radio-loud quasars appear to have the hardest X-ray spectra among our objects, suggesting that intrinsic X-ray absorption (N H ~ 1023 cm-2) may be present. Our z > 4 HRLQs generally have higher X-ray luminosities than those for the composite broadband spectral energy distributions

  20. Launching of Active Galactic Nuclei Jets

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander

    As black holes accrete gas, they often produce relativistic, collimated outflows, or jets. Jets are expected to form in the vicinity of a black hole, making them powerful probes of strong-field gravity. However, how jet properties (e.g., jet power) connect to those of the accretion flow (e.g., mass accretion rate) and the black hole (e.g., black hole spin) remains an area of active research. This is because what determines a crucial parameter that controls jet properties—the strength of large-scale magnetic flux threading the black hole—remains largely unknown. First-principles computer simulations show that due to this, even if black hole spin and mass accretion rate are held constant, the simulated jet powers span a wide range, with no clear winner. This limits our ability to use jets as a quantitative diagnostic tool of accreting black holes. Recent advances in computer simulations demonstrated that accretion disks can accumulate large-scale magnetic flux on the black hole, until the magnetic flux becomes so strong that it obstructs gas infall and leads to a magnetically-arrested disk (MAD). Recent evidence suggests that central black holes in jetted active galactic nuclei and tidal disruptions are surrounded by MADs. Since in MADs both the black hole magnetic flux and the jet power are at their maximum, well-defined values, this opens up a new vista in the measurements of black hole masses and spins and quantitative tests of accretion and jet theory.

  1. Active galactic nuclei and galaxy interactions

    NASA Astrophysics Data System (ADS)

    Alonso, M. Sol; Lambas, Diego G.; Tissera, Patricia; Coldwell, Georgina

    2007-03-01

    We perform a statistical analysis of active galactic nucleus (AGN) host characteristics and nuclear activity for AGNs in pairs and without companions. Our study concerns a sample of AGNs derived from the Sloan Digital Sky Survey Data Release 4 data by Kauffmann et al. and pair galaxies obtained from the same data set by Alonso et al. An eye-ball classification of images of 1607 close pairs (rp < 25 kpc h-1,ΔV < 350 km s-1) according to the evidence of interaction through distorted morphologies and tidal features provides us with a more confident assessment of galaxy interactions from this sample. We notice that, at a given luminosity or stellar mass content, the fraction of AGNs is larger for pair galaxies exhibiting evidence for strong interaction and tidal features which also show signs of strong star formation activity. Nevertheless, this process accounts only for a ~10per cent increase of the fraction of AGNs. As in previous works, we find AGN hosts to be redder and with a larger concentration morphological index than non-AGN galaxies. This effect does not depend on whether AGN hosts are in pairs or in isolation. The OIII luminosity of AGNs with strong interaction features is found to be significantly larger than that of other AGNs, either in pairs or in isolation. Estimations of the accretion rate, L[OIII]/MBH, show that AGNs in merging pairs are actively feeding their black holes, regardless of their stellar masses. We also find that the luminosity of the companion galaxy seems to be a key parameter in the determination of the black hole activity. At a given host luminosity, both the OIII luminosity and the L[ OIII]/MBH are significantly larger in AGNs with a bright companion (Mr < -20) than otherwise.

  2. Spectroscopy of 7 radio-loud QSOs at 2 < z < 6: giant Lyman α emission nebulae accreting on to host galaxies

    NASA Astrophysics Data System (ADS)

    Roche, Nathan; Humphrey, Andrew; Binette, Luc

    2014-10-01

    We performed long-slit optical spectroscopy (Gran Telescopio Canarias-Optical System for Imaging and low Resolution Integrated Spectroscopy) of 6 radio-loud quasi-stellar objects (QSOs) at redshifts 2 < z < 3, known to have giant (˜50-100 kpc) Lyman α emitting nebulae, and detect extended Lyman α emission for 4, with surface brightness ˜10-16 erg cm-2 s-1 arcsec-2 and line full width at half-maximum 400-1100 (mean 863) km s- 1. We also observed the z ≃ 5.9 radio-loud QSO, SDSS J2228+0110, and found evidence of a ≥10 kpc extended Lyman α emission nebula, a new discovery for this high-redshift object. Spatially resolved kinematics of the 5 nebulae are examined by fitting the Lyman α wavelength at a series of positions along the slit. We found the line-of-sight velocity Δ(v) profiles to be relatively flat. However, 3 of the nebulae appear systematically redshifted by 250-460 km s- 1 relative to the Lyman α line of the QSO (with no offset for the other two), which we argue is evidence for infall. One of these (Q0805+046) had a small (˜100 km s- 1) velocity shift across its diameter and a steep gradient at the centre. Differences in line-of-sight kinematics between these 5 giant nebulae and similar nebulae associated with high-redshift radio galaxies (which can show steep velocity gradients) may be due to an orientation effect, which brings infall/outflow rather than rotation into greater prominence for the sources observed `on-axis' as QSOs.

  3. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1996-01-01

    The investigation of stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole is presented. Stochastic acceleration has been successfully applied to the problem of ion and electron energization in solar flares, and is capable of accounting for a wide range of both neutral and charged particle emissions. It is also a component in diffusive shock acceleration, since pitch-angle scattering (which is necessary for multiple shock crossings) is accompanied by diffusion in momentum space, which in turn yields a net systematic energy gain; however, stochastic energization will dominate the first-order shock process only in certain parameter regimes. Although stochastic acceleration has been applied to particle energization in the lobes of radio galaxies, its application to the central regions of AGNs (active galactic nuclei) has only recently been considered, but not in detail. We proposed to systematically investigate the plasma processes responsible for stochastic particle acceleration in black hole magnetospheres along with the energy-loss processes which impede particle energization. To this end, we calculated acceleration rates and escape time scales for protons and electrons resonating with Alfven waves, and for electrons resonating with whistlers. We also considered the "hot" topic of gamma-ray line emission from the Orion complex. We proposed that the observed gamma-ray lines are produced by energetic ions that are stochastically accelerated by cascading Alfven waves in the accretion plasma near a black hole. Related research papers that were published in journals are listed.

  4. TESTING TESTS ON ACTIVE GALACTIC NUCLEI MICROVARIABILITY

    SciTech Connect

    De Diego, Jose A.

    2010-03-15

    Literature on optical and infrared microvariability in active galactic nuclei (AGNs) reflects a diversity of statistical tests and strategies to detect tiny variations in the light curves of these sources. Comparison between the results obtained using different methodologies is difficult, and the pros and cons of each statistical method are often badly understood or even ignored. Even worse, improperly tested methodologies are becoming more and more common, and biased results may be misleading with regard to the origin of the AGN microvariability. This paper intends to point future research on AGN microvariability toward the use of powerful and well-tested statistical methodologies, providing a reference for choosing the best strategy to obtain unbiased results. Light curves monitoring has been simulated for quasars and for reference and comparison stars. Changes for the quasar light curves include both Gaussian fluctuations and linear variations. Simulated light curves have been analyzed using {chi}{sup 2} tests, F tests for variances, one-way analyses of variance and C-statistics. Statistical Type I and Type II errors, which indicate the robustness and the power of the tests, have been obtained in each case. One-way analyses of variance and {chi}{sup 2} prove to be powerful and robust estimators for microvariations, while the C-statistic is not a reliable methodology and its use should be avoided.

  5. Warped circumbinary disks in active galactic nuclei

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-07-20

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10{sup –2} pc to 10{sup –4} pc for 10{sup 7} M{sub ☉} black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  6. Probing the Physics of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2004-01-01

    As a result of a number of large multiwavelength monitoring campaigns that have taken place since the late 1980s, there are now several very large data sets on bright variable active galactic nuclei (AGNs) that are well-sampled in time and can be used to probe the physics of the AGN continuum source and the broad-line emitting region. Most of these data sets have been underutilized, as the emphasis thus far has been primarily on reverberation-mapping issues alone. Broader attempts at analysis have been made on some of the earlier IUE data sets (e.g., data from the 1989 campaign on NGC5 548) , but much of this analysis needs to be revisited now that improved versions of the data are now available from final archive processing. We propose to use the multiwavelength monitoring data that have been accumulated to undertake more thorough investigations of the AGN continuum and broad emission lines, including a more detailed study of line-profile variability, making use of constraints imposed by the reverberation results.

  7. Dielectronic Recombination In Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Mueller, A.; Schippers, S.; Sprenger, F.; Lestinsky, M.; Wolf, A.

    2006-01-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between approx. 15-17 A. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  8. Warped Circumbinary Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Sohn, Bong Won; Okazaki, Atsuo T.; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-07-01

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10-2 pc to 10-4 pc for 107 M ⊙ black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  9. Reevaluating Active Galactic Nuclei in Rich Clusters

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Flores, R.; Quintana, H.

    1999-06-01

    We have selected 42 candidate Active Galactic Nuclei in 19 Rich Abell Clusters. The candidates were selected using the criteria of Dressler, Thompson & Shectman (1985; DTS) in their analysis of the statistics of 22 AGN in 14 rich cluster fields, which are based on the equivalent width of [OII]3727Å, H β, and [OIII]5007Å emission. These AGN are then separated from HII galaxies in the manner developed by Veilleux & Osterbrock (1987; VO) using the additional information provided by Hα and [NII]6583Å or Hα and [SII]6716 + 6731Å emission, in order to test the reliability of the selection criteria used by DTS. Our sample is very comparable to that of DTS before we discriminate AGN from HII galaxies, and would lead to similar conclusions. However, we find that their method inevitably mixes HII galaxies with AGN. Over the years many authors have attempted to quantify the relative fraction of cluster to field AGN since the study of DTS (Hill & Oegerle 1993; Biviano et al. 1997) and have reached similar conclusions, but using criteria similar to that of DTS to select AGN (or using the [OIII]5007Å/H β flux ratio test that also mixes HII galaxies with AGN).

  10. Quasi periodic oscillations in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Alston, W.; Fabian, A.; Markevičiutė, J.; Parker, M.; Middleton, M.; Kara, E.

    2016-05-01

    Quasi-periodic oscillations (QPOs) are coherent peaks of variability power observed in the X-ray power spectra (PSDs) of stellar mass X-ray binaries (XRBs). A scale invariance of the accretion process implies they should be present in the active galactic nuclei. The first robust detection was a ∼ 1 h periodicity in the Seyfert galaxy RE J1034+396 from a ∼ 90 ks XMM-Newton observation; however, subsequent observations failed to detect the QPO in the 0.3-10.0 keV band. In this talk we present the recent detection of the ∼ 1 h periodicity in the 1.0-4.0 keV band of 4 further low-flux/spectrally-harder observations of RE J1034+396 (see Alston et al. 2014). We also present recent work on the discovery of a QPO in the Seyfert galaxy, MS 2254.9-3712, which again is only detected in energy bands associated with the primary power-law continuum emission (Alston et al. 2015). We conclude these features are most likely analogous to the high-frequency QPOs observed in XRBs. In both sources, we also see evidence for X-ray reverberation at the QPO frequency, where soft X-ray bands and Iron Kα emission lag the primary X-ray continuum. These time delays may provide another diagnostic for understanding the underlying QPO mechanism observed in accreting black holes.

  11. What is the Nature of Accretion in Active Galactic Nuclei?

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1998-01-01

    The purpose of this grant was to support theoretical research on the nature of accretion in active galactic nuclei. In the brief time of the award, four papers that appeared in refereed journals were written, as well as two invited reviews in conference proceedings. These papers significantly advanced our understanding of the structure of the most important parts of bright accretion disks around accreting black holes, such as active galactic nuclei.

  12. Research on the Nature of Accretion in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Krolik, J. H.

    1999-01-01

    he purpose of this grant was to support theoretical research on the nature of accretion in active galactic nuclei. In the brief time of the award (one year), four papers that appeared in refereed journals were written, as well as two invited reviews in conference proceedings These papers significantly advanced our understanding of the structure of the most important parts of bright accretion disks around accreting black holes, such as active galactic nuclei.

  13. A NIR Atlas of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Riffel, R.; Pastoriza, M. G.

    2006-06-01

    We present the most comprehensive atlas of near-infrared (NIR) mid-resolution (R=1000) spectra of active galactic nuclei (AGN) made to date in the interval 0.8-2.4 μm. The aim of this work is to provide a homogeneous database suitable to study the nuclear NIR properties of AGN in a region poorly studied spectroscopically but that keeps useful constraints to model the AGN physics. The sample is composed of 49 objects, 39 of them with z <0.05, distributed between 7 quasars, 25 Seyfert 1 (classical and narrow-line Seyfert 1) and 17 Seyfert 2 galaxies. A few LINERS and Starburst galaxies are also included for comparative purposes. The spectra are dominated by strong emission lines of H I, He I, He II, [S III] and conspicuous forbidden lines of low and high ionization species, including coronal lines. In addition, rotational/vibrational lines of H_2 are detected in most objects. Overall, the continuum of quasars and Seyfert 1s are rather similar, being essentially flat or slightly steep in the H and K bands. In J, the shape of the continuum is different from object to object, varying from that displaying a steep rise in flux towards shorter wavelengths, from 1.1 μm bluewards, to that remaining flat. In Seyfert 2s, the continuum smoothly decreases in flux with wavelength, from 1.2 μm redwards. Bluewards, the continuum flux steeply rises in some sources while in others it decreases towards shorter wavelengths, suggesting reddening. Independently of the AGN type, stellar absorption features of CO, Si I and Mg I are present in the H and K bands. They are found to be particularly strong in Seyfert 2s. Line identification and remarks on the most important characteristics observed in the sample are given.

  14. The softest Einstein AGN (active galactic nuclei)

    SciTech Connect

    Cordova, F.A.; Kartje, J.; Mason, K.O.; Mittaz, J.P.D.; Chicago Univ., IL; University Coll., London . Mullard Space Science Lab.)

    1989-01-01

    We have undertaken a coarse spectral study to find the softest sources detected with the Imaging Proportional Counter (IPC) on the Einstein Observatory. Of the nearly 7700 IPC sources, 226 have color ratios that make them candidate ultrasoft'' sources; of these, 83 have small enough errors that we can say with confidence that they have a spectral component similar to those of the white dwarfs Sirius and HZ 43, nearby stars such as {alpha} Cen and Procyon, and typical polar'' cataclysmic variables. By means of catalog searches and ground-based optical and radio observations we have thus far identified 96 of the 226 candidate soft sources; 37 of them are active galactic nuclei (AGN). In the more selective subset of 83 sources, 47 have been identified, 12 of them with AGN. The list of 47 identifications is given in Cordova et al. For one QSO in our sample, E0132.8--411, we are able to fit the pulse-height data to a power-law model and obtain a best fit for the energy spectral index of 2. 2{sub {minus}0.4}{sup +0.6}. For the remainder of the AGN in the higher confidence sample we are able to infer on the basis of their x-ray colors that they have a similar spectral component. Two-thirds of the AGN are detected below 0.5 keV only, while the remainder evidence a flatter spectral component in addition to the ultra-soft component. 14 refs., 5 figs.

  15. The Structure of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We are continuing our systematic investigation of the nuclear structure of nearby active galactic nuclei (AGN). Upon completion, our study will characterize hypothetical constructs such as narrow-line clouds, obscuring tori, nuclear gas disks. and central black holes with physical measurements for a complete sample of nearby AGN. The major scientific goals of our program are: (1) the morphology of the NLR; (2) the physical conditions and dynamics of individual clouds in the NLR; (3) the structure and physical conditions of the warm reflecting gas; (4) the structure of the obscuring torus; (5) the population and morphology of nuclear disks/tori in AGN; (6) the physical conditions in nuclear disks; and (7) the masses of central black holes in AGN. We will use the Hubble Space Telescope (HST) to obtain high-resolution images and spatially resolved spectra. Far-UV spectroscopy of emission and absorption in the nuclear regions using HST/FOS and the Hopkins Ultraviolet Telescope (HUT) will help establish physical conditions in the absorbing and emitting gas. By correlating the dynamics and physical conditions of the gas with the morphology revealed through our imaging program, we will be able to examine mechanisms for fueling the central engine and transporting angular momentum. The kinematics of the nuclear gas disks may enable us to measure the mass of the central black hole. Contemporaneous X-ray observations using ASCA will further constrain the ionization structure of any absorbing material. Monitoring of variability in the UV and X-ray absorption will be used to determine the location of the absorbing gas, possibly in the outflowing warm reflecting gas, or the broad-line region, or the atmosphere of the obscuring torus. Supporting ground-based observations in the optical, near-IR, imaging polarimetry, and the radio will complete our picture of the nuclear structures. With a comprehensive survey of these characteristics in a complete sample of nearby AGN, our

  16. What powers the radio-loud narrow-line Seyfert 1 galaxy RX J2314.9+2243?. A view onto its central engine from radio to X-rays

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Xu, Dawei; Fuhrmann, L.; Grupe, D.; Yao, S.; Fan, Z.; Myserlis, I.; Angelakis, E.; Karamanavis, V.; Yuan, W.; Zensus, J. A.

    2015-02-01

    Aims: Radio-loud narrow-line type 1 galaxies provide us with a fresh look at the blazar phenomenon, the causes of radio loudness, and the physics of jet formation. We present a multi-wavelength study of the radio-loud narrow-line type 1 quasar RX J2314.9+2243, which exhibits some remarkable multi-wavelength properties. It is among the few radio-loud narrow-line type 1 galaxies, with a tentative γ-ray detection, is luminous in the infrared, and shows an exceptionally broad and blueshifted [OIII]λ5007 emission-line component. Methods: In order to understand the nature of this source, we have obtained optical, UV, X-ray, and radio observations of RX J2314.9+2243. Results: Its spectral energy distribution (SED) shows a broad hump extending between the IR and far-UV, a steep radio spectrum and flat X-ray spectrum. Its IR to far-UV SED is consistent with a scenario, in which synchrotron emission from a jet dominates the broadband emission, even though an absorption scenario cannot yet be fully excluded. The high blueshift of its very broad [OIII] component, 1260 km s-1, is consistent with a face-on view, with the jet (and outflow) pointing towards us. RX J2314.9+2243 likely represents an extreme case of AGN induced feedback in the local universe. The optical spectrum (FITS format) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/574/A121

  17. Three Candidate Clusters Around High Redshift Radio-loud Sources: MG1 J04426+0202, 3C 068.2, and MS 1426.9+1052

    NASA Astrophysics Data System (ADS)

    Franck, J. R.; McGaugh, S. S.; Schombert, J. M.

    2015-08-01

    We present near-infrared observations of the environments around three radio-loud sources (MG1 J0442+0202, 3C 068.2, and MS 1426.9+1052) at redshifts z = 1.10, 1.57, and 1.83 (respectively) that are surrounded by near-infrared galaxy overdensities. Overdensities with respect to field counts were found to be significant up to 19σ, with 12 times the expected number of galaxies within the inner regions of the densest proto-cluster. Color-magnitude relations are constructed in Ks, J - Ks, with each candidate cluster exhibiting a feature consistent with the beginnings of a red sequence (RS). Galaxy models based on the redshift of the radio source are used to compare expected CMRs for a given formation epoch with the observed RS of each candidate, and are found to be consistent with an old ({z}f \\gt 5) formation epoch for a few bright, red galaxies on the RS.

  18. Environment and properties of obscured and unobscured active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Taormina, M.; Bornancini, C.

    We analyze the properties of obscured and unobscured active galactic nuclei selected using mid-infrared colors in the redshift range 1 < z < 3. We find that obscured objects are located in a denser local galaxy environment compared to the unobscured sample.

  19. 21 cm absorption by compact hydrogen discs around black holes in radio-loud nuclei of galaxies

    SciTech Connect

    Loeb, Abraham

    2008-05-15

    The clumpy maser discs observed in some galactic nuclei mark the outskirts of the accretion disc that fuels the central black hole and provide a potential site of nuclear star formation. Unfortunately, most of the gas in maser discs is currently not being probed; large maser gains favor paths that are characterized by a small velocity gradient and require rare edge-on orientations of the disc. Here we propose a method for mapping the atomic hydrogen distribution in nuclear discs through its 21 cm absorption against the radio continuum glow around the central black hole. In NGC 4258, the 21 cm optical depth may approach unity for high angular resolution (VLBI) imaging of coherent clumps which are dominated by thermal broadening and have the column density inferred from x-ray absorption data, {approx}10{sup 23} cm{sup -2}. Spreading the 21 cm absorption over the full rotation velocity width of the material in front of the narrow radio jets gives a mean optical depth of {approx}0.1. Spectroscopic searches for the 21 cm absorption feature in other galaxies can be used to identify the large population of inclined gaseous discs which are not masing in our direction. Follow-up imaging of 21 cm silhouettes of accelerating clumps within these discs can in turn be used to measure cosmological distances.

  20. Galactic Center gamma-ray ''excess'' from an active past of the Galactic Centre?

    SciTech Connect

    Petrović, Jovana; Serpico, Pasquale Dario; Zaharijaš, Gabrijela E-mail: serpico@lapth.cnrs.fr

    2014-10-01

    Several groups have recently claimed evidence for an unaccounted gamma-ray excess over the diffuse backgrounds at few GeV in the Fermi-LAT data in a region around the Galactic Center, consistent with a dark matter annihilation origin. We demonstrate that the main spectral and angular features of this excess can be reproduced if they are mostly due to inverse Compton emission from high-energy electrons injected in a burst event of ∼ 10{sup 52}÷10{sup 53} erg roughly O(10{sup 6}) years ago. We consider this example as a proof of principle that time-dependent phenomena need to be understood and accounted for—together with detailed diffuse foregrounds and unaccounted ''steady state'' astrophysical sources—before any robust inference can be made about dark matter signals at the Galactic Center. In addition, we point out that the timescale suggested by our study, which controls both the energy cutoff and the angular extension of the signal, intriguingly matches (together with the energy budget) what is indirectly inferred by other evidences suggesting a very active Galactic Center in the past, for instance related to intense star formation and accretion phenomena.

  1. Galactic Center gamma-ray ``excess'' from an active past of the Galactic Centre?

    NASA Astrophysics Data System (ADS)

    Petrović, Jovana; Dario Serpico, Pasquale; Zaharijaš, Gabrijela

    2014-10-01

    Several groups have recently claimed evidence for an unaccounted gamma-ray excess over the diffuse backgrounds at few GeV in the Fermi-LAT data in a region around the Galactic Center, consistent with a dark matter annihilation origin. We demonstrate that the main spectral and angular features of this excess can be reproduced if they are mostly due to inverse Compton emission from high-energy electrons injected in a burst event of ~ 1052÷1053 erg roughly Script O(106) years ago. We consider this example as a proof of principle that time-dependent phenomena need to be understood and accounted for—together with detailed diffuse foregrounds and unaccounted ``steady state'' astrophysical sources—before any robust inference can be made about dark matter signals at the Galactic Center. In addition, we point out that the timescale suggested by our study, which controls both the energy cutoff and the angular extension of the signal, intriguingly matches (together with the energy budget) what is indirectly inferred by other evidences suggesting a very active Galactic Center in the past, for instance related to intense star formation and accretion phenomena.

  2. Chandra X-Ray Observations of the Two Brightest Unidentified High Galactic Latitude Fermi-LAT Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Cheung, C. C.; Donato, D.; Gehrels, N.; Sokolovsky, K. V.; Giroletti, M.

    2012-01-01

    We present Chandra ACIS-I X-ray observations of 0FGL J1311.9-3419 and 0FGL J1653.4-0200, the two brightest high Galactic latitude (absolute value (beta) >10 deg) gamma-ray sources from the three-month Fermi Large Area Telescope (LAT) bright source list that are still unidentified. Both were also detected previously by EGRET, and despite dedicated multi-wavelength follow-up, they are still not associated with established classes of gamma-ray emitters like pulsars or radio-loud active galactic nuclei. X-ray sources found in the ACIS-I fields of view are cataloged, and their basic properties are determined. These are discussed as candidate counterparts to 0FGL J1311.9-3419 and 0FGL J1653.4-0200, with particular emphasis on the brightest of the 9 and 13 Chandra sources detected within the respective Fermi-LAT 95% confidence regions. Further follow-up studies, including optical photometric and spectroscopic observations, are necessary to identify these X-ray candidate counterparts in order to ultimately reveal the nature of these enigmatic gamma-ray objects.

  3. Constraints on Galactic Center Activity: A Search for Enhanced Galactic Center Lithium and Boron

    NASA Astrophysics Data System (ADS)

    Lubowich, D. A.; Turner, B. E.; Hobbs, L. M.

    1998-12-01

    The abundances of lithium and boron provide important information about big bang nucleosynthesis, Galactic chemical evolution, stellar evolution, and cosmic-ray spallation reactions. We conducted the first search for the ground-state hyperfine-structure transitions of Li I (2S1/2; F = 2-1 803 MHz) and B I (2P1/2; F = 2-1 732 MHz). We used the 43 m NRAO radio telescope to search for enhanced Galactic center (GC) Li and B expected from models of Galactic activity. We did not detect Li I or B I and obtained upper limits of N(Li I) < 1.9 × 1016 cm-2, (Li/H) < 3.9 × 10-8, N(B I) < 2.2 × 1018 cm-2, and (B/H) < 9.2 × 10-6 for the dense 20 km s-1 Sgr A molecular cloud where our largest sources of uncertainties are Li I/Li, B I/B, and N(H). Our observations imply (Li/H)GC < 22 (Li/H)disk, (Li/H)GC < 39 (Li/H)disk-spallation, (B/H)GC < 1.2 × 104 (B/H)disk, (B/H)GC < 1.5 × 104 (B/H)disk-spallation. For a simple model combining mass loss from AGB stars (only for Li), spallation reactions, and SN ν-nucleosynthesis, we estimate (Li/H)GC = 1.3 × 10-8 (13 times enhancement) and (B/H)GC = 7.4 × 10-9 (10 times enhancement). If Li is primarily produced via spallation reactions from a cosmic-ray proton flux φp(t) with the same energy and trapping as in the disk, then [\\smallint φp(t)dt]GC < 13[\\smallint φp(t)dt]disk. Comparing our results to AGN models, we conclude that the GC has not had an extended period of AGN activity containing a large cosmic-ray flux (LCR <= 1044 ergs s-1 for 108 yr), a large low-energy cosmic-ray flux (less than 100 times the disk flux), or a large γ-ray flux (Lγ < 1042 ergs s-1 for 109 yr). Furthermore, since any Galactic deuterium production will significantly enhance the abundances of Li and B, our results imply that there are no sources of D in the GC or Galaxy. Therefore, all the Galactic D originated from the infall of primordial matter with the current D/H reduced by astration and mixing.

  4. Investigation on Radio-Quiet and Radio-Loud Fast CMEs and Their Associated Flares During Solar Cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Suresh, K.; Shanmugaraju, A.

    2015-03-01

    We present the results of a detailed analysis on the differences between radio-loud (RL) and radio-quiet (RQ) fast coronal mass ejections (CMEs) ( V≥900 km s-1) observed during the period 1996 - 2012. The analysis consists of three different steps in which we examined the properties of (i) RL and RQ CMEs, (ii) accelerating (class-A) and decelerating (class-D) CMEs among RL and RQ CMEs, and (iii) associated flares. The last two steps and events from a longer period are the extensions of the earlier work on RL and RQ CMEs that mainly aimed to determine the reason for the radio-quietness of some fast CMEs. During this period, we found that 38 % of fast CMEs are RL and 62 % of fast CMEs are RQ. Moreover, fewer RQ CMEs occur around the disc centre. The average speeds of RL and RQ CMEs are 1358 km s-1 and 1092 km s-1. Around 10 % of the RQ events are halo CMEs, but ≈ 66 % of RL events are halo CMEs. The mean acceleration or deceleration value of RL-CMEs is slightly greater than that of RQ-CMEs. When we divide these events based on their acceleration behaviour into class A and class D, there are no considerable differences between classes A and D of RL-CMEs or between classes A and D of RQ CMEs, except for their initial acceleration values. But there are significant differences among their associated flare properties. According to our study here, the RQ CMEs are less energetic than RL CMEs, and they are not associated with flares as strong as those associated with RL CMEs. This confirms the previous results that RQ CMEs do not often exceed the critical Alfvén speed of 1000 km s-1 in the outer corona that is needed to produce type II radio bursts.

  5. On the statistical characteristics of radio-loud and radio-quiet halo coronal mass ejections and their associated flares during solar cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Mittal, Nishant; Sharma, Joginder; Verma, Virendar Kumar; Garg, Vijay

    2016-08-01

    We have studied the characteristics of radio-loud (RL) and radio-quiet (RQ) front side halo coronal mass ejections (HCMEs) (angular width 360°) observed between the time period years 1996-2014. RL-HCMEs are associated with type II radio bursts, while RQ-HCMEs are not associated with type II radio bursts. CMEs near the Sun in the interplanetary medium associated with radio bursts also affect the magnetosphere. The type II radio burst data was observed by WIND/WAVES instrument and HCMEs were observed by LASCO/ SOHO instruments. In our study, we have examined the properties of RL-HCMEs and RQ-HCMEs and found that RL-HCMEs follow the solar cycle variation. Our study also shows that the 26% of slow speed HCMEs and 82% of fast speed HCMEs are RL. The average speed of RL-HCMEs and RQ-HCMEs are 1370 km/s and 727 km/s, respectively. Most of the RQ-HCMEs occur around the solar disc center while most of RL-HCMEs are uniformly distributed across the solar disc. The mean value of acceleration of RL-HCMEs is more than twice that of RQ-HCMEs and mean value of deceleration of RL- HCMEs is very small compare to RQ-HCMEs events. It is also found that RQ-HCMEs events are associated with C- and M-class of SXR flares, while RL-HCMEs events are associated with M and X-class of SXR flares, which indicates that the RQ-HCMEs are less energetic than the RL-HCMEs. We have also discussed the various results obtained in present investigation in view of recent scenario of solar physics.

  6. Accretion disc-corona and jet emission from the radio-loud Narrow Line Seyfert 1 galaxy RXJ1633.3+4719

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, G. C.; Gandhi, P.; Misra, R.; Kembhavi, A. K.

    2016-05-01

    We perform X-ray/UV spectral and X-ray variability studies of the radio-loud Narrow Line Seyfert 1 (NLS1) galaxy RXJ1633.3+4719 using XMM-Newton and Suzaku observations from 2011 and 2012. The 0.3-10 keV spectra consist of an ultra-soft component described by an accretion disc blackbody (kT_in = 39.6^{+11.2}_{-5.5} eV) and a power-law due to the thermal Comptonization (Γ =1.96^{+0.24}_{-0.31}) of the disc emission. The disc temperature inferred from the soft excess is at least a factor of two lower than that found for the canonical soft excess emission from radio-quiet NLS1s. The UV spectrum is described by a power-law with photon index 3.05^{+0.56}_{-0.33}. The observed UV emission is too strong to arise from the accretion disc or the host galaxy, but can be attributed to a jet. The X-ray emission from RXJ1633.3+4719 is variable with fractional variability amplitude Fvar=13.5±1.0%. In contrast to radio-quiet AGN, X-ray emission from the source becomes harder with increasing flux. The fractional RMS variability increases with energy and the RMS spectrum is well described by a constant disc component and a variable power-law continuum with the normalization and photon index being anti-correlated. Such spectral variability cannot be caused by variations in the absorption and must be intrinsic to the hot corona. Our finding of possible evidence for emission from the inner accretion disc, jet and hot corona from RXJ1633.3+4719 in the optical to X-ray bands makes this object an ideal target to probe the disc-jet connection in AGN.

  7. The X-ray spectroscopy of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1985-01-01

    The scientific goals of X-ray spectroscopy of active galactic nuclei are discussed. The underlying energy source, the regions responsible for the optical emission lines, the different types of active galaxies, and cosmology are considered. The requirements for an X-ray mission of broad band width, large collecting area, modest spatial resolution and good spectral resolution are outlined. It is concluded that the ESA XMM mission meets these requirements.

  8. UNDERSTANDING DUAL ACTIVE GALACTIC NUCLEUS ACTIVATION IN THE NEARBY UNIVERSE

    SciTech Connect

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Vasudevan, Ranjan; Trippe, Margaret; Treister, Ezequiel

    2012-02-20

    We study the fraction of dual active galactic nuclei (AGNs) in a sample of 167 nearby (z < 0.05), moderate-luminosity, ultra-hard X-ray-selected AGNs from the all-sky Swift Burst Alert Telescope (BAT) survey. Combining new Chandra and Gemini observations together with optical and X-ray observations, we find that the dual AGN frequency at scales <100 kpc is {approx}10% (16/167). Of the 16 dual AGNs, only 3 (19%) were detected using X-ray spectroscopy and were not detected using emission line diagnostics. Close dual AGNs (<30 kpc) tend to be more common among the most X-ray luminous systems. In dual AGNs, the X-ray luminosity of both AGNs increases strongly with decreasing galaxy separation, suggesting that the merging event is key in powering both AGNs. Fifty percent of the AGNs with a very close companion (<15 kpc) are dual AGNs. We also find that dual AGNs are more likely to occur in major mergers and tend to avoid absorption line galaxies with elliptical morphologies. Finally, we find that SDSS Seyferts are much less likely than BAT AGNs (0.25% versus 7.8%) to be found in dual AGNs at scales <30 kpc because of a smaller number of companion galaxies, fiber collision limits, a tendency for AGNs at small separations to be detected only in X-rays, and a higher fraction of dual AGN companions with increasing AGN luminosity.

  9. Dense Clouds near the Central Engine of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Sivron, R.; Tsuruta, S

    1993-01-01

    A model is presented which assumes the existence of cold dense clouds near the central engine of Active Galactic Nuclei (AGNs). The effects of such clouds on the observed spectrum are explored. It is shown that this model is consistent with the complicated observed spectra and variability behavior of most extensively studied Seyfert nuclei. The results are compared with other proposed models. The existing observational evidence appears to support the "cloud-model."

  10. Stellar populations in Active Galactic Nuclei III

    NASA Astrophysics Data System (ADS)

    Boisson, C.; Joly, M.; Pelat, D.; Ward, M. J.

    2004-12-01

    In this paper we apply the stellar population synthesis method previously described in Boisson et al. (\\cite{Boisson2000}) to five more AGN. The analysis of these new data strengthen our previous conclusions: i) homogeneity of the stellar population within a class of nuclear activity regardless of the morphological type of the host galaxy; ii) populations within the nuclear regions of LINERs and Seyfert 2s are different: LINERs have a very old metal-rich population while in the Seyfert 2s a contribution of a weak burst of star formation is observed together with the old high metallicity component; iii) in the circum-nuclar region (200 pc ≤D≤1 kpc) of all the active galaxies in our sample, except for NGC 2992, we detect an old burst of star formation (0.2-1 Gyr),which is contrary to what is observed in normal galaxies. We note that the broad OIλ8446 Å emission line detected in the spectrum of the nucleus of NGC 2992 confirms its classification as a Seyfert 1. Based on observations collected at the New Technology Telescope of the European Southern Observatory, La Silla, Chile.

  11. Ultraviolet/X-ray Variability and the Extended X-ray Emission of the Radio-loud Broad Absorption Line Quasar PG 1004+130

    NASA Astrophysics Data System (ADS)

    Scott, A. E.; Brandt, W. N.; Miller, B. P.; Luo, B.; Gallagher, S. C.

    2015-06-01

    We present the results of recent Chandra, XMM-Newton, and Hubble Space Telescope observations of the radio-loud (RL), broad absorption line (BAL) quasar PG 1004+130. We compare our new observations to archival X-ray and UV data, creating the most comprehensive, high signal-to-noise, multi-epoch, spectral monitoring campaign of a RL BAL quasar to date. We probe for variability of the X-ray absorption, the UV BAL, and the X-ray jet, on month-year timescales. The X-ray absorber has a low column density of {N}H=8× {10}20-4× {10}21 {{cm}}-2 when it is assumed to be fully covering the X-ray emitting region, and its properties do not vary significantly between the four observations. This suggests that the observed absorption is not related to the typical “shielding gas” commonly invoked in BAL quasar models, but is likely due to material further from the central black hole. In contrast, the C iv BAL shows strong variability. The equivalent width (EW) in 2014 is {EW}=11.24+/- 0.56 \\AA, showing a fractional increase of Δ {EW}/< {EW}> =1.16+/- 0.11 from the 2003 observation, 3183 days earlier in the rest-frame. This places PG 1004+130 among the most highly variable BAL quasars. By combining Chandra observations we create an exposure that is 2.5 times deeper than studied previously, with which to investigate the nature of the X-ray jet and extended diffuse X-ray emission. An X-ray knot, likely with a synchrotron origin, is detected in the radio jet ˜ 8\\prime\\prime (30 kpc) from the central X-ray source with a spatial extent of ˜ 4\\prime\\prime (15 kpc). No similar X-ray counterpart to the counterjet is detected. Asymmetric, non-thermal diffuse X-ray emission, likely due to inverse Compton scattering of Cosmic Microwave Background photons, is also detected.

  12. Black holes in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Valtonen, M. J.; Mikkola, S.; Merritt, D.; Gopakumar, A.; Lehto, H. J.; Hyvönen, T.; Rampadarath, H.; Saunders, R.; Basta, M.; Hudec, R.

    2010-01-01

    Supermassive black holes are common in centers of galaxies. Among the active galaxies, quasars are the most extreme, and their black hole masses range as high as to 6ṡ1010M⊙. Binary black holes are of special interest but so far OJ287 is the only confirmed case with known orbital elements. In OJ287, the binary nature is confirmed by periodic radiation pulses. The period is twelve years with two pulses per period. The last four pulses have been correctly predicted with the accuracy of few weeks, the latest in 2007 with the accuracy of one day. This accuracy is high enough that one may test the higher order terms in the Post Newtonian approximation to General Relativity. The precession rate per period is 39°.1 ± 0°.1, by far the largest rate in any known binary, and the (1.83 ± 0.01)ṡ1010M⊙ primary is among the dozen biggest black holes known. We will discuss the various Post Newtonian terms and their effect on the orbit solution. The over 100 year data base of optical variations in OJ287 puts limits on these terms and thus tests the ability of Einstein's General Relativity to describe, for the first time, dynamic binary black hole spacetime in the strong field regime. The quadrupole-moment contributions to the equations of motion allows us to constrain the ‘no-hair’ parameter to be 1.0 ± 0.3 which supports the black hole no-hair theorem within the achievable precision.

  13. Active galactic nucleus feedback in clusters of galaxies.

    PubMed

    Blanton, Elizabeth L; Clarke, T E; Sarazin, Craig L; Randall, Scott W; McNamara, Brian R

    2010-04-20

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  14. High-energy neutrinos from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectrum and high-energy neutrino background flux from photomeson production in active galactic nuclei (AGN) is calculated using the recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing high-energy particles. Collectively, AGN produce the dominant isotropic neutrino background between 10,000 and 10 to the 10th GeV, detectable with current instruments. AGN neutrinos should produce a sphere of stellar disruption which may explain the 'broad-line region' seen in AGN.

  15. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.

    2012-01-01

    Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx < 0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.

  16. Active galactic nucleus feedback in clusters of galaxies

    PubMed Central

    Blanton, Elizabeth L.; Clarke, T. E.; Sarazin, Craig L.; Randall, Scott W.; McNamara, Brian R.

    2010-01-01

    Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250

  17. FRESH ACTIVITY IN OLD SYSTEMS: RADIO AGNs IN FOSSIL GROUPS OF GALAXIES

    SciTech Connect

    Hess, Kelley M.; Wilcots, Eric M.; Hartwick, Victoria L. E-mail: ewilcots@astro.wisc.edu

    2012-08-15

    We present the first systematic 1.4 GHz Very Large Array radio continuum survey of fossil galaxy group candidates. These are virialized systems believed to have assembled over a gigayear in the past through the merging of galaxy group members into a single, isolated, massive elliptical galaxy and featuring an extended hot X-ray halo. We use new photometric and spectroscopic data from Sloan Digital Sky Survey Data Release 7 to determine that three of the candidates are clearly not fossil groups. Of the remaining 30 candidates, 67% contain a radio-loud (L{sub 1.4GHz} > 10{sup 23} W Hz{sup -1}) active galactic nucleus (AGN) at the center of their dominant elliptical galaxy. We find a weak correlation between the radio luminosity of the AGN and the X-ray luminosity of the halo suggesting that the AGN contributes to energy deposition into the intragroup medium. We only find a correlation between the radio and optical luminosity of the central elliptical galaxy when we include X-ray-selected, elliptically dominated non-fossil groups, indicating a weak relationship between AGN strength and the mass assembly history of the groups. The dominant elliptical galaxy of fossil groups is on average roughly an order of magnitude more luminous than normal group elliptical galaxies in optical, X-ray, and radio luminosities and our findings are consistent with previous results that the radio-loud fraction in elliptical galaxies is linked to the stellar mass of a population. The current level of activity in fossil groups suggests that AGN fueling continues long after the last major merger. We discuss several possibilities for fueling the AGN at the present epoch.

  18. What obscures low-X-ray-scattering active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Hönig, S. F.; Gandhi, P.; Asmus, D.; Mushotzky, R. F.; Antonucci, R.; Ueda, Y.; Ichikawa, K.

    2014-02-01

    X-ray surveys have revealed a new class of active galactic nuclei (AGN) with a very low observed fraction of scattered soft X-rays, fscat <0.5 per cent. Based on X-ray modelling, these `X-ray new-type', or low observed X-ray-scattering (hereafter, `low-scattering') sources have been interpreted as deeply buried AGN with a high covering factor of gas. In this paper, we address the questions whether the host galaxies of low-scattering AGN may contribute to the observed X-ray properties, and whether we can find any direct evidence for high covering factors from the infrared (IR) emission. We find that X-ray low-scattering AGN are preferentially hosted by highly inclined galaxies or merger systems as compared to other Seyfert galaxies, increasing the likelihood that the line of sight towards the AGN intersects with high columns of host-galactic gas and dust. Moreover, while a detailed analysis of the IR emission of low-scattering AGN ESO 103-G35 remains inconclusive, we do not find any indication of systematically higher dust covering factors in a sample of low-scattering AGN based on their IR emission. For ESO 103-G35, we constrained the temperature, mass and location of the IR emitting dust which is consistent with expectations for the dusty torus. However, a deep silicate absorption feature probably from much cooler dust suggests an additional screen absorber on larger scales within the host galaxy. Taking these findings together, we propose that the low fscat observed in low-scattering AGN is not necessarily the result of circumnuclear dust but could originate from interference of host-galactic gas with a column density of the order of 1022 cm-2 with the line of sight. We discuss implications of this hypothesis for X-ray models, high-ionization emission lines and observed star formation activity in these objects.

  19. The effects of the local environment on active galactic nuclei

    SciTech Connect

    Manzer, L. H.; De Robertis, M. M. E-mail: mmdr@yorku.ca

    2014-06-20

    There continues to be significant controversy regarding the mechanism(s) responsible for the initiation and maintenance of activity in galactic nuclei. In this paper we will investigate possible environmental triggers of nuclear activity through a statistical analysis of a large sample of galaxy groups. The focus of this paper is to identify active galactic nuclei (AGNs) and other emission-line galaxies in these groups and to compare their frequency with a sample of over 260,000 isolated galaxies from the same catalog. The galaxy groups are taken from the catalog of Yang et al., in which over 20,000 virialized groups of galaxies (2 ≤ N ≤ 20) with redshifts between 0.01 and 0.20 are from the Sloan Digital Sky Survey. We first investigate the completeness of our data set and find, though biases are a concern particularly at higher redshift, that our data provide a fair representation of the local universe. After correcting emission-line equivalent widths for extinction and underlying Balmer stellar absorption, we classify galaxies in the sample using traditional emission-line ratios, while incorporating measurement uncertainties. We find a significantly higher fraction of AGNs in groups compared with the isolated sample. Likewise, a significantly higher fraction of absorption-line galaxies are found in groups, while a higher fraction of star-forming galaxies prefer isolated environments. Within grouped environments, AGNs and star-forming galaxies are found more frequently in small- to medium-richness groups, while absorption-line galaxies prefer groups with larger richnesses. Groups containing only emission-line galaxies have smaller virial radii, velocity dispersions, and masses compared with those containing only absorption-line galaxies. Furthermore, the AGN fraction increases with decreasing distance to the group centroid, independent of galaxy morphology. Using properties obtained from Galaxy Zoo, there is an increased fraction of AGNs within merging systems

  20. X-Ray Reprocessing in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    2004-01-01

    This is the final report for research entitled "X-ray reprocessing in active galactic nuclei," into X-ray absorption and emission in various classes of active galaxy via X-ray spectral signatures. The fundamental goal of the research was to use these signatures as probes of the central engine structure and circumnuclear environment of active galactic nuclei. The most important accomplishment supported by this grant involved the detailed analysis and interpretation of the XMM data for the bright Seyfert 1 galaxy MCG-6-30-15. This work was performed by Drs. Christopher Reynolds and Mitchell Begelman in collaboration with Dr. Jorn Wilms (University of Tubingen, Germany; PI of the XMM observation) and other European scientists. With XMM we obtained medium resolution X-ray spectra of unprecedented quality for this Seyfert galaxy. Modeling the X-ray spectrum within the framework of accretion disk reflection models produced the first evidence for energy extraction from the spin of a black hole. Specifically, we found that the extreme gravitational redshifts required to explain the X-ray spectrum suggests that the bulk of the energy dissipation is concentrated very close to the black hole, in contrast with the expectations of any pure accretion disk model. In a second paper we addressed the low- energy spectral complexity and used RXTE specta to pin down the high-energy spectral index, thus firming up our initial interpretation. Additionally, we carried out detailed spectral and variability analyses of a number of Seyfert and radio galaxies (e.g., NGC 5548 and 3C 111) and developed general techniques that will be useful in performing X-ray reverberation mapping of accretion disks in AGN, once adequate data becomes available. A list of papers supported by this research is included.

  1. Neutrinos in IceCube from active galactic nuclei

    SciTech Connect

    Kalashev, O.; Semikoz, D.; Tkachev, I.

    2015-03-15

    Recently, the IceCube collaboration reported first evidence for the astrophysical neutrinos. Observation corresponds to the total astrophysical neutrino flux of the order of 3 × 10{sup −8} GeV cm{sup −2} s{sup −1} sr{sup −1} in a PeV energy range [1]. Active galactic nuclei (AGN) are natural candidate sources for such neutrinos. To model the neutrino creation in AGNs, we study photopion production processes on the radiation field of the Shakura-Sunyaev accretion discs in the black hole vicinity. We show that this model can explain the detected neutrino flux and at the same time avoids the existing constraints from the gamma-ray and cosmic-ray observations.

  2. KEPLER OBSERVATIONS OF RAPID OPTICAL VARIABILITY IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W.

    2011-12-10

    Over three quarters in 2010-2011, Kepler monitored optical emission from four active galactic nuclei (AGNs) with {approx}30 minute sampling, >90% duty cycle, and {approx}<0.1% repeatability. These data determined the AGN optical fluctuation power spectral density (PSD) functions over a wide range in temporal frequency. Fits to these PSDs yielded power-law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGNs exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first-order magnetorotational instability theoretical calculations of accretion disk fluctuations.

  3. Photometric Monitoring of the Active Galactic Nucleus in NGC 7469

    NASA Astrophysics Data System (ADS)

    Roberts, Caroline A.; Bentz, M. C.; Stare Collaboration

    2014-01-01

    Reverberation mapping is a technique by which black hole masses in active galactic nuclei (AGN) are determined. The method determines an average radius for the broad line region by measuring the time delay between continuum and emission signatures in an object’s spectrum. Coupled with the broad line region cloud velocity values taken from Doppler emission line broadening and a correction for the angle at which the AGN is viewed, the black hole mass can be constrained. As part of a reverberation mapping campaign targeting NGC 7469, optical B and V photometry was obtained over the span of a 6-month period during the second half of 2011 using 14 different telescopes in the former bandwidth and 15 in the latter. Differential photometry was performed with IRAF and the light curves were compared with those obtained using the image subtraction program ISIS.

  4. DISCOVERY OF 5000 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS

    SciTech Connect

    Kozlowski, Szymon; Kochanek, Christopher S. E-mail: ckochanek@astronomy.ohio-state.edu

    2009-08-10

    We show that using mid-IR color selection to find active galactic nuclei (AGNs) is as effective in dense stellar fields such as the Magellanic Clouds as it is in extragalactic fields with low stellar densities using comparisons between the Spitzer Deep Wide Field Survey data for the NOAO Deep Wide Field Survey Boeotes region and the SAGE Survey of the Large Magellanic Cloud. We use this to build high-purity catalogs of {approx}5000 AGN candidates behind the Magellanic Clouds. Once confirmed, these quasars will expand the available astrometric reference sources for the Clouds and the numbers of quasars with densely sampled, long-term (>decade) monitoring light curves by well over an order of magnitude and potentially identify sufficiently bright quasars for absorption line studies of the interstellar medium of the Clouds.

  5. Pair Plasmas in the Central Engine of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Tsuruta, S.; Tritz, B. G.

    1993-01-01

    As the most promising model for the X-ray emission from a class of Active Galactic Nuclei (AGNs) represented by radio-quiet quasars and Seyfert nuclei, here we introduce the non-thermal pair cascade model, where soft photons are Comptonized by non-thermal electron-positron pair plasmas produced by (gamma)-rays. After summarizing the simplest model of this kind, the "homogeneous spherical cascade model", our most recent work on the "surface cascade model" is presented, where a geometrical effect is introduced. Many characteristics of this model are qualitatively similar to the homogeneous cascade model. However, an important difference is that (gamma)-ray depletion is much more efficient in the surface cascade, and consequently this model naturally satisfies the severe observational constraint imposed by the (gamma)-ray background radiation.

  6. Time Delay Evolution of Five Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kovačević, A.; Popović, L. Č.; Shapovalova, A. I.; Ilić, D.; Burenkov, A. N.; Chavushyan, V. H.

    2015-12-01

    Here we investigate light curves of the continuum and emission lines of five type 1 active galactic nuclei (AGN) from our monitoring campaign, to test time-evolution of their time delays. Using both modeled and observed AGN light curves, we apply Gaussian kernel-based estimator to capture variation of local patterns of their time evolving delays. The largest variations of time delays of all objects occur in the period when continuum or emission lines luminosity is the highest. However, Gaussian kernel-based method shows instability in the case of NGC 5548, 3C 390.3, E1821 + 643 and NGC 4051 possibly due to numerical discrepancies between damped random walk (DRW) time scale of light curves and sliding time windows of the method. The temporal variations of time lags of Arp 102B can correspond to the real nature of the time lag evolution.

  7. A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Watson, D.; Denney, K. D.; Vestergaard, M.; Davis, T. M.

    2011-10-20

    Accurate distances to celestial objects are key to establishing the age and energy density of the universe and the nature of dark energy. A distance measure using active galactic nuclei (AGNs) has been sought for more than 40 years, as they are extremely luminous and can be observed at very large distances. We report here the discovery of an accurate luminosity distance measure using AGNs. We use the tight relationship between the luminosity of an AGN and the radius of its broad-line region established via reverberation mapping to determine the luminosity distances to a sample of 38 AGNs. All reliable distance measures up to now have been limited to moderate redshift-AGNs will, for the first time, allow distances to be estimated to z {approx} 4, where variations of dark energy and alternate gravity theories can be probed.

  8. X-ray emission from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1985-01-01

    It is often held that the X-ray emission from active galactic nuclei (AGN) arises from a region close to the central energy source. Thus X-ray observations may provide the best constraints on the central engine. In particular, the shape of the X-ray continuum gives information about the mechanism for photon generation, X-ray time variability data can constrain the size and mass of the continuum source, and X-ray occultation data give constraints on the relative sizes of the continuum source and the intervening absorbing material (often assumed to be the broad line clouds). In addition, since a fair fraction of the total energy of an AGN is emitted at X-ray wavelengths, direct measurement of the amount and spectral form of this radiation is important for modeling of the optically emitting clouds.

  9. Unwrapping the X-ray spectra of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Reynolds, C. S.

    2016-05-01

    Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v˜ (0.1-0.3)c, highly-ionized (mainly visible in Fe XXV and Fe XXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.

  10. OBSERVABILITY OF DUAL ACTIVE GALACTIC NUCLEI IN MERGING GALAXIES

    SciTech Connect

    Van Wassenhove, Sandor; Volonteri, Marta; Bellovary, Jillian; Mayer, Lucio; Callegari, Simone; Dotti, Massimo

    2012-03-20

    Supermassive black holes (SMBHs) have been detected in the centers of most nearby massive galaxies. Galaxies today are not only the products of billions of years of galaxy mergers, but also billions of years of SMBH activity as active galactic nuclei (AGNs) that is connected to galaxy mergers. In this context, detection of AGN pairs should be relatively common. Observationally, however, dual AGNs are scant, being just a few percent of all AGNs. In this Letter, we investigate the triggering of AGN activity in merging galaxies via a suite of high-resolution hydrodynamical simulations. We follow the dynamics and accretion onto the SMBHs as they move from separations of tens of kiloparsecs to tens of parsecs. Our resolution, cooling, and star formation implementation produce an inhomogeneous, multi-phase interstellar medium, allowing us to accurately trace star formation and accretion onto the SMBHs. We study the impact of gas content, morphology, and mass ratio, focusing on AGN activity and dynamics across a wide range of relevant conditions. We test when the two AGNs are simultaneously detectable, for how long and at which separations. We find that strong dual AGN activity occurs during the late phases of the mergers, at small separations (<1-10 kpc) below the resolution limit of most surveys. Much of the SMBH accretion is not simultaneous, limiting the dual AGN fraction detectable through imaging and spectroscopy to a few percent, in agreement with observational samples.

  11. Molecular Abundances in the Disk of AN Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Harada, N.; Thompson, T. A.; Herbst, E.

    2011-06-01

    There are galactic nuclei that emit high luminosities L˜1044-46 erg S-1 including luminosity produced by X-rays from high mass accretion onto the central black holes. These nuclei are called active galactic nuclei (AGNs), and they are accompanied by molecular disks. Observations show high abundances of CN and HCN in the disks; the molecules are proposed to be probes of X-ray dominated regions (XDRs) created by the X-rays from AGNs. We have constructed a spatially-dependent chemical-abundance model of the molecular disk in NGC 1068, a typical AGN-dominated galaxy. Recently, new observations of CN and HCN have been made at much higher spatial resolution, and there are also detections of polyatomic molecules such as HC3N, c-C3H2, and C2H. We discuss how these observations and our simulations can help us to better understand the physical conditions, the disk structure, and conditions for star formation within molecular disks, which are still uncertain. We also include a comparison with other types of galaxies such as (ultra-) luminous infrared galaxies. Usero et al.Astronomy and Astrophysics. 419 (897), 2004. Initial results were presented at the International Symposium on Molecular Spectroscopy 2010, RF05 Garcia-Burillo et al. Astronomy and Astrophysics. 519 (2), 2010. Garcia-Burillo et al. Journal of Physics Conference Series, 131 (12031), 2008. Costagliola et al. ArXiv e-print arXiv:1101.2122, 2011. Nakajima et al. Astrophysical Journal Letters 728 (L38), 2008.

  12. DUAL ACTIVE GALACTIC NUCLEI: DEPROJECTING THE BINARY CORES

    SciTech Connect

    Wang, X.-W.; Zhou, H.-Y.

    2012-10-01

    Dual active galactic nuclei (AGNs) as a population in a special phase during the evolution of merging galaxies have been found largely from candidates selected from the Sloan Digital Sky Survey (SDSS). In this paper, we develop a simple model of dual AGNs, which are composed of two optically thin spheres emitting narrow lines and co-rotating governed by gravity between them. In order to show how profiles are sensitive to the orientation angles of the orbiting plane and phase angles, we make detailed calculations of profiles for a large space of the two angles. The dual AGNs observationally appear as ones with double-peaked profiles of emission lines, but there are still quite large ranges of orientation and phase angles where they appear only with a single-peaked profile. This implies a large fraction of dual AGN candidate missed by selecting AGNs with double-peaked profiles. We show that the highly sensitive dependence of profiles on orientation and phase angles makes them robust to deproject dual AGN systems. Deprojection by the present model has potential implications for discussion of the triggering mechanism of black hole activity in light of the deprojected distance. We apply the present model to two dual AGN, SDSS J095207.6+255257 and J171544.05+600835.7, for deprojection of the binary cores.

  13. DISCOVERY OF FOUR kpc-SCALE BINARY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Liu Xin; Greene, Jenny E.; Strauss, Michael A.; Shen Yue

    2010-05-20

    We report the discovery of four kpc-scale binary active galactic nuclei (AGNs). These objects were originally selected from the Sloan Digital Sky Survey based on double-peaked [O III] {lambda}{lambda}4959, 5007 emission lines in their fiber spectra. The double peaks could result from pairing active supermassive black holes (SMBHs) in a galaxy merger or could be due to bulk motions of narrow-line region gas around a single SMBH. Deep near-infrared (NIR) images and optical slit spectra obtained from the Magellan 6.5 m and the Apache Point Observatory 3.5 m telescopes strongly support the binary SMBH scenario for the four objects. In each system, the NIR images reveal tidal features and double stellar components with a projected separation of several kpc, while optical slit spectra show two Seyfert 2 nuclei spatially coincident with the stellar components, with line-of-sight velocity offsets of a few hundred km s{sup -1}. These objects were drawn from a sample of only 43 objects, demonstrating the efficiency of this technique to find kpc-scale binary AGNs.

  14. Active galactic nuclei at gamma-ray energies

    NASA Astrophysics Data System (ADS)

    Dermer, Charles Dennison; Giebels, Berrie

    2016-06-01

    Active Galactic Nuclei can be copious extragalactic emitters of MeV-GeV-TeV γ rays, a phenomenon linked to the presence of relativistic jets powered by a super-massive black hole in the center of the host galaxy. Most of γ-ray emitting active galactic nuclei, with more than 1500 known at GeV energies, and more than 60 at TeV energies, are called "blazars". The standard blazar paradigm features a jet of relativistic magnetized plasma ejected from the neighborhood of a spinning and accreting super-massive black hole, close to the observer direction. Two classes of blazars are distinguished from observations: the flat-spectrum radio-quasar class (FSRQ) is characterized by strong external radiation fields, emission of broad optical lines, and dust tori. The BL Lac class (from the name of one of its members, BL Lacertae) corresponds to weaker advection-dominated flows with γ-ray spectra dominated by the inverse Compton effect on synchrotron photons. This paradigm has been very successful for modeling the broadband spectral energy distributions of blazars. However, many fundamental issues remain, including the role of hadronic processes and the rapid variability of a few FSRQs and several BL Lac objects whose synchrotron spectrum peaks at UV or X-ray frequencies. A class of γ-ray-emitting radio galaxies, which are thought to be the misaligned counterparts of blazars, has emerged from the results of the Fermi-Large Area Telescope and of ground-based Cherenkov telescopes. Soft γ-ray emission has been detected from a few nearby Seyfert galaxies, though it is not clear whether those γ rays originate from the nucleus. Blazars and their misaligned counterparts make up most of the ≳100 MeV extragalactic γ-ray background (EGB), and are suspected of being the sources of ultra-high energy cosmic rays. The future "Cherenkov Telescope Array", in synergy with the Fermi-Large Area Telescope and a wide range of telescopes in space and on the ground, will write the next chapter

  15. ON THE 10 mum SILICATE FEATURE IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Nikutta, Robert; Elitzur, Moshe; Lacy, Mark E-mail: moshe@pa.uky.ed

    2009-12-20

    The 10 mum silicate feature observed with Spitzer in active galactic nuclei (AGNs) reveals some puzzling behavior. It (1) has been detected in emission in type 2 sources, (2) shows broad, flat-topped emission peaks shifted toward long wavelengths in several type 1 sources, and (3) is not seen in deep absorption in any source observed so far. We solve all three puzzles with our clumpy dust radiative transfer formalism. Addressing (1), we present the spectral energy distribution (SED) of SST1721+6012, the first type 2 quasar observed to show a clear 10 mum silicate feature in emission. Such emission arises in models of the AGN torus easily when its clumpy nature is taken into account. We constructed a large database of clumpy torus models and performed extensive fitting of the observed SED. We find that the cloud radial distribution varies as r {sup -1.5} and the torus contains 2-4 clouds along radial equatorial rays, each with optical depth at visual approx60-80. The source bolometric luminosity is approx3 x 10{sup 12} L{sub sun}. Our modeling suggests that approx<35% of objects with tori sharing these characteristics and geometry would have their central engines obscured. This relatively low obscuration probability can explain the clear appearance of the 10 mum emission feature in SST1721+6012 together with its rarity among other QSO2. Investigating (2), we also fitted the SED of PG1211+143, one of the first type 1 QSOs with a 10 mum silicate feature detected in emission. Together with other similar sources, this QSO appears to display an unusually broadened feature whose peak is shifted toward longer wavelengths. Although this led to suggestions of non-standard dust chemistry in these sources, our analysis fits such SEDs with standard galactic dust; the apparent peak shifts arise from simple radiative transfer effects. Regarding (3), we find additionally that the distribution of silicate feature strengths among clumpy torus models closely resembles the observed

  16. MOMENTUM DRIVING: WHICH PHYSICAL PROCESSES DOMINATE ACTIVE GALACTIC NUCLEUS FEEDBACK?

    SciTech Connect

    Ostriker, Jeremiah P.; Choi, Ena; Novak, Gregory S.; Ciotti, Luca; Proga, Daniel

    2010-10-10

    The deposition of mechanical feedback from a supermassive black hole (SMBH) in an active galactic nucleus into the surrounding galaxy occurs via broad-line winds which must carry mass and radial momentum as well as energy. The effect can be summarized by the dimensionless parameter {eta}= M-dot{sub outf}/ M-dot{sub acc}=2{epsilon}{sub w}c{sup 2}/v{sub w}{sup 2} where {epsilon}{sub w} ({identical_to} E-dot{sub w}/(M-dot{sub acc}c{sup 2})) is the efficiency with which accreted matter is turned into wind energy in the disk surrounding the central SMBH. The outflowing mass and momentum are proportional to {eta}, and many prior treatments have essentially assumed that {eta} = 0. We perform one- and two-dimensional simulations and find that the growth of the central SMBH is very sensitive to the inclusion of the mass and momentum driving but is insensitive to the assumed mechanical efficiency. For example in representative calculations, the omission of momentum and mass feedback leads to a hundred-fold increase in the mass of the SMBH to over 10{sup 10} M{sub sun}. When allowance is made for momentum driving, the final SMBH mass is much lower and the wind efficiencies that lead to the most observationally acceptable results are relatively low with {epsilon}{sub w} {approx}< 10{sup -4}.

  17. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-10

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time. PMID:22575961

  18. Continuum radiation from active galactic nuclei: A statistical study

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.

    1986-01-01

    The physics of the continuum spectrum of active galactic nuclei (AGNs) was examined using a large data set and rigorous statistical methods. A data base was constructed for 469 objects which include radio selected quasars, optically selected quasars, X-ray selected AGNs, BL Lac objects, and optically unidentified compact radio sources. Each object has measurements of its radio, optical, X-ray core continuum luminosity, though many of them are upper limits. Since many radio sources have extended components, the core component were carefully selected out from the total radio luminosity. With survival analysis statistical methods, which can treat upper limits correctly, these data can yield better statistical results than those previously obtained. A variety of statistical tests are performed, such as the comparison of the luminosity functions in different subsamples, and linear regressions of luminosities in different bands. Interpretation of the results leads to the following tentative conclusions: the main emission mechanism of optically selected quasars and X-ray selected AGNs is thermal, while that of BL Lac objects is synchrotron; radio selected quasars may have two different emission mechanisms in the X-ray band; BL Lac objects appear to be special cases of the radio selected quasars; some compact radio sources show the possibility of synchrotron self-Compton (SSC) in the optical band; and the spectral index between the optical and the X-ray bands depends on the optical luminosity.

  19. Radiation-pressure-supported obscuring tori around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Pier, Edward A.; Krolik, Julian H.

    1992-01-01

    Radiation pressure acting on dust grains can support the vertical thickness of the obscuring tori believed to exist in active galactic nuclei. Using the results of 2D radiation transfer calculations, we evaluate the radiation force acting on these tori. We find that on the inner edge of the torus the radiation force is about 350 l(E) times the gravitational force of the nucleus, where l(E) is the Eddington ratio. Beyond a few torus heights from the inner edge, the radiation force is negligible with respect to gravity. However, between these two extremes lies a region of considerable size where the ratio of radiation force to gravity is nearly constant and can be of order unity for l(E) about 0.1. If the distribution of material within the torus is sufficiently lumpy, there is a significant time-varying component to the radiation force. This drives the random motions of the constituent clouds, thickening the torus at lower values of l(E).

  20. Implosive accretion and outbursts of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Lovelace, R. V. E.; Romanova, M. M.; Newman, W. I.

    1994-01-01

    A model and simulation code have been developed for time-dependent axisymmetric disk accretion onto a compact object including for the first time the influence of an ordered magnetic field. The accretion rate and radiative luminosity of the disk are naturally coupled to the rate of outflow of energy and angular momentum in magnetically driven (+/- z) winds. The magnetic field of the wind is treated in a phenomenological way suggested by self-consistent wind solutions. The radial accretion speed u(r, t) of the disk matter is shown to be the sum of the usual viscous contribution and a magnetic contribution proportional to r(exp 3/2)(B(sub p exp 2))/sigma, where B(sub p)(r,t) is the poloidal field threading the disk and sigma(r,t) is the disk's surface mass density. An enhancement or variation in B(sub p) at a large radial distance leads to the formation of a soliton-like structure in the disk density, temperature, and B-field which propagates implosively inward. The implosion gives a burst in the power output in winds or jets and a simultaneous burst in the disk radiation. The model is pertinent to the formation of discrete fast-moving components in jets observed by very long baseline interferometry. These components appear to originate at times of optical outbursts of the active galactic nucleus.

  1. Accretion disks and periodic outbursts of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Shields, G. A.

    1986-01-01

    The local thermal stability of accretion disks around supermassive black holes in active galactic nuclei is examined. Such disks are unstable at radii where the surface temperature is several thousand degrees. Supermassive disks therefore should undergo limit-cycle outbursts similar to those believed to occur in dwarf novae. Operating on a time scale of about 10,000 to 10 million yr and at radii of about 10 to the 15th to 10 to the 16th cm, this mechanism will result in alternating periods of higher and lower accretion rate onto the black hole and, consequently, higher and lower luminosity. Quasi-periodic outbursts on this time scale may be recorded in the structure of extended radio sources, a possible example being 4C 29.47. For accretion rates greater than 0.1 solar masses/yr, the situation is complicated by instabilities caused by self-gravitation and by the dominance of radiation pressure and electron scattering opacity.

  2. Microvariabilty in Active Galactic Nuclei at Centimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Atwood, James W.; Pannuti, T. G.

    2007-12-01

    Active Galactic Nuclei (AGNs) are some of the most distant objects known in the universe. Quasars, Blazars, and Seyfert galaxies are all categorized as AGNs. One of the interesting characteristics of AGNs is that they vary in brightness over a variety of time scales, ranging from long term (years or decades), to intraday (days or weeks), to extremely short (hours or minutes). Using the Morehead State University 21m Space Tracking Antenna we can measure short term variations (microvariability) of the radio frequency radiation of these distant objects. By monitoring variability we may be able to determine if this observed phenomenon originates from the internal processes of these objects or due to the intervening medium, and to provide insight into the nature and process associated with the AGN central engines. Initial observations of a set of target AGNs have been undertaken. Additional observations of these target objects will be made at 1.4, 2.4, and 12GHz to measure microvariability and to produce data points for broadband SEDs of these AGNs. Few observations have been made in the 12GHz region for these objects. These data sets will be correlated with simultaneous optical (Bell observatory) and The Gamma Ray Large Area Space Telescope (GLAST) observations to produce broad band, multiwavelength observations of a selected target set of AGNs. An additional goal of this project is to become a node in the NASA GLAST network.

  3. AN OFF-CENTERED ACTIVE GALACTIC NUCLEUS IN NGC 3115

    SciTech Connect

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V.

    2014-11-20

    NGC 3115 is an S0 galaxy that has always been considered to have a pure absorption-line spectrum. Some recent studies have detected a compact radio-emitting nucleus in this object, coinciding with the photometric center and with a candidate for the X-ray nucleus. This is evidence of the existence of a low-luminosity active galactic nucleus (AGN) in the galaxy, although no emission line has ever been observed. We report the detection of an emission-line spectrum of a type 1 AGN in NGC 3115, with an Hα luminosity of L {sub Hα} = (4.2 ± 0.4) × 10{sup 37} erg s{sup –1}. Our analysis revealed that this AGN is located at a projected distance of ∼0.''29 ± 0.''05 (corresponding to ∼14.3 ± 2.5 pc) from the stellar bulge center, which is coincident with the kinematic center of this object's stellar velocity map. The black hole corresponding to the observed off-centered AGN may form a binary system with a black hole located at the stellar bulge center. However, it is also possible that the displaced black hole is the merged remnant of the binary system coalescence, after the ''kick'' caused by the asymmetric emission of gravitational waves. We propose that certain features in the stellar velocity dispersion map are the result of perturbations caused by the off-centered AGN.

  4. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  5. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    NASA Astrophysics Data System (ADS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  6. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    SciTech Connect

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  7. The star formation rates of active galactic nuclei host galaxies

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Teimoorinia, Hossen; Rosario, David J.; Mendel, J. Trevor

    2016-05-01

    Using artificial neural network predictions of total infrared luminosities (LIR), we compare the host galaxy star formation rates (SFRs) of ˜21 000 optically selected active galactic nuclei (AGN), 466 low-excitation radio galaxies (LERGs) and 721 mid-IR-selected AGN. SFR offsets (ΔSFR) relative to a sample of star-forming `main-sequence' galaxies (matched in M⋆, z and local environment) are computed for the AGN hosts. Optically selected AGN exhibit a wide range of ΔSFR, with a distribution skewed to low SFRs and a median ΔSFR = -0.06 dex. The LERGs have SFRs that are shifted to even lower values with a median ΔSFR = -0.5 dex. In contrast, mid-IR-selected AGN have, on average, SFRs enhanced by a factor of ˜1.5. We interpret the different distributions of ΔSFR amongst the different AGN classes in the context of the relative contribution of triggering by galaxy mergers. Whereas the LERGs are predominantly fuelled through low accretion rate secular processes which are not accompanied by enhancements in SFR, mergers, which can simultaneously boost SFRs, most frequently lead to powerful, obscured AGN.

  8. On the efficient acceleration of clouds in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Proga, Daniel

    2016-07-01

    In the broad line region of active galactic nuclei (AGN), acceleration occurs naturally when a cloud condenses out of the hot confining medium due to the increase in line opacity as the cloud cools. However, acceleration by radiation pressure is not very efficient when the flux is time-independent, unless the flow is 1D. Here, we explore how acceleration is affected by a time-varying flux, as AGN are known to be highly variable. If the period of flux oscillations is longer than the thermal time-scale, we expect the gas to cool during the low flux state, and therefore line opacity should quickly increase. The cloud will receive a small kick due to the increased radiation force. We perform hydrodynamical simulations using ATHENA to confirm this effect and quantify its importance. We find that despite the flow becoming turbulent in 2D due to hydrodynamic instabilities, a 20 per cent modulation of the flux leads to a net increase in acceleration - by more than a factor of 2 - in both 1D and 2D. We show that this acceleration is sufficient to produce the observed line widths, although we only consider optically thin clouds. We discuss the implications of our results for photoionization modelling and reverberation mapping.

  9. Effects of Active galactic nuclei feedback in galaxy population

    NASA Astrophysics Data System (ADS)

    Lagos, C.; Cora, S.; Padilla, N.

    We analyze the effects of feedback from Active Galactic Nuclei (AGN) on the formation and evolution of galaxies, which is assumed to quench cooling flows in massive halos. With this aim we use an hybrid model that combines a cosmological Lambda CDM simulation with a semi-analytic model of galaxy formation. We consider the semi-analytic model described by Cora (2006) (SAMC06) which has been improved by including AGNs, which are associated with the presence of supermassive black holes (BHs). Modellization of BH includes gas accretion during merger-driven starbursts and black hole mergers (Malbon et al., 2006), accretion during starbursts triggered by disk instabilities (Bower et al. 2006), and accretion of cooling gas from quasi-hydrostatically cooling haloes (Croton et al. 2006); Eddington limit is applied in all accretion processes. It is assumed that feedback from AGNs operates in the later case. We show that this new model can simultaneously explain: (i) the bright-end of the galaxy luminosity function (LF); (ii) the observed older population of stars in massive galaxies, thus reproducing the stellar mass function (SMF); (iii) a star formation rate (SFR) seemingly showing an anti-hierarchical galaxy growth. The success of our model is mainly due to the ability of AGN feedback to suppress further cooling and SF in the most massive structures.

  10. Fermi Observations of TeV-Selected Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Di Bernardo, G.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Foschini, L.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giavitto, G.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Reyes, L. C.; Ritz, S.; Rochester, L. S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schalk, T. L.; Sellerholm, A.; Sgrò, C.; Shaw, M. S.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Tanaka, Y.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2009-12-01

    We report on observations of TeV-selected active galactic nuclei (AGNs) made during the first 5.5 months of observations with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope (Fermi). In total, 96 AGNs were selected for study, each being either (1) a source detected at TeV energies (28 sources) or (2) an object that has been studied with TeV instruments and for which an upper limit has been reported (68 objects). The Fermi observations show clear detections of 38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources, and 29 were not in the third EGRET catalog. For each of the 38 Fermi-detected sources, spectra and light curves are presented. Most can be described with a power law of spectral index harder than 2.0, with a spectral break generally required to accommodate the TeV measurements. Based on an extrapolation of the Fermi spectrum, we identify sources, not previously detected at TeV energies, which are promising targets for TeV instruments. Evidence for systematic evolution of the γ-ray spectrum with redshift is presented and discussed in the context of interaction with the extragalactic background light.